Glut2â€dependent glucoseâ€sensing controls thermore sensitivity of NPY and POMC neurons

FASEB Journal 24, 1747-1758 DOI: 10.1096/fj.09-144923

Citation Report

#	Article	IF	CITATIONS
1	Hypothalamic Responses to Fasting Indicate Metabolic Reprogramming Away from Glycolysis Toward Lipid Oxidation. Endocrinology, 2010, 151, 5206-5217.	1.4	44
2	Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obsese individuals in 2 distinct populations. American Journal of Clinical Nutrition, 2010, 92, 1501-1510.	2.2	132
3	Central control of glucose homeostasis: the brain – endocrine pancreas axis. Diabetes and Metabolism, 2010, 36, S45-S49.	1.4	36
4	Effects of altered glucose supply and adiposity on expression of hypothalamic energy balance regulatory genes in late gestation growth restricted ovine fetuses. International Journal of Developmental Neuroscience, 2011, 29, 775-781.	0.7	12
5	Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, Obesity and Metabolism, 2011, 13, 82-88.	2.2	163
6	New aspects of melanocortin signaling: A role for PRCP in α-MSH degradation. Frontiers in Neuroendocrinology, 2011, 32, 70-83.	2.5	48
7	Melanocortin control of energy balance: evidence from rodent models. Cellular and Molecular Life Sciences, 2011, 68, 2569-2588.	2.4	41
8	Fanconi-Bickel Syndrome and Autosomal Recessive Proximal Tubulopathy with Hypercalciuria (ARPTH) Are Allelic Variants Caused by GLUT2 Mutations. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1978-E1986.	1.8	30
9	Review of the neuroanatomic landscape implicated in glucose sensing and regulation of nutrient signaling: Immunophenotypic localization of diabetes gene Tcf7l2 in the developing murine brain. Journal of Chemical Neuroanatomy, 2012, 45, 1-17.	1.0	2
10	Hindbrain Neurons as an Essential Hub in the Neuroanatomically Distributed Control of Energy Balance. Cell Metabolism, 2012, 16, 296-309.	7.2	362
11	Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Frontiers in Genetics, 2012, 3, 184.	1.1	21
12	Sensing of Glucose in the Brain. Handbook of Experimental Pharmacology, 2012, , 277-294.	0.9	66
13	A Role for the Melatonin-Related Receptor GPR50 in Leptin Signaling, Adaptive Thermogenesis, and Torpor. Current Biology, 2012, 22, 70-77.	1.8	83
14	Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 2013, 36, 587-597.	4.2	1,082
15	The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 2013, 34, 121-138.	2.7	934
16	Pancreas-Specific Cre Driver Lines and Considerations for Their Prudent Use. Cell Metabolism, 2013, 18, 9-20.	7.2	170
17	Role of Secretin Peptide Family and their Receptors in the Hypothalamic Control of Energy Homeostasis. Hormone and Metabolic Research, 2013, 45, 945-954.	0.7	9
18	Hypothalamic Glucose-sensing: Role of Glia-to-Neuron Signaling. Hormone and Metabolic Research, 2013, 45, 955-959.	0.7	16

#	Article	IF	CITATIONS
19	Peptides and Temperature. , 2013, , 1880-1888.		1
20	Neural regulation of pancreatic islet cell mass and function. Diabetes, Obesity and Metabolism, 2014, 16, 87-95.	2.2	116
21	Biology of Glucose Transport in the Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 3-17.	1.0	103
22	Central glucose sensing. Nutrition Clinique Et Metabolisme, 2014, 28, 189-192.	0.2	2
23	Hypoglycemia-Activated GLUT2 Neurons of the Nucleus Tractus Solitarius Stimulate Vagal Activity and Glucagon Secretion. Cell Metabolism, 2014, 19, 527-538.	7.2	114
24	The role of tanycytes in hypothalamic glucosensing. Journal of Cellular and Molecular Medicine, 2015, 19, 1471-1482.	1.6	73
26	Does Nutrient Sensing Determine How We "See―Food?. Current Diabetes Reports, 2015, 15, 604.	1.7	11
27	Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease. BioEssays, 2015, 37, 240-247.	1.2	60
28	Brain glucose sensing in homeostatic and hedonic regulation. Trends in Endocrinology and Metabolism, 2015, 26, 455-466.	3.1	66
29	Modulation of Glucose Transporter Protein by Dietary Flavonoids in Type 2 Diabetes Mellitus. International Journal of Biological Sciences, 2015, 11, 508-524.	2.6	143
30	Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3ââ,¬Â²UTR. Frontiers in Cellular Neuroscience, 2015, 9, 172.	1.8	35
31	GLUT2-Mediated Glucose Uptake and Availability Are Required for Embryonic Brain Development in Zebrafish. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 74-85.	2.4	40
32	GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 2015, 58, 221-232.	2.9	499
33	Distinct Networks of Leptin- and Insulin-Sensing Neurons Regulate Thermogenic Responses to Nutritional and Cold Challenges. Diabetes, 2015, 64, 137-146.	0.3	14
34	A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell Reports, 2016, 17, 1795-1806.	2.9	26
35	Peripheral Neuropathy in Mouse Models of Diabetes. Current Protocols in Mouse Biology, 2016, 6, 223-255.	1.2	91
36	Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior. Nature Neuroscience, 2016, 19, 999-1002.	7.1	108
37	The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Progress in Neurobiology, 2016, 144, 68-87.	2.8	47

