The Inducible Costimulator (ICOS) Is Critical for the Dec _H 17 Cells

Science Translational Medicine

2, 55ra78

DOI: 10.1126/scitranslmed.3000448

Citation Report

#	Article	IF	CITATIONS
1	ICOStomizing Immunotherapies with T _H 17. Science Translational Medicine, 2010, 2, 55ps52.	5.8	6
2	Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Current Opinion in Immunology, 2011, 23, 605-612.	2.4	64
3	T Helper Cell Differentiation. Advances in Immunology, 2011, 109, 159-196.	1.1	89
4	Protective Effector Memory CD4 T Cells Depend on ICOS for Survival. PLoS ONE, 2011, 6, e16529.	1.1	21
5	Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS. Blood, 2011, 118, 3062-3071.	0.6	32
6	CD5 costimulation induces stable Th17 development by promoting IL-23R expression and sustained STAT3 activation. Blood, 2011, 118, 6107-6114.	0.6	43
7	Quantitative events determine the differentiation and function of helper T cells. Nature Immunology, 2011, 12, 288-294.	7.0	58
8	Critical co-stimulatory pathways in the stability of Foxp3+ Treg cell homeostasis in Type I Diabetes. Autoimmunity Reviews, 2011, 11, 104-111.	2.5	20
9	Inducible Costimulator Controls Migration of T Cells to the Lungs via Down-Regulation of CCR7 and CD62L. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 843-850.	1.4	16
10	Human T _H 17 Cells Are Long-Lived Effector Memory Cells. Science Translational Medicine, 2011, 3, 104ra100.	5.8	236
11	Significance of T helper 17 immunity in transplantation. Current Opinion in Organ Transplantation, 2012, 17, 8-14.	0.8	49
12	Bcl6 and Maf Cooperate To Instruct Human Follicular Helper CD4 T Cell Differentiation. Journal of Immunology, 2012, 188, 3734-3744.	0.4	302
13	A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth. Oncolmmunology, 2012, 1, 172-178.	2.1	42
14	ICOS-LICOS interaction is critically involved in TGN1412-mediated T-cell activation. Blood, 2012, 119, 6268-6277.	0.6	21
15	Functional niche of inflamed synovium for Th17-cell expansion and activation in rheumatoid arthritis: Implication to clinical therapeutics. Autoimmunity Reviews, 2012, 11, 844-851.	2.5	31
16	Defining the human T helper 17 cell phenotype. Trends in Immunology, 2012, 33, 505-512.	2.9	162
17	Regulation of TH17 cell differentiation by innate immune signals. Cellular and Molecular Immunology, 2012, 9, 287-295.	4.8	89
18	Biomimetic Delivery with Micro―and Nanoparticles. Advanced Materials, 2012, 24, 3757-3778.	11.1	145

