Methods for Studying Morphological Integration and M

The Paleontological Society Papers 16, 213-243

DOI: 10.1017/s1089332600001881

Citation Report

#	Article	IF	Citations
1	Phylogenetic signal, function and integration in the subunits of the carnivoran mandible. Evolutionary Biology, 2011, 38, 465-475.	1.1	40
2	Exploration of the Genetic Organization of Morphological Modularity on the Mouse Mandible Using a Set of Interspecific Recombinant Congenic Strains Between C57BL/6 and Mice of the <i>Mus spretus </i> Species. G3: Genes, Genomes, Genetics, 2012, 2, 1257-1268.	1.8	30
3	Twoâ€module organization of the mandible in the yellowâ€necked mouse: a comparison between two different morphometric approaches. Journal of Evolutionary Biology, 2012, 25, 2489-2500.	1.7	28
4	Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology, 2012, 12, 146.	3.2	33
5	Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. Journal of Evolutionary Biology, 2012, 25, 862-872.	1.7	52
6	Covariation Between Midline Cranial Base, Lateral Basicranium, and Face in Modern Humans and Chimpanzees: A 3D Geometric Morphometric Analysis. Anatomical Record, 2013, 296, 568-579.	1.4	26
7	Ontogenetic and stratigraphic influence on observed phenotypic integration in the limb skeleton of a fossil tetrapod. Paleobiology, 2013, 39, 123-134.	2.0	12
8	Facial Orientation and Facial Shape in Extant Great Apes: A Geometric Morphometric Analysis of Covariation. PLoS ONE, 2013, 8, e57026.	2.5	10
9	AR WOW - VIDEO ARTICLES. Anatomical Record, 2014, 297, 798-798.	1.4	0
10	New insights into the phenotypic covariance structure of the anthropoid cranium. Journal of Anatomy, 2014, 225, 634-658.	1.5	4
11	Assessment of modularity in the urodele skull: An exploratory analysis using ossification sequence data. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 567-585.	1.3	16
12	Cranial Suture Closure Patterns in Sciuridae: Heterochrony and Modularity. Journal of Mammalian Evolution, 2014, 21, 257-268.	1.8	14
13	Interrelationships Between Bones, Muscles, and Performance: Biting in the Lizard Tupinambis merianae. Evolutionary Biology, 2014, 41, 518-527.	1.1	20
14	The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4891-4896.	7.1	69
15	Evaluating modularity in morphometric data: challenges with the <scp>RV</scp> coefficient and a new test measure. Methods in Ecology and Evolution, 2016, 7, 565-572.	5.2	196
16	PATTERNS AND PROCESSES IN MORPHOSPACE: GEOMETRIC MORPHOMETRICS OF THREE-DIMENSIONAL OBJECTS. The Paleontological Society Papers, 2016, 22, 71-99.	0.6	20
17	On the comparison of the strength of morphological integration across morphometric datasets. Evolution; International Journal of Organic Evolution, 2016, 70, 2623-2631.	2.3	133
18	Are sympatrically speciating Midas cichlid fish special? Patterns of morphological and genetic variation in the closely related species <i>Archocentrus centrarchus</i> . Ecology and Evolution, 2016, 6, 4102-4114.	1.9	21

