Molecular mechanisms of necroptosis: an ordered cellu

Nature Reviews Molecular Cell Biology 11, 700-714 DOI: 10.1038/nrm2970

Citation Report

#	Article	IF	CITATIONS
1	Regulation of Tumor Necrosis Factor-Induced, Mitochondria- and Reactive Oxygen Species-Dependent Cell Death by the Electron Flux through the Electron Transport Chain Complex I. Antioxidants and Redox Signaling, 1999, 1, 285-295.	2.5	75
2	Degenerative and Regenerative Events in the Central and Peripheral Nervous System*. , 2010, , 39-58.		1
3	Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 2011, 4, 279-287.	2.7	361
4	Programmed Necrosis, Not Apoptosis, in the Heart. Circulation Research, 2011, 108, 1017-1036.	2.0	237
5	Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature, 2011, 477, 335-339.	13.7	737
6	5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochemical and Photobiological Sciences, 2011, 10, 1868-1878.	1.6	65
7	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor I±-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	2.3	86
8	Polyphenolic Extracts from <i>Olea europea L.</i> Protect Against Cytokine-Induced β-Cell Damage Through Maintenance of Redox Homeostasis. Rejuvenation Research, 2011, 14, 325-334.	0.9	37
9	Programmed Necrosis. International Review of Cell and Molecular Biology, 2011, 289, 1-35.	1.6	132
10	Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncology, 2011, 7, 633-648.	1.1	48
11	Mitochondrial Effects of Plant-Made Compounds. Antioxidants and Redox Signaling, 2011, 15, 3039-3059.	2.5	26
12	The regulation of TNF signalling: what a tangled web we weave. Current Opinion in Immunology, 2011, 23, 620-626.	2.4	111
13	Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Letters, 2011, 301, 185-192.	3.2	212
14	Are mitochondrial reactive oxygen species required for autophagy?. Biochemical and Biophysical Research Communications, 2011, 412, 55-60.	1.0	17
15	The Adaptor Protein FADD Protects Epidermal Keratinocytes from Necroptosis InÂVivo and Prevents Skin Inflammation. Immunity, 2011, 35, 572-582.	6.6	260
16	Dual Face Apoptotic Machinery: From Initiator of Apoptosis to Guardian of Necroptosis. Immunity, 2011, 35, 493-495.	6.6	13
17	Necroptosis Turns TNF Lethal. Immunity, 2011, 35, 849-851.	6.6	14
18	InÂVivo Role of pDCs in Regulating Adaptive Immunity. Immunity, 2011, 35, 851-853.	6.6	7

#	Article	IF	CITATIONS
19	Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011, 32, 157-164.	2.9	564
20	â€~Necrosome'-induced inflammation: must cells die for it?. Trends in Immunology, 2011, 32, 505-509.	2.9	46
21	The Ripoptosome, a Signaling Platform that Assembles in Response to Genotoxic Stress and Loss of IAPs. Molecular Cell, 2011, 43, 432-448.	4.5	714
22	The Ripoptosome: Death Decision in the Cytosol. Molecular Cell, 2011, 43, 323-325.	4.5	51
23	Mathematical models of laser-induced tissue thermal damage. International Journal of Hyperthermia, 2011, 27, 741-750.	1.1	51
24	Death receptor signalling in central nervous system inflammation and demyelination. Trends in Neurosciences, 2011, 34, 619-628.	4.2	50
25	Glyoxalase in tumourigenesis and multidrug resistance. Seminars in Cell and Developmental Biology, 2011, 22, 318-325.	2.3	142
26	Programmed cell death in the plant immune system. Cell Death and Differentiation, 2011, 18, 1247-1256.	5.0	846
27	Mitochondria as Therapeutic Targets for the Treatment of Malignant Disease. Antioxidants and Redox Signaling, 2011, 15, 2937-2949.	2.5	62
28	RIP Kinase-Dependent Necrosis Drives Lethal Systemic Inflammatory Response Syndrome. Immunity, 2011, 35, 908-918.	6.6	490
29	Cytokine-Induced β-Cell Stress and Death in Type 1 Diabetes Mellitus. , 0, , .		5
30	Neuroprotective Actions of Neurosteroids. Frontiers in Endocrinology, 2011, 2, 50.	1.5	66
31	Striking a Balance: Modulation of Host Cell Death Pathways by Legionella Pneumophila. Frontiers in Microbiology, 2011, 2, 36.	1.5	22
32	Past, Present, and Future of Molecular and Cellular Oncology. Frontiers in Oncology, 2011, 1, 1.	1.3	20
33	The Grand Challenges to Cellular and Molecular Oncology. Frontiers in Oncology, 2011, 1, 2.	1.3	0
34	Cell Death Signaling and Anticancer Therapy. Frontiers in Oncology, 2011, 1, 5.	1.3	46
35	Propofol—Sweet dreams, but not for everyone?*. Critical Care Medicine, 2011, 39, 896-897.	0.4	0
36	Prerequisites for the Antitumor Vaccine-Like Effect of Chemotherapy and Radiotherapy. Cancer Journal (Sudbury, Mass), 2011, 17, 351-358.	1.0	75

#	Article	IF	CITATIONS
37	Dendritic cells with lymphocyte-stimulating activity differentiate from human CD133 positive precursors. Blood, 2011, 117, 3983-3995.	0.6	11
38	Overexpression of Hematopoietically Expressed Homeoprotein Induces Nonapoptotic Cell Death in Mouse Prechondrogenic ATDC5 Cells. Biological and Pharmaceutical Bulletin, 2011, 34, 1589-1595.	0.6	3
39	Reactive oxygen speciesâ€dependent necroptosis in Jurkat T cells induced by pathogenic freeâ€living <i>Naegleria fowleri</i> . Parasite Immunology, 2011, 33, 390-400.	0.7	25
40	How do pleiotropic kinase hubs mediate specific signaling by TNFR superfamily members?. Immunological Reviews, 2011, 244, 29-43.	2.8	24
41	TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunological Reviews, 2011, 244, 9-28.	2.8	200
42	Mitochondrial control of the NLRP3 inflammasome. Nature Immunology, 2011, 12, 199-200.	7.0	148
43	Cell death assays for drug discovery. Nature Reviews Drug Discovery, 2011, 10, 221-237.	21.5	482
44	A killer puts a stop on necroptosis. Nature Reviews Molecular Cell Biology, 2011, 12, 279-279.	16.1	8
45	Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Reviews Molecular Cell Biology, 2011, 12, 385-392.	16.1	682
46	Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 2011, 12, 439-452.	16.1	381
47	A new platform for death. Nature Reviews Molecular Cell Biology, 2011, 12, 547-547.	16.1	3
48	cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death and Differentiation, 2011, 18, 656-665.	5.0	294
49	Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation, 2011, 18, 581-588.	5.0	499
50	Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery, 2011, 150, 1032-1039.	1.0	88
51	The death-fold superfamily of homotypic interaction motifs. Trends in Biochemical Sciences, 2011, 36, 541-552.	3.7	124
52	Interrelating the acute and chronic mode of action of inhaled methylenediphenyl diisocyanate (MDI) in rats assisted by computational toxicology. Regulatory Toxicology and Pharmacology, 2011, 61, 351-364.	1.3	7
53	Mitochondrial Dynamics: A Strategy for Avoiding Autophagy. Current Biology, 2011, 21, R478-R480.	1.8	14
54	Linear ubiquitination in NF-κB signaling and inflammation: What we do understand and what we do not. Biochemical Pharmacology, 2011, 82, 1057-1065.	2.0	17

#	Article	IF	CITATIONS
55	The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials, 2011, 32, 9401-9414.	5.7	89
56	Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nature Immunology, 2011, 12, 1143-1149.	7.0	316
57	FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature, 2011, 477, 330-334.	13.7	522
58	The pro-apoptotic BH3-only protein Bid is dispensable for development of insulitis and diabetes in the non-obese diabetic mouse. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 822-830.	2.2	7
59	Perturbation of intracellular K+ homeostasis with valinomycin promotes cell death by mitochondrial swelling and autophagic processes. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1101-1117.	2.2	29
60	RIP1-mediated regulation of lymphocyte survival and death responses. Immunologic Research, 2011, 51, 227-236.	1.3	31
61	Necroptosis: Biochemical, Physiological and Pathological Aspects. Pathology and Oncology Research, 2011, 17, 791-800.	0.9	59
62	Targeting Mitochondrial Function for the Treatment of Acute Spinal Cord Injury. Neurotherapeutics, 2011, 8, 168-179.	2.1	98
63	AlFâ€mediated caspaseâ€independent necroptosis: A new chance for targeted therapeutics. IUBMB Life, 2011, 63, 221-232.	1.5	148
64	The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiology of Disease, 2011, 43, 388-396.	2.1	108
65	FADD: an endogenous inhibitor of RIP3-driven regulated necrosis. Cell Research, 2011, 21, 1383-1385.	5.7	9
66	The Molecular Machinery Regulating Apoptosis Signal Transduction and its Implication in Human Physiology and Pathophysiologies. Current Molecular Medicine, 2011, 11, 31-47.	0.6	42
67	TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death and Disease, 2011, 2, e194-e194.	2.7	60
68	Gene-dependent cell death in yeast. Cell Death and Disease, 2011, 2, e188-e188.	2.7	45
69	Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington's disease. Cell Death and Disease, 2011, 2, e115-e115.	2.7	101
70	Pyroptosis: A Caspase-1-Dependent Programmed Cell Death and a Barrier to Infection. , 2011, , 17-36.		8
71	Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in <i>Bimâ´'/â´'</i> mice. Journal of Cell Biology, 2011, 195, 277-291.	2.3	22
72	Requirement of FADD, NEMO, and BAX/BAK for Aberrant Mitochondrial Function in Tumor Necrosis Factor Alpha-Induced Necrosis. Molecular and Cellular Biology, 2011, 31, 3745-3758.	1.1	97

#	Article	IF	CITATIONS
73	To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy. Cancers, 2011, 3, 1498-1512.	1.7	16
74	CS28 Protects Neuronal Cell Death Induced by Hydrogen Peroxide under Glutathione-Depleted Condition. Korean Journal of Physiology and Pharmacology, 2011, 15, 149.	0.6	13
75	Targeting Mitochondria in Fighting Cancer. Current Pharmaceutical Design, 2011, 17, 4034-4046.	0.9	55
76	Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20054-20059.	3.3	583
77	Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18977-18982.	3.3	46
78	Mechanisms of necroptosis in T cells. Journal of Experimental Medicine, 2011, 208, 633-641.	4.2	190
79	Ripoptosome: a novel IAP-regulated cell death-signalling platform. Journal of Molecular Cell Biology, 2011, 3, 324-326.	1.5	43
80	Defining Emerging Roles for NF-ήB in Antivirus Responses: Revisiting the Interferon-β Enhanceosome Paradigm. PLoS Pathogens, 2011, 7, e1002165.	2.1	68
81	zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy, 2011, 7, 217-228.	4.3	85
82	TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death and Disease, 2011, 2, e230-e230.	2.7	195
83	Necrotic Concentrations of Cisplatin Activate the Apoptotic Machinery but Inhibit Effector Caspases and Interfere with the Execution of Apoptosis. Toxicological Sciences, 2011, 122, 73-85.	1.4	60
84	Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury. American Journal of Physiology - Renal Physiology, 2011, 301, F134-F150.	1.3	49
85	Inhibition of Candida parapsilosis Fatty Acid Synthase (Fas2) Induces Mitochondrial Cell Death in Serum. PLoS Pathogens, 2012, 8, e1002879.	2.1	9
86	Nutraceuticals and Cancer. , 2012, , .		7
87	Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008805-a008805.	2.3	33
88	BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death and Differentiation, 2012, 19, 245-256.	5.0	110
89	The endocannabinoid <i>N</i> -arachidonoyl dopamine (NADA) selectively induces oxidative stress-mediated cell death in hepatic stellate cells but not in hepatocytes. American Journal of Physiology - Renal Physiology, 2012, 302, G873-G887.	1.6	28
90	Diapause Formation and Downregulation of Insulin-Like Signaling via DAF-16/FOXO Delays Axonal Degeneration and Neuronal Loss. PLoS Genetics, 2012, 8, e1003141.	1.5	59

#	Article	IF	Citations
91	Prevention of Cellular Suicide by Cytomegaloviruses. Viruses, 2012, 4, 1928-1949.	1.5	31
92	Molecular Mechanisms of Neonatal Brain Injury. Neurology Research International, 2012, 2012, 1-16.	0.5	102
93	Danger Signals Activating the Immune Response after Trauma. Mediators of Inflammation, 2012, 2012, 1-10.	1.4	183
94	Nec-1 Enhances Shikonin-Induced Apoptosis in Leukemia Cells by Inhibition of RIP-1 and ERK1/2. International Journal of Molecular Sciences, 2012, 13, 7212-7225.	1.8	45
95	Development of a caspase-3 antibody as a tool for detecting apoptosis in cells from rainbow trout (Oncorhynchus mykiss). Electronic Journal of Biotechnology, 2012, 15, .	1.2	8
96	Sesquiterpene lactones as drugs with multiple targets in cancer treatment. Anti-Cancer Drugs, 2012, 23, 883-896.	0.7	176
97	Independent transcriptional reprogramming and apoptosis induction by cisplatin. Cell Cycle, 2012, 11, 3472-3480.	1.3	32
98	Urinary organic anion transporter protein profiles in AKI. Nephrology Dialysis Transplantation, 2012, 27, 1387-1395.	0.4	26
99	Differential sensitivity of RIP3-proficient and deficient murine fibroblasts to camptothecin anticancer drugs. Acta Pharmacologica Sinica, 2012, 33, 426-428.	2.8	2
100	Trial watch. Oncolmmunology, 2012, 1, 179-188.	2.1	104
101	A possible mechanism of renal cell death after ischemia/reperfusion. Kidney International, 2012, 81, 720-721.	2.6	19
102	Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation, 2012, 19, 75-86.	5.0	340
103	Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death and Disease, 2012, 3, e437-e437.	2.7	379
104	AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death and Disease, 2012, 3, e390-e390.	2.7	82
105	Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14598-14603.	3.3	162
106	Vesicles Released by Activated T Cells Induce Both Fas-Mediated RIP-Dependent Apoptotic and Fas-Independent Nonapoptotic Cell Deaths. Journal of Immunology, 2012, 189, 2815-2823.	0.4	11
107	Inhibition of Autophagy Rescues Palmitic Acid-induced Necroptosis of Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 21110-21120.	1.6	118
108	The flick of a switch: which death program to choose?. Cell Death and Differentiation, 2012, 19, 1093-1095.	5.0	24

	С	ration Report	
#	ARTICLE	IF	CITATIONS
109	Investigation of Receptor interacting protein (RIP3)-dependent Protein Phosphorylation by Quantitative Phosphoproteomics. Molecular and Cellular Proteomics, 2012, 11, 1640-1651.	2.5	65
110	Pick your poison: The Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle, 2012, 11, 460-467.	1.3	66
111	Review: apoptotic mechanisms in bacterial infections of the central nervous system. Frontiers in Immunology, 2012, 3, 306.	2.2	14
112	Dying cell clearance and its impact on the outcome of tumor radiotherapy. Frontiers in Oncology, 2012, 2, 116.	1.3	152
113	Nanomaterials Toxicity and Cell Death Modalities. Journal of Drug Delivery, 2012, 2012, 1-14.	2.5	94
114	Biological Effects of Mammalian Translationally Controlled Tumor Protein (TCTP) on Cell Death, Proliferation, and Tumorigenesis. Biochemistry Research International, 2012, 2012, 1-7.	1.5	51
115	Mitochondrial Roles and Cytoprotection in Chronic Liver Injury. Biochemistry Research International, 2012, 2012, 1-16.	1.5	111
116	The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses. Journal of Signal Transduction, 2012, 2012, 1-12.	2.0	44
117	Physiological Roles of the Permeability Transition Pore. Circulation Research, 2012, 111, 1237-1247.	2.0	168
118	Trial Watch. Oncolmmunology, 2012, 1, 493-506.	2.1	86
119	Moderate Traumatic Brain Injury Triggers Rapid Necrotic Death of Immature Neurons in the Hippocampus. Journal of Neuropathology and Experimental Neurology, 2012, 71, 348-359.	0.9	71
120	Mitochondrial Involvement in the Execution of Cell Death. Oxidative Stress and Disease, 2012, , 13-33	. 0.3	0
121	Absence of the Cdk5 activator p35 causes adult-onset neurodegeneration in the central brain of <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2012, 5, 210-219.	1.2	24
122	Effects of lobaplatin as a single agent and in combination with TRAIL on the growth of triple-negative p53-mutated breast cancers in vitro. Anti-Cancer Drugs, 2012, 23, 426-436.	0.7	21
123	Autophagy and Cancer. Cells, 2012, 1, 520-534.	1.8	46
124	Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α-Induced Shock. Molecular Medicine, 2012, 18, 577-586.	1.9	127
125	Programmed cell death and its possible relationship with periodontal disease. Journal of Oral Science, 2012, 54, 137-149.	0.7	27
126	Caspase-8 is essential for maintaining chromosomal stability and suppressing B-cell lymphomagenesis. Blood, 2012, 119, 3495-3502.	. 0.6	15

#	Article	IF	CITATIONS
127	Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood, 2012, 119, 2368-2375.	0.6	216
128	TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood, 2012, 120, 3846-3857.	0.6	52
129	Cyclosporin A inhibits colon cancer cell growth independently of the calcineurin pathway. Cell Cycle, 2012, 11, 3997-4008.	1.3	34
130	Inflammation, Endoplasmic Reticulum Stress, Autophagy, and the Monocyte Chemoattractant Protein-1/CCR2 Pathway. Circulation Research, 2012, 110, 174-189.	2.0	224
131	Mitochondria: master regulators of danger signalling. Nature Reviews Molecular Cell Biology, 2012, 13, 780-788.	16.1	601
132	The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature, 2012, 492, 199-204.	13.7	131
133	Suppression of Injuries Caused by a Lytic RNA Virus (Mengovirus) and Their Uncoupling from Viral Reproduction by Mutual Cell/Virus Disarmament. Journal of Virology, 2012, 86, 5574-5583.	1.5	5
134	Programmed Cell Death in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009365-a009365.	2.9	196
135	Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 14863-14872.	1.6	40
136	c-FLIP Maintains Tissue Homeostasis by Preventing Apoptosis and Programmed Necrosis. Science Signaling, 2012, 5, ra93.	1.6	66
137	Lymphotoxin, NF-Ä,B, and Cancer: The Dark Side of Cytokines. Digestive Diseases, 2012, 30, 453-468.	0.8	61
138	Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus. Medical Microbiology and Immunology, 2012, 201, 475-486.	2.6	27
139	Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 1197-1209.	2.2	48
140	Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radical Biology and Medicine, 2012, 53, 1960-1967.	1.3	22
141	Protective effect of NecroX, a novel necroptosis inhibitor, on gentamicin-induced ototoxicity. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 1265-1269.	0.4	28
142	Pharmaceutical perspectives for the delivery of TNF-α in cancer therapy. Journal of Pharmaceutical Investigation, 2012, 42, 293-307.	2.7	1
143	Programmed necrosis in acute kidney injury. Nephrology Dialysis Transplantation, 2012, 27, 3412-3419.	0.4	102
144	Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury. Neurology Research International, 2012, 2012, 1-12.	0.5	54

#	Article	IF	CITATIONS
145	The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases; focus on inflammatory bowel diseases. Journal of Leukocyte Biology, 2012, 92, 265-279.	1.5	47
146	Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics. Bioconjugate Chemistry, 2012, 23, 1989-2006.	1.8	115
147	D469del-COMP Retention in Chondrocytes Stimulates Caspase-Independent Necroptosis. American Journal of Pathology, 2012, 180, 738-748.	1.9	40
148	Chop (Ddit3) Is Essential for D469del-COMP Retention and Cell Death in Chondrocytes in an Inducible Transgenic Mouse Model of Pseudoachondroplasia. American Journal of Pathology, 2012, 180, 727-737.	1.9	35
149	Fluorescence polarization assay for inhibitors of the kinase domain of receptor interacting protein 1. Analytical Biochemistry, 2012, 427, 164-174.	1.1	8
150	Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hearing Research, 2012, 288, 58-66.	0.9	57
151	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	6.6	430
152	Optimization of tricyclic Nec-3 necroptosis inhibitors for in vitro liver microsomal stability. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5685-5688.	1.0	14
153	Calpain Activation by the Shigella flexneri Effector VirA Regulates Key Steps in the Formation and Life of the Bacterium's Epithelial Niche. Cell Host and Microbe, 2012, 11, 240-252.	5.1	107
154	To Die or Not to Die—Shigella Has an Answer. Cell Host and Microbe, 2012, 11, 219-221.	5.1	7
155	A sequential study of incomplete Freund's adjuvant-induced peritonitis in Atlantic cod. Fish and Shellfish Immunology, 2012, 32, 141-150.	1.6	27
156	Copper-Dependent Cytotoxicity of 8-Hydroxyquinoline Derivatives Correlates with Their Hydrophobicity and Does Not Require Caspase Activation. Journal of Medicinal Chemistry, 2012, 55, 10448-10459.	2.9	181
157	Mitochondria and cell signalling. Journal of Cell Science, 2012, 125, 807-815.	1.2	345
158	Mitochondrial Control of Cellular Life, Stress, and Death. Circulation Research, 2012, 111, 1198-1207.	2.0	435
159	Autophagy and Cancer. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008821-a008821.	2.3	138
160	Caspase-3-Independent Internucleosomal DNA Fragmentation in Ischemic Acute Kidney Injury. Nephron Experimental Nephrology, 2012, 120, e103-e113.	2.4	15
161	Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene, 2012, 31, 2805-2808.	2.6	64
162	Apoptosis-Modulating Drugs for Improved Cancer Therapy. European Surgical Research, 2012, 48, 111-120.	0.6	74

#	Article	IF	CITATIONS
163	Systems Biology of Death Receptor-Induced Apoptosis. , 2012, , 33-56.		3
164	Sterile Inflammation in the Liver. Gastroenterology, 2012, 143, 1158-1172.	0.6	553
165	RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. International Immunopharmacology, 2012, 14, 674-682.	1.7	68
166	Hypertrophic reprogramming of the left ventricle: translation to the ECG. Journal of Electrocardiology, 2012, 45, 624-629.	0.4	19
167	Subcellular targets of cisplatin cytotoxicity: An integrated view. , 2012, 136, 35-55.		148
168	Therapeutic approaches to preventing cell death in Huntington disease. Progress in Neurobiology, 2012, 99, 262-280.	2.8	24
169	CaMKII antisense oligodeoxynucleotides protect against ischemia-induced neuronal death in the rat hippocampus. Journal of the Neurological Sciences, 2012, 314, 104-110.	0.3	11
170	Mitochondria and Programmed Cell Death in Parkinson's Disease: Apoptosis and Beyond. Antioxidants and Redox Signaling, 2012, 16, 883-895.	2.5	137
171	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	5.0	2,144
172	How Many Ways Can a Podocyte Die?. Seminars in Nephrology, 2012, 32, 394-404.	0.6	88
173	Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney International, 2012, 81, 751-761.	2.6	389
174	Combined treatment of human colorectal tumor cell lines with chemotherapeutic agents and ionizing irradiation can <i>in vitro</i> induce tumor cell death forms with immunogenic potential. Journal of Immunotoxicology, 2012, 9, 301-313.	0.9	39
175	Inhibition of cell survival, viability and proliferation by dentin adhesives after direct and indirect exposure in vitro. Clinical Oral Investigations, 2012, 16, 1635-1646.	1.4	17
176	Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nature Communications, 2012, 3, 978.	5.8	94
178	Transient receptor potential melastatin 4 and cell death. Pflugers Archiv European Journal of Physiology, 2012, 464, 573-582.	1.3	54
179	Protein kinase signaling at the crossroads of myocyte life and death in ischemic heart disease. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e173-e182.	0.5	4
180	Programmed necrosis: putting the pieces together. Nature Reviews Molecular Cell Biology, 2012, 13, 135-135.	16.1	4
181	Programmed Cell Death in Insects. , 2012, , 419-449.		5

#	ARTICLE The peptide derived from the Ig-like domain of human herpesvirus 8 K1 protein induces death in	IF	CITATIONS
182	hematological cancer cells. Journal of Experimental and Clinical Cancer Research, 2012, 31, 69.	3.5	5
183	New components of the necroptotic pathway. Protein and Cell, 2012, 3, 811-817.	4.8	59
184	Pathogenic Connexin-31 Forms Constitutively Active Hemichannels to Promote Necrotic Cell Death. PLoS ONE, 2012, 7, e32531.	1.1	37
185	Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells. PLoS ONE, 2012, 7, e41945.	1.1	90
186	Mechanisms of Cell Death in Acute Liver Failure. Frontiers in Physiology, 2012, 3, 79.	1.3	92
187	Fas Ligand-Fas Signaling Participates in Light-Induced Apoptotic Death in Photoreceptor Cells. , 2012, 53, 3703.		18
188	The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress. Cells, 2012, 1, 711-737.	1.8	25
189	The Regulation of Intestinal Epithelial Necroptosis and Terminal Ileitis Mediated by Apoptosis through Caspase-8. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2012, 59, 262.	0.2	0
190	The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. Journal of Clinical Investigation, 2012, 122, 1628-1643.	3.9	143
191	Experimental Sepsis Models. , 2012, , .		5
192	Cell Death and Cancer, Novel Therapeutic Strategies. , 0, , .		8
193	Jasmonates: Plant Stress Hormones as Anticancer Agents. ACS Symposium Series, 2012, , 303-322.	0.5	0
194	Killing a cancer: what are the alternatives?. Nature Reviews Cancer, 2012, 12, 411-424.	12.8	150
195	Nonâ€apoptotic functions of apoptosisâ€regulatory proteins. EMBO Reports, 2012, 13, 322-330.	2.0	92
196	Inflammasomes in carcinogenesis and anticancer immune responses. Nature Immunology, 2012, 13, 343-351.	7.0	525
197	TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation, 2012, 19, 2003-2014.	5.0	300
198	IAPs: Guardians of RIPK1. Cell Death and Differentiation, 2012, 19, 58-66.	5.0	86
199	SATB2 participates in regulation of menadioneâ€induced apoptotic insults to osteoblasts. Journal of Orthopaedic Research, 2012, 30, 1058-1066.	1.2	20

#	Article	IF	CITATIONS
200	Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications. EMBO Molecular Medicine, 2012, 4, 545-556.	3.3	42
201	Effects of oxygenâ€glucose deprivation on microglial mobility and viability in developing mouse hippocampal tissues. Clia, 2012, 60, 1747-1760.	2.5	38
202	Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nature Reviews Neuroscience, 2012, 13, 395-406.	4.9	218
203	New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene, 2012, 31, 5045-5060.	2.6	188
204	Novel Ser/Thr Protein Phosphatases in Cell Death Regulation. Physiology, 2012, 27, 43-52.	1.6	25
205	Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Research in Cardiology, 2012, 107, 270.	2.5	277
206	Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia?. Journal of Neurochemistry, 2012, 120, 574-585.	2.1	41
207	Hsp70.1 and related lysosomal factors for necrotic neuronal death. Journal of Neurochemistry, 2012, 120, 477-494.	2.1	69
208	Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nature Reviews Immunology, 2012, 12, 79-88.	10.6	266
209	Systems biology of yeast cell death. FEMS Yeast Research, 2012, 12, 249-265.	1.1	51
209 210	Systems biology of yeast cell death. FEMS Yeast Research, 2012, 12, 249-265. Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305.	1.1	51 358
210	Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver	1.7	358
210 211	Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. European Journal of Cell Biology, 2012, 91, 582-589. Inhibition of Apoptosis Protects Mice from Ethanolâ€Mediated Acceleration of Early Markers of <scp>CC</scp> l ₄ â€Induced Fibrosis but not Steatosis or Inflammation. Alcoholism: Clinical	1.7 1.6	358 72
210 211 212	 Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. European Journal of Cell Biology, 2012, 91, 582-589. Inhibition of Apoptosis Protects Mice from Ethanolâ€Mediated Acceleration of Early Markers of <scp>CC</scp> ₄â€Induced Fibrosis but not Steatosis or Inflammation. Alcoholism: Clinical and Experimental Research, 2012, 36, 1139-1147. The Molecular Legacy of Apoptosis in Transplantation. American Journal of Transplantation, 2012, 12, 	1.7 1.6 1.4	358 72 68
210 211 212 213	Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. European Journal of Cell Biology, 2012, 91, 582-589. Inhibition of Apoptosis Protects Mice from Ethanolâ€Mediated Acceleration of Early Markers of <scp>Cc</scp> l ₄ â€Induced Fibrosis but not Steatosis or Inflammation. Alcoholism: Clinical and Experimental Research, 2012, 36, 1139-1147. The Molecular Legacy of Apoptosis in Transplantation. American Journal of Transplantation, 2012, 12, 1378-1384. Mechanism and Efficiency of Cell Death of Type II Photosensitizers: Effect of Zinc	1.7 1.6 1.4 2.6	358 72 68 16
210 211 212 213 214	 Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 2012, 24, 1297-1305. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. European Journal of Cell Biology, 2012, 91, 582-589. Inhibition of Apoptosis Protects Mice from Ethanolâ€Mediated Acceleration of Early Markers of <sep>CC</sep>!csub>4â€Induced Fibrosis but not Steatosis or Inflammation. Alcoholism: Clinical and Experimental Research, 2012, 36, 1139-1147. The Molecular Legacy of Apoptosis in Transplantation. American Journal of Transplantation, 2012, 12, 1378-1384. Mechanism and Efficiency of Cell Death of Type II Photosensitizers: Effect of Zinc Chelation ^{â€}. Photochemistry and Photobiology, 2012, 88, 774-781. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles 	1.7 1.6 1.4 2.6 1.3	 358 72 68 16 32

