Monitoring historical masonry structures with operation studies

Mechanical Systems and Signal Processing 24, 1291-1305

DOI: 10.1016/j.ymssp.2010.01.011

Citation Report

#	Article	IF	CITATIONS
1	Explaining operational modal analysis with data from an arch bridge. Mechanical Systems and Signal Processing, 2011, 25, 1431-1450.	8.0	210
2	Investigation of restoration effects on the dynamic characteristics of the Hagia Sophia bell-tower by ambient vibration test. Construction and Building Materials, 2012, 29, 564-572.	7.2	44
3	Load carrying capacity assessment of a scaled masonry dome: Simulations validated with non-destructive and destructive measurements. Construction and Building Materials, 2012, 34, 418-429.	7.2	16
4	Seismic performance of the St. George of the Latins church: Lessons learned from studying masonry ruins. Engineering Structures, 2012, 40, 501-518.	5.3	66
5	Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT and E International, 2012, 47, 88-95.	3.7	134
6	In situ static and dynamic investigations on the "Torre Grossa―masonry tower. Engineering Structures, 2013, 52, 718-733.	5.3	104
7	On the monitoring of historic Anime Sante church damaged by earthquake in L'Aquila. Structural Control and Health Monitoring, 2013, 20, 1226-1239.	4.0	63
8	Non-destructive characterization and dynamic identification of a modern heritage building for serviceability seismic analyses. NDT and E International, 2013, 60, 17-31.	3.7	53
9	Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome. Mechanical Systems and Signal Processing, 2013, 41, 454-466.	8.0	41
10	Dynamic structural health monitoring of Saint Torcato church. Mechanical Systems and Signal Processing, 2013, 35, 1-15.	8.0	74
11	Operational modal testing of historic structures at different levels of excitation. Construction and Building Materials, 2013, 48, 1273-1285.	7.2	68
12	Modal tests on buildings: correlating large amounts of acquisitions with different space–time collocations. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2013, 227, 577-587.	1.0	O
13	Dynamic Monitoring and Seismic Response of a Historic Masonry Tower. Key Engineering Materials, 2014, 628, 55-60.	0.4	5
15	Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 2014, 45, 207-224.	8.0	66
16	Structural health monitoring with statistical methods during progressive damage test of S101 Bridge. Engineering Structures, 2014, 69, 183-193.	5.3	106
17	One-year dynamic monitoring of a masonry tower. MATEC Web of Conferences, 2015, 24, 05003.	0.2	1
18	Vibration-based SHM for cultural heritage preservation: the case of the S. Pietro bell-tower in Perugia. MATEC Web of Conferences, 2015, 24, 05002.	0.2	2
19	Structural health monitoring of a historic masonry tower. , 2015, , .		3

#	Article	IF	CITATIONS
20	Control of structural intervention in the area of the Roman Theatre of Cadiz (Spain) by using non-destructive techniques. Construction and Building Materials, 2015, 101, 572-583.	7.2	7
21	Ambient Vibration Testing of Cultural Heritage Structures. , 2015, , 33-54.		0
22	Experimental modal analysis of brick masonry arches strengthened prepreg composites. Journal of Cultural Heritage, 2015, 16, 284-292.	3.3	22
23	Built Heritage: Monitoring Conservation Management. Research for Development, 2015, , .	0.4	12
24	Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy. Construction and Building Materials, 2015, 81, 101-112.	7.2	131
25	Experimental and numerical approaches for structural assessment in new footbridge designs (SFRSCC–GFPR hybrid structure). Composite Structures, 2015, 134, 95-105.	5.8	14
26	Seismic vulnerability and failure modes simulation of ancient masonry towers by validated virtual finite element models. Engineering Failure Analysis, 2015, 57, 72-87.	4.0	71
27	Ambient vibration measurements on monuments in the Medieval City of Rhodes, Greece. Bulletin of Earthquake Engineering, 2015, 13, 331-345.	4.1	12
28	Application of Particle Motion Technique to Structural Modal Identification of Heritage Buildings. International Journal of Architectural Heritage, 2015, 9, 310-323.	3.1	10
29	Post-earthquake Assessment of a Masonry Tower by On-Site Inspection and Operational Modal Testing. Computational Methods in Applied Sciences (Springer), 2015, , 393-407.	0.3	0
30	Model Updating to Forecast the Dynamic Behavior of the Ghirlandina Tower in Modena, Italy. Journal of Earthquake Engineering, 2015, 19, 1-24.	2.5	21
31	Structural Identification of a Masonry Tower Based on Operational Modal Analysis. International Journal of Architectural Heritage, 2015, 9, 98-110.	3.1	93
32	Post-earthquake diagnostic investigation of a historic masonry tower. Journal of Cultural Heritage, 2015, 16, 602-609.	3.3	52
33	On Site Investigation and Health Monitoring of a Historic Tower in Mantua, Italy. Applied Sciences (Switzerland), 2016, 6, 173.	2.5	17
34	Field dynamic test and Bayesian modal identification of a special structure - the Palms Together Dagoba. Structural Control and Health Monitoring, 2016, 23, 838-856.	4.0	27
35	Structural health monitoring: a tool for managing risks in sub-standard conditions. Journal of Civil Structural Health Monitoring, 2016, 6, 365-375.	3.9	7
36	Effect of model calibration on seismic behaviour of a historical mosque. Structural Engineering and Mechanics, 2016, 60, 749-760.	1.0	15
37	Optimized procedures and strategies for the dynamic monitoring of historical structures. Journal of Civil Structural Health Monitoring, 2016, 6, 265-289.	3.9	29