#	Article	IF	Citations
19	Out on a limb: bandicoot limb coâ€variation suggests complex impacts of development and adaptation on marsupial forelimb evolution. Evolution & Development, 2017, 19, 69-84.	2.0	19
20	Unravelling intravertebral integration, modularity and disparity in Felidae (Mammalia). Evolution & Development, 2017, 19, 85-95.	2.0	44
21	Foot shape in arboreal birds: two morphological patterns for the same pincerâ€like tool. Journal of Anatomy, 2017, 231, 1-11.	1.5	22
22	Morphological Integration and Alternative Life History Strategies: A Case Study in a Facultatively Paedomorphic Newt. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 737-748.	1.3	5
23	Phenotypic integration and the evolution of signal repertoires: A case study of treefrog acoustic communication. Ecology and Evolution, 2018, 8, 3410-3429.	1.9	9
24	Swimmers, Diggers, Climbers and More, a Study of Integration Across the Mustelids' Locomotor Apparatus (Carnivora: Mustelidae). Evolutionary Biology, 2018, 45, 182-195.	1.1	28
25	Adaptation and constraint in the evolution of the mammalian backbone. BMC Evolutionary Biology, 2018, 18, 172.	3.2	56
26	The modular organization of roe deer (Capreolus capreolus) body during ontogeny: the effects of sex and habitat. Frontiers in Zoology, 2018, 15, 37.	2.0	2
27	A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution. Systematic Biology, 2019, 68, 93-116.	5.6	80
28	Morphological integration affects the evolution of midline cranial base, lateral basicranium, and face across primates. American Journal of Physical Anthropology, 2019, 170, 37-47.	2.1	13
29	Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution; International Journal of Organic Evolution, 2019, 73, 2352-2367.	2.3	68
30	Morphological evolution and modularity of the caecilian skull. BMC Evolutionary Biology, 2019, 19, 30.	3.2	69
31	Prenatal developmental sequence of the skull of minke whales and its implications for the evolution of mysticetes and the teethâ€toâ€baleen transition. Journal of Anatomy, 2019, 235, 725-748.	1.5	22
32	Dental integration and modularity in pinnipeds. Scientific Reports, 2019, 9, 4184.	3.3	4
33	Spandrels and trait delimitation: No such thing as "architectural constraint― Evolution & Development, 2019, 21, 59-71.	2.0	15
34	Morphological integration and evolution of the skull roof in temnospondyl amphibians. Journal of Iberian Geology, 2019, 45, 341-351.	1.3	2
35	Integration and Modularity in Procrustes Shape Data: Is There a Risk of Spurious Results?. Evolutionary Biology, 2019, 46, 90-105.	1.1	50
36	Changing Modular Patterns in the Carnivoran Pelvic Girdle. Journal of Mammalian Evolution, 2020, 27, 237-243.	1.8	8

3

#	Article	IF	CITATIONS
37	A first glimpse at the influence of body mass in the morphological integration of the limb long bones: an investigation in modern rhinoceroses. Journal of Anatomy, 2020, 237, 704-726.	1.5	11
38	Cranial integration in the fire salamander, Salamandra salamandra (Caudata: Salamandridae). Biological Journal of the Linnean Society, 2020, 130, 178-194.	1.6	13
39	Copulatory function and development shape modular architecture of genitalia differently in males and females. Evolution; International Journal of Organic Evolution, 2020, 74, 1048-1062.	2.3	7
40	Phylogenetically aligned component analysis. Methods in Ecology and Evolution, 2021, 12, 359-372.	5.2	32
41	Morphological integration and modularity in the hyperkinetic feeding system of aquaticâ€foraging snakes. Evolution; International Journal of Organic Evolution, 2021, 75, 56-72.	2.3	32
42	Carnivorous mammals from the middle Eocene Washakie Formation, Wyoming, USA, and their diversity trajectory in a post-warming world. Journal of Paleontology, 2021, 95, 1-115.	0.8	7
43	Sensory adaptations reshaped intrinsic factors underlying morphological diversification in bats. BMC Biology, 2021, 19, 88.	3.8	19
44	Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia:) Tj ETQq1 1 0.78 2021, 20, 70-81.	34314 rgBT 0.4	/Overlock
45	Threeâ€dimensional visualization of the human membranous labyrinth: The membrana limitans and its role in vestibular form. Anatomical Record, 2022, 305, 1037-1050.	1.4	11
47	Modularity patterns in mammalian domestication: Assessing developmental hypotheses for diversification. Evolution Letters, 2021, 5, 385-396.	3.3	16
48	Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nature Ecology and Evolution, 2021, 5, 1250-1258.	7.8	22
49	Humans and climate as possible drivers of the morphology and function of the mandible of Suncus etruscus in Corsica. Journal of Archaeological Science, 2021, 132, 105434.	2.4	1
50	Patterns of Trophic Evolution: Integration and Modularity of the Cichlid Skull., 2021, , 753-777.		4
51	Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill. Ecology and Evolution, 2020, 10, 6288-6309.	1.9	9
52	Resampling-Based Approaches to Study Variation in Morphological Modularity. PLoS ONE, 2013, 8, e69376.	2.5	37
53	Lineage-Specific Responses of Tooth Shape in Murine Rodents (Murinae, Rodentia) to Late Miocene Dietary Change in the Siwaliks of Pakistan. PLoS ONE, 2013, 8, e76070.	2.5	23
55	Long bone shape variation in the forelimb of Rhinocerotoidea: relation with size, body mass and body proportions. Zoological Journal of the Linnean Society, 2022, 196, 1201-1234.	2.3	2
56	Statistics of eigenvalue dispersion indices: Quantifying the magnitude of phenotypic integration. Evolution; International Journal of Organic Evolution, 2022, 76, 4-28.	2.3	13

