The dynamic nature of contact networks in infectious d

Journal of Biological Dynamics 4, 478-489 DOI: 10.1080/17513758.2010.503376

Citation Report

#	Article	IF	CITATIONS
1	Statistical inference to advance network models in epidemiology. Epidemics, 2011, 3, 38-45.	1.5	46
2	Stability in flux: community structure in dynamic networks. Journal of the Royal Society Interface, 2011, 8, 1031-1040.	1.5	27
3	Pathogens, Social Networks, and the Paradox of Transmission Scaling. Interdisciplinary Perspectives on Infectious Diseases, 2011, 2011, 1-10.	0.6	53
4	Network Perspectives on Infectious Disease Dynamics. Interdisciplinary Perspectives on Infectious Diseases, 2011, 2011, 1-2.	0.6	4
5	Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiology and Infection, 2012, 140, 2117-2130.	1.0	130
6	Temporal dynamics and network analysis. Methods in Ecology and Evolution, 2012, 3, 958-972.	2.2	194
7	Social organization patterns can lower disease risk without associated disease avoidance or immunity. Ecological Complexity, 2012, 12, 34-42.	1.4	27
8	Dynamic concurrent partnership networks incorporating demography. Theoretical Population Biology, 2012, 82, 229-239.	0.5	21
9	Temporal networks. Physics Reports, 2012, 519, 97-125.	10.3	2,023
10	Wildlife contact analysis: emerging methods, questions, and challenges. Behavioral Ecology and Sociobiology, 2012, 66, 1437-1447.	0.6	44
11	Modeling epidemic spread with awareness and heterogeneous transmission rates in networks. Journal of Biological Physics, 2013, 39, 489-500.	0.7	49
12	Mixed SI (R) epidemic dynamics in random graphs with general degree distributions. Applied Mathematics and Computation, 2013, 219, 5042-5048.	1.4	24
13	Stochastic analysis of epidemics on adaptive time varying networks. Physical Review E, 2013, 87, 062810.	0.8	25
14	Bursts of Vertex Activation and Epidemics in Evolving Networks. PLoS Computational Biology, 2013, 9, e1002974.	1.5	90
15	Epidemiologically Optimal Static Networks from Temporal Network Data. PLoS Computational Biology, 2013, 9, e1003142.	1.5	60
16	Inferring population-level contact heterogeneity from common epidemic data. Journal of the Royal Society Interface, 2013, 10, 20120578.	1.5	19
17	Modeling and Restraining Mobile Virus Propagation. IEEE Transactions on Mobile Computing, 2013, 12, 529-541.	3.9	91
18	Complex social contagion makes networks more vulnerable to disease outbreaks. Scientific Reports, 2013, 3, 1905.	1.6	65

TATION REDO

#	Article	IF	Citations
19	Network transmission inference: Host behavior and parasite life cycle make social networks meaningful in disease ecology. Ecological Applications, 2013, 23, 1906-1914.	1.8	46
20	Modeling/predicting the evolution trend of osn-based applications. , 2013, , .		11
21	Predicting and controlling infectious disease epidemics using temporal networks. F1000prime Reports, 2013, 5, 6.	5.9	149
22	Estimating the extent of household contact misclassification with index cases of disease in longitudinal studies using a stochastic simulation model. Global Health Action, 2013, 6, 19614.	0.7	5
23	Efficient allocation of heterogeneous response times in information spreading process. Chaos, 2014, 24, 033113.	1.0	25
24	Common cold outbreaks: A network theory approach. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3994-4002.	1.7	0
25	Organisational immunity in social insects. Current Opinion in Insect Science, 2014, 5, 1-15.	2.2	100
26	Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks. Animal Conservation, 2014, 17, 27-39.	1.5	51
27	Effect of individual behavior on epidemic spreading in activity-driven networks. Physical Review E, 2014, 90, 042801.	0.8	120
28	Information Content. , 2014, , 241-278.		1
29	Information content of contact-pattern representations and predictability of epidemic outbreaks. Scientific Reports, 2015, 5, 14462.	1.6	19
30	The Basic Reproduction Number as a Predictor for Epidemic Outbreaks in Temporal Networks. PLoS ONE, 2015, 10, e0120567.	1.1	62
31	The Effect of Disease-Induced Mortality on Structural Network Properties. PLoS ONE, 2015, 10, e0136704.	1.1	12
32	Latent Space Models for Dynamic Networks. Journal of the American Statistical Association, 2015, 110, 1646-1657.	1.8	157
33	Opposing effects of allogrooming on disease transmission in ant societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140108.	1.8	43
34	Diffusion on networked systems is a question of time or structure. Nature Communications, 2015, 6, 7366.	5.8	110
35	\$\${ SI}\$\$ S I infection on a dynamic partnership network: characterization of \$\$R_0\$\$ R 0. Journal of Mathematical Biology, 2015, 71, 1-56.	0.8	23
36	Expansion of brucellosis detection in the country of Georgia by screening household members of cases and neighboring community members. BMC Public Health, 2015, 15, 459.	1.2	15

