Mitochondrial protein import: from proteomics to func

Nature Reviews Molecular Cell Biology 11, 655-667

DOI: 10.1038/nrm2959

Citation Report

#	Article	IF	CITATIONS
1	FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Human Molecular Genetics, 2010, 19, 4837-4847.	1.4	79
2	The Role of Mitochondria in the Aging Processes of Yeast. Sub-Cellular Biochemistry, 2011, 57, 55-78.	1.0	43
3	Mitochondrial RNA Import. International Review of Cell and Molecular Biology, 2011, 287, 145-190.	1.6	43
4	Topological Probes of Monoamine Oxidases A and B in Rat Liver Mitochondria: Inhibition by TEMPO-Substituted Pargyline Analogues and Inactivation by Proteolysis. Biochemistry, 2011, 50, 2499-2505.	1.2	25
5	Coordination of mitochondrial biogenesis by thyroid hormone. Molecular and Cellular Endocrinology, 2011, 342, 1-7.	1.6	103
6	Structural Basis for the Function of Tim50 in the Mitochondrial Presequence Translocase. Journal of Molecular Biology, 2011, 411, 513-519.	2.0	41
7	The Mitochondrial Electron Transport Chain Is Dispensable for Proliferation and Differentiation of Epidermal Progenitor Cells. Stem Cells, 2011, 29, 1459-1468.	1.4	51
8	Pre-microRNA and Mature microRNA in Human Mitochondria. PLoS ONE, 2011, 6, e20220.	1.1	259
9	A highâ€definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant Journal, 2011, 67, 181-194.	2.8	38
10	The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. Journal of Neurochemistry, 2011, 117, 856-867.	2.1	313
11	Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nature Reviews Molecular Cell Biology, 2011, 12, 14-20.	16.1	182
12	Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex. EMBO Reports, 2011, 12, 542-548.	2.0	24
13	SOD1 and mitochondria in ALS: a dangerous liaison. Journal of Bioenergetics and Biomembranes, 2011, 43, 593-599.	1.0	64
14	Dictyostelium dynamin B modulates cytoskeletal structures and membranous organelles. Cellular and Molecular Life Sciences, 2011, 68, 2751-2767.	2.4	20
15	Endosymbiont or host: who drove mitochondrial and plastid evolution?. Biology Direct, 2011, 6, 12.	1.9	18
16	Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skeletal Muscle, 2011, 1, 6.	1.9	95
17	The Nâ€end rule pathway and regulation by proteolysis. Protein Science, 2011, 20, 1298-1345.	3.1	594
18	Poly(ADP-ribose) Polymerase-1 Is a Nuclear Epigenetic Regulator of Mitochondrial DNA Repair and Transcription. Molecular Pharmacology, 2011, 79, 932-940.	1.0	59

#	Article	IF	CITATIONS
19	Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Molecular Biology of the Cell, 2011, 22, 2135-2143.	0.9	107
20	The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. Journal of Cell Biology, 2011, 194, 387-395.	2.3	117
21	Protein localization in disease and therapy. Journal of Cell Science, 2011, 124, 3381-3392.	1.2	346
22	Diabetic Retinopathy and Damage to Mitochondrial Structure and Transport Machinery. , 2011, 52, 8739.		89
23	Making heads or tails of phospholipids in mitochondria. Journal of Cell Biology, 2011, 192, 7-16.	2.3	497
24	Biogenesis of mitochondrial \hat{l}^2 -barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Molecular Biology of the Cell, 2011, 22, 2823-2833.	0.9	47
25	Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging. Journal of Aging Research, 2011, 2011, 1-9.	0.4	23
26	Direct Interaction of Mitochondrial Targeting Presequences with Purified Components of the TIM23 Protein Complex. Journal of Biological Chemistry, 2011, 286, 43809-43815.	1.6	50
27	Signaling at the gate: Phosphorylation of the mitochondrial protein import machinery. Cell Cycle, 2011, 10, 2083-2090.	1.3	37
28	Primary Sequence That Determines the Functional Overlap between Mitochondrial Heat Shock Protein 70 Ssc1 and Ssc3 of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 19001-19013.	1.6	17
29	Mitochondrial quality control: a matter of life and death for neurons. EMBO Journal, 2012, 31, 1336-1349.	3.5	335
30	Differential Age-Dependent Import Regulation by Signal Peptides. PLoS Biology, 2012, 10, e1001416.	2.6	60
31	An essential novel component of the noncanonical mitochondrial outer membrane protein import system of trypanosomatids. Molecular Biology of the Cell, 2012, 23, 3420-3428.	0.9	26
32	Gene Expression Profile in Response to Doxorubicin–Rapamycin Combined Treatment of HER-2–Overexpressing Human Mammary Epithelial Cell Lines. Molecular Cancer Therapeutics, 2012, 11, 464-474.	1.9	6
33	Inhibiting mitochondrial-dependent proteolysis of Mcl-1 promotes resistance to DNA damage. Cell Cycle, 2012, 11, 88-98.	1.3	4
34	Diabetic Peripheral Neuropathy: Should a Chaperone Accompany Our Therapeutic Approach?. Pharmacological Reviews, 2012, 64, 880-900.	7.1	70
35	HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion. Cell Death and Disease, 2012, 3, e335-e335.	2.7	32
36	Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease. Human Molecular Genetics, 2012, 21, 3317-3332.	1.4	36

#	ARTICLE	IF	CITATIONS
37	LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287, 41757-41773.	1.6	54
38	Protein Translocase of Mitochondrial Inner Membrane in Trypanosoma brucei. Journal of Biological Chemistry, 2012, 287, 14480-14493.	1.6	44
39	Amyotrophic Lateral Sclerosis: New Insights into Underlying Molecular Mechanisms and Opportunities for Therapeutic Intervention. Antioxidants and Redox Signaling, 2012, 17, 1277-1330.	2.5	58
40	A Small Tim Homohexamer in the Relict Mitochondrion of Cryptosporidium. Molecular Biology and Evolution, 2012, 29, 113-122.	3.5	22
41	Intermembrane Space Proteome of Yeast Mitochondria. Molecular and Cellular Proteomics, 2012, 11, 1840-1852.	2.5	134
42	Genetic Analysis of Complex Interactions Among Components of the Mitochondrial Import Motor and Translocon in <i>Saccharomyces cerevisiae</i>). Genetics, 2012, 190, 1341-1353.	1.2	23
43	Dual Location of the Mitochondrial Preprotein Transporters B14.7 and Tim23-2 in Complex I and the TIM17:23 Complex in <i>Arabidopsis</i> Links Mitochondrial Activity and Biogenesis. Plant Cell, 2012, 24, 2675-2695.	3.1	75
44	Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins. EMBO Reports, 2012, 13, 916-922.	2.0	32
45	Introduction to Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, 2012, 748, 1-11.	0.8	28
46	PNPASE and RNA trafficking into mitochondria. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 998-1007.	0.9	68
47	Trafficking of protein into the recently established photosynthetic organelles of <i>Paulinella chromatophora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5340-5345.	3.3	154
48	Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusionÂto respiration. Nature Cell Biology, 2012, 14, 575-583.	4.6	347
49	Biogenesis of mitochondria connects to the cell cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S68-S69.	0.5	0
50	Direct Induction of Apoptosis Using an Optimal Mitochondrially Targeted p53. Molecular Pharmaceutics, 2012, 9, 1449-1458.	2.3	33
51	Two pentatricopeptide repeat proteins are essential for biogenesis of the NADH:ubiquinone oxidoreductase from the filamentous fungus Neurospora crassa. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S69-S70.	0.5	1
53	Signalling pathways regulating mitochondrial protein import. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S83.	0.5	0
54	Mitochondrial Protein Synthesis, Import, and Assembly. Genetics, 2012, 192, 1203-1234.	1,2	177
55	Interaction of Presequence with Human Translocase of the Inner Membrane of Mitochondria Tim50. Journal of Physical Chemistry B, 2012, 116, 2990-2998.	1.2	9