#	ARTICLE	IF	CITATIONS
58	Estimation of the congruence between morphogenetic and molecular-genetic modules of gray voles Microtus S.L. variability along a climatic gradient. Ecological Genetics, 2019, 17, 21-34.	0.5	5
59	On Information Rank Deficiency in Phenotypic Covariance Matrices. Systematic Biology, 2022, 71, 810-822.	5.6	5
63	Fighting does not influence the morphological integration of crustacean claws (Decapoda: Aeglidae). Biological Journal of the Linnean Society, 2022, 136, 173-186.	1.6	7
64	Fluctuating Asymmetry and Morphogenetic Correlations of the Masticatory Surface Patterns of m1 in Gray Voles (Rodentia, Arvicolinae). Biology Bulletin, 2021, 48, 1609-1622.	0.5	2
65	Using 3D Models to Understand the Changing Role of Fluting in Paleoindian Point Technology from Clovis to Dalton. American Antiquity, 2022, 87, 544-566.	1.1	6
66	Modularity among horse mandibles: a study in the Araucan breed. Journal of Applied Animal Research, 2022, 50, 322-326.	1.2	1
67	Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex. Scientific Reports, 2022, 12, .	3.3	3
68	Weapon shape variation of male morphotypes in two freshwater prawn species genus Macrobrachium (Decapoda: Palaemonidae). Animal Biology, 2022, 72, 289-308.	1.0	4
69	Flexible conservatism in the skull modularity of convergently evolved myrmecophagous placental mammals. Bmc Ecology and Evolution, 2022, 22, .	1.6	6
70	No Morphological Integration of Dorsal Profiles in the Araucanian Horse (Colombia). Animals, 2022, 12, 1731.	2.3	1
71	New rodents shed light on the age and ecology of late Miocene ape locality of Tapar (Gujarat, India). Journal of Systematic Palaeontology, 2022, 20, .	1.5	3
72	Comparative morphoâ€functional analysis of the humerus and ulna in three Western European moles species of the genus <i>Talpa</i> , including the newly described <i>T. aquitania</i> . Journal of Anatomy, 2023, 242, 257-276.	1.5	3
73	Darter fishes exhibit variable intraspecific head shape allometry and modularity. Anatomical Record, 0, , .	1.4	0
74	Unraveling the morphological patterns of a subantarctic eelpout: a geometric morphometric approach. Integrative Zoology, 2023, 18, 372-384.	2.6	3
75	Evolutionary integration and modularity in the diversity of the suckermouth armoured catfishes. Royal Society Open Science, 2022, 9, .	2.4	4
77	Cranial integration and modularity in chamois: The effects of subspecies and sex. Journal of Mammalian Evolution, 0 , , .	1.8	0
78	First evidence of the link between internal and external structure of the human inner ear otolith system using 3D morphometric modeling. Scientific Reports, 2023, 13, .	3.3	1
79	Basicranial Modular Organization. A Study in the Araucanian Horse of Colombia. Veterinary Sciences, 2023, 10, 255.	1.7	0

#	Article	IF	CITATIONS
80	From color to shape: ontogenetic shifts in traits of the freshwater crab <i>Dilocarcinus pagei</i> (Brachyura: Trichodactylidae). Canadian Journal of Zoology, 2023, 101, 658-671.	1.0	2
81	Testing heterochrony: Connecting skull shape ontogeny and evolution of feeding adaptations in baleen whales. Evolution & Development, 2023, 25, 257-273.	2.0	1
82	Developmental origin underlies evolutionary rate variation across the placental skull. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	1
83	Modularity and community detection in human brain morphology. Anatomical Record, 0, , .	1.4	O
84	Skull modularity of the European ground squirrel Spermophilus citellus (Linnaeus, 1766)., 2014, 57, 59-67.		1
85	Evolutionary Patterns of Modularity in the Linkage Systems of the Skull in Wrasses and Parrotfish. Integrative Organismal Biology, 2023, 5, .	1.8	O
86	A Putative Locus for Cranial-Size Variability of the Fox (Vulpes vulpes). Russian Journal of Genetics, 2023, 59, 466-482.	0.6	0
87	The impact of the land-to-sea transition on evolutionary integration and modularity of the pinniped backbone. Communications Biology, 2023, 6, .	4.4	O
88	New insights into patterns of integration in the femur and pelvis among catarrhines. American Journal of Biological Anthropology, 0, , .	1.1	0