#	Article	IF	CITATIONS
37	Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution. European Physical Journal B, 2015, 88, 1.	0.6	23
38	Modeling infectious disease dynamics in the complex landscape of global health. Science, 2015, 347, aaa4339.	6.0	492
39	Eight challenges for network epidemic models. Epidemics, 2015, 10, 58-62.	1.5	147
40	Six challenges in measuring contact networks for use in modelling. Epidemics, 2015, 10, 72-77.	1.5	74
41	Infectious disease transmission and contact networks in wildlife and livestock. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140107.	1.8	251
42	Birth and death of links control disease spreading in empirical contact networks. Scientific Reports, 2014, 4, 4999.	1.6	71
43	Which mechanisms drive seasonal rabies outbreaks in raccoons? A test using dynamic social network models. Journal of Applied Ecology, 2016, 53, 804-813.	1.9	34
44	Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model. New Journal of Physics, 2016, 18, 073013.	1.2	29
45	Editorial Commentary: Network Models, Patient Transfers, and Infection Control. Clinical Infectious Diseases, 2016, 63, 894-895.	2.9	5
46	Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 2016, 18, 66-97.	1.5	297
47	Dynamic communicability and epidemic spread: a case study on an empirical dynamic contact network. Journal of Complex Networks, 2016, , cnw017.	1.1	4
48	Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Scientific Reports, 2016, 6, 31456.	1.6	34
49	Aggregation and asymptotic analysis of an <i>SI</i> -epidemic model for heterogeneous populations. Mathematical Medicine and Biology, 2016, 33, 295-318.	0.8	4
50	Epidemic Threshold of an SIS Model in Dynamic Switching Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 345-355.	5.9	47
51	The application of statistical network models in disease research. Methods in Ecology and Evolution, 2017, 8, 1026-1041.	2.2	80
52	Empirical study of the role of the topology in spreading on communication networks. Physica A: Statistical Mechanics and Its Applications, 2017, 470, 12-19.	1.2	7
53	Introduction to Temporal Network Epidemiology. Theoretical Biology, 2017, , 1-16.	0.0	3
54	Epidemic Threshold in Temporally-Switching Networks. Theoretical Biology, 2017, , 161-177.	0.0	31