ATION RED

#	Article	IF	CITATIONS
19	Type17 T-cells in Central Nervous System Autoimmunity and Tumors. Journal of Clinical Immunology, 2012, 32, 802-808.	2.0	26
20	The Role of Costimulatory Molecules in Directing the Functional Differentiation of Alloreactive T Helper Cells. American Journal of Transplantation, 2012, 12, 2588-2600.	2.6	45
21	Adoptive T Cell Transfer for Cancer Immunotherapy in the Era of Synthetic Biology. Immunity, 2013, 39, 49-60.	6.6	418
22	Modulation of p38 MAPK signaling enhances dendritic cell activation of human CD4+ Th17 responses to ovarian tumor antigen. Cancer Immunology, Immunotherapy, 2013, 62, 839-849.	2.0	24
23	Th17 Cells in Autoimmune Inflammation and Demyelination in the Central Nervous System. , 2013, , 1-25.		1
24	Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδT-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor. Molecular Therapy, 2013, 21, 638-647.	3.7	134
25	Essentials of Th17 cell commitment and plasticity. Blood, 2013, 121, 2402-2414.	0.6	306
26	Immune Co-signaling to Treat Cancer. , 2013, , 211-280.		1
27	B7h (ICOS-L) Maintains Tolerance at the Fetomaternal Interface. American Journal of Pathology, 2013, 182, 2204-2213.	1.9	30
28	Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity, 2013, 38, 336-348.	6.6	556
29	Adipocytes as immune regulatory cells. International Immunopharmacology, 2013, 16, 224-231.	1.7	40
30	<scp>IL</scp> â€22, not simply a Th17 cytokine. Immunological Reviews, 2013, 252, 116-132.	2.8	391
31	IL-21–Producing Th Cells in Immunity and Autoimmunity. Journal of Immunology, 2013, 191, 3501-3506.	0.4	100
32	"Model T―Cells: A Time-Tested Vehicle for Gene Therapy. Frontiers in Immunology, 2013, 4, 304.	2.2	8
33	CagA-Dependent Downregulation of B7-H2 Expression on Gastric Mucosa and Inhibition of Th17 Responses during <i>Helicobacter pylori</i> Infection. Journal of Immunology, 2013, 191, 3838-3846.	0.4	48
34	Triggering of B7h by the ICOS Modulates Maturation and Migration of Monocyte-Derived Dendritic Cells. Journal of Immunology, 2013, 190, 1125-1134.	0.4	28
35	Enhanced Function of Redirected Human T Cells Expressing Linker for Activation of T Cells That Is Resistant to Ubiquitylation. Human Gene Therapy, 2013, 24, 27-37.	1.4	18
36	Systemic Inflammation in Progressive Multiple Sclerosis Involves Follicular T-Helper, Th17- and Activated B-Cells and Correlates with Progression. PLoS ONE, 2013, 8, e57820.	1.1	213

#	Article	IF	CITATIONS
37	Attenuation of Immune-Mediated Influenza Pneumonia by Targeting the Inducible Co-Stimulator (ICOS) Molecule on T Cells. PLoS ONE, 2014, 9, e100970.	1.1	11
38	ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood, 2014, 124, 1070-1080.	0.6	268
39	Exploiting the curative potential of adoptive Tâ€cell therapy for cancer. Immunological Reviews, 2014, 257, 56-71.	2.8	422
40	Monocyte-derived dendritic cells from Crohn's disease patients exhibit decreased ability to activate T helper type 17 responses in memory cells. Clinical and Experimental Immunology, 2014, 177, 190-202.	1.1	4
41	The Immunological Synapse. Cancer Immunology Research, 2014, 2, 1023-1033.	1.6	330
42	High CTLA-4 Expression on Th17 Cells Results in Increased Sensitivity to CTLA-4 Coinhibition and Resistance to Belatacept. American Journal of Transplantation, 2014, 14, 607-614.	2.6	50
43	Ovarian Tumor Ascites CD14+ Cells Suppress Dendritic Cell–activated CD4+ T-cell Responses Through IL-10 Secretion and Indoleamine 2,3-Dioxygenase. Journal of Immunotherapy, 2014, 37, 163-169.	1.2	21
44	Th17 Cells in Cancer: The Ultimate Identity Crisis. Frontiers in Immunology, 2014, 5, 276.	2.2	257
45	Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy, 2014, 16, 619-630.	0.3	90
46	An easy way to make a good anti-tumor chimeric antigen receptor TÂcell?. Cytotherapy, 2014, 16, 577-578.	0.3	0
46 47	An easy way to make a good anti-tumor chimeric antigen receptor TÂcell?. Cytotherapy, 2014, 16, 577-578. B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931.	0.3	0 40
47	B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931.	0.4	40
47 48	 B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931. Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nature Reviews Nephrology, 	0.4	40 319
47 48 49	 B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931. Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nature Reviews Nephrology, 2014, 10, 14-24. Candida-Elicited Murine Th17 Cells Express High CTLA-4 Compared with Th1 Cells and Are Resistant to 	0.4 5.0 4.1	40 319 137
47 48 49 50	B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931. Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nature Reviews Nephrology, 2014, 10, 14-24. Candida-Elicited Murine Th17 Cells Express High CTLA-4 Compared with Th1 Cells and Are Resistant to Costimulation Blockade. Journal of Immunology, 2014, 192, 2495-2504.	0.4 5.0 4.1 0.4	40 319 137 28
47 48 49 50 51	 B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931. Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nature Reviews Nephrology, 2014, 10, 14-24. Candida-Elicited Murine Th17 Cells Express High CTLA-4 Compared with Th1 Cells and Are Resistant to Costimulation Blockade. Journal of Immunology, 2014, 192, 2495-2504. Phenotype and functions of memory Tfh cells in human blood. Trends in Immunology, 2014, 35, 436-442. 	0.4 5.0 4.1 0.4 2.9	40 319 137 28 365

