The mechanism of eukaryotic translation initiation and

Nature Reviews Molecular Cell Biology 11, 113-127

DOI: 10.1038/nrm2838

Citation Report

#	Article	IF	CITATIONS
1	Cytoplasmic mRNA: move it, use it or lose it!. Biochemical Society Transactions, 2010, 38, 1495-1499.	1.6	4
2	Elucidating mechanistic principles underpinning eukaryotic translation initiation using quantitative fluorescence methods. Biochemical Society Transactions, 2010, 38, 1587-1592.	1.6	3
3	Noâ€go decay: a quality control mechanism for RNA in translation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 132-141.	3.2	104
4	<i>zif-1</i> translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development (Cambridge), 2010, 137, 3373-3382.	1.2	41
5	CBP80-Promoted mRNP Rearrangements during the Pioneer Round of Translation, Nonsense-Mediated mRNA Decay, and Thereafter. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 127-134.	2.0	47
6	The MicroRNAs and Stroke: No Need to be Coded to be Counted. Translational Stroke Research, 2010, 1, 158-160.	2.3	43
7	Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24. BMC Plant Biology, 2010, 10, 193.	1.6	60
8	Structural plasticity of Barley yellow dwarf virus-like cap-independent translation elements in four genera of plant viral RNAs. Virology, 2010, 402, 177-186.	1.1	53
9	Upstream open reading frames: Molecular switches in (patho)physiology. BioEssays, 2010, 32, 885-893.	1.2	145
10	Sequence analysis of peptide:oligonucleotide heteroconjugates by electron capture dissociation and electron transfer dissociation. Journal of the American Society for Mass Spectrometry, 2010, 21, 1387-1397.	1.2	12
11	Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO Journal, 2010, 29, 3710-3722.	3.5	71
12	A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 2010, 468, 316-320.	13.7	407
13	Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nature Reviews Molecular Cell Biology, 2010, 11, 379-384.	16.1	78
14	All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nature Reviews Molecular Cell Biology, 2010, 11, 467-478.	16.1	147
15	A Novel Target of Action of Minocycline in NGF-Induced Neurite Outgrowth in PC12 Cells: Translation Initiation Factor eIF4Al. PLoS ONE, 2010, 5, e15430.	1.1	46
16	Regulation of protein synthesis and the role of eIF3 in cancer. Brazilian Journal of Medical and Biological Research, 2010, 43, 920-930.	0.7	45
17	Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Research, 2010, 38, 8039-8050.	6.5	47
18	Mechanism of Initiation Site Selection Promoted by the Human Rhinovirus 2 Internal Ribosome Entry Site. Journal of Virology, 2010, 84, 6578-6589.	1.5	14

#	Article	IF	CITATIONS
19	Why Dom34 Stimulates Growth of Cells with Defects of 40S Ribosomal Subunit Biosynthesis. Molecular and Cellular Biology, 2010, 30, 5562-5571.	1.1	31
20	Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-â,,« resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19748-19753.	3.3	196
21	Time-dependent increase in ribosome processivity. Nucleic Acids Research, 2010, 38, 7054-7067.	6. 5	18
22	Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes and Development, 2010, 24, 1787-1801.	2.7	204
23	Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. Journal of Cell Biology, 2010, 189, 755-767.	2.3	45
24	Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18056-18060.	3.3	125
25	The Eukaryotic Initiation Factor (eIF) 4G HEAT Domain Promotes Translation Re-initiation in Yeast Both Dependent on and Independent of eIF4A mRNA Helicase. Journal of Biological Chemistry, 2010, 285, 21922-21933.	1.6	21
26	The 3′ Untranslated Region of the Andes Hantavirus Small mRNA Functionally Replaces the Poly(A) Tail and Stimulates Cap-Dependent Translation Initiation from the Viral mRNA. Journal of Virology, 2010, 84, 10420-10424.	1.5	15
27	Distinct functions of maternal and somatic Pat1 protein paralogs. Rna, 2010, 16, 2094-2107.	1.6	50
28	Ectopic expression of eIF2Bε in rat skeletal muscle rescues the sepsis-induced reduction in guanine nucleotide exchange activity and protein synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E241-E248.	1.8	14
29	Human SP-A1 (SFTPA1) variant-specific 3′ UTRs and poly(A) tail differentially affect the in vitro translation of a reporter gene. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L523-L534.	1.3	18
30	Getting the Message. Advances in Virus Research, 2010, 78, 1-42.	0.9	22
31	Poly(A)-Binding Protein 1 Partially Relocalizes to the Nucleus during Herpes Simplex Virus Type 1 Infection in an ICP27-Independent Manner and Does Not Inhibit Virus Replication. Journal of Virology, 2010, 84, 8539-8548.	1.5	49
32	The Human Papillomavirus Type 16 E6 Oncoprotein Activates mTORC1 Signaling and Increases Protein Synthesis. Journal of Virology, 2010, 84, 9398-9407.	1.5	182
33	eIF5. Small GTPases, 2010, 1, 118-123.	0.7	27
34	Crystal Structure of the Eukaryotic Ribosome. Science, 2010, 330, 1203-1209.	6.0	370
35	mRNA-specific regulation of translation by poly(A)-binding proteins. Biochemical Society Transactions, 2010, 38, 1517-1522.	1.6	48
36	The 5′-7-Methylguanosine Cap on Eukaryotic mRNAs Serves Both to Stimulate Canonical Translation Initiation and to Block an Alternative Pathway. Molecular Cell, 2010, 39, 950-962.	4.5	126

#	Article	IF	CITATIONS
37	Translational Regulation of Gene Expression during Conditions of Cell Stress. Molecular Cell, 2010, 40, 228-237.	4.5	607
38	The Length Evolution of 5' Untranslated Regions - The Stochastic Model Revisited. , 2011, , .		3
39	The Eukaryotic Ribosome. Science, 2011, 331, 681-682.	6.0	20
40	Assessing the Components of the eIF3 Complex and their Phosphorylation Status. Journal of Proteome Research, 2011, 10, 1481-1494.	1.8	14
41	Stm1 modulates translation after 80S formation in <i>Saccharomyces cerevisiae</i> . Rna, 2011, 17, 835-842.	1.6	57
42	Crystal Structure of the Eukaryotic 40 <i>S</i> Ribosomal Subunit in Complex with Initiation Factor 1. Science, 2011, 331, 730-736.	6.0	420
43	The Role of MicroRNAs in Viral Infection. Progress in Molecular Biology and Translational Science, 2011, 102, 101-139.	0.9	83
44	mTOR signaling in protein homeostasis. Cell Cycle, 2011, 10, 1940-1947.	1.3	56
45	Ribosomes., 2011,,.		16
46	Determinants of translation efficiency and accuracy. Molecular Systems Biology, 2011, 7, 481.	3.2	391
46	Determinants of translation efficiency and accuracy. Molecular Systems Biology, 2011, 7, 481. Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913.	3.2	391 118
46 47 48			
47	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913. Cytoplasmic polyadenylation and translational control. Current Opinion in Genetics and	13.5	118
47	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913. Cytoplasmic polyadenylation and translational control. Current Opinion in Genetics and Development, 2011, 21, 452-457.	13.5 1.5	118 99
47 48 49	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913. Cytoplasmic polyadenylation and translational control. Current Opinion in Genetics and Development, 2011, 21, 452-457. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. Science, 2011, 334, 1524-1529.	13.5 1.5 6.0	118 99 1,006
47 48 49 50	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913. Cytoplasmic polyadenylation and translational control. Current Opinion in Genetics and Development, 2011, 21, 452-457. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. Science, 2011, 334, 1524-1529. Cap-Assisted Internal Initiation of Translation of Histone H4. Molecular Cell, 2011, 41, 197-209. MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience,	13.5 1.5 6.0 4.5	118 99 1,006
47 48 49 50	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913. Cytoplasmic polyadenylation and translational control. Current Opinion in Genetics and Development, 2011, 21, 452-457. The Structure of the Eukaryotic Ribosome at 3.0 Ã Resolution. Science, 2011, 334, 1524-1529. Cap-Assisted Internal Initiation of Translation of Histone H4. Molecular Cell, 2011, 41, 197-209. MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience, 2011, 190, 386-397. MicroRNA-regulated transgene expression systems for gene therapy and virotherapy. Frontiers in	13.5 1.5 6.0 4.5	118 99 1,006 93 58

#	Article	IF	CITATIONS
55	MicroRNA Profiling during Cardiomyocyte-Specific Differentiation of Murine Embryonic Stem Cells Based on Two Different miRNA Array Platforms. PLoS ONE, 2011, 6, e25809.	1.1	11
56	Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1. PLoS ONE, 2011, 6, e29136.	1.1	21
57	Translation initiation factors and active sites of protein synthesis co-localize at the leading edge of migrating fibroblasts. Biochemical Journal, 2011, 438, 217-227.	1.7	35
58	Translational control of the AZFa gene DDX3Y by 5′UTR exon-T extension. Journal of Developmental and Physical Disabilities, 2011, 34, 313-326.	3.6	17
59	Protein alphaâ€ <i>N</i> à€ecetylation studied by Nâ€terminomics. FEBS Journal, 2011, 278, 3822-3834.	2.2	70
60	Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12, 99-110.	7.7	2,009
61	An expressive couple. Nature Reviews Molecular Cell Biology, 2011, 12, 8-8.	16.1	2
62	mRNA helicases: the tacticians of translational control. Nature Reviews Molecular Cell Biology, 2011, 12, 235-245.	16.1	279
63	Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene, 2011, 30, 77-86.	2.6	36
64	Smaug assembles an ATP-dependent stable complex repressing <i>nanos </i> mRNA translation at multiple levels. EMBO Journal, 2011, 30, 90-103.	3 . 5	73
65	Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning. EMBO Journal, 2011, 30, 115-129.	3 . 5	66
66	eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO Journal, 2011, 30, 2454-2464.	3 . 5	106
67	Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO Journal, 2011, 30, 1804-1817.	3.5	255
68	Rocaglamide breaks TRAIL resistance in HTLV-1-associated adult T-cell leukemia/lymphoma by translational suppression of c-FLIP expression. Cell Death and Differentiation, 2011, 18, 362-370.	5.0	67
69	The Cap-Binding Translation Initiation Factor, eIF4E, Binds a Pseudoknot in a Viral Cap-Independent Translation Element. Structure, 2011, 19, 868-880.	1.6	69
70	The four trypanosomatid elF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Molecular and Biochemical Parasitology, 2011, 176, 25-36.	0.5	68
71	Dynamics of the translational machinery. Current Opinion in Structural Biology, 2011, 21, 137-145.	2.6	52
72	Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER). Developmental Biology, 2011, 357, 211-226.	0.9	19

#	Article	IF	Citations
73	The plausible reason why the length of 5' untranslated region is unrelated to organismal complexity. BMC Research Notes, 2011 , 4, 312 .	0.6	16
74	In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed protein synthesis. Current Opinion in Chemical Biology, 2011, 15, 853-863.	2.8	19
75	Impairment of Cytoplasmic eIF6 Activity Restricts Lymphomagenesis and Tumor Progression without Affecting Normal Growth. Cancer Cell, 2011, 19, 765-775.	7.7	90
76	The mechanism of translation initiation on Aichivirus RNA mediated by a novel type of picornavirus IRES. EMBO Journal, 2011, 30, 4423-4436.	3.5	65
77	Birth, life and death of nascent polypeptide chains. Biotechnology Journal, 2011, 6, 623-640.	1.8	37
78	Viral subversion of the host protein synthesis machinery. Nature Reviews Microbiology, 2011, 9, 860-875.	13.6	403
79	Cap and capâ€binding proteins in the control of gene expression. Wiley Interdisciplinary Reviews RNA, 2011, 2, 277-298.	3.2	338
80	Posttranscriptional control of Xâ€chromosome dosage compensation. Wiley Interdisciplinary Reviews RNA, 2011, 2, 534-545.	3.2	17
81	The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Molecular Genetics and Genomics, 2011, 285, 505-516.	1.0	6
82	Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences, 2011, 68, 71-83.	2.4	49
83	Translation initiation: variations in the mechanism can be anticipated. Cellular and Molecular Life Sciences, 2011, 68, 991-1003.	2.4	85
84	Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Molecular Biology, 2011, 12, 48.	3.0	12
85	Translational control of cyclins. Cell Division, 2011, 6, 5.	1.1	34
86	Crystallization and preliminary X-ray diffraction analysis of the barley yellow dwarf virus cap-independent translation element. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 561-564.	0.7	4
87	Crystallization and preliminary X-ray crystallographic analysis of eIF5Bî"N and the eIF5Bî"N–eIF1Aî"N complex. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 730-733.	0.7	3
88	Exploring the selective constraint on the sizes of insertions and deletions in 5' untranslated regions in mammals. BMC Evolutionary Biology, 2011, 11, 192.	3.2	10
89	MicroRNAs in cardiomyocyte development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 183-190.	6.6	84
90	Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Human Mutation, 2011, 32, 1137-1143.	1.1	32

