Immune Defenses against<i>Batrachochytrium dendro Amphibian Declines, in the South African Clawed Frog,<

Infection and Immunity 78, 3981-3992 DOI: 10.1128/iai.00402-10

Citation Report

#	Article	IF	CITATIONS
1	What Drives Chytrid Infections in Newt Populations? Associations with Substrate, Temperature, and Shade. EcoHealth, 2010, 7, 526-536.	2.0	80
2	Phenotypic profiling of Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Fungal Ecology, 2011, 4, 196-200.	1.6	26
3	The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. Developmental and Comparative Immunology, 2011, 35, 916-923.	2.3	39
4	Effects of atrazine, agricultural runoff, and selected effluents on antimicrobial activity of skin peptides in Xenopus laevis. Ecotoxicology and Environmental Safety, 2011, 74, 593-599.	6.0	15
5	Amphibian Immune Defenses against Chytridiomycosis: Impacts of Changing Environments. Integrative and Comparative Biology, 2011, 51, 552-562.	2.0	193
6	Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis. PLoS ONE, 2011, 6, e26215.	2.5	44
7	Environmental Refuge from Disease-Driven Amphibian Extinction. Conservation Biology, 2011, 25, 956-964.	4.7	142
8	Larval fitness and immunogenetic diversity in chytrid-infected and uninfected natterjack toad (Bufo) Tj ETQq1 1	0.784314 1.5	rgBT /Overlo
9	Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Frontiers in Zoology, 2011, 8, 8.	2.0	197
10	Interactions between Batrachochytrium dendrobatidis and its amphibian hosts: a review of pathogenesis and immunity. Microbes and Infection, 2011, 13, 25-32.	1.9	113
11	MHC genotypes associate with resistance to a frog-killing fungus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16705-16710.	7.1	324
12	A Reservoir Species for the Emerging Amphibian Pathogen Batrachochytrium dendrobatidis Thrives in a Landscape Decimated by Disease. PLoS ONE, 2012, 7, e33567.	2.5	127
13	Context-dependent symbioses and their potential roles in wildlife diseases. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1457-1465.	2.6	76
14	Host invasion by Batrachochytrium dendrobatidis: fungal and epidermal ultrastructure in model anurans. Diseases of Aquatic Organisms, 2012, 100, 201-210.	1.0	48
15	Synergistic Inhibition of the Lethal Fungal Pathogen Batrachochytrium dendrobatidis: The Combined Effect of Symbiotic Bacterial Metabolites and Antimicrobial Peptides of the Frog Rana muscosa. Journal of Chemical Ecology, 2012, 38, 958-965.	1.8	78
16	Oral immunization of the African clawed frog (Xenopus laevis) upregulates the mucosal immunoglobulin IgX. Veterinary Immunology and Immunopathology, 2012, 145, 493-498.	1.2	22
17	Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biological Conservation, 2012, 152, 119-126.	4.1	94
18	Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Developmental and Comparative Immunology, 2012, 37, 19-27.	2.3	25

ARTICLE

IF CITATIONS

The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (<i><scp>R</scp>ana) Tj ETQq0 0 9.gBT /Overlock 10 T 41

