The N Domain of Human Angiotensin-I-converting Enz

Journal of Biological Chemistry 285, 35685-35693 DOI: 10.1074/jbc.m110.167866

Citation Report

#	Article	IF	CITATIONS
1	An Angiotensin I-Converting Enzyme Mutation (Y465D) Causes a Dramatic Increase in Blood ACE via Accelerated ACE Shedding. PLoS ONE, 2011, 6, e25952.	2.5	37
2	Novel mechanism of inhibition of human angiotensin-I-converting enzyme (ACE) by a highly specific phosphinic tripeptide. Biochemical Journal, 2011, 436, 53-59.	3.7	36
3	Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. Journal of Medicinal Chemistry, 2011, 54, 5955-5980.	6.4	529
4	Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis and Tissue Repair, 2011, 4, 25.	3.4	23
5	Structure Based Drug Design of Angiotensin-I Converting Enzyme Inhibitors. Current Medicinal Chemistry, 2012, 19, 845-855.	2.4	47
6	Characterization of angiotensin I-converting enzyme N-domain selectivity using positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides. Biological Chemistry, 2012, 393, 1547-1554.	2.5	3
7	Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Scientific Reports, 2012, 2, 717.	3.3	127
8	Molecular mechanism of the interactions between inhibitory tripeptides and angiotensin-converting enzyme. Biophysical Chemistry, 2012, 168-169, 60-66.	2.8	21
9	Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS ONE, 2012, 7, e49493.	2.5	257
10	Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 2012, 133, 1349-1354.	8.2	73
11	Peptidyl-Dipeptidase A/Angiotensin I-Converting Enzyme. , 2013, , 480-494.		13
12	A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme. Pharmacological Reviews, 2013, 65, 1-46.	16.0	240
13	The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1826-1838.	2.5	71
14	Peptide Degradation (Neprilysin and Other Regulatory Peptidases). , 2013, , 1757-1764.		4
15	A Novel Angiotensin I-Converting Enzyme Mutation (S333W) Impairs N-Domain Enzymatic Cleavage of the Anti-Fibrotic Peptide, AcSDKP. PLoS ONE, 2014, 9, e88001.	2.5	19
16	N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Frontiers in Pharmacology, 2014, 5, 70.	3.5	26
17	Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors. Clinical Science, 2014, 126, 305-313.	4.3	36
18	N-acetyl-seryl-aspartyl-lysyl-proline Inhibits Diabetes-Associated Kidney Fibrosis and Endothelial-Mesenchymal Transition. BioMed Research International, 2014, 2014, 1-12.	1.9	73

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	Phosphinic Peptides as Potent Inhibitors of Zinc-Metalloproteases. Topics in Current Chemistry, 2014, 360, 1-38.	4.0	32
20	ACE for all – a molecular perspective. Journal of Cell Communication and Signaling, 2014, 8, 195-210.	3.4	30
21	Seafood Processing By-products: Collagen and Gelatin. , 2014, , 207-242.		10
22	Absence of cell surface expression of human ACE leads to perinatal death. Human Molecular Genetics, 2014, 23, 1479-1491.	2.9	14
23	Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence. Biological Chemistry, 2014, 395, 1135-1149.	2.5	43
24	How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discovery Today, 2014, 19, 1731-1743.	6.4	23
25	Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE). Journal of Biological Chemistry, 2014, 289, 1798-1814.	3.4	29
26	Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensinâ€< scp>I converting enzyme. FEBS Journal, 2014, 281, 943-956.	4.7	27
27	QM/MM Study and MD Simulations on the Hypertension Regulator Angiotensin-Converting Enzyme. ACS Catalysis, 2014, 4, 2587-2597.	11.2	23
28	Interkingdom Pharmacology of Angiotensin-I Converting Enzyme Inhibitor Phosphonates Produced by Actinomycetes. ACS Medicinal Chemistry Letters, 2014, 5, 346-351.	2.8	26
30	Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme. Scientific Reports, 2015, 5, 13742.	3.3	18
31	Using Crystallographic Data To Facilitate Students' Discovery of How Protein Models Are Produced—An Activity Illustrating the Effect of Resolution on Model Quality. Journal of Chemical Education, 2015, 92, 2117-2119.	2.3	2
32	Analysis of carbohydrates and glycoconjugates by matrixâ€assisted laser desorption/ionization mass spectrometry: An update for 2009–2010. Mass Spectrometry Reviews, 2015, 34, 268-422.	5.4	63
33	Crystal structure of a peptidylâ€dipeptidase Kâ€⊋6â€DCP from <i>Actinomycete</i> in complex with its natural inhibitor. FEBS Journal, 2016, 283, 4357-4369.	4.7	6
34	Kinetic and structural characterization of amyloidâ€Î² peptide hydrolysis by human angiotensinâ€1â€converting enzyme. FEBS Journal, 2016, 283, 1060-1076.	4.7	19
35	The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme. Biochemical and Biophysical Research Communications, 2016, 481, 111-116.	2.1	6
36	The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Scientific Reports, 2017, 7, 45409.	3.3	7
37	Predictions for α-Helical Glycopeptide Design from Structural Bioinformatics Analysis. Journal of Chemical Information and Modeling, 2017, 57, 2598-2611.	5.4	2