#	Article	IF	CITATIONS
91	lodide Transport Defect: Functional Characterization of a Novel Mutation in the Na+/lâ^' Symporter 5′-Untranslated Region in a Patient with Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1100-E1107.	1.8	40
92	Current progress and challenges in HIV gene therapy. Future Virology, 2011, 6, 1319-1328.	0.9	13
93	Patterning of the Drosophila oocyte by a sequential translation repression program involving the d4EHP and Belle translational repressors. RNA Biology, 2011, 8, 904-912.	1.5	24
94	Translational control by 80S formation and 60S availability: The central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle, 2011, 10, 3441-3446.	1.3	42
95	Regulation of Translation by Hydrogen Peroxide. Antioxidants and Redox Signaling, 2011, 15, 191-203.	2.5	69
96	The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element. Nucleic Acids Research, 2011, 39, 902-912.	6.5	61
97	The biological and therapeutic relevance of mRNA translation in cancer. Nature Reviews Clinical Oncology, 2011, 8, 280-291.	12.5	131
98	Glucose depletion inhibits translation initiation via elF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 2011, 22, 3379-3393.	0.9	82
99	Dual Nature of Translational Control by Regulatory BC RNAs. Molecular and Cellular Biology, 2011, 31, 4538-4549.	1.1	37
100	Essential Amino Acids Regulate Both Initiation and Elongation of mRNA Translation Independent of Insulin in MAC-T Cells and Bovine Mammary Tissue Slices. Journal of Nutrition, 2011, 141, 1209-1215.	1.3	92
101	PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent Hsp70 Translation. Journal of Biological Chemistry, 2011, 286, 6791-6800.	1.6	44
102	Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit. Nucleic Acids Research, 2011, 39, 5264-5275.	6.5	51
103	CCR4-Associated Factor 1 Coordinates the Expression of Plasmodium falciparum Egress and Invasion Proteins. Eukaryotic Cell, 2011, 10, 1257-1263.	3.4	44
104	Expression of Truncated Eukaryotic Initiation Factor 3e (eIF3e) Resulting from Integration of Mouse Mammary Tumor Virus (MMTV) Causes a Shift from Cap-dependent to Cap-independent Translation. Journal of Biological Chemistry, 2011, 286, 31288-31296.	1.6	23
105	CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes and Development, 2011, 25, 1955-1967.	2.7	84
106	Translational Repression of the Disintegrin and Metalloprotease ADAM10 by a Stable G-quadruplex Secondary Structure in Its $5\hat{a}$ e ² -Untranslated Region. Journal of Biological Chemistry, 2011, 286, 45063-45072.	1.6	68
107	Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery. Rna, 2011, 17, 439-452.	1.6	24
108	elF4G stimulates the activity of the DEAD box protein elF4A by a conformational guidance mechanism. Nucleic Acids Research, 2011, 39, 2260-2270.	6.5	88

#	Article	lF	CITATIONS
109	Translational Regulation in Nutrigenomics. Advances in Nutrition, 2011, 2, 511-519.	2.9	40
110	Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Research, 2011, 39, 7791-7802.	6.5	29
111	Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant. Nucleic Acids Research, 2011, 39, 6201-6212.	6.5	51
112	Overlapping signals for translational regulation and packaging of influenza A virus segment 2. Nucleic Acids Research, 2011, 39, 7775-7790.	6.5	66
113	Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Molecular Biology of the Cell, 2011, 22, 3055-3069.	0.9	62
114	The mechanism of ribosome recycling in eukaryotes. , 2011, , 171-185.		0
115	PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Research, 2011, 39, 7750-7763.	6.5	91
116	Structural basis for nematode eIF4E binding an m 2,2,7 G-Cap and its implications for translation initiation. Nucleic Acids Research, 2011, 39, 8820-8832.	6.5	38
117	The Multifaceted Poliovirus 2A Protease: Regulation of Gene Expression by Picornavirus Proteases. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-23.	3.0	66
118	mRNA Translation and Energy Metabolism in Cancer: The Role of the MAPK and mTORC1 Pathways. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 355-367.	2.0	77
119	Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids. Reproduction, 2011, 142, 383-388.	1.1	11
120	Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Research, 2011, 39, 7598-7609.	6.5	89
121	Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7844-7849.	3.3	56
122	Poliovirus Switches to an eIF2-Independent Mode of Translation during Infection. Journal of Virology, 2011, 85, 8884-8893.	1.5	48
124	Coding potential and transcript analysis of fowl adenovirus 4: insight into upstream ORFs as common sequence features in adenoviral transcripts. Journal of General Virology, 2011, 92, 1260-1272.	1.3	85
125	Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Research, 2011, 39, 4851-4865.	6.5	98
126	A herpesvirus kinase that masquerades as Akt. Cell Cycle, 2011, 10, 2064-2068.	1.3	21
127	Characterization of hibernating ribosomes in mammalian cells. Cell Cycle, 2011, 10, 2691-2702.	1.3	44

#	Article	IF	CITATIONS
128	Cellular IRES-mediated translation. Cell Cycle, 2011, 10, 229-240.	1.3	336
129	Phosphorylation of eIF2 Facilitates Ribosomal Bypass of an Inhibitory Upstream ORF to Enhance CHOP Translation. Journal of Biological Chemistry, 2011, 286, 10939-10949.	1.6	333
130	Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1051-E1064.	1.8	64
131	Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Research, 2011, 39, 6148-6160.	6.5	79
132	Requirement of rRNA Methylation for 80S Ribosome Assembly on a Cohort of Cellular Internal Ribosome Entry Sites. Molecular and Cellular Biology, 2011, 31, 4482-4499.	1.1	60
133	Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 260-265.	3.3	826
134	A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Research, 2011, 39, 2367-2377.	6.5	73
135	Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Research, 2011, 39, 4220-4234.	6.5	195
136	Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20473-20478.	3.3	99
137	Quantitative Profiling of In Vivo-assembled RNA-Protein Complexes Using a Novel Integrated Proteomic Approach. Molecular and Cellular Proteomics, 2011, 10, M110.007385.	2.5	78
138	Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Research, 2011, 39, 6186-6200.	6.5	61
139	The untranslated exon B of human surfactant protein A2 mRNAs is an enhancer for transcription and translation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L795-L803.	1.3	22
140	mRNA isoform diversity can obscure detection of miRNA-mediated control of translation. Rna, 2011, 17, 1025-1031.	1.6	23
141	Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs. PLoS Genetics, 2011, 7, e1002137.	1.5	78
142	Computational Modeling and Analysis of Insulin Induced Eukaryotic Translation Initiation. PLoS Computational Biology, 2011, 7, e1002263.	1.5	18
143	Hepatitis C Virus NS5A Binds to the mRNA Cap-binding Eukaryotic Translation Initiation 4F (eIF4F) Complex and Up-regulates Host Translation Initiation Machinery through eIF4E-binding Protein 1 Inactivation. Journal of Biological Chemistry, 2012, 287, 5042-5058.	1.6	46
144	Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO Journal, 2012, 31, 4236-4246.	3.5	112
145	Attenuation of 40S Ribosomal Subunit Abundance Differentially Affects Host and HCV Translation and Suppresses HCV Replication. PLoS Pathogens, 2012, 8, e1002766.	2.1	45

#	Article	IF	CITATIONS
146	On the Diversification of the Translation Apparatus across Eukaryotes. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	16
147	Eukaryotic Initiation Factor 2 Phosphorylation and Translational Control in Metabolism. Advances in Nutrition, 2012, 3, 307-321.	2.9	386
148	Polyamine-Regulated Translation of Spermidine/Spermine- <i>N</i> 1-Acetyltransferase. Molecular and Cellular Biology, 2012, 32, 1453-1467.	1.1	37
149	Gemin5 proteolysis reveals a novel motif to identify L protease targets. Nucleic Acids Research, 2012, 40, 4942-4953.	6.5	47
150	Novel insights into the architecture and protein interaction network of yeast eIF3. Rna, 2012, 18, 2306-2319.	1.6	13
151	Multiple binding of repressed mRNAs by the P-body protein Rck/p54. Rna, 2012, 18, 1702-1715.	1.6	79
152	Tracking and coordinating an international curation effort for the CCDS Project. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas008-bas008.	1.4	48
153	Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Research, 2012, 40, e160-e160.	6.5	92
154	Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in <i>Drosophila</i> Development (Cambridge), 2012, 139, 3211-3220.	1.2	31
155	The architecture of eukaryotic translation. Nucleic Acids Research, 2012, 40, 10098-10106.	6.5	49
156	Dietary Supplementation with the Probiotic Lactobacillus fermentum I5007 and the Antibiotic Aureomycin Differentially Affects the Small Intestinal Proteomes of Weanling Piglets3. Journal of Nutrition, 2012, 142, 7-13.	1.3	48
157	Upstream AUG Codons in the Simian Immunodeficiency Virus SIVmac239 Genome Regulate Rev and Env Protein Translation. Journal of Virology, 2012, 86, 12362-12371.	1.5	9
158	Identification of Intersubunit Domain Interactions within Eukaryotic Initiation Factor (eIF) 2B, the Nucleotide Exchange Factor for Translation Initiation. Journal of Biological Chemistry, 2012, 287, 8275-8285.	1.6	22
159	Conformational Changes of DEAD-Box Helicases Monitored by Single Molecule Fluorescence Resonance Energy Transfer. Methods in Enzymology, 2012, 511, 75-109.	0.4	32
160	MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biology, 2012, 9, 871-880.	1.5	13
161	Efficient â^2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2920-8.	3.3	231
162	Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Research, 2012, 40, 2294-2311.	6.5	64
163	Regulation of Protein Synthesis and Proteolysis in the Neonate by Feeding. , 2012, , 157-181.		0

#	Article	IF	CITATIONS
164	Regulation of mRNA Translation by Signaling Pathways. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012252-a012252.	2.3	146
166	Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Research, 2012, 40, 2653-2667.	6.5	38
167	Makorin Ring Zinc Finger Protein 1 (MKRN1), a Novel Poly(A)-binding Protein-interacting Protein, Stimulates Translation in Nerve Cells. Journal of Biological Chemistry, 2012, 287, 1322-1334.	1.6	27
168	Phytochrome regulates translation of mRNA in the cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1335-1340.	3.3	75
169	Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2424-32.	3.3	534
170	A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Molecular and Cellular Biology, 2012, 32, 3585-3593.	1.1	164
171	La Autoantigen Mediates Oxidant Induced De Novo Nrf2 Protein Translation. Molecular and Cellular Proteomics, 2012, 11, M111.015032.	2.5	41
172	Sequential Eukaryotic Translation Initiation Factor 5 (eIF5) Binding to the Charged Disordered Segments of eIF4G and eIF2β Stabilizes the 48S Preinitiation Complex and Promotes Its Shift to the Initiation Mode. Molecular and Cellular Biology, 2012, 32, 3978-3989.	1.1	30
173	Crystal structure of a minimal eIF4E-Cup complex reveals a general mechanism of eIF4E regulation in translational repression. Rna, 2012, 18, 1624-1634.	1.6	53
174	Tumor Suppressor PDCD4 Represses Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Proteins and Is Regulated by S6 Kinase 2. Molecular and Cellular Biology, 2012, 32, 1818-1829.	1.1	78
175	Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes?. Comparative and Functional Genomics, 2012, 2012, 1-8.	2.0	47
176	Before It Gets Started: Regulating Translation at the 5′ UTR. Comparative and Functional Genomics, 2012, 2012, 1-8.	2.0	193
177	Implications of the Use of Eukaryotic Translation Initiation Factor 5A (eIF5A) for Prognosis and Treatment of Hepatocellular Carcinoma. International Journal of Hepatology, 2012, 2012, 1-6.	0.4	24
178	The Distribution of elF4E-Family Members across Insecta. Comparative and Functional Genomics, 2012, 2012, 1-15.	2.0	13
179	The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective. Comparative and Functional Genomics, 2012, 2012, 1-12.	2.0	58
180	Using translational enhancers to increase transgene expression in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6626-6631.	3.3	362
181	Transcriptional Repression of ATF4 Gene by CCAAT/Enhancer-binding Protein \hat{l}^2 (C/EBP \hat{l}^2) Differentially Regulates Integrated Stress Response. Journal of Biological Chemistry, 2012, 287, 21936-21949.	1.6	38
182	A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 2012, 86, 9828-9842.	1.5	60