#	ARTICLE	IF	CITATIONS
38	A numerical study on seismic risk assessment of historic masonry towers: a case study in San Gimignano. Bulletin of Earthquake Engineering, 2016, 14, 1475-1518.	4.1	86
39	Experimental modal analysis of masonry arches strengthened with graphene nanoplatelets reinforced prepreg composites. Measurement: Journal of the International Measurement Confederation, 2016, 90, 233-241.	5.0	20
40	A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jer $ ilde{A}^3$ nimos in Lisbon. Construction and Building Materials, 2016, 116, 169-187.	7.2	79
41	Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Structural Health Monitoring, 2016, 15, 438-457.	7.5	116
42	Non-destructive testing of an ancient Masonry Bastion. Journal of Cultural Heritage, 2016, 22, 1049-1054.	3.3	24
43	Fault detection, isolation and quantification from Gaussian residuals with application to structural damage diagnosis. Annual Reviews in Control, 2016, 42, 244-256.	7.9	30
44	One-year dynamic monitoring of a historic tower: damage detection under changing environment. Meccanica, 2016, 51, 2873-2889.	2.0	137
45	Integrated assessment of monumental structures through ambient vibrations and ND tests: The case of Rialto Bridge. Journal of Cultural Heritage, 2016, 19, 402-414.	3.3	32
46	Seismic vulnerability enhancement of medieval and masonry bell towers externally prestressed with unbonded smart tendons. Engineering Structures, 2016, 122, 50-61.	5.3	53
47	"Time-building specific―seismic vulnerability assessment of a hospital RC building using field monitoring data. Engineering Structures, 2016, 112, 114-132.	5. 3	34
48	Vibration analysis of historic bell towers by means of contact and remote sensing measurements. Nondestructive Testing and Evaluation, 2016, 31, 331-359.	2.1	14
49	A preliminary approach of dynamic identification of slender buildings by neuronal networks. International Journal of Non-Linear Mechanics, 2016, 80, 183-189.	2.6	14
50	Dynamic response of the Baptistery of San Giovanni in Florence, Italy, based on ambient vibration test. Journal of Cultural Heritage, 2016, 20, 632-640.	3.3	32
51	Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network. International Journal of Masonry Research and Innovation, 2016, 1, 74.	0.4	53
52	Probabilistic Model for Modal Properties Based on Operational Modal Analysis. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2016, 2, .	1.7	8
53	Uncertainty quantification in structural health monitoring: Applications on cultural heritage buildings. Mechanical Systems and Signal Processing, 2016, 66-67, 268-281.	8.0	70
54	Empirical Formulation for Estimating the Fundamental Frequency of Slender Masonry Structures. International Journal of Architectural Heritage, 2016, 10, 55-66.	3.1	38
55	Automated modal identification and tracking: Application to an iron arch bridge. Structural Control and Health Monitoring, 2017, 24, e1854.	4.0	118

#	ARTICLE	IF	Citations
56	Vibration-based damage identification of an unreinforced masonry house model. Advances in Structural Engineering, 2017, 20, 331-351.	2.4	6
57	Dynamic characterisation and seismic assessment of medieval masonry towers. Natural Hazards, 2017, 86, 489-515.	3.4	32
58	Semiempirical Formulations for Estimating the Main Frequency of Slender Masonry Towers. Journal of Performance of Constructed Facilities, 2017, 31, .	2.0	43
59	Seismic damage diagnosis of a masonry building using short-term damping measurements. Journal of Sound and Vibration, 2017, 394, 366-391.	3.9	32
60	The Stretching Method for Vibrationâ€Based Structural Health Monitoring of Civil Structures. Computer-Aided Civil and Infrastructure Engineering, 2017, 32, 288-303.	9.8	42
61	Assessment of environmental and nondestructive earthquake effects on modal parameters of an office building based on long-term vibration measurements. Smart Materials and Structures, 2017, 26, 055034.	3.5	16
62	The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of Cultural Heritage, 2017, 27, 36-47.	3.3	93
63	Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile. Engineering Structures, 2017, 143, 169-188.	5.3	80
64	Experimental image and range scanner datasets fusion in SHM for displacement detection. Structural Control and Health Monitoring, 2017, 24, e1967.	4.0	31
65	Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy. International Journal of Advanced Structural Engineering, 2017, 9, 259-267.	1.3	16
66	Discrete and Continuous Finite Element Models and Their Calibration via Vibration and Material Tests for the Seismic Assessment of Masonry Structures. International Journal of Architectural Heritage, 0, , 1-20.	3.1	6
67	Seismic Risk Assessment of Historic Masonry Towers: Comparison of Four Case Studies. Journal of Performance of Constructed Facilities, 2017, 31, .	2.0	40
68	Structural Health Monitoring of an Historical Building: The Main Spire of the Duomo Di Milano. International Journal of Architectural Heritage, 2017, 11, 501-518.	3.1	28
69	Dynamic investigation on the Mirandola bell tower in post-earthquake scenarios. Bulletin of Earthquake Engineering, 2017, 15, 313-337.	4.1	46
70	Open-source digital technologies for low-cost monitoring of historical constructions. Journal of Cultural Heritage, 2017, 25, 31-40.	3.3	15
71	A vibration-based health monitoring program for a large and seismically vulnerable masonry dome. Journal of Physics: Conference Series, 2017, 842, 012009.	0.4	1
72	Bayesian model updating of historic masonry towers through dynamic experimental data. Procedia Engineering, 2017, 199, 1258-1263.	1.2	17
73	Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring, 2017, 7, 703-717.	3.9	97

#	Article	IF	Citations
74	From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials, 2017, 156, 252-265.	7.2	111
75	Ambient Vibration Testing of a monumental fountain by contact and non-contact sensing techniques. Procedia Engineering, 2017, 199, 3338-3343.	1.2	0
76	Detecting earthquake-induced damage in historic masonry towers using continuously monitored dynamic response-only data. Procedia Engineering, 2017, 199, 3416-3421.	1.2	19
77	Monitoring of the vibration induced on the Arno masonry embankment wall by the conservation works after the May 25, 2016 riverbank landslide. Geoenvironmental Disasters, 2017, 4, .	3.6	12
78	Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing, 2017, 82, 307-322.	8.0	147
79	Structural Health Monitoring of a Historical Masonry Bell Tower Using Operational Modal Analysis. Key Engineering Materials, 0, 747, 440-447.	0.4	6
80	Application of Smart FRP Devices for the Structural Health Monitoring of Heritage Buildings - A Case Study: The Monastery of Sant'Angelo d'Ocre. Key Engineering Materials, 0, 747, 448-455.	0.4	5
81	Damage Identification of Unreinforced Masonry Panels Using Vibration-Based Techniques. Shock and Vibration, 2017, 2017, 1-14.	0.6	4
82	Scientific aspects of the survey and evaluation of the technical state in implementation of preservation projects of cultural heritage objects. MATEC Web of Conferences, 2017, 106, 01033.	0.2	2
83	Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower. Structural Control and Health Monitoring, 2018, 25, e2150.	4.0	64
84	Post-earthquake controls and damage detection through structural health monitoring: applications in l'Aquila. Journal of Civil Structural Health Monitoring, 2018, 8, 217-236.	3.9	29
85	E. Torroja's bridge: Tailored experimental setup for SHM of a historical bridge with a reduced number of sensors. Engineering Structures, 2018, 162, 11-21.	5.3	44
86	Sensing a City's State of Health: Structural Monitoring System by Internet-of-Things Wireless Sensing Devices. IEEE Consumer Electronics Magazine, 2018, 7, 22-31.	2.3	40
87	Vibration-Based Monitoring of Civil Structures with Subspace-Based Damage Detection. Intelligent Systems, Control and Automation: Science and Engineering, 2018, , 307-326.	0.5	4
88	Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering, 2018, 16, 775-801.	4.1	116
89	Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Engineering Structures, 2018, 156, 433-442.	5.3	38
90	Assessing the impact of retrofitting on structural safety in historical buildings via ambient vibration tests. Construction and Building Materials, 2018, 164, 337-349.	7.2	23
91	Operational modal analysis of an eight-storey building with asynchronous data incorporating multiple setups. Engineering Structures, 2018, 165, 50-62.	5.3	13