		CITATION REPORT	
#	Article	IF	Citations
55	Opinion diversity and community formation in adaptive networks. Chaos, 2017, 27, 103115.	1.0	17
56	The coevolution of networks and health. Network Science, 2017, 5, 249-256.	0.8	5
57	Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks. Physical Review Letters, 2017, 119, 108301.	2.9	38
58	Impact of Hepatitis C Treatment as Prevention for People Who Inject Drugs is sensitive to contact network structure. Scientific Reports, 2017, 7, 1833.	1.6	30
59	Social status mediates the fitness costs of infection with canine distemper virus in Serengeti spotted hyenas. Functional Ecology, 2018, 32, 1237-1250.	1.7	27
60	A Gillespie Algorithm for Non-Markovian Stochastic Processes. SIAM Review, 2018, 60, 95-115.	4.2	46
61	Epidemic Threshold in Continuous-Time Evolving Networks. Physical Review Letters, 2018, 120, 068302.	2.9	60
62	IoT-based cloud framework to control Ebola virus outbreak. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 459-476.	3.3	67
63	Covariation between the physiological and behavioral components of pathogen transmission: host heterogeneity determines epidemic outcomes. Oikos, 2018, 127, 538-552.	1.2	23
64	Geographic Network Automata for Representing Complex Evolving Spatial Systems. , 2018, , .		1
65	Temporal variation of human encounters and the number of locations in which they occur: a longitudinal study of Hong Kong residents. Journal of the Royal Society Interface, 2018, 15, 20170838.	1.5	38
66	How Disease Risks Can Impact the Evolution of Social Behaviors and Emergent Population Organization. Association for Women in Mathematics Series, 2018, , 31-46.	0.1	2
67	Advances from the nexus of animal behaviour and pathogen transmission: new directions and opportunities using contact networks. Behaviour, 2018, 155, 567-583.	0.4	1
68	The large graph limit of a stochastic epidemic model on a dynamic multilayer network. Journal of Biological Dynamics, 2018, 12, 746-788.	0.8	17
69	The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior. BMC Infectious Diseases, 2018, 18, 219.	1.3	16
70	Social Influence in Liver Fluke Transmission. Advances in Parasitology, 2018, 101, 97-124.	1.4	18
71	Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180211.	1.8	64
72	Social Networks and Health: New Developments in Diffusion, Online and Offline. Annual Review of Sociology, 2019, 45, 91-109.	3.1	142

#	Article	IF	CITATIONS
73	Indirect interactions influence contact network structure and diffusion dynamics. Royal Society Open Science, 2019, 6, 190845.	1.1	5
74	Global Density Analysis for an Off-Lattice Agent-Based Model. SIAM Journal on Applied Mathematics, 2019, 79, 1700-1721.	0.8	2
75	Dynamic contact networks of swine movement in Manitoba, Canada: Characterization and implications for infectious disease spread. Transboundary and Emerging Diseases, 2019, 66, 1910-1919.	1.3	7
76	Impact of misinformation in temporal network epidemiology. Network Science, 2019, 7, 52-69.	0.8	8
77	Disease persistence on temporal contact networks accounting for heterogeneous infectious periods. Royal Society Open Science, 2019, 6, 181404.	1.1	20
78	Toward epidemic thresholds on temporal networks: a review and open questions. Applied Network Science, 2019, 4, .	0.8	28
79	Improving pairwise approximations for network models with susceptible-infected-susceptible dynamics. Journal of Theoretical Biology, 2020, 500, 110328.	0.8	1
80	Dynamic contact networks of patients and MRSA spread in hospitals. Scientific Reports, 2020, 10, 9336.	1.6	20
81	Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19. International Journal of Environmental Research and Public Health, 2020, 17, 7884.	1.2	24
82	Biodynamic Interfaces Are Essential for Human–Environment Interactions. BioEssays, 2020, 42, 2000017.	1.2	13
83	Tracking the spread of COVID-19 in India via social networks in the early phase of the pandemic. Journal of Travel Medicine, 2020, 27, .	1.4	32
84	Mathematical Model of the Role of Asymptomatic Infection in Outbreaks of Some Emerging Pathogens. Tropical Medicine and Infectious Disease, 2020, 5, 184.	0.9	1
85	Representing Complex Evolving Spatial Networks: Geographic Network Automata. ISPRS International Journal of Geo-Information, 2020, 9, 270.	1.4	15
86	Defining adequate contact for transmission of Mycobacterium tuberculosis in an African urban environment. BMC Public Health, 2020, 20, 892.	1.2	1
87	Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 2020, 874, 1-92.	10.3	661
88	Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks. Scientific Reports, 2020, 10, 4327.	1.6	25
89	Infected or informed? Social structure and the simultaneous transmission of information and infectious disease. Oikos, 2020, 129, 1271-1288.	1.2	34
90	Egocentric sexual networks of men who have sex with men in the United States: Results from the ARTnet study. Epidemics, 2020, 30, 100386.	1.5	50