#	Article	IF	CITATIONS
218	Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology, 2012, 55, 455-464.	3.6	157
219	After goodbye? Dead hepatocytes as a biomarker for fibrosis and steatohepatitis. Hepatology, 2012, 55, 333-335.	3.6	2
220	The Cystine/Glutamate Antiporter System x _c ^{â^'} in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2013, 18, 522-555.	2.5	689
221	dsDNA ASCs for caspase 8-mediated apoptosis. Cell Death and Differentiation, 2013, 20, 1128-1130.	5.0	4
222	MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Archives of Toxicology, 2013, 87, 459-468.	1.9	113
223	Cell death in parasitic protozoa: regulated or incidental?. Nature Reviews Microbiology, 2013, 11, 58-66.	13.6	137
224	Principles of Bioenergetics. , 2013, , .		33
225	Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 195-201.	1.5	38
226	RIP1 expression is necessary for CD30-mediated cell death induction in anaplastic large-cell lymphoma cells. Laboratory Investigation, 2013, 93, 677-689.	1.7	5
227	The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , .	0.8	16
228	Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Medicinal Chemistry, 2013, 5, 1009-1021.	1.1	28
229	Immunosurveillance as a regulator of tissue homeostasis. Trends in Immunology, 2013, 34, 471-481.	2.9	50
230	The Inhibition of ERK Activation Mediates the Protection of Necrostatin-1 on Glutamate Toxicity in HT-22 Cells. Neurotoxicity Research, 2013, 24, 64-70.	1.3	24
231	A novel necroptosis inhibitor—necrostatin-21 and its SAR study. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4903-4906.	1.0	27
232	The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Review of Anticancer Therapy, 2013, 13, 883-893.	1.1	28
233	RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death and Differentiation, 2013, 20, 1381-1392.	5.0	263
235	Viral modulation of programmed necrosis. Current Opinion in Virology, 2013, 3, 296-306.	2.6	134
236	α-Synuclein and Neuronal Cell Death. Molecular Neurobiology, 2013, 47, 466-483.	1.9	97

		CITATION REPORT		
#	Article		IF	CITATIONS
237	Autophagic cell death RIPs into tumors. Cell Death and Differentiation, 2013, 20, 1131	-1132.	5.0	6
239	Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 luccells. Cytokine, 2013, 64, 196-207.	ng carcinoma	1.4	15
240	Stress-Induced Mutagenesis. , 2013, , .			4
241	Smac mimetic and demethylating agents synergistically trigger cell death in acute mye cells and overcome apoptosis resistance by inducing necroptosis. Cell Death and Disea e802-e802.	loid leukemia ase, 2013, 4,	2.7	104
242	Cryptococcus neoformans Promotes Its Transmigration into the Central Nervous Syste Molecular and Cellular Changes in Brain Endothelial Cells. Infection and Immunity, 201	em by Inducing 3, 81, 3139-3147.	1.0	57
243	RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progen Experimental Medicine, 2013, 210, 2371-2385.	itors. Journal of	4.2	35
244	Regulation of autophagy by stress-responsive transcription factors. Seminars in Cance 23, 310-322.	r Biology, 2013,	4.3	215
245	Uropathogenic Escherichia coli causes cortical tubular necrotic cell death and the relea macrophage migration inhibitory factor. Cytokine, 2013, 61, 945-952.	ise of	1.4	3
246	Proteases: Structure and Function. , 2013, , .			31
247	Bee Venom Phospholipase A2 Induces a Primary Type 2 Response that Is Dependent of and Confers Protective Immunity. Immunity, 2013, 39, 976-985.	n the Receptor ST2	6.6	175
248	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Imn 443-453.	ıunity, 2013, 39,	6.6	958
249	The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commur Signaling, 2013, 11, 76.	nication and	2.7	55
250	Lysosomal Membrane Permeabilization as a Key Player in Brain Ischemic Cell Death: a "Lysosomocentric―Hypothesis for Ischemic Brain Damage. Translational Stroke R 672-684.	esearch, 2013, 4,	2.3	28
251	Necroptosis in Immunity and Ischemia-Reperfusion Injury. American Journal of Transpla 2797-2804.	ntation, 2013, 13,	2.6	150
252	Cell death by cornification. Biochimica Et Biophysica Acta - Molecular Cell Research, 20 3471-3480.)13, 1833,	1.9	358
253	Modulation of ceramide-induced cell death and superoxide production by mitochondri DNA-encoded respiratory chain defects in Rattus xenocybrid mouse cells. Biochimica E Acta - Bioenergetics, 2013, 1827, 817-825.		0.5	7
254	Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity, 2013, 39, 74-88.		6.6	739
255	Inhibitor of Apoptosis (IAP) Proteins-Modulators of Cell Death and Inflammation. Cold Perspectives in Biology, 2013, 5, a008730-a008730.	Spring Harbor	2.3	246

#	Article	IF	CITATIONS
256	Antibodyâ€mediated glycophorin <scp>C</scp> coligation on <scp>K</scp> 562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process. Transfusion, 2013, 53, 2134-2140.	0.8	5
257	Caspase-8 Blocks Kinase RIPK3-Mediated Activation of the NLRP3 Inflammasome. Immunity, 2013, 38, 27-40.	6.6	368
258	The Radical-Binding Lipocalin A1M Binds to a Complex I Subunit and Protects Mitochondrial Structure and Function. Antioxidants and Redox Signaling, 2013, 18, 2017-2028.	2.5	34
259	Apoptosis are induced in J774 macrophages upon phagocytosis and killing of Pseudomonas aeruginosa. Cellular Immunology, 2013, 286, 11-15.	1.4	5
260	Structural Insights into RIP3-Mediated Necroptotic Signaling. Cell Reports, 2013, 5, 70-78.	2.9	162
261	Quantitative assessment of biological impact using transcriptomic data and mechanistic network models. Toxicology and Applied Pharmacology, 2013, 272, 863-878.	1.3	61
262	Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation. Biochemical and Biophysical Research Communications, 2013, 436, 212-216.	1.0	76
263	Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008698-a008698.	2.3	177
264	Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicology and Applied Pharmacology, 2013, 271, 196-205.	1.3	32
265	Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences, 2013, 38, 94-102.	3.7	133
266	Photoreceptor cell death and rescue in retinal detachment and degenerations. Progress in Retinal and Eye Research, 2013, 37, 114-140.	7.3	179
267	Differentiation state-dependent effects of in vitro exposure to atrazine or its metabolite diaminochlorotriazine in a dopaminergic cell line. Life Sciences, 2013, 92, 81-90.	2.0	21
268	Negatively-regulated necroptosis by autophagy required caspase-6 activation in TNFα-treated murine fibrosarcoma L929 cells. International Immunopharmacology, 2013, 17, 548-555.	1.7	12
269	Complex Roles of Caspases in the Pathogenesis of Inflammatory Bowel Disease. Gastroenterology, 2013, 144, 283-293.	0.6	85
270	Concept of Aging as a Result of Slow Programmed Poisoning of an Organism with Mitochondrial Reactive Oxygen Species. , 2013, , 305-353.		3
271	Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity, 2013, 38, 209-223.	6.6	1,085
272	Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut, 2013, 62, 1062-1071.	6.1	337
273	Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiologica, 2013, 207, 226-235.	1.8	51

#	Article	IF	CITATIONS
274	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-129.	1.9	193
275	Role of the c subunit of the F _O ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013, 12, 674-683.	1.3	416
276	Glutathione and thioredoxin dependent systems in neurodegenerative disease: What can be learned from reverse genetics in mice. Neurochemistry International, 2013, 62, 738-749.	1.9	30
277	Decoding cell death signals in liver inflammation. Journal of Hepatology, 2013, 59, 583-594.	1.8	755
278	Tumour necrosis factor receptors and apoptosis of alveolar macrophages during early infection with attenuated and virulent <i><scp>M</scp>ycobacterium bovis</i> . Immunology, 2013, 139, 503-512.	2.0	26
279	TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species. Cell, 2013, 153, 521-534.	13.5	501
280	Poly IC Triggers a Cathepsin D- and IPS-1-Dependent Pathway to Enhance Cytokine Production and Mediate Dendritic Cell Necroptosis. Immunity, 2013, 38, 717-728.	6.6	75
281	Ultrastructural Patterns of the Activated Cell Death Programs in the Human Brain. Ultrastructural Pathology, 2013, 37, 110-120.	0.4	8
282	Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle, 2013, 12, 877-883.	1.3	57
283	Dying to Live: How the Death Modality of the Infected Macrophage Affects Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 103-120.	0.8	113
284	Heterogeneity of Cell Death. Cytogenetic and Genome Research, 2013, 139, 164-173.	0.6	28
285	Role for membrane remodeling in cell death: Implication for health and disease. Toxicology, 2013, 304, 141-157.	2.0	65
286	Gene networks: Dissecting pathways in retinal development and disease. Progress in Retinal and Eye Research, 2013, 33, 40-66.	7.3	52
287	Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. International Journal of Cardiology, 2013, 165, 410-422.	0.8	103
288	Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene, 2013, 32, 2973-2983.	2.6	65
289	Apoptosis and Necrosis in the Liver. , 2013, 3, 977-1010.		280
290	Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology, 2013, 57, 1773-1783.	3.6	266
291	Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities. Methods, 2013, 61, 87-89.	1.9	36

#	Article	IF	Citations
292	Structural Basis of RIP1 Inhibition by Necrostatins. Structure, 2013, 21, 493-499.	1.6	195
293	Activity Assays for Receptor-Interacting Protein Kinase 1:A Key Regulator of Necroptosis. Methods in Molecular Biology, 2013, 1004, 31-42.	0.4	2
294	Immunohistological Tools to Discriminate Apoptotic and Necrotic Cell Death in the Skin. Methods in Molecular Biology, 2013, 1004, 135-142.	0.4	2
295	Fluorescent Biosensors for the Detection of HMGB1 Release. Methods in Molecular Biology, 2013, 1004, 43-56.	0.4	12
296	Time-Lapse Imaging of Necrosis. Methods in Molecular Biology, 2013, 1004, 17-29.	0.4	3
297	Programmed cell death with a necrotic-like phenotype. Biomolecular Concepts, 2013, 4, 259-275.	1.0	17
298	Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS 126 in models of triple-negative breast cancer. Journal of Cancer Research and Clinical Oncology, 2013, 139, 905-914.	1.2	4
299	Crosstalk between apoptosis, necrosis and autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3448-3459.	1.9	1,099
300	Quantification of Cell Cycle-Arresting Proteins. Methods in Molecular Biology, 2013, 965, 121-142.	0.4	0
301	Mechanisms of Cell Death and Relevance to Drug Toxicity. , 2013, , 101-122.		4
302	Comparative analysis of mathematical models of cell death and thermal damage processes. International Journal of Hyperthermia, 2013, 29, 262-280.	1.1	127
303	Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death and Differentiation, 2013, 20, 1161-1173.	5.0	177
304	Interferon-Î ³ -Induced Necrosis: An Antitumor Biotherapeutic Perspective. Journal of Interferon and Cytokine Research, 2013, 33, 171-180.	0.5	23
305	The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection. Cell Host and Microbe, 2013, 13, 570-583.	5.1	168
306	Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano, 2013, 7, 5732-5745.	7.3	229
307	Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL. Journal of Biological Chemistry, 2013, 288, 31268-31279.	1.6	727
308	What can we learn about stroke from retinal ischemia models?. Acta Pharmacologica Sinica, 2013, 34, 91-103.	2.8	33
309	NF-κB Inhibition by Bortezomib Permits IFN-γ–Activated RIP1 Kinase–Dependent Necrosis in Renal Cell Carcinoma. Molecular Cancer Therapeutics, 2013, 12, 1568-1578.	1.9	17

#	Article	IF	CITATIONS
310	RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene, 2013, 32, 3263-3273.	2.6	57
311	Redox Regulation of T-Cell Function: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants and Redox Signaling, 2013, 18, 1497-1534.	2.5	179
312	Programmed Cell Death: Molecular Mechanisms and Implications for Safety Assessment of Nanomaterials. Accounts of Chemical Research, 2013, 46, 733-742.	7.6	217
313	Signaling network of OSW-1-induced apoptosis and necroptosis in hepatocellular carcinoma. Molecular Medicine Reports, 2013, 7, 1646-1650.	1.1	16
314	Honokiol synergizes chemotherapy drugs in multidrug resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death. International Journal of Oncology, 2013, 42, 721-732.	1.4	22
315	MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth. Endocrinology, 2013, 154, 4046-4057.	1.4	41
316	Reovirus Activates a Caspase-Independent Cell Death Pathway. MBio, 2013, 4, e00178-13.	1.8	75
317	Apoptosis, Necrosis, and Autophagy. , 2013, , 115-126.		0
318	Transient Receptor Potential Channels Function as a Coincidence Signal Detector Mediating Phosphatidylserine Exposure. Science Signaling, 2013, 6, ra50.	1.6	67
319	Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochemical Journal, 2013, 449, 389-400.	1.7	128
320	Alternative Cell Death Pathways and Cell Metabolism. International Journal of Cell Biology, 2013, 2013, 1-4.	1.0	24
321	Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy. Mediators of Inflammation, 2013, 2013, 1-10.	1.4	98
322	Hormesis, Cell Death, and Regenerative Medicine for Neurodegenerative Diseases. Dose-Response, 2013, 11, dose-response.1.	0.7	8
323	Toxicity Profile of Small-Molecule IAP Antagonist GDC-0152 Is Linked to TNF-α Pharmacology. Toxicological Sciences, 2013, 131, 247-258.	1.4	29
324	Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells. American Journal of Physiology - Renal Physiology, 2013, 305, F764-F776.	1.3	10
325	Necrostatin-1 Attenuates Ischemia Injury Induced Cell Death in Rat Tubular Cell Line NRK-52E through Decreased Drp1 Expression. International Journal of Molecular Sciences, 2013, 14, 24742-24754.	1.8	38
326	Uptake, p53 Pathway Activation, and Cytotoxic Responses for Co(II) and Ni(II) in Human Lung Cells: Implications for Carcinogenicity. Toxicological Sciences, 2013, 136, 467-477.	1.4	18
327	Regulation of cell death in cancer—possible implications for immunotherapy. Frontiers in Oncology, 2013, 3, 29.	1.3	11

#	Article	IF	CITATIONS
328	Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice. Mediators of Inflammation, 2013, 2013, 1-15.	1.4	72
329	Tumor Necrosis Factor Receptor 2: Its Contribution to Acute Cellular Rejection and Clear Cell Renal Carcinoma. BioMed Research International, 2013, 2013, 1-11.	0.9	26
330	The Dendritic Cell Response to Classic, Emerging, and Homeostatic Danger Signals. Implications for Autoimmunity. Frontiers in Immunology, 2013, 4, 138.	2.2	149
331	Atypical Protein Phosphatases: Emerging Players in Cellular Signaling. International Journal of Molecular Sciences, 2013, 14, 4596-4612.	1.8	28
332	Immunoinflammatory Response in Critically III Patients: Severe Sepsis and/or Trauma. Mediators of Inflammation, 2013, 2013, 1-11.	1.4	51
333	The Mechanisms of Chansu in Inducing Efficient Apoptosis in Colon Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-11.	0.5	22
334	Neuroprotection for Retinal Detachment. International Ophthalmology Clinics, 2013, 53, 105-117.	0.3	14
335	Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation. Oncolmmunology, 2013, 2, e26403.	2.1	67
336	MTI-101 (Cyclized HYD1) Binds a CD44 Containing Complex and Induces Necrotic Cell Death in Multiple Myeloma. Molecular Cancer Therapeutics, 2013, 12, 2446-2458.	1.9	23
337	Mitochondria and Endothelial Function. Circulation Research, 2013, 112, 1171-1188.	2.0	379
338	Multi-parameter, single-cell, kinetic analysis reveals multiple modes of cell death in primary pancreatic beta-cells. Journal of Cell Science, 2013, 126, 4286-95.	1.2	29
339	Cell-Death Pathways and Mitochondria. , 2013, , 225-241.		0
340	Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells, 2013, 2, 163-187.	1.8	120
341	Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants. Journal of Biological Chemistry, 2013, 288, 7481-7491.	1.6	66
342	The dynamics of the primordial follicle reserve. Reproduction, 2013, 146, R205-R215.	1.1	122
343	The RIP1-Kinase Inhibitor Necrostatin-1 Prevents Osmotic Nephrosis and Contrast-Induced AKI in Mice. Journal of the American Society of Nephrology: JASN, 2013, 24, 1545-1557.	3.0	111
344	Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures. , 2013, , .		0
345	Dual Role of TLR3 in Inflammation and Cancer Cell Apoptosis. , 0, , .		7

#	Article	IF	CITATIONS
346	Sunitinib and SU11652 Inhibit Acid Sphingomyelinase, Destabilize Lysosomes, and Inhibit Multidrug Resistance. Molecular Cancer Therapeutics, 2013, 12, 2018-2030.	1.9	55
347	Pathological Ventricular Remodeling. Circulation, 2013, 128, 388-400.	1.6	607
348	TAK1 Is Essential for Osteoclast Differentiation and Is an Important Modulator of Cell Death by Apoptosis and Necroptosis. Molecular and Cellular Biology, 2013, 33, 582-595.	1.1	86
349	Construction of a Computable Network Model for DNA Damage, Autophagy, Cell Death, and Senescence. Bioinformatics and Biology Insights, 2013, 7, BBI.S11154.	1.0	58
350	Nanotechnologies in Cancer. Journal of Drug Delivery, 2013, 2013, 1-3.	2.5	3
351	Roles of NAD ⁺ , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury. Scientifica, 2013, 2013, 1-11.	0.6	17
352	Functions of BCL-X _{L} at the Interface between Cell Death and Metabolism. International Journal of Cell Biology, 2013, 2013, 1-10.	1.0	71
353	Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 533-544.	1.5	24
354	The mechanism of necroptosis in normal and cancer cells. Cancer Biology and Therapy, 2013, 14, 999-1004.	1.5	102
355	Vitamin B6 metabolism influences the intracellular accumulation of cisplatin. Cell Cycle, 2013, 12, 417-421.	1.3	26
356	Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes and Development, 2013, 27, 1089-1100.	2.7	66
357	Trial Watch: Lenalidomide-based immunochemotherapy. Oncolmmunology, 2013, 2, e26494.	2.1	50
358	Transgenerational cell fate profiling. Cell Cycle, 2013, 12, 183-190.	1.3	5
359	Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. Oncolmmunology, 2013, 2, e24786.	2.1	23
360	Trial Watch. Oncolmmunology, 2013, 2, e25595.	2.1	83
361	Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3109-18.	3.3	291
362	Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death and Disease, 2013, 4, e716-e716.	2.7	127
363	Differential regulation of cell death programs in males and females by Poly (ADP-Ribose) Polymerase-1 and 17 β estradiol. Cell Death and Disease, 2013, 4, e758-e758.	2.7	43

#	Article	IF	CITATIONS
364	Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death and Disease, 2013, 4, e538-e538.	2.7	112
365	Eleostearic acid induces RIP1-mediated atypical apoptosis in a kinase-independent manner via ERK phosphorylation, ROS generation and mitochondrial dysfunction. Cell Death and Disease, 2013, 4, e674-e674.	2.7	23
366	Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death and Disease, 2013, 4, e725-e725.	2.7	109
367	Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death and Disease, 2013, 4, e966-e966.	2.7	155
368	Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death and Disease, 2013, 4, e804-e804.	2.7	58
369	Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection. Infection and Immunity, 2013, 81, 2536-2545.	1.0	71
370	Mechanistic Target of Rapamycin Activation Triggers IL-4 Production and Necrotic Death of Double-Negative T Cells in Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2013, 191, 2236-2246.	0.4	123
371	Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proceedings of the United States of America, 2013, 110, 12024-12029.	3.3	485
372	Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia. Blood, 2013, 121, 2689-2703.	0.6	53
373	Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology, 2013, 58, 2099-2108.	3.6	222
374	The Cytotoxic Effects of Certolizumab Pegol and Golimumab Mediated by Transmembrane Tumor Necrosis Factor α. Inflammatory Bowel Diseases, 2013, 19, 1224-1231.	0.9	51
375	The Role SIRT2 in Programmed Necrosis. Neurosurgery, 2013, 72, N20-N22.	0.6	2
376	Crosstalk Between the Intestinal Microbiota and the Innate Immune System in Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2227-2237.	0.9	56
377	Modes of Retinal Cell Death in Diabetic Retinopathy. Journal of Clinical & Experimental Ophthalmology, 2013, 04, 298.	0.1	87
378	Transcriptome and Biochemical Analysis Reveals That Suppression of GPI-Anchor Synthesis Leads to Autophagy and Possible Necroptosis in Aspergillus fumigatus. PLoS ONE, 2013, 8, e59013.	1.1	28
379	CYLD Deubiquitinates RIP1 in the TNFα-Induced Necrosome to Facilitate Kinase Activation and Programmed Necrosis. PLoS ONE, 2013, 8, e76841.	1.1	266
381	Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Frontiers in Aging Neuroscience, 2013, 5, 29.	1.7	208
382	Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	1.9	54

#	ARTICLE Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in	IF	Citations
383	ovarian cancer patients. OncoTargets and Therapy, 2013, 6, 1539. Mitochondria: A Promising Target for Anticancer Alkaloids. Current Topics in Medicinal Chemistry,	1.0	71
384	2013, 13, 2171-2183.	1.0	34
385	Involvement of PARPs in cell death. Frontiers in Bioscience - Elite, 2014, E6, 308.	0.9	17
386	Knockdown of GRP78 Promotes Apoptosis in Pancreatic Acinar Cells and Attenuates the Severity of Cerulein and LPS Induced Pancreatic Inflammation. PLoS ONE, 2014, 9, e92389.	1.1	19
387	Receptor Interactive Protein Kinase 3 Promotes Cisplatin-Triggered Necrosis in Apoptosis-Resistant Esophageal Squamous Cell Carcinoma Cells. PLoS ONE, 2014, 9, e100127.	1.1	34
388	tLivin Displays Flexibility by Promoting Alternative Cell Death Mechanisms. PLoS ONE, 2014, 9, e101075.	1.1	3
389	Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies. BioMed Research International, 2014, 2014, 1-16.	0.9	8
390	Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-21.	1.9	47
391	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	2.8	232
393	Cell Death and DAMPs in Acute Pancreatitis. Molecular Medicine, 2014, 20, 466-477.	1.9	119
394	Involvement of PARPs in cell death. Frontiers in Bioscience - Elite, 2014, 6, 308-317.	0.9	1
395	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
396	Programmed cell death in <i>Legionella</i> infection. Future Microbiology, 2014, 9, 107-118.	1.0	12
397	Trial Watch: Radioimmunotherapy for oncological indications. Oncolmmunology, 2014, 3, e954929.	2.1	40
398	Rho-associated coiled-coil containing kinases (ROCK). Small GTPases, 2014, 5, e29846.	0.7	396
399	Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. Oncolmmunology, 2014, 3, e28473.	2.1	112
400	Release of Interleukin-1α or Interleukin-1β Depends on Mechanism of Cell Death. Journal of Biological Chemistry, 2014, 289, 15942-15950.	1.6	133
401	STAT1-induced ASPP2 transcription identifies a link between neuroinflammation, cell polarity, and tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9834-9839.	3.3	29

#	Article	IF	CITATIONS
402	Revisiting caspases in sepsis. Cell Death and Disease, 2014, 5, e1526-e1526.	2.7	102
403	Caspase-dependent cell death-associated release of nucleosome and damage-associated molecular patterns. Cell Death and Disease, 2014, 5, e1494-e1494.	2.7	24
404	Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Cell Death and Disease, 2014, 5, e1262-e1262.	2.7	50
405	Akt and mTOR mediate programmed necrosis in neurons. Cell Death and Disease, 2014, 5, e1084-e1084.	2.7	139
406	RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death and Disease, 2014, 5, e1384-e1384.	2.7	105
407	The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death and Disease, 2014, 5, e1278-e1278.	2.7	211
408	Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research, 2014, 24, 105-121.	5.7	636
409	Effect of Silica Particle Size on Macrophage Inflammatory Responses. PLoS ONE, 2014, 9, e92634.	1.1	185
410	Myeloperoxidase deficiency ameliorates progression of chronic kidney disease in mice. American Journal of Physiology - Renal Physiology, 2014, 307, F407-F417.	1.3	40
411	Oncolytic Viruses as Anticancer Vaccines. Frontiers in Oncology, 2014, 4, 188.	1.3	65
412	Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis. International Journal of Cell Biology, 2014, 2014, 1-25.	1.0	73
413	Cytotoxic Autophagy in Cancer Therapy. International Journal of Molecular Sciences, 2014, 15, 10034-10051.	1.8	120
414	An annexin A1–FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Science Translational Medicine, 2014, 6, 245ra95.	5.8	95
415	The Impact of Autophagy on Cell Death Modalities. International Journal of Cell Biology, 2014, 2014, 1-12.	1.0	209
416	Necroptosis: A Novel Way of Regulated Necrosis with Large Pathophysiological Implications. , 2014, , 153-161.		0
418	Execution of RIPK3-regulated necrosis. Molecular and Cellular Oncology, 2014, 1, e960759.	0.3	30
419	Intracellular Signal Modulation by Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 111-134.	0.8	41
420	RIPK1 can function as an inhibitor rather than an initiator of RIPK3â€dependent necroptosis. FEBS Journal, 2014, 281, 4921-4934.	2.2	66

#	Article	IF	CITATIONS
421	Sâ€Adenosylhomocysteine Inhibits <scp>NF</scp> â€îº <scp>B</scp> â€Mediated Gene Expression in Hepatocytes and Confers Sensitivity to <scp>TNF</scp> Cytotoxicity. Alcoholism: Clinical and Experimental Research, 2014, 38, 889-896.	1.4	6
422	Selenium induces a multiâ€ŧargeted cell death process in addition to <scp>ROS</scp> formation. Journal of Cellular and Molecular Medicine, 2014, 18, 671-684.	1.6	103
423	Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transplant International, 2014, 27, 1077-1085.	0.8	38
424	Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes. American Journal of Physiology - Cell Physiology, 2014, 306, C639-C647.	2.1	32
425	RIPK3-Mediated Necroptosis Regulates Cardiac Allograft Rejection. American Journal of Transplantation, 2014, 14, 1778-1790.	2.6	65
426	Extensive Podocyte Loss Triggers a Rapid Parietal Epithelial Cell Response. Journal of the American Society of Nephrology: JASN, 2014, 25, 927-938.	3.0	59
427	Reactive Oxygen and Nitrogen Species in Steatotic Hepatocytes: A Molecular Perspective on the Pathophysiology of Ischemia-Reperfusion Injury in the Fatty Liver. Antioxidants and Redox Signaling, 2014, 21, 1119-1142.	2.5	98
428	Heat stress induced cell death mechanisms in hepatocytes and hepatocellular carcinoma: In vitro and in vivo study. Lasers in Surgery and Medicine, 2014, 46, 290-301.	1.1	31
429	Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death and Disease, 2014, 5, e1169-e1169.	2.7	60
430	TNFR1-activated NF-κB signal transduction: regulation by the ubiquitin/proteasome system. Current Opinion in Chemical Biology, 2014, 23, 71-77.	2.8	41
431	Glyoxalase I in Tumor Cell Proliferation and Survival and as a Potential Target for Anticancer Therapy. Oncology Research and Treatment, 2014, 37, 570-574.	0.8	31
432	Shining light on cell death processes – a novel biosensor for necroptosis, a newly described cell death program. Biotechnology Journal, 2014, 9, 224-240.	1.8	12
433	Programmed Necrosis/Necroptosis: An Inflammatory Form of Cell Death. , 2014, , 211-228.		4
434	Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. Critical Care, 2014, 18, R142.	2.5	40
435	Mechanisms of drug-induced liver injury. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 286-292.	1.1	86
437	RIP1-Mediated Signaling Pathways in Cell Survival and Death Control. , 2014, , 23-43.		5
438	Regulation of Death Receptor-Induced Necroptosis by Ubiquitination. , 2014, , 79-97.		0
439	Dead if You Do, Dead if You Don't: How Caspase-8 Causes and Prevents Cell Death. , 2014, , 99-116.		Ο

#	Article	IF	CITATIONS
440	The In Vivo Significance of Necroptosis: Lessons from Exploration of Caspase-8 Function. , 2014, , 117-133.		0
441	NOX1, Reactive Oxygen Species, JNK, and Necrotic Cell Death. , 2014, , 135-162.		0
442	Programmed Necrosis in Immunity and Inflammatory Diseases. , 2014, , 177-194.		0
443	Autophagic Cell Death: A Real Killer, an Accomplice, or an Innocent Bystander?. , 2014, , 211-232.		0
444	Microbial Programmed Necrosis: The Cost of Conflicts Between Stress and Metabolism. , 2014, , 253-274.		0
445	Small-Molecule Inhibitors of Necroptosis. , 2014, , 319-334.		0
446	Methods to Study and Distinguish Necroptosis. , 2014, , 335-361.		3
447	Oxidative Stress and Cell Death in Cardiovascular Disease. , 2014, , 471-498.		12
450	Induction of Autophagic Cell Death by Anticancer Agents. , 2014, , 179-202.		5
451	Accumulation of Cytosolic Calcium Induces Necroptotic Cell Death in Human Neuroblastoma. Cancer Research, 2014, 74, 1056-1066.	0.4	92
452	Complete Activation of Autophagic Process Attenuates Liver Injury and Improves Survival in Septic Mice. Shock, 2014, 41, 241-249.	1.0	62
453	Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metabolism Reviews, 2014, 46, 33-56.	1.5	24
454	Early apoptosis in peripheral blood mononuclear cells from patients with bipolar disorder. Journal of Affective Disorders, 2014, 152-154, 474-477.	2.0	26
455	Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. Journal of Hepatology, 2014, 60, 354-361.	1.8	46
456	Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-Mediated drug resistance. Biomaterials, 2014, 35, 1227-1239.	5.7	123
457	Diverse functions of 24(S)-hydroxycholesterol in the brain. Biochemical and Biophysical Research Communications, 2014, 446, 692-696.	1.0	56
458	TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cellular and Molecular Life Sciences, 2014, 71, 331-348.	2.4	151
459	Antitumour activities of sanguinarine and related alkaloids. Phytochemistry Reviews, 2014, 13, 51-68.	3.1	78