#	Article	IF	Citations
56	C-Terminal Heat Shock Protein 90 Inhibitor Decreases Hyperglycemia-induced Oxidative Stress and Improves Mitochondrial Bioenergetics in Sensory Neurons. Journal of Proteome Research, 2012, 11, 2581-2593.	1.8	47
57	Mitochondrial dysfunction in ALS. Progress in Neurobiology, 2012, 97, 54-66.	2.8	197
58	RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell, 2012, 11, 456-466.	3.0	97
59	Role of MINOS in Mitochondrial Membrane Architecture: Cristae Morphology and Outer Membrane Interactions Differentially Depend on Mitofilin Domains. Journal of Molecular Biology, 2012, 422, 183-191.	2.0	112
60	The therapeutic potential of mitochondrial channels in cancer, ischemia–reperfusion injury, and neurodegeneration. Mitochondrion, 2012, 12, 14-23.	1.6	28
61	PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signalling. Mitochondrion, 2012, 12, 86-99.	1.6	115
62	Mitochondria and autophagy: Critical interplay between the two homeostats. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 595-600.	1.1	131
63	Unresolved mysteries in the biogenesis of mitochondrial membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1085-1090.	1.4	16
64	Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1536-1544.	1.4	38
65	Mitochondrial chaperone DnaJA3 induces Drp1-dependent mitochondrial fragmentation. International Journal of Biochemistry and Cell Biology, 2012, 44, 1366-1376.	1.2	21
66	Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin. Developmental Cell, 2012, 22, 320-333.	3.1	523
67	Mitochondria: In Sickness and in Health. Cell, 2012, 148, 1145-1159.	13.5	2,411
68	A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress. Autophagy, 2012, 8, 664-676.	4.3	54
69	Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis. Symbiosis, 2012, 58, 99-107.	1.2	15
70	Processing of mitochondrial presequences. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1098-1106.	0.9	127
71	Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends in Biochemical Sciences, 2012, 37, 317-324.	3.7	132
72	Aging Research in Yeast. Sub-Cellular Biochemistry, 2012, , .	1.0	27
73	Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA. PLoS ONE, 2012, 7, e44873.	1.1	167

#	Article	IF	CITATIONS
74	The Cell-Free Integration of a Polytopic Mitochondrial Membrane Protein into Liposomes Occurs Cotranslationally and in a Lipid-Dependent Manner. PLoS ONE, 2012, 7, e46332.	1.1	36
75	Organelle proteomics in skeletal muscle biology. Journal of Integrated OMICS, 2012, 2, .	0.5	7
76	Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Human Mutation, 2012, 33, 1408-1422.	1.1	32
78	Activityâ€Based Probes for Studying the Activity of Flavinâ€Dependent Oxidases and for the Protein Target Profiling of Monoamine Oxidase Inhibitors. Angewandte Chemie - International Edition, 2012, 51, 7035-7040.	7.2	63
79	Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Experimental Neurology, 2012, 235, 388-396.	2.0	61
80	Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2943-2952.	1.9	66
81	The Ins and Outs of Chloroplast Protein Transport. Advances in Photosynthesis and Respiration, 2013, , 239-280.	1.0	0
82	Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics, 2013, 14, 91.	1.2	17
84	The DNA Binding Domain of p53 Is Sufficient To Trigger a Potent Apoptotic Response at the Mitochondria. Molecular Pharmaceutics, 2013, 10, 3592-3602.	2.3	18
85	An engineered dimeric protein pore that spans adjacent lipid bilayers. Nature Communications, 2013, 4, 1725.	5.8	44
86	Biogenesis of mitochondrial carrier proteins: Molecular mechanisms of import into mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 494-502.	1.9	56
87	Novel Role of Calmodulin in Regulating Protein Transport to Mitochondria in a Unicellular Eukaryote. Molecular and Cellular Biology, 2013, 33, 4579-4593.	1.1	18
88	Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, 2013, 154, 596-608.	13.5	115
89	Emerging concepts in the flavinylation of succinate dehydrogenase. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 627-636.	0.5	54
90	Molecular Insights Revealing Interaction of Tim23 and Channel Subunits of Presequence Translocase. Molecular and Cellular Biology, 2013, 33, 4641-4659.	1.1	23
91	Mitochondrial genome function and maternal inheritance. Biochemical Society Transactions, 2013, 41, 1298-1304.	1.6	25
92	Genome Evolution in the Cold: Antarctic Icefish Muscle Transcriptome Reveals Selective Duplications Increasing Mitochondrial Function. Genome Biology and Evolution, 2013, 5, 45-60.	1.1	56
93	Application of a Proapoptotic Peptide to Intratumorally Spreading Cancer Therapy. Cancer Research, 2013, 73, 1352-1361.	0.4	55

#	Article	IF	CITATIONS
94	Immunocytochemical Localization of the Translocase of the Outer Mitochondrial Membrane (Tom20) in the Human Cochlea. Anatomical Record, 2013, 296, 326-332.	0.8	21
95	Complementary RNA and Protein Profiling Identifies Iron as a Key Regulator of Mitochondrial Biogenesis. Cell Reports, 2013, 3, 237-245.	2.9	67
96	Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein. Journal of Insect Physiology, 2013, 59, 377-386.	0.9	37
97	Stress-Regulated Translational Attenuation Adapts Mitochondrial Protein Import through Tim17A Degradation. Cell Metabolism, 2013, 18, 908-919.	7.2	142
98	Mitochondrial protein homeostasis. IUBMB Life, 2013, 65, 191-201.	1.5	16
99	Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends in Cell Biology, 2013, 23, 311-318.	3.6	175
100	Selective escape of proteins from the mitochondria during mitophagy. Nature Communications, 2013, 4, 1410.	5.8	120
101	Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cellular and Molecular Life Sciences, 2013, 70, 951-976.	2.4	72
102	Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Diabetes/Metabolism Research and Reviews, 2013, 29, 204-213.	1.7	36
103	Pharmacological approaches to restore mitochondrial function. Nature Reviews Drug Discovery, 2013, 12, 465-483.	21.5	323
104	Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective. Physics Reports, 2013, 529, 1-197.	10.3	192
105	Hepatotoxicity Due to Mitochondrial Injury. , 2013, , 85-100.		10
106	Processing peptidases in mitochondria and chloroplasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 360-370.	1.9	151
107	Molecular chaperone involvement in chloroplast protein import. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 332-340.	1.9	111
108	The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion, 2013, 13, 119-124.	1.6	13
109	Mitochondrial Biogenesis through Activation of Nuclear Signaling Proteins. Cold Spring Harbor Perspectives in Biology, 2013, 5, a015008-a015008.	2.3	190
110	Interaction between myoglobin and mitochondria in rat skeletal muscle. Journal of Applied Physiology, 2013, 114, 490-497.	1.2	28
111	Pathogenic Implications of Human Mitochondrial Aminoacyl-tRNA Synthetases. Topics in Current Chemistry, 2013, 344, 247-292.	4.0	26

#	Article	IF	CITATIONS
112	Identification and characterization of mitochondrial Mia40 as an iron–sulfur protein. Biochemical Journal, 2013, 455, 27-35.	1.7	21
113	Viruses as Modulators of Mitochondrial Functions. Advances in Virology, 2013, 2013, 1-17.	0.5	111
114	Oxidative Folding in the Mitochondrial Intermembrane Space in Human Health and Disease. International Journal of Molecular Sciences, 2013, 14, 2916-2927.	1.8	7
115	Mitochondrial Genetics of Retinal Disease. , 2013, , 635-641.		1
116	The Ubiquitin-Proteasome System Regulates Mitochondrial Intermembrane Space Proteins. Molecular and Cellular Biology, 2013, 33, 2136-2148.	1.1	122
117	Methylation-controlled J-protein MCJ acts in the import of proteins into human mitochondria. Human Molecular Genetics, 2013, 22, 1348-1357.	1.4	42
118	Mitochondrial Outer Membrane Proteome of Trypanosoma brucei Reveals Novel Factors Required to Maintain Mitochondrial Morphology. Molecular and Cellular Proteomics, 2013, 12, 515-528.	2.5	88
119	From inventory to functional mechanisms. FEBS Journal, 2013, 280, 4933-4942.	2.2	14
120	MUSCLE‧PECIFIC OVEREXPRESSION OF THE CATALYTIC SUBUNIT OF DNA POLYMERASE γ INDUCES PUPAL LETHALITY IN ⟨i⟩Drosophila melanogaster⟨/i⟩. Archives of Insect Biochemistry and Physiology, 2013, 83, 127-137.	0.6	3
121	The Functional Interaction of Mitochondrial Hsp70s with the Escort Protein Zim17 Is Critical for Fe/S Biogenesis and Substrate Interaction at the Inner Membrane Preprotein Translocase. Journal of Biological Chemistry, 2013, 288, 30931-30943.	1.6	12
122	Tim50 in Trypanosoma brucei Possesses a Dual Specificity Phosphatase Activity and Is Critical for Mitochondrial Protein Import. Journal of Biological Chemistry, 2013, 288, 3184-3197.	1.6	24
123	Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. American Journal of Physiology - Cell Physiology, 2013, 305, C502-C511.	2.1	25
124	Cardiomyocyte Specific Deletion of Crif1 Causes Mitochondrial Cardiomyopathy in Mice. PLoS ONE, 2013, 8, e53577.	1.1	14
125	Functional Dissection of the Dictyostelium discoideum Dynamin B Mitochondrial Targeting Sequence. PLoS ONE, 2013, 8, e56975.	1.1	3
126	Tom70 Is Essential for PINK1 Import into Mitochondria. PLoS ONE, 2013, 8, e58435.	1.1	49
127	Evidence of Evolutionary Constraints That Influences the Sequence Composition and Diversity of Mitochondrial Matrix Targeting Signals. PLoS ONE, 2013, 8, e67938.	1.1	11
128	Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome. Frontiers in Plant Science, 2013, 4, 4.	1.7	86
129	Journal of Parkinson's disease & Alzheimer's disease. Journal of Parkinson's Disease and Alzheimer's Disease, 2014, 1, .	1.5	56