#	Article	IF	CITATIONS
92	Continuous monitoring of a challenging heritage tower in Monza, Italy. Journal of Civil Structural Health Monitoring, 2018, 8, 77-90.	3.9	47
93	The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Engineering Structures, 2018, 156, 175-187.	5.3	73
94	Earthquake-Induced Damage Detection in a Monumental Masonry Bell-Tower Using Long-Term Dynamic Monitoring Data. Journal of Earthquake Engineering, 2018, 22, 96-119.	2.5	62
95	Modal analysis of historical masonry structures: Linear perturbation and software benchmarking. Construction and Building Materials, 2018, 189, 1232-1250.	7.2	33
96	Heterogeneity detection of Portuguese–Brazilian masonries through ultrasonic velocities measurements. Journal of Civil Structural Health Monitoring, 2018, 8, 847-856.	3.9	9
97	Prototyping and Validation of MEMS Accelerometers for Structural Health Monitoring—The Case Study of the Pietratagliata Cable-Stayed Bridge. Journal of Sensor and Actuator Networks, 2018, 7, 30.	3.9	83
98	Operational Modal Analysis: A Tool for Assessing Changes on Structural Health State of Historical Constructions after Consolidation and Reinforcement Works—Jura Chapel (Jerez de la Frontera,) Tj ETQq0 0 0	rgBT.∳Ove	erloek 10 Tf 50
99	Automated long-term dynamic monitoring using hierarchical clustering and adaptive modal tracking: validation and applications. Journal of Civil Structural Health Monitoring, 2018, 8, 791-808.	3.9	17
100	Parameter identification for damaged condition investigation on masonry arch bridges using a Bayesian approach. Engineering Structures, 2018, 172, 275-284.	5.3	31
101	Seismic vulnerability assessment methodology for slender masonry structures. International Journal of Architectural Heritage, 2018, 12, 1297-1326.	3.1	17
102	Assessment of Environmental Effects for Vibration-Based Damage Detection of Historic Masonry Towers. Proceedings (mdpi), 2018, 2, .	0.2	1
103	Non-destructive characterization of ancient clay brick walls by indirect ultrasonic measurements. Journal of Building Engineering, 2018, 19, 172-180.	3.4	34
104	Effect of Environmental Conditions on the Modal Response of a 10-Story Reinforced Concrete Tower. Shock and Vibration, 2018, 2018, 1-16.	0.6	21
105	Modal frequency-environmental condition relation development using long-term structural health monitoring measurement: Uncertainty quantification, sparse feature selection and multivariate prediction. Measurement: Journal of the International Measurement Confederation, 2018, 130, 384-397.	5.0	36
106	Environmental and Ambient Vibration Monitoring of Historical Adobe Buildings: Applications in Emblematic Andean Churches. International Journal of Architectural Heritage, 2019, , 1-17.	3.1	10
107	Dynamic monitoring and evaluation of bell ringing effects for the structural assessment of a masonry bell tower. Journal of Civil Structural Health Monitoring, 2019, 9, 439-458.	3.9	15
108	Monitoring Moisture Performance of Cross-Laminated Timber Building Elements during Construction. Buildings, 2019, 9, 144.	3.1	37
109	Long-term monitoring for the condition-based structural maintenance of the Milan Cathedral. Construction and Building Materials, 2019, 228, 117101.	7.2	39

#	Article	IF	CITATIONS
110	Dynamic identification of a masonry façade from seismic response data based on an elementary Ordinary Least Squares approach. Engineering Structures, 2019, 197, 109415.	5.3	36
111	Nonlinear Dynamic Analysis for Safety Assessment of Heritage Buildings: Church of Santa Maria de Belém. Journal of Structural Engineering, 2019, 145, 04019153.	3.4	6
112	Analysis of the long and short-term effects of temperature and humidity on the structural properties of adobe buildings using continuous monitoring. Engineering Structures, 2019, 196, 109299.	5.3	34
113	Mechanical behavior of a Chinese traditional timber pagoda during construction. Engineering Structures, 2019, 196, 109302.	5.3	17
114	Non-destructive investigations for structural qualification of the Sarno Baths, Pompeii. Journal of Cultural Heritage, 2019, 40, 280-287.	3.3	22
115	Hierarchical environmental risk mapping of material degradation in historic masonry buildings: An integrated approach considering climate change and structural damage. Construction and Building Materials, 2019, 215, 998-1014.	7.2	52
116	Seismic Structural Health Monitoring of Cultural Heritage Structures. Springer Tracts in Civil Engineering, 2019, , 51-85.	0.5	13
117	S2HM in Some European Countries. Springer Tracts in Civil Engineering, 2019, , 303-343.	0.5	9
118	Parametric dynamic interaction assessment between bells and supporting slender masonry tower. Mechanical Systems and Signal Processing, 2019, 129, 235-249.	8.0	27
119	Model Updating Techniques for Structures Under Seismic Excitation. Springer Tracts in Civil Engineering, 2019, , 199-216.	0.5	1
120	Continuous Dynamic Monitoring to Enhance the Knowledge of a Historic Bell-Tower. International Journal of Architectural Heritage, 2019, 13, 992-1004.	3.1	18
121	Experimental analysis of the thermohygrometric effects on the dynamic behavior of adobe systems. Construction and Building Materials, 2019, 208, 158-174.	7.2	21
122	Monitoring Propping System Removal in Domes and Tie-Rod Slackening from a Historical Building. Journal of Structural Engineering, 2019, 145, 04019033.	3.4	3
123	Conservation-Aimed Evaluation of a Historical Aqueduct in İzmir. Journal of Architectural Engineering, 2019, 25, 04019014.	1.6	3
124	Effectiveness of seismic retrofitting of a historical masonry structure: Kütahya Kurşunlu Mosque, Turkey. Bulletin of Earthquake Engineering, 2019, 17, 3365-3395.	4.1	44
125	Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage. Communications in Computer and Information Science, 2019, , .	0.5	3
126	Performance of a Far-Field Historical Church during the 2016–2017 Central Italy Earthquakes. Journal of Performance of Constructed Facilities, 2019, 33, 04019016.	2.0	6
127	Simplified Formulations for Estimating the Main Frequencies of Ancient Masonry Churches. Frontiers in Built Environment, 2019, 5, .	2.3	25