20	Immune evasion or avoidance: Fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biology, 2012, 116, 1203-1211.	2.5	22
21	Interaction between breeding habitat and elevation affects prevalence but not infection intensity of Batrachochytrium dendrobatidis in Brazilian anuran assemblages. Diseases of Aquatic Organisms, 2012, 97, 173-184.	1.0	45
22	Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia, 2012, 169, 23-31.	2.0	91
23	Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Molecular Ecology, 2012, 21, 3110-3120.	3.9	82
24	Getting under—and through—the skin: ecological genomics of chytridiomycosis infection in frogs. Molecular Ecology, 2012, 21, 3095-3097.	3.9	2
25	Evaluation of the Skin Peptide Defenses of the Oregon Spotted Frog Rana pretiosa Against Infection by the Chytrid Fungus Batrachochytrium dendrobatidis. Journal of Chemical Ecology, 2013, 39, 797-805.	1.8	11
26	Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus. BMC Ecology, 2013, 13, 27.	3.0	17
27	Larval exposure to predator cues alters immune function and response to a fungal pathogen in postâ€metamorphic wood frogs. Ecological Applications, 2013, 23, 1443-1454.	3.8	26
28	Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecology Letters, 2013, 16, 807-820.	6.4	239
29	Fitness Consequences of Infection by Batrachochytrium dendrobatidis in Northern Leopard Frogs (Lithobates pipiens). EcoHealth, 2013, 10, 90-98.	2.0	37
30	Bacterial flora on Cascades frogs in the Klamath mountains of California. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 591-598.	1.6	19
31	Disease in a dynamic landscape: Host behavior and wildfire reduce amphibian chytrid infection. Biological Conservation, 2013, 157, 293-299.	4.1	47
32	An immunomodulatory peptide related to frenatin 2 from skin secretions of the Tyrrhenian painted frog Discoglossus sardus (Alytidae). Peptides, 2013, 40, 65-71.	2.4	25
33	Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay. Diseases of Aquatic Organisms, 2013, 103, 77-85.	1.0	73
34	Skin peptides protect juvenile leopard frogs (<i>Rana pipiens</i>) against chytridiomycosis. Journal of Experimental Biology, 2013, 216, 2908-16.	1.7	31
35	Interspecific and Postmetamorphic Variation in Susceptibility of Three North American Anurans to <i>Batrachochytrium dendrobatidis</i> . Journal of Herpetology, 2013, 47, 286-292.	0.5	19
36	Evolution of B Cell Immunity. Annual Review of Animal Biosciences, 2013, 1, 65-97.	7.4	116

#	Article	IF	CITATIONS
37	Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes. Science, 2013, 342, 369-372.	12.6	83
38	Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis. Journal of Experimental Biology, 2014, 217, 351-8.	1.7	17
39	The Invasive Chytrid Fungus of Amphibians Paralyzes Lymphocyte Responses. Science, 2013, 342, 366-369.	12.6	154
40	Origin and Functional Diversification of an Amphibian Defense Peptide Arsenal. PLoS Genetics, 2013, 9, e1003662.	3.5	47
41	Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13097-13102.	7.1	420
42	Host Stress Response Is Important for the Pathogenesis of the Deadly Amphibian Disease, Chytridiomycosis, in Litoria caerulea. PLoS ONE, 2013, 8, e62146.	2.5	54
43	Parallels in Amphibian and Bat Declines from Pathogenic Fungi. Emerging Infectious Diseases, 2013, 19, 379-385.	4.3	26
44	The Immunoglobulins of Cold-Blooded Vertebrates. Biomolecules, 2014, 4, 1045-1069.	4.0	70
45	Confronting inconsistencies in the amphibian hytridiomycosis system: implications for disease management. Biological Reviews, 2014, 89, 477-483.	10.4	57
46	Resistance of morphological and behavioral sexual traits of theÂpalmate newt (Lissotriton helveticus) to bacterial lipopolysaccharideÂtreatment. Amphibia - Reptilia, 2014, 35, 63-71.	0.5	7
47	Fighting a Losing Battle: Vigorous Immune Response Countered by Pathogen Suppression of Host Defenses in the Chytridiomycosis-Susceptible Frog <i>Atelopus zeteki</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1275-1289.	1.8	95
48	Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biology, 2014, 118, 48-60.	2.5	21
49	From frog integument to human skin: dermatological perspectives from frog skin biology. Biological Reviews, 2014, 89, 618-655.	10.4	55
50	Chytridiomycosis. , 2014, , 255-270.		2
51	BASELINE CUTANEOUS BACTERIA OF FREE-LIVING NEW ZEALAND NATIVE FROGS (<i>LEIOPELMA) Tj ETQq0 0 0 AGAINST THE AMPHIBIAN CHYTRID (<i>BATRACHOCHYTRIUM DENDROBATIDIS</i>). Journal of Wildlife Diseases, 2014, 50, 723-732.</i>	rgBT /Ove 0.8	rlock 10 Tf 50 10
52	Stress and chytridiomycosis: Exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. Journal of Experimental Zoology, 2014, 321, 243-253.	1.2	29
53	Evaluation of Amphotericin B and Chloramphenicol as Alternative Drugs for Treatment of Chytridiomycosis and Their Impacts on Innate Skin Defenses. Applied and Environmental Microbiology, 2014, 80, 4034-4041.	3.1	22
54	Inhibition of Local Immune Responses by the Frog-Killing Fungus Batrachochytrium dendrobatidis. Infection and Immunity, 2014, 82, 4698-4706.	2.2	54