#	Article	IF	CITATIONS
460	A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene, 2014, 33, 3004-3013.	2.6	102
461	Macrophages and Recently Identified Forms of Cell Death. International Reviews of Immunology, 2014, 33, 9-22.	1.5	14
462	Are Reactive Oxygen Species Always Detrimental to Pathogens?. Antioxidants and Redox Signaling, 2014, 20, 1000-1037.	2.5	391
463	Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death and Differentiation, 2014, 21, 270-277.	5.0	158
464	Molecular imaging of myocardial infarction. Basic Research in Cardiology, 2014, 109, 397.	2.5	26
465	Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine and Growth Factor Reviews, 2014, 25, 285-300.	3.2	66
467	Programmed necrosis in microbial pathogenesis. Trends in Microbiology, 2014, 22, 199-207.	3.5	100
468	Current concepts in clinical radiation oncology. Radiation and Environmental Biophysics, 2014, 53, 1-29.	0.6	143
469	TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer, 2014, 14, 74.	1.1	50
470	A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 399-413.	2.2	40
471	Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochemistry and Cell Biology, 2014, 142, 91-101.	0.8	35
472	More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Current Opinion in Immunology, 2014, 26, 76-89.	2.4	71
473	Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Letters, 2014, 344, 101-109.	3.2	68
474	Molecular mechanisms of regulated necrosis. Seminars in Cell and Developmental Biology, 2014, 35, 24-32.	2.3	206
475	Cellular Injury and Apoptosis. , 2014, , 245-256.		0
476	Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage. Experimental Eye Research, 2014, 123, 1-7.	1.2	85
477	Genetic determinants of virulence – Candida parapsilosis. Revista Iberoamericana De Micologia, 2014, 31, 16-21.	0.4	13
478	BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia, 2014, 28, 1861-1871.	3.3	48

			2
#	Article	IF	CITATIONS
479	Cathepsins Limit Macrophage Necroptosis through Cleavage of Rip1 Kinase. Journal of Immunology, 2014, 192, 5671-5678.	0.4	65
480	Toll-like Receptor-mediated Down-regulation of the Deubiquitinase Cylindromatosis (CYLD) Protects Macrophages from Necroptosis in Wild-derived Mice. Journal of Biological Chemistry, 2014, 289, 14422-14433.	1.6	32
481	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
482	Autophagy in drug-induced liver toxicity. Journal of Food and Drug Analysis, 2014, 22, 161-168.	0.9	22
483	Mitochondria: a multimodal hub of hypoxia tolerance. Canadian Journal of Zoology, 2014, 92, 569-589.	0.4	63
484	Vertebrate Photoreceptors. , 2014, , .		7
485	Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 2014, 112, 24-49.	2.8	957
486	Concepts of tissue injury and cell death in inflammation: a historical perspective. Nature Reviews Immunology, 2014, 14, 51-59.	10.6	197
487	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 2014, 15, 135-147.	16.1	1,373
488	Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology, 2014, 14, 166-180.	10.6	952
489	Induction of apoptosis and necroptosis by 24(S)-hydroxycholesterol is dependent on activity of acyl-CoA:cholesterol acyltransferase 1. Cell Death and Disease, 2014, 5, e990-e990.	2.7	76
490	Necroptosis. New England Journal of Medicine, 2014, 370, 455-465.	13.9	919
491	Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 2014, 15, 81-94.	16.1	1,769
492	Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 2014, 16, 55-65.	4.6	1,022
493	An Extracellular Bacterial Pathogen Modulates Host Metabolism to Regulate Its Own Sensing and Proliferation. Cell, 2014, 156, 97-108.	13.5	65
494	Cell Death. , 2014, , .		8
495	Human-Specific Bacterial Pore-Forming Toxins Induce Programmed Necrosis in Erythrocytes. MBio, 2014, 5, e01251-14.	1.8	46
496	Toxicity of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, , 207-254.	0.7	9

# 497	ARTICLE Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1	IF 2.7	Citations
498	kinase-dependent apoptosis. Cell Death and Disease, 2014, 5, e1004-e1004. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	4.6	2,241
499	Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1736-1754.	2.2	32
500	A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis. Cell Death and Differentiation, 2014, 21, 634-644.	5.0	22
501	Systems biology of cisplatin resistance: past, present and future. Cell Death and Disease, 2014, 5, e1257-e1257.	2.7	625
502	Ubiquitin in the immune system. EMBO Reports, 2014, 15, 28-45.	2.0	193
503	Necrostatinâ€1 protects against reactive oxygen species (ROS)â€induced hepatotoxicity in acetaminophenâ€induced acute liver failure. FEBS Open Bio, 2014, 4, 777-787.	1.0	127
504	Coupling Heme and Iron Metabolism <i>via</i> Ferritin H Chain. Antioxidants and Redox Signaling, 2014, 20, 1754-1769.	2.5	126
505	Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L895-L907.	1.3	103
506	Red Blood Cells Induce Necroptosis of Lung Endothelial Cells and Increase Susceptibility to Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1243-1254.	2.5	89
507	Protective role of HO-1 and carbon monoxide in ethanol-induced hepatocyte cell death and liver injury in mice. Journal of Hepatology, 2014, 61, 1029-1037.	1.8	75
508	Ion channels and apoptosis in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130104.	1.8	103
509	2-Phenylethynesulfonamide (PES) uncovers a necrotic process regulated by oxidative stress and p53. Biochemical Pharmacology, 2014, 91, 301-311.	2.0	10
510	RIPK3 as a potential therapeutic target for Gaucher's disease. Nature Medicine, 2014, 20, 204-208.	15.2	147
511	Necroptosis Is Active in Children With Inflammatory Bowel Disease and Contributes to Heighten Intestinal Inflammation. American Journal of Gastroenterology, 2014, 109, 279-287.	0.2	170
512	Necroptosis, in vivo detection in experimental disease models. Seminars in Cell and Developmental Biology, 2014, 35, 2-13.	2.3	135
513	Metabolic control of cell death. Science, 2014, 345, 1250256.	6.0	527
514	Ischemia-reperfusion in the renal allograft: new clues in a cold-case. Progres En Urologie, 2014, 24, S1-S3.	0.3	1

#	Article	IF	CITATIONS
515	Regulated Cell Death: Signaling and Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 337-356.	4.0	212
516	TAK1 control of cell death. Cell Death and Differentiation, 2014, 21, 1667-1676.	5.0	214
517	When and How Do Seizures Kill Neurons, and Is Cell Death Relevant to Epileptogenesis?. Advances in Experimental Medicine and Biology, 2014, 813, 109-122.	0.8	160
518	Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chemico-Biological Interactions, 2014, 220, 214-221.	1.7	70
520	A long-awaited merger of the pathways mediating host defence and programmed cell death. Nature Reviews Immunology, 2014, 14, 601-618.	10.6	104
521	Therapeutic exploitation of necroptosis for cancer therapy. Seminars in Cell and Developmental Biology, 2014, 35, 51-56.	2.3	80
522	Innate immunity and cell death in alcoholic liver disease: Role of cytochrome P4502E1. Redox Biology, 2014, 2, 929-935.	3.9	45
523	TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. Journal of Cell Biology, 2014, 204, 607-623.	2.3	78
524	Activation of the NLRP3 Inflammasome by Proteins That Signal for Necroptosis. Methods in Enzymology, 2014, 545, 67-81.	0.4	37
525	A Plug Release Mechanism for Membrane Permeation by MLKL. Structure, 2014, 22, 1489-1500.	1.6	185
526	Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics, 2014, 6, 978.	1.0	95
527	Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15438-15443.	3.3	199
528	MLKL regulates necrotic plasma membrane permeabilization. Cell Research, 2014, 24, 139-140.	5.7	65
530	IAP Family of Cell Death and Signaling Regulators. Methods in Enzymology, 2014, 545, 35-65.	0.4	103
531	Hepatitis C virus-induced hepatocyte cell death and protection by inhibition of apoptosis. Journal of General Virology, 2014, 95, 2204-2215.	1.3	24
532	Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases. Journal of Molecular Medicine, 2014, 92, 583-594.	1.7	23
533	HMGB1 in health and disease. Molecular Aspects of Medicine, 2014, 40, 1-116.	2.7	763
534	The in vivo significance of necroptosis: Lessons from exploration of caspase-8 function. Cytokine and Growth Factor Reviews, 2014, 25, 157-165.	3.2	15

#	Article	IF	CITATIONS
535	RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death and Differentiation, 2014, 21, 1600-1612.	5.0	129
536	RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death and Differentiation, 2014, 21, 1511-1521.	5.0	242
537	RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis. Cell Death and Differentiation, 2014, 21, 1061-1070.	5.0	29
538	Apoptosis Initiation Through the Cell-Extrinsic Pathway. Methods in Enzymology, 2014, 544, 99-128.	0.4	78
539	Regulation and pathophysiological role of epithelial turnover in the gut. Seminars in Cell and Developmental Biology, 2014, 35, 40-50.	2.3	34
540	Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 2014, 19, 49-57.	1.6	164
541	Effect of necrostatin on mouse ovarian cryopreservation and transplantation. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 178, 16-20.	0.5	10
542	Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection. International Journal of Medical Microbiology, 2014, 304, 530-541.	1.5	28
543	Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicology Letters, 2014, 225, 445-453.	0.4	97
544	Cross Talk Between Cell Death Regulation and Metabolism. Methods in Enzymology, 2014, 542, 81-90.	0.4	6
545	Relationship Between Redox Status and Cell Fate in Immunity and Autoimmunity. Antioxidants and Redox Signaling, 2014, 21, 103-122.	2.5	26
546	Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death and Differentiation, 2014, 21, 1709-1720.	5.0	246
547	Small-molecule SMAC mimetics as new cancer therapeutics. , 2014, 144, 82-95.		160
548	The role of necrotic cell death in the pathogenesis of immune mediated nephropathies. Clinical Immunology, 2014, 153, 243-253.	1.4	16
549	True Grit: Programmed Necrosis in Antiviral Host Defense, Inflammation, and Immunogenicity. Journal of Immunology, 2014, 192, 2019-2026.	0.4	68
550	An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochemical Pharmacology, 2014, 90, 208-211.	2.0	40
551	FLIP: Molecular switch between apoptosis and necroptosis. Molecular Carcinogenesis, 2014, 53, 675-685.	1.3	17
552	Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. Journal of Toxicological Sciences, 2014, 39, 821-827.	0.7	27

#	Article	IF	CITATIONS
553	Toxicopanomics: Applications of Genomics, Transcriptomics, Proteomics, and Lipidomics in Predictive Mechanistic Toxicology. , 2014, , 295-332.		3
554	Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neuroscience, 2015, 16, 62.	0.8	24
555	Linear ubiquitination in immunity. Immunological Reviews, 2015, 266, 190-207.	2.8	124
556	Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53. Scientific Reports, 2015, 5, 15798.	1.6	87
557	Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells. Molecular Medicine Reports, 2015, 12, 2021-2026.	1.1	8
559	Evodiamine inhibits proliferation and induces apoptosis in gastric cancer cells. Oncology Letters, 2015, 10, 367-371.	0.8	29
560	Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa. Cell Death Discovery, 2015, 1, 15058.	2.0	24
561	Protective effect of 2-deoxy-D-glucose on the cytotoxicity of cyclosporin A in vitro. Molecular Medicine Reports, 2015, 12, 2814-2820.	1.1	2
562	Bivalent Compound 17MN Exerts Neuroprotection through Interaction at Multiple Sites in a Cellular Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 1021-1033.	1.2	14
563	CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Scientific Reports, 2015, 5, 14779.	1.6	37
565	Targeting inhibitor of apoptosis proteins by <scp>S</scp> mac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. International Journal of Cancer, 2015, 137, 2959-2970.	2.3	17
566	The Iron age of host–microbe interactions. EMBO Reports, 2015, 16, 1482-1500.	2.0	186
567	Induction of atypical cell death in thyroid carcinoma cells by the indirubin derivative 7-bromoindirubin-3′-oxime (7BIO). Cancer Cell International, 2015, 15, 97.	1.8	8
568	Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Communication and Signaling, 2015, 13, 25.	2.7	31
569	DNA damage and cellular abnormalities in tuberculosis, lung cancer and chronic obstructive pulmonary disease. Multidisciplinary Respiratory Medicine, 2015, 10, 38.	0.6	15
570	Interleukinâ€lα and brain inflammation. IUBMB Life, 2015, 67, 323-330.	1.5	36
571	<scp>IAP</scp> antagonization promotes inflammatory destruction of vascular endothelium. EMBO Reports, 2015, 16, 719-727.	2.0	15
572	RIP1-Dependent Programmed Necrosis is Negatively Regulated by Caspases During Hepatic Ischemia-Reperfusion. Shock, 2015, 44, 72-76.	1.0	33

#	Article	IF	CITATIONS
573	Dimethyl fumarate induces necroptosis in colon cancer cells through <scp>GSH</scp> depletion/ <scp>ROS</scp> increase/ <scp>MAPKs</scp> activation pathway. British Journal of Pharmacology, 2015, 172, 3929-3943.	2.7	116
574	Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunological Reviews, 2015, 264, 276-287.	2.8	46
575	Regulated cell death in diagnostic histopathology. International Journal of Developmental Biology, 2015, 59, 149-158.	0.3	3
576	Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic Virotherapy, 2015, 4, 141.	6.0	16
577	Ubiquitin-Mediated Regulation of Cell Death, Inflammation, and Defense of Homeostasis. Current Topics in Developmental Biology, 2015, 114, 209-239.	1.0	14
578	Pathophysiological mechanisms of death resistance in colorectal carcinoma. World Journal of Gastroenterology, 2015, 21, 11777.	1.4	44
579	Modulation of Host Programmed Cell Death Pathways by the Intracellular Protozoan Parasite, Toxoplasma gondii — Implications for Maintenance of Chronic Infection and Potential Therapeutic Applications. , 2015, , .		0
580	Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. ELife, 2015, 4, .	2.8	118
581	NLRP3 Inflammasome and Pathobiology in AMD. Journal of Clinical Medicine, 2015, 4, 172-192.	1.0	74
582	Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Frontiers in Immunology, 2015, 6, 508.	2.2	87
583	Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Frontiers in Cellular Neuroscience, 2015, 9, 96.	1.8	69
584	Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells. PLoS ONE, 2015, 10, e0126645.	1.1	15
585	Serum Cell Death Biomarkers for Prediction of Liver Fibrosis and Poor Prognosis in Primary Biliary Cirrhosis. PLoS ONE, 2015, 10, e0131658.	1.1	24
586	Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia. PLoS Pathogens, 2015, 11, e1005337.	2.1	195
587	MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease. PLoS Pathogens, 2015, 11, e1005032.	2.1	103
588	Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice. Mediators of Inflammation, 2015, 2015, 1-15.	1.4	70
589	Chronic Treatment with a Water-Soluble Extract from the Culture Medium of <i>Ganoderma lucidum</i> Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-16.	0.5	24
590	Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	110

#	Article	IF	CITATIONS
591	HMGB1 in Cell Death. , 0, , .		3
593	Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology, 2015, 16, 329-344.	16.1	502
594	The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nature Communications, 2015, 6, 7151.	5.8	78
595	Host-Directed Therapies for Tuberculosis: Figure 1 Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021196.	2.9	104
596	Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Research, 2015, 25, 707-725.	5.7	354
597	Programmed cell death and its role in inflammation. Military Medical Research, 2015, 2, 12.	1.9	163
598	CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death and Disease, 2015, 6, e1773-e1773.	2.7	26
599	Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 996-1015.	2.2	5
600	Ferroptosis is Involved in Acetaminophen Induced Cell Death. Pathology and Oncology Research, 2015, 21, 1115-1121.	0.9	146
601	Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Letters, 2015, 366, 32-43.	3.2	51
602	ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacological Research, 2015, 95-96, 2-11.	3.1	18
603	High-Throughput Drug Screen Identifies Chelerythrine as a Selective Inducer of Death in a TSC2-null Setting. Molecular Cancer Research, 2015, 13, 50-62.	1.5	25
604	Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death and Differentiation, 2015, 22, 1250-1259.	5.0	127
605	Regulation of tumour necrosis factor signalling: live or let die. Nature Reviews Immunology, 2015, 15, 362-374.	10.6	761
606	Calcium and mitochondria in the regulation of cell death. Biochemical and Biophysical Research Communications, 2015, 460, 72-81.	1.0	402
607	Clnk plays a role in TNF-alpha-induced cell death in murine fibrosarcoma cell line L929. Biochemical and Biophysical Research Communications, 2015, 463, 275-279.	1.0	6
608	Highâ€dose chemotherapeutics of intravesical chemotherapy rapidly induce mitochondrial dysfunction in bladder cancerâ€derived spheroids. Cancer Science, 2015, 106, 69-77.	1.7	38
609	Recent insights into cell death and autophagy. FEBS Journal, 2015, 282, 4279-4288.	2.2	145

#	Article	IF	CITATIONS
610	Cell death induction by the BH3 mimetic GX15-070 in thyroid carcinoma cells. Journal of Experimental and Clinical Cancer Research, 2015, 34, 69.	3.5	14
611	Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death and Disease, 2015, 6, e2010-e2010.	2.7	42
612	How Do Cytotoxic Lymphocytes Kill Cancer Cells?. Clinical Cancer Research, 2015, 21, 5047-5056.	3.2	522
613	Autophagic Cell Death and Cancer Chemotherapeutics. , 2015, , 219-226.		5
614	Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors. Journal of Molecular Modeling, 2015, 21, 314.	0.8	5
615	Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay. Journal of Biomechanical Engineering, 2015, 137, 121006.	0.6	35
616	TAK1 inhibition-induced RIP1-dependent apoptosis in murine macrophages relies on constitutive TNF-α signaling and ROS production. Journal of Biomedical Science, 2015, 22, 76.	2.6	27
617	Necrotic cone photoreceptor cell death in retinitis pigmentosa. Cell Death and Disease, 2015, 6, e2038-e2038.	2.7	19
618	Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells. Autophagy, 2015, 11, 2184-2198.	4.3	34
619	Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death. Biochemical and Biophysical Research Communications, 2015, 457, 693-699.	1.0	8
620	Gaucher-related synucleinopathies: The examination of sporadic neurodegeneration from a rare (disease) angle. Progress in Neurobiology, 2015, 125, 47-62.	2.8	63
621	RIP1/RIP3 Binding to HSV-1 ICP6 Initiates Necroptosis to Restrict Virus Propagation in Mice. Cell Host and Microbe, 2015, 17, 229-242.	5.1	225
622	Neuroprotection for traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 343-366.	1.0	68
623	Glycosphingolipids and cell death: one aim, many ways. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 607-620.	2.2	49
624	Necroptosis and its role in inflammation. Nature, 2015, 517, 311-320.	13.7	1,550
625	RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages. Molecular Oncology, 2015, 9, 806-817.	2.1	22
626	Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochemical Pharmacology, 2015, 94, 1-11.	2.0	150
627	Necrostatin-1 Ameliorates Intracerebral Hemorrhage-Induced Brain Injury in Mice Through Inhibiting RIP1/RIP3 Pathway. Neurochemical Research, 2015, 40, 643-650.	1.6	81

#	Article	IF	CITATIONS
628	Trial Watch: Proteasomal inhibitors for anticancer therapy. Molecular and Cellular Oncology, 2015, 2, e974463.	0.3	18
629	Exposure to the complement C5b-9 complex sensitizes 661W photoreceptor cells to both apoptosis and necroptosis. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 433-443.	2.2	17
630	Receptor-Interacting Protein Kinase 3 Contributes to Abdominal Aortic Aneurysms via Smooth Muscle Cell Necrosis and Inflammation. Circulation Research, 2015, 116, 600-611.	2.0	106
631	Necroptosis-Inducing Rhenium(V) Oxo Complexes. Journal of the American Chemical Society, 2015, 137, 2967-2974.	6.6	85
632	Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide - Biology and Chemistry, 2015, 46, 204-212.	1.2	78
633	Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer, 2015, 14, 48.	7.9	730
634	Neuronal death after perinatal cerebral hypoxiaâ€ischemia: Focus on autophagy—mediated cell death. International Journal of Developmental Neuroscience, 2015, 45, 75-85.	0.7	71
635	Cell death decision by p53 via control of the mitochondrial membrane. Cancer Letters, 2015, 367, 108-112.	3.2	90
636	Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Archives of Toxicology, 2015, 89, 1895-1907.	1.9	45
637	Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation, 2015, 22, 1237-1238.	5.0	41
638	RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment. Journal of Molecular Neuroscience, 2015, 57, 219-230.	1.1	26
639	Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death and Disease, 2015, 6, e1587-e1587.	2.7	112
640	Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Molecular Neurobiology, 2015, 52, 811-825.	1.9	18
641	Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells. Biochemical and Biophysical Research Communications, 2015, 464, 875-880.	1.0	22
642	Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration. Scientific Reports, 2015, 5, 11764.	1.6	48
643	Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion, 2015, 24, 56-63.	1.6	17
644	TNF-α-induced programmed cell death in the pathogenesis of acquired aplastic anemia. Expert Review of Hematology, 2015, 8, 515-526.	1.0	26
645	Leptin protects rat articular chondrocytes from cytotoxicity induced by TNF-α in the presence of cyclohexamide. Osteoarthritis and Cartilage, 2015, 23, 2269-2278.	0.6	27

#	Article	IF	CITATIONS
646	Therapeutic Opportunities in Damage-Associated Molecular Pattern-Driven Metabolic Diseases. Antioxidants and Redox Signaling, 2015, 23, 1305-1315.	2.5	28
647	Post-Traumatic Arthritis. , 2015, , .		6
648	Caspaseâ€8 functions as a key mediator of inflammation and proâ€lLâ€1β processing via both canonical and nonâ€canonical pathways. Immunological Reviews, 2015, 265, 181-193.	2.8	55
649	Structure–activity relationship study of E6 as a novel necroptosis inducer. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3057-3061.	1.0	10
650	Synergistic Protection of N-Acetylcysteine and Ascorbic Acid 2-Phosphate on Human Mesenchymal Stem cells Against Mitoptosis, Necroptosis and Apoptosis. Scientific Reports, 2015, 5, 9819.	1.6	57
651	Inhibition of Hypertrophy Is a Good Therapeutic Strategy in Ventricular Pressure Overload. Circulation, 2015, 131, 1435-1447.	1.6	188
652	Loss of Caspase-3 sensitizes colon cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death and Disease, 2015, 6, e1729-e1729.	2.7	43
653	Apoptosis Signal-regulating Kinase 1 (ASK1)-p38 Pathway-dependent Cytoplasmic Translocation of the Orphan Nuclear Receptor NR4A2 Is Required for Oxidative Stress-induced Necrosis. Journal of Biological Chemistry, 2015, 290, 10791-10803.	1.6	43
654	Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 689-711.	2.2	79
656	7,8-Dihydroxy-4-methylcoumarin Provides Neuroprotection by Increasing Hippocalcin Expression. Neurotoxicity Research, 2015, 27, 268-274.	1.3	9
657	Regulated necrosis and its implications in toxicology. Toxicology, 2015, 333, 118-126.	2.0	40
658	Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biology, 2015, 16, 4.	3.0	32
659	TRAF2 is a biologically important necroptosis suppressor. Cell Death and Differentiation, 2015, 22, 1846-1857.	5.0	76
660	The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chemical Society Reviews, 2015, 44, 3617-3638.	18.7	131
661	Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate. Nature Communications, 2015, 6, 6658.	5.8	51
662	Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of Immunological Methods, 2015, 423, 99-103.	0.6	167
664	Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Research, 2015, 1609, 63-71.	1.1	63
665	NMDA receptor blockade in the developing cortex induces autophagy-mediated death of immature cortical GABAergic interneurons: An ex vivo and in vivo study in Gad67-GFP mice. Experimental Neurology, 2015, 267, 177-193.	2.0	19

#	Article	IF	CITATIONS
666	The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. Journal of Molecular Medicine, 2015, 93, 867-878.	1.7	31
667	Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clinica Chimica Acta, 2015, 451, 35-38.	0.5	82
668	Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells. Springer Theses, 2015, , .	0.0	17
669	Oxidative Stress in Noise-Induced Hearing Loss. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 147-161.	0.4	1
670	Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. Cancer Letters, 2015, 365, 47-56.	3.2	32
671	Introduction to Autophagy in Physiology and Pathophysiology. Springer Theses, 2015, , 1-21.	0.0	1
672	Melatonin attenuates carbon tetrachloride–induced liver fibrosis via inhibition of necroptosis. Translational Research, 2015, 166, 292-303.	2.2	66
673	PolyI:C–Induced, TLR3/RIP3-Dependent Necroptosis Backs Up Immune Effector–Mediated Tumor Elimination <i>In Vivo</i> . Cancer Immunology Research, 2015, 3, 902-914.	1.6	79
674	24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8. Steroids, 2015, 99, 230-237.	0.8	28
675	Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s. Scientific Reports, 2014, 4, 7436.	1.6	47
676	Upregulated RIP3 Expression Potentiates MLKL Phosphorylation–Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. Journal of Investigative Dermatology, 2015, 135, 2021-2030.	0.3	63
677	Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nature Cell Biology, 2015, 17, 434-444.	4.6	128
678	Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle, 2015, 14, 964-972.	1.3	41
679	Function and Mechanisms of Autophagy in Brain and Spinal Cord Trauma. Antioxidants and Redox Signaling, 2015, 23, 565-577.	2.5	164
680	Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. CKJ: Clinical Kidney Journal, 2015, 8, 548-559.	1.4	84
681	Biobanking: The Future of Cell Preservation Strategies. Advances in Experimental Medicine and Biology, 2015, 864, 37-53.	0.8	18
682	Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers in Medical Science, 2015, 30, 1739-1745.	1.0	54
683	Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biology, 2015, 6, 461-471.	3.9	91

#	Article	IF	CITATIONS
684	On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integrative Biology (United Kingdom), 2015, 7, 1339-1377.	0.6	140
685	An Overview of Programmed Cell Death Research: From Canonical to Emerging Model Species. , 2015, , 1-31.		5
686	The canonical Wg signaling modulates Bsk-mediated cell death in Drosophila. Cell Death and Disease, 2015, 6, e1713-e1713.	2.7	17
687	Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochemical Pharmacology, 2015, 98, 573-586.	2.0	18
688	3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Molecular Cancer, 2015, 14, 135.	7.9	32
689	Effects of physiological and synthetic IAP antagonism on c-IAP-dependent signaling. Oncogene, 2015, 34, 5472-5481.	2.6	9
690	<scp>TNF</scp> α in cerebral ischemia: another stroke against you?. Journal of Neurochemistry, 2015, 132, 369-372.	2.1	13
691	Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. Journal of Immunology, 2015, 195, 4244-4256.	0.4	5
692	Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radical Biology and Medicine, 2015, 89, 452-465.	1.3	110
693	Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation. BMC Neuroscience, 2015, 16, 49.	0.8	37
694	Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death and Disease, 2015, 6, e1761-e1761.	2.7	74
695	Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis. Cell Death and Disease, 2015, 6, e1724-e1724.	2.7	21
696	Apoptosis: Pathways, Molecules and Beyond. , 2015, , 1-30.		2
697	CD40 ligand induces RIP1-dependent, necroptosis-like cell death in low-grade serous but not serous borderline ovarian tumor cells. Cell Death and Disease, 2015, 6, e1864-e1864.	2.7	21
698	Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection. Infection and Immunity, 2015, 83, 4118-4133.	1.0	35
699	An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death. Journal of Biological Chemistry, 2015, 290, 20841-20855.	1.6	15
700	Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor. Journal of Biological Chemistry, 2015, 290, 21724-21731.	1.6	48
701	Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death and Disease, 2015, 6, e1884-e1884.	2.7	123

#	Article	IF	Citations
702	Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Current Topics in Microbiology and Immunology, 2015, 403, 37-75.	0.7	12
703	Role of necroptosis in the pathogenesis of solid organ injury. Cell Death and Disease, 2015, 6, e1975-e1975.	2.7	122
704	Innovative Medicine. , 2015, , .		17
705	Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?. Cell Death and Disease, 2015, 6, e1685-e1685.	2.7	48
706	Ligand–Receptor Interaction Catalyzes the Aggregation of Small Molecules To Induce Cell Necroptosis. Journal of the American Chemical Society, 2015, 137, 26-29.	6.6	42
707	Genomic Instability Causes HGF Gene Activation in Colon Cancer Cells, Promoting Their Resistance to Necroptosis. Gastroenterology, 2015, 148, 181-191.e17.	0.6	39
708	Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney International, 2015, 87, 738-748.	2.6	86
709	Old, new and emerging functions of caspases. Cell Death and Differentiation, 2015, 22, 526-539.	5.0	1,000
710	TNF-α-mediated cardiorenal injury after rhabdomyolysis in rats. American Journal of Physiology - Renal Physiology, 2015, 308, F1259-F1267.	1.3	35
711	IAPs, regulators of innate immunity and inflammation. Seminars in Cell and Developmental Biology, 2015, 39, 106-114.	2.3	77
712	Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene, 2015, 34, 1475-1486.	2.6	244
713	Role of <scp>RIP</scp> 1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death. Genes To Cells, 2015, 20, 11-28.	0.5	10
714	Programmed necrosis and necroptosis signalling. FEBS Journal, 2015, 282, 19-31.	2.2	118
715	Cell death controlling complexes and their potential therapeutic role. Cellular and Molecular Life Sciences, 2015, 72, 505-517.	2.4	35
716	Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 2015, 58, 140-148.	2.9	32
717	Inhibition of Theiler's virus-induced apoptosis in infected murine macrophages results in necroptosis. Virus Research, 2015, 195, 177-182.	1.1	8
718	RIP kinases: key decision makers in cell death and innate immunity. Cell Death and Differentiation, 2015, 22, 225-236.	5.0	201
719	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811