#	Article	IF	CITATIONS
183	A Distinct Class of Internal Ribosomal Entry Site in Members of the Kobuvirus and Proposed Salivirus and Paraturdivirus Genera of the Picornaviridae. Journal of Virology, 2012, 86, 1468-1486.	1.5	70
184	The elF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Research, 2012, 40, 2683-2699.	6.5	62
185	The human translation initiation multi-factor complex promotes methionyl-tRNA i binding to the 40S ribosomal subunit. Nucleic Acids Research, 2012, 40, 905-913.	6.5	79
186	Functional and direct interaction between the RNA binding protein HuD and active Akt1. Nucleic Acids Research, 2012, 40, 1944-1953.	6.5	17
187	MNK2 Inhibits eIF4G Activation Through a Pathway Involving Serine-Arginine–Rich Protein Kinase in Skeletal Muscle. Science Signaling, 2012, 5, ra14.	1.6	33
188	Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Research, 2012, 40, 2898-2906.	6.5	99
189	The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic Acids Research, 2012, 40, 4998-5011.	6.5	73
190	The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Biochemical Journal, 2012, 441, 803-816.	1.7	37
191	â€~Ribozoomin' – Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs). Current Protein and Peptide Science, 2012, 13, 305-330.	0.7	110
192	RNA Binding Protein/RNA Element Interactions and the Control of Translation. Current Protein and Peptide Science, 2012, 13, 294-304.	0.7	118
193	IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Frontiers in Microbiology, 2012, 3, 92.	1.5	30
194	Impaired ribosomal subunit association in Shwachman-Diamond syndrome. Blood, 2012, 120, 5143-5152.	0.6	66
195	9.5 Dynamics of Very Large Systems: The Ribosome. , 2012, , 76-85.		0
196	Structural insights into eukaryotic ribosomes and the initiation of translation. Current Opinion in Structural Biology, 2012, 22, 768-777.	2.6	40
197	Multiple isoforms of the translation initiation factor elF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon. Biochemical Journal, 2012, 448, 1-11.	1.7	21
198	GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling. American Journal of Physiology - Cell Physiology, 2012, 303, C1269-C1277.	2.1	20
199	Crystallization and preliminary crystallographic studies of the W2 domain of Drosophila melanogastereukaryotic translation initiation factor 5C domain-containing protein. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1315-1317.	0.7	0
200	Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. Journal of Applied Physiology, 2012, 113, 459-464.	1.2	94

#	Article	IF	CITATIONS
201	The 5′ UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed â^1 ribosomal frameshift that generates HIV-1 enzymes. Rna, 2012, 18, 519-529.	1.6	30
202	Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 2012, 7, e35915.	1.1	32
203	elF $2\hat{l}^3$ Mutation that Disrupts elF2 Complex Integrity Links Intellectual Disability to Impaired Translation Initiation. Molecular Cell, 2012, 48, 641-646.	4.5	63
204	The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochemical Society Transactions, 2012, 40, 856-864.	1.6	37
205	MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 2012, 13, 271-282.	7.7	1,406
206	Alternative transcription start site selection leads to large differences in translation activity in yeast. Rna, 2012, 18, 2299-2305.	1.6	111
207	Viewing folding of nascent polypeptide chains from ribosomes. Expert Review of Proteomics, 2012, 9, 579-581.	1.3	2
208	elF4E-binding protein regulation of mRNAs with differential 5′-UTR secondary structure: a polyelectrostatic model for a component of protein–mRNA interactions. Nucleic Acids Research, 2012, 40, 7666-7675.	6.5	13
209	Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cellular and Molecular Life Sciences, 2012, 69, 3613-3634.	2.4	481
210	PKA isoforms coordinate mRNA fate during nutrient starvation. Journal of Cell Science, 2012, 125, 5221-32.	1.2	18
211	hERG K ⁺ Channels: Structure, Function, and Clinical Significance. Physiological Reviews, 2012, 92, 1393-1478.	13.1	581
212	The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Attenuates Inflammation and Accelerates Epithelialization in Wounds of Diabetic <i>ob/ob</i> Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 71-80.	1.3	77
213	Dendritic mRNA Targeting and Translation. Advances in Experimental Medicine and Biology, 2012, 970, 285-305.	0.8	48
214	Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3150-9.	3.3	40
215	The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts. Molecular Cell, 2012, 46, 674-690.	4.5	1,077
216	The binding mechanism of elF2 \hat{l}^2 with its partner proteins, elF5 and elF2B $\hat{l}\mu$. Biochemical and Biophysical Research Communications, 2012, 423, 515-519.	1.0	3
217	Brain-Specific Disruption of the eIF2 \hat{l}_{\pm} Kinase PERK Decreases ATF4 Expression and Impairs Behavioral Flexibility. Cell Reports, 2012, 1, 676-688.	2.9	126
218	Transcription and translation in a package deal: The TISU paradigm. Gene, 2012, 491, 1-4.	1.0	29

#	Article	IF	CITATIONS
219	A new framework for understanding IRES-mediated translation. Gene, 2012, 502, 75-86.	1.0	78
220	elF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research, 2012, 72, 6468-6476.	0.4	140
221	Nucleotide recognition by the initiation factor alF5B: Free energy simulations of a neoclassical GTPase. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2742-2757.	1.5	6
222	Dietary iodide controls its own absorption through postâ€transcriptional regulation of the intestinal Na ⁺ /I ^{â°'} symporter. Journal of Physiology, 2012, 590, 6013-6026.	1.3	33
223	Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics, 2012, 13, 220.	1.2	113
224	A 28 nt long synthetic 5′UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnology, 2012, 12, 85.	1.7	33
225	Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17394-17399.	3.3	279
226	Translation Regulation as a Therapeutic Target in Cancer. Cancer Research, 2012, 72, 3891-3900.	0.4	86
227	Translational control of cell fate: From integration of environmental signals to breaching anticancer defense. Cell Cycle, 2012, 11, 1097-1107.	1.3	32
228	The control of histone gene expression. Biochemical Society Transactions, 2012, 40, 880-885.	1.6	53
229	Post-transcriptional Control of Gene Expression During Mouse Oogenesis. Results and Problems in Cell Differentiation, 2012, 55, 1-21.	0.2	55
230	A Mutation in the 5′-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus. American Journal of Human Genetics, 2012, 91, 349-357.	2.6	205
231	The "closed loop model―in controlling mRNA translation during development. Animal Reproduction Science, 2012, 134, 2-8.	0.5	22
232	Induction of REDD1 gene expression in the liver in response to endoplasmic reticulum stress is mediated through a PERK, eIF2î± phosphorylation, ATF4-dependent cascade. Biochemical and Biophysical Research Communications, 2012, 427, 485-489.	1.0	36
233	Tricks an IRES uses to enslave ribosomes. Trends in Microbiology, 2012, 20, 558-566.	3.5	47
234	Crystal structure of the 80S yeast ribosome. Current Opinion in Structural Biology, 2012, 22, 759-767.	2.6	120
235	Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state. Medical Hypotheses, 2012, 79, 709-712.	0.8	3
236	Known and novel post-transcriptional regulatory sequences are conserved across plant families. Rna, 2012, 18, 368-384.	1.6	77

#	ARTICLE	IF	Citations
237	Translation Initiation Factor AtelF(iso)4E Is Involved in Selective mRNA Translation in Arabidopsis Thaliana Seedlings. PLoS ONE, 2012, 7, e31606.	1.1	38
238	Automated High-Throughput RNAi Screening in Human Cells Combined with Reporter mRNA Transfection to Identify Novel Regulators of Translation. PLoS ONE, 2012, 7, e45943.	1.1	8
239	Selective Constraint on the Upstream Open Reading Frames That Overlap with Coding Sequences in Animals. PLoS ONE, 2012, 7, e48413.	1.1	10
240	Overexpression of eIF3a in Squamous Cell Carcinoma of the Oral Cavity and Its Putative Relation to Chemotherapy Response. Journal of Oncology, 2012, 2012, 1-9.	0.6	23
241	Stress Response Pathways in Ameloblasts: Implications for Amelogenesis and Dental Fluorosis. Cells, 2012, 1, 631-645.	1.8	27
242	On the Emergence and Evolution of the Eukaryotic Translation Apparatus. , 0, , .		1
243	The structures of nonproteinâ€coding RNAs that drive internal ribosome entry site function. Wiley Interdisciplinary Reviews RNA, 2012, 3, 195-212.	3.2	50
244	So you want to know if your message has an IRES?. Wiley Interdisciplinary Reviews RNA, 2012, 3, 697-705.	3.2	74
245	Posttranscriptional Upregulation by MicroRNAs. Wiley Interdisciplinary Reviews RNA, 2012, 3, 311-330.	3.2	375
246	Fe ²⁺ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8417-8422.	3.3	57
247	Translational control in cellular and developmental processes. Nature Reviews Genetics, 2012, 13, 383-394.	7.7	169
248	Poly(A)-Binding Protein Facilitates Translation of an Uncapped/Nonpolyadenylated Viral RNA by Binding to the 3′ Untranslated Region. Journal of Virology, 2012, 86, 7836-7849.	1.5	41
249	Structure of the ternary initiation complex alF2–GDPNP–methionylated initiator tRNA. Nature Structural and Molecular Biology, 2012, 19, 450-454.	3.6	63
250	The Structure and Function of the Eukaryotic Ribosome. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011536-a011536.	2.3	330
251	mRNA Turnover in Trypanosomes. Nucleic Acids and Molecular Biology, 2012, , 79-97.	0.2	2
252	Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnology, 2012, 12, 22.	1.7	37
253	New Insights into Translational Regulation in the Endoplasmic Reticulum Unfolded Protein Response. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012278-a012278.	2.3	131
254	A mechanistic overview of translation initiation in eukaryotes. Nature Structural and Molecular Biology, 2012, 19, 568-576.	3.6	355

#	Article	IF	CITATIONS
255	One core, two shells: bacterial and eukaryotic ribosomes. Nature Structural and Molecular Biology, 2012, 19, 560-567.	3.6	345
256	Specific Domains in Yeast Translation Initiation Factor elF4G Strongly Bias RNA Unwinding Activity of the elF4F Complex toward Duplexes with 5′-Overhangs. Journal of Biological Chemistry, 2012, 287, 20301-20312.	1.6	54
257	DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO Journal, 2012, 31, 3745-3756.	3.5	228
258	Non-canonical translation in RNA viruses. Journal of General Virology, 2012, 93, 1385-1409.	1.3	410
259	Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS. Journal of the American Society for Mass Spectrometry, 2012, 23, 1053-1061.	1.2	5
260	Translation initiation in colorectal cancer. Cancer and Metastasis Reviews, 2012, 31, 387-395.	2.7	22
261	How do trypanosomes change gene expression in response to the environment?. Protoplasma, 2012, 249, 223-238.	1.0	29
262	Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the <i>Drosophila</i>	0.6	23
263	A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Research, 2012, 12, 228-248.	1,1	90
264	Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Experimental Neurology, 2012, 233, 555-565.	2.0	71
265	Cap binding-independent recruitment of eIF4E to cytoplasmic foci. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1217-1224.	1.9	10
266	<i>Inâ€fvitro</i> studies reveal that different modes of initiation on HIVâ€1 mRNA have different levels of requirement for eukaryotic initiation factorâ€f4F. FEBS Journal, 2012, 279, 3098-3111.	2.2	30
267	Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences, 2012, 37, 189-198.	3.7	158
268	Dephosphorylation of elF2 \hat{l} ± is essential for protein synthesis increase and cell cycle progression after sea urchin fertilization. Developmental Biology, 2012, 365, 303-309.	0.9	15
269	Eukaryotic translation initiation factor 4Eâ€mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 2012, 13, 795-803.	2.0	225
270	Aberrantly methylated <i>PKP1</i> in the progression of Barrett's esophagus to esophageal adenocarcinoma. Genes Chromosomes and Cancer, 2012, 51, 384-393.	1.5	22
271	Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnology Journal, 2012, 7, 75-89.	1.8	42
272	The translational factor eIF3f: the ambivalent eIF3 subunit. Cellular and Molecular Life Sciences, 2013, 70, 3603-3616.	2.4	45