#	Article	IF	CITATIONS
55	Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 2014, 511, 224-227.	27.8	190
56	Immunomodulation in Post-metamorphic Northern Leopard Frogs, <i>Lithobates pipiens</i> , Following Larval Exposure to Polybrominated Diphenyl Ether. Environmental Science & Technology, 2014, 48, 5910-5919.	10.0	21
57	Genomic Studies of Disease-Outcome in Host-Pathogen Dynamics. Integrative and Comparative Biology, 2014, 54, 427-438.	2.0	18
58	Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More. Current Topics in Medicinal Chemistry, 2015, 16, 54-64.	2.1	60
59	The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?. PLoS ONE, 2015, 10, e0128663.	2.5	76
60	Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus. PLoS ONE, 2015, 10, e0132832.	2.5	30
62	Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana) Tj ETQq0 0 0 rgBT Conservation, 2015, 187, 91-102.	/Overlock 4.1	10 Tf 50 50 54
63	Microbiota and Mucosal Immunity in Amphibians. Frontiers in Immunology, 2015, 6, 111.	4.8	128
64	Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. , 2015, , 145-159.		6
65	Cutaneous Bacterial Species from Lithobates catesbeianus can Inhibit Pathogenic Dermatophytes. Mycopathologia, 2015, 179, 259-268.	3.1	6
66	Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis. Fungal Genetics and Biology, 2015, 77, 31-39.	2.1	25
67	Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, <i>Batrachochytrium dendrobatidis</i> ., 2015, 3, cov005.		13
68	Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143127.	2.6	114
69	Immunomodulatory Metabolites Released by the Frog-Killing Fungus Batrachochytrium dendrobatidis. Infection and Immunity, 2015, 83, 4565-4570.	2.2	39
70	How Time of Exposure to the Amphibian Chytrid Fungus AffectsHyla chrysoscelisin the Presence of an Insecticide1. Herpetologica, 2015, 71, 169-176.	0.4	12
71	Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Veterinary Research, 2015, 46, 137.	3.0	158
72	Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Developmental and Comparative Immunology, 2015, 48, 65-75.	2.3	52
73	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	3.5	135