CITATION REPORT

#	Article	IF	CITATIONS
38	Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiology of Disease, 2017, 107, 15-31.	2.1	26
39	Distribution of glucose transporters in renal diseases. Journal of Biomedical Science, 2017, 24, 64.	2.6	42
40	The Role of MicroRNA in the Modulation of the Melanocortinergic System. Frontiers in Neuroscience, 2017, 11, 181.	1.4	17
41	Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia, 2018, 66, 592-605.	2.5	36
42	GLUT2-Expressing Neurons as Glucose Sensors in the Brain: Electrophysiological Analysis. Methods in Molecular Biology, 2018, 1713, 255-267.	0.4	6
43	MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics, 2018, 13, 1127-1140.	1.3	16
44	Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectronic Medicine, 2018, 4, 9.	1.0	47
45	Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. Journal of Biological Rhythms, 2018, 33, 475-496.	1.4	28
46	Brain Glucose-Sensing Mechanism and Energy Homeostasis. Molecular Neurobiology, 2019, 56, 769-796.	1.9	74
47	Leptin Modulates the Expression of miRNAs-Targeting POMC mRNA by the JAK2-STAT3 and PI3K-Akt Pathways. Journal of Clinical Medicine, 2019, 8, 2213.	1.0	15
48	Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. Journal of Neuroendocrinology, 2019, 31, e12671.	1.2	11
49	The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic Î ² -cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. Journal of Ethnopharmacology, 2019, 231, 29-38.	2.0	28
50	Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1725-1736.	2.4	5
51	Fanconi–Bickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. International Journal of Molecular Sciences, 2020, 21, 6286.	1.8	26
52	Pro-opiomelanocortin Neurons and the Transcriptional Regulation of Motivated Exercise. Exercise and Sport Sciences Reviews, 2020, 48, 74-82.	1.6	5
53	Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis. Diabetes, 2021, 70, 1443-1457.	0.3	15
54	Détection cérébrale du glucose et homéostasie du glucose. Medecine Des Maladies Metaboliques, 2021, 15, 518-525.	0.1	0
55	Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis. Journal of Clinical Investigation, 2014, 124, 413-424.	3.9	62

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines. PLoS ONE, 2013, 8, e67807.	1.1	20
57	The melanocortin pathway and control of appetite-progress and therapeutic implications. Journal of Endocrinology, 2019, 241, R1-R33.	1.2	143
58	Increased risk for diabetes mellitus in patients with carbon monoxide poisoning. Oncotarget, 2017, 8, 63680-63690.	0.8	13
60	Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness. JCI Insight, 2020, 5, .	2.3	6
61	Does Sertraline Affect Hypothalamic Food Intake Peptides in the Rat Experimental Model of Chronic Mild Stress-Induced Depression?. Neurochemical Research, 2022, 47, 1299.	1.6	2
62	SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders. Journal of Hazardous Materials, 2022, 435, 128942.	6.5	3
63	Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism. Neurochemical Research, 2023, 48, 404-417.	1.6	3
64	GLUT2 expression by glial fibrillary acidic protein-positive tanycytes is required for promoting feeding-response to fasting. Scientific Reports, 2022, 12, .	1.6	2
67	The role of GLUT2 in glucose metabolism in multiple organs and tissues. Molecular Biology Reports, 2023, 50, 6963-6974.	1.0	5