#	Article	IF	Citations
273	The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature, 2013, 500, 307-311.	13.7	163
275	Making sense of nonsense. Nature Structural and Molecular Biology, 2013, 20, 651-653.	3.6	10
276	c9RAN translation: a potential therapeutic target for the treatment of amyotrophic lateral sclerosis and frontotemporal dementia. Expert Opinion on Therapeutic Targets, 2013, 17, 991-995.	1.5	15
277	Eukaryotic translation initiation factors in cancer development and progression. Cancer Letters, 2013, 340, 9-21.	3.2	130
278	Structural basis for the nuclear export activity of Importin13. EMBO Journal, 2013, 32, 899-913.	3. 5	36
279	Human Developmental Genetics. , 2013, , 1-63.		5
280	Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO Journal, 2013, 32, 2672-2684.	3.5	152
281	Role of RNA Structure Motifs in IRES-Dependent Translation Initiation of the Coxsackievirus B3: New Insights for Developing Live-Attenuated Strains for Vaccines and Gene Therapy. Molecular Biotechnology, 2013, 55, 179-202.	1.3	12
282	In Vitro Molecular Characterization of RNA–Proteins Interactions During Initiation of Translation of a Wild-Type and a Mutant Coxsackievirus B3 RNAs. Molecular Biotechnology, 2013, 54, 515-527.	1.3	5
283	Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 379-390.	1.4	24
284	Elongation factor P: Function and effects on bacterial fitness. Biopolymers, 2013, 99, 837-845.	1.2	24
285	In Silico Design of Epitope-based Vaccines. , 2013, , 1003-1015.		2
286	Roles of helicases in translation initiation: A mechanistic view. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 799-809.	0.9	50
287	Environmental sensing and regulation of gene expression in CD4+ T cell subsets. Current Opinion in Immunology, 2013, 25, 564-570.	2.4	3
288	Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013169-a013169.	2.3	614
289	Regulation of the unfolded protein response by microRNAs. Cellular and Molecular Biology Letters, 2013, 18, 555-78.	2.7	49
290	Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, 2013, , .	0.4	6
291	Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, 2013, , .	0.8	5

#	Article	IF	CITATIONS
292	Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature, 2013, 503, 539-543.	13.7	158
293	Dynamic Recognition of the mRNA Cap by Saccharomyces cerevisiae eIF4E. Structure, 2013, 21, 2197-2207.	1.6	36
294	Degradation of Newly Synthesized Polypeptides by Ribosome-Associated RACK1/c-Jun N-Terminal Kinase/Eukaryotic Elongation Factor 1A2 Complex. Molecular and Cellular Biology, 2013, 33, 2510-2526.	1.1	58
295	Translational Landscape of Photomorphogenic <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3699-3710.	3.1	168
296	Molecular Architecture of a Eukaryotic Translational Initiation Complex. Science, 2013, 342, 1240585.	6.0	120
297	Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Mediated Gene Regulation. Science, 2013, 340, 82-85.	6.0	290
298	The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cellular Signalling, 2013, 25, 743-751.	1.7	45
299	Mextli Is a Novel Eukaryotic Translation Initiation Factor 4E-Binding Protein That Promotes Translation in <i>Drosophila melanogaster</i> Nolecular and Cellular Biology, 2013, 33, 2854-2864.	1.1	23
300	Methods for studying IRES-mediated translation of positive-strand RNA viruses. Methods, 2013, 59, 167-179.	1.9	18
301	Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology, 2013, 444, 171-180.	1.1	6
302	Dendritic protein synthesis in the normal and diseased brain. Neuroscience, 2013, 232, 106-127.	1.1	37
303	Less is more: improving proteostasis by translation slow down. Trends in Biochemical Sciences, 2013, 38, 585-591.	3.7	78
304	Translation Initiation Requires Cell Division Cycle 123 (Cdc123) to Facilitate Biogenesis of the Eukaryotic Initiation Factor 2 (eIF2). Journal of Biological Chemistry, 2013, 288, 21537-21546.	1.6	30
305	Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs. Virus Research, 2013, 171, 366-381.	1.1	29
306	The genetic code as expressed through relationships between mRNA structure and protein function. FEBS Letters, 2013, 587, 1180-1188.	1.3	54
307	Rate-Limiting Steps in Yeast Protein Translation. Cell, 2013, 153, 1589-1601.	13.5	431
308	Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience, 2013, 248, 499-528.	1.1	46
310	Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast. Microbial Cell Factories, 2013, 12, 74.	1.9	20

#	Article	IF	CITATIONS
311	Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquatic Toxicology, 2013, 134-135, 23-33.	1.9	25
312	Molecular Analysis of RNA-RNA Interactions between 5' and 3' Untranslated Regions during the Initiation of Translation of a Cardiovirulent and a Live-Attenuated Coxsackievirus B3 Strains. International Journal of Molecular Sciences, 2013, 14, 4525-4544.	1.8	4
313	Identification of proteins interacting with HSP70 mRNAs in Leishmania braziliensis. Journal of Proteomics, 2013, 94, 124-137.	1.2	21
314	mRNA encoding WAVEâ\estable "Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochemical Journal, 2013, 452, 45-55.	1.7	12
315	Post-transcriptional Stimulation of Gene Expression by MicroRNAs. Advances in Experimental Medicine and Biology, 2013, 768, 97-126.	0.8	89
316	Ribosomal Protein S25 Dependency Reveals a Common Mechanism for Diverse Internal Ribosome Entry Sites and Ribosome Shunting. Molecular and Cellular Biology, 2013, 33, 1016-1026.	1.1	97
317	Cotranslational Response to Proteotoxic Stress by Elongation Pausing of Ribosomes. Molecular Cell, 2013, 49, 453-463.	4.5	230
318	The Absence of Eukaryotic Initiation Factor eIF(iso)4E Affects the Systemic Spread of a Tobacco etch virus Isolate in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2013, 26, 461-470.	1.4	42
319	HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation. Nature Structural and Molecular Biology, 2013, 20, 150-158.	3.6	62
320	The DEAD-box helicase elF4A. RNA Biology, 2013, 10, 19-32.	1.5	108
321	Toward a Genome-Wide Landscape of Translational Control. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012302-a012302.	2.3	50
322	Characterization and Analysis of the Composition and Dynamics of the Mammalian Riboproteome. Cell Reports, 2013, 4, 1276-1287.	2.9	50
323	Translational control by negative-strand RNA viruses: Methods for the study of a crucial virus/host interaction. Methods, 2013, 59, 180-187.	1.9	5
324	Changes in translation rate modulate stress-induced damage of diverse proteins. American Journal of Physiology - Cell Physiology, 2013, 305, C1257-C1264.	2.1	8
325	Translational control by 3'-UTR-binding proteins. Briefings in Functional Genomics, 2013, 12, 58-65.	1.3	157
326	An AUG codon upstream of rev and env open reading frames ensures optimal translation of the simian immunodeficiency virus Env protein. Virology, 2013, 436, 191-200.	1.1	3
327	Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins. Genomics, 2013, 102, 419-429.	1.3	9
328	Clustering of low usage codons in the translation initiation region of hepatitis C virus. Infection, Genetics and Evolution, 2013, 18, 8-12.	1.0	9

#	Article	IF	CITATIONS
329	Identification and expression of an autosomal paralogue of ribosomal protein S4, X-linked, in mice: Potential involvement of testis-specific ribosomal proteins in translation and spermatogenesis. Gene, 2013, 521, 91-99.	1.0	16
330	The multitalented Mediator complex. Trends in Biochemical Sciences, 2013, 38, 531-537.	3.7	83
331	A novel mutation in the albumin gene (c.1A>C) resulting in analbuminemia. European Journal of Clinical Investigation, 2013, 43, 72-78.	1.7	18
332	Proteins of the human 40S ribosomal subunit involved in hepatitis C IRES Binding as revealed from fluorescent labeling. Biochemistry (Moscow), 2013, 78, 53-59.	0.7	16
333	Photoactivatable RNA derivatives as tools for studying the structural and functional organization of complex cellular ribonucleoprotein machineries. RSC Advances, 2013, 3, 2858-2872.	1.7	14
334	Hepatitis C Virus RNA Translation. Current Topics in Microbiology and Immunology, 2013, 369, 143-166.	0.7	88
335	African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus Research, 2013, 173, 58-75.	1,1	62
336	AMPA Receptor Properties are Modulated in the Early Stages Following Pilocarpine-induced Status Epilepticus. NeuroMolecular Medicine, 2013, 15, 324-338.	1.8	33
337	Ribosomal Initiation Complex Assembly within the Wild-Strain of Coxsackievirus B3 and Live-Attenuated Sabin3-like IRESes during the Initiation of Translation. International Journal of Molecular Sciences, 2013, 14, 4400-4418.	1.8	5
338	Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends in Biochemical Sciences, 2013, 38, 64-74.	3.7	64
339	Thermodynamics of Lipids in Bilayer Membranes. , 2013, , 2613-2613.		0
340	A perspective on mammalian upstream open reading frame function. International Journal of Biochemistry and Cell Biology, 2013, 45, 1690-1700.	1.2	170
341	Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7154-7159.	3.3	303
342	LARP1 specifically recognizes the 3′ terminus of poly(A) mRNA. FEBS Letters, 2013, 587, 2173-2178.	1.3	83
343	Genome-wide profiling of human cap-independent translation-enhancing elements. Nature Methods, 2013, 10, 747-750.	9.0	29
344	Topoisomerases., 2013,, 2616-2622.		0
345	Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29. Cell, 2013, 153, 1108-1119.	13.5	197
346	A role for eIF4All in microRNA–mediated mRNA silencing. Nature Structural and Molecular Biology, 2013, 20, 543-545.	3.6	7

#	Article	IF	Citations
347	Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiology of Learning and Memory, 2013, 105, 93-99.	1.0	76
348	Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective. Physics Reports, 2013, 529, 1-197.	10.3	192
349	$3\hat{a}$ €2 Cap-Independent Translation Enhancers of Plant Viruses. Annual Review of Microbiology, 2013, 67, 21-42.	2.9	176
350	Thermodynamics of Lipid Interactions. , 2013, , 2606-2613.		0
351	Potential therapeutic applications of RNA cap analogs. Future Medicinal Chemistry, 2013, 5, 1141-1172.	1.1	62
352	Untranslated Gene Regions and Other Non-coding Elements. SpringerBriefs in Biochemistry and Molecular Biology, 2013, , 1-56.	0.3	4
353	Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins. Cell, 2013, 154, 240-251.	13.5	678
354	Reinitiation and Other Unconventional Posttermination Events during Eukaryotic Translation. Molecular Cell, 2013, 51, 249-264.	4.5	133
355	Regulation of Translation Initiation under Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 2013, 14, 4670-4683.	1.8	45
356	The elF2 \hat{l} ± kinases: their structures and functions. Cellular and Molecular Life Sciences, 2013, 70, 3493-3511.	2.4	660
357	Cell Engineering with Synthetic Messenger RNA. Methods in Molecular Biology, 2013, 969, 3-28.	0.4	13
358	Arrest Peptides: <i>Cis</i> -Acting Modulators of Translation. Annual Review of Biochemistry, 2013, 82, 171-202.	5.0	231
359	What is behind the non-antibiotic properties of minocycline?. Pharmacological Research, 2013, 67, 18-30.	3.1	121
360	Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5′UTR combination. Biotechnology and Bioengineering, 2013, 110, 471-482.	1.7	34
361	Hidden coding potential of eukaryotic genomes: nonAUG started ORFs. Journal of Biomolecular Structure and Dynamics, 2013, 31, 103-114.	2.0	25
362	Insights into post-transcriptional regulation during legume-rhizobia symbiosis. Plant Signaling and Behavior, 2013, 8, e23102.	1.2	2
363	Translational Regulation of Cytoplasmic mRNAs. The Arabidopsis Book, 2013, 11, e0165.	0.5	61
364	Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. Rna, 2013, 19, 1669-1683.	1.6	38

#	Article	IF	CITATIONS
365	Serine-Threonine Kinase Receptor-Associated Protein (STRAP) Regulates Translation of Type I Collagen mRNAs. Molecular and Cellular Biology, 2013, 33, 3893-3906.	1.1	32
366	Nutrient Signaling in Protein Homeostasis: An Increase in Quantity at the Expense of Quality. Science Signaling, 2013, 6, ra24.	1.6	61
367	Tuning gene expression with synthetic upstream open reading frames. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11284-11289.	3.3	103
368	mRNA Decay during Herpes Simplex Virus (HSV) Infections: Mutations That Affect Translation of an mRNA Influence the Sites at Which It Is Cleaved by the HSV Virion Host Shutoff (Vhs) Protein. Journal of Virology, 2013, 87, 94-109.	1.5	32
369	HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation. Nucleic Acids Research, 2013, 41, 8706-8714.	6.5	62
370	Sensing Microbial RNA in the Cytosol. Frontiers in Immunology, 2013, 4, 468.	2.2	38
371	Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Research, 2013, 23, 977-987.	2.4	152
372	The Kissing-Loop T-Shaped Structure Translational Enhancer of Pea Enation Mosaic Virus Can Bind Simultaneously to Ribosomes and a 5′ Proximal Hairpin. Journal of Virology, 2013, 87, 11987-12002.	1.5	40
373	New Universal Rules of Eukaryotic Translation Initiation Fidelity. PLoS Computational Biology, 2013, 9, e1003136.	1.5	89
374	The Transacting Factor CBF-A/Hnrnpab Binds to the A2RE/RTS Element of Protamine 2 mRNA and Contributes to Its Translational Regulation during Mouse Spermatogenesis. PLoS Genetics, 2013, 9, e1003858.	1.5	33
375	Base Pairing Interaction between $5\hat{a}\in^2$ - and $3\hat{a}\in^2$ -UTRs Controls icaR mRNA Translation in Staphylococcus aureus. PLoS Genetics, 2013, 9, e1004001.	1.5	123
376	The Escherichia coli Phosphotyrosine Proteome Relates to Core Pathways and Virulence. PLoS Pathogens, 2013, 9, e1003403.	2.1	65
377	Chronic regulation of the renal Na ⁺ /H ⁺ exchanger NHE3 by dopamine: translational and posttranslational mechanisms. American Journal of Physiology - Renal Physiology, 2013, 304, F1169-F1180.	1.3	21
378	Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q. PLoS Biology, 2013, 11, e1001564.	2.6	47
379	The Circadian Clock Coordinates Ribosome Biogenesis. PLoS Biology, 2013, 11, e1001455.	2.6	243
380	elF4EBP3L Acts as a Gatekeeper of TORC1 In Activity-Dependent Muscle Growth by Specifically Regulating Mef2ca Translational Initiation. PLoS Biology, 2013, 11, e1001679.	2.6	35
381	miRNA repression of translation inÂvitro takes place during 43S ribosomal scanning. Nucleic Acids Research, 2013, 41, 586-598.	6.5	53
382	Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Research, 2013, 41, 5569-5581.	6.5	84