#	Article	IF	CITATIONS
74	Host and parasite thermal acclimation responses depend on the stage of infection. Journal of Animal Ecology, 2016, 85, 1014-1024.	2.8	24
75	Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia, 2016, 181, 997-1009.	2.0	31
76	Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection. EcoHealth, 2016, 13, 383-391.	2.0	17
77	Seasonality, Environmental Factors, and Host Behavior Linked to Disease Risk in Stream-Dwelling Tadpoles. Herpetologica, 2016, 72, 98-106.	0.4	20
78	Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species. Biological Invasions, 2016, 18, 2299-2308.	2.4	35
79	Life history linked to immune investment in developing amphibians. , 2016, 4, cow025.		28
80	Comparative study of host response to chytridiomycosis in a susceptible and a resistant toad species. Molecular Ecology, 2016, 25, 5663-5679.	3.9	31
81	Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11889-11894.	7.1	129
82	Chytrid Batrachochytrium dendrobatidis fungal infection in freshwater prawn, Macrobrachium rosenbergii (de Man) - A new report. Aquaculture, 2016, 464, 521-528.	3.5	5
83	Xenopus laevis and Emerging Amphibian Pathogens in Chile. EcoHealth, 2016, 13, 775-783.	2.0	30
84	Low disease-causing threshold in a frog species susceptible to chytridiomycosis. FEMS Microbiology Letters, 2016, 363, fnw111.	1.8	11
85	A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. Journal of Microbiological Methods, 2016, 127, 206-213.	1.6	33
86	History and recent progress on chytridiomycosis in amphibians. Fungal Ecology, 2016, 19, 89-99.	1.6	108
87	Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2016, 117, 245-252.	1.0	23
88	Mountain Yellow-legged Frogs (<i>Rana muscosa</i>) did not Produce Detectable Antibodies in Immunization Experiments with <i>Batrachochytrium dendrobatidis</i> . Journal of Wildlife Diseases, 2016, 52, 154-158.	0.8	9
89	Amphibian immunity–stress, disease, and climate change. Developmental and Comparative Immunology, 2017, 66, 111-119.	2.3	149
90	Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibianâ€killing chytrid fungus. Global Change Biology, 2017, 23, 3543-3553.	9.5	30
91	Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nature Communications, 2017, 8, 15048.	12.8	27

#	Article	IF	CITATIONS
92	Identification of Bufadienolides from the Boreal Toad, Anaxyrus boreas, Active Against a Fungal Pathogen. Microbial Ecology, 2017, 74, 990-1000.	2.8	30
93	Using stochastic epidemiological models to evaluate conservation strategies for endangered amphibians. Journal of the Royal Society Interface, 2017, 14, 20170480.	3.4	13
94	Limited polymorphism of the functional <scp>MHC</scp> class <scp>II</scp> B gene in the blackâ€spotted frog (<i>Pelophylax nigromaculatus</i>) identified by locusâ€specific genotyping. Ecology and Evolution, 2017, 7, 9860-9868.	1.9	7
95	White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Developmental and Comparative Immunology, 2017, 77, 280-286.	2.3	31
96	Low resistance to chytridiomycosis in direct-developing amphibians. Scientific Reports, 2017, 7, 16605.	3.3	43
97	Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nature Communications, 2017, 8, 1495.	12.8	49
98	Diversity and stability of eggâ€bacterial assemblages: The role of paternal care in the glassfrog <i>Hyalinobatrachium colymbiphyllum</i> . Biotropica, 2017, 49, 792-802.	1.6	25
99	Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis. Immunogenetics, 2017, 69, 529-536.	2.4	34
100	Precision wildlife medicine: applications of the humanâ€centred precision medicine revolution to species conservation. Global Change Biology, 2017, 23, 1792-1805.	9.5	32
101	Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecology and Evolution, 2017, 7, 10216-10232.	1.9	37
102	Natural history and conservation of the rediscovered Hula painted frog, Latonia nigriventer. Contributions To Zoology, 2017, 86, 11-37.	0.5	16
103	Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica. Frontiers in Microbiology, 2017, 8, 290.	3.5	42
104	Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes. PLoS ONE, 2017, 12, e0181226.	2.5	34
105	Humoral Immune Response of Amphibians. , 2017, , .		2
106	Gene expression differs in susceptible and resistant amphibians exposed to <i>Batrachochytrium dendrobatidis</i> . Royal Society Open Science, 2018, 5, 170910.	2.4	37
107	Evolution of resistance to chytridiomycosis is associated with a robust early immune response. Molecular Ecology, 2018, 27, 919-934.	3.9	50
108	Do hostâ€associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?. Journal of Animal Ecology, 2018, 87, 489-499.	2.8	45
109	Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Frontiers in Immunology, 2018, 9, 2536.	4.8	98