#	Article	IF	CITATIONS
128	Predicting the service life of buildings and facilities to minimize the risk of losses in the conditions of natural and technogenic emergency situations. IOP Conference Series: Materials Science and Engineering, 2019, 652, 012010.	0.6	2
129	A Review of Dynamic Analysis in Frequency Domain for Structural Health Monitoring. IOP Conference Series: Earth and Environmental Science, 2019, 357, 012007.	0.3	11
130	System Identification and Seismic Performance Assessment of a Stone Arch Bridge. Journal of Earthquake Engineering, 2022, 26, 723-743.	2.5	18
131	A Novel Approach of Identifying Railway Track Rail's Modal Frequency From Wheel-Rail Excitation and Its Application in High-Speed Railway Monitoring. IEEE Access, 2019, 7, 180986-180997.	4.2	7
132	Full structural dynamic response from ambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry. NDT and E International, 2019, 102, 9-15.	3.7	20
133	A semi-analytical formulation for estimating the fundamental vibration frequency of historical masonry towers. Bulletin of Earthquake Engineering, 2019, 17, 2627-2645.	4.1	5
134	Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mechanical Systems and Signal Processing, 2019, 120, 180-202.	8.0	97
135	Dynamic identification of historic masonry structures. , 2019, , 241-264.		4
136	Modal analysis of masonry structures. Mathematics and Mechanics of Solids, 2019, 24, 616-636.	2.4	14
137	Predicting the variability of natural frequencies and its causes by Second-Order Blind Identification. Structural Health Monitoring, 2019, 18, 486-507.	7.5	45
138	An Automatic Modal Identification Procedure for the Permanent Dynamic Monitoring of the Sanctuary of Vicoforte. International Journal of Architectural Heritage, 2020, 14, 630-644.	3.1	25
139	In-Plane Seismic Response Analyses of a Historical Brick Masonry Building Using Equivalent Frame and 3D FEM Modeling Approaches. International Journal of Architectural Heritage, 2020, 14, 238-256.	3.1	19
140	On the role played by the openings on the first frequency of historic masonry towers. Bulletin of Earthquake Engineering, 2020, 18, 427-451.	4.1	17
141	Critical measurement issues in the use of wire potentiometers for the structural health monitoring of slender structures: the case of the Duomo di Milano main spire. Journal of Civil Structural Health Monitoring, 2020, 10, 119-134.	3.9	1
142	Finite element model updating for structural applications. Journal of Computational and Applied Mathematics, 2020, 370, 112675.	2.0	25
143	Evaluation of optimal sensor placement algorithms for the Structural Health Monitoring of architectural heritage. Application to the Monastery of San Jer³nimo de Buenavista (Seville, Spain). Engineering Structures, 2020, 202, 109843.	5.3	26
144	Thermoelastic finite element model updating with application to monumental buildings. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 628-642.	9.8	14
145	Earthquake-induced damage localization in an historic masonry tower through long-term dynamic monitoring and FE model calibration. Bulletin of Earthquake Engineering, 2020, 18, 2247-2274.	4.1	42

#	Article	IF	CITATIONS
146	The role of modal parameters uncertainty estimation in automated modal identification, modal tracking and data normalization. Engineering Structures, 2020, 224, 111208.	5.3	41
147	Seismic appraisal of heritage ruins: The case study of the St. Mary of Carmel church in Cyprus. Engineering Structures, 2020, 224, 111209.	5. 3	18
148	Automated data analysis for static structural health monitoring of masonry heritage structures. Structural Control and Health Monitoring, 2020, 27, e2581.	4.0	15
149	The S. Maria di Collemaggio Basilica: From Vulnerability Assessment to First Results of SHM. Journal of Architectural Engineering, 2020, 26, 05020007.	1.6	22
150	Vibration Analysis and Empirical Law Definition for Different Equipment in a Civil Construction. Applied Sciences (Switzerland), 2020, 10, 4689.	2.5	6
151	Analysis and evaluation of the effect of vibrations on historical buildings. MATEC Web of Conferences, 2020, 313, 00020.	0.2	1
152	Vibration-based structural health monitoring of a RC-masonry tower equipped with non-conventional TMD. Engineering Structures, 2020, 224, 111212.	5.3	22
153	Preliminary Assessment of the Seismic Vulnerability of Three Inclined Bell-towers in Ferrara, Italy. International Journal of Architectural Heritage, 2022, 16, 485-517.	3.1	11
154	Assessment of Seismic Retrofitting Interventions of a Masonry Palace Using Operational Modal Analysis. International Journal of Architectural Heritage, 2022, 16, 692-704.	3.1	18
155	Long-Term Seismometric Monitoring of the Two Towers of Bologna (Italy): Modal Frequencies Identification and Effects Due to Traffic Induced Vibrations. Frontiers in Built Environment, 2020, 6, .	2.3	12
156	Physical and mechanical characterization of traditional Brazilian clay bricks from different centuries. Journal of Building Pathology and Rehabilitation, 2020, 5, 1.	1.5	3
157	Rapid post-earthquake damage localization and quantification in masonry structures through multidimensional non-linear seismic IDA. Engineering Structures, 2020, 219, 110841.	5.3	41
158	Long-Term Dynamic Monitoring of Medieval Masonry Towers. Frontiers in Built Environment, 2020, 6, .	2.3	10
159	Characterization of the strain-sensing behavior of smart bricks: A new theoretical model and its application for monitoring of masonry structural elements. Construction and Building Materials, 2020, 250, 118907.	7.2	17
160	Monitoring of a Historical Masonry Structure in Case of Induced Seismicity. International Journal of Architectural Heritage, 2021, 15, 187-204.	3.1	8
161	Model Updating of Historical Belfries Based on Oma Identification Techniques. International Journal of Architectural Heritage, 2021, 15, 132-156.	3.1	60
162	Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. International Journal of Architectural Heritage, 2021, 15, 22-44.	3.1	50
163	Assessment of structural interventions using Bayesian updating and subspace-based fault detection methods: the case study of S. Maria di Collemaggio basilica, L'Aquila, Italy. Structure and Infrastructure Engineering, 2021, 17, 141-155.	3.7	23