#	Article	IF	CITATIONS
383	Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction, 2013, 146, R1-R19.	1.1	55
384	Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence, and Glutamine Addiction. Molecular Cancer Therapeutics, 2013, 12, 2581-2590.	1.9	102
385	Structural and biochemical studies of SLIP1–SLBP identify DBP5 and eIF3g as SLIP1-binding proteins. Nucleic Acids Research, 2013, 41, 7960-7971.	6.5	30
386	$3\hat{a}\in^2$ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Research, 2013, 23, 2078-2090.	2.4	186
387	Cation-dependent folding of $3\hat{a} \in 2$ cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. Nucleic Acids Research, 2013, 41, 3398-3413.	6.5	56
388	A Computational and Experimental Approach Reveals that the $5\hat{a}$ e-Proximal Region of the $5\hat{a}$ e-UTR has a Cis-Regulatory Signature Responsible for Heat Stress-Regulated mRNA Translation in Arabidopsis. Plant and Cell Physiology, 2013, 54, 474-483.	1.5	44
389	A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 324-329.	3.3	155
390	Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9818-9823.	3.3	56
391	Length variants of the 5′ untranslated region of p53 mRNA and their impact on the efficiency of translation initiation of p53 and its N-truncated isoform ΔNp53. RNA Biology, 2013, 10, 1726-1740.	1.5	15
392	Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Nucleic Acids Research, 2013, 41, 7512-7521.	6.5	64
393	Afferent regulation of chicken auditory brainstem neurons: Rapid changes in phosphorylation of elongation factor 2. Journal of Comparative Neurology, 2013, 521, 1165-1183.	0.9	10
394	Extensive proteomic remodeling is induced by eukaryotic translation elongation factor $1B\hat{l}^3$ deletion in <i>Aspergillus fumigatus </i> . Protein Science, 2013, 22, 1612-1622.	3.1	10
395	Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells. Cellular Microbiology, 2013, 15, 823-840.	1.1	29
396	Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: A reappraisal of translation initiation during mitosis. Cell Cycle, 2013, 12, 3615-3628.	1.3	44
397	EJC core component MLN51 interacts with eIF3 and activates translation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5903-5908.	3.3	60
398	Coordinated Movements of Eukaryotic Translation Initiation Factors eIF1, eIF1A, and eIF5 Trigger Phosphate Release from eIF2 in Response to Start Codon Recognition by the Ribosomal Preinitiation Complex*. Journal of Biological Chemistry, 2013, 288, 5316-5329.	1.6	74
399	Interaction between 25S rRNA A Loop and Eukaryotic Translation Initiation Factor 5B Promotes Subunit Joining and Ensures Stringent AUG Selection. Molecular and Cellular Biology, 2013, 33, 3540-3548.	1.1	10
400	Structural organization of the polysomes adjacent to mammalian processing bodies (P-bodies). RNA Biology, 2013, 10, 314-320.	1.5	14

#	ARTICLE	IF	Citations
401	elF2B promotes elF5 dissociation from elF2•GDP to facilitate guanine nucleotide exchange for translation initiation. Genes and Development, 2013, 27, 2696-2707.	2.7	71
402	The m Subunit of Murine Translation Initiation Factor eIF3 Maintains the Integrity of the eIF3 Complex and Is Required for Embryonic Development, Homeostasis, and Organ Size Control. Journal of Biological Chemistry, 2013, 288, 30087-30093.	1.6	26
403	A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication. Genes and Development, 2013, 27, 1809-1820.	2.7	23
404	IRES-mediated translation of the pro-apoptotic Bcl2 family member PUMA. Translation, 2013, 1, e24391.	2.9	1
405	Mechanism of miRNA-mediated repression of mRNA translation. Essays in Biochemistry, 2013, 54, 29-38.	2.1	128
406	Roles of Eukaryotic Initiation Factor 5A2 in Human Cancer. International Journal of Biological Sciences, 2013, 9, 1013-1020.	2.6	47
407	elF4GI Facilitates the MicroRNA-Mediated Gene Silencing. PLoS ONE, 2013, 8, e55725.	1.1	12
408	A cis-Acting Element Present within the gag Open Reading Frame Negatively Impacts on the Activity of the HIV-1 IRES. PLoS ONE, 2013, 8, e56962.	1.1	18
409	Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB. PLoS ONE, 2013, 8, e66087.	1.1	22
410	Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis. PLoS ONE, 2013, 8, e68108.	1.1	44
411	Photosynthetic Control of Arabidopsis Leaf Cytoplasmic Translation Initiation by Protein Phosphorylation. PLoS ONE, 2013, 8, e70692.	1.1	55
412	Dopa-Responsive Dystonia: Functional Analysis of Single Nucleotide Substitutions within the 5' Untranslated GCH1 Region. PLoS ONE, 2013, 8, e76975.	1.1	4
413	A Novel Pulse-Chase SILAC Strategy Measures Changes in Protein Decay and Synthesis Rates Induced by Perturbation of Proteostasis with an Hsp90 Inhibitor. PLoS ONE, 2013, 8, e80423.	1.1	42
414	Dynamic Impacts of the Inhibition of the Molecular Chaperone Hsp90 on the T-Cell Proteome Have Implications for Anti-Cancer Therapy. PLoS ONE, 2013, 8, e80425.	1.1	44
416	Viral Replication Strategies: Manipulation of ER Stress Response Pathways and Promotion of IRES-Dependent Translation. , 2013, , .		0
417	Most Human Proteins Made in Both Nucleus and Cytoplasm Turn Over within Minutes. PLoS ONE, 2014, 9, e99346.	1.1	23
418	Functional and Structural Analysis of Maize Hsp101 IRES. PLoS ONE, 2014, 9, e107459.	1.1	11
419	Poly(A) Binding Protein 1 Enhances Cap-Independent Translation Initiation of Neurovirulence Factor from Avian Herpesvirus. PLoS ONE, 2014, 9, e114466.	1.1	12

#	Article	IF	Citations
421	Roles of eIF2α kinases in the pathogenesis of Alzheimerââ,¬â,,¢s disease. Frontiers in Molecular Neuroscience, 2014, 7, 22.	1.4	105
422	Genetic features of a translation initiation system composed of IRES element, nucleotide context surrounding the initiation codon, and translation initiation region of classical swine fever virus RNA. Genetics and Molecular Research, 2014, 13, 10803-10810.	0.3	O
423	A Novel Assay Platform for the Detection of Translation Modulators of Spermidine/ Spermine Acetyltransferase. Current Pharmaceutical Design, 2014, 20, 245-252.	0.9	1
424	Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. Translation, 2014, 2, e959366.	2.9	3
425	The Herpes Simplex Virus 1 Virion Host Shutoff Protein Enhances Translation of Viral Late mRNAs by Preventing mRNA Overload. Journal of Virology, 2014, 88, 9624-9632.	1.5	42
426	Progranulin Transcripts with Short and Long 5′ Untranslated Regions (UTRs) Are Differentially Expressed via Posttranscriptional and Translational Repression. Journal of Biological Chemistry, 2014, 289, 25879-25889.	1.6	24
427	mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for cell cycle exit and myogenic differentiation. Cell Cycle, 2014, 13, 2517-2525.	1.3	13
428	Maintenance of Pdx1 mRNA Translation in Islet \hat{I}^2 -Cells During the Unfolded Protein Response. Molecular Endocrinology, 2014, 28, 1820-1830.	3.7	13
429	Signaling crosstalk between the mTOR complexes. Translation, 2014, 2, e28174.	2.9	40
430	Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Research, 2014, 42, 3298-3313.	6.5	75
431	ER stress protection in cancer cells: the multifaceted role of the heat shock protein TRAP1. Endoplasmic Reticulum Stress in Diseases, 2014, 1 , .	0.2	1
432	Crystal Structures of GCN2 Protein Kinase C-terminal Domains Suggest Regulatory Differences in Yeast and Mammals. Journal of Biological Chemistry, 2014, 289, 15023-15034.	1.6	16
433	Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics, 2014, 15, 911.	1.2	121
434	Why is start codon selection so precise in eukaryotes?. Translation, 2014, 2, e28387.	2.9	56
435	Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism. Rna, 2014, 20, 373-381.	1.6	13
436	Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. European Journal of Human Genetics, 2014, 22, 902-906.	1.4	65
437	Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression. Nucleic Acids Research, 2014, 42, 10321-10330.	6.5	24
438	Introduction to the Molecular Biology of the Cell. , 2014, , 3-14.		0

#	Article	IF	Citations
439	Translation initiation of the HIV-1 mRNA. Translation, 2014, 2, e960242.	2.9	16
440	Eukaryotic translation initiation factor 2 α phosphorylation as a therapeutic target in diabetes. Expert Review of Endocrinology and Metabolism, 2014, 9, 345-356.	1,2	3
441	Increased sucrose levels mediate selective mRNA translation in Arabidopsis. BMC Plant Biology, 2014, 14, 306.	1.6	26
442	The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. Rna, 2014, 20, 1298-1319.	1.6	71
443	Abberant protein synthesis in G2019S LRRK2 <i>Drosophila</i> Parkinson disease-related phenotypes. Fly, 2014, 8, 165-169.	0.9	19
444	40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs. Nucleic Acids Research, 2014, 42, 10373-10384.	6.5	39
445	Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive. Frontiers in Genetics, 2014, 5, 117.	1.1	7
446	Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L534-L542.	1.3	91
447	Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells. Bioscience Reports, 2014, 34, e00161.	1.1	34
448	The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Research, 2014, 42, 9171-9181.	6.5	222
449	A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool. PLoS Genetics, 2014, 10, e1004084.	1.5	72
450	The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO Journal, 2014, 33, 76-92.	3.5	135
451	MicroRNA-146a Provides Feedback Regulation of Lyme Arthritis but Not Carditis during Infection with Borrelia burgdorferi. PLoS Pathogens, 2014, 10, e1004212.	2.1	38
452	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	2.5	65
453	Investigation of the conserved glutamate immediately following the DEAD box in eukaryotic translation initiation factor 4AI. Biochemistry and Cell Biology, 2014, 92, 33-42.	0.9	0
454	Subcellular mRNA localisation at a glance. Journal of Cell Science, 2014, 127, 2127-2133.	1.2	28
455	4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nature Communications, 2014, 5, 4790.	5.8	63
456	Virus-Mediated Compartmentalization of the Host Translational Machinery. MBio, 2014, 5, e01463-14.	1.8	73