#	Article	IF	CITATIONS
110	Temperature-Dependent Effects of Cutaneous Bacteria on a Frog's Tolerance of Fungal Infection. Frontiers in Microbiology, 2018, 9, 410.	3.5	28
111	Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence. Scientific Reports, 2018, 8, 10125.	3.3	14
112	Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. Diversity, 2018, 10, 81.	1.7	39
113	Emerging and Epizootic Fungal Infections in Animals. , 2018, , .		20
114	Chytridiomycosis. , 2018, , 309-335.		3
115	Effects of hydroperiod on growth, development, survival and immune defences in a temperate amphibian. Functional Ecology, 2019, 33, 1952-1961.	3.6	25
116	Mitigating Disease Impacts in Amphibian Populations: Capitalizing on the Thermal Optimum Mismatch Between a Pathogen and Its Host. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	24
117	In vitro modeling of Batrachochytrium dendrobatidis infection of the amphibian skin. PLoS ONE, 2019, 14, e0225224.	2.5	5
118	Immunoglobulin (Ig) heavy chain gene locus and immune responses upon parasitic, bacterial and fungal infection in loach, Misgurnus anguillicaudatus. Fish and Shellfish Immunology, 2019, 86, 1139-1150.	3.6	20
119	Host age alters amphibian susceptibility to Batrachochytrium dendrobatidis, an emerging infectious fungal pathogen. PLoS ONE, 2019, 14, e0222181.	2.5	13
120	Out in the cold and sick: Low temperatures and fungal infections impair a frog's skin defenses. Journal of Experimental Biology, 2019, 222, .	1.7	16
121	Convergent Evolution of Mucosal Immune Responses at the Buccal Cavity of Teleost Fish. IScience, 2019, 19, 821-835.	4.1	57
122	Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Scientific Reports, 2019, 9, 13422.	3.3	27
123	Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Frontiers in Immunology, 2018, 9, 3128.	4.8	113
124	Interaction between temperature and sublethal infection with the amphibian chytrid fungus impacts a susceptible frog species. Scientific Reports, 2019, 9, 83.	3.3	18
125	Peptides for Skin Protection and Healing in Amphibians. Molecules, 2019, 24, 347.	3.8	49
126	The amphibianâ€killing fungus in a biodiversity hotspot: identifying and validating highâ€risk areas and refugia. Ecosphere, 2019, 10, e02724.	2.2	12
127	Variability in snake skin microbial assemblages across spatial scales and disease states. ISME Journal, 2019, 13, 2209-2222.	9.8	19

#	Article	IF	CITATIONS
128	Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends in Parasitology, 2019, 35, 571-582.	3.3	11
129	Decreased α7nAChR mRNA levels in peripheral blood monocytes are associated with enhanced inflammatory cytokine production in patients with lupus nephritis. Biomedicine and Pharmacotherapy, 2019, 111, 359-366.	5.6	7
130	Genetic potential for disease resistance in critically endangered amphibians decimated by chytridiomycosis. Animal Conservation, 2019, 22, 238-250.	2.9	29
131	Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot097626.	0.3	3
132	Assessing Antibody Responses to Pathogens or Model Antigens in <i>Xenopus</i> by Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harbor Protocols, 2019, 2019, pdb.prot099234.	0.3	1
133	Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. Microbial Ecology, 2020, 79, 985-997.	2.8	10
134	The amphibian complement system and chytridiomycosis. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 706-719.	1.9	21
135	Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin. Molecules, 2020, 25, 5436.	3.8	27
136	Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus. Molecular Ecology, 2020, 29, 2889-2903.	3.9	24
137	Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. Developmental and Comparative Immunology, 2020, 113, 103798.	2.3	8
138	Immunological Aspects of Chytridiomycosis. Journal of Fungi (Basel, Switzerland), 2020, 6, 234.	3.5	20
139	Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Frontiers in Microbiology, 2020, 11, 1330.	3.5	17
140	Batrachochytrium salamandrivorans elicits acute stress response in spotted salamanders but not infection or mortality. Animal Conservation, 2020, 23, 533-546.	2.9	15
141	Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium) Tj ETQq1 1 0.784314 rgBT /Over Batrachochytrium dendrobatidis. PLoS ONE, 2020, 15, e0231811.	lock 10 Tf 2.5	50 227 Td 4
142	Trefoil Factor Family (TFF) Modules Are Characteristic Constituents of Separate Mucin Complexes in the Xenopus laevis Integumentary Mucus: In Vitro Binding Studies with FIM-A.1. International Journal of Molecular Sciences, 2020, 21, 2400.	4.1	4
143	The application of community ecology theory to coâ€infections in wildlife hosts. Ecology, 2021, 102, e03253.	3.2	12
144	Preparatory immunity: Seasonality of mucosal skin defences and <i>Batrachochytrium</i> infections in Southern leopard frogs. Journal of Animal Ecology, 2021, 90, 542-554.	2.8	18
145	Safety Bubbles: A Review of the Proposed Functions of Froth Nesting among Anuran Amphibians. Ecologies, 2021, 2, 112-137.	1.6	9