#	Article	IF	CITATIONS
164	Two-years static and dynamic monitoring of the Santa Maria di Collemaggio basilica. Construction and Building Materials, 2021, 268, 121069.	7.2	28
165	A Fuzzy Krill Herd Approach for Structural Health Monitoring of Bridges using Operational Modal Analysis. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2021, 45, 1139-1157.	1.9	7
166	Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. Journal of Cultural Heritage, 2021, 47, 227-245.	3.3	111
167	A finite element model updating method based on global optimization. Mechanical Systems and Signal Processing, 2021, 152, 107372.	8.0	29
168	Statistical correlation between environmental time series and data from long-term monitoring of buildings. Mechanical Systems and Signal Processing, 2021, 152, 107460.	8.0	24
169	Field measurements for identification of modal parameters for high-rise buildings under construction or in use. Automation in Construction, 2021, 121, 103446.	9.8	19
170	Seismic Retrofit Assessment of a School Building through Operational Modal Analysis and f.e. Modeling. Journal of Structural Engineering, 2021, 147, 04020302.	3.4	15
172	Ambient vibrations for the assessment of the strengthening intervention of a masonry barrel vault. Structural Health Monitoring, 2021, 20, 1312-1330.	7.5	4
173	Structural Health Assessment of Historical Buildings via Ambient Vibrations: The SMAV Methodology for "Palazzo delle Laudi―at Sansepolcro (AR). International Journal of Architectural Heritage, 2021, 15, 593-607.	3.1	4
174	Ambient Vibrations of Age-old Masonry Towers: Results of Long-term Dynamic Monitoring in the Historic Centre of Lucca. International Journal of Architectural Heritage, 2021, 15, 5-21.	3.1	36
175	Assessment of an Historical Masonry Bell Tower by Modal Testing. Lecture Notes in Civil Engineering, 2021, , 219-231.	0.4	1
176	ROC analysis-based optimal design of a spatio-temporal online seismic monitoring system for precast industrial buildings. Bulletin of Earthquake Engineering, 2021, 19, 1441-1466.	4.1	7
177	A Transfer Learning Application to FEM and Monitoring Data for Supporting the Classification of Structural Condition States. Lecture Notes in Civil Engineering, 2021, , 947-957.	0.4	1
179	Damage Localization in Mechanical Systems by Lasso Regression. IFAC-PapersOnLine, 2021, 54, 286-291.	0.9	3
180	Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry. Buildings, 2021, 11, 120.	3.1	11
181	Assessment and Fragility of Byzantine Unreinforced Masonry Towers. Infrastructures, 2021, 6, 40.	2.8	4
182	A Study on the Influence of Different Constraint Modes and Number of Disc Springs on the Dynamics of Disc Spring System. Shock and Vibration, 2021, 2021, 1-12.	0.6	2
183	Damage Identification Analyses of a Historic Masonry Structure in T-F Domain. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2021, 32, 10577-10610.	1.1	3

#	Article	IF	CITATIONS
184	Comparison of different finite element model updates based on experimental onsite testing: the case study of San Giovanni in Macerata. Journal of Civil Structural Health Monitoring, 2021, 11, 767-790.	3.9	11
185	Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study. Journal of Building Engineering, 2021, 37, 102134.	3.4	34
186	A Risk Index for the Structural Diagnosis of Masonry Heritage (RISDIMaH). Construction and Building Materials, 2021, 284, 122433.	7.2	10
187	Ambient vibration testing and empirical relation for natural period of historical mosques. Case study of eight mosques in Kermanshah, Iran. Construction and Building Materials, 2021, 289, 123191.	7.2	16
188	System Identification of Mosques Resting on Soft Soil. The Case of the Suleiman Mosque in the Medieval City of Rhodes, Greece. Geosciences (Switzerland), 2021, 11, 275.	2.2	4
189	Dynamic calibration and seismic validation of numerical models of URM buildings through permanent monitoring data. Earthquake Engineering and Structural Dynamics, 2021, 50, 2690-2711.	4.4	16
190	A new method for earthquake-induced damage identification in historic masonry towers combining OMA and IDA. Bulletin of Earthquake Engineering, 2021, 19, 5307-5337.	4.1	24
191	Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review. Construction and Building Materials, 2021, 297, 123768.	7.2	92
192	An enhanced indirect video-based measurement procedure for dynamic structural system identification applications. Measurement: Journal of the International Measurement Confederation, 2021, 182, 109759.	5.0	4
193	Novel invisible markers for monitoring cracks on masonry structures. Construction and Building Materials, 2021, 300, 124013.	7.2	9
194	Modal-based FE model updating via genetic algorithms: Exploiting artificial intelligence to build realistic numerical models of historical structures. Construction and Building Materials, 2021, 303, 124393.	7.2	37
195	The use of receiver operating characteristic curves and precision-versus-recall curves as performance metrics in unsupervised structural damage classification under changing environment. Engineering Structures, 2021, 246, 113029.	5.3	23
196	A transfer Bayesian learning methodology for structural health monitoring of monumental structures. Engineering Structures, 2021, 247, 113089.	5.3	20
197	Statistical subspace-based damage detection with estimated reference. Mechanical Systems and Signal Processing, 2022, 164, 108241.	8.0	9
199	Radar Interferometer Application for Remote Deflection Measurements of a Slender Masonry Chimney. Communications in Computer and Information Science, 2019, , 430-442.	0.5	2
200	Dynamic Identification of Masonry Arch Bridges Using Multiple Methodologies. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 37-47.	0.5	9
201	Subspace-Based Damage Detection on Steel Frame Structure Under Changing Excitation. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 167-174.	0.5	8
203	Long-Term Vibration Measurements to Enhance the Knowledge of a Historic Bell-Tower. RILEM Bookseries, 2019, , 2236-2244.	0.4	1