		EPORT	
# 721	ARTICLE Roles of TNF and Other Members of the TNF Family in the Regulation ofÂlnnateÂlmmunity. , 2016, , 454-465.	IF	Citations
722	A matter of regeneration and repair: caspases as the key molecules. Turkish Journal of Biology, 2016, 40, 333-352.	2.1	8
723	Caspase-8 inhibition represses initial human monocyte activation in septic shock model. Oncotarget, 2016, 7, 37456-37470.	0.8	16
724	Mitochondrial regulation of cell death: a phylogenetically conserved control. Microbial Cell, 2016, 3, 101-108.	1.4	87
725	Cross-Talk Between Autophagy and Death Receptor Signaling Pathways. , 2016, , 119-133.		1
726	Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. International Journal of Molecular Sciences, 2016, 17, 1414.	1.8	72
727	The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. Journal of Clinical Investigation, 2016, 126, 4346-4360.	3.9	130
728	Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget, 2016, 7, 57391-57413.	0.8	61
729	Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells. Biomolecules and Therapeutics, 2016, 24, 320-327.	1.1	35
730	Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	11
731	Linearly Patterned Programmed Cell Necrosis Induced by Chronic Hypoxia Plays a Role in Melanoma Angiogenesis. Journal of Cancer, 2016, 7, 22-31.	1.2	6
732	Lipopolysaccharide (LPS) Promotes Apoptosis in Human Breast Epithelial × Breast Cancer Hybrids, but Not in Parental Cells. PLoS ONE, 2016, 11, e0148438.	1.1	13
733	The RIP1–RIP3 Complex Mediates Osteocyte Necroptosis after Ovariectomy in Rats. PLoS ONE, 2016, 11, e0150805.	1.1	17
734	New Frontiers in Cancer Chemotherapy $\hat{a} \in \raimetee$ Targeting Cell Death Pathways. , 2016, , .		6
735	Tumor Suppressor Roles of the Denitrosylase GSNOR. Critical Reviews in Oncogenesis, 2016, 21, 433-445.	0.2	17
736	Curcumin Induces Pancreatic Adenocarcinoma Cell Death Via Reduction of the Inhibitors of Apoptosis. Pancreas, 2016, 45, 101-109.	0.5	42
737	Oocyte aging in a marine protostome worm: The roles of maturationâ€promoting factor and extracellular signal regulated kinase form of mitogenâ€activated protein kinase. Development Growth and Differentiation, 2016, 58, 250-259.	0.6	5
738	Plasma Levels of Receptor Interacting Protein Kinase-3 (RIP3), an Essential Mediator of Necroptosis, are Associated with Acute Kidney Injury in Critically III Trauma Patients. Shock, 2016, 46, 139-143.	1.0	24

#	Article	IF	CITATIONS
739	Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology, 2016, 64, 209-223.	3.6	59
741	Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death and Disease, 2016, 7, e2287-e2287.	2.7	38
742	Post-translational modifications as key regulators of TNF-induced necroptosis. Cell Death and Disease, 2016, 7, e2293-e2293.	2.7	47
743	Programmed necrosis - a new mechanism of steroidogenic luteal cell death and elimination during luteolysis in cows. Scientific Reports, 2016, 6, 38211.	1.6	25
744	Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Scientific Reports, 2016, 6, 38267.	1.6	69
745	Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Scientific Reports, 2016, 6, 34064.	1.6	53
746	FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Scientific Reports, 2016, 6, 22787.	1.6	44
747	Prediction of the efficacy of immunotherapy by measuring the integrity of cellâ€free <scp>DNA</scp> in plasma in colorectal cancer. Cancer Science, 2016, 107, 1825-1829.	1.7	30
749	Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Scientific Reports, 2016, 6, 39548.	1.6	96
751	Length of intact plasma membrane determines the diffusion properties of cellular water. Scientific Reports, 2016, 6, 19051.	1.6	10
752	Inhibitor of apoptosis proteins as intracellular signaling intermediates. FEBS Journal, 2016, 283, 221-231.	2.2	62
753	Techniques to Distinguish Apoptosis from Necroptosis. Cold Spring Harbor Protocols, 2016, 2016, pdb.top070375.	0.2	14
754	Cell death at the intestinal epithelial front line. FEBS Journal, 2016, 283, 2701-2719.	2.2	77
755	Differential Involvement of the Npl4 Zinc Finger Domains of SHARPIN and HOIL-1L in Linear Ubiquitin Chain Assembly Complex-Mediated Cell Death Protection. Molecular and Cellular Biology, 2016, 36, 1569-1583.	1.1	20
756	Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage. Seminars in Neurology, 2016, 36, 288-297.	0.5	78
757	Reactive Oxygen Species and Neutrophil Function. Annual Review of Biochemistry, 2016, 85, 765-792.	5.0	592
758	Infiltrated Macrophages Die of Pneumolysin-Mediated Necroptosis following Pneumococcal Myocardial Invasion. Infection and Immunity, 2016, 84, 1457-1469.	1.0	71
759	Mitochondria in Cell Death Regulation. , 2016, , 341-353.		1

	CHATION R	LPORT	
# 760	ARTICLE Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy, 2016, 12, 659-670.	IF 4.3	Citations
761	Cancer and necroptosis: friend or foe?. Cellular and Molecular Life Sciences, 2016, 73, 2183-2193.	2.4	62
762	The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature, 2016, 532, 245-249.	13.7	454
763	TAK1 regulates Paneth cell integrity partly through blocking necroptosis. Cell Death and Disease, 2016, 7, e2196-e2196.	2.7	18
764	Ion channels in regulated cell death. Cellular and Molecular Life Sciences, 2016, 73, 2387-2403.	2.4	78
765	The interplay between regulated necrosis and bacterial infection. Cellular and Molecular Life Sciences, 2016, 73, 2369-2378.	2.4	36
766	Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis. Journal of Biological Chemistry, 2016, 291, 13753-13761.	1.6	53
767	House dust mite–induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. Journal of Allergy and Clinical Immunology, 2016, 138, 84-96.e1.	1.5	111
768	Pyroptosis as a Regulated Form of Necrosis. Circulation Research, 2016, 118, 1457-1460.	2.0	37
769	The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.	2.9	46
770	Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood, 2016, 127, 139-148.	0.6	192
771	Unconventional cell death in erythroid cells. Blood, 2016, 127, 12-14.	0.6	14
772	The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing. Cell Death and Disease, 2016, 7, e2207-e2207.	2.7	12
773	Microglia: A Double-Sided Sword in Stroke. Springer Series in Translational Stroke Research, 2016, , 133-150.	0.1	0
774	Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death and Disease, 2016, 7, e2422-e2422.	2.7	69
775	Functionalized Graphene Oxide Based Nanocarrier for Tumorâ€Targeted Combination Therapy to Elicit Enhanced Cytotoxicity against Breast Cancer Cells <i>In Vitro</i> . ChemistrySelect, 2016, 1, 4845-4855.	0.7	3
776	Comparative Efficacy and Acceptability of Anti-TNF-Alpha Therapy in Ankylosing Spondylitis: A Mixed-Treatments Comparison. Cellular Physiology and Biochemistry, 2016, 39, 1679-1694.	1.1	13
777	Modulation of p73 isoforms expression induces anti-proliferative and pro-apoptotic activity in mantle cell lymphoma independent of p53 status. Leukemia and Lymphoma, 2016, 57, 2874-2889.	0.6	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
778	FAF1 mediates regulated necrosis through PARP1 activation upon oxidative stress leading to dopaminergic neurodegeneration. Cell Death and Differentiation, 2016, 23, 1873-1885.	5.0	30
779	Mitochondria, cholesterol and cancer cell metabolism. Clinical and Translational Medicine, 2016, 5, 22.	1.7	127
780	Prognostic value of mixed lineage kinase domain-like protein expression in the survival of patients with gastric caner. Tumor Biology, 2016, 37, 13679-13685.	0.8	58
781	Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opinion on Therapeutic Patents, 2016, 26, 1239-1256.	2.4	25
782	In vitro toxicity assessment of oral nanocarriers. Advanced Drug Delivery Reviews, 2016, 106, 381-401.	6.6	47
783	Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochemical Pharmacology, 2016, 118, 9-17.	2.0	32
784	What Is the Pathobiology of Inflammation to Cell Death? Apoptosis, Necrosis, Necroptosis, Autophagic Cell Death, Pyroptosis, and NETosis. , 2016, , 81-106.		4
785	Dying blood mononuclear cell secretome exerts antimicrobial activity. European Journal of Clinical Investigation, 2016, 46, 853-863.	1.7	29
786	Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research, 2016, , .	0.1	1
787	Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion. Toxicology and Applied Pharmacology, 2016, 308, 1-10.	1.3	48
788	A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. Journal of Molecular Biology, 2016, 428, 4154-4167.	2.0	45
789	Immunotherapy Gone Viral: Bortezomib and oHSV Enhance Antitumor NK-Cell Activity. Clinical Cancer Research, 2016, 22, 5164-5166.	3.2	13
790	A Christianson syndrome-linked deletion mutation (â^†287ES288) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Molecular Neurodegeneration, 2016, 11, 63.	4.4	22
791	In one harness: the interplay of cellular responses and subsequent cell fate after quantum dot uptake. Nanomedicine, 2016, 11, 2603-2615.	1.7	5
792	Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2977-2992.	1.9	2,307
793	Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death. Journal of Lipid Research, 2016, 57, 2005-2014.	2.0	20
794	Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Archives of Toxicology, 2016, 90, 2979-3003.	1.9	50
795	Clinical Characteristics, Choroidal Neovascularization, and Predictors of Visual Outcomes in Acquired Vitelliform Lesions. American Journal of Ophthalmology, 2016, 172, 28-38.	1.7	36

#	Article	IF	CITATIONS
796	TNF activation of NF-κB is essential for development of single-positive thymocytes. Journal of Experimental Medicine, 2016, 213, 1399-1407.	4.2	35
797	Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. Journal of Functional Foods, 2016, 25, 279-290.	1.6	23
798	Targeting Programmed Cell Death Using Smallâ€Molecule Compounds to Improve Potential Cancer Therapy. Medicinal Research Reviews, 2016, 36, 983-1035.	5.0	136
799	Getting a gRIP on Flu by Casting the DAI. Cell Host and Microbe, 2016, 20, 552-554.	5.1	4
800	Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives. Nanoscale Research Letters, 2016, 11, 484.	3.1	24
801	Cryopreservation: Evolution of Molecular Based Strategies. Advances in Experimental Medicine and Biology, 2016, 951, 13-29.	0.8	25
803	Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science Advances, 2016, 2, e1600224.	4.7	214
804	Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Scientific Reports, 2016, 6, 24547.	1.6	63
805	ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Scientific Reports, 2016, 6, 24997.	1.6	53
806	Endoplasmic Reticulum Stress-induced Hepatocellular Death Pathways Mediate Liver Injury and Fibrosis via Stimulator of Interferon Genes. Journal of Biological Chemistry, 2016, 291, 26794-26805.	1.6	128
807	Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discovery, 2016, 2, 16065.	2.0	70
808	Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Scientific Reports, 2016, 6, 34245.	1.6	52
809	Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation. Journal of Biological Chemistry, 2016, 291, 25050-25065.	1.6	20
810	Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models. BMC Cancer, 2016, 16, 824.	1.1	20
811	<i>In Vitro</i> and <i>in Vivo</i> Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles. ACS Nano, 2016, 10, 9927-9937.	7.3	164
812	5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells. Scientific Reports, 2016, 6, 21992.	1.6	47
813	Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability. Clinical Science, 2016, 130, 2121-2138.	1.8	13
814	Antiproliferative effects of α-tomatine are associated with different cell death modalities in human colon cancer cells. Journal of Functional Foods, 2016, 27, 491-502.	1.6	11

#	Article	IF	CITATIONS
815	Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Letters, 2016, 380, 31-38.	3.2	60
816	The BH3 mimetic drug ABT-737 induces apoptosis and acts synergistically with chemotherapeutic drugs in thyroid carcinoma cells. Cancer Cell International, 2016, 16, 27.	1.8	24
817	Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases. Seminars in Nephrology, 2016, 36, 153-161.	0.6	19
818	Live or Let Die: Is There any Cell Death in Podocytes?. Seminars in Nephrology, 2016, 36, 208-219.	0.6	13
819	Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis. Neurochemical Research, 2016, 41, 2324-2335.	1.6	52
820	Manipulation of Programmed Cell Death Pathways Enhances Osmotic Stress Tolerance in Plants: Physiological and Molecular Insights. , 2016, , 439-464.		3
821	Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells. BMC Cancer, 2016, 16, 279.	1.1	10
822	Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell International, 2016, 16, 11.	1.8	50
823	K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death and Differentiation, 2016, 23, 1628-1637.	5.0	59
824	Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 415-428.	2.5	72
825	Targeting the lysosome in cancer. Annals of the New York Academy of Sciences, 2016, 1371, 45-54.	1.8	221
826	A critical role for cellular inhibitor of protein 2 (cIAP2) in colitis-associated colorectal cancer and intestinal homeostasis mediated by the inflammasome and survival pathways. Mucosal Immunology, 2016, 9, 146-158.	2.7	20
827	Selenite induces DNA damage and specific mitochondrial degeneration in human bladder cancer cells. Toxicology in Vitro, 2016, 32, 105-114.	1.1	16
828	The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cellular and Molecular Life Sciences, 2016, 73, 2829-2850.	2.4	217
829	Chemokines and Traffic of White Blood Cells. , 2016, , 777-812.		0
830	Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 2016, 15, 348-366.	21.5	481
831	DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer, 2016, 16, 20-33.	12.8	870
832	Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene, 2016, 35, 3399-3409.	2.6	92

#	Article	IF	CITATIONS
833	SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973.	1.6	63
834	Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunology, 2016, 9, 567-582.	2.7	102
835	In vitro cytotoxic screening of 31 crude extracts of Thai herbs on a chondrosarcoma cell line and primary chondrocytes and apoptotic effects of selected extracts. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 434-444.	0.7	13
836	Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicologic Pathology, 2016, 44, 173-188.	0.9	129
837	Periplogenin induces necroptotic cell death through oxidative stress in HaCaT cells and ameliorates skin lesions in the TPA- and IMQ-induced psoriasis-like mouse models. Biochemical Pharmacology, 2016, 105, 66-79.	2.0	31
838	Clinical Isolates of <i>Pseudomonas aeruginosa</i> from Chronically Infected Cystic Fibrosis Patients Fail To Activate the Inflammasome during Both Stable Infection and Pulmonary Exacerbation. Journal of Immunology, 2016, 196, 3097-3108.	0.4	28
839	MicroRNA-23a Curbs Necrosis during Early T Cell Activation by Enforcing Intracellular Reactive Oxygen Species Equilibrium. Immunity, 2016, 44, 568-581.	6.6	47
840	Loss of neutral ceramidase protects cells from nutrient- and energy -deprivation-induced cell death. Biochemical Journal, 2016, 473, 743-755.	1.7	31
841	Giant seaperch iridovirus (GSIV) induces mitochondria-mediated cell death that is suppressed by bongkrekic acid and cycloheximide in a fish cell line. Virus Research, 2016, 213, 37-45.	1.1	13
842	The NADase-Negative Variant of the Streptococcus pyogenes Toxin NAD ⁺ Glycohydrolase Induces JNK1-Mediated Programmed Cellular Necrosis. MBio, 2016, 7, e02215-15.	1.8	39
843	Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L377-L386.	1.3	130
844	Cell death in the pathogenesis and progression of heart failure. Heart Failure Reviews, 2016, 21, 117-121.	1.7	18
845	Retinal development anomalies and cone photoreceptors degeneration upon Bmi1 deficiency. Development (Cambridge), 2016, 143, 1571-84.	1.2	22
846	Functional Comparison of Molluscum Contagiosum Virus vFLIP MC159 with Murine Cytomegalovirus M36/vICA and M45/vIRA Proteins. Journal of Virology, 2016, 90, 2895-2905.	1.5	15
847	Ripoptosome Analysis by Caspase-8 Coimmunoprecipitation. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot087403.	0.2	7
848	Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1. Phytomedicine, 2016, 23, 32-41.	2.3	44
849	Crosstalk between microbiota, pathogens and the innate immune responses. International Journal of Medical Microbiology, 2016, 306, 257-265.	1.5	34
850	Cell Death Induction by the Indirubin Derivative 7BIO and the BH3 Mimetic Drugs ABT-737 and GX15-070 in Medullary Thyroid Carcinoma Cells. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 324-330.	0.6	3

# 851	ARTICLE TNF and ROS Crosstalk in Inflammation. Trends in Cell Biology, 2016, 26, 249-261.	IF 3.6	CITATIONS
891		3.0	/31
852	Novel Ferroptosis Inhibitors with Improved Potency and ADME Properties. Journal of Medicinal Chemistry, 2016, 59, 2041-2053.	2.9	88
853	Evolutionarily conserved primary TNF sequences relate to its primitive functions in cell death induction. Journal of Cell Science, 2016, 129, 108-120.	1.2	8
854	Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunology, Immunotherapy, 2016, 65, 779-786.	2.0	129
855	Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway. Tumor Biology, 2016, 37, 3785-3795.	0.8	21
856	CD147 promotes IKK/lκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Journal of Molecular Medicine, 2016, 94, 71-82.	1.7	35
857	Oxyresveratrol abrogates oxidative stress by activating ERK–Nrf2 pathway in the liver. Chemico-Biological Interactions, 2016, 245, 110-121.	1.7	64
858	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	6.1	159
859	Effect of vitamin E on 24(S)-hydroxycholesterol-induced necroptosis-like cell death and apoptosis. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 69-76.	1.2	22
860	Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E961-E969.	3.3	337
861	Pseudokinases: update on their functions and evaluation as new drug targets. Future Medicinal Chemistry, 2017, 9, 245-265.	1.1	71
862	Combination of IAP antagonist and IFNÎ ³ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	5.0	43
863	TLR9 mediated regulatory B10 cell amplification following sub-total body irradiation: Implications in attenuating EAE. Molecular Immunology, 2017, 83, 52-61.	1.0	11
864	Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death and Differentiation, 2017, 24, 615-625.	5.0	101
865	PGAM5-mediated programmed necrosis of hepatocytes drives acute liver injury. Gut, 2017, 66, 716-723.	6.1	77
866	Reactive oxygen species and cancer paradox: To promote or to suppress?. Free Radical Biology and Medicine, 2017, 104, 144-164.	1.3	708
867	Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion. Redox Biology, 2017, 11, 524-534.	3.9	96
868	Electrospun Template Architecture and Composition Regulate Neutrophil NETosis <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2017, 23, 1054-1063.	1.6	33

#	Article	IF	CITATIONS
869	Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin–1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Scientific Reports, 2017, 7, 42159.	1.6	46
870	DAI Another Way: Necroptotic Control of Viral Infection. Cell Host and Microbe, 2017, 21, 290-293.	5.1	19
871	The Canonical Inflammasome: A Macromolecular Complex Driving Inflammation. Sub-Cellular Biochemistry, 2017, 83, 43-73.	1.0	15
872	Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. Toxin Reviews, 2017, , 1-15.	1.5	0
874	Caspaseâ€cleaved keratinâ€18 fragments increase during alcohol withdrawal and predict liverâ€related death in patients with alcoholic liver disease. Hepatology, 2017, 66, 96-107.	3.6	59
875	Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie, 2017, 137, 35-45.	1.3	10
876	The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process. Cell Death Discovery, 2017, 3, 16102.	2.0	29
877	TAK1 regulates resident macrophages by protecting lysosomal integrity. Cell Death and Disease, 2017, 8, e2598-e2598.	2.7	13
878	Apoptotic and Non-apoptotic Cell Death. Current Topics in Microbiology and Immunology, 2017, , .	0.7	4
879	CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatology International, 2017, 11, 221-241.	1.9	206
880	Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 2017, 38, 1167-1186.	0.9	449
881	Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radical Biology and Medicine, 2017, 108, 433-444.	1.3	106
882	Chemically different non-thermal plasmas target distinct cell death pathways. Scientific Reports, 2017, 7, 600.	1.6	36
883	Effect of the Serum Inhibited Gene (Si1) on Autophagy and Apoptosis in MCF-7 Breast Cancer Cells. Cellular Physiology and Biochemistry, 2017, 41, 2268-2278.	1.1	7
884	Caspases and their substrates. Cell Death and Differentiation, 2017, 24, 1380-1389.	5.0	549
885	Initiation and execution mechanisms of necroptosis: an overview. Cell Death and Differentiation, 2017, 24, 1184-1195.	5.0	404
887	Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4251-E4260.	3.3	297
888	Necroptosis Resumes Apoptosis in Hippocampus but Not in Frontal Cortex. Journal of Cellular Biochemistry, 2017, 118, 4628-4638.	1.2	8

#	Article	IF	CITATIONS
889	Lysosomal Biology in Cancer. Methods in Molecular Biology, 2017, 1594, 293-308.	0.4	68
890	Coronary Artery Calcification. JACC: Cardiovascular Imaging, 2017, 10, 582-593.	2.3	265
891	RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells. Molecular and Cellular Biochemistry, 2017, 435, 15-24.	1.4	22
892	<scp>RIPK</scp> 3 in cell death and inflammation: the good, the bad, and the ugly. Immunological Reviews, 2017, 277, 102-112.	2.8	92
893	<scp>RIPK</scp> 3â€driven cell death during virus infections. Immunological Reviews, 2017, 277, 90-101.	2.8	54
894	Regression of apoptosis-resistant colorectal tumors by induction of necroptosis in mice. Journal of Experimental Medicine, 2017, 214, 1655-1662.	4.2	60
895	RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice. Cell Reports, 2017, 19, 798-808.	2.9	37
896	Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Seminars in Cell and Developmental Biology, 2017, 72, 101-116.	2.3	152
897	Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biology and Toxicology, 2017, 33, 113-128.	2.4	134
898	DHEA protects mitochondria against dual modes of apoptosis and necroptosis in human granulosa HO23 cells. Reproduction, 2017, 154, 101-110.	1.1	31
899	Proteolytic control of regulated necrosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2147-2161.	1.9	11
900	Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death. Molecular and Cellular Proteomics, 2017, 16, 1200-1216.	2.5	18
901	Induction of Necroptosis in Cancer Stem Cells using a Nickel(II)â€Đithiocarbamate Phenanthroline Complex. Chemistry - A European Journal, 2017, 23, 9674-9682.	1.7	42
902	Mitochondrial Calcium Uptake in Activation of the Permeability Transition Pore and Cell Death. Biological and Medical Physics Series, 2017, , 107-118.	0.3	1
903	Flow control effect of necrostatin-1 on cell death of the NRK-52E renal tubular epithelial cell line. Molecular Medicine Reports, 2017, 16, 57-62.	1.1	6
904	Vaccinia virus evasion of regulated cell death. Immunology Letters, 2017, 186, 68-80.	1.1	47
905	Dichotomy between Receptor-Interacting Protein 1– and Receptor-Interacting Protein 3–Mediated Necroptosis in Experimental Pancreatitis. American Journal of Pathology, 2017, 187, 1035-1048.	1.9	19
906	Integrating Molecular Control to Improve Cryopreservation Outcome. Biopreservation and Biobanking, 2017, 15, 134-141.	0.5	26

#	Article	IF	CITATIONS
907	Reestablishment of p53/Arf and interferon-β pathways mediated by a novel adenoviral vector potentiates antiviral response and immunogenic cell death. Cell Death Discovery, 2017, 3, 17017.	2.0	25
908	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	5.7	196
909	RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 626-638.	2.2	99
910	An Inflammatory Perspective on Necroptosis. Molecular Cell, 2017, 65, 965-973.	4.5	169
911	Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. Journal of the American Heart Association, 2017, 6, .	1.6	178
912	Rationale for the Combination of Dendritic Cell-Based Vaccination Approaches With Chemotherapy Agents. International Review of Cell and Molecular Biology, 2017, 330, 115-156.	1.6	22
913	Molecular Pathways: The Necrosome—A Target for Cancer Therapy. Clinical Cancer Research, 2017, 23, 1132-1136.	3.2	35
914	Effect of ethyl acetate aroma on viability of human breast cancer and normal kidney epithelial cells in vitro. Integrative Medicine Research, 2017, 6, 47-59.	0.7	8
915	Innate immunity protein Tag7 (PGRPâ€5) activates lymphocytes capable of Fasl–Fasâ€dependent contact killing of virusâ€infected cells. IUBMB Life, 2017, 69, 971-977.	1.5	4
916	Hydrogen peroxide induces programmed necrosis in rat nucleus pulposus cells through the RIP1/RIP3â€PARPâ€AIF pathway. Journal of Orthopaedic Research, 2018, 36, 1269-1282.	1.2	31
917	Different toxicity of cadmium telluride, silicon, and carbon nanomaterials against hemocytes in silkworm, Bombyx mori. RSC Advances, 2017, 7, 50317-50327.	1.7	16
918	Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis. Cell Chemical Biology, 2017, 24, 1445-1454.e8.	2.5	58
919	Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line. Nanotoxicology, 2017, 11, 1-12.	1.6	45
920	Simultaneous inhibition of IGF1R and EGFR enhances the efficacy of standard treatment for colorectal cancer by the impairment of DNA repair and the induction of cell death. Cancer Letters, 2017, 407, 93-105.	3.2	13
921	The role of necroptosis in status epilepticus-induced brain injury in juvenile rats. Epilepsy and Behavior, 2017, 75, 134-142.	0.9	21
922	Smac mimetics and type II interferon synergistically induce necroptosis in various cancer cell lines. Cancer Letters, 2017, 410, 228-237.	3.2	36
923	Natural products to prevent drug resistance in cancer chemotherapy: a review. Annals of the New York Academy of Sciences, 2017, 1401, 19-27.	1.8	148
924	Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Scientific Reports, 2017, 7, 10133.	1.6	89

#	Article	IF	CITATIONS
925	The cytoplasmic nuclear receptor RARÎ ³ controls RIP1 initiated cell death when cIAP activity is inhibited. Nature Communications, 2017, 8, 425.	5.8	34
926	Identification of a synergistic combination of Smac mimetic and Bortezomib to trigger cell death in B-cell non-Hodgkin lymphoma cells. Cancer Letters, 2017, 405, 63-72.	3.2	21
927	Inhibition of Necroptosis Attenuates Kidney Inflammation and Interstitial Fibrosis Induced By Unilateral Ureteral Obstruction. American Journal of Nephrology, 2017, 46, 131-138.	1.4	46
928	Necroptosis activation in Alzheimer's disease. Nature Neuroscience, 2017, 20, 1236-1246.	7.1	305
929	Lethal avian influenza A (H5N1) virus induces ataxic breathing in mice with apoptosis of pre-Botzinger complex neurons expressing neurokinin-1 receptor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L772-L780.	1.3	2
930	Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary and Pancreatic Diseases International, 2017, 16, 245-256.	0.6	65
931	Necrostatin-1 Protects Against d-Galactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling. Inflammation, 2017, 40, 1912-1923.	1.7	18
932	Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 806, 64-74.	0.4	20
933	Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Scientific Reports, 2017, 7, 5818.	1.6	83
934	MTI-101 treatment inducing activation of Stim1 and TRPC1 expression is a determinant of response in multiple myeloma. Scientific Reports, 2017, 7, 2685.	1.6	15
935	Frontline Science: Macrophage-derived exosomes promote neutrophil necroptosis following hemorrhagic shock. Journal of Leukocyte Biology, 2018, 103, 175-183.	1.5	30
936	A novel RIPK1 inhibitor that prevents retinal degeneration in a rat glaucoma model. Experimental Cell Research, 2017, 359, 30-38.	1.2	37
937	Digital-PCR for gene expression: impact from inherent tissue RNA degradation. Scientific Reports, 2017, 7, 17235.	1.6	17
938	RIPK3 promotes adenovirus type 5 activity. Cell Death and Disease, 2017, 8, 3206.	2.7	16
939	TRADD mediates the tumor necrosis factor-induced apoptosis of L929 cells in the absence of RIP3. Scientific Reports, 2017, 7, 16111.	1.6	8
940	TDP-43 accelerates age-dependent degeneration of interneurons. Scientific Reports, 2017, 7, 14972.	1.6	30
941	Apoptosis and Necroptosis as Host Defense Strategies to Prevent Viral Infection. Trends in Cell Biology, 2017, 27, 800-809.	3.6	189
942	Ferrichrome identified from <i>Lactobacillus casei ATCC334</i> induces apoptosis through its iron-binding site in gastric cancer cells. Tumor Biology, 2017, 39, 101042831771131.	0.8	22

#	Article	IF	CITATIONS
943	Posttranslational Modifications and Death Receptor Signalling. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 247-290.	0.1	1
944	Culling of APCs by inflammatory cell death pathways restricts TIM3 and PD-1 expression and promotes the survival of primed CD8 T cells. Cell Death and Differentiation, 2017, 24, 1900-1911.	5.0	14
945	Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. International Journal of Molecular Medicine, 2017, 40, 427-437.	1.8	34
946	Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. Journal of Translational Medicine, 2017, 15, 123.	1.8	78
947	Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death and Disease, 2017, 8, e2905-e2905.	2.7	138
948	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	2.7	69
949	Melatonin delays photoreceptor degeneration in a mouse model of autosomal recessive retinitis pigmentosa. Journal of Pineal Research, 2017, 63, e12428.	3.4	26
950	Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 49-57.	1.1	35
951	Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage. Brain, Behavior, and Immunity, 2017, 60, 346-360.	2.0	75
952	Tumor necrosis factor alpha derived from classically activated "M1―macrophages reduces interstitial cell of Cajal numbers. Neurogastroenterology and Motility, 2017, 29, e12984.	1.6	33
953	Programmed cell death in periodontitis: recent advances and future perspectives. Oral Diseases, 2017, 23, 609-619.	1.5	47
954	Biological Responses. , 2017, , 155-274.		3
955	Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion. Journal of Molecular Neuroscience, 2017, 61, 52-60.	1.1	56
956	Ischemia Reperfusion Injury Triggers TNFα Induced-Necroptosis in Rat Retina. Current Eye Research, 2017, 42, 771-779.	0.7	46
957	Necroptosis is a key mediator of enterocytes loss in intestinal ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine, 2017, 21, 432-443.	1.6	65
958	Bioelectrics. , 2017, , .		13
959	Association of Mixed Lineage Kinase Domain-Like Protein Expression With Prognosis in Patients With Colon Cancer. Technology in Cancer Research and Treatment, 2017, 16, 428-434.	0.8	64
960	Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells. Oncogene, 2017, 36, 1487-1502.	2.6	56