#	Article	IF	CITATIONS
130	21. Eukaryotic iron-sulfur protein biogenesis and its role in maintaining genomic integrity. , 2014, , 563-598.		O
131	Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance. Nucleic Acids Research, 2014, 42, 13214-13227.	6.5	12
132	Intramolecular Disulfide Bond of Tim22 Protein Maintains Integrity of the TIM22 Complex in the Mitochondrial Inner Membrane. Journal of Biological Chemistry, 2014, 289, 4827-4838.	1.6	27
133	Formation and Regulation of Mitochondrial Membranes. International Journal of Cell Biology, 2014, 2014, 1-13.	1.0	115
134	Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Frontiers in Plant Science, 2014, 5, 173.	1.7	58
135	Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites. PLoS Pathogens, 2014, 10, e1004547.	2.1	69
136	Visualizing active membrane protein complexes by electron cryotomography. Nature Communications, 2014, 5, 4129.	5.8	59
137	A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Molecular Biology of the Cell, 2014, 25, 3999-4009.	0.9	44
138	Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nature Communications, 2014, 5, 5585.	5.8	29
139	Fas Activated Serine-Threonine Kinase Domains 2 (FASTKD2) mediates apoptosis of breast and prostate cancer cells through its novel FAST2 domain. BMC Cancer, 2014, 14, 852.	1.1	13
140	TIMMDC1/C3orf1 Functions as a Membrane-Embedded Mitochondrial Complex I Assembly Factor through Association with the MCIA Complex. Molecular and Cellular Biology, 2014, 34, 847-861.	1.1	78
141	Import Determinants of Organelle-Specific and Dual Targeting Peptides of Mitochondria and Chloroplasts in Arabidopsis thaliana. Molecular Plant, 2014, 7, 121-136.	3.9	41
142	Evidence Supporting the 19 \hat{l}^2 -Strand Model for Tom40 from Cysteine Scanning and Protease Site Accessibility Studies. Journal of Biological Chemistry, 2014, 289, 21640-21650.	1.6	19
143	Pressing Mitochondrial Genetics Forward. Cell Reports, 2014, 7, 599-600.	2.9	1
144	Heat Shock Protein 70 Is Necessary to Improve Mitochondrial Bioenergetics and Reverse Diabetic Sensory Neuropathy following KU-32 Therapy. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 281-292.	1.3	58
145	Dynamic survey of mitochondria by ubiquitin. EMBO Reports, 2014, 15, 231-243.	2.0	55
146	The Protein Import Machinery of Mitochondriaâ€"A Regulatory Hub in Metabolism, Stress, and Disease. Cell Metabolism, 2014, 19, 357-372.	7.2	316
147	Mitochondrial Channels: Ion Fluxes and More. Physiological Reviews, 2014, 94, 519-608.	13.1	281

#	Article	IF	Citations
148	Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair, 2014, 13, 22-31.	1.3	68
149	Mitochondrial form and function. Nature, 2014, 505, 335-343.	13.7	1,317
150	Mode of membrane insertion of individual transmembrane segments in Mdl1 and Mdl2, multiâ€spanning mitochondrial ABC transporters. FEBS Letters, 2014, 588, 3445-3453.	1.3	5
151	Determinants and Functions of Mitochondrial Behavior. Annual Review of Cell and Developmental Biology, 2014, 30, 357-391.	4.0	280
152	OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase. Circulation Research, 2014, 115, 450-459.	2.0	75
153	Cardiolipin and Mitochondrial Function in Health and Disease. Antioxidants and Redox Signaling, 2014, 20, 1925-1953.	2.5	94
154	Architecture of the TIM23 Inner Mitochondrial Translocon and Interactions with the Matrix Import Motor. Journal of Biological Chemistry, 2014, 289, 28689-28696.	1.6	31
155	A SIRT7-Dependent Acetylation Switch of GABPl 21 Controls Mitochondrial Function. Cell Metabolism, 2014, 20, 856-869.	7.2	214
156	TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs. Bioinformatics, 2014, 30, 2973-2974.	1.8	34
157	Curcumin protects neurons against oxygenâ€glucose deprivation/reoxygenationâ€induced injury through activation of peroxisome proliferatorâ€activated receptorâ€i³ function. Journal of Neuroscience Research, 2014, 92, 1549-1559.	1.3	28
158	Tom70 serves as a molecular switch to determine pathological cardiac hypertrophy. Cell Research, 2014, 24, 977-993.	5.7	45
159	Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends in Endocrinology and Metabolism, 2014, 25, 528-537.	3.1	162
160	Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. Journal of Proteomics, 2014, 100, 8-24.	1.2	13
162	iTRAQ-Based Quantitative Proteomics Analysis Revealed Alterations of Carbohydrate Metabolism Pathways and Mitochondrial Proteins in a Male Sterile Cybrid Pummelo. Journal of Proteome Research, 2014, 13, 2998-3015.	1.8	61
163	Mitochondrial inheritance in yeast. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1039-1046.	0.5	69
164	Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: Implications in diabetic retinopathy and metabolic memory phenomenon. Experimental Eye Research, 2014, 121, 168-177.	1.2	48
165	Loss of MED1 triggers mitochondrial biogenesis in C2C12 cells. Mitochondrion, 2014, 14, 18-25.	1.6	12
166	C1orf163/RESA1 Is a Novel Mitochondrial Intermembrane Space Protein Connected to Respiratory Chain Assembly. Journal of Molecular Biology, 2014, 426, 908-920.	2.0	31

#	ARTICLE	IF	CITATIONS
167	The mitochondrial unfolded protein response in mammalian physiology. Mammalian Genome, 2014, 25, 424-433.	1.0	61
168	Mitochondrial protein translocases for survival and wellbeing. FEBS Letters, 2014, 588, 2484-2495.	1.3	85
169	Mechanisms Regulating Protein Localization. Traffic, 2015, 16, 1039-1061.	1.3	120
171	Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Scientific Reports, 2015, 5, 16064.	1.6	99
172	Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages. PLoS ONE, 2015, 10, e0117047.	1.1	56
173	Global human frequencies of predicted nuclear pathogenic variants and the role played by protein hydrophobicity in pathogenicity potential. Scientific Reports, 2014, 4, 7155.	1.6	8
174	Structure and function of mitochondrial membrane protein complexes. BMC Biology, 2015, 13, 89.	1.7	459
175	An improved workflow for quantitative Nâ€terminal chargeâ€based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in <i>Arabidopsis thaliana</i> . Proteomics, 2015, 15, 2458-2469.	1.3	72
176	GxxxG motifs hold the TIM23 complex together. FEBS Journal, 2015, 282, 2178-2186.	2.2	29
177	Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. Journal of Pharmacy and Pharmacology, 2015, 67, 300-318.	1.2	20
178	Mitochondrial Dynamics and Heart Failure. , 2015, 6, 507-526.		27
179	Mitochondrial Ion Channels in Cancer Transformation. Frontiers in Oncology, 2015, 5, 120.	1.3	15
180	Hypoxia Strongly Affects Mitochondrial Ribosomal Proteins and Translocases, as Shown by Quantitative Proteomics of HeLa Cells. International Journal of Proteomics, 2015, 2015, 1-9.	2.0	22
181	Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts. Journal of Cell Biology, 2015, 209, 539-548.	2.3	230
182	A component of the mitochondrial outer membrane proteome of T. brucei probably contains covalent bound fatty acids. Experimental Parasitology, 2015, 155, 49-57.	0.5	1
183	A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. Journal of Molecular Biology, 2015, 427, 1135-1158.	2.0	105
184	Yeast Mitochondrial Protein–Protein Interactions Reveal Diverse Complexes and Disease-Relevant Functional Relationships. Journal of Proteome Research, 2015, 14, 1220-1237.	1.8	18
185	Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells. Expert Review of Proteomics, 2015, 12, 61-74.	1.3	8