#	Article	IF	Citations
204	Damage Assessment of a Cloister Vault. Lecture Notes in Mechanical Engineering, 2020, , 314-332.	0.4	2
205	Smart bricks for strain sensing and crack detection in masonry structures. Smart Materials and Structures, 2018, 27, 015009.	3 . 5	44
206	Operational modal analysis of a steel-frame, low-rise building with L-shaped construction. , 2017, , .		2
207	Strain monitoring in masonry structures using smart bricks. , 2018, , .		3
208	Long-term Dynamic Response of Hagia Sophia in Istanbul to Earthquakes and Atmospheric Conditions. , 0, , .		1
209	Dynamic testing and health monitoring of historic and modern civil structures in Italy. Structural Monitoring and Maintenance, 2016, 3, 71-90.	1.7	30
210	Preliminary Validation of an Automatic Modal Identification Methodology for Structural Health Monitoring of Historical Buildings. International Journal of Structural and Civil Engineering Research, 2018, , 144-150.	0.1	5
211	Seismic Assessment of St James Church by Means of Pushover Analysis – Before and After the New Zealand Earthquake. Open Civil Engineering Journal, 2012, 6, 160-172.	0.8	20
212	Non-destructive Method of the Assessment of Stone Masonry by Artificial Neural Networks. Open Construction and Building Technology Journal, 2020, 14, 84-97.	0.7	7
213	Structural Identification and Numerical Models for Slender Historical Structures. Advances in Civil and Industrial Engineering Book Series, 2015, , 674-703.	0.2	10
214	Structural Identification and Numerical Models for Slender Historical Structures., 2016, , 196-222.		4
215	Emerging Technologies for the Seismic Assessment of Historical Churches. Advances in Religious and Cultural Studies, 2017, , 159-196.	0.2	4
216	INTEGRATING MODAL ANALYSIS AND SEISMIC INTERFEROMETRY FOR STRUCTURAL DYNAMIC RESPONSE: THE CASE STUDY GIOTTO $\hat{a} \in \mathbb{T}$ S BELL TOWER IN FLORENCE (ITALY)., 2019,,.		3
217	Operational Modal Analysis and Finite Element Model Updating of a 53-Story Building. Conference Proceedings of the Society for Experimental Mechanics, 2022, , 83-91.	0.5	0
218	Integrated SHM Systems: Damage Detection Through Unsupervised Learning and Data Fusion. Structural Integrity, 2022, , 247-268.	1.4	7
219	Finite element model updating of masonry minarets by using operational modal analysis method. Structures, 2021, 34, 3501-3507.	3.6	10
220	Control de la intervenci \tilde{A}^3 n estructural sobre el \tilde{A}_i rea del Teatro Romano de C \tilde{A}_i diz. Informes De La Construccion, 2014, 66, m003.	0.3	0
221	Dynamic behavior investigation of scale building renovated by repair mortar. Computers and Concrete, 2015, 16, 531-544.	0.7	0

#	Article	IF	CITATIONS
223	Tarihi Bir Yığma Minarenin Onarım Sonrasındaki Dinamik Karakteristiklerinin Deneysel Olarak Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	3
224	Virtual Tours and Augmented Reality for Direct Data Integration. , 2019, , .		0
225	Determination of characteristic Parameters of masonry Structures via Operational Modal Analysis. International Journal of Engineering Sciences, 2019, 12, .	0.1	1
226	Reducing the Training Samples for Damage Detection of Existing Buildings through Self-Space Approximation Techniques. Sensors, 2021, 21, 7155.	3.8	1
227	Vibration-Based Investigation of a Historic Bell Tower to Understand the Occurrence of Damage. International Journal of Architectural Heritage, 0 , $1-13$.	3.1	3
228	Determination of free vibration properties of masonry arch bridges using the dynamic stiffness method. Engineering Structures, 2022, 250, 113417.	5.3	7
229	Dynamic Identification Tests of 20th Century Historic Masonry Buildings in Japan. GeoHazards, 2021, 2, 332-351.	1.4	0
230	Seismic Vulnerability Assessment for Masonry Churches: An Overview on Existing Methodologies. Buildings, 2021, 11, 588.	3.1	7
231	Analysis of Tram Traffic-Induced Vibration Influence on Earthquake Damaged Buildings. Buildings, 2021, 11, 590.	3.1	12
232	Operational modal analysis and finite element model updating of a 230Âm tall tower. Structures, 2022, 37, 154-167.	3.6	15
233	Dynamic Investigation of Cultural Heritage Buildings for Seismic Safety Assessment., 2022, , 1187-1220.		1
234	Operational Modal Analysis Method for Historic Masonry Structures: Applications., 2022,, 1679-1699.		0
235	Hypothesis on the Decrement of the First Natural Frequencies of the Santa Maria Di Collemaggio Basilica from Three Years Monitoring: The Role of the CLT Roof. International Journal of Architectural Heritage, 2023, 17, 955-969.	3.1	2
236	Seismic Assessment of Historic Masonry Towers: Non-invasive Techniques and Analysis Methodologies. , 2022, , 1221-1268.		0
237	High resolution operational modal analysis of Sant'Agata del Mugello in light of its building history. Engineering Structures, 2022, 254, 113767.	5.3	7
238	A machine learning approach for automatic operational modal analysis. Mechanical Systems and Signal Processing, 2022, 170, 108813.	8.0	29
239	Influence of the ground on the structural identification of a bell-tower by ambient vibration testing. Soil Dynamics and Earthquake Engineering, 2022, 155, 107102.	3.8	10
240	Long-Term Earthquake Response Monitoring of Nineteenth-Century Timber Temple Kencho-ji, Japan. International Journal of Architectural Heritage, 2023, 17, 1240-1255.	3.1	0