#	Article	IF	CITATIONS
91	Sickness effects on social interactions depend on the type of behaviour and relationship. Journal of Animal Ecology, 2020, 89, 1387-1394.	1.3	43
92	Physically-interpretable classification of biological network dynamics for complex collective motions. Scientific Reports, 2020, 10, 3005.	1.6	9
93	How Emergent Social Patterns in Allogrooming Combat Parasitic Infections. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	6
94	Tradeâ€offs with telemetryâ€derived contact networks for infectious disease studies in wildlife. Methods in Ecology and Evolution, 2021, 12, 76-87.	2.2	26
95	Finding Subgraphs with Side Constraints. Lecture Notes in Computer Science, 2021, , 348-364.	1.0	0
97	Modifying the network-based stochastic SEIR model to account for quarantine: an application to COVID-19. Epidemiologic Methods, 2021, 10, .	0.8	7
98	Learning temporal attention in dynamic graphs with bilinear interactions. PLoS ONE, 2021, 16, e0247936.	1.1	12
99	Community structure of domesticated pigs in livestock facilities. Preventive Veterinary Medicine, 2021, 188, 105260.	0.7	3
100	Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks. Complexity, 2021, 2021, 1-11.	0.9	11
101	Infectious diseases and social distancing in nature. Science, 2021, 371, .	6.0	108
101 102	Infectious diseases and social distancing in nature. Science, 2021, 371, . Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259.	6.0 0.7	108 6
	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications		
102	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259. On topological properties of COVID-19: predicting and assessing pandemic risk with network	0.7	6
102 103	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259. On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics. Scientific Reports, 2021, 11, 5112. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of	0.7 1.6	6 23
102 103 104	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259. On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics. Scientific Reports, 2021, 11, 5112. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of Environmental Research and Public Health, 2021, 18, 3195. Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd	0.7 1.6 1.2	6 23 10
102 103 104 106	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259. On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics. Scientific Reports, 2021, 11, 5112. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of Environmental Research and Public Health, 2021, 18, 3195. Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Injecting network structure determines the most efficient strategy to achieve Hepatitis C elimination	0.7 1.6 1.2 3.3	6 23 10 57
102 103 104 106	Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control. Preventive Veterinary Medicine, 2021, 188, 105259. On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics. Scientific Reports, 2021, 11, 5112. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of Environmental Research and Public Health, 2021, 18, 3195. Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Injecting network structure determines the most efficient strategy to achieve Hepatitis C elimination in people who inject drugs. Journal of Viral Hepatitis, 2021, 28, 1274-1283. The role of social structure and dynamics in the maintenance of endemic disease. Behavioral Ecology	0.7 1.6 1.2 3.3 1.0	6 23 10 57 2