#	Article	IF	CITATIONS
186	mit-o-matic: A Comprehensive Computational Pipeline for Clinical Evaluation of Mitochondrial Variations from Next-Generation Sequencing Datasets. Human Mutation, 2015, 36, 419-424.	1.1	26
187	Mitoconfusion: Noncanonical Functioning of Dynamism Factors in Static Mitochondria of the Heart. Cell Metabolism, 2015, 21, 195-205.	7.2	105
188	Functional Complementation Analyses Reveal that the Single PRAT Family Protein of Trypanosoma brucei Is a Divergent Homolog of Tim17 in Saccharomyces cerevisiae. Eukaryotic Cell, 2015, 14, 286-296.	3.4	18
189	Cooperation of TOM and TIM23 Complexes during Translocation of Proteins into Mitochondria. Journal of Molecular Biology, 2015, 427, 1075-1084.	2.0	43
190	Mitochondria: A target for bacteria. Biochemical Pharmacology, 2015, 94, 173-185.	2.0	74
191	Malleable Mitochondrion of Trypanosoma brucei. International Review of Cell and Molecular Biology, 2015, 315, 73-151.	1.6	88
192	Borrowing Nuclear DNA Helicases to Protect Mitochondrial DNA. International Journal of Molecular Sciences, 2015, 16, 10870-10887.	1.8	32
193	Interfacing mitochondrial biogenesis and elimination to enhance host pathogen defense and longevity. Worm, 2015, 4, e1071763.	1.0	6
194	Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in <i>Neurospora crassa</i> . Journal of Proteome Research, 2015, 14, 3900-3911.	1.8	6
195	Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids. Frontiers in Genetics, 2015, 5, 454.	1.1	31
196	Retro-translocation of mitochondrial intermembrane space proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7713-7718.	3.3	96
197	MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites*. Molecular and Cellular Proteomics, 2015, 14, 1113-1126.	2.5	470
198	Localized translation near the mitochondrial outer membrane: An update. RNA Biology, 2015, 12, 801-809.	1.5	130
199	Interaction of the dual targeting peptide of Thrâ€ŧRNA synthetase with the chloroplastic receptor Toc34 in <i>Arabidopsis thaliana</i> . FEBS Open Bio, 2015, 5, 405-412.	1.0	7
200	Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1412-1423.	0.5	90
201	The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 957-967.	0.5	94
202	New roles for mitochondrial proteases in health, ageing and disease. Nature Reviews Molecular Cell Biology, 2015, 16, 345-359.	16.1	453
203	Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2766-2774.	1.9	33

#	Article	IF	CITATIONS
204	Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nature Communications, 2015, 6, 6646.	5.8	68
205	Functions of plastid protein import and the ubiquitin–proteasome system in plastid development. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 939-948.	0.5	33
206	Down regulation of Tim50 in Trypanosoma brucei increases tolerance to oxidative stress. Molecular and Biochemical Parasitology, 2015, 199, 9-18.	0.5	11
207	Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron, 2015, 72, 39-51.	1.1	10
208	Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1 _L cleavage. Molecular Biology of the Cell, 2015, 26, 2156-2167.	0.9	16
209	Spatial profiles of markers of glycolysis, mitochondria, and proton pumps in a rat glioma suggest coordinated programming for proliferation. BMC Research Notes, 2015, 8, 207.	0.6	7
210	The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver. Chronobiology International, 2015, 32, 1254-1263.	0.9	35
211	Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biology and Evolution, 2015, 7, 1728-1742.	1.1	46
212	Mitochondrial DNA maintenance: an appraisal. Molecular and Cellular Biochemistry, 2015, 409, 283-305.	1.4	63
213	The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. Journal of Cell Biology, 2015, 210, 951-960.	2.3	36
214	Tim62, a Novel Mitochondrial Protein in Trypanosoma brucei, Is Essential for Assembly and Stability of the TbTim17 Protein Complex. Journal of Biological Chemistry, 2015, 290, 23226-23239.	1.6	22
215	The Oxidation Status of Mic19 Regulates MICOS Assembly. Molecular and Cellular Biology, 2015, 35, 4222-4237.	1.1	40
216	The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum. Protist, 2015, 166, 349-362.	0.6	15
217	Role of membrane contact sites in protein import into mitochondria. Protein Science, 2015, 24, 277-297.	3.1	50
218	Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle. American Journal of Physiology - Cell Physiology, 2015, 308, C319-C329.	2.1	31
219	Metabolic control via the mitochondrial protein import machinery. Current Opinion in Cell Biology, 2015, 33, 42-48.	2.6	43
220	Deciphering protein–protein interactions during the biogenesis of cytochromeÂ <i>c</i> oxidase from <i>ParacoccusÂdenitrificans</i> . FEBS Journal, 2015, 282, 537-549.	2.2	9
221	Mitochondrial Targets for Pharmacological Intervention in Human Disease. Journal of Proteome Research, 2015, 14, 5-21.	1.8	40

#	Article	IF	Citations
222	New Insights into the Mechanism of Chloroplast Protein Import and Its Integration with Protein Quality Control, Organelle Biogenesis and Development. Journal of Molecular Biology, 2015, 427, 1038-1060.	2.0	131
223	The Role of Mitochondrial Functional Proteins in ROS Production in Ischemic Heart Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	1.9	43
224	Translational regulation of mitochondrial biogenesis. Biochemical Society Transactions, 2016, 44, 1717-1724.	1.6	57
225	Structure of Mammalian Respiratory Supercomplex I 1 III 2 IV 1. Cell, 2016, 167, 1598-1609.e10.	13.5	311
227	Linking mitochondrial dynamics to mitochondrial protein quality control. Current Opinion in Genetics and Development, 2016, 38, 68-74.	1.5	36
228	Mitochondria in Cell Death Regulation. , 2016, , 341-353.		1
229	The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circulation Research, 2016, 118, 1294-1312.	2.0	145
230	Promoting Neuronal Tolerance of Diabetic Stress. International Review of Neurobiology, 2016, 127, 181-210.	0.9	7
231	Mitochondrial health, the epigenome and healthspan. Clinical Science, 2016, 130, 1285-1305.	1.8	57
232	New Insights Into Roles of Ubiquitin Modification in Regulating Plastids and Other Endosymbiotic Organelles. International Review of Cell and Molecular Biology, 2016, 325, 1-33.	1.6	7
233	TbLOK1/ATOM19 is a novel subunit of the noncanonical mitochondrial outer membrane protein translocase of <i>Trypanosoma brucei</i> Molecular Microbiology, 2016, 102, 520-529.	1.2	9
234	Mitochondrial Chemical Biology: New Probes Elucidate the Secrets of the Powerhouse of the Cell. Cell Chemical Biology, 2016, 23, 917-927.	2.5	72
235	Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Scientific Reports, 2016, 6, 36565.	1.6	34
236	Cellular growth defects triggered by an overload of protein localization processes. Scientific Reports, 2016, 6, 31774.	1.6	47
237	Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane. Nature Communications, 2016, 7, 13301.	5.8	44
238	Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor \hat{l}^2 . Biology of Sex Differences, 2016, 7, 53.	1.8	31
239	The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nature Medicine, 2016, 22, 869-878.	15.2	299
240	Mitochondrial cAMP signaling. Cellular and Molecular Life Sciences, 2016, 73, 4577-4590.	2.4	82