#	Article	IF	CITATIONS
961	The Role of Necroptosis, Apoptosis, and Inflammation in Fowl Cholera–Associated Liver Injury in a Chicken Model. Avian Diseases, 2017, 61, 491-502.	0.4	12
962	Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via ll̂®Bl̂±/NFl̂®B and AKT/MMP2/MMP9 pathways. RSC Advances, 2017, 7, 37743-37754.	1.7	10
963	Expression of caspase-3 and the cytokine level in experimental reperfusion syndrome upon treatment with peroxiredoxin 6. Biophysics (Russian Federation), 2017, 62, 848-852.	0.2	1
964	Caspase 3 role and immunohistochemical expression in assessment of apoptosis as a feature of H1N1 vaccine-caused Drug-Induced Liver Injury (DILI). Electronic Physician, 2017, 9, 4261-4273.	0.2	22
965	Three-Dimensional and Biomimetic Technology in Cardiac Injury After Myocardial Infarction: Effect of Acellular Devices on Ventricular Function and Cardiac Remodelling. , 2017, , .		0
966	Acetaminophen. , 2017, , 101-112.		4
967	Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. , 2017, , 2-43.e19.		107
968	Two Saporin-Containing Immunotoxins Specific for CD20 and CD22 Show Different Behavior in Killing Lymphoma Cells. Toxins, 2017, 9, 182.	1.5	25
969	Cancer's Achilles' Heel: Apoptosis and Necroptosis to the Rescue. International Journal of Molecular Sciences, 2017, 18, 23.	1.8	64
970	Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Frontiers in Immunology, 2017, 8, 613.	2.2	60
971	Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation. Frontiers in Immunology, 2017, 8, 1168.	2.2	111
972	Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ. Frontiers in Immunology, 2017, 8, 1667.	2.2	13
973	MLKL Mediated Necroptosis Accelerates JEV-Induced Neuroinflammation in Mice. Frontiers in Microbiology, 2017, 8, 303.	1.5	36
974	Neuroprotective Effect of β-Caryophyllene on Cerebral Ischemia-Reperfusion Injury via Regulation of Necroptotic Neuronal Death and Inflammation: In Vivo and in Vitro. Frontiers in Neuroscience, 2017, 11, 583.	1.4	67
975	Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BioMed Research International, 2017, 2017, 1-23.	0.9	39
976	Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	29
977	Involvement of necroptosis, a newly recognized cell death type, in steroid-induced osteonecrosis in a rabbit model. International Journal of Medical Sciences, 2017, 14, 110-114.	1.1	9
978	RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during Newcastle disease virus infection. Oncotarget, 2017, 8, 43201-43217.	0.8	35

#	Article	IF	CITATIONS
979	Journey of TRAIL from bench to bedside and its potential role in immuno-oncology. Oncology Reviews, 2017, 11, 332.	0.8	37
980	Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. , 2017, 3, 157-169.		80
981	RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. ELife, 2017, 6, .	2.8	65
982	Necroptosis: A novel manner of cell death, associated with stroke (Review). International Journal of Molecular Medicine, 2018, 41, 624-630.	1.8	33
983	Bacteriocyte cell death in the pea aphid/ <i>Buchnera</i> symbiotic system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1819-E1828.	3.3	69
984	Exogenous recombinant human thioredoxinâ€1 prevents acetaminophenâ€induced liver injury by scavenging oxidative stressors, restoring the thioredoxinâ€1 system and inhibiting receptor interacting proteinâ€3 overexpression. Journal of Applied Toxicology, 2018, 38, 1008-1017.	1.4	16
985	Repurposing anticancer drugs for targeting necroptosis. Cell Cycle, 2018, 17, 829-832.	1.3	28
987	The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex. Cell, 2018, 173, 1244-1253.e10.	13.5	216
988	Dissecting host cell death programs in the pathogenesis of influenza. Microbes and Infection, 2018, 20, 560-569.	1.0	22
989	Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death and Disease, 2018, 9, 476.	2.7	103
990	Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Scientific Reports, 2018, 8, 6379.	1.6	16
991	SIRT2 Inhibition Confers Neuroprotection by Downregulation of FOXO3a and MAPK Signaling Pathways in Ischemic Stroke. Molecular Neurobiology, 2018, 55, 9188-9203.	1.9	63
992	Involvement of Alveolar Epithelial Cell Necroptosis in Idiopathic Pulmonary Fibrosis Pathogenesis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 215-224.	1.4	64
993	Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy. Toxicology in Vitro, 2018, 48, 170-178.	1.1	34
994	Tozasertib Analogues as Inhibitors of Necroptotic Cell Death. Journal of Medicinal Chemistry, 2018, 61, 1895-1920.	2.9	32
995	RIPK1-dependent cell death: a novel target of the Aurora kinase inhibitor Tozasertib (VX-680). Cell Death and Disease, 2018, 9, 211.	2.7	36
996	Cell death-based treatment of neuroblastoma. Cell Death and Disease, 2018, 9, 113.	2.7	34
997	Targeted Imaging for Cell Death in Cardiovascular Disorders. JACC: Cardiovascular Imaging, 2018, 11, 476-493.	2.3	34

#	Article	IF	CITATIONS
998	SPARC expression is associated with hepatic injury in rodents and humans with non-alcoholic fatty liver disease. Scientific Reports, 2018, 8, 725.	1.6	23
999	Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology, 2018, 113, 10.	2.5	88
1000	Alteronol induces cell cycle arrest and apoptosis via increased reactive oxygen species production in human breast cancer T47D cells. Journal of Pharmacy and Pharmacology, 2018, 70, 516-524.	1.2	12
1001	Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Journal of Neural Transmission, 2018, 125, 591-613.	1.4	16
1002	Review: Cell Death, Nucleic Acids, and Immunity. Arthritis and Rheumatology, 2018, 70, 805-816.	2.9	64
1003	Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death and Differentiation, 2018, 25, 1394-1407.	5.0	28
1004	Epstein-Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination. Cell Death and Disease, 2018, 9, 53.	2.7	59
1005	A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Scientific Reports, 2018, 8, 1420.	1.6	36
1006	Autophagy in ischemic stroke. Progress in Neurobiology, 2018, 163-164, 98-117.	2.8	295
1007	History and Traditional Techniques of Studying the Structure of Cell Membranes. , 2018, , 21-43.		2
1008	Immunogenic Stress and Death of Cancer Cells in Natural and Therapy-Induced Immunosurveillance. , 2018, , 215-229.		9
1009	MOMP, cell suicide as a BCL-2 family business. Cell Death and Differentiation, 2018, 25, 46-55.	5.0	450
1010	For the greater good: Programmed cell death in bacterial communities. Microbiological Research, 2018, 207, 161-169.	2.5	71
1011	Temporal Pattern and Crosstalk of Necroptosis Markers with Autophagy and Apoptosis Associated Proteins in Ischemic Hippocampus. Neurotoxicity Research, 2018, 34, 79-92.	1.3	31
1012	Unraveling the human protein atlas of metastatic melanoma in the course of ultraviolet radiation-derived photo-therapy. Journal of Proteomics, 2018, 188, 119-138.	1.2	4
1013	Oncosis-inducing cyclometalated iridium(<scp>iii</scp>) complexes. Chemical Science, 2018, 9, 5183-5190.	3.7	95
1014	Inhibition of regulated necrosis attenuates receptor-interacting protein kinase 1–mediated ischemia-reperfusion injury after lung transplantation. Journal of Heart and Lung Transplantation, 2018, 37, 1261-1270.	0.3	45
1015	Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 299-313.	2.2	68

#	Article	IF	CITATIONS
1017	Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opinion on Drug Discovery, 2018, 13, 477-488.	2.5	23
1018	RIP1–HAT1–SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clinical Cancer Research, 2018, 24, 2886-2900.	3.2	40
1019	RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury. Biomedicine and Pharmacotherapy, 2018, 101, 617-626.	2.5	22
1020	Programmed Cell Death, from a Cancer Perspective: An Overview. Molecular Diagnosis and Therapy, 2018, 22, 281-295.	1.6	101
1021	Avenues to molecular imaging of dying cells: Focus on cancer. Medicinal Research Reviews, 2018, 38, 1713-1768.	5.0	30
1022	Cationic peroxidase from proso millet induces human colon cancer cell necroptosis by regulating autocrine TNF-α and RIPK3 demethylation. Food and Function, 2018, 9, 1878-1888.	2.1	11
1023	Intracellular regulation of TNF activity in health and disease. Cytokine, 2018, 101, 26-32.	1.4	165
1024	Hypoxia–ischemia is not an antecedent of most preterm brain damage: the illusion of validity. Developmental Medicine and Child Neurology, 2018, 60, 120-125.	1.1	42
1025	Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. International Journal of Neuroscience, 2018, 128, 449-463.	0.8	12
1026	Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Molecular Cancer Therapeutics, 2018, 17, 50-59.	1.9	44
1027	The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Progress in Retinal and Eye Research, 2018, 62, 1-23.	7.3	254
1028	Necroptosis may be a novel mechanism for cardiomyocyte death in acute myocarditis. Molecular and Cellular Biochemistry, 2018, 442, 11-18.	1.4	27
1029	The Role of Smurf1 in Neuronal Necroptosis after Lipopolysaccharide-Induced Neuroinflammation. Cellular and Molecular Neurobiology, 2018, 38, 809-816.	1.7	33
1030	Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy, 2018, 14, 778-795.	4.3	67
1031	Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure. FASEB Journal, 2018, 32, 1880-1890.	0.2	59
1032	Signaling by cell surface death receptors: Alterations in head and neck cancer. Advances in Biological Regulation, 2018, 67, 170-178.	1.4	16
1033	RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. Neuroscience, 2018, 371, 60-74.	1.1	67
1034	Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon, 2018, 149, 54-64.	0.8	15

ARTICLE IF CITATIONS 1035 Membrane Biophysics., 2018,,. 0 The Role of PSR in Zebrafish (Danio rerio) at Early Embryonic Development., 0, , . Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Tzu Chi 1037 0.4 56 Medical Journal, 2018, 30, 209. Identification and Characterization of NTB451 as a Potential Inhibitor of Necroptosis. Molecules, 2018, 23, 2884. Tumor Immunology, Immunotherapy and Its Application to Head and Neck Squamous Cell Carcinoma 1041 2 (HNSCC)., 2018, , 341-355. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity, 2018, 51, 267-280. 1042 1.2 Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants, 1044 2.2 9 2018, 7, 161. Nuclear abnormalities in vascular myocytes in cerebral autosomalâ€dominant arteriopathy with 1045 0.7 subcortical infarcts and leukoencephalópathy (CADASIL). Neuropathology, 2018, 38, 601-608. Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its 1046 therapeutic exploitation in leukemia. Journal of Experimental and Clinical Cancer Research, 2018, 37, 3.5 35 310. 1047 Anticancer activity of gomisinii;1/2J from Schisandra chinensis fruit. Oncology Reports, 2018, 41, 711-717. 1.2 Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 1048 1.4 6 null mutation under nutrient starvation. International Journal of Oncology, 2018, 54, 702-712. RNA-Seq Analyses of the Role of miR-21 in Acute Pancreatitis. Cellular Physiology and Biochemistry, 1049 1.1 19 2018, 51, 2198-2211. RIP1 and RIP3 mediate hemin-induced cell death in HT22 hippocampal neuronal cells. Neuropsychiatric 1050 1.0 19 Disease and Treatment, 2018, Volume 14, 3111-3119. Pathways of host cell exit by intracellular pathogens. Microbial Cell, 2018, 5, 525-544. 1.4 56 1052 Degenerative and Regenerative Events in the Central and Peripheral Nervous System., 2018, , 50-69. 1 The induction and consequences of Influenza A virus-induced cell death. Cell Death and Disease, 2018, 1053 84 9, 1002. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. 1054 0.8 61 Tuberculosis, 2018, 113, 99-121. Association between radiation-induced cell death and clinically relevant radioresistance. Histochemistry and Cell Biology, 2018, 150, 649-659.

#	Article	IF	CITATIONS
1056	Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells. International Journal of Molecular Sciences, 2018, 19, 1309.	1.8	40
1057	Molecular Communication of a Dying Neuron in Stroke. International Journal of Molecular Sciences, 2018, 19, 2834.	1.8	109
1058	RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death and Disease, 2018, 9, 973.	2.7	33
1059	Mechanisms of Acetaminophen Hepatotoxicity: Cell Death Signaling Mechanisms in Hepatocytes. , 2018, , 460-482.		0
1060	PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflammation and Regeneration, 2018, 38, 18.	1.5	72
1061	Modes of Chemically Induced Cell Death. , 2018, , 229-253.		1
1062	Cell Injury and Necrosis. , 2018, , 404-453.		2
1063	1 <i>O</i> , 20 <i>O</i> -diacetyl kamebakaurin protects against acetaminophen-induced hepatotoxicity in mice . Biomedical Research, 2018, 39, 251-260.	0.3	5
1064	Axonal degeneration induced by glutamate-excitotoxicity is mediated by necroptosis. Journal of Cell Science, 2018, 131, .	1.2	53
1065	Graphene oxide–chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine, 2018, 13, 2261-2282.	1.7	34
1066	Mechanism and disease implications of necroptosis and neuronal inflammation. Cell Death and Disease, 2018, 9, 903.	2.7	18
1067	HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Experimental and Molecular Medicine, 2018, 50, 1-15.	3.2	33
1068	The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells. Tuberculosis and Respiratory Diseases, 2018, 81, 138.	0.7	17
1069	RIPK1–RIPK3–MLKL-Associated Necroptosis Drives Leishmania infantum Killing in Neutrophils. Frontiers in Immunology, 2018, 9, 1818.	2.2	45
1070	Expression of receptor interacting protein 1 and receptor interacting protein 3 oval cells in a rat model of hepatocarcinogenesis. Experimental and Therapeutic Medicine, 2018, 15, 4448-4456.	0.8	1
1071	JLP-JNK signaling protects cancer cells from reactive oxygen species-induced cell death. Biochemical and Biophysical Research Communications, 2018, 501, 724-730.	1.0	14
1072	Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death and Disease, 2018, 9, 592.	2.7	21
1073	Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse. Experimental Neurology, 2018, 306, 190-198.	2.0	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1074	Programmed Cell Death in CIRI. Springer Series in Translational Stroke Research, 2018	,,57-82.	0.1	0
1075	Tauroursodeoxycholic Acid Protects Nucleus Pulposus Cells from Compression-Induced and Necroptosis via Inhibiting Endoplasmic Reticulum Stress. Evidence-based Complem Alternative Medicine, 2018, 2018, 1-11.		0.5	14
1076	Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphoc Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	ytic Leukemia.	1.9	26
1077	Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. Journal o Research, 2018, 2018, 1-19.	f Diabetes	1.0	117
1078	Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neigh Epithelial Cells. Cell Reports, 2018, 23, 3721-3729.	iboring Normal	2.9	42
1079	Cell Death. , 2018, , 221-234.			1
1080	Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive Regulated Liponecrosis and Die. Oxidative Medicine and Cellular Longevity, 2018, 201	or Commit to 8, 1-11.	1.9	9
1081	The independence of and associations among apoptosis, autophagy, and necrosis. Sig and Targeted Therapy, 2018, 3, 18.	nal Transduction	7.1	231
1082	Necrostatin-1 Attenuates Cisplatin-Induced Nephrotoxicity Through Suppression of Ap Oxidative Stress and Retains Klotho Expression. Frontiers in Pharmacology, 2018, 9, 38	optosis and 84.	1.6	43
1083	NF-kappaB Regulates Redox Status in Breast Cancer Subtypes. Genes, 2018, 9, 320.		1.0	20
1084	Fish oil-derived lipid emulsion induces RIP1-dependent and caspase 8-licensed necropt through overproduction of reactive oxygen species. Lipids in Health and Disease, 2018		1.2	4
1085	The Role of Necroptosis in Cardiovascular Disease. Frontiers in Pharmacology, 2018, 9	, 721.	1.6	94
1086	Phenotypic screening identifies a new oxazolone inhibitor of necroptosis and neuroinf Cell Death Discovery, 2018, 4, 10.	ammation.	2.0	16
1087	The Pathogenesis of Necroptosis-Dependent Signaling Pathway in Cerebral Ischemic D Behavioural Neurology, 2018, 2018, 1-7.	isease.	1.1	15
1088	The Role of the RhoA/ROCK Signaling Pathway in Mechanical Strain-Induced Scleral My Differentiation. , 2018, 59, 3619.	ofibroblast		35
1089	Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice. JAM/ 153, e181804.	A Surgery, 2018,	2.2	82
1090	Prognostic and clinicopathological significance of MLKL expression in cancer patients: meta-analysis. BMC Cancer, 2018, 18, 736.	a	1.1	22
1091	NF-kappaB: Two Sides of the Same Coin. Genes, 2018, 9, 24.		1.0	173

#	Article	IF	CITATIONS
1092	Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. International Journal of Oncology, 2018, 52, 1339-1349.	1.4	21
1093	Necrostatin-7 suppresses RANK-NFATc1 signaling and attenuates macrophage to osteoclast differentiation. Biochemical and Biophysical Research Communications, 2018, 503, 544-549.	1.0	6
1094	Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine. International Journal of Molecular Sciences, 2018, 19, 754.	1.8	80
1095	Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins, 2018, 10, 212.	1.5	150
1096	Tocopherol suppresses 24(S)-hydroxycholesterol-induced cell death via inhibition of CaMKII phosphorylation. Biochimie, 2018, 153, 203-209.	1.3	9
1097	FasL on the surface of Tag7 (PGRP-S)-activated lymphocytes induces necroptosis in HLA-negative tumor cells with the involvement of lysosomes and mitochondria. Biochimie, 2018, 152, 174-180.	1.3	16
1098	Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation, 2018, 15, 199.	3.1	384
1099	Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. Journal of Translational Medicine, 2018, 16, 201.	1.8	86
1100	The inducers of immunogenic cell death for tumor immunotherapy. Tumori, 2018, 104, 1-8.	0.6	46
1101	Hyperglycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis. Cell Death Discovery, 2018, 4, 55.	2.0	23
1102	Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sciences, 2018, 205, 73-90.	2.0	19
1103	The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment. Biomedicine and Pharmacotherapy, 2018, 102, 481-493.	2.5	12
1104	Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunology, 2018, 11, 1621-1629.	2.7	8
1105	Radiation Sensitization of Basal Cell and Head and Neck Squamous Cell Carcinoma by the Hedgehog Pathway Inhibitor Vismodegib. International Journal of Molecular Sciences, 2018, 19, 2485.	1.8	25
1106	Analysis of Cytokine- and Influenza A Virus-Driven RIPK3 Necrosome Formation. Methods in Molecular Biology, 2018, 1857, 93-99.	0.4	3
1107	MLKL mediates apoptosis via a mutual regulation with PERK/elF2α pathway in response to reactive oxygen species generation. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 521-531.	2.2	13
1108	Programmed Necrosis. Methods in Molecular Biology, 2018, , .	0.4	1
1109	Deficiency of type 2 iodo―thyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB Journal, 2018, 32, 6316-6329.	0.2	10

#	Article	IF	CITATIONS
1110	PELI1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent Proteasomal Degradation. Molecular Cell, 2018, 70, 920-935.e7.	4.5	77
1111	Discovery and Identification of Small Molecules as Methuosis Inducers with <i>in Vivo</i> Antitumor Activities. Journal of Medicinal Chemistry, 2018, 61, 5424-5434.	2.9	31
1112	Potentiating effect of acetaminophen and carbon tetrachloride-induced hepatotoxicity is mediated by activation of receptor interaction protein in mice. Toxicology Mechanisms and Methods, 2018, 28, 615-621.	1.3	7
1113	Detection of Necroptosis in Ligand-Mediated and Hypoxia-Induced Injury of Hepatocytes Using a Novel Optic Probe-Detecting Receptor-Interacting Protein (RIP)1/RIP3 Binding. Oncology Research, 2018, 26, 503-513.	0.6	16
1114	Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Transactions, 2018, 47, 9934-9974.	1.6	207
1115	Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Molecular Neurobiology, 2019, 56, 1637-1652.	1.9	32
1116	Protective effects of exâ€527 on cerebral ischemia–reperfusion injury through necroptosis signaling pathway attenuation. Journal of Cellular Physiology, 2019, 234, 1816-1826.	2.0	40
1117	Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. Journal of Cell Communication and Signaling, 2019, 13, 255-267.	1.8	25
1118	Comparative study of the differential cell death protecting effect of various ROS scavengers. Biological Chemistry, 2019, 400, 149-160.	1.2	9
1119	Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. British Journal of Pharmacology, 2019, 176, 4319-4339.	2.7	48
1120	Cell Death Pathways. , 2019, , 113-121.e2.		11
1121	Reactive Oxygen Species in Plasma Medical Science (PAM and Cancer Therapy). , 2019, , 249-318.		1
1122	Necrostatin-1 Attenuates Renal Ischemia and Reperfusion Injury via Meditation of HIF-1α/mir-26a/TRPC6/PARP1 Signaling. Molecular Therapy - Nucleic Acids, 2019, 17, 701-713.	2.3	67
1123	Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death and Disease, 2019, 10, 613.	2.7	28
1124	TNF Family Cytokines Induce Distinct Cell Death Modalities in the A549 Human Lung Epithelial Cell Line when Administered in Combination with Ricin Toxin. Toxins, 2019, 11, 450.	1.5	14
1125	Neuroimmunological interactions in stroke. NeurologÃa (English Edition), 2019, 34, 326-335.	0.2	0
1126	A New Approach in Cancer Treatment: Discovery of Chlorido[<i>N</i> , <i>N</i> ,à€²-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. Journal of Medicinal Chemistry, 2019, 62, 8053-8061.	2.9	48
1127	A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. Materials Science and Engineering C, 2019, 105, 110032.	3.8	11

#	Article	IF	CITATIONS
1128	Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.	1.9	59
1129	RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). International Journal of Molecular Medicine, 2019, 44, 771-786.	1.8	75
1130	Role of Retinoic Acid Receptor-Î ³ in DNA Damage-Induced Necroptosis. IScience, 2019, 17, 74-86.	1.9	21
1131	2-BFI Provides Neuroprotection Against Inflammation and Necroptosis in a Rat Model of Traumatic Brain Injury. Frontiers in Neuroscience, 2019, 13, 674.	1.4	24
1132	Autophagy in Neurotrauma: Good, Bad, or Dysregulated. Cells, 2019, 8, 693.	1.8	83
1133	Citronellol Induces Necroptosis of Human Lung Cancer Cells <i>via</i> TNF-α Pathway and Reactive Oxygen Species Accumulation. In Vivo, 2019, 33, 1193-1201.	0.6	21
1134	Combination Treatment of Stereotactic Body Radiation Therapy and Immature Dendritic Cell Vaccination for Augmentation of Local and Systemic Effects. Cancer Research and Treatment, 2019, 51, 464-473.	1.3	15
1135	Influence of Fat on Differential Receptor Interacting Serine/Threonine Protein Kinase 1 Activity Leading to Apoptotic Cell Death in Murine Liver Ischemia Reperfusion Injury Through Caspase 8. Hepatology Communications, 2019, 3, 925-942.	2.0	6
1136	The Mammalian Response: A Mosaic of Structures. , 2019, , 709-785.		0
1137	Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	177
1138	Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Critical Care, 2019, 23, 235.	2.5	26
1139	Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats. British Journal of Anaesthesia, 2019, 123, 519-530.	1.5	14
1140	Model-based optimization of temperature and pH shift to increase volumetric productivity of a Chinese hamster ovary fed-batch process. Journal of Bioscience and Bioengineering, 2019, 128, 710-715.	1.1	12
1141	Interplay between Caspase 9 and X-linked Inhibitor of Apoptosis Protein (XIAP) in the oocyte elimination during fetal mouse development. Cell Death and Disease, 2019, 10, 790.	2.7	6
1142	ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-29.	1.9	168
1143	The potential role of necroptosis in inflammaging and aging. GeroScience, 2019, 41, 795-811.	2.1	81
1144	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
1145	Medicinal Plants from Brazilian Cerrado: Antioxidant and Anticancer Potential and Protection against Chemotherapy Toxicity. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	16

#	Article	IF	CITATIONS
1146	Programmed necrosis and its role in management of breast cancer. Pathology Research and Practice, 2019, 215, 152652.	1.0	13
1147	MLKL is a potential prognostic marker in gastric cancer. Oncology Letters, 2019, 18, 3830-3836.	0.8	13
1148	Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain Injury: A Potential Trigger of Necroptosis. Frontiers in Molecular Neuroscience, 2019, 12, 222.	1.4	45
1149	Modulation of Death and Inflammatory Signaling in Decidual Stromal Cells following Exposure to Group B Streptococcus. Infection and Immunity, 2019, 87, .	1.0	10
1150	Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Computational Biology, 2019, 15, e1007374.	1.5	9
1151	Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Scientific Reports, 2019, 9, 808.	1.6	50
1152	Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. Journal of Medicinal Chemistry, 2019, 62, 5750-5772.	2.9	78
1153	The role of necroptosis in cancer: A double-edged sword?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 259-266.	3.3	86
1154	The role of necroptosis in cancer biology and therapy. Molecular Cancer, 2019, 18, 100.	7.9	605
1155	Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. Journal of Autoimmunity, 2019, 103, 102286.	3.0	98
1156	Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death and Disease, 2019, 10, 487.	2.7	264
1157	Flotillin-mediated endocytosis and ALIX–syntenin-1–mediated exocytosis protect the cell membrane from damage caused by necroptosis. Science Signaling, 2019, 12, .	1.6	76
1158	Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biology, 2019, 26, 101239.	3.9	212
1159	Impact of traumatic brain injury on amyotrophic lateral sclerosis: from bedside to bench. Journal of Neurophysiology, 2019, 122, 1174-1185.	0.9	22
1160	EBV(LMP1)-induced metabolic reprogramming inhibits necroptosis through the hypermethylation of the <i>RIP3</i> promoter. Theranostics, 2019, 9, 2424-2438.	4.6	33
1161	Caffeic Acid Prevented LPS-Induced Injury of Primary Bovine Mammary Epithelial Cells through Inhibiting NF- <i>l²</i> B and MAPK Activation. Mediators of Inflammation, 2019, 2019, 1-12.	1.4	21
1162	RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiology of Disease, 2019, 129, 144-158.	2.1	35
1163	MicroRNAâ€214 contributes to regulation of necroptosis via targeting ATF4 in diabetesâ€associated periodontitis. Journal of Cellular Biochemistry, 2019, 120, 14791-14803.	1.2	29

#	Article	IF	CITATIONS
1164	Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Frontiers in Neuroscience, 2019, 13, 512.	1.4	68
1165	Evodiamine alleviates kidney ischemia reperfusion injury in rats: A biochemical and histopathological study. Journal of Cellular Biochemistry, 2019, 120, 17159-17166.	1.2	15
1166	Furosine, a Maillard Reaction Product, Triggers Necroptosis in Hepatocytes by Regulating the RIPK1/RIPK3/MLKL Pathway. International Journal of Molecular Sciences, 2019, 20, 2388.	1.8	7
1167	Targeting Wnt Signaling via Notch in Intestinal Carcinogenesis. Cancers, 2019, 11, 555.	1.7	28
1168	Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity. Nanoscience and Technology, 2019, , 243-254.	1.5	2
1169	Apoptosis, necroptosis and autophagy in colorectal cancer: Associations with tumor aggressiveness and p53 status. Pathology Research and Practice, 2019, 215, 152425.	1.0	14
1170	Extracts derived from a traditional Chinese herbal formula triggers necroptosis in ectocervical Ect1/E6E7 cells through activation of RIP1 kinase. Journal of Ethnopharmacology, 2019, 239, 111922.	2.0	10
1171	Pan-caspase inhibitors induce necroptosis via ROS-mediated activation of mixed lineage kinase domain-like protein and p38 in classically activated macrophages. Experimental Cell Research, 2019, 380, 171-179.	1.2	17
1172	Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. American Journal of Physiology - Cell Physiology, 2019, 317, C111-C130.	2.1	54
1173	Necroptotic Cell Death Promotes Adaptive Immunity Against Colonizing Pneumococci. Frontiers in Immunology, 2019, 10, 615.	2.2	34
1174	Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways*. Molecular and Cellular Proteomics, 2019, 18, 1138-1156.	2.5	55
1175	Neutrophils: back in the thrombosis spotlight. Blood, 2019, 133, 2186-2197.	0.6	107
1176	Therapeutic effects of combination environmental enrichment with necrostatin-1 on cognition following vascular cognitive impairment in mice. European Journal of Inflammation, 2019, 17, 205873921983483.	0.2	5
1177	Protective effect of the Kampo formula "Juzen-taiho-to―on isoniazid- and rifampicin-induced hepatotoxicity in mice. Fundamental Toxicological Sciences, 2019, 6, 25-29.	0.2	2
1178	Fenofibrate induces human hepatoma Hep3B cells apoptosis and necroptosis through inhibition of thioesterase domain of fatty acid synthase. Scientific Reports, 2019, 9, 3306.	1.6	23
1179	Axonal Degeneration Is Mediated by Necroptosis Activation. Journal of Neuroscience, 2019, 39, 3832-3844.	1.7	49
1180	Role of mitochondrial dysfunction on rheumatic diseases. Biochemical Pharmacology, 2019, 165, 181-195.	2.0	30
1181	Growth arrest and DNA damage 45Î ³ is required for caspase-dependent renal tubular cell apoptosis. PLoS ONE, 2019, 14, e0212818.	1.1	5