#	Article	IF	CITATIONS
55	Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. Journal of Experimental Medicine, 2014, 211, 715-725.	4.2	242
56	Association of Inducible T Cell Costimulator Polymorphisms with Susceptibility and Outcome of Hepatitis B Virus Infection in a Chinese Han Population. Scandinavian Journal of Immunology, 2015, 82, 275-281.	1.3	6
57	Inducible Costimulator Gene-Transduced Bone Marrow-Derived Mesenchymal Stem Cells Attenuate the Severity of Acute Graft-Versus-Host Disease in Mouse Models. Cell Transplantation, 2015, 24, 1717-1731.	1.2	12
58	Chimeric Antigen Receptor T-Cells. Cancer Journal (Sudbury, Mass), 2015, 21, 475-479.	1.0	11
59	Harnessing the Therapeutic Potential of Th17 Cells. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	32
60	The Inducible Costimulator Augments Tc17 Cell Responses to Self and Tumor Tissue. Journal of Immunology, 2015, 194, 1737-1747.	0.4	34
61	Antibody-Opsonized Bacteria Evoke an Inflammatory Dendritic Cell Phenotype and Polyfunctional Th Cells by Cross-Talk between TLRs and FcRs. Journal of Immunology, 2015, 194, 1856-1866.	0.4	33
62	Interleukin-22: Immunobiology and Pathology. Annual Review of Immunology, 2015, 33, 747-785.	9.5	679
63	Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2015, 136, 993-1006.e1.	1.5	181
64	Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of Immunology, 2015, 195, 755-761.	0.4	147
65	The pharmacology of second-generation chimeric antigen receptors. Nature Reviews Drug Discovery, 2015, 14, 499-509.	21.5	411
66	Dendritic Cells in Irradiated Mice Trigger the Functional Plasticity and Antitumor Activity of Adoptively Transferred Tc17 Cells via IL12 Signaling. Clinical Cancer Research, 2015, 21, 2546-2557.	3.2	25
67	New insights into T-cell cosignaling in allograft rejection and survival. Current Opinion in Organ Transplantation, 2015, 20, 43-48.	0.8	8
68	Astute Clinician Report: A Novel 10Âbp Frameshift Deletion in Exon 2 of ICOS Causes a Combined Immunodeficiency Associated with an Enteritis and Hepatitis. Journal of Clinical Immunology, 2015, 35, 598-603.	2.0	30
69	Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Seminars in Oncology, 2015, 42, 640-655.	0.8	179
70	Novel immunotherapies for hematologic malignancies. Immunological Reviews, 2015, 263, 90-105.	2.8	44
71	Going viral: chimeric antigen receptor T ell therapy for hematological malignancies. Immunological Reviews, 2015, 263, 68-89.	2.8	290
72	CAR T Cell Therapy: A Game Changer in Cancer Treatment. Journal of Immunology Research, 2016, 2016, 1-10.	0.9	122