#	ARTICLE	IF	CITATIONS
241	Protein import complexes in the mitochondrial outer membrane of Amoebozoa representatives. BMC Genomics, 2016, 17, 99.	1.2	6
242	Dynamic organization of the mitochondrial protein import machinery. Biological Chemistry, 2016, 397, 1097-1114.	1.2	31
243	Genome-Based Selection and Characterization of <i>Fusarium circinatum </i> Specific Sequences. G3: Genes, Genomes, Genetics, 2016, 6, 631-639.	0.8	14
244	Rational design of crystal contactâ€free space in protein crystals for analyzing spatial distribution of motions within protein molecules. Protein Science, 2016, 25, 754-768.	3.1	10
245	<scp>SAMM</scp> 50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells. FEBS Letters, 2016, 590, 1313-1323.	1.3	19
246	The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2436-2442.	1.9	91
247	Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends in Biochemical Sciences, 2016, 41, 245-260.	3.7	104
248	Mitochondrial Quality Control as a Therapeutic Target. Pharmacological Reviews, 2016, 68, 20-48.	7.1	225
249	Mitochondrial dynamics and quality control in Huntington's disease. Neurobiology of Disease, 2016, 90, 51-57.	2.1	90
250	Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells. Current Genetics, 2016, 62, 203-212.	0.8	2
251	Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction. Methods, 2016, 93, 119-127.	1.9	17
252	Peeping at TOMsâ€"Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Molecular Biology and Evolution, 2016, 33, 337-351.	3.5	63
253	Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. Journal of Bioenergetics and Biomembranes, 2017, 49, 75-99.	1.0	19
254	Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biology, 2017, 11, 415-428.	3.9	40
255	Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases. Methods, 2017, 113, 111-119.	1.9	24
256	hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. Journal of Molecular Medicine, 2017, 95, 641-651.	1.7	55
257	Mitochondrial disease and the heart. Heart, 2017, 103, 390-398.	1.2	28
258	Mitochondria. Methods in Molecular Biology, 2017, , .	0.4	2

#	Article	IF	CITATIONS
259	A Guide to Computational Methods for Predicting Mitochondrial Localization. Methods in Molecular Biology, 2017, 1567, 1-14.	0.4	4
260	Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression. Methods in Molecular Biology, 2017, 1567, 155-178.	0.4	5
261	αβ′â€NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. FEBS Journal, 2017, 284, 814-830.	2.2	24
262	Mechanisms and Functions of Spatial Protein Quality Control. Annual Review of Biochemistry, 2017, 86, 97-122.	5.0	225
263	Cardiomyocyte-specific loss of mitochondrial p32/C1qbp causes cardiomyopathy and activates stress responses. Cardiovascular Research, 2017, 113, 1173-1185.	1.8	37
264	Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics Series, 2017, , .	0.3	4
265	Charting organellar importomes by quantitative mass spectrometry. Nature Communications, 2017, 8, 15272.	5.8	80
266	Compartmentalized metabolic engineering for biochemical and biofuel production. Biotechnology Journal, 2017, 12, 1700052.	1.8	30
267	Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1704-1724.	1.4	49
268	Molecular basis for the dual subcellular distribution of microsomal glutathione transferase 1. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 238-244.	1.4	10
270	Mitochondria and Cardiac Hypertrophy. Advances in Experimental Medicine and Biology, 2017, 982, 203-226.	0.8	45
271	Regulation of mitochondrial structure and function by protein import: A current review. Pathophysiology, 2017, 24, 107-122.	1.0	19
272	Nonâ€coding <scp>RNA</scp> s: the dark side of nuclear–mitochondrial communication. EMBO Journal, 2017, 36, 1123-1133.	3.5	105
273	Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Scientific Reports, 2017, 7, 44828.	1.6	9
274	Role of Tim17 Transmembrane Regions in Regulating the Architecture of Presequence Translocase and Mitochondrial DNA Stability. Molecular and Cellular Biology, 2017, 37, .	1.1	17
275	The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. Journal of Cellular Physiology, 2017, 232, 2348-2358.	2.0	106
276	Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic, 2017, 18, 96-109.	1.3	45
277	The divergent N-terminal domain of Tim17 is critical for its assembly in the TIM complex in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2017, 218, 4-15.	0.5	6

#	Article	IF	CITATIONS
278	Macrophages and Mitochondria. Advances in Immunology, 2017, 133, 1-36.	1.1	45
279	Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. Journal of Biological Chemistry, 2017, 292, 17011-17024.	1.6	19
280	tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7679-E7687.	3.3	19
281	Physiological and Pathological Functions of Mitochondrial Proteases., 2017, , 3-25.		3
282	Identification of new channels by systematic analysis of the mitochondrial outer membrane. Journal of Cell Biology, 2017, 216, 3485-3495.	2.3	40
283	Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends in Biochemical Sciences, 2017, 42, 824-843.	3.7	239
284	Landscape of submitochondrial protein distribution. Nature Communications, 2017, 8, 290.	5.8	123
285	Signaling pathway of mitochondrial stress. Frontiers in Laboratory Medicine, 2017, 1, 40-42.	1.7	6
286	Quantifying the efficiency of Saccharomyces cerevisiae translocation tags. Biotechnology and Bioengineering, 2017, 114, 2628-2636.	1.7	9
287	Melatonin as a mitochondrial protector in neurodegenerative diseases. Cellular and Molecular Life Sciences, 2017, 74, 3999-4014.	2.4	57
288	Cryo-EM Structure of the TOM Core Complex from Neurospora crassa. Cell, 2017, 170, 693-700.e7.	13.5	138
289	Mapping the human skeletal muscle proteome: progress and potential. Expert Review of Proteomics, 2017, 14, 825-839.	1.3	27
290	Responses of the Mitochondrial Respiratory System to Low Temperature in Plants. Critical Reviews in Plant Sciences, 2017, 36, 217-240.	2.7	36
291	The mitochondrial unfolded protein response: Signaling from the powerhouse. Journal of Biological Chemistry, 2017, 292, 13500-13506.	1.6	119
292	Comparative mitogenomics indicates respiratory competence inÂparasitic Viscum despiteÂloss of complex lÂand extreme sequenceÂdivergence, and reveals horizontal gene transfer and remarkableÂvariation in genome size. BMC Plant Biology, 2017, 17, 49.	1.6	52
293	Protein trafficking at the crossroads to mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 125-137.	1.9	59
294	Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell and Tissue Research, 2017, 367, 141-154.	1.5	20
295	Modulation of Molecular Chaperones in Huntington's Disease and Other Polyglutamine Disorders. Molecular Neurobiology, 2017, 54, 5829-5854.	1.9	30

#	Article	IF	CITATIONS
296	Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Molecular Neurobiology, 2017, 54, 5534-5546.	1.9	43
297	Mitochondrial noncoding RNA transport. BMB Reports, 2017, 50, 164-174.	1.1	49
298	$14\ Eukaryotic$ iron-sulfur protein biogenesis and its role in maintaining genomic integrity. , 2017, , 369-404.		0
299	Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans. Frontiers in Microbiology, 2017, 8, 1788.	1.5	4
300	Mis-targeting of the mitochondrial protein LIPT2 leads to apoptotic cell death. PLoS ONE, 2017, 12, e0179591.	1.1	7
301	Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handbook of Experimental Pharmacology, 2018, 245, 385-425.	0.9	10
302	The C-terminal tail of the NEIL1 DNA glycosylase interacts with the human mitochondrial single-stranded DNA binding protein. DNA Repair, 2018, 65, 11-19.	1.3	21
303	A fragment of adhesion molecule L1 is imported into mitochondria and regulates mitochondrial metabolism and trafficking. Journal of Cell Science, 2018, 131, .	1.2	18
304	Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology, 2018, 396-397, 33-45.	2.0	38
305	Import of TAT-Conjugated Propionyl Coenzyme A Carboxylase Using Models of Propionic Acidemia. Molecular and Cellular Biology, 2018, 38, .	1.1	15
306	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
307	Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nature Communications, 2018, 9, 125.	5.8	81
309	Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis. Archives of Toxicology, 2018, 92, 1913-1923.	1.9	29
310	Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. American Journal of Human Genetics, 2018, 102, 557-573.	2.6	69
311	Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. Journal of Hepatology, 2018, 68, 1228-1238.	1.8	17
312	The ever-growing complexity of the mitochondrial fission machinery. Cellular and Molecular Life Sciences, 2018, 75, 355-374.	2.4	157
313	Characterization of mitochondrial proteomes of nonbilaterian animals. IUBMB Life, 2018, 70, 1289-1301.	1.5	9
314	Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson's disease. Cell Death and Disease, 2018, 9, 1122.	2.7	90