#	Article	IF	CITATIONS
457	The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. Rna, 2014, 20, 1579-1592.	1.6	71
458	mRNA localization in the <i>Drosophila</i> germline. RNA Biology, 2014, 11, 1010-1018.	1.5	29
459	A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle, 2014, 13, 2660-2665.	1.3	45
460	Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. Intrinsically Disordered Proteins, 2014, 2, e970499.	1.9	10
461	Cytoplasm: Translational Apparatus. , 2014, , 1-19.		0
462	RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Research, 2014, 42, 11849-11864.	6.5	36
463	An eIF4E1/4E-T Complex Determines the Genesis of Neurons from Precursors by Translationally Repressing a Proneurogenic Transcription Program. Neuron, 2014, 84, 723-739.	3.8	86
464	iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Analytical Biochemistry, 2014, 462, 76-83.	1.1	245
465	Maize Elongin C interacts with the viral genomeâ€linked protein, <scp>VP</scp> g, of <i>Sugarcane mosaic virus</i> and facilitates virus infection. New Phytologist, 2014, 203, 1291-1304.	3.5	64
466	X-ray structures of eIF5B and the eIF5B–eIF1A complex: the conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3090-3098.	2.5	17
467	Repression of Gurken translation by a meiotic checkpoint in <i>Drosophila</i> oogenesis is suppressed by a reduction in the dose of <i>elF1A</i> Development (Cambridge), 2014, 141, 3910-3921.	1.2	12
468	TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Research, 2014, 42, D845-D850.	6.5	84
469	Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling. BMC Genomics, 2014, 15, 1114.	1.2	21
470	Differential Role for Host Translation Factors in Host and Viral Protein Synthesis during Human Cytomegalovirus Infection. Journal of Virology, 2014, 88, 1473-1483.	1.5	27
471	Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Research, 2014, 42, e49-e49.	6.5	47
472	elF5 and elF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Research, 2014, 42, 12052-12069.	6.5	40
473	The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Research, 2014, 42, 485-498.	6.5	130
474	Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the $5\hat{a} \in \mathbb{R}^2$ -terminal regions of cap0-, cap1- and $5\hat{a} \in \mathbb{R}^2$ -ppp- mRNAs. Nucleic Acids Research, 2014, 42, 3228-3245	5.6.5 5.	182

#	Article	IF	CITATIONS
475	Poly(A) RNA and Paip2 act as allosteric regulators of poly(A)-binding protein. Nucleic Acids Research, 2014, 42, 2697-2707.	6.5	13
476	Rps5-Rps16 communication is essential for efficient translation initiation in yeast <i>S. cerevisiae</i> Nucleic Acids Research, 2014, 42, 8537-8555.	6.5	14
477	Regulation of plant translation by upstream open reading frames. Plant Science, 2014, 214, 1-12.	1.7	179
478	Reactivity between acetone and single-stranded DNA containing a 5′-capped 2′-fluoro-N7-methyl guanine. Tetrahedron Letters, 2014, 55, 3358-3360.	0.7	2
479	Oncogenic Activation of MEK/ERK Primes Melanoma Cells for Adaptation to Endoplasmic Reticulum Stress. Journal of Investigative Dermatology, 2014, 134, 488-497.	0.3	66
480	Translational regulator eIF2α in tumor. Tumor Biology, 2014, 35, 6255-6264.	0.8	30
481	Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 2014, 65, 799-807.	2.4	500
482	DEAD-Box RNA helicases in animal gametogenesis. Molecular Biology, 2014, 48, 16-28.	0.4	31
483	Clinicopathological Sex-Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients. Pathology and Oncology Research, 2014, 20, 427-433.	0.9	24
484	A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Sciences, 2014, 71, 1477-1504.	2.4	119
485	High-Resolution Structure of the Eukaryotic 80S Ribosome. Annual Review of Biochemistry, 2014, 83, 467-486.	5.0	110
486	Eukaryotic Initiation Factor (eIF) 4F Binding to Barley Yellow Dwarf Virus (BYDV) 3′-Untranslated Region Correlates with Translation Efficiency. Journal of Biological Chemistry, 2014, 289, 4286-4294.	1.6	11
487	RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, 2014, , .	0.4	14
488	Dynamic Changes in Ribosome-Associated Proteome and Phosphoproteome During Deoxynivalenol-Induced Translation Inhibition and Ribotoxic Stress. Toxicological Sciences, 2014, 138, 217-233.	1.4	38
489	Translation Initiation Factor eIF3b Contains a Nine-Bladed \hat{I}^2 -Propeller and Interacts with the 40S Ribosomal Subunit. Structure, 2014, 22, 923-930.	1.6	33
490	Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome. Cell, 2014, 157, 823-831.	13.5	211
491	Comparative ribosome profiling reveals extensive translational complexity in different <i>Trypanosoma brucei</i> life cycle stages. Nucleic Acids Research, 2014, 42, 3623-3637.	6.5	154
492	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193

#	Article	IF	CITATIONS
493	elF4B and elF4G Jointly Stimulate elF4A ATPase and Unwinding Activities by Modulation of the elF4A Conformational Cycle. Journal of Molecular Biology, 2014, 426, 51-61.	2.0	60
494	Insights into the Architecture of the eIF2Bα∫β∫ΈRegulatory Subcomplex. Biochemistry, 2014, 53, 3432-3445.	1.2	32
495	Post-transcriptional regulation of gene expression in innate immunity. Nature Reviews Immunology, 2014, 14, 361-376.	10.6	301
496	Translational reprogramming in cellular stress response. Wiley Interdisciplinary Reviews RNA, 2014, 5, 301-305.	3.2	193
497	Alternative translation initiation in immunity: MAVS learns new tricks. Trends in Immunology, 2014, 35, 188-189.	2.9	3
498	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	23.0	109
499	The A2A Adenosine Receptor Is a Dual Coding Gene. Journal of Biological Chemistry, 2014, 289, 1257-1270.	1.6	29
500	Casein Kinase 1ϵ Promotes Cell Proliferation by Regulating mRNA Translation. Cancer Research, 2014, 74, 201-211.	0.4	43
501	NMR elucidation of the role of Mg2+ in the structure and stability of the conserved RNA motifs of the EMCV IRES element. Organic and Biomolecular Chemistry, 2014, 12, 1495.	1.5	6
502	Long-term in vivo imaging of translated RNAs for gene therapy. Gene Therapy, 2014, 21, 434-439.	2.3	5
503	Translatome profiling: methods for genome-scale analysis of mRNA translation. Briefings in Functional Genomics, 2016, 15, 22-31.	1.3	88
504	Ribosomal stress activates eEF2K–eEF2 pathway causing translation elongation inhibition and recruitment of Terminal Oligopyrimidine (TOP) mRNAs on polysomes. Nucleic Acids Research, 2014, 42, 12668-12680.	6.5	44
505	Translation Elongation Factor 1A Mutants with Altered Actin Bundling Activity Show Reduced Aminoacyl-tRNA Binding and Alter Initiation via eIF2α Phosphorylation. Journal of Biological Chemistry, 2014, 289, 20928-20938.	1.6	20
506	Repeat-Associated Non-AUG Translation and Its Impact in Neurodegenerative Disease. Neurotherapeutics, 2014, 11, 721-731.	2.1	42
507	Quantitative analysis of mammalian translation initiation sites by <scp>FACS</scp> â€seq. Molecular Systems Biology, 2014, 10, 748.	3.2	158
508	3â€Substituted Indazoles as Configurationally Locked 4EGIâ€1 Mimetics and Inhibitors of the eIF4E/eIF4G Interaction. ChemBioChem, 2014, 15, 595-611.	1.3	12
509	A census of human RNA-binding proteins. Nature Reviews Genetics, 2014, 15, 829-845.	7.7	1,671
510	A Deeper Look into Translation Initiation. Cell, 2014, 159, 475-476.	13.5	4

#	Article	IF	CITATIONS
511	MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila. Molecular Cell, 2014, 56, 67-78.	4.5	100
512	The Translation Initiation Factor eIF3i Up-regulates Vascular Endothelial Growth Factor A, Accelerates Cell Proliferation, and Promotes Angiogenesis in Embryonic Development and Tumorigenesis. Journal of Biological Chemistry, 2014, 289, 28310-28323.	1.6	24
513	N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men. Molecular and Cellular Proteomics, 2014, 13, 1245-1261.	2.5	123
514	The translational landscape of fission-yeast meiosis and sporulation. Nature Structural and Molecular Biology, 2014, 21, 641-647.	3.6	79
515	Rationally Induced RNA:DNA G-Quadruplex Structures Elicit an Anticancer Effect by Inhibiting Endogenous eIF-4E Expression. Biochemistry, 2014, 53, 5461-5470.	1.2	27
516	Functional analysis of Kaposi's sarcoma–associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation. Rna, 2014, 20, 1803-1814.	1.6	16
517	Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3815-24.	3.3	99
518	Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA–like structural element in the ribosomal decoding center. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9139-9144.	3.3	59
519	The diverse roles of the eIF4A family: you are the company you keep. Biochemical Society Transactions, 2014, 42, 166-172.	1.6	60
520	Plant Translational Machinery. , 2014, , 129-151.		1
520 521		5.0	285
	Plant Translational Machinery. , 2014, , 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of	5.0	
521	Plant Translational Machinery. , 2014, , 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38.		285
521 522	Plant Translational Machinery., 2014, , 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38. RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature, 2014, 513, 65-70. A unique phosphorylation-dependent elF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochemical Journal, 2014,	13.7	285 506
521 522 523	Plant Translational Machinery., 2014, , 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38. RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature, 2014, 513, 65-70. A unique phosphorylation-dependent elF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochemical Journal, 2014, 462, 291-302. Antiviral Activity of an Isatin Derivative via Induction of PERK-Nrf2-Mediated Suppression of	13.7	285 506 8
521 522 523	Plant Translational Machinery., 2014,, 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38. RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature, 2014, 513, 65-70. A unique phosphorylation-dependent elF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochemical Journal, 2014, 462, 291-302. Antiviral Activity of an Isatin Derivative via Induction of PERK-Nrf2-Mediated Suppression of Cap-Independent Translation. ACS Chemical Biology, 2014, 9, 1015-1024. elF4E-binding proteins: new factors, new locations, new roles. Biochemical Society Transactions, 2014,	13.7 1.7 1.6	285 506 8
521 522 523 524 525	Plant Translational Machinery., 2014, , 129-151. Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38. RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature, 2014, 513, 65-70. A unique phosphorylation-dependent elF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochemical Journal, 2014, 462, 291-302. Antiviral Activity of an Isatin Derivative via Induction of PERK-Nrf2-Mediated Suppression of Cap-Independent Translation. ACS Chemical Biology, 2014, 9, 1015-1024. elF4E-binding proteins: new factors, new locations, new roles. Biochemical Society Transactions, 2014, 42, 1238-1245. Omacetaxine: A Protein Translation Inhibitor for Treatment of Chronic Myelogenous Leukemia.	13.7 1.7 1.6	285 506 8 32 31

#	ARTICLE	IF	Citations
529	Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4315-22.	3.3	34
530	elF2Â Dephosphorylation in Basolateral Amygdala Mediates Reconsolidation of Drug Memory. Journal of Neuroscience, 2014, 34, 10010-10021.	1.7	54
531	Molecular Architecture of the 40Sâ«eIF1â«eIF3 Translation Initiation Complex. Cell, 2014, 158, 1123-1135.	13.5	193
532	Lyar, a cell growth-regulating zinc finger protein, was identified to be associated with cytoplasmic ribosomes in male germ and cancer cells. Molecular and Cellular Biochemistry, 2014, 395, 221-229.	1.4	16
533	The 3′ Untranslated Region of Pea Enation Mosaic Virus Contains Two T-Shaped, Ribosome-Binding, Cap-Independent Translation Enhancers. Journal of Virology, 2014, 88, 11696-11712.	1.5	43
534	The 5′ Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation. Journal of Virology, 2014, 88, 5936-5955.	1.5	32
535	The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdisciplinary Reviews RNA, 2014, 5, 765-768.	3.2	152
536	mRNA translation and protein synthesis: an analysis of different modelling methodologies and a new PBN based approach. BMC Systems Biology, 2014, 8, 25.	3.0	29
537	Drug-Induced Endoplasmic Reticulum and Oxidative Stress Responses Independently Sensitize Toward TNFI±-Mediated Hepatotoxicity. Toxicological Sciences, 2014, 140, 144-159.	1.4	74
538	DENR–MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature, 2014, 512, 208-212.	13.7	148
539	elF4F-like complexes formed by cap-binding homolog TbElF4E5 with TbElF4G1 or TbElF4G2 are implicated in post-transcriptional regulation in <i>Trypanosoma brucei</i> . Rna, 2014, 20, 1272-1286.	1.6	48
540	Recent studies implicate the nucleolus as the major site of nuclear translation. Biochemical Society Transactions, 2014, 42, 1224-1228.	1.6	21
541	Adaptive and innate immune molecules in developing rainbow trout, Oncorhynchus mykiss eggs and larvae: Expression of genes and occurrence of effector molecules. Fish and Shellfish Immunology, 2014, 38, 25-33.	1.6	26
542	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	5.2	39
543	elF4B, elF4G and RNA regulate elF4A activity in translation initiation by modulating the elF4A conformational cycle. Nucleic Acids Research, 2014, 42, 7911-7922.	6.5	76
544	Stimulators of translation identified during a small molecule screening campaign. Analytical Biochemistry, 2014, 447, 6-14.	1.1	4
545	Little things make big things happen: A summary of micropeptide encoding genes. EuPA Open Proteomics, 2014, 3, 128-137.	2.5	29
546	Nutrient sensing and signaling in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Microbiology Reviews, 2014, 38, 254-299.	3.9	534