#	Article	IF	CITATIONS
241	Combining satellite geophysical data with continuous on-site measurements for monitoring the dynamic parameters of civil structures. Scientific Reports, 2022, 12, 2275.	3.3	3
242	Structural Identification of a 90 m High Minaret of a Landmark Structure under Ambient Vibrations. Buildings, 2022, 12, 252.	3.1	5
243	Dynamic monitoring of a tunnel-like masonry structure using wireless sensor networks. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2023, 176, 727-738.	0.8	1
244	Least Angle Regression for early-stage identification of earthquake-induced damage in a monumental masonry palace: Palazzo dei Consoli. Engineering Structures, 2022, 259, 114119.	5.3	11
245	Model updating of a masonry tower based on operational modal analysis: The role of soil-structure interaction. Case Studies in Construction Materials, 2022, 16, e00957.	1.7	7
246	Automatic quality detection system for structural objects using dynamic output method: Case study Vilnius bridges. Structural Health Monitoring, 2022, 21, 2505-2517.	7.5	2
247	The Engineering Approach to Conservation of Massive Archaeological Structures in Seismic Areas: The Apollo Nymphaeum in Hierapolis of Phrygia. International Journal of Architectural Heritage, 2023, 17, 1590-1606.	3.1	5
248	Revisiting the Frequency Laws for Ottoman Minarets. Analysis of Uncertainties. International Journal of Architectural Heritage, 2023, 17, 1648-1668.	3.1	2
249	Bayesian assessment of surface recession patterns in brick buildings with critical factors identification. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, , .	1.9	5
250	Strain-sensing smart bricks under dynamic environmental conditions: Experimental investigation and new modeling. Construction and Building Materials, 2022, 336, 127375.	7.2	4
251	Radar Interferometric Experimental Reconstruction of Three-Dimensional Displacement Vectors and Mode Shapes for Masonry Constructions. Journal of Physics: Conference Series, 2022, 2204, 012055.	0.4	4
252	Structural Health Monitoring for Architectural Heritage: Case Studies in Central Italy. Lecture Notes in Civil Engineering, 2023, , 3-12.	0.4	3
254	Bayesian and deterministic surrogate-assisted approaches for model updating of historical masonry towers. Journal of Civil Structural Health Monitoring, 2022, 12, 1469-1492.	3.9	10
255	Assessment of Cracking in Masonry Structures Based on the Breakage of Ordinary Silica-Core Silica-Clad Optical Fibers. Applied Sciences (Switzerland), 2022, 12, 6885.	2.5	1
256	Seismic Analysis of Slender Monumental Structures: Current Strategies and Challenges. Applied Sciences (Switzerland), 2022, 12, 7340.	2.5	9
257	Bayesian-based model updating using natural frequency data for historic masonry towers. Probabilistic Engineering Mechanics, 2022, 70, 103337.	2.7	10
258	Model updating of Masonry courtyard walls of the historical Isabey mosque using ambient vibration measurements. Journal of Civil Structural Health Monitoring, 2022, 12, 1157-1172.	3.9	5
259	Estimators for Structural Damage Detection Using Principal Component Analysis. Heritage, 2022, 5, 1805-1819.	1.9	3

#	ARTICLE	IF	CITATIONS
260	Daily and seasonal effects of environmental temperature and humidity on the modal properties of structures. Bulletin of Earthquake Engineering, 2022, 20, 4533-4559.	4.1	5
261	Long-term analysis of the environmental effects on the global dynamic properties of a hybrid timber-concrete building. Engineering Structures, 2022, 268, 114726.	5.3	11
262	Seismic monitoring solutions for buildings. , 2022, , 63-101.		0
263	Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials. Solar Energy, 2022, 244, 474-483.	6.1	4
264	Review of Using Operational Modal Analysis for Condition Monitoring. Mechanisms and Machine Science, 2023, , 139-146.	0.5	2
265	Meteorological Controls on Reversible Resonance Changes in Natural Rock Arches. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	4
266	Post-earthquake damage assessments of unreinforced masonry (URM) buildings by shake table test and numerical visualization. Engineering Failure Analysis, 2023, 143, 106858.	4.0	7
267	Thermographic investigations and dynamic identification tests for non-destructive structural assessment and enhanced FE modelling of a historical iron-strengthened masonry church. Journal of Civil Structural Health Monitoring, 0, , .	3.9	O
268	A discussion about the Douglas-Reid model updating method and its prospective application to continuous vibration-based SHM of a historical building. Engineering Structures, 2022, 273, 115058.	5.3	15
269	Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil-structure interaction. Bulletin of Earthquake Engineering, 2023, 21, 503-534.	4.1	13
270	Design approach of shear strengthened masonry: welded wire meshes, Reticulatus and cementitious plastering methods. Bulletin of Earthquake Engineering, 2023, 21, 997-1016.	4.1	2
271	Preliminary Assessment Of The Seismic Behaviour Of Giotto's Bell Tower In Florence. International Journal of Architectural Heritage, 2023, 17, 23-45.	3.1	5
272	Modal testing of masonry constructions by ground-based radar interferometry for structural health monitoring: A mini review. Frontiers in Built Environment, 0, 8, .	2.3	6
273	First hypothesis for Optimized Monitoring Strategy through Ambient Vibrations in historic buildings. Procedia Structural Integrity, 2023, 44, 1608-1615.	0.8	3
274	Correlation of local and global structural damage state for SHM. Procedia Structural Integrity, 2023, 44, 910-917.	0.8	2
275	Satellite SAR Interferometry and On-Site Traditional SHM to Monitor the Post-Earthquake Behavior of the Civic Tower in L'Aquila (Abruzzo Region, Italy). Remote Sensing, 2023, 15, 1587.	4.0	1
276	Effect of restoration interventions on the seismic behavior of historical masonry buildings: The case of Molla Siyah mosque. Engineering Failure Analysis, 2023, 148, 107206.	4.0	4
277	Structural Health Monitoring and Dynamic Identification of the Historical Town-Hall of Borgo Val di Taro. Procedia Structural Integrity, 2023, 44, 1530-1537.	0.8	0