#	Article	IF	CITATIONS
73	Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Frontiers in Cell and Developmental Biology, 2015, 3, 85.	1.8	145
74	Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Research and Therapy, 2016, 18, 148.	1.6	45
75	Analysis of CXCR5+Th17 cells in relation to disease activity and TNF inhibitor therapy in Rheumatoid Arthritis. Scientific Reports, 2016, 6, 39474.	1.6	17
76	Chimeric antigen receptor-modified T cells strike back. International Immunology, 2016, 28, 355-363.	1.8	20
77	Inducible costimulator (ICOS) potentiates TCR-induced calcium flux by augmenting PLCÎ ³ 1 activation and actin remodeling. Molecular Immunology, 2016, 79, 38-46.	1.0	22
79	Current status of chimeric antigen receptor therapy for haematological malignancies. British Journal of Haematology, 2016, 172, 11-22.	1.2	70
80	Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Scientific Reports, 2016, 6, 29712.	1.6	10
81	Synthetic RORÎ ³ agonists regulate multiple pathways to enhance antitumor immunity. Oncolmmunology, 2016, 5, e1254854.	2.1	68
82	Inducible T-cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Science and Medicine, 2016, 3, e000146.	1.1	57
83	Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells. Seminars in Oncology, 2016, 43, 291-299.	0.8	13
84	Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic. Cancer Immunology, Immunotherapy, 2016, 65, 247-259.	2.0	35
85	Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumor effects. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 90-100.	3.3	22
86	The Principles of Engineering Immune Cells to Treat Cancer. Cell, 2017, 168, 724-740.	13.5	844
87	Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nature Communications, 2017, 8, 14340.	5.8	110
88	Practical considerations for chimeric antigen receptor design and delivery. Expert Opinion on Biological Therapy, 2017, 17, 961-978.	1.4	10
89	High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients. Neurological Sciences, 2017, 38, 1599-1608.	0.9	25
90	Interleukin-22 in human inflammatory diseases and viral infections. Autoimmunity Reviews, 2017, 16, 1209-1218.	2.5	67
91	Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Current Hematologic Malignancy Reports, 2017, 12, 335-343.	1.2	9

#	Article	IF	CITATIONS
92	Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nature Communications, 2017, 8, 1961.	5.8	67
93	Antigen-specific regulatory T cells: are police CARs the answer?. Translational Research, 2017, 187, 53-58.	2.2	39
94	Gene therapy in hematopoietic cell transplants. , 0, , 649-656.		0
96	CAR-T Cells: Next Generation Cancer Therapeutics. Journal of the Indian Institute of Science, 2018, 98, 21-31.	0.9	0
97	IL-23 and IL-1Î ² Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Reports, 2018, 22, 2642-2653.	2.9	157
98	Targeting Wnt/β-Catenin Signaling for Cancer Immunotherapy. Trends in Pharmacological Sciences, 2018, 39, 648-658.	4.0	159
99	Dysregulated T cells in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2018, 9, 20-29.	0.5	23
100	Activated T follicular helper-like cells are released into blood after oral vaccination and correlate with vaccine specific mucosal B-cell memory. Scientific Reports, 2018, 8, 2729.	1.6	51
101	The Major Orphan Forms of Ichthyosis Are Characterized by Systemic T-Cell Activation and Th-17/Tc-17/Th-22/Tc-22 Polarization in Blood. Journal of Investigative Dermatology, 2018, 138, 2157-2167.	0.3	43
102	Engineering T cells for adoptive therapy: outsmarting the tumor. Current Opinion in Immunology, 2018, 51, 133-139.	2.4	10
103	When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cellular and Molecular Immunology, 2018, 15, 458-469.	4.8	331
104	Mechanistic insights into cancer immunity and immunotherapy. Cellular and Molecular Immunology, 2018, 15, 419-420.	4.8	30
105	ICOSL-augmented adenoviral-based vaccination induces a bipolar Th17/Th1 T cell response against unglycosylated MUC1 antigen. Vaccine, 2018, 36, 6262-6269.	1.7	6
106	<i>In Vitro</i> Priming of Adoptively Transferred T Cells with a RORÎ ³ Agonist Confers Durable Memory and Stemness <i>In Vivo</i> . Cancer Research, 2018, 78, 3888-3898.	0.4	30
107	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
108	Inducible T-Cell Co-Stimulator Impacts Chronic Graft-Versus-Host Disease by Regulating Both Pathogenic and Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1461.	2.2	19
109	Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017,) Tj ETC	2q0 0 0 rg	BT_/Overlock 12
110	NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Frontiers in Immunology, 2019, 10, 1720.	2.2	52