#	Article	IF	CITATIONS
547	Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Current Opinion in Genetics and Development, 2014, 26, 6-15.	1.5	104
548	Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1638-1647.	1.8	72
549	Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma. Oncogene, 2014, 33, 2577-2588.	2.6	24
550	Translation factors and ribosomal proteins control tumor onset and progression: how?. Oncogene, 2014, 33, 2145-2156.	2.6	72
551	Analysis of Translation Initiation During Stress Conditions by Polysome Profiling. Journal of Visualized Experiments, 2014, , .	0.2	17
552	Interrelations between translation and general <scp>mRNA</scp> degradation in yeast. Wiley Interdisciplinary Reviews RNA, 2014, 5, 747-763.	3.2	77
553	Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E Â Â. Plant Physiology, 2014, 164, 1820-1830.	2.3	35
554	Rolling Circle Translation of Circular RNA in Living Human Cells. Scientific Reports, 2015, 5, 16435.	1.6	332
555	Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line. Molecular Medicine Reports, 2015, 12, 7971-7978.	1.1	4
556	Signalling to eIF4E in cancer. Biochemical Society Transactions, 2015, 43, 763-772.	1.6	177
557	elF2B: recent structural and functional insights into a key regulator of translation. Biochemical Society Transactions, 2015, 43, 1234-1240.	1.6	50
558	Selective mRNA translation in erythropoiesis. Biochemical Society Transactions, 2015, 43, 343-347.	1.6	3
559	PI4K-beta and MKNK1 are regulators of hepatitis C virus IRES-dependent translation. Scientific Reports, 2015, 5, 13344.	1.6	11
560	Extensive alleleâ€specific translational regulation inÂhybrid mice. Molecular Systems Biology, 2015, 11, 825.	3.2	31
561	< em>Xenopus laevis $<$ /em> as a Model to Identify Translation Impairment. Journal of Visualized Experiments, 2015, , .	0.2	0
562	Reinitiation at non-canonical start codons leads to leak expression when incorporating unnatural amino acids. Scientific Reports, 2015, 5, 11866.	1.6	28
563	Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathologica Communications, 2015, 3, 76.	2.4	87
564	Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). BMC Genomics, 2015, 16, 985.	1.2	52

#	Article	IF	CITATIONS
565	Analysis of the interaction between host factor Sam68 and viral elements during foot-and-mouth disease virus infections. Virology Journal, 2015, 12, 224.	1.4	25
566	A unique binding mode of the eukaryotic translation initiation factor 4E for guiding the design of novel peptide inhibitors. Protein Science, 2015, 24, 1370-1382.	3.1	20
567	The <i>EIF4G1 </i> gene and Parkinson's disease. Acta Neurologica Scandinavica, 2015, 132, 73-78.	1.0	34
568	MicroRNAâ€Based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer. Drug Development Research, 2015, 76, 328-342.	1.4	9
569	Translational Control of the HIV Unspliced Genomic RNA. Viruses, 2015, 7, 4326-4351.	1.5	21
570	The small molecule ISRIB reverses the effects of eIF2 $\hat{l}\pm$ phosphorylation on translation and stress granule assembly. ELife, 2015, 4, .	2.8	464
571	Multiple Export Mechanisms for mRNAs. Cells, 2015, 4, 452-473.	1.8	61
572	Identification of Rhopalosiphum Padi Virus 5′ Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry. International Journal of Molecular Sciences, 2015, 16, 16053-16066.	1.8	2
573	Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Frontiers in Oncology, 2015, 5, 233.	1.3	48
574	Plant Translation Factors and Virus Resistance. Viruses, 2015, 7, 3392-3419.	1.5	214
575	C/EBPÎ ² -LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation. PLoS ONE, 2015, 10, e0144338.	1.1	11
576	Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cell Dysfunction. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	1.9	261
577	Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Scientific Reports, 2015, 5, 9737.	1.6	62
578	Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 2015, 6, 379.	1.7	59
579	The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins. Molecular Cell, 2015, 59, 35-49.	4.5	123
580	Synaptic Tagging and Capture. , 2015, , .		6
581	Translation initiation in plants: roles and implications beyond protein synthesis. Biologia Plantarum, 2015, 59, 401-412.	1.9	29
582	Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. Plant Physiology, 2015, 168, 1049-1065.	2.3	49

#	Article	IF	CITATIONS
583	Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer. Medical Oncology, 2015, 32, 183.	1.2	18
584	A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells. Nucleic Acids Research, 2015, 43, 4353-4362.	6.5	25
585	Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Biochemical Journal, 2015, 472, 261-273.	1.7	16
586	A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation. Nucleic Acids Research, 2015, 43, gkv1033.	6.5	6
587	RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Research, 2015, 43, e153-e153.	6.5	8
588	Molecular architecture of the ribosomeâ€bound Hepatitis C Virus internal ribosomal entry site <scp>RNA</scp> . EMBO Journal, 2015, 34, 3042-3058.	3.5	80
589	Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation. Nucleic Acids Research, 2015, 43, 5586-5600.	6.5	37
590	Gene selection and cloning approaches for co-expression and production of recombinant protein–protein complexes. Journal of Structural and Functional Genomics, 2015, 16, 113-128.	1.2	1
591	Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function. Translation, 2015, 3, e999576.	2.9	5
592	Erythropoietin-mediated expression of placenta growth factor is regulated via activation of hypoxia-inducible factor- $1\hat{1}\pm$ and post-transcriptionally by miR-214 in sickle cell disease. Biochemical Journal, 2015, 468, 409-423.	1.7	24
593	A novel signature for identification of upstream alternative translation initiation sites., 2015,,.		0
594	Heterogeneity of the translational machinery: Variations on a common theme. Biochimie, 2015, 114, 39-47.	1.3	79
595	Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochemical Journal, 2015, 465, 227-238.	1.7	39
596	Genome-wide profiling of untranslated regions by paired-end ditag sequencing reveals unexpected transcriptome complexity in yeast. Molecular Genetics and Genomics, 2015, 290, 217-224.	1.0	8
597	Toxin effect on protein biosynthesis in eukaryotic cells: A simple kinetic model. Mathematical Biosciences, 2015, 261, 83-90.	0.9	2
598	Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA–protein interaction sites. Methods, 2015, 72, 76-85.	1.9	12
599	Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation, 2015, 3, e983402.	2.9	117
600	Protein synthesis as an integral quality control mechanism during ageing. Ageing Research Reviews, 2015, 23, 75-89.	5.0	20

#	Article	IF	CITATIONS
601	Translation initiation mediated by RNA looping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1041-1046.	3.3	54
602	mRNAs that specifically interact with eukaryotic ribosomal subunits. Biochimie, 2015, 114, 48-57.	1.3	25
603	Stress granules, P-bodies and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 861-870.	0.9	333
604	Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Molecular Cell, 2015, 57, 422-432.	4.5	82
605	Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E. Molecular Cell, 2015, 57, 1074-1087.	4.5	130
606	The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis, 2015, 30, 169-176.	1.0	154
607	Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie, 2015, 114, 58-71.	1.3	28
608	Translational Tolerance of Mitochondrial Genes to Metabolic Energy Stress Involves TISU and eIF1-eIF4GI Cooperation in Start Codon Selection. Cell Metabolism, 2015, 21, 479-492.	7.2	80
609	Textbook of Cell Signalling in Cancer., 2015,,.		6
610	Ctk1 Function Is Necessary for Full Translation Initiation Activity in Saccharomyces cerevisiae. Eukaryotic Cell, 2015, 14, 86-95.	3.4	17
611	p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene, 2015, 34, 5513-5523.	2.6	71
612	Dietary lâ° Absorption. Vitamins and Hormones, 2015, 98, 1-31.	0.7	19
613	Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book, 2015, 13, e0176.	0.5	170
614	Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 2015, 16, 421-433.	7.7	1,508
615	In Vitro Reversible Translation Control Using \hat{I}^3 PNA Probes. Journal of the American Chemical Society, 2015, 137, 10268-10275.	6.6	14
616	Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica. Molecular and Biochemical Parasitology, 2015, 201, 146-152.	0.5	14
617	Translation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 751-752.	0.9	10
618	Modulation of the Translational Landscape During Herpesvirus Infection. Annual Review of Virology, 2015, 2, 311-333.	3.0	20

#	Article	IF	CITATIONS
619	<i>DDX3Y</i> , a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation. Journal of Proteome Research, 2015, 14, 3474-3483.	1.8	61
620	Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Molecular BioSystems, 2015, 11, 2620-2634.	2.9	289
621	The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death and Disease, 2015, 6, e1603-e1603.	2.7	136
622	Structural Insights into tRNA Dynamics on the Ribosome. International Journal of Molecular Sciences, 2015, 16, 9866-9895.	1.8	10
623	HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus. Viruses, 2015, 7, 199-218.	1.5	45
624	mTOR and the Regulation of Translational Capacity in Late Forms of Synaptic Plasticity. , 2015, , 99-132.		1
625	RNA Regulation by Poly(ADP-Ribose) Polymerases. Molecular Cell, 2015, 58, 959-969.	4.5	97
626	Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Molecular and Cellular Proteomics, 2015, 14, 2243-2260.	2.5	99
627	The 4E-BP Caf20p Mediates Both elF4E-Dependent and Independent Repression of Translation. PLoS Genetics, 2015, 11, e1005233.	1.5	36
628	The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response. PLoS Genetics, 2015, 11, e1004903.	1.5	36
629	General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in <i>Drosophila</i> Cells. Molecular and Cellular Biology, 2015, 35, 2309-2320.	1.1	41
630	The DHX33 RNA Helicase Promotes mRNA Translation Initiation. Molecular and Cellular Biology, 2015, 35, 2918-2931.	1.1	56
631	Factor-dependent processivity in human eIF4A DEAD-box helicase. Science, 2015, 348, 1486-1488.	6.0	76
632	Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L58-L75.	1.3	5
633	Cis- and trans-regulation of luteovirus gene expression by the $3\hat{a}\in^2$ end of the viral genome. Virus Research, 2015, 206, 37-45.	1.1	37
634	MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clinica Chimica Acta, 2015, 445, 25-33.	0.5	16
635	In Vitro-Reduced Translation Efficiency of Coxsackievirus B3 Sabin3-Like Strain is Correlated to Impaired Binding of Cellular Initiation Factors to Viral IRES RNA. Current Microbiology, 2015, 70, 756-761.	1.0	2
636	<i>InÂvitro</i> translation in a hybrid cell free lysate with exogenous cellular ribosomes. Biochemical Journal, 2015, 467, 387-398.	1.7	22

#	Article	IF	Citations
637	Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Development, 2015, 10, 3.	1.1	53
638	Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nature Structural and Molecular Biology, 2015, 22, 404-410.	3.6	70
639	PKR activation enhances replication of classical swine fever virus in PK-15 cells. Virus Research, 2015, 204, 47-57.	1.1	11
640	To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends in Cell Biology, 2015, 25, 320-329.	3.6	79
641	Probing the closed-loop model of mRNA translation in living cells. RNA Biology, 2015, 12, 248-254.	1.5	54
642	Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC–ESI–MS/MS. Applied Biochemistry and Biotechnology, 2015, 176, 1174-1194.	1.4	0
643	Multiple Mechanisms of Reinitiation on Bicistronic Calicivirus mRNAs. Molecular Cell, 2015, 57, 1059-1073.	4.5	55
644	An Independently Folding RNA G-Quadruplex Domain Directly Recruits the 40S Ribosomal Subunit. Biochemistry, 2015, 54, 1879-1885.	1.2	34
645	mRNA Translational Enhancers as a Tool for Plant Gene Engineering. , 2015, , 187-196.		2
646	Recruitment of the 40S Ribosome Subunit to the 3′-Untranslated Region (UTR) of a Viral mRNA, via the eIF4 Complex, Facilitates Cap-independent Translation. Journal of Biological Chemistry, 2015, 290, 11268-11281.	1.6	34
647	Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction, 2015, 149, 43-54.	1,1	23
648	The core promoter: At the heart of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1116-1131.	0.9	140
649	Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. Trends in Molecular Medicine, 2015, 21, 373-384.	3.5	60
650	Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biology, 2015, 12, 305-319.	1.5	30
651	Innate immune restriction and antagonism of viral RNA lacking $2\times^3$ -O methylation. Virology, 2015, 479-480, 66-74.	1.1	147
652	elF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature, 2015, 522, 111-114.	13.7	327
653	iTIS-PseKNC: Identification of Translation Initiation Site in human genes using pseudo k-tuple nucleotides composition. Computers in Biology and Medicine, 2015, 66, 252-257.	3.9	32
654	A Unique 5′ Translation Element Discovered in Triticum Mosaic Virus. Journal of Virology, 2015, 89, 12427-12440.	1.5	13