#	Article	IF	CITATIONS
38	Crystal structures of sampatrilat and sampatrilatâ€Asp in complex with human ACE – a molecular basis for domain selectivity. FEBS Journal, 2018, 285, 1477-1490.	4.7	23
39	The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme. Journal of Medicinal Chemistry, 2018, 61, 344-359.	6.4	20
40	The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment?. Journal of Alzheimer's Disease, 2018, 62, 1443-1466.	2.6	105
41	Molecular Basis for Multiple Omapatrilat Binding Sites within the ACE C-Domain: Implications for Drug Design. Journal of Medicinal Chemistry, 2018, 61, 10141-10154.	6.4	22
42	Interacting cogs in the machinery of the renin angiotensin system. Biophysical Reviews, 2019, 11, 583-589.	3.2	3
43	Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochemical Journal, 2019, 476, 1553-1570.	3.7	16
44	In silico identification of angiotensin-1 converting enzyme inhibitors using text mining and virtual screening. Journal of Biomolecular Structure and Dynamics, 2020, , 1-11.	3.5	1
45	Intrinsic disorder perspective of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. Infection, Genetics and Evolution, 2020, 85, 104510.	2.3	9
46	Synopsis of recent synthetic methods and biological applications of phosphinic acid derivatives. Tetrahedron, 2020, 76, 131251.	1.9	19
47	Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules, 2020, 25, 295.	3.8	35
48	Novel ACE mutations mimicking sarcoidosis by increasing blood ACE levels. Translational Research, 2021, 230, 5-20.	5.0	12
49	Angiotensinâ€converting enzyme open for business: structural insights into the subdomain dynamics. FEBS Journal, 2021, 288, 2238-2256.	4.7	21
50	Molecular dynamics investigation on the interaction of human angiotensin-converting enzyme with tetrapeptide inhibitors. Physical Chemistry Chemical Physics, 2021, 23, 6685-6694.	2.8	6
51	Human angiotensin lâ€converting enzyme study by surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 1529-1539.	2.5	8
52	Structure-Based Design of Domain-Selective Angiotensin-Converting Enzyme Inhibitors. , 2012, , 355-377.		2
53	Crystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor. Biochemical Journal, 2019, 476, 3505-3520.	3.7	6
54	ACE-domain selectivity extends beyond direct interacting residues at the active site. Biochemical Journal, 2020, 477, 1241-1259.	3.7	10
55	ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clinical Science, 2020, 134, 2851-2871.	4.3	47

#	Article	IF	CITATIONS
56	Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1436-1446.	2.4	3
57	The Synthesis and In Silico Antihypertensive Activity Prognosis of New Mannich Bases Containing the 1,2,4-Triazole Moiety. Chemistry and Chemical Technology, 2020, 14, 214-220.	1.1	6
58	Comparative N-Glycoproteomic Analysis Provides Novel Insights into the Deterioration Mechanisms in Chicken Egg Vitelline Membrane during High-Temperature Storage. Journal of Agricultural and Food Chemistry, 2021, 69, 2354-2363.	5.2	4
59	Advances in Structural Biology of ACE and Development of Domain Selective ACE-inhibitors. Medicinal Chemistry, 2019, 15, 574-587.	1.5	6
60	Probing the Requirements for Dual Angiotensin-Converting Enzyme C-Domain Selective/Neprilysin Inhibition. Journal of Medicinal Chemistry, 2022, 65, 3371-3387.	6.4	3
61	Structural basis for the inhibition of human angiotensinâ€1 converting enzyme by fosinoprilat. FEBS Journal, 2022, 289, 6659-6671.	4.7	5
62	A new approach for purification of the catalytic site of the angiotensin-conversion enzyme, N-domain, mediated by the ELP-Intein system. Journal of Pharmacological and Toxicological Methods, 2022, 116, 107174.	0.7	0
63	<scp>Cryoâ€EM</scp> reveals mechanisms of angiotensin lâ€converting enzyme allostery and dimerization. EMBO Journal, 2022, 41, .	7.8	4
64	Diastereoselective synthesis of a novel phosphinic peptide as ACE inhibitor: Fragment-based design approach. Arabian Journal of Chemistry, 2023, 16, 104499.	4.9	1
65	Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacology and Translational Science, 2022, 5, 1228-1253.	4.9	1
66	Urinary ACE Phenotyping as a Research and Diagnostic Tool: Identification of Sex-Dependent ACE Immunoreactivity. Biomedicines, 2023, 11, 953.	3.2	1
67	Blood ACE Phenotyping for Personalized Medicine: Revelation of Patients with Conformationally Altered ACE. Biomedicines, 2023, 11, 534.	3.2	1
68	Presenilin 1 deficiency impairs Aβ42-to-Aβ40- and angiotensin-converting activities of ACE. Frontiers in Aging Neuroscience, 0, 15, .	3.4	3
70	Is It Still Relevant to Discover New ACE Inhibitors from Natural Products? YES, but Only with Comprehensive Approaches to Address the Patients' Real Problems: Chronic Dry Cough and Angioedema. Molecules, 2023, 28, 4532.	3.8	3
71	A novel angiotensin-converting enzyme (ACE) inhibitory peptide from tilapia skin: Preparation, identification and its potential antihypertensive mechanism. Food Chemistry, 2024, 430, 137074.	8.2	5
72	Dataset on substituents effect on biological activities of linear RGD-containing peptides as potential anti-angiotensin converting enzyme. Data in Brief, 2023, 50, 109478.	1.0	0
73	A meta-analysis and review on genetic mapping of type 2 diabetes mellitus in Iraq. Egyptian Journal of Medical Human Genetics, 2023, 24, .	1.0	0
74	Structural insights into the inhibitory mechanism of angiotensinâ€lâ€converting enzyme by the lactotripeptides IPP and VPP. FEBS Letters, 0, , .	2.8	Ο

CITATION REPORT

		CITATION REPORT		
#	Article	IF	CITATIONS	
75	Antihypertensives associated adverse events: a review of mechanisms and pharmacogenomic biomarkers available evidence in multi-ethnic populations. Frontiers in Pharmacology, 0, 14, .	3.5	0	
76	Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer's Disease. Biomedicines, 2024, 12, 162.	. 3.2	0	