#	Article	IF	CITATIONS
111	TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Science Signaling, 2019, 12, .	1.6	129
112	Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Current Topics in Microbiology and Immunology, 2019, 421, 229-265.	0.7	23
113	Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clinical and Translational Immunology, 2019, 8, e1049.	1.7	205
114	Co-stimulatory and co-inhibitory pathways in cancer immunotherapy. Advances in Cancer Research, 2019, 143, 145-194.	1.9	53
115	Dysregulation of T Follicular Helper Cells in Lupus. Journal of Immunology, 2019, 202, 1649-1658.	0.4	34
116	Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses. Frontiers in Oncology, 2019, 9, 1384.	1.3	7
117	Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 199-224.	3.3	53
118	Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases. Journal of Allergy and Clinical Immunology, 2019, 143, 2095-2107.	1.5	33
119	Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	9.5	263
120	γδT Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 2020, 71, 477-494.	3.6	41
121	Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. Journal of Allergy and Clinical Immunology, 2020, 145, 215-228.	1.5	70
122	Targeting the interleukin-17 immune axis for cancer immunotherapy. Journal of Experimental Medicine, 2020, 217, .	4.2	105
123	Contributions of T cells in multiple sclerosis: what do we currently know?. Journal of Neurology, 2021, 268, 4587-4593.	1.8	15
124	A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by scRNA-Seq. Molecular Therapy, 2020, 28, 2577-2592.	3.7	58
125	Immunosuppression in vascularized composite allotransplant: the search for an effective and safe treatment continues. Transplant International, 2020, 33, 1291-1293.	0.8	2
126	Role of effector TÂcells in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2020, 11, 140-147.	0.5	3
127	IL6 Fuels Durable Memory for Th17 Cell–Mediated Responses to Tumors. Cancer Research, 2020, 80, 3920-3932.	0.4	16
128	c-MAF, a Swiss Army Knife for Tolerance in Lymphocytes. Frontiers in Immunology, 2020, 11, 206.	2.2	39

#	Article	IF	CITATIONS
129	CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells. IScience, 2020, 23, 100912.	1.9	5
130	IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Frontiers in Immunology, 2020, 11, 1315.	2.2	106
131	Identification of human CD4 ⁺ T cell populations with distinct antitumor activity. Science Advances, 2020, 6, .	4.7	27
132	Regulatory T cells and T helper 17 cells in viral infection. Scandinavian Journal of Immunology, 2020, 91, e12873.	1.3	48
133	Inclusion of Dap10 or 4-1BB costimulation domains in the chPD1 receptor enhances anti-tumor efficacy of T cells in murine models of lymphoma and melanoma. Cellular Immunology, 2020, 351, 104069.	1.4	15
134	The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open, 2020, 5, e000544.	2.0	95
135	Chimeric antigen receptorâ€modified Tâ€cell therapy for plateletâ€derived growth factor receptor αâ€positive rhabdomyosarcoma. Cancer, 2020, 126, 2093-2100.	2.0	13
136	Regulation of mRNA stability by RBPs and noncoding RNAs contributing to the pathogenicity of Th17 cells. RNA Biology, 2021, 18, 647-656.	1.5	9
137	Lessons on SpA pathogenesis from animal models. Seminars in Immunopathology, 2021, 43, 207-219.	2.8	15
138	An enhanced level of LAMP-2A participates in CD4+T cell hyperactivity in patients with primary biliary cholangitis. Annals of Translational Medicine, 2021, 9, 101-101.	0.7	5
139	Effective Activation and Expansion of Canine Lymphocytes Using a Novel Nano-Sized Magnetic Beads Approach. Frontiers in Immunology, 2021, 12, 604066.	2.2	8
140	Interleukin-22 Influences the Th1/Th17 Axis. Frontiers in Immunology, 2021, 12, 618110.	2.2	20
141	Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers, 2021, 13, 1300.	1.7	10
143	The Potential of Harnessing IL-2-Mediated Immunosuppression to Prevent Pathogenic B Cell Responses. Frontiers in Immunology, 2021, 12, 667342.	2.2	6
144	B Cell-mediated Humoral Immunity in Chronic Hepatitis B Infection. Journal of Clinical and Translational Hepatology, 2021, 000, 000-000.	0.7	6
145	Neonatal T Helper 17 Responses Are Skewed Towards an Immunoregulatory Interleukin-22 Phenotype. Frontiers in Immunology, 2021, 12, 655027.	2.2	10
147	Follicular Helper CD4+ T Cells, Follicular Regulatory CD4+ T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators of Inflammation, 2021, 2021, 1-10.	1.4	14
148	Interactome Networks of FOSL1 and FOSL2 in Human Th17 Cells. ACS Omega, 2021, 6, 24834-24847.	1.6	6