#	Article	IF	CITATIONS
315	SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation. Nature Structural and Molecular Biology, 2018, 25, 1035-1046.	3.6	84
316	Saccharomyces cerevisiae mitochondrial Por $1/yVDAC1$ (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup $1/HHATL$ in the control of cell wall integrity and programmed cell death. FEMS Yeast Research, 2018, 18, .	1.1	3
317	Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord. Frontiers in Molecular Neuroscience, 2018, 11, 259.	1.4	16
318	Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Research, 2018, 28, 625-643.	5 . 7	37
319	Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research, 2018, 18, .	1.1	94
320	Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. International Review of Cell and Molecular Biology, 2018, 340, 79-128.	1.6	17
321	Shaping the import system of mitochondria. ELife, 2018, 7, .	2.8	1
322	Mitochondrial accumulation of amyloid \hat{l}^2 (A \hat{l}^2) peptides requires TOMM22 as a main A \hat{l}^2 receptor in yeast. Journal of Biological Chemistry, 2018, 293, 12681-12689.	1.6	33
323	Mitochondria–cytosol–nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	53
324	MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. Frontiers in Plant Science, 2018, 9, 634.	1.7	29
325	WHITE PANICLE3, a Novel Nucleus-Encoded Mitochondrial Protein, Is Essential for Proper Development and Maintenance of Chloroplasts and Mitochondria in Rice. Frontiers in Plant Science, 2018, 9, 762.	1.7	10
326	The different axes of the mammalian mitochondrial unfolded protein response. BMC Biology, 2018, 16, 81.	1.7	105
327	Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS ONE, 2018, 13, e0196474.	1.1	9
328	Geometric compensation applied to image analysis of cell populations with morphological variability: a new role for a classical concept. Scientific Reports, 2018, 8, 10266.	1.6	6
329	Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in $\langle i \rangle$ Trypanosoma brucei $\langle i \rangle$. MSphere, 2018, 3, .	1.3	18
330	Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy, 2018, 14, 1293-1309.	4.3	50
331	Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology, 2019, 145, 209-219.	2.0	26
332	The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair, 2019, 82, 102684.	1.3	5

#	Article	IF	Citations
333	Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	25
334	Mitochondrial Homeostasis and Cellular Senescence. Cells, 2019, 8, 686.	1.8	146
335	Subcellular NAMPTâ€mediated NAD ⁺ salvage pathways and their roles in bioenergetics and neuronal protection after ischemic injury. Journal of Neurochemistry, 2019, 151, 732-748.	2.1	18
336	Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Research, 2019, 47, 7502-7517.	6.5	21
337	Neurolastin, a dynamin family GTPase, translocates to mitochondria upon neuronal stress and alters mitochondrial morphology in vivo. Journal of Biological Chemistry, 2019, 294, 11498-11512.	1.6	1
338	Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 2019, 27, 1551-1566.e5.	2.9	106
339	Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Molecular Medicine, 2019, 11, .	3.3	59
340	Maturation of the respiratory complex II flavoprotein. Current Opinion in Structural Biology, 2019, 59, 38-46.	2.6	22
341	A Combined N-terminomics and Shotgun Proteomics Approach to Investigate the Responses of Human Cells to Rapamycin and Zinc at the Mitochondrial Level. Molecular and Cellular Proteomics, 2019, 18, 1085-1095.	2.5	3
342	The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxidants and Redox Signaling, 2019, 31, 643-663.	2.5	26
343	The secret messages between mitochondria and nucleus in muscle cell biology. Archives of Biochemistry and Biophysics, 2019, 666, 52-62.	1.4	33
344	The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei. MSphere, 2019, 4, .	1.3	4
345	Characterization of Factors Involved in Localized Translation Near Mitochondria by Ribosome-Proximity Labeling. Frontiers in Cell and Developmental Biology, 2019, 7, 305.	1.8	37
346	Visualization of Sirtuin 4 Distribution between Mitochondria and the Nucleus, Based on Bimolecular Fluorescence Self-Complementation. Cells, 2019, 8, 1583.	1.8	20
347	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nature Reviews Cardiology, 2019, 16, 33-55.	6.1	188
348	MDM2 and mitochondrial function: One complex intersection. Biochemical Pharmacology, 2019, 162, 14-20.	2.0	13
349	Computational investigation of the conformational dynamics in Tom20â€mitochondrial presequence tethered complexes. Proteins: Structure, Function and Bioinformatics, 2019, 87, 81-90.	1.5	4
350	Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Archives of Biochemistry and Biophysics, 2019, 662, 49-60.	1.4	128

#	ARTICLE	IF	CITATIONS
351	Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene, 2019, 38, 1355-1366.	2.6	8
352	Organellar transcriptome sequencing reveals mitochondrial localization of nuclear encoded transcripts. Mitochondrion, 2019, 46, 59-68.	1.6	8
353	TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165580.	1.8	17
354	Mitochondrial Gene Expression and Beyondâ€"Novel Aspects of Cellular Physiology. Cells, 2020, 9, 17.	1.8	46
355	Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes, 2020, 11, 1185.	1.0	12
356	Atomic structure of human TOM core complex. Cell Discovery, 2020, 6, 67.	3.1	67
357	Ubiquitination of Intramitochondrial Proteins: Implications for Metabolic Adaptability. Biomolecules, 2020, 10, 1559.	1.8	14
358	Caenorhabditis elegans homologue of Fam210 is required for oogenesis and reproduction. Journal of Genetics and Genomics, 2020, 47, 694-704.	1.7	8
359	Insight into the Interactome of Intramitochondrial PKA Using Biotinylation-Proximity Labeling. International Journal of Molecular Sciences, 2020, 21, 8283.	1.8	5
360	Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer. Cells, 2020, 9, 1764.	1.8	18
361	Dependence of PINK1 accumulation on mitochondrial redox system. Aging Cell, 2020, 19, e13211.	3.0	23
362	What Role Does COA6 Play in Cytochrome C Oxidase Biogenesis: A Metallochaperone or Thiol Oxidoreductase, or Both?. International Journal of Molecular Sciences, 2020, 21, 6983.	1.8	11
363	Identification of a Novel Variant in EARS2 Associated with a Severe Clinical Phenotype Expands the Clinical Spectrum of LTBL. Genes, 2020, 11, 1028.	1.0	2
364	Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules, 2020, 10, 1643.	1.8	17
365	De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Human Molecular Genetics, 2020, 29, 1568-1579.	1.4	29
366	ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes and Development, 2020, 34, 785-805.	2.7	46
367	Mitochondrial unfolded protein-related responses across kingdoms: similar problems, different regulators. Mitochondrion, 2020, 53, 166-177.	1.6	41
368	Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. International Journal of Molecular Sciences, 2020, 21, 3928.	1.8	18

#	Article	IF	CITATIONS
369	Role of conserved regions of Tim22 in the structural organization of the carrier translocase. Journal of Cell Science, 2020, 133 , .	1.2	6
370	The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules, 2020, 25, 2857.	1.7	49
371	The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Scientific Reports, 2020, 10, 1577.	1.6	18
372	Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Science China Life Sciences, 2020, 63, 1429-1449.	2.3	99
373	Vps39 is required for ethanolamine-stimulated elevation in mitochondrial phosphatidylethanolamine. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158655.	1.2	11
374	Development of a Neutral Diketopyrrolopyrrole Phosphine Oxide for the Selective Bioimaging of Mitochondria at the Nanomolar Level. Chemistry - A European Journal, 2020, 26, 3173-3180.	1.7	15
375	Mitochondrial Unfolded Protein Response and Its Roles in Stem Cells. Stem Cells and Development, 2020, 29, 627-637.	1.1	8
376	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	0.9	31
377	Role of the translocase of the mitochondrial inner membrane in the import of tRNAs into mitochondria in Trypanosoma brucei. Gene, 2020, 748, 144705.	1.0	5
378	Novel IMâ€associated protein Tim54 plays a role in the mitochondrial import of internal signalâ€containing proteins in <i>Trypanosoma brucei</i> . Biology of the Cell, 2021, 113, 39-57.	0.7	9
379	Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Molecular Neurobiology, 2021, 58, 1418-1437.	1.9	11
380	Bioinformatic mapping of a more precise Aspergillus niger degradome. Scientific Reports, 2021, 11, 693.	1.6	9
381	Computer-Aided Prediction of Protein Mitochondrial Localization. Methods in Molecular Biology, 2021, 2275, 433-452.	0.4	2
382	The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. Advances in Experimental Medicine and Biology, 2021, 1340, 141-167.	0.8	4
383	Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life, 2021, 11, 76.	1.1	4
384	Protein Import Assay into Mitochondria Isolated from Human Cells. Bio-protocol, 2021, 11, e4057.	0.2	5
385	MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation. Computational and Structural Biotechnology Journal, 2021, 19, 4825-4839.	1.9	43
386	Nuclear Genes Associated with Mitochondrial <scp>DNA</scp> Processes as Contributors to Parkinson's Disease Risk. Movement Disorders, 2021, 36, 815-831.	2.2	13