#	Article	IF	CITATIONS
1182	Caspase-11, a specific sensor for intracellular lipopolysaccharide recognition, mediates the non-canonical inflammatory pathway of pyroptosis. Cell and Bioscience, 2019, 9, 31.	2.1	51
1183	Antagonism of RIP1 using necrostatin-1 (Nec-1) ameliorated damage and inflammation of HBV X protein (HBx) in human normal hepatocytes. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1194-1199.	1.9	15
1184	Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1237-H1252.	1.5	38
1186	Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF-κB. Immunity, 2019, 50, 348-361.e4.	6.6	27
1187	Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discovery, 2019, 5, 65.	2.0	98
1188	Receptor interacting protein kinases-dependent necroptosis as a new, potent mechanism for elimination of the endothelial cells during luteolysis in cow. Theriogenology, 2019, 128, 193-200.	0.9	12
1189	Loading necrostatin-1 composite bone cement inhibits necroptosis of bone tissue in rabbit. International Journal of Energy Production and Management, 2019, 6, 113-119.	1.9	8
1190	Inflammation, necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced retinal degeneration. Science Signaling, 2019, 12, .	1.6	22
1191	Necrostatin-1 accelerates time to death in a rat model of cecal ligation and puncture and massively increases hepatocyte caspase-3 cleavage. American Journal of Physiology - Renal Physiology, 2019, 316, G551-G561.	1.6	14
1192	A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1C93A Rats. Stem Cells Translational Medicine, 2019, 8, 535-547.	1.6	32
1193	The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations?. Clinical Toxicology, 2019, 57, 677-685.	0.8	16
1194	Galectin-3 Deficiency Facilitates TNF-α-Dependent Hepatocyte Death and Liver Inflammation in MCMV Infection. Frontiers in Microbiology, 2019, 10, 185.	1.5	16
1195	Upregulation of miRNAâ€⊋23â€3p ameliorates RIP3â€mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. Journal of Cellular Biochemistry, 2019, 120, 11582-11592.	1.2	22
1196	The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	31
1197	Retinal Ganglion Cells Die by Necroptotic Mechanisms in a Site-Specific Manner in a Rat Blunt Ocular Injury Model. Cells, 2019, 8, 1517.	1.8	18
1198	Don't look back in anger: Lessons from cell death research. Biochemical and Biophysical Research Communications, 2019, 520, 674-675.	1.0	2
1199	Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. Journal of Cardiovascular Medicine, 2019, 20, 640-649.	0.6	21
1200	Neonatal obstructive nephropathy induces necroptosis and necroinflammation. Scientific Reports, 2019, 9, 18600.	1.6	24

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1201	Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 20	19, 15, 4-33.	4.3	266
1202	T Cells and Regulated Cell Death. International Review of Cell and Molecular Biology, 20	19, 342, 27-71.	1.6	27
1203	Loss of receptor interacting protein kinases 3 and caspaseâ€8 augments intrinsic apopt epithelial cell and promote kidney ischaemiaâ€reperfusion injury. Nephrology, 2019, 24,	osis in tubular 661-669.	0.7	4
1204	Frontline Science: <i>Staphylococcus aureus</i> promotes receptor-interacting protein protease-dependent production of IL-11 ² in human neutrophils. Journal of Leukocyte Bio 437-447.	Rinase 3- and ogy, 2019, 105,	1.5	24
1205	Apoptosis and Inflammatory Forms of Cell Death. , 2019, , 237-247.			0
1206	Inhibition of Lung Cancer by 2-Methoxy-6-Acetyl-7-Methyljuglone Through Induction of I Targeting Receptor-Interacting Protein 1. Antioxidants and Redox Signaling, 2019, 31, 9	Vecroptosis by 3-108.	2.5	27
1207	The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytot glioblastoma cells. Amino Acids, 2019, 51, 433-449.	oxic to U-87 MG	1.2	13
1208	Upregulation of human glycolipid transfer protein (GLTP) induces necroptosis in colon c cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1	arcinoma 58-167.	1.2	22
1209	Natural modulators of the hallmarks of immunogenic cell death. Biochemical Pharmacol 162, 55-70.	ogy, 2019,	2.0	32
1210	Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK RIPK3/MLKL Signaling. , 2019, 10, 807.	I-Mediated		114
1211	TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Developmental C 151-166.e7.	ell, 2019, 48,	3.1	26
1212	Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Biology and Medicine, 2019, 134, 177-189.	Free Radical	1.3	95
1213	The TNF Family of Ligands and Receptors: Communication Modules in the Immune Syste Physiological Reviews, 2019, 99, 115-160.	m and Beyond.	13.1	275
1214	Ceramide Induces the Death of Retina Photoreceptors Through Activation of Parthanato Neurobiology, 2019, 56, 4760-4777.	s. Molecular	1.9	30
1215	Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Proce Physiological Reviews, 2019, 99, 853-892.	55.	13.1	145
1216	Anti-proliferative and cytotoxic activities of the flavonoid isoliquiritigenin in the human neuroblastoma cell line SH-SY5Y. Chemico-Biological Interactions, 2019, 299, 77-87.		1.7	21
1217	Viral M45 and necroptosisâ€associated proteins form heteromeric amyloid assemblies. I 2019, 20, .	:MBO Reports,	2.0	73
1218	Methodology of drug screening and target identification for new necroptosis inhibitors. Pharmaceutical Analysis, 2019, 9, 71-76.	Journal of	2.4	10

	CITATION REI	PORT	
Article		IF	CITATIONS
Mechanisms of endogenous repair failure during intervertebral disc degeneration. Ost Cartilage, 2019, 27, 41-48.	eoarthritis and	0.6	95
Molecular and histological study on the effects of electrolytic electroporation on the l Bioelectrochemistry, 2019, 125, 79-89.	iver.	2.4	16
Reasoning the effect of immunotherapy after chemoradiation in the PACIFIC trial. Futu 2019, 15, 81-94.	ure Oncology,	1.1	2

1220	Molecular and histological study on the effects of electrolytic electroporation on the liver. Bioelectrochemistry, 2019, 125, 79-89.	2.4	16
1221	Reasoning the effect of immunotherapy after chemoradiation in the PACIFIC trial. Future Oncology, 2019, 15, 81-94.	1.1	2
1222	Interacciones neuroinmunológicas en el ictus. NeurologÃa, 2019, 34, 326-335.	0.3	7
1223	The NuRD chromatin-remodeling complex enzyme CHD4 prevents hypoxia-induced endothelial Ripk3 transcription and murine embryonic vascular rupture. Cell Death and Differentiation, 2020, 27, 618-631.	5.0	16
1224	Pathophysiology of Cancer Cell Death. , 2020, , 74-83.e4.		2
1225	Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives. Journal of Medicinal Chemistry, 2020, 63, 1490-1510.	2.9	56
1226	Cellular and molecular mechanisms of liver regeneration: Proliferation, growth, death and protection of hepatocytes. Seminars in Cell and Developmental Biology, 2020, 100, 62-73.	2.3	45
1227	Myricetin Loaded Solid Lipid Nanoparticles Upregulate MLKL and RIPK3 in Human Lung Adenocarcinoma. International Journal of Peptide Research and Therapeutics, 2020, 26, 899-910.	0.9	18
1228	The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene, 2020, 39, 1-16.	2.6	48
1229	Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radical Biology and Medicine, 2020, 146, 198-210.	1.3	39
1230	Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials, 2020, 229, 119580.	5.7	118
1231	Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomedicine and Pharmacotherapy, 2020, 121, 109615.	2.5	31
1232	Role of Oxidative Stress in Hypersensitivity Reactions to Sulfonamides. Journal of Clinical Pharmacology, 2020, 60, 409-421.	1.0	21
1233	Cell Death and Autoimmune Disease. , 2020, , 291-303.		0
1234	Super-efficient <i>in Vivo</i> Two-Photon Photodynamic Therapy with a Gold Nanocluster as a Type I Photosensitizer. ACS Nano, 2020, 14, 9532-9544.	7.3	105
1235	Key necroptotic proteins are required for Smac mimetic-mediated sensitization of cholangiocarcinoma cells to TNF-α and chemotherapeutic gemcitabine-induced necroptosis. PLoS ONE, 2020, 15, e0227454.	1.1	19
1236	Hypothermia Inhibits the Expression of Receptor Interacting Protein Kinases 1 and 3 After Transient Spinal Cord Ischaemia in Rabbits. European Journal of Vascular and Endovascular Surgery, 2020, 59, 824-833.	0.8	5

#

#	Article	IF	CITATIONS
1237	The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036442.	2.3	30
1238	Regulation of cell death in the cardiovascular system. International Review of Cell and Molecular Biology, 2020, 353, 153-209.	1.6	39
1239	Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metabolic Brain Disease, 2020, 35, 11-30.	1.4	54
1240	Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson's disease. Pharmacological Research, 2020, 151, 104553.	3.1	72
1241	Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes, 2020, 11, 1120.	1.0	110
1242	TNFR2 is required for RIP1-dependent cell death in human leukemia. Blood Advances, 2020, 4, 4823-4833.	2.5	8
1243	Effects of interactions between antioxidant defense therapy and ROS. , 2020, , 645-691.		0
1244	Necroptosis in Intestinal Inflammation and Cancer: New Concepts and Therapeutic Perspectives. Biomolecules, 2020, 10, 1431.	1.8	30
1245	M10, a Myricetin-3-O-b-D-Lactose Sodium Salt, Prevents Ulcerative Colitis Through Inhibiting Necroptosis in Mice. Frontiers in Pharmacology, 2020, 11, 557312.	1.6	13
1246	Comprehensive analysis of transcriptomics and metabolomics to understand triptolide-induced liver injury in mice. Toxicology Letters, 2020, 333, 290-302.	0.4	42
1247	Influenza-Induced Oxidative Stress Sensitizes Lung Cells to Bacterial-Toxin-Mediated Necroptosis. Cell Reports, 2020, 32, 108062.	2.9	31
1248	Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 2020, 53, e12915.	2.4	57
1249	Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Frontiers in Aging Neuroscience, 2020, 12, 242.	1.7	28
1250	The role of lysosome in regulated necrosis. Acta Pharmaceutica Sinica B, 2020, 10, 1880-1903.	5.7	60
1251	Neonatal white matter damage and the fetal inflammatory response. Seminars in Fetal and Neonatal Medicine, 2020, 25, 101111.	1.1	13
1252	Necroptoticâ€susceptible dendritic cells exhibit enhanced antitumor activities in mice. Immunity, Inflammation and Disease, 2020, 8, 468-479.	1.3	3
1253	Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Frontiers in Cell and Developmental Biology, 2020, 8, 598112.	1.8	6
1254	The role of mitophagy in innate immune responses triggered by mitochondrial stress. Cell Communication and Signaling, 2020, 18, 186.	2.7	48

#	Article	IF	CITATIONS
1255	Combined the SMAC mimetic and BCL2 inhibitor sensitizes neoadjuvant chemotherapy by targeting necrosome complexes in tyrosine aminoacyl-tRNA synthase-positive breast cancer. Breast Cancer Research, 2020, 22, 130.	2.2	7
1256	Identification of Mutations Related to Cisplatin-Resistance and Prognosis of Patients With Lung Adenocarcinoma. Frontiers in Pharmacology, 2020, 11, 572627.	1.6	9
1257	Identification of MYC as an antinecroptotic protein that stifles RIPK1–RIPK3 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19982-19993.	3.3	17
1258	Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells, 2020, 9, 1823.	1.8	109
1259	Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes. Molecules, 2020, 25, 3514.	1.7	20
1260	The Role of Necroptosis in ROS-Mediated Cancer Therapies and Its Promising Applications. Cancers, 2020, 12, 2185.	1.7	58
1261	YB-1 Mediates TNF-Induced Pro-Survival Signaling by Regulating NF-κB Activation. Cancers, 2020, 12, 2188.	1.7	10
1262	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	6.6	98
1263	Coating M-CSF on plastic surface results in the generation of increased numbers of macrophages in vitro. Journal of Immunological Methods, 2020, 481-482, 112788.	0.6	1
1264	Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Advances, 2020, 2, 3734-3763.	2.2	29
1265	Nec-1 attenuates inflammation and cytotoxicity induced by high glucose on THP-1 derived macrophages through RIP1. Archives of Oral Biology, 2020, 118, 104858.	0.8	4
1266	Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Scientific Reports, 2020, 10, 11997.	1.6	17
1267	Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. Journal of Industrial and Engineering Chemistry, 2020, 91, 37-53.	2.9	8
1268	Axonal Degeneration in AD: The Contribution of AÎ ² and Tau. Frontiers in Aging Neuroscience, 2020, 12, 581767.	1.7	28
1269	M.Âtuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell, 2020, 183, 752-770.e22.	13.5	148
1270	Proteomics analysis of lung reveals inflammation and cell death induced by atmospheric H2S exposure in pig. Environmental Research, 2020, 191, 110204.	3.7	18
1271	The Role of Neutrophil NETosis in Organ Injury: Novel Inflammatory Cell Death Mechanisms. Inflammation, 2020, 43, 2021-2032.	1.7	58
1272	Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 965-982.	1.5	19

		CITATION REPORT	
#	Article	IF	CITATIONS
1273	Cell Death in Liver Diseases: A Review. International Journal of Molecular Sciences, 2020, 21, 9682	2. 1.8	151
1274	Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discovery, 2020, 6, 132.	2.0	29
1275	Apoptosis, the only cell death pathway that can be measured in human diploid dermal fibroblasts following lethal UVB irradiation. Scientific Reports, 2020, 10, 18946.	1.6	12
1276	Effects of vitamin B12 on methotrexate hepatotoxicity: evaluation of receptor-interacting protein (RIP) kinase. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2473-2480.	1.4	12
1277	The Role of RIPK1 and RIPK3 in Cardiovascular Disease. International Journal of Molecular Science 2020, 21, 8174.	s, 1.8	23
1278	Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human E Cancer (MCF-7) Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4106-4116.	Breast 1.9	11
1279	Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. International Review of Cell and Molecular Biology, 2020, 352, 189-214.	1.6	14
1280	AKT2 regulates endothelial-mediated coagulation homeostasis and promotes intrathrombotic recanalization and thrombus resolution in a mouse model of venous thrombosis. Journal of Thrombosis and Thrombolysis, 2020, 50, 98-111.	1.0	3
1281	The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosisâ€Inducing Nickel(II)–Phenanthroline Complex. ChemBioChem, 2020, 21, 2854-2860.	1.3	12
1282	Oxidative Stress at the Crossroads of Aging, Stroke and Depression. , 2020, 11, 1537.		64
1283	The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell dea in cyanobacteria. Journal of Experimental Botany, 2020, 71, 4639-4657.	ath 2.4	20
1284	Leukotriene B ₄ receptor 1 exacerbates inflammation following myocardial infarction FASEB Journal, 2020, 34, 8749-8763.	^{ו.} 0.2	11
1285	Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathologica Communications, 2020, 8	, 66. 2.4	41
1286	Breast Cancer Stem Cell Potency of Nickel(II)â€Polypyridyl Complexes Containing Nonâ€steroida Antiâ€inflammatory Drugs. Chemistry - A European Journal, 2020, 26, 14011-14017.	1.7	10
1287	Tripartite-motif family protein 35-28 regulates microglia development by preventing necrotic deat microglial precursors in zebrafish. Journal of Biological Chemistry, 2020, 295, 8846-8856.	th of 1.6	9
1288	Molecular analysis of lipid uptake- and necroptosis-associated factor expression in vitrified-warme mouse oocytes. Reproductive Biology and Endocrinology, 2020, 18, 37.	ed 1.4	7
1289	Apelin attenuates streptozotocin-induced learning and memory impairment by modulating necro signaling pathway. International Immunopharmacology, 2020, 84, 106546.	ptosis 1.7	18
1290	Anti-tumour activity of zinc ionophore pyrithione in human ovarian cancer cells through inhibition of proliferation and migration and promotion of lysosome-mitochondrial apoptosis. Artificial Cells Nanomedicine and Biotechnology, 2020, 48, 824-833.		11

CITAT	 D	_
(ITAT	REDU	IDT.
CITAL	NLFU	

#	Article	IF	CITATIONS
1291	Preventing necroptosis by scavenging ROS production alleviates heat stress-induced intestinal injury. International Journal of Hyperthermia, 2020, 37, 517-530.	1.1	29
1292	Maintenance of Germinal Center B Cells by Caspase-9 through Promotion of Apoptosis and Inhibition of Necroptosis. Journal of Immunology, 2020, 205, 113-120.	0.4	7
1293	The Application of Ferroptosis in Diseases. Pharmacological Research, 2020, 159, 104919.	3.1	236
1294	Prognostic Significance of CHIP and RIPK3 in Non-Small Cell Lung Cancer. Cancers, 2020, 12, 1496.	1.7	5
1295	Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angewandte Chemie, 2020, 132, 16774.	1.6	4
1296	Assessment of necroptosis in the retina in a repeated primary ocular blast injury mouse model. Experimental Eye Research, 2020, 197, 108102.	1.2	11
1297	Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angewandte Chemie - International Edition, 2020, 59, 16631-16637.	7.2	47
1298	Ferroptosis and Its Potential Role in Human Diseases. Frontiers in Pharmacology, 2020, 11, 239.	1.6	164
1299	Heterogeneity of chondrosarcomas response to irradiations with X-rays and carbon ions: A comparative study on five cell lines. Journal of Bone Oncology, 2020, 22, 100283.	1.0	10
1300	Changes in Expression of Receptor-Interacting Protein Kinase 1 in Secondary Neural Tissue Damage Following Spinal Cord Injury. Neuroscience Insights, 2020, 15, 263310552090640.	0.9	5
1301	The role of necroptosis and apoptosis through the oxidative stress pathway in the liver of selenium-deficient swine. Metallomics, 2020, 12, 607-616.	1.0	26
1302	RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. Journal of Anatomy, 2020, 237, 29-47.	0.9	28
1303	Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment. Cancers, 2020, 12, 650.	1.7	19
1304	Discovery of 1-Pyrimidinyl-2-Aryl-4,6-Dihydropyrrolo [3,4-d]Imidazole-5(1H)-Carboxamide as a Novel JNK Inhibitor. International Journal of Molecular Sciences, 2020, 21, 1698.	1.8	9
1305	Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. Journal of Clinical Medicine, 2020, 9, 665.	1.0	3
1306	RIPK3: A New Player in Renal Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 502.	1.8	12
1307	Autoantibodies from SLE patients induce programmed cell death in murine fibroblast cells through interaction with TNFR1 receptor. Scientific Reports, 2020, 10, 11144.	1.6	8
1308	Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nature Reviews Rheumatology, 2020, 16, 496-513.	3.5	74

#	Article	IF	CITATIONS
1309	Astrocyte- and Neuron-Derived Extracellular Vesicles from Alzheimer's Disease Patients Effect Complement-Mediated Neurotoxicity. Cells, 2020, 9, 1618.	1.8	52
1310	Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resistance Updates, 2020, 52, 100712.	6.5	78
1311	PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15789-15798.	3.3	11
1312	Upâ€regulation of CHMP4B alleviates microglial necroptosis induced by traumatic brain injury. Journal of Cellular and Molecular Medicine, 2020, 24, 8466-8479.	1.6	20
1313	Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. Journal of Biological Chemistry, 2020, 295, 4661-4672.	1.6	9
1314	Deficient of LRRC8A attenuates hypoxia-induced necrosis in 3T3-L1 cells. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1139-1145.	0.6	1
1315	Respiratory Syncytial Virus Infection Promotes Necroptosis and HMGB1 Release by Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1358-1371.	2.5	85
1316	Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. Journal of Biological Inorganic Chemistry, 2020, 25, 325-338.	1.1	24
1317	Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharmaceutica Sinica B, 2020, 10, 1601-1618.	5.7	54
1318	PI3K mediates tumor necrosis factor induced-necroptosis through initiating RIP1-RIP3-MLKL signaling pathway activation. Cytokine, 2020, 129, 155046.	1.4	29
1319	Systems biology of ferroptosis: A modeling approach. Journal of Theoretical Biology, 2020, 493, 110222.	0.8	20
1320	Future Therapeutic Directions for Smac-Mimetics. Cells, 2020, 9, 406.	1.8	92
1321	ROS in cancer therapy: the bright side of the moon. Experimental and Molecular Medicine, 2020, 52, 192-203.	3.2	1,260
1322	CK1α, CK1Î', and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1962-1970.	3.3	35
1323	HMGB1â€associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. FASEB Journal, 2020, 34, 4384-4402.	0.2	63
1324	Neochamaejasmin A Induces Mitochondrial-Mediated Apoptosis in Human Hepatoma Cells via ROS-Dependent Activation of the ERK1/2/JNK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	6
1325	Necrosulfonamide Ameliorates Neurological Impairment in Spinal Cord Injury by Improving Antioxidative Capacity. Frontiers in Pharmacology, 2019, 10, 1538.	1.6	32
1326	Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology, 2020, 167, 107986.	2.0	75

#	Article	IF	CITATIONS
1327	Non-Apoptotic Cell Death Signaling Pathways in Melanoma. International Journal of Molecular Sciences, 2020, 21, 2980.	1.8	39
1328	Apoptosis and necroptosis occur in the different brain regions of hippocampus in a rat model of hypoxia asphyxia. International Journal of Neuroscience, 2021, 131, 843-853.	0.8	4
1329	Functional amyloids of eukaryotes: criteria, classification, and biological significance. Current Genetics, 2020, 66, 849-866.	0.8	28
1330	On the role of sphingolipids in cell survival and death. International Review of Cell and Molecular Biology, 2020, 351, 149-195.	1.6	36
1331	Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology. Current Opinion in Cell Biology, 2020, 63, 194-203.	2.6	24
1332	Necroptosis in Cholangiocarcinoma. Cells, 2020, 9, 982.	1.8	13
1333	Comprehensive Map of the Regulated Cell Death Signaling Network: A Powerful Analytical Tool for Studying Diseases. Cancers, 2020, 12, 990.	1.7	5
1334	Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. Journal of Controlled Release, 2020, 323, 398-411.	4.8	42
1335	Benefits and Perils of Necroptosis in Influenza Virus Infection. Journal of Virology, 2020, 94, .	1.5	33
1336	Cimetidine a promising radioâ€protective agent through modulating Bax/Bcl2 ratio: An in vivo study in male rats. Journal of Cellular Physiology, 2020, 235, 8495-8506.	2.0	13
1337	Receptor-interacting serine/threonine kinase 1- and 3-dependent inflammation induced in lungs of chicken infected with Pasteurella multocida. Scientific Reports, 2020, 10, 6340.	1.6	2
1338	Raman micro-spectroscopy monitoring of cytochrome c redox state in <i>Candida utilis</i> during cell death under low-temperature plasma-induced oxidative stress. Analyst, The, 2020, 145, 3922-3930.	1.7	14
1339	Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model. European Journal of Medicinal Chemistry, 2021, 209, 112842.	2.6	33
1340	Galleria mellonella larvae fat body disruption (Lepidoptera: Pyralidae) caused by the venom of Habrobracon brevicornis (Hymenoptera: Braconidae). Archives of Insect Biochemistry and Physiology, 2021, 106, e21746.	0.6	2
1341	Autophagy displays divergent roles during intermittent amino acid starvation and toxic stressâ€induced senescence in cultured skeletal muscle cells. Journal of Cellular Physiology, 2021, 236, 3099-3113.	2.0	4
1342	Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacological Research, 2021, 163, 105297.	3.1	120
1343	Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sciences, 2021, 265, 118766.	2.0	5
1344	Tachyplesin induces apoptosis in nonâ€small cell lung cancer cells and enhances the chemosensitivity of A549/DDP cells to cisplatin by activating Fas and necroptosis pathway. Chemical Biology and Drug Design, 2021, 97, 809-820.	1.5	7

#	Article	IF	CITATIONS
1345	RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Molecular and Cellular Biochemistry, 2021, 476, 1233-1243.	1.4	20
1346	Rod photoreceptor clearance due to misfolded rhodopsin is linked to a DAMP-immune checkpoint switch. Journal of Biological Chemistry, 2021, 296, 100102.	1.6	1
1347	Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. European Journal of Medicinal Chemistry, 2021, 212, 113030.	2.6	23
1348	Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxidants and Redox Signaling, 2021, 35, 453-473.	2.5	5
1349	Immunological basis of early clearance of <i>Mycobacterium tuberculosis</i> infection: the role of natural killer cells. Clinical and Experimental Immunology, 2021, 204, 32-40.	1.1	13
1350	Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death and Differentiation, 2021, 28, 1644-1657.	5.0	132
1351	NF-κB and Extrinsic Cell Death Pathways – Entwined Do-or-Die Decisions for T cells. Trends in Immunology, 2021, 42, 76-88.	2.9	34
1352	RIPK3 modulates growth factor receptor expression in endothelial cells to support angiogenesis. Angiogenesis, 2021, 24, 519-531.	3.7	9
1353	Predictive nanotoxicology: from nanotoxicity to nanosafety of select and commonly used nanomaterials. , 2021, , 459-477.		0
1354	Spezielle zellbiologische Methoden in der Zellkultur. , 2021, , 251-302.		0
1354 1355	Spezielle zellbiologische Methoden in der Zellkultur. , 2021, , 251-302. Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304.	1.7	0
	Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021,	1.7 5.0	
1355	Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304. The regulation of necroptosis by post-translational modifications. Cell Death and Differentiation,		41
1355 1356	 Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304. The regulation of necroptosis by post-translational modifications. Cell Death and Differentiation, 2021, 28, 861-883. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and 	5.0	41 70
1355 1356 1357	 Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304. The regulation of necroptosis by post-translational modifications. Cell Death and Differentiation, 2021, 28, 861-883. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 614040. Inhibition of MLKL Attenuates Necroptotic Cell Death in a Murine Cell Model of Hepatic Ischaemia 	5.0 1.8	41 70 18
1355 1356 1357 1358	 Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304. The regulation of necroptosis by post-translational modifications. Cell Death and Differentiation, 2021, 28, 861-883. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 614040. Inhibition of MLKL Attenuates Necroptotic Cell Death in a Murine Cell Model of Hepatic Ischaemia Injury. Journal of Clinical Medicine, 2021, 10, 212. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural 	5.0 1.8 1.0	41 70 18 9
1355 1356 1357 1358 1359	 Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304. The regulation of necroptosis by post-translational modifications. Cell Death and Differentiation, 2021, 28, 861-883. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 614040. Inhibition of MLKL Attenuates Necroptotic Cell Death in a Murine Cell Model of Hepatic Ischaemia Injury. Journal of Clinical Medicine, 2021, 10, 212. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regeneration Research, 2021, 16, 1628. , the Other Main Caspase-Independent. Advances in Experimental Medicine and Biology, 2021, 1301, 	5.0 1.8 1.0 1.6	41 70 18 9 69

#	Article	IF	CITATIONS
1363	Natural substances to potentiate canonical glioblastoma chemotherapy. Journal of Chemotherapy, 2021, 33, 276-287.	0.7	5
1364	Jia-Ji Electro-Acupuncture Improves Locomotor Function With Spinal Cord Injury by Regulation of Autophagy Flux and Inhibition of Necroptosis. Frontiers in Neuroscience, 2020, 14, 616864.	1.4	18
1365	Lytic regulated cell death in aquaculture fish. Reviews in Aquaculture, 2021, 13, 1549-1564.	4.6	4
1366	Shikonin promotes ubiquitination and degradation of cIAP1/2-mediated apoptosis and necrosis in triple negative breast cancer cells. Chinese Medicine, 2021, 16, 16.	1.6	19
1369	Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Frontiers in Oncology, 2020, 10, 616952.	1.3	20
1370	Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathologica, 2021, 141, 585-604.	3.9	56
1371	Active membrane rupture spurs a range of cell deaths. Nature, 2021, 591, 36-37.	13.7	11
1372	Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 24-37.	2.2	12
1373	Commentary: A journey of aÂthousand miles begins with aÂsingle step. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e124-e125.	0.4	0
1374	Involvement of the Actin Machinery in Programmed Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 634849.	1.8	26
1375	ABT‑737, a Bcl‑2 family inhibitor, has a synergistic effect with apoptosis by inducing urothelial carcinoma cell necroptosis. Molecular Medicine Reports, 2021, 23, .	1.1	14
1376	Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs. International Journal of Molecular Sciences, 2021, 22, 2702.	1.8	7
1377	Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Science and Biotechnology, 2021, 30, 321-340.	1.2	13
1378	Multiâ€Arm PEG/Peptidomimetic Conjugate Inhibitors of DR6/APP Interaction Block Hematogenous Tumor Cell Extravasation. Advanced Science, 2021, 8, e2003558.	5.6	10
1379	TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy, 2021, 17, 3992-4009.	4.3	42
1380	Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers, 2021, 13, 1572.	1.7	135
1381	Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature. Frontiers in Microbiology, 2021, 12, 631654.	1.5	32
1382	RIPK3-Dependent Necroptosis Is Induced and Restricts Viral Replication in Human Astrocytes Infected With Zika Virus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 637710.	1.8	21