ARTICLE IF CITATIONS # Poor CD4+ T Cell Immunogenicity Limits Humoral Immunity to P.Âfalciparum Transmission-Blocking 149 2.2 6 Candidate Pfs25 in Humans. Frontiers in Immunology, 2021, 12, 732667. Approaches of T Cell Activation and Differentiation for CAR-T Cell Therapies. Methods in Molecular 0.4 Biology, 2020, 2086, 203-211. Interleukin-10 Family Cytokines Immunobiology and Structure. Advances in Experimental Medicine and 151 0.8 60 Biology, 2019, 1172, 79-96. Role of Co-stimulatory Molecules in T Helper Cell Differentiation. Advances in Experimental Medicine and Biology, 2019, 1189, 153-177. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. Journal of 153 4.2 84 Experimental Medicine, 2021, 218, . Anti-ICOS mAb Targets Pathogenic IL-17A-expressing Cells in Canine Model of Chronic GVHD. Transplantation, 2021, 105, 1008-1016. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. 155 2.3 37 JCI Insight, 2016, 1, . \hat{l}^2 -catenin and PI3K \hat{l}' inhibition expands precursor Th17 cells with heightened stemness and antitumor 2.3 activity. JCI Insight, 2017, 2, . Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo 157 2.3 54 expansion. JCI Insight, 2017, 2, e90772. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to 2.3 pharmacological inhibition. JCI Insight, 2017, 2, . TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. 159 3.9 51 Journal of Clinical Investigation, 2020, 130, 1863-1878. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. Journal of Clinical Investigation, 2020, 130, 3087-3097. The NF-Î⁰B regulator MALT1 determines the encephalitogenic potential of Th17 cells. Journal of Clinical 161 3.9 106 Investigation, 2012, 122, 4698-4709. Polyfunctional T-Cell Responses Are Disrupted by the Ovarian Cancer Ascites Environment and Only Partially Restored by Clinically Relevant Cytokines. PLoS ONE, 2010, 5, e15625. 1.1 Anti-Chlamydial Th17 Responses Are Controlled by the Inducible Costimulator Partially through 163 1.1 28 Phosphoinositide 3-Kinase Signaling. PLoS ONE, 2012, 7, e52657. IL-17 Enhances Chemotaxis of Primary Human B Cells during Asthma. PLoS ONE, 2014, 9, e114604. 164 Development of interleukin-17-producing $\hat{V}^{3}2 + \hat{I}^{3}\hat{I}$ T cells is reduced by ICOS signaling in the thymus. 165 0.8 24 Oncotarget, 2016, 7, 19341-19354. Modulating Co-Stimulation During Antigen Presentation to Enhance Cancer Immunotherapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2012, 12, 224-235.