#	Article	IF	CITATIONS
278	Dynamic identification of brick masonry semi-circular arches due to temperature and moisture. Structures, 2023, 50, 148-160.	3.6	5
279	Operational Modal Analysis of Historical Buildings and Finite Element Model Updating Using α Laser Scanning Vibrometer. Infrastructures, 2023, 8, 37.	2.8	2
280	Effect of damage and repair on the dynamic properties of Persian brick masonry arches. European Physical Journal Plus, 2023, 138, .	2.6	0
281	Effects of Environmental and Operational Conditions on Structural Health Monitoring and Non-Destructive Testing: A Systematic Review. Buildings, 2023, 13, 918.	3.1	9
282	Automated operational modal analysis of bell towers subjected to narrowband input. Structures, 2023, 54, 78-88.	3.6	3
283	Earthquake response of historical church within the perspective of structural dynamics: Oltu Russian Church. Journal of Building Engineering, 2023, 75, 106884.	3.4	1
284	Development and Validation of Empirical Formulations for Predicting the Frequency of Historic Masonry Towers. International Journal of Architectural Heritage, 0, , 1-21.	3.1	2
285	Ambient vibrations-supported seismic assessment of the Saint Lawrence Cathedral's bell tower in Genoa, Italy. Journal of Civil Structural Health Monitoring, 2024, 14, 121-142.	3.9	1
287	Highlighting the Impact of the Construction History of a Cultural Heritage Building Through a Vibration-Based Finite Element Model Updated by Particle Swarm Algorithm. International Journal of Architectural Heritage, 0, , 1-26.	3.1	2
288	Vibration issues in timber structures: A state-of-the-art review. Journal of Building Engineering, 2023, 76, 107098.	3.4	6
289	A Robust Deep Learning-Based Damage Identification Approach for SHM Considering Missing Data. Applied Sciences (Switzerland), 2023, 13, 5421.	2.5	4
290	Effects of temperature variations on the modal properties of masonry structures: An experimental-based numerical modelling approach. Structures, 2023, 53, 595-613.	3.6	4
291	Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Applied Sciences (Switzerland), 2023, 13, 6450.	2.5	5
292	Damage detection and monitoring in heritage masonry structures: Systematic review. Construction and Building Materials, 2023, 397, 132402.	7.2	15
293	Load Testing of Cultural Heritage Structures and Sculptures: Unconventional Methods for Assessing Safety. Heritage, 2023, 6, 5538-5558.	1.9	0
294	Numerical Modelling of Historical Masonry Structures with the Finite Element Code NOSA-ITACA. Springer INdAM Series, 2023, , 133-152.	0.5	0
295	Post-Earthquake Dynamic Performance of Intact Masonry Building Based on Finite Element Model Updating. Applied Sciences (Switzerland), 2023, 13, 9042.	2.5	0
296	An Open Database to Evaluate the Fundamental Frequency of Historical Masonry Towers through Empirical and Physics-Based Formulations. Buildings, 2023, 13, 2168.	3.1	0

#	Article	IF	CITATIONS
297	Vibration-Based Structural Health Monitoring of a Historic Arch Bridge. Lecture Notes in Civil Engineering, 2023, , 421-430.	0.4	0
298	Between Safety and Conservationâ€"Procedure for the Assessment of Heritage Buildings Based on Historic Research. Buildings, 2023, 13, 2236.	3.1	0
299	An Automated Procedure for Continuous Dynamic Monitoring of Structures: Theory and Validation. Journal of Vibration Engineering and Technologies, 0, , .	2.2	0
300	Vibration Monitoring and Seismic Response of the Milan Cathedral. Lecture Notes in Civil Engineering, 2023, , 736-747.	0.4	0
301	Dynamic Characterization for the Structural Integrity Assessment of a XIII Century Church with Temporary Provisional Structures. Lecture Notes in Civil Engineering, 2023, , 665-675.	0.4	0
302	Non-destructive techniques (NDT) and statistical analysis for the characterization of bricks made with added glass. Construction and Building Materials, 2023, 408, 133583.	7.2	3
303	Full-Scale Multi-Dataset OMA on a 368-Meter High TV and Radio Transmission Tower. Conference Proceedings of the Society for Experimental Mechanics, 2024, , 15-23.	0.5	0
304	A non-parametric algorithm for time-dependent modal analysis of civil structures and infrastructures. Mechanical Systems and Signal Processing, 2023, 204, 110802.	8.0	0
305	Experimental Vibration Analysis in the Knowledge Process of a Historic Confined Masonry Building. Buildings, 2023, 13, 2560.	3.1	0
306	Seismic damage analysis of a brick masonry loess cave by a shaking table and FEM. Soil Dynamics and Earthquake Engineering, 2024, 176, 108284.	3.8	0
307	Iterative hierarchical clustering algorithm for automated operational modal analysis. Automation in Construction, 2023, 156, 105137.	9.8	0
308	Self-powered retractable reel sensor for crack monitoring and warning in civil infrastructures. Chemical Engineering Journal, 2023, 478, 147238.	12.7	2
309	Non-invasive Damage Detection in Historic Masonry Walls Using Wavefield Images and Scanning Laser Doppler Vibrometer. Springer Proceedings in Materials, 2024, , 3-17.	0.3	0
311	Damage description, material characterization, retrofitting, and dynamic identification of a complex neoclassical monument affected by the 2015 Gorkha, Nepal earthquake. Journal of Building Engineering, 2023, 80, 108152.	3.4	0
312	An Innovative Approach of CNN-BiGRU Based Post-Earthquake Damage Detection of Reinforced Concrete for Frame Buildings. , 2023, , .		0
313	Variations of natural frequencies of masonry minarets due to environmental effects. Journal of Civil Structural Health Monitoring, 0 , , .	3.9	0
314	Detecting damages in metallic beam structures using a novel wavelet selection criterion. Journal of Sound and Vibration, 2024, 578, 118297.	3.9	1
315	Performance evaluation of a seismic strengthening applied on a masonry school building by dynamic analyses. Structures, 2024, 62, 106200.	3.6	0