#	Article	IF	Citations
388	OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Reports, 2021, 22, e51606.	2.0	34
389	ALS/FTD mutations in UBQLN2 are linked to mitochondrial dysfunction through loss-of-function in mitochondrial protein import. Human Molecular Genetics, 2021, 30, 1230-1246.	1.4	10
391	Mitochondrial Dysfunction in Podocytes Caused by CRIF1 Deficiency Leads to Progressive Albuminuria and Glomerular Sclerosis in Mice. International Journal of Molecular Sciences, 2021, 22, 4827.	1.8	11
392	A subcellular map of the human kinome. ELife, 2021, 10, .	2.8	41
393	Mitochondrial protein import as a quality control sensor. Biology of the Cell, 2021, 113, 375-400.	0.7	5
394	Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 4850.	1.8	88
395	Functional compartmentalization and metabolic separation in a prokaryotic cell. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
396	Mitochondrial unfolded protein response: A novel pathway in metabolism and immunity. Pharmacological Research, 2021, 168, 105603.	3.1	19
397	Sensing, signaling and surviving mitochondrial stress. Cellular and Molecular Life Sciences, 2021, 78, 5925-5951.	2.4	40
398	On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS Journal, 2022, 289, 7014-7037.	2.2	8
399	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
400	Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. International Journal of Molecular Sciences, 2021, 22, 7779.	1.8	5
401	Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines, 2021, 9, 833.	1.4	17
402	The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annual Review of Cell and Developmental Biology, 2021, 37, 115-142.	4.0	27
403	Non-coding RNA Regulated Cross-Talk Between Mitochondria and Other Cellular Compartments. Frontiers in Cell and Developmental Biology, 2021, 9, 688523.	1.8	11
404	Building Better Barrels – β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. Journal of Molecular Biology, 2021, 433, 166894.	2.0	22
405	GRAMD1-mediated accessible cholesterol sensing and transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158957.	1.2	15
406	Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biology, 2021, 19, e3001357.	2.6	22

#	Article	IF	CITATIONS
407	Folding Mitochondrial-Mediated Cytosolic Proteostasis Into the Mitochondrial Unfolded Protein Response. Frontiers in Cell and Developmental Biology, 2021, 9, 715923.	1.8	8
408	Mitochondrial Targeting of the Ammonia-Sensitive Uncoupler SLC4A11 by the Chaperone-Mediated Carrier Pathway in Corneal Endothelium., 2021, 62, 4.		6
409	Trypanosoma brucei Tim50 Possesses PAP Activity and Plays a Critical Role in Cell Cycle Regulation and Parasite Infectivity. MBio, 2021, 12, e0159221.	1.8	3
410	Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. Journal of Clinical Investigation, 2021, 131, .	3.9	54
411	Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102422.	1.7	11
412	Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biology, 2021, 46, 102112.	3.9	22
413	Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Advances, 2021, 11, 32476-32493.	1.7	7
414	Computer-Based Prediction of Mitochondria-Targeting Peptides. Methods in Molecular Biology, 2015, 1264, 305-320.	0.4	6
415	Site-Specific Fluorescent Probe Labeling of Mitochondrial Membrane Proteins. Methods in Molecular Biology, 2013, 1033, 103-120.	0.4	1
416	Prohibitin Signaling at the Kidney Filtration Barrier. Advances in Experimental Medicine and Biology, 2017, 982, 563-575.	0.8	6
417	The Legionella pneumophila Chaperonin 60 and the Art of Keeping Several Moonlighting Jobs. Heat Shock Proteins, 2013, , 143-160.	0.2	2
418	Mitochondrial Intermediate Cleaving Peptidase Icp55. , 2013, , 1533-1536.		5
419	Mitochondrial genome editing gets precise. Nature, 2020, 583, 521-522.	13.7	8
420	The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nature Reviews Molecular Cell Biology, 2018, 19, 109-120.	16.1	451
421	Mitochondrial control of cellular protein homeostasis. Biochemical Journal, 2020, 477, 3033-3054.	1.7	22
422	Mgr2 regulates mitochondrial preprotein import by associating with channel-forming Tim23 subunit. Molecular Biology of the Cell, 2020, 31, 1112-1123.	0.9	15
426	Biogenesis of Lipids and Proteins within Mitochondrial Membranes. , 2011, , 315-377.		3
427	Protein charge distribution in proteomes and its impact on translation. PLoS Computational Biology, 2017, 13, e1005549.	1.5	56

#	Article	IF	CITATIONS
428	The Neurospora crassa TOB Complex: Analysis of the Topology and Function of Tob38 and Tob37. PLoS ONE, 2011, 6, e25650.	1.1	18
429	Profiling the Mitochondrial Proteome of Leber's Hereditary Optic Neuropathy (LHON) in Thailand: Down-Regulation of Bioenergetics and Mitochondrial Protein Quality Control Pathways in Fibroblasts with the 11778G>A Mutation. PLoS ONE, 2014, 9, e106779.	1.1	16
430	Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. Journal of Neuroscience, 2021, 41, 1371-1392.	1.7	35
431	One cell, one love: a journal for microbial research. Microbial Cell, 2014, 1, 1-5.	1.4	4
432	Mitochondrial protein import under kinase surveillance. Microbial Cell, 2014, 1, 51-57.	1.4	14
433	Only functional localization is faithful localization. Microbial Cell, 2014, 1, 115-117.	1.4	1
434	Mitochondrial membrane lipidome defines yeast longevity. Aging, 2013, 5, 551-574.	1.4	35
435	Modulation of Endoplasmic Reticulum Stress: An Opportunity to Prevent Neurodegeneration?. CNS and Neurological Disorders - Drug Targets, 2015, 14, 518-533.	0.8	23
436	Mitochondrial dysfunction in cholestatic liver diseases. Frontiers in Bioscience - Elite, 2012, E4, 2233.	0.9	20
437	Mitochondrial Protein Quality Control Mechanisms. Genes, 2020, 11, 563.	1.0	49
438	Implication of bidirectional promoters containing duplicated GGAA motifs of mitochondrial function-associated genes. AIMS Molecular Science, 2013, 1, 1-26.	0.3	10
439	Mitochondrial disorders: Challenges in diagnosis & Eamp; treatment. Indian Journal of Medical Research, 2015, 141, 13.	0.4	61
440	The role of mitochondria in AMD: Current knowledge and future applications. Journal of Ophthalmic and Vision Research, 2017, 12, 424.	0.7	25
441	Mitochondrial Membranes Restitution Proceeds via Vesicular Import from ER and Cytosol. Counterparts' Resemblances and Variances in Mitochondria and Golgi Pathways. Advances in Biological Chemistry, 2017, 07, 1-26.	0.2	3
442	Interaction between peroxisomes and mitochondria in fatty acid metabolism. Open Journal of Molecular and Integrative Physiology, 2012, 02, 27-33.	0.6	16
443	Assembly of the $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. , 2012, 2012, 1-15.		21
444	Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. ELife, 2016, 5, .	2.8	111
445	Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. ELife, 2017, 6, .	2.8	36