	CITATION N	LPORT	
#	Article	IF	CITATIONS
167	Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells, 2021, 10, 14.	1.8	34
168	Immune evasion strategies used by <i>Helicobacter pylori</i> . World Journal of Gastroenterology, 2014, 20, 12753.	1.4	92
169	The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. Chinese Journal of Cancer, 2014, 33, 421-433.	4.9	9
171	T-bet: A Critical Regulator of Encephalitogenic T Cells. , 2013, , 49-70.		0
172	Interleukin-22: A Bridge Between Epithelial Innate Host Defense and Immune Cells. , 2014, , 147-177.		0
173	Th17 Cells in Cancer. , 2014, , 37-75.		Ο
174	Quality of CTL Therapies: A Changing Landscape. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 303-349.	0.1	0
175	Immunopharmacologic Approaches to Treat Cancer. , 2016, , 397-425.		0
176	Role of Th17 cell in tissue inflammation and organ-specific autoimmunity. , 2022, , 93-121.		2
179	T Helper Cells Fate Mapping by Co-stimulatory Molecules and its Functions in Allograft Rejection and Tolerance. International Journal of Organ Transplantation Medicine, 2014, 5, 97-110.	0.5	16
180	The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. Journal of Immunology Research and Therapy, 2017, 2, 68-79.	1.0	20
181	Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. American Journal of Cancer Research, 2018, 8, 106-119.	1.4	18
183	Association between polymorphisms and risk of colorectal cancer: a case-control study involving 2,606 subjects. International Journal of Clinical and Experimental Pathology, 2018, 11, 2822-2830.	0.5	0
184	Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacological Research, 2022, 175, 106036.	3.1	31
185	B cells imprint adoptively transferred CD8 ⁺ T cells with enhanced tumor immunity. , 2022, 10, e003078.		7
186	Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Letters, 2022, 529, 139-152.	3.2	18
187	ICOS Gene Polymorphisms (IVS1 + 173 T/C and c. 1624 C/T) in Primary Sjögren's Syndrome Patients: Analysis of ICOS Expression. Current Issues in Molecular Biology, 2022, 44, 764-776.	1.0	3
188	A Pathogenic Th17/CD38+ Macrophage Feedback Loop Drives Inflammatory Arthritis through TNF-α. Journal of Immunology, 2022, 208, 1315-1328.	0.4	6

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
189	STAT3 Role in T-Cell Memory Formation. International Journal of Molecular Sciences, 2022, 23, 2878.	1.8	10
190	Interleukin-22 in Renal Protection and Its Pathological Role in Kidney Diseases. Frontiers in Immunology, 2022, 13, 851818.	2.2	3
192	Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory TÂcells in Cynomolgus macaque. Cell Reports Medicine, 2022, 3, 100614.	3.3	7
194	The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Frontiers in Immunology, 0, 13, .	2.2	2
195	Parallel CD19/CD20 CAR-Activated T-Cells Are More Effective for Refractory B-Cell Lymphoma In Vitro and In Vivo. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	0.5	3
196	CAR-T cell potency: from structural elements to vector backbone components. Biomarker Research, 2022, 10, .	2.8	14
197	Immuno-PET Monitoring of CD8+ T Cell Infiltration Post ICOS Agonist Antibody Treatment Alone and in Combination with PD-1 Blocking Antibody Using a 89Zr Anti-CD8+ Mouse Minibody in EMT6 Syngeneic Tumor Mouse. Molecular Imaging and Biology, 2023, 25, 528-540.		1
198	Metabolic requirements of Th17 cells and of B cells: Regulation and defects in health and in inflammatory diseases. Frontiers in Immunology, 0, 13, .	2.2	5
200	Targeting CAR T Cells' Metabolic Pathways to Boost Their Effectiveness Against Tumors. , 2023, , 1-	19.	0
201	The role of Th17 cells in chronic lymphocytic leukemia: friend orÂfoe?. Blood Advances, 2023, 7, 2401-2417.	2.5	1
202	Interleukin 27 is a novel cytokine with anti-inflammatory effects against spondyloarthritis through the suppression of Th17 responses. Frontiers in Immunology, 0, 13, .	2.2	1
203	Targeting Cbl-b in cancer immunotherapy. , 2023, 11, e006007.		14
204	<scp>Nonâ€Redundant</scp> Roles of T Cell Costimulation Pathways in Inflammatory Arthritis Reveale by Dual Blockade of <scp>ICOS</scp> and <scp>CD28</scp> with Acazicolcept (<scp>ALPN</scp> â€1 Arthritis and Rheumatology, 2023, 75, 1344-1356.		3
205	Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers, 2023, 15, 1650.	. 1.7	2
206	Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Frontiers in Immunology, 0, 14, .	2.2	4
207	Systemic Administration of Acazicolcept, a Dual CD28 and Inducible T cell Costimulator Inhibitor, Ameliorates Experimental Autoimmune Uveitis. Translational Vision Science and Technology, 2023, 12, 27.	1.1	0
208	Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Frontiers in Immunology, 0, 14, .	d 2.2	2
209	Augmenting TCR signal strength and ICOS costimulation results in metabolically fit and therapeutically potent human CAR Th17 cells. Molecular Therapy, 2023, 31, 2120-2131.	3.7	2

ARTICLE

IF CITATIONS