#	Article	IF	CITATIONS
146	Infection with Batrachochytrium dendrobatidis reduces salamander capacity to mount a cellâ€mediated immune response. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, ,	1.9	2
147	Does Chytridiomycosis Affect Tree Frog Attachment?. Diversity, 2021, 13, 262.	1.7	0
148	Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annual Review of Microbiology, 2021, 75, 673-693.	7.3	22
149	Seasonal variation in the prevalence of a fungal pathogen and unexpected clearance from infection in a susceptible frog species. Diseases of Aquatic Organisms, 2022, 148, 1-11.	1.0	1
152	Is Chytridiomycosis an Emerging Infectious Disease in Asia?. PLoS ONE, 2011, 6, e23179.	2.5	76
153	Germ Tube Mediated Invasion of Batrachochytrium dendrobatidis in Amphibian Skin Is Host Dependent. PLoS ONE, 2012, 7, e41481.	2.5	55
154	Prior Infection Does Not Improve Survival against the Amphibian Disease Chytridiomycosis. PLoS ONE, 2013, 8, e56747.	2.5	65
155	Resistance to Chytridiomycosis in European Plethodontid Salamanders of the Genus Speleomantes. PLoS ONE, 2013, 8, e63639.	2.5	19
156	Defects in Host Immune Function in Tree Frogs with Chronic Chytridiomycosis. PLoS ONE, 2014, 9, e107284.	2.5	28
157	Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus?. PLoS ONE, 2018, 13, e0191537.	2.5	2
158	Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. Herpetologica, 2020, 76, 178.	0.4	39
159	Parallels in Amphibian and Bat Declines from Pathogenic Fungi. Emerging Infectious Diseases, 2013, 19, 379-385.	4.3	18
160	Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads. Diseases of Aquatic Organisms, 2011, 95, 31-42.	1.0	62
161	Patterns of Batrachochytrium dendrobatidis transmission between tadpoles in a high-elevation rainforest stream in tropical Australia. Diseases of Aquatic Organisms, 2015, 115, 213-221.	1.0	8
162	Salamanders increase their feeding activity when infected with the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2015, 116, 205-212.	1.0	12
163	Urban environment and reservoir host species are associated with Batrachochytrium dendrobatidis infection prevalence in the common toad. Diseases of Aquatic Organisms, 2019, 134, 33-42.	1.0	10
166	Freshwater snails and the green algae Cladophora are probably not hosts of Batrachochytrium dendrobatidis. Freshwater Biology, 2021, 66, 582-586.	2.4	0
169	Chytridiomycosis Outbreak in a Chilean Giant Frog () Captive Breeding Program: Genomic Characterization and Pathological Findings. Frontiers in Veterinary Science, 2021, 8, 733357.	2.2	Ο