#	Article	IF	CITATIONS
1383	A narrative review of the role of necroptosis in liver disease: a double-edged sword. Annals of Translational Medicine, 2021, 9, 422-422.	0.7	16
1384	Necroptosis in Macrophage Foam Cells Promotes Fat Graft Fibrosis in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 651360.	1.8	11
1385	The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
1387	Perinatal exposure to silver nanoparticles reprograms immunometabolism and promotes pancreatic beta-cell death and kidney damage in mice. Nanotoxicology, 2021, 15, 636-660.	1.6	9
1388	Biomarkers of Radiotherapy-Induced Immunogenic Cell Death. Cells, 2021, 10, 930.	1.8	50
1389	Protective Effects of Necrostatin-1 in Acute Pancreatitis: Partial Involvement of Receptor Interacting Protein Kinase 1. Cells, 2021, 10, 1035.	1.8	10
1390	Cell death as part of innate immunity: Cause or consequence?. Immunology, 2021, 163, 399-415.	2.0	19
1391	Multimodal Molecular Imaging Detects Early Responses to Immune Checkpoint Blockade. Cancer Research, 2021, 81, 3693-3705.	0.4	15
1392	Efficacy of <i>Coccinia grandis</i> against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Human and Experimental Toxicology, 2021, 40, 1825-1851.	1.1	23
1393	ATR prevents Ca 2+ overloadâ€induced necrotic cell death through phosphorylationâ€mediated inactivation of PARP1 without DNA damage signaling. FASEB Journal, 2021, 35, e21373.	0.2	4
1394	Half sandwiched RutheniumII complexes: En Route towards the targeted delivery by Human Serum Albumin (HSA). Journal of Organometallic Chemistry, 2021, 937, 121732.	0.8	12
1395	S-methyl cysteine sulfoxide ameliorates duodenal morphological alterations in streptozotocin-induced diabetic rats. Tissue and Cell, 2021, 69, 101483.	1.0	6
1396	A novel and distinctive mode of cell death revealed by using non-thermal atmospheric pressure plasma: The involvements of reactive oxygen species and the translation inhibitor Pdcd4. Chemico-Biological Interactions, 2021, 338, 109403.	1.7	5
1397	Caspase-8 deficiency induces a switch from TLR3 induced apoptosis to lysosomal cell death in neuroblastoma. Scientific Reports, 2021, 11, 10609.	1.6	6
1398	Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL pathway during the development of heart failure in mice. European Journal of Pharmacology, 2021, 898, 173987.	1.7	31
1399	Ring closure strategy leads to potent RIPK3 inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113327.	2.6	17
1400	5-((7-Chloro-6-fluoro-1h-indol-3-yl) methyl)-3-methylimidazolidine-2,4-dione as a RIP1 inhibitor protects LPS/D-galactosamine-induced liver failure. Life Sciences, 2021, 273, 119304.	2.0	3
1401	Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Molecular Medicine Reports, 2021, 24, .	1.1	9

#	Article	IF	CITATIONS
1402	Co-relation with novel phosphorylation sites of $\hat{I^{e}B^{1}}\pm$ and necroptosis in breast cancer cells. BMC Cancer, 2021, 21, 596.	1.1	6
1403	Left Ventricular Remodeling in Degenerative Aortic Valve Stenosis. Current Problems in Cardiology, 2021, 46, 100801.	1.1	7
1404	The Role of Mitophagy in Regulating Cell Death. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	23
1405	A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin2α-induced corpus luteum regression. ELife, 2021, 10, .	2.8	14
1406	Sirtuin 2 (SIRT2): Confusing Roles in the Pathophysiology of Neurological Disorders. Frontiers in Neuroscience, 2021, 15, 614107.	1.4	27
1407	Oncolytic vaccinia virus gene modification and cytokine expression effects on tumor infection, immune response, and killing. Molecular Cancer Therapeutics, 2021, 20, molcanther.0863.2020.	1.9	10
1408	RIPK1/RIPK3-Mediated Necroptosis is Involved in Sevoflurane-Induced Neonatal Neurotoxicity in the Rat Hippocampus. Cellular and Molecular Neurobiology, 2022, 42, 2235-2244.	1.7	8
1410	TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis, 2021, 24, 453-470.	3.7	18
1411	Reconstruction of circRNA-miRNA-mRNA associated ceRNA networks reveal functional circRNAs in intracerebral hemorrhage. Scientific Reports, 2021, 11, 11584.	1.6	11
1412	Novel Methods of Necroptosis Inhibition for Spinal Cord Injury Using Translational Research to Limit Secondary Injury and Enhance Endogenous Repair and Regeneration. Neurospine, 2021, 18, 261-270.	1.1	16
1413	Role of necroptosis in infectionâ€related, immuneâ€mediated, and autoimmune skin diseases. Journal of Dermatology, 2021, 48, 1129-1138.	0.6	22
1414	Apoptosis, Autophagy, Necrosis and Their Multi Galore Crosstalk in Neurodegeneration. Neuroscience, 2021, 469, 162-174.	1.1	37
1415	The Role of Nuclear Factor of Activated T Cells 5 in Hyperosmotic Stress-Exposed Human Lens Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 6296.	1.8	3
1416	Vascularized Carotid Atherosclerotic Plaque Models for the Validation of Novel Methods of Quantifying Intraplaque Neovascularization. Journal of the American Society of Echocardiography, 2021, 34, 1184-1194.	1.2	7
1417	The effect of Camellia sinensis (green tea) with its active compound EGCG on neuronal cell necroptosis in Rattus norvegicus middle cerebral artery occlusion (MCAO) model. Journal of Basic and Clinical Physiology and Pharmacology, 2021, 32, 527-531.	0.7	5
1418	Cell death as a result of calcium signaling modulation: A cancer-centric prospective. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119061.	1.9	29
1419	Enantiomeric profiling of a chiral benzothiazole necroptosis inhibitor. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128084.	1.0	5
1420	STING1 in sepsis: Mechanisms, functions, and implications. Chinese Journal of Traumatology - English Edition, 2022, 25, 1-10.	0.7	13

#	Article	IF	CITATIONS
1421	The Autophagy Signaling Pathway in Necroptosis-Dependent Cerebral Ischemia/Reperfusion Injury. Neurochemical Journal, 2021, 15, 247-253.	0.2	2
1422	Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death and Disease, 2021, 12, 699.	2.7	16
1424	Brain vulnerability and viability after ischaemia. Nature Reviews Neuroscience, 2021, 22, 553-572.	4.9	46
1425	Non-invasive Biomarkers of Liver Inflammation and Cell Death in Response to Alcohol Detoxification. Frontiers in Physiology, 2021, 12, 678118.	1.3	6
1426	Apoptotic and Non-Apoptotic Modalities of Thymoquinone-Induced Lymphoma Cell Death: Highlight of the Role of Cytosolic Calcium and Necroptosis. Cancers, 2021, 13, 3579.	1.7	4
1427	RIP1/RIP3/MLKL Mediates Myocardial Function Through Necroptosis in Experimental Autoimmune Myocarditis. Frontiers in Cardiovascular Medicine, 2021, 8, 696362.	1.1	7
1428	The molecular mechanism of acute liver injury and inflammatory response induced by Concanavalin A. Molecular Biomedicine, 2021, 2, 24.	1.7	11
1429	Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B, 2022, 12, 1-17.	5.7	39
1430	Viral Suppression of RIPK1-Mediated Signaling. MBio, 2021, 12, e0172321.	1.8	15
1431	Effects of plant alkaloids on mitochondrial bioenergetic parameters. Food and Chemical Toxicology, 2021, 154, 112316.	1.8	1
1432	The Duality of Caspases in Cancer, as Told through the Fly. International Journal of Molecular Sciences, 2021, 22, 8927.	1.8	17
1433	The Smac mimetic BV6 cooperates with STING to induce necroptosis in apoptosis-resistant pancreatic carcinoma cells. Cell Death and Disease, 2021, 12, 816.	2.7	12
1434	Metal-coordinated nanomedicine for combined tumor therapy by inducing paraptosis and apoptosis. Journal of Controlled Release, 2021, 336, 159-168.	4.8	20
1435	Adverse Effects of Oxidative Stress on Bone and Vasculature in Corticosteroid-Associated Osteonecrosis: Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 in Cytoprotection. Antioxidants and Redox Signaling, 2021, 35, 357-376.	2.5	11
1436	Structure-based bioisosterism design of thio-benzoxazepinones as novel necroptosis inhibitors. European Journal of Medicinal Chemistry, 2021, 220, 113484.	2.6	21
1437	Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochemical Pharmacology, 2021, 190, 114664.	2.0	12
1438	Stingless Bee Propolis: New Insights for Anticancer Drugs. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	8
1439	Preclinical Evidence for the Interplay between Oxidative Stress and RIP1-Dependent Cell Death in Neurodegeneration: State of the Art and Possible Therapeutic Implications. Antioxidants, 2021, 10, 1518.	2.2	13

#	Article	IF	CITATIONS
1440	The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death and Differentiation, 2022, 29, 527-539.	5.0	33
1441	Octyl syringate is preferentially cytotoxic to cancer cells via lysosomal membrane permeabilization and autophagic flux inhibition. Cell Biology and Toxicology, 2021, , 1.	2.4	1
1442	Relationship between the expression of TNFR1-RIP1/RIP3 in peripheral blood and cognitive function in occupational Al-exposed workers: A mediation effect study. Chemosphere, 2021, 278, 130484.	4.2	5
1443	Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chemical Biology, 2021, 28, 1298-1309.e7.	2.5	21
1444	Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines, 2021, 9, 1353.	1.4	50
1445	Iron-Regulated Reactive Oxygen Species Production and Programmed Cell Death in Chronic Obstructive Pulmonary Disease. Antioxidants, 2021, 10, 1569.	2.2	10
1446	Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomedicine and Pharmacotherapy, 2021, 143, 112142.	2.5	50
1447	Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone, 2021, 153, 116168.	1.4	22
1448	TNF–TNFR2 Signal Plays a Decisive Role in the Activation of CD4+Foxp3+ Regulatory T Cells: Implications in the Treatment of Autoimmune Diseases and Cancer. Advances in Experimental Medicine and Biology, 2021, 1278, 257-272.	0.8	2
1449	Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Frontiers in Immunology, 2020, 11, 621733.	2.2	21
1450	Transition from TNF-Induced Inflammation to Death Signaling. Methods in Molecular Biology, 2021, 2248, 73-80.	0.4	2
1451	Stress Induced Mutagenesis, Genetic Diversification, and Cell Survival via Anastasis, the Reversal of Late Stage Apoptosis. , 2013, , 223-241.		1
1452	Mechanisms of Cardiac Cell Death. , 2016, , 247-265.		1
1454	Effect of Chemotherapy on the Tumor Microenvironment and Anti-tumor Immunity. , 2013, , 1-28.		3
1455	The Regulation of the JNK Cascade and Programmed Cell Death by NF-κB: Mechanisms and Functions. , 2013, , 297-336.		1
1456	Pathophysiology of Cancer Cell Death. , 2014, , 69-77.e3.		2
1457	Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nature Communications, 2018, 9, 2393.	5.8	93
1458	Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Scientific Reports, 2020, 10, 959.	1.6	28

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1459	CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing p	roteins. , 0, .		4
1460	Exploiting <i>S-</i> nitrosylation for cancer therapy: facts and perspectives. Biochemical J 2020, 477, 3649-3672.	ournal,	1.7	18
1461	Cell–Cell Interaction Mechanisms in Acute Lung Injury. Shock, 2021, 55, 167-176.		1.0	18
1462	TBK1/IKKε Negatively Regulate LPS-Induced Neutrophil Necroptosis and Lung Inflammati 55, 338-348.	on. Shock, 2021,	1.0	6
1466	SP110b Controls Host Immunity and Susceptibility to Tuberculosis. American Journal of R and Critical Care Medicine, 2017, 195, 369-382.	espiratory	2.5	31
1467	Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI 3, .	Insight, 2018,	2.3	22
1468	Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insig	ht, 2020, 5,	2.3	125
1469	Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. Journal of C Investigation, 2014, 124, 3987-4003.	Clinical	3.9	469
1470	Post-translational control of RIPK3 and MLKL mediated necroptotic cell death. F1000Rese 1297.	earch, 2015, 4,	0.8	40
1471	cIAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Proteins Kinases 1 to 4 (RIP1–4). PLoS ONE, 2011, 6, e22356.	Interacting	1.1	91
1472	RIP1-Dependent and Independent Effects of Necrostatin-1 in Necrosis and T Cell Activatic 2011, 6, e23209.	on. PLoS ONE,	1.1	86
1473	The Prevalence of TNFα-Induced Necrosis over Apoptosis Is Determined by TAK1-RIP1 Into 2011, 6, e26069.	erplay. PLoS ONE,	1.1	40
1474	Galectin-3 and Beclin1/Atg6 Genes In Human Cancers: Using cDNA Tissue Panel, qRT-PCR Regression Model to Identify Cancer Cell Biomarkers. PLoS ONE, 2011, 6, e26150.	, and Logistic	1.1	12
1475	ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflamma Activation in Macrophages. PLoS ONE, 2012, 7, e40069.	Isome	1.1	121
1476	Titanium Dioxide (TiO2) Nanoparticles Preferentially Induce Cell Death in Transformed Ce Bak/Bax-Independent Fashion. PLoS ONE, 2012, 7, e50607.	lls in a	1.1	52
1477	Ciprofloxacin Modulates Cytokine/Chemokine Profile in Serum, Improves Bone Marrow Re and Limits Apoptosis and Autophagy in Ileum after Whole Body Ionizing Irradiation Comb Skin-Wound Trauma. PLoS ONE, 2013, 8, e58389.	epopulation, vined with	1.1	50
1478	Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Inde Neuronal Cell Death. PLoS ONE, 2013, 8, e60152.	pendent	1.1	66
1479	A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Express during Recombinant Baculovirus Infection. PLoS ONE, 2013, 8, e84404.	ed In Vitro	1.1	13

#	Article	IF	CITATIONS
1480	The Pentachlorophenol Metabolite Tetrachlorohydroquinone Induces Massive ROS and Prolonged p-ERK Expression in Splenocytes, Leading to Inhibition of Apoptosis and Necrotic Cell Death. PLoS ONE, 2014, 9, e89483.	1.1	15
1481	Preclinical Assessment of Carboplatin Treatment Efficacy in Lung Cancer by 18F-ICMT-11-Positron Emission Tomography. PLoS ONE, 2014, 9, e91694.	1.1	29
1482	Necroptosis Takes Place in Human Immunodeficiency Virus Type-1 (HIV-1)-Infected CD4+ T Lymphocytes. PLoS ONE, 2014, 9, e93944.	1.1	55
1483	Fusarochromanone Induces G1 Cell Cycle Arrest and Apoptosis in COS7 and HEK293 Cells. PLoS ONE, 2014, 9, e112641.	1.1	7
1484	Mitofusin 2-Deficiency Suppresses Cell Proliferation through Disturbance of Autophagy. PLoS ONE, 2015, 10, e0121328.	1.1	42
1485	Dose-Dependent ATP Depletion and Cancer Cell Death following Calcium Electroporation, Relative Effect of Calcium Concentration and Electric Field Strength. PLoS ONE, 2015, 10, e0122973.	1.1	68
1486	Deletion of FADD in Macrophages and Granulocytes Results in RIP3- and MyD88-Dependent Systemic Inflammation. PLoS ONE, 2015, 10, e0124391.	1.1	13
1487	Calcium Electroporation: Evidence for Differential Effects in Normal and Malignant Cell Lines, Evaluated in a 3D Spheroid Model. PLoS ONE, 2015, 10, e0144028.	1.1	88
1488	Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells. PLoS ONE, 2016, 11, e0161571.	1.1	10
1489	Differential regulation of cell death pathways by the microenvironment correlates with chemoresistance and survival in leukaemia. PLoS ONE, 2017, 12, e0178606.	1.1	4
1490	Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms. PLoS ONE, 2017, 12, e0184619.	1.1	7
1491	Inflammasome-Independent NLRP3 Restriction of a Protective Early Neutrophil Response to Pulmonary Tularemia. PLoS Pathogens, 2016, 12, e1006059.	2.1	33
1492	USP22 controls necroptosis by regulating receptorâ€interacting protein kinase 3 ubiquitination. EMBO Reports, 2021, 22, e50163.	2.0	48
1493	Inflammasome as a Therapeutic Target for Cancer Prevention and Treatment. Journal of Cancer Prevention, 2017, 22, 62-73.	0.8	70
1494	Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain. Microbial Cell, 2016, 3, 65-78.	1.4	11
1495	Hormesis, cell death and aging. Aging, 2011, 3, 821-828.	1.4	113
1496	Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in		
1.70	calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis. Aging, 2013, 5, 234-269.	1.4	57

#	Article	IF	CITATIONS
1498	BH3 mimetic Obatoclax (GX15-070) mediates mitochondrial stress predominantly via MCL-1 inhibition and induces autophagy-dependent necroptosis in human oral cancer cells. Oncotarget, 2017, 8, 60060-60079.	0.8	35
1499	An anti-ErbB2 fully human antibody circumvents trastuzumab resistance. Oncotarget, 2016, 7, 67129-67141.	0.8	12
1500	Modulation of glycogen synthase kinase-3β following TRAIL combinatorial treatment in cancer cells. Oncotarget, 2016, 7, 66892-66905.	0.8	2
1501	Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget, 2016, 7, 67235-67250.	0.8	39
1502	Blocking TCR restimulation induced necroptosis in adoptively transferred T cells improves tumor control. Oncotarget, 2016, 7, 69371-69383.	0.8	10
1503	A TRAF2 binding independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1. Oncotarget, 2014, 5, 224-236.	0.8	22
1504	The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury. Oncotarget, 2017, 8, 68393-68401.	0.8	22
1505	Anti-cancerous effect of cis-khellactone from <i>Angelica amurensis</i> through the induction of three programmed cell deaths. Oncotarget, 2018, 9, 16744-16757.	0.8	8
1506	RIP Kinase-Mediated Necrosis as an Alternative Mechanism of Photoreceptor Death. Oncotarget, 2011, 2, 497-509.	0.8	46
1507	Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget, 2015, 6, 1995-2008.	0.8	66
1508	EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging therapy. Oncotarget, 2015, 6, 17491-17500.	0.8	10
1509	Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget, 2015, 6, 37066-37082.	0.8	53
1510	A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget, 2016, 7, 5204-5225.	0.8	17
1511	Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models. Oncotarget, 2016, 7, 40531-40545.	0.8	10
1512	DYNAMICS OF CHANGES IN LEVELS OF CYTOKINES AND NEURONAL ANTIBODIES IN VINYL CHLORIDE WORKERS IN THE MANUFACTURE. Gigiena I Sanitariia, 2018, 97, 935-939.	0.1	2
1513	Upregulated necroptosis-pathway-associated genes are unfavorable prognostic markers in low-grade glioma and glioblastoma multiforme. Translational Cancer Research, 2019, 8, 821-827.	0.4	15
1514	Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Current Genomics, 2017, 18, 132-155.	0.7	33
1515	Necroptosis Signaling Pathways in Stroke: From Mechanisms to Therapies. Current Neuropharmacology, 2018, 16, 1327-1339.	1.4	41

#	Article	IF	CITATIONS
1516	P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Current Neuropharmacology, 2018, 16, 1282-1295.	1.4	46
1517	Necroptosis: Who Knew There were so Many Interesting Ways to Die?. CNS and Neurological Disorders - Drug Targets, 2014, 13, 42-51.	0.8	57
1518	Targeting Cellular Signaling Pathways in Breast Cancer Stem Cells and its Implication for Cancer Treatment. Anticancer Research, 2016, 36, 5681-5692.	0.5	46
1519	Cell Death Mechanisms in Esophageal Squamous Cell Carcinoma Induced by Vesicular Stomatitis Virus Matrix Protein. Osong Public Health and Research Perspectives, 2019, 10, 246-252.	0.7	9
1520	Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Frontiers in Cellular and Infection Microbiology, 2013, 3, 83.	1.8	23
1521	Mitochondrial Mechanisms of Necroptosis in Liver Diseases. International Journal of Molecular Sciences, 2021, 22, 66.	1.8	36
1522	Targeting cell death signaling in colorectal cancer: Current strategies and future perspectives. World Journal of Gastroenterology, 2014, 20, 1923.	1.4	43
1523	Forsythiaside A protects against focal cerebral ischemic injury by mediating the activation of the Nrf2 and endoplasmic reticulum stress pathways. Molecular Medicine Reports, 2019, 20, 1313-1320.	1.1	16
1524	AIF knockdown induce apoptosis and mitochondrial dysfunction in cochlear spiral ganglion neurons in�vitro. Molecular Medicine Reports, 2020, 21, 1910-1920.	1.1	7
1525	Implication of bidirectional promoters containing duplicated GGAA motifs of mitochondrial function-associated genes. AIMS Molecular Science, 2013, 1, 1-26.	0.3	10
1526	Necroptosis in global cerebral ischemia: a role for endoplasmic reticulum stress. Neural Regeneration Research, 2020, 15, 455.	1.6	8
1527	Inhibition of RIPK3 Pathway Attenuates Intestinal Inflammation and Cell Death of Inflammatory Bowel Disease and Suppresses Necroptosis in Peripheral Mononuclear Cells of Ulcerative Colitis Patients. Immune Network, 2020, 20, e16.	1.6	21
1528	The roles of FADD in extrinsic apoptosis and necroptosis. BMB Reports, 2012, 45, 496-508.	1.1	108
1529	The serine threonine kinase RIP3: lost and found. BMB Reports, 2015, 48, 303-312.	1.1	30
1530	Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. Journal of Stroke, 2017, 19, 166-187.	1.4	134
1531	Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis. Asian Pacific Journal of Cancer Prevention, 2013, 14, 7069-7074.	0.5	16
1533	Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. ELife, 2020, 9, .	2.8	20
1534	TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathologica Communications, 2021, 9, 159.	2.4	95

Сіт	ΔΤΙ	אר ק) FD	ORT
	πm			

#	Article	IF	CITATIONS
1535	Cyclic helix B peptide promotes randomâ€pattern skin flap survival via TFE3â€mediated enhancement of autophagy and reduction of ROS levels. British Journal of Pharmacology, 2022, 179, 301-321.	2.7	13
1536	Nfe2l1 deficiency mitigates streptozotocin-induced pancreatic β-cell destruction and development of diabetes in male mice. Food and Chemical Toxicology, 2021, 158, 112633.	1.8	1
1537	Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications, 2021, 12, 5809.	5.8	37
1538	Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers, 2021, 13, 5037.	1.7	20
1539	RIPK3 signaling and its role in the pathogenesis of cancers. Cellular and Molecular Life Sciences, 2021, 78, 7199-7217.	2.4	22
1540	Expresiin De Una Proteena De Fusiin Scfv-E2T En CClulas CHO-K1 Y Plantas Transggnicas De Alfalfa Para El Direccionamiento Selectivo a CClulas Presentadoras De Anttgeno (Expression of a ScFvvE2T Fusion) Tj ETQq1	1 0.7843 0.4	14 rgBT /Ove
1541	Modulation of autophagy and its potential for cancer therapy. Drugs of the Future, 2011, 36, 919.	0.0	1
1542	Exploiting Resveratrol for the Treatment of Cancer. , 2012, , 171-178.		0
1543	The Execution Step in Parkinson's Disease – On the Vicious Cycle of Mitochondrial Complex I Inhibition, Iron Dishomeostasis and Oxidative Stress. , 0, , .		0
1544	Investigation of the role of dietary flavonoids on cell death: evidence to support a nonâ€apoptotic mechanism. FASEB Journal, 2012, 26, 612.2.	0.2	0
1545	Neutrophils in Acute Bacterial Pneumonia. , 2013, , 83-124.		0
1546	Autophagy, Cell Death, and Cancer. , 2013, , 359-390.		0
1547	Spezielle zellbiologische Methoden in der Zellkultur. , 2013, , 195-235.		0
1548	Radiation-Induced Delayed Genome Instability and Hypermutation in Mammalian Cells. , 2013, , 183-198.		1
1550	IAP Proteins and Their Therapeutic Potential. , 2014, , 97-119.		0
1551	Structural Basis of Death Receptor Signaling. , 2014, , 253-266.		0
1552	Necroptosis, a Potential Therapeutic Target for Neurological Disorders. , 2014, , 69-93.		2
1553	Molecular Biology of Brain Injury: 2012. , 2014, , 535-553.		0

#	ARTICLE The Detrimental Role of Type I Interferon Signaling During Infection with Salmonella typhimurium. ,	IF	CITATIONS
1554 1555	2014, , 79-86. Mechanisms of Pancreatic Î ² -Cell Apoptosis in Diabetes and Its Therapies. , 2014, , 1-20.		0
1556	Zellen. , 2014, , 131-199.		0
1558	Photoreceptor Degeneration: Molecular Mechanisms of Photoreceptor Degeneration. , 2014, , 275-308.		0
1559	Mechanisms of Pancreatic \hat{I}^2 -Cell Apoptosis in Diabetes and Its Therapies. , 2015, , 873-894.		0
1560	Potential Mechanisms of PTA: Cell Death. , 2015, , 185-199.		0
1561	Necrobiology of Liver Cancer: Necrosis and Necroptosis. , 2016, , 1-8.		0
1562	Necrobiology of Liver Cancer: Necrosis and Necroptosis. , 2017, , 3263-3270.		0
1563	Trauma, Regulated Cell Death, and Inflammation. , 2017, , 253-281.		0
1565	生体侵襲ãë好ä¸çƒç°èfžæ»ï¼Œãã⊷ã┥ç°èfžæ»ã«ã,ˆã,‹å‡å>°ãf»ç,Žç—‡ã®å^¶å¾¡. The Japanese Journal	of 6. 山RGIO	Calometabol
1566	Cell Death in Ischemia-Reperfusion-Induced Liver Injury. , 2017, , 173-193.		0
1567	Neurosteroids and their neuroprotective actions. , 2017, , .		1
1568	8 Role of cell death pathways in response to photodynamic therapy in gliomas. Series in Cellular and Clinical Imaging, 2017, , 131-148.	0.2	0
1570	Necroptosis in Cerebral Ischemia. , 2018, , 133-151.		0
1573	Serum Tumor Necrosis Factor-Alpha (TNF-α) Levels in Children with Nephrotic Syndrome and Its Correlation with Biochemical Parameters. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 3464-3470.	0.0	0
1575	Compartment syndrome-induced muscle injury is diminished by the neutralization of pro-inflammatory cytokines. OTA International the Open Access Journal of Orthopaedic Trauma, 2018, 1, e011.	0.4	0
1576	DANGER THEORY AND DAMAGE - ASSOCIATEDMOLECULAR PATTERN. Postepy Mikrobiologii, 2019, 57, 328-337.	0.1	1
1577	Effect of IRAK1 on Apoptosis and Necroptosis of Hepatoma Cell Line SK-Hep1. Chinese Medicine, 2019, 10, 19-29.	1.0	ο

	CITATION	REPORT	
#	Article	IF	CITATIONS
1578	The role of medical gas in stroke: an updated review. Medical Gas Research, 2019, 9, 221.	1.2	5
1579	Programmed cell death mechanisms and nanoparticle toxicity. , 2020, , 229-264.		0
1583	Chinese herbal medicine exhibits anticancer properties via eight cancer hallmarks. Journal of Applied Pharmaceutical Science, 0, , .	0.7	0
1584	RNA Biological Characteristics at the Peak of Cell Death in Different Hereditary Retinal Degeneration Mutants. Frontiers in Genetics, 2021, 12, 728791.	1.1	4
1585	Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS Journal, 2023, 290, 37-54.	2.2	16
1586	Gasdermin D mediates host cell death but not interleukin-1β secretion in Mycobacterium tuberculosis-infected macrophages. Cell Death Discovery, 2021, 7, 327.	2.0	8
1587	TNF-α in Uveitis: From Bench to Clinic. Frontiers in Pharmacology, 2021, 12, 740057.	1.6	23
1588	Antioxidant Therapeutic Defenses Toward Redox Biology and Oxidative Stress. Nanomedicine and Nanotoxicology, 2020, , 557-629.	0.1	1
1589	CB1R Promotes Chronic Alcohol-Induced Neuronal Necroptosis in Mice Prefrontal Cortex. Alcohol and Alcoholism, 2021, 56, 230-239.	0.9	1
1590	Screening and Identifying Cisplatin-Related Gene Mutations in Lung Squamous Cell Carcinoma. Pharmacogenomics and Personalized Medicine, 2020, Volume 13, 757-766.	0.4	1
1591	Poly(ADP-ribose) Polymerase (PARP) is Critically Involved in Liver Ischemia/Reperfusion-injury. Journal of Surgical Research, 2022, 270, 124-138.	0.8	4
1592	Nanotoxicity and Risk Assessment of Nanomedicines. , 2020, , 511-532.		0
1593	Cell Proliferation, Survival, Necrosis and Apoptosis. Biological and Medical Physics Series, 2020, , 743-824.	0.3	1
1594	Dietary Fiber and Cancer. Food Engineering Series, 2020, , 241-276.	0.3	2
1595	Nec-1 Attenuates Neurotoxicity Induced by Titanium Dioxide Nanomaterials on Sh-Sy5y Cells Through RIP1. Nanoscale Research Letters, 2020, 15, 65.	3.1	6
1597	The Cytotoxic Effect of the Wild-Type Newcastle Disease Virus Strain on Tumor Cells in vitro. Cell and Tissue Biology, 2020, 14, 243-249.	0.2	1
1598	Rapid identification of two types of tissue necrosis in breast tumor using multiphoton microscopy. , 2020, , .		0
1599	An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNFâ€induced necroptosis decisions. Molecular Systems Biology, 2020, 16, e9677.	3.2	18