#	Article	IF	CITATIONS
446	Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import. ELife, $2017, 6, .$	2.8	29
447	Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport. Contact (Thousand Oaks (Ventura County, Calif)), 2021, 4, 251525642110424.	0.4	3
449	Computational methods for protein localization prediction. Computational and Structural Biotechnology Journal, 2021, 19, 5834-5844.	1.9	12
450	Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life, 2021, 11, 1123.	1.1	17
451	ATP23 Peptidase. , 2013, , 1688-1690.		0
453	The expression studies of Bcl-xl gene subsequent effect of cholestasis and treatment by curcumin in hippocampus of male rats. Medical Sciences Journal, 2018, 28, 37-43.	0.1	0
457	Mitochondria: Potential Targets for Interventions to Counteract Senescence. Healthy Ageing and Longevity, 2020, , 201-222.	0.2	0
458	Spectroscopic investigation of retinal degeneration unravel molecular changes associated with vision impairment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120459.	2.0	1
460	In cellulo Synthesis of Dendrimeric Sensors For Fluorescence-on Imaging of Bacterial Phagocytosis. Journal of Materials Chemistry B, 2021, , .	2.9	0
461	Structure and Function of the Mitochondrion. Biological and Medical Physics Series, 2020, , 141-161.	0.3	0
462	Mitochondrial-targeted methionine sulfoxide reductase overexpression increases the production of oxidative stress in mitochondria from skeletal muscle Aging Pathobiology and Therapeutics, 2020, 2, 45-51.	0.3	1
463	Getting Charged for the Mitochondrial Uptake. , 0, , .		0
464	Fatty acid metabolism and thyroid hormones. Current Trends in Endocrinology, 2012, 6, 65-76.	1.0	9
466	Aberrant shuttling of long noncoding RNAs during the mitochondria-nuclear crosstalk in hepatocellular carcinoma cells. American Journal of Cancer Research, 2019, 9, 999-1008.	1.4	17
467	Membrane Protein Insertion Mechanism by Mitochondrial Sorting and Assembly Machinery Complex. Seibutsu Butsuri, 2021, 61, 392-394.	0.0	0
468	Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophysical Reviews, 2021, 13, 983-994.	1.5	3
469	Neurogenic Hypertension Mediated Mitochondrial Abnormality Leads to Cardiomyopathy: Contribution of UPRmt and Norepinephrine-miR- 18a-5p-HIF-1α Axis. Frontiers in Physiology, 2021, 12, 718982.	1.3	7
470	Mitochondrial Membrane Remodeling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 786806.	2.0	10

#	Article	IF	Citations
471	Migration restores hybrid incompatibility driven by mitochondrial–nuclear sexual conflict. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212561.	1.2	1
472	Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance. Ageing Research Reviews, 2022, 76, 101578.	5.0	15
473	Real-Time Analysis of Mitochondrial Electron Transport Chain Function in Toxoplasma gondii Parasites Using a Seahorse XFe96 Extracellular Flux Analyzer. Bio-protocol, 2022, 12, e4288.	0.2	9
477	Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacologica Sinica, 2022, 43, 1141-1155.	2.8	13
480	Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis, 2022, 25, 307-329.	3.7	44
481	Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. Journal of Biological Chemistry, 2022, 298, 101870.	1.6	11
482	Mitochondrial Protein Homeostasis and Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 3353.	1.8	10
483	Nuclear-Mitochondrial Interactions. Biomolecules, 2022, 12, 427.	1.8	30
484	Targeting and Insertion of Membrane Proteins in Mitochondria. Frontiers in Cell and Developmental Biology, 2021, 9, 803205.	1.8	16
485	Angiotensin-($1\hat{a}\in$ "7) promotes mitochondrial translocation of human telomerase reverse transcriptase in HUVECs through the TOM20 complex. Archives of Biochemistry and Biophysics, 2022, 722, 109218.	1.4	0
514	Altered Mitochondrial Protein Homeostasis and Proteinopathies. Frontiers in Molecular Neuroscience, 2022, 15, 867935.	1.4	8
516	Transcriptomic Analysis of Dysregulated Genes of the nDNA-mtDNA Axis in a Mouse Model of Dilated Cardiomyopathy. Frontiers in Genetics, $0,13,.$	1.1	1
517	Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Molecular Cell, 2022, 82, 2815-2831.e5.	4.5	25
518	Updated List of Transport Proteins in Plasmodium falciparum. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
519	The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy. Neurotoxicity Research, 2022, 40, 1103-1114.	1.3	7
520	Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
522	Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022, 607, 593-603.	13.7	102
523	Dynamics and stabilization mechanism of mitochondrial cristae morphofunction associated with turgor-driven cardiolipin biosynthesis under salt stress conditions. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	Citations
524	Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson's Disease. Cells, 2022, 11, 2097.	1.8	13
525	Human induced pluripotent stem cells for studying mitochondrial diseases in the heart. FEBS Letters, 2022, 596, 1735-1745.	1.3	7
526	The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer. Journal of Hematology and Oncology, 2022, 15, .	6.9	31
527	MPST sulfurtransferase maintains mitochondrial protein import and cellular bioenergetics to attenuate obesity. Journal of Experimental Medicine, 2022, 219, .	4.2	14
528	Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Molecular Cell, 2022, 82, 3321-3332.	4.5	21
530	An MCIA-like complex is required for mitochondrial complex I assembly and seed development in maize. Molecular Plant, 2022, 15, 1470-1487.	3.9	5
531	LONP1 downregulation with ageing contributes to osteoarthritis via mitochondrial dysfunction. Free Radical Biology and Medicine, 2022, 191, 176-190.	1.3	8
532	Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry - A European Journal, 2022, 28, .	1.7	10
533	UPRmt and coordinated UPRER in type 2 diabetes. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
534	Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nature Communications, 2022, 13, .	5.8	25
535	Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Frontiers in Molecular Neuroscience, $0,15,.$	1.4	13
536	Multifunctions of CRIF1 in cancers and mitochondrial dysfunction. Frontiers in Oncology, 0, 12, .	1.3	3
537	Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N-terminal domain hydrophobic core. Scientific Reports, 2022, 12, .	1.6	4
538	Autosomal recessive progeroid syndrome due to homozygosity for a TOMM7 variant. Journal of Clinical Investigation, 2022, 132, .	3.9	7
539	A novel connection between Trypanosoma brucei mitochondrial proteins TbTim17 and TbTRAP1 is discovered using Biotinylation Identification (BioID). Journal of Biological Chemistry, 2022, 298, 102647.	1.6	4
540	Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Current Neuropharmacology, 2023, 21, 1184-1201.	1.4	8
541	Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxidants and Redox Signaling, 2023, 38, 896-919.	2.5	1
542	Mitochondrial proteotoxic stresses activate abscisic acid signaling in plants. Environmental and Experimental Botany, 2023, 205, 105134.	2.0	2

#	Article	IF	CITATIONS
543	PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Research Reviews, 2023, 84, 101817.	5.0	29
544	Genome-wide identification of BCS1 domain-containing proteins reveals the mitochondrial bcs1 essential for growth, stress response, and virulence of the filamentous entomopathogenic fungus Beauveria bassiana. Microbiological Research, 2023, 267, 127262.	2.5	4
545	Monitoring Mitochondrial Protein Import Using Mitochondrial Targeting Sequence (MTS)-eGFP. Bio-protocol, 2022, 12, .	0.2	2
546	Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Reports, 2022, 41, 111678.	2.9	17
547	Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biology, 2022, 12, .	1.5	5
548	Identification of a novel C6 protein encoded by tomato leaf curl China virus. Phytopathology Research, 2022, 4, .	0.9	5
549	Current advances in gene therapy of mitochondrial diseases. Journal of Translational Medicine, 2022, 20, .	1.8	7
550	Functional crosstalk between the TIM22 complex and YME1 machinery maintains mitochondrial proteostasis and integrity. Journal of Cell Science, 2023, 136, .	1.2	3
551	Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis?. International Journal of Molecular Sciences, 2023, 24, 1086.	1.8	21
552	mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. International Journal of Molecular Sciences, 2023, 24, 1482.	1.8	7
555	Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines, 2023, 11, 532.	1.4	6
556	Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 141-165.	1.0	7
558	Isolation and Quality Control of Yeast Mitochondria. Methods in Molecular Biology, 2023, , 41-55.	0.4	1
559	The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. International Journal of Molecular Sciences, 2023, 24, 5785.	1.8	18
560	Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics, 2023, 15, 987.	2.0	1
561	<scp>TOM</scp> complexâ€independent transport pathway of myoglobin into mitochondria in <scp>C2C12</scp> myotubes. Physiological Reports, 2023, 11, .	0.7	1
562	RGS14 limits seizure-induced mitochondrial oxidative stress and pathology in hippocampus. Neurobiology of Disease, 2023, 181, 106128.	2.1	1
564	MitomiRs in Regenerative Medicine. , 2023, , 771-787.		0

#	Article	IF	CITATIONS
582	Mitochondrial heterogeneity in diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3
598	The Name Is Barrel, Î ² -Barrel. Methods in Molecular Biology, 2024, , 1-30.	0.4	O