#	Article	IF	CITATIONS
111	Epidemics on a Stochastic Model of Temporal Network. Modeling and Simulation in Science, Engineering and Technology, 2013, , 301-314.	0.4	5
113	The Effect of Concurrency on Epidemic Threshold in Time-Varying Networks. Computational Social Sciences, 2019, , 253-267.	0.4	2
119	Exploiting Temporal Network Structures of Human Interaction to Effectively Immunize Populations. PLoS ONE, 2012, 7, e36439.	1.1	87
121	Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences and Engineering, 2016, 13, 1093-1118.	1.0	8
122	Differences in social activity increase efficiency of contact tracing. European Physical Journal B, 2021, 94, 209.	0.6	4
123	A model for the co-evolution of dynamic social networks and infectious disease dynamics. Computational Social Networks, 2021, 8, 19.	2.1	10
124	Implementation of integrated monitoring system for trace and path prediction of infectious disease. Journal of Internet Computing and Services, 2013, 14, 69-76.	0.1	2
125	Excitations Transfer and Random Walks on Dynamic Contacts Networks. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 199-213.	0.1	0
126	Dynamic and adaptive networks. Interdisciplinary Applied Mathematics, 2017, , 273-301.	0.2	0
128	Rational Design and Methods of Analysis for the Study of Short- and Long-Term Dynamic Responses of Eukaryotic Systems. Methods in Molecular Biology, 2019, 2049, 315-327.	0.4	0
130	A Probabilistic Infection Model for Efficient Trace-Prediction of Disease Outbreaks in Contact Networks. Lecture Notes in Computer Science, 2020, , 676-689.	1.0	0
132	Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus, and an endemic state. ELife, 2021, 10, .	2.8	28
133	Transmission dynamics of an antimicrobial resistant Campylobacter jejuni lineage in New Zealand's commercial poultry network. Epidemics, 2021, 37, 100521.	1.5	3
134	Social contact patterns and implications for infectious disease transmission $\hat{a} \in \hat{a}$ a systematic review and meta-analysis of contact surveys. ELife, 2021, 10, .	2.8	36
135	Analysis, Prediction, and Control of Epidemics: A Survey from Scalar to Dynamic Network Models. IEEE Circuits and Systems Magazine, 2021, 21, 4-23.	2.6	46
136	How social learning shapes the efficacy of preventative health behaviors in an outbreak. PLoS ONE, 2022, 17, e0262505.	1.1	3
137	Temporal Network Prediction and Interpretation. IEEE Transactions on Network Science and Engineering, 2022, 9, 1215-1224.	4.1	6
138	Assessing systemic risk in financial markets using dynamic topic networks. Scientific Reports, 2022, 12, 2668.	1.6	9

#	Article	IF	CITATIONS
139	A mechanistic model captures livestock trading, disease dynamics, and compensatory behaviour in response to control measures. Journal of Theoretical Biology, 2022, 539, 111059.	0.8	4
140	Epidemics on evolving networks with varying degrees. New Journal of Physics, 0, , .	1.2	0
141	Revealing mechanisms of infectious disease spread through empirical contact networks. PLoS Computational Biology, 2021, 17, e1009604.	1.5	9
142	Collective Reactions to Epidemic Threat: Attachment and Cultural Orientations Predict Early COVID-19 Infection and Mortality Rates and Trajectories. Social Psychological and Personality Science, 2022, 13, 1126-1137.	2.4	9
148	Super-Spreading in Infectious Diseases: A Global Challenge for All Disciplines. Integrated Science, 2022, , 347-388.	0.1	0
149	The effects of scheduling network models in predictive processes in sports. Social Network Analysis and Mining, 2022, 12, .	1.9	0
150	Health behavior homophily can mitigate the spread of infectious diseases in small-world networks. Social Science and Medicine, 2022, 312, 115350.	1.8	5
151	Basic Compartmental Models. Advances in Computational Intelligence and Robotics Book Series, 2022, , 56-84.	0.4	0
152	Pathogen transmission modes determine contact network structure, altering other pathogen characteristics. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	8
153	Identifying the latent space geometry of network models through analysis of curvature. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023, 85, 240-292.	1.1	3
154	Embedding and trajectories of temporal networks. IEEE Access, 2023, , 1-1.	2.6	0
158	Studying the Effects of Sport Competitions Schedules in Predictive Models Through Simulation and Network Analysis. Advances in Intelligent Systems and Computing, 2023, , 143-147.	0.5	0
162	Modeling Viral Distribution: Transmission and Control. , 2023, , 1-42.		0
169	The Effect of Concurrency on Epidemic Threshold in Time-Varying Networks. Computational Social Sciences, 2023, , 259-274.	0.4	0