#	Article	IF	CITATIONS
1600	Gene-specific differential response to anti-apoptotic therapies in zebrafish models of ocular coloboma. Molecular Vision, 2011, 17, 1473-84.	1.1	11
1601	lschemia-reperfusion injury of the retina is linked to necroptosis via the ERK1/2-RIP3 pathway. Molecular Vision, 2014, 20, 1374-87.	1.1	31
1602	Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. American Journal of Translational Research (discontinued), 2016, 8, 4605-4627.	0.0	24
1603	Cell Death Response to DNA Damage. Yale Journal of Biology and Medicine, 2019, 92, 771-779.	0.2	26
1604	Glyoxalase 1, regulated by LncRNA MALAT1, promotes malignant development of esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2018, 11, 2337-2346.	0.5	0
1605	Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation. Molecules and Cells, 2020, 43, 236-250.	1.0	4
1606	Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. American Journal of Cancer Research, 2021, 11, 2062-2080.	1.4	3
1607	An App knock-in rat model for Alzheimer's disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Research, 2022, 32, 157-175.	5.7	53
1608	β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites, 2021, 11, 796.	1.3	21
1609	IMB5036 inhibits human pancreatic cancer growth primarily through activating necroptosis. Basic and Clinical Pharmacology and Toxicology, 2022, 130, 375-384.	1.2	8
1610	Potent and Selective RIPK1 Inhibitors Targeting Dualâ€Pockets for the Treatment of Systemic Inflammatory Response Syndrome and Sepsis. Angewandte Chemie, 2022, 134, e202114922.	1.6	0
1611	Potent and Selective RIPK1 Inhibitors Targeting Dualâ€Pockets for the Treatment of Systemic Inflammatory Response Syndrome and Sepsis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1612	The neuroprotection of cerebrolysin after spontaneous intracerebral hemorrhage through regulates necroptosis via Akt/ GSK3β signaling pathway. Acta Cirurgica Brasileira, 2021, 36, e361002.	0.3	4
1613	Immunogenic Catagen Initiates Alopecia Areata. SSRN Electronic Journal, 0, , .	0.4	0
1614	METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Molecular Therapy, 2022, 30, 1721-1740.	3.7	61
1615	Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism. Phytochemistry Letters, 2022, 47, 174-179.	0.6	2
1616	Plasma-derived extracellular vesicles from myocardial infarction patients inhibits tumor necrosis factor-alpha induced cardiac cell death. Current Research in Translational Medicine, 2022, 70, 103323.	1.2	4
1617	Rotavirus activates MLKLâ€mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Molecular Microbiology, 2022, 117, 818-836.	1.2	7

	CHAHON		
#	Article	IF	CITATIONS
1618	Nrf2/ARE axis signalling in hepatocyte cellular death. Molecular Biology Reports, 2022, 49, 4039-4053.	1.0	12
1619	Roles of necroptosis in alcoholic liver disease and hepatic pathogenesis. Cell Proliferation, 2022, 55, e13193.	2.4	22
1620	Opposite Effects of Apoptotic and Necroptotic Cellular Pathways on Rotavirus Replication. Journal of Virology, 2022, 96, JVI0122221.	1.5	6
1621	Inflammation Resolution: Implications for Atherosclerosis. Circulation Research, 2022, 130, 130-148.	2.0	49
1622	Oxidative Stress in Cancer Therapy: Friend or Enemy?. ChemBioChem, 2022, 23, .	1.3	49
1623	IKKβ Alleviates Neuron Injury in Alzheimer's Disease via Regulating Autophagy and RIPK1-Mediated Necroptosis. Molecular Neurobiology, 2022, 59, 2407-2423.	1.9	3
1624	Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radical Biology and Medicine, 2022, 181, 29-42.	1.3	22
1625	Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Brain Research, 2022, 1780, 147798.	1.1	8
1626	Molecular biology of apoptotic, necrotic, and necroptotic cell death. , 2022, , 51-72.		0
1627	Dietâ€derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Letters, 2022, 596, 1313-1329.	1.3	17
1629	Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration. Frontiers in Neuroanatomy, 2022, 16, 812487.	0.9	1
1630	Ferroptosis in cancer and cancer immunotherapy. Cancer Communications, 2022, 42, 88-116.	3.7	179
1631	Immunogenic ferroptosis and where to find it?. , 2021, 9, e003430.		54
1633	Mitochondria-targeted drug delivery systems for the effective treatment of neurodegenerative disorders. , 2022, , 129-150.		0
1634	Nuclear Receptors Linking Metabolism, Inflammation, and Fibrosis in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 2668.	1.8	42
1636	Identification and Quantification of Necroptosis Landscape on Therapy and Prognosis in Kidney Renal Clear Cell Carcinoma. Frontiers in Genetics, 2022, 13, 832046.	1.1	28
1637	A proteomic perspective on TNF-mediated signalling and cell death. Biochemical Society Transactions, 2022, 50, 13-20.	1.6	6
1638	Augmenter of liver regeneration protects the kidney against ischemia-reperfusion injury by inhibiting necroptosis. Bioengineered, 2022, 13, 5152-5167.	1.4	0

#	Article	IF	CITATIONS
1639	Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Current Neuropharmacology, 2022, 20, 2248-2266.	1.4	2
1640	A Novel Prognostic Model Based on Seven Necroptosis-Related miRNAs for Predicting the Overall Survival of Patients with Lung Adenocarcinoma. BioMed Research International, 2022, 2022, 1-12.	0.9	7
1641	BAP31 Regulates Wnt Signaling to Modulate Cell Migration in Lung Cancer. Frontiers in Oncology, 2022, 12, 859195.	1.3	4
1642	Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Current Issues in Molecular Biology, 2022, 44, 1294-1315.	1.0	4
1643	Synthesis and characterization of potent RIPK3 inhibitors based on a tricyclic scaffold. Future Medicinal Chemistry, 2022, 14, 421-442.	1.1	1
1644	Development and Validation of a Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes. Frontiers in Oncology, 2022, 12, 852803.	1.3	10
1645	Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends in Cancer, 2022, 8, 190-209.	3.8	32
1646	Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages. Molecules and Cells, 2022, 45, 257-272.	1.0	6
1647	Caspase-8 Promotes Pulmonary Hypertension by Activating Macrophage-Associated Inflammation and IL-11² (Interleukin 11²) Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 613-631.	1.1	20
1648	Diverse pathways to neuronal necroptosis in Alzheimer's disease. European Journal of Neuroscience, 2022, 56, 5428-5441.	1.2	13
1649	RETRA induces necroptosis in cervical cancer cells through RIPK1, RIPK3, MLKL and increased ROS production. European Journal of Pharmacology, 2022, 920, 174840.	1.7	13
1650	Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury. Experimental and Therapeutic Medicine, 2021, 23, 126.	0.8	11
1651	Nuclear NAD+-biosynthetic enzyme NMNAT1 facilitates development and early survival of retinal neurons. ELife, 2021, 10, .	2.8	11
1652	The role of necroptosis in disease and treatment. MedComm, 2021, 2, 730-755.	3.1	27
1653	Role of necroptosis in traumatic brain and spinal cord injuries. Journal of Advanced Research, 2022, 40, 125-134.	4.4	13
1654	Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating Lysosomal membrane permeabilization-Induced necroptosis. Autophagy, 2022, 18, 1841-1863.	4.3	22
1655	Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life, 2021, 11, 1351.	1.1	1
1656	Development of a novel necroptosis-associated miRNA risk signature to evaluate the prognosis of colon cancer patients. Annals of Translational Medicine, 2021, 9, 1800-1800.	0.7	13

#	Article	IF	CITATIONS
1657	miR-210 Regulates Apoptotic Cell Death during Cellular Hypoxia and Reoxygenation in a Diametrically Opposite Manner. Biomedicines, 2022, 10, 42.	1.4	6
1658	Programmed cell death and liver diseases. Vestnik Transplantologii I Iskusstvennykh Organov, 2022, 24, 72-88.	0.1	1
1659	Optogenetic activators of apoptosis, necroptosis, and pyroptosis. Journal of Cell Biology, 2022, 221, .	2.3	31
1660	Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circulation Research, 2022, 130, 1204-1229.	2.0	109
1661	NAMPT-dependent NAD+ salvage is crucial for the decision between apoptotic and necrotic cell death under oxidative stress. Cell Death Discovery, 2022, 8, 195.	2.0	6
1662	Star Polymers as Non-Viral Carriers for Apoptosis Induction. Biomolecules, 2022, 12, 608.	1.8	2
1674	New Insights of Early Brain Injury after Subarachnoid Hemorrhage: A Focus on the Caspase Family. Current Neuropharmacology, 2023, 21, 392-408.	1.4	1
1676	Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting necroptosis and neuroinflammation via MAPK/NF-κB signaling pathway. Acta Cirurgica Brasileira, 2022, 37, e370301.	0.3	3
1677	Deciphering a Novel Necroptosis-Related miRNA Signature for Predicting the Prognosis of Clear Cell Renal Carcinoma. Analytical Cellular Pathology, 2022, 2022, 1-27.	0.7	7
1678	It's All in the PAN: Crosstalk, Plasticity, Redundancies, Switches, and Interconnectedness Encompassed by PANoptosis Underlying the Totality of Cell Death-Associated Biological Effects. Cells, 2022, 11, 1495.	1.8	37
1679	The Effect of Hypothermic Machine Perfusion to Ameliorate Ischemia-Reperfusion Injury in Donor Organs. Frontiers in Immunology, 2022, 13, 848352.	2.2	7
1680	Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. Journal of Nutritional Biochemistry, 2022, 107, 109018.	1.9	6
1681	High Receptor-interacting Serine/Threonine-protein Kinase 3 (RIP3) Expression Serves as an Independent Poor Prognostic Factor for Triple-negative Breast Carcinoma. Anticancer Research, 2022, 42, 2753-2761.	0.5	3
1682	Necroptosis-Associated IncRNA Prognostic Model and Clustering Analysis: Prognosis Prediction and Tumor-Infiltrating Lymphocytes in Breast Cancer. Journal of Oncology, 2022, 2022, 1-18.	0.6	12
1683	Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines, 2022, 10, 974.	1.4	0
1684	Necroptosis and Viral Myocarditis: Tumor Necrosis Factor α as a Novel Biomarker for the Diagnosis of Viral Myocarditis. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	1
1686	Emerging Role of ZBP1 in Z-RNA Sensing, Influenza Virus-Induced Cell Death, and Pulmonary Inflammation. MBio, 2022, 13, e0040122.	1.8	18
1687	Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer. Journal of Translational Medicine, 2022, 20, 235.	1.8	7

#	Article	IF	CITATIONS
1688	An Osteosarcoma Stem Cell Potent Nickel(II)-Polypyridyl Complex Containing Flufenamic Acid. Molecules, 2022, 27, 3277.	1.7	2
1689	Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chemical Neuroscience, 2022, 13, 1697-1713.	1.7	13
1690	Comprehensive Profiling Reveals Prognostic and Immunogenic Characteristics of Necroptosis in Soft Tissue Sarcomas. Frontiers in Immunology, 2022, 13, .	2.2	9
1691	XIAP as a multifaceted molecule in Cellular Signaling. Apoptosis: an International Journal on Programmed Cell Death, 2022, 27, 441-453.	2.2	21
1692	Knowledge Mapping of Necroptosis From 2012 to 2021: A Bibliometric Analysis. Frontiers in Immunology, 0, 13, .	2.2	27
1693	Upregulation of necroptosis markers RIPK3/MLKL and their crosstalk with autophagy-related protein Beclin-1 in primary immune thrombocytopenia. Clinical and Experimental Medicine, 2023, 23, 447-456.	1.9	2
1694	RIP3 Translocation into Mitochondria Promotes Mitofilin Degradation to Increase Inflammation and Kidney Injury after Renal Ischemia–Reperfusion. Cells, 2022, 11, 1894.	1.8	13
1695	miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Frontiers in Neuroscience, 0, 16, .	1.4	17
1696	Targeting Novel Regulated Cell Death: Pyroptosis, Necroptosis, and Ferroptosis in Diabetic Retinopathy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
1697	Do cytotoxicity and cell death cause false positive results in the in vitro comet assay?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 881, 503520.	0.9	20
1698	Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death and Disease, 2022, 13, .	2.7	9
1699	iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death. Cells, 2022, 11, 2018.	1.8	0
1700	Multi-omics analysis reveals the panoramic picture of necroptosis-related regulators in pan-cancer. Aging, 2022, 14, 5034-5058.	1.4	5
1701	Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. Science of the Total Environment, 2022, 838, 156576.	3.9	17
1702	Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. International Journal of Molecular Sciences, 2022, 23, 7191.	1.8	19
1703	Apoptotic and Necroptotic Mediators are Differentially Expressed in Mucinous and Non-Mucinous Colorectal Cancer. Frontiers in Oncology, 0, 12, .	1.3	0
1704	Association of Cell Death Markers With Tumor Immune Cell Infiltrates After Chemo-Radiation in Cervical Cancer. Frontiers in Oncology, 0, 12, .	1.3	6
1705	Protective effects of monoammonium glycyrrhizinate on fatty deposit degeneration induced in primary calf hepatocytes by sodium oleate administration in vitro. Research in Veterinary Science, 2022, 150, 213-223.	0.9	3

ARTICLE IF CITATIONS Establishment of a Necroptosis Related Genes Signature to Predict Prognosis and Therapeutic 1706 1.8 3 Response in Colon Cancer. Frontiers in Cell and Developmental Biology, 0, 10, . Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. 1707 1.4 Reproductive Biology and Endocrinology, 2022, 20, . Deficiency of PPP6C protects TNF-induced necroptosis through activation of TAK1. Cell Death and 1708 2.7 4 Disease, 2022, 13, . Necroptosis in atherosclerosis. Clinica Chimica Acta, 2022, 534, 22-28. 1709 0.5 PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons. Neural Regeneration 1710 1.6 32 Research, 2022, Publish Ahead of Print, . Identification of necroptosisâ€related gene signature and characterization of tumour 1711 microenvironment infiltration in nonâ€smallâ€cell lung cancer. Journal of Cellular and Molecular 1.6 Medicine, 2022, 26, 4698-4709. Melatonin counteracts necroptosis and pulmonary edema in cadmiumâ Enduced chronic lung injury 1712 1.4 4 through the inhibition of angiotensin II. Journal of Biochemical and Molecular Toxicology, 2022, 36, . Emerging Role of NLRP3 Inflammasome/Pyroptosis in Huntington's Disease. International Journal of 1713 1.8 9 Molecular Sciences, 2022, 23, 8363. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell 1714 2.7 12 Death and Disease, 2022, 13, . Uterine Fibroids Causing Preterm Birth: A New Pathophysiological Hypothesis on the Role of Fibroid 1715 1.8 Necrosis and Inflammation. International Journal of Molecular Sciences, 2022, 23, 8064. Panax notoginseng Saponins Protect Brain Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Resupply-Induced Necroptosis via Suppression of RIP1-RIP3-MLKL Signaling Pathway. 1716 2 1.6 Neurochemical Research, 2022, 47, 3261-3271. Identification of molecular subtypes, risk signature, and immune landscape mediated by necroptosis-related genes in non-small cell lung cancer. Frontiers in Oncology, 0, 12, . 1717 1.3 The role of inflammation in hematopoiesis and bone marrow failure: What can we learn from mouse 1718 2.2 7 models?. Frontiers in Immunology, 0, 13, . The regulation of necroptosis by ubiquitylation. Apoptosis: an International Journal on Programmed 1719 2.2 Cell Death, 2022, 27, 668-684. 1720 Dysregulation of neutrophil death in sepsis. Frontiers in Immunology, 0, 13, . 2.2 23 A Selective Reduction of Osteosarcoma by Mitochondrial Apoptosis Using Hydroxyapatite Nanoparticles. International Journal of Nanomedicine, 0, Volume 17, 3691-3710. RIPK1 and RIPK3 regulate TNFα-induced Î²-cell death in concert with caspase activity. Molecular 1722 3.08 Metabolism, 2022, 65, 101582. Development and validation of a robust necroptosis related classifier for colon adenocarcinoma. 1.1 Frontiers in Genetics, 0, 13, .

#	Article	IF	CITATIONS
1724	Anti-cancer Properties of Myricetin Against HT-29 Colon Cancer Cells Through Regulation of RIPK1/RIPK3 Signaling Pathway. Jentashapir Journal of Cellular and Molecular Biology, 2022, 13, .	0.1	0
1725	HuanglianGanjiang Tang alleviates DSS-induced colitis in mice by inhibiting necroptosis through vitamin D receptor. Journal of Ethnopharmacology, 2022, 298, 115655.	2.0	2
1727	Mathematical modeling of the molecular switch of TNFR1-mediated signaling pathways applying Petri net formalism and in silico knockout analysis. PLoS Computational Biology, 2022, 18, e1010383.	1.5	4
1728	Rosin Derivative IDOAMP Inhibits Prostate Cancer Growth via Activating RIPK1/RIPK3/MLKL Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	1.9	1
1729	Exploring the underlying mechanism of oleanolic acid treating glioma by transcriptome and molecular docking. Biomedicine and Pharmacotherapy, 2022, 154, 113586.	2.5	5
1730	A novel necroptosis-related gene signature for predict prognosis of glioma based on single-cell and bulk RNA sequencing. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1731	Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
1732	The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Translational Research, 2023, 252, 34-44.	2.2	6
1733	Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Frontiers in Nutrition, 0, 9, .	1.6	1
1734	MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death and Differentiation, 2023, 30, 269-278.	5.0	9
1735	Identification of molecular subtypes of coronary artery disease based on ferroptosis- and necroptosis-related genes. Frontiers in Genetics, 0, 13, .	1.1	4
1736	Bibliometric analysis of publications on necroptosis from 2001 to 2021. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1737	The Interplay Between Autophagy and Regulated Necrosis. Antioxidants and Redox Signaling, 0, , .	2.5	2
1738	Clinical significance of ferroptosis as iron-dependent regulated cell death in the general structure of the disease. Zdorovʹe Rebenka, 2022, 17, 204-208.	0.0	0
1739	Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. Journal of Hematology and Oncology, 2022, 15, .	6.9	24
1740	A novel necroptosis-related gene signature associated with immune landscape for predicting the prognosis of papillary thyroid cancer. Frontiers in Genetics, 0, 13, .	1.1	3
1741	The resurrection of RIP kinase 1 as an early cell death checkpoint regulator—a potential target for therapy in the necroptosis era. Experimental and Molecular Medicine, 2022, 54, 1401-1411.	3.2	14
1742	Forsythiaside Protected H9c2 Cardiomyocytes from H ₂ O ₂ -Induced Oxidative Stress and Apoptosis <i>via</i> Activating Nrf2/HO-1 Signaling Pathway. International Heart Journal, 2022, 63, 904 914	0.5	2

#	Article	IF	CITATIONS
1743	Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries. Cell Death and Differentiation, 2023, 30, 237-249.	5.0	23
1744	RNA sequence analysis reveals pathways and candidate genes associated with pancreatic acinar cells injury in a mouse pancreatitis model. Tissue and Cell, 2022, 79, 101940.	1.0	0
1746	PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. Journal of Immunology, 2022, 209, 1625-1633.	0.4	51
1747	Imatinib Mesylate Induces Necroptotic Cell Death and Impairs Autophagic Flux in Human Cardiac Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 11812.	1.8	1
1749	The Role of HSP90 Inhibitors in the Treatment of Cardiovascular Diseases. Cells, 2022, 11, 3444.	1.8	4
1750	Necroptosis: A Pathogenic Negotiator in Human Diseases. International Journal of Molecular Sciences, 2022, 23, 12714.	1.8	22
1751	Roles of RIPK3 in necroptosis, cell signaling, and disease. Experimental and Molecular Medicine, 2022, 54, 1695-1704.	3.2	39
1752	Dengue virus downregulates TNFR1- and TLR3-stimulated NF-ήB activation by targeting RIPK1. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
1753	Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. International Journal of Molecular Sciences, 2022, 23, 12926.	1.8	14
1754	From Differential DNA Methylation in COPD to Mitochondria: Regulation of AHRR Expression Affects Airway Epithelial Response to Cigarette Smoke. Cells, 2022, 11, 3423.	1.8	4
1755	Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	1.9	5
1756	The role of platelet mediated thromboinflammation in acute liver injury. Frontiers in Immunology, 0, 13, .	2.2	13
1757	GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. Journal of Neuroinflammation, 2022, 19, .	3.1	29
1758	Inhibition of Necroptosis in Acute Pancreatitis: Screening for RIPK1 Inhibitors. Processes, 2022, 10, 2260.	1.3	2
1760	Establishment of lung adenocarcinoma classification and risk model based on necroptosis-related genes. Frontiers in Genetics, 0, 13, .	1.1	4
1761	A Necroptosis-Related Gene Signature to Predict the Prognosis of Skin Cutaneous Melanoma. Disease Markers, 2022, 2022, 1-18.	0.6	0
1762	Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities. Journal of Medicinal Chemistry, 2022, 65, 14971-14999.	2.9	8
1763	Combined bulk RNA-seq and single-cell RNA-seq identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Frontiers in Immunology, 0, 13, .	2.2	5

	CHAN	ON REPORT	
#	Article	IF	CITATIONS
1764	Ferroptosis: A new insight for treatment of acute kidney injury. Frontiers in Pharmacology, 0, 13, .	1.6	9
1765	Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 45-63.	1.1	3
1766	HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death and Disease, 2022, 13, .	2.7	14
1767	Apoptosis, autophagic cell death, and necroptosis: different types of programmed cell death in bovine corpus luteum regression. Journal of Reproduction and Development, 2022, 68, 355-360.	0.5	3
1768	Apoptosis and inflammasome regulation. , 2023, , 511-524.		0
1769	Fluorescence microscopic approach for detection of two different modes of breast cancer cell death induced by nanosecond pulsed electric field. Sensors and Actuators B: Chemical, 2023, 378, 133199.	4.0	5
1770	Novel Targets and Therapies in T Cell Lymphoma. European Medical Journal Oncology, 0, , 79-90.	0.0	0
1771	Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Scientific Reports, 2022, 12, .	1.6	4
1772	Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens, 2022, 11, 1400.	1.2	4
1774	New insights of necroptosis and immune infiltration in sepsis-induced myocardial dysfunction from bioinformatics analysis through RNA-seq in mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
1776	Thymol Ameliorates <i>Aspergillus fumigatus</i> Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis. Journal of Microbiology and Biotechnology, 2023, 33, 43-50.	0.9	5
1777	Scabertopin Derived from Elephantopus scaber L. Mediates Necroptosis by Inducing Reactive Oxygen Species Production in Bladder Cancer In Vitro. Cancers, 2022, 14, 5976.	1.7	5
1778	Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Reports, 2022, 41, 111851.	2.9	9
1779	Targeting Cell Membranes, Depleting ROS by Dithiane and Thioketal-Containing Polymers with Pendant Cholesterols Delivering Necrostatin-1 for Glaucoma Treatment. ACS Nano, 2022, 16, 21225-21239.	7.3	10
1780	Trimethyltin induces apoptosis and necroptosis of mouse liver by oxidative stress through YAP phosphorylation. Ecotoxicology and Environmental Safety, 2022, 248, 114327.	2.9	20
1781	Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology and Oncology, 2022, 15, .	6.9	138
1782	Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. , 2023, 40, .		9
1783	Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. Journal of Cellular Physiology, 2023, 238, 287-305.	2.0	19

		CITATION REPORT	
#	Article	IF	CITATIONS
1784	ZBP1-Mediated Necroptosis: Mechanisms and Therapeutic Implications. Molecules, 2023, 28, 52.	1.7	11
1785	Potential therapeutic value of necroptosis inhibitor for the treatment of COVID-19. European Journal of Medical Research, 2022, 27, .	0.9	5
1786	The Emerging Role of Deubiquitinases in Cell Death. Biomolecules, 2022, 12, 1825.	1.8	1
1787	Necrostatin-1 as a Neuroprotectant. , 2022, , 123-155.		0
1788	3,4-Dimethoxychalcone, a caloric restriction mimetic, enhances TFEB-mediated autophagy and alleviates pyroptosis and necroptosis after spinal cord injury. Theranostics, 2023, 13, 810-832.	4.6	9
1789	Editorial: Ferroptosis in cancer and beyond. Frontiers in Molecular Biosciences, 0, 9, .	1.6	Ο
1791	Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metabolism Reviews, 2023, 55, 50-74.	1.5	2
1792	Influence of the Ovarian Reserve and Oocyte Quality on Livestock Fertility. Sustainable Agriculture Reviews, 2023, , 201-240.	0.6	1
1793	An in vitro evaluation of the antioxidant activities of necroptosis and apoptosis inhibitors: the potential of necrostatin-1 and necrostatin-1i to have radical scavenging activities. Pharmacological Reports, 2023, 75, 490-497.	1.5	2
1794	Bioinformatic analysis of biological pathways in coronary heart disease and Alzheimer's disease. Bulletin of Siberian Medicine, 2023, 21, 193-204.	0.1	Ο
1795	Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Frontiers in Pharmacology, 0, 14, .	1.6	8
1796	Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that exacerbates Gaucher disease. Immunity, 2023, 56, 307-319.e8.	6.6	11
1797	SREBP activation contributes to fatty acid accumulations in necroptosis. RSC Chemical Biology, 2023, 4, 310-322.	2.0	1
1798	Health consequences of mutant cartilage oligomeric matrix protein and its relationship to abnormal growth and joint degeneration. Matrix Biology, 2023, 119, 101-111.	1.5	3
1799	Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radical Biology and Medicine, 2023, 202, 76-96.	1.3	7
1800	Screening for Biomarkers Associated with Left Ventricular Function During Follow-up After Acute Coronary Syndrome. Journal of Cardiovascular Translational Research, 2023, 16, 244-254.	1.1	3
1801	Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Research Reviews, 2023, 86, 101855.	5.0	6
1802	Surveying the landscape of emerging and understudied cell death mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119432.	1.9	4

CITATION REPORT ARTICLE IF CITATIONS A prognostic model based on necroptosis-related genes for prognosis and therapy in bladder cancer. 0.6 0 BMC Urology, 2023, 23, . A biochemical necroptosis model explains cell-type-specific responses to cell death cues. Biophysical 0.2 Journal, 2023, 122, 817-834. taVNS Alleviates Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Via Activating Basal 1.6 4 Forebrain Cholinergic Neurons. Neurochemical Research, 2023, 48, 1848-1863. Prothymosin α Plays Role as a Brain Guardian through Ecto-F1 ATPase-P2Y12 Complex and TLR4/MD2. 1.8 Cells, 2023, 12, 496. From (Tool)Bench to Bedside: The Potential of Necroptosis Inhibitors. Journal of Medicinal Chemistry, 2.9 10 2023, 66, 2361-2385. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. 1.6 European Journal of Immunólogy, 2023, 53, . <i>Salmonella</i> effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate 4.3 7 systemic infection. Gut Microbes, 2023, 15, . Design for Robustness: Bio-Inspired Perspectives in Structural Engineering. Biomimetics, 2023, 8, 95. 1.5 Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Frontiers in 5 1.5 Microbiology, 0, 14, . Polytonic Drug Release via Multiâ€Hierarchical Microstructures Enabled by Nanoâ€Metamaterials. Advanced Healthcare Materials, 2023, 12, . The power of super-resolution microscopy in modern biomedical science. Advances in Colloid and 4 7.0Interface Science, 2023, 314, 102880. The Evaluation of Androctonus crassicauda Antivenom against the Effects of Aegaeobuthus nigrocinctus Scorpion Venom on Autophagy, Apoptosis and Necroptosis. Iranian Journal of 0.8 Arthropod-borne Diseases, 0, , . Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases? 1.7 7 Molecules, 2023, 28, 2636. Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses, 2023, 15, 1.5 768

1817	Synthesis and evaluation of four novel nitrogen-heterocyclic ruthenium polypyridyl complexes as photosensitizers for one and two-photon photodynamic therapy. Dalton Transactions, 0, , .	1.6	0
1818	Necrocide 1 mediates necrotic cell death and immunogenic response in human cancer cells. Cell Death and Disease, 2023, 14, .	2.7	0
1819	Non-lethal roles of the initiator caspase Dronc in Drosophila. , 0, 2, .		0
1820	Ferroptosis: Under pressure!. Current Biology. 2023. 33. R269-R272.	1.8	0

#

1803

1804

1805

1807

1808

1809

1810

1811

1813

#	Article	IF	Citations
1821	Necroptosis-Related Modification Patterns Depict the Tumor Microenvironment, Redox Stress Landscape, and Prognosis of Ovarian Cancer. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-26.	1.9	0
1822	RIPK1 inhibition contributes to lysosomal membrane stabilization in ischemic astrocytes via a lysosomal Hsp70.1B-dependent mechanism. Acta Pharmacologica Sinica, 2023, 44, 1549-1563.	2.8	2
1823	Discovery of kaempferol, a novel ADAM10 inhibitor, as a potential treatment for Staphylococcus aureus infection. Engineering, 2023, , .	3.2	1
1824	Sphingolipid Metabolism in Cancer: Potential Therapeutic Target. , 2023, , 1-39.		0
1825	Effects of Dichlorvos on cardiac cells: Toxicity and molecular mechanism of action. Chemosphere, 2023, 330, 138714.	4.2	1
1826	Identification of necroptosis-related subtypes and characterization of tumor microenvironment infiltration in non-small cell lung cancer. Current Cancer Drug Targets, 2023, 23, .	0.8	0
1827	Recent Therapeutic Strategies for Excessive Chondrocyte Death in Osteoarthritis: A Review. Orthopaedic Surgery, 2023, 15, 1437-1453.	0.7	1
1836	Amyloids and prions in the light of evolution. Current Genetics, 0, , .	0.8	0
1842	Non-lethal outcomes of engaging regulated cell death pathways in cancer. Nature Cancer, 2023, 4, 795-806.	5.7	11
1843	Dysfunctions, molecular mechanisms, and therapeutic strategies of pancreatic Î ² -cells in diabetes. Apoptosis: an International Journal on Programmed Cell Death, 2023, 28, 958-976.	2.2	6
1851	Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. International Ophthalmology, 2023, 43, 3891-3909.	0.6	1
1852	Morphogenesis by Elective Cell Death. , 2023, , 379-392.		0
1875	The regulation of amino acid metabolism in tumor cell death: from the perspective of physiological functions. Apoptosis: an International Journal on Programmed Cell Death, 2023, 28, 1304-1314.	2.2	1
1897	Targeting necroptosis in fibrosis. Molecular Biology Reports, 2023, 50, 10471-10484.	1.0	1
1899	Necroptosis inhibitors: mechanisms of action and therapeutic potential. Apoptosis: an International Journal on Programmed Cell Death, 0, , .	2.2	0
1910	Modes of Chemically Induced Cell Death. , 2023, , .		0
1912	ROS/Redox Signaling and Apoptosis/Necroptosis/Autophagy in Cancer. , 2023, , 133-172.		0
1913	Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. Journal of Cardiovascular Translational Research, 2024, 17, 133-152.	1.1	1

CI	гат	ION	RF	PORT

#	Article	IF	CITATIONS
1914	The hidden world of cyanobacterial cell death: classification, regulatory mechanisms, and ecological significance. , 2024, , 313-340.		0