#	Article	IF	CITATIONS
170	The Prepropalustrin-2CE2 and Preprobrevinin-2CE3 Gene from Rana Chensinensis: Gene Expression, Genomic Organization, and Functional Analysis of the Promoter Activity. Protein and Peptide Letters, 2021, 28, .	0.9	0
171	A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	1.9	35
172	Comparison of vertebrate skin structure at class level: A review. Anatomical Record, 2022, 305, 3543-3608.	1.4	18
173	Short-term continuous and pulse Pb exposure causes negative effects on skin histomorphological structure and bacterial composition of adult Pelophylax nigromaculatus. Environmental Science and Pollution Research, 2022, 29, 56592-56605.	5.3	1
176	Chytridiomycosis Outbreak in a Chilean Giant Frog (Calyptocephalella gayi) Captive Breeding Program: Genomic Characterization and Pathological Findings. Frontiers in Veterinary Science, 2021, 8, 733357.	2.2	6
177	When Defenses Fail: <i>Atelopus zeteki</i> Skin Secretions Increase Growth of the Pathogen <i>Batrachochytrium dendrobatidis</i> . Integrative and Comparative Biology, 2022, 62, 1595-1605.	2.0	7
178	Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Animal Microbiome, 2022, 4, .	3.8	6
179	Effect of captivity and water salinity on culture-dependent frog skin microbiota and <i>Batrachochytrium dendrobatidis</i> (<i>Bd</i>) infection. Transactions of the Royal Society of South Australia, 2022, 146, 273-294.	0.4	0
180	Seasonality of host immunity in a tropical disease system. Ecosphere, 2022, 13, .	2.2	3
181	First Evidence of Anti-Steatotic Action of Macrotympanain A1, an Amphibian Skin Peptide from Odorrana macrotympana. Molecules, 2022, 27, 7417.	3.8	1
182	Habitat split as a driver of disease in amphibians. Biological Reviews, 2023, 98, 727-746.	10.4	7
183	Amphibian Dermatology. Veterinary Clinics of North America - Exotic Animal Practice, 2023, 26, 425-442.	0.7	1
184	Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease. Royal Society Open Science, 2023, 10, .	2.4	2
185	The importance of antimicrobial peptides (AMPs) in amphibian skin defense. Developmental and Comparative Immunology, 2023, 142, 104657.	2.3	10
186	Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens, 2023, 12, 429.	2.8	4
187	The adaptive microbiome hypothesis and immune interactions in amphibian mucus. Developmental and Comparative Immunology, 2023, 145, 104690.	2.3	8
188	High relative humidity and temperature limit disease development and mortality in golden frogs of Panama, Atelopus zeteki, infected with Batrachochytrium dendrobatidis. Evolutionary Ecology, 0, , .	1.2	0
189	Effects of exogenous elevation of corticosterone on immunity and the skin microbiome of eastern newts (<i>Notophthalmus viridescens</i>). Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	1

#	Article	IF	CITATIONS
190	Amphibian infection tolerance to chytridiomycosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	1
191	Selection of an anti-pathogen skin microbiome following prophylaxis treatment in an amphibian model system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	3
192	A perspective into the relationships between amphibian (<i>Xenopus laevis</i>) myeloid cell subsets. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	2
193	Towards the generation of gnotobiotic larvae as a tool to investigate the influence of the microbiome on the development of the amphibian immune system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	1
194	Metabolites of Xenorhabdus bacteria are potent candidates for mitigating amphibian chytridiomycosis. AMB Express, 2023, 13, .	3.0	0
195	450 million years in the making: mapping the evolutionary foundations of germinal centers. Frontiers in Immunology, 0, 14, .	4.8	4
197	Amphibian <i>Hymenochirus boettgeri</i> as an experimental model for infection studies with the chytrid fungus <i>Batrachochytrium dendrobatidis</i> . Virulence, 2023, 14, .	4.4	1
198	Effects of temperature on the interaction between amphibian skin bacteria and Batrachochytrium dendrobatidis. Frontiers in Microbiology, 0, 14, .	3.5	1
199	Gene functions of the Ambystoma altamirani skin microbiome vary across space and time but potential antifungal genes are widespread and prevalent. Microbial Genomics, 2024, 10, .	2.0	0