#	Article	IF	Citations
655	Protein-RNA networks revealed through covalent RNA marks. Nature Methods, 2015, 12, 1163-1170.	9.0	79
656	5′ UTR m6A Promotes Cap-Independent Translation. Cell, 2015, 163, 999-1010.	13.5	1,414
657	Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Molecular Cell, 2015, 59, 399-412.	4.5	195
658	Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4689-96.	3.3	138
659	Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. Journal of Virology, 2015, 89, 8773-8782.	1.5	43
660	The molecular mechanism of translational control via the communication between the microRNA pathway and RNA-binding proteins. RNA Biology, 2015, 12, 922-926.	1.5	24
661	Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation. Genes and Development, 2015, 29, 1835-1849.	2.7	19
662	Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature, 2015, 526, 591-594.	13.7	990
663	DAP5 associates with eIF2 \hat{l}^2 and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Research, 2015, 43, 3764-3775.	6.5	81
665	elF4F: A Retrospective. Journal of Biological Chemistry, 2015, 290, 24091-24099.	1.6	128
666	Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. Journal of Neuroscience, 2015, 35, 10911-10926.	1.7	50
667	The unique Leishmania EIF4E4ÂN-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biology, 2015, 12, 1209-1221.	1.5	18
668	Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature, 2015, 525, 491-495.	13.7	204
669	Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase. RNA Biology, 2015, 12, 1301-1313.	1.5	20
670	Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs. Molecular and Cellular Biology, 2015, 35, 3921-3932.	1.1	45
671	Cap-dependent, scanning-free translation initiation mechanisms. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1313-1318.	0.9	62
672	Discovery and characterization of smORF-encoded bioactive polypeptides. Nature Chemical Biology, 2015, 11, 909-916.	3.9	218
673	Ribosome Reinitiation Directs Gene-specific Translation and Regulates the Integrated Stress Response. Journal of Biological Chemistry, 2015, 290, 28257-28271.	1.6	68

#	Article	IF	Citations
674	Proteomic analysis of silkworm midgut cellular proteins interacting with the 5′ end of infectious flacherie virus genomic RNA. Acta Biochimica Et Biophysica Sinica, 2015, 47, 80-90.	0.9	0
675	Computational challenges, tools, and resources for analyzing co†and post†transcriptional events in high throughput. Wiley Interdisciplinary Reviews RNA, 2015, 6, 291-310.	3.2	16
676	Distinct Features of Cap Binding by eIF4E1b Proteins. Journal of Molecular Biology, 2015, 427, 387-405.	2.0	23
677	Translational control by oncogenic signaling pathways. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 753-765.	0.9	40
678	Quantitative profiling of initiating ribosomes in vivo. Nature Methods, 2015, 12, 147-153.	9.0	222
679	Efficient backsplicing produces translatable circular mRNAs. Rna, 2015, 21, 172-179.	1.6	564
680	Length-dependent translation initiation benefits the functional proteome of human cells. Molecular BioSystems, 2015, 11, 370-378.	2.9	23
681	A cell typeâ€specific view on the translation of <scp>mRNA</scp> s from <scp>ROS</scp> â€responsive genes upon paraquat treatment of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> leaves. Plant, Cell and Environment, 2015, 38, 349-363.	2.8	34
682	The complexity of miRNA-mediated repression. Cell Death and Differentiation, 2015, 22, 22-33.	5.0	376
683	PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth1,2. Journal of Animal Science, 2016, 94, 1791-1802.	0.2	27
684	In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences, 2016, 17, 1704.	1.8	37
685	Nutrigenómica humana: efectos de los alimentos o sus componentes sobre la expresión RNA. Revista Facultad De Medicina, 2016, 64, 339.	0.0	2
686	PGMiner reloaded, fully automated proteogenomic annotation tool linking genomes to proteomes. Journal of Integrative Bioinformatics, 2016, 13, 16-23.	1.0	3
687	General Aspects Related to Nonsense Mutations. , 2016, , 1-76.		1
688	Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. Journal of Nucleic Acids, 2016, 2016, 1-19.	0.8	53
689	Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation. Viruses, 2016, 8, 97.	1.5	20
690	Stress Response and Translation Control in Rotavirus Infection. Viruses, 2016, 8, 162.	1.5	12
691	What Is the Impact of mRNA 5′ TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype?. Frontiers in Genetics, 2016, 7, 156.	1.1	12

#	Article	IF	CITATIONS
692	Bovine Adenovirus-3 pVIII Suppresses Cap-Dependent mRNA Translation Possibly by Interfering with the Recruitment of DDX3 and Translation Initiation Factors to the mRNA Cap. Frontiers in Microbiology, 2016, 7, 2119.	1.5	5
693	Cap-Independent Translational Control of Carcinogenesis. Frontiers in Oncology, 2016, 6, 128.	1.3	54
694	Exploiting tRNAs to Boost Virulence. Life, 2016, 6, 4.	1.1	32
695	Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth. PLoS ONE, 2016, 11, e0145836.	1.1	27
696	Characterization of the Expression of the RNA Binding Protein elF4G1 and Its Clinicopathological Correlation with Serous Ovarian Cancer. PLoS ONE, 2016, 11, e0163447.	1.1	15
697	$5\hat{a} \in \mathbb{R}^2$ and $3\hat{a} \in \mathbb{R}^2$ Untranslated Regions Strongly Enhance Performance of Geminiviral Replicons in Nicotiana benthamiana Leaves. Frontiers in Plant Science, 2016, 7, 200.	1.7	53
698	The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OselF3f) Is Involved in Microgametogenesis. Frontiers in Plant Science, 2016, 7, 532.	1.7	5
699	Structural characterization of ribosome recruitment and translocation by type IV IRES. ELife, 2016, 5, .	2.8	82
700	Identification and regulation of host genes related to <i>Rice stripe virus</i> symptom production. New Phytologist, 2016, 209, 1106-1119.	3.5	82
701	Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes and Development, 2016, 30, 1573-1588.	2.7	97
702	The DDX6–4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Research, 2016, 44, 6318-6334.	6.5	97
703	Human Fumarate Hydratase Is Dual Localized by an Alternative Transcription Initiation Mechanism. Traffic, 2016, 17, 720-732.	1.3	31
704	Diverse cap-binding properties of Drosophila eIF4E isoforms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1292-1303.	1.1	4
705	Upstream <scp>ORF</scp> s are prevalent translational repressors in vertebrates. EMBO Journal, 2016, 35, 706-723.	3 . 5	288
706	Polypyrimidine tractâ€binding protein binds to the 5′ untranslated region of the mouse mammary tumor virus mRNA and stimulates capâ€independent translation initiation. FEBS Journal, 2016, 283, 1880-1901.	2.2	13
707	Argonaute: The executor of small RNA function. Journal of Genetics and Genomics, 2016, 43, 481-494.	1.7	64
708	elF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition. Molecular Cell, 2016, 63, 206-217.	4. 5	94
709	The molecular choreography of protein synthesis: translational control, regulation, and pathways. Quarterly Reviews of Biophysics, 2016, 49, e11.	2.4	14

#	Article	IF	CITATIONS
710	Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome. Brain Pathology, 2016, 26, 593-605.	2.1	180
711	Free initiation factors eIF4A and eIF4B are dispensable for translation initiation on uncapped mRNAs. Biochemistry (Moscow), 2016, 81, 1198-1204.	0.7	14
712	Serial changes in the proliferation and differentiation of adipose-derived stem cells after ionizing radiation. Stem Cell Research and Therapy, 2016, 7, 117.	2.4	17
713	Systematic analysis of the <i>PTEN</i> 5′ leader identifies a major AUU initiated proteoform. Open Biology, 2016, 6, 150203.	1.5	39
714	<scp>elF4A inactivates $<$ scp>TORC1 in response to amino acidÂstarvation. EMBO Journal, 2016, 35, 1058-1076.	3.5	26
715	Components, Initiation, Elongation, Termination, and Regulation. , 2016, , 525-534.		1
716	Internal Ribosome Entry Site-Mediated Translation. , 2016, , 307-316.		0
717	Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron, 2016, 92, 1238-1251.	3.8	68
718	Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Computational and Structural Biotechnology Journal, 2016, 14, 404-410.	1.9	29
719	Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR-Cas9. Scientific Reports, 2016, 6, 39608.	1.6	41
720	Translational regulation of APOBEC3G mRNA by Vif requires its 5′UTR and contributes to restoring HIV-1 infectivity. Scientific Reports, 2016, 6, 39507.	1.6	26
721	Two highly conserved features of bacterial initiator tRNAs license them to pass through distinct checkpoints in translation initiation. Nucleic Acids Research, 2017, 45, gkw854.	6.5	15
722	AltORFev facilitates the prediction of alternative open reading frames in eukaryotic mRNAs. Bioinformatics, 2017, 33, 923-925.	1.8	9
723	The integrated stress response. EMBO Reports, 2016, 17, 1374-1395.	2.0	1,676
724	mi <scp>RISC</scp> and the <scp>CCR</scp> 4– <scp>NOT</scp> complex silence <scp>mRNA</scp> targets independently of 43S ribosomal scanning. EMBO Journal, 2016, 35, 1186-1203.	3.5	64
725	Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. Journal of Biological Chemistry, 2016, 291, 16927-16935.	1.6	289
726	Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nature Communications, 2016, 7, 12622.	5.8	41
727	Insights into the adaptive response of the plant-pathogenic oomycete Phytophthora capsici to the fungicide flumorph. Scientific Reports, 2016, 6, 24103.	1.6	9

#	Article	IF	CITATIONS
728	CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Molecular Cell, 2016, 62, 314-322.	4.5	152
729	JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells. Journal of Proteome Research, 2016, 15, 2309-2320.	1.8	76
730	sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 848-859.	0.9	14
731	Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging. Journal of Histochemistry and Cytochemistry, 2016, 64, 323-333.	1.3	10
732	RAN translationâ€"What makes it run?. Brain Research, 2016, 1647, 30-42.	1.1	89
733	Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. Rna, 2016, 22, 867-882.	1.6	194
734	The stress of prion disease. Brain Research, 2016, 1648, 553-560.	1.1	23
735	Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene, 2016, 35, 4957-4972.	2.6	195
736	N 6-Methyladenosine (m6A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Molecular Biotechnology, 2016, 58, 450-459.	1.3	101
737	Sumoylation of elF4A2 affects stress granule formation. Journal of Cell Science, 2016, 129, 2407-15.	1.2	37
738	Translation Factors Specify Cellular Metabolic State. Cell Reports, 2016, 16, 1787-1788.	2.9	3
739	Transient RUNX1 Expression during Early Mesendodermal Differentiation ofÂhESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports, 2016, 7, 884-896.	2.3	21
740	RNA G-quadruplexes and their potential regulatory roles in translation. Translation, 2016, 4, e1244031.	2.9	118
741	HIV-1 sequences isolated from patients promote expression of shorter isoforms of the Gag polyprotein. Archives of Virology, 2016, 161, 3495-3507.	0.9	7
742	Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8466-8471.	3.3	46
743	Structural Features of the Box C/D snoRNP Pre-assembly Process Are Conserved through Species. Structure, 2016, 24, 1693-1706.	1.6	15
744	The eIF2A knockout mouse. Cell Cycle, 2016, 15, 3115-3120.	1.3	30
745	Mnk1 (Mitogen-Activated Protein Kinase–Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice. Hypertension, 2016, 68, 1393-1399.	1.3	30

#	Article	IF	Citations
746	Regulated tRNA Cleavage in Biology and Medicine: Roles of tRNA Modifications. RNA Technologies, 2016, , 27-54.	0.2	2
747	Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction. Computational and Structural Biotechnology Journal, 2016, 14, 298-303.	1.9	12
748	Translational control by eIF2α in neurons: Beyond the stress response. Cytoskeleton, 2016, 73, 551-565.	1.0	38
749	Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Molecular Reproduction and Development, 2016, 83, 190-207.	1.0	17
750	Development of broad virus resistance in nonâ€transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 2016, 17, 1140-1153.	2.0	666
751	The stress-inducible transcription factor ATF4 accumulates at specific rRNA-processing nucleolar regions after proteasome inhibition. European Journal of Cell Biology, 2016, 95, 389-400.	1.6	5
752	The Diversification of eIF4E Family Members in Plants and Their Role in the Plant-Virus Interaction. , 2016, , 187-205.		7
7 53	elF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and Is Modulated by Phosphorylation. Plant Physiology, 2016, 172, 128-140.	2.3	25
754	Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. BMC Molecular Biology, 2016, 17, 21.	3.0	37
756	Evolution of elF2α Kinases: Adapting Translational Control to Diverse Stresses. , 2016, , 235-260.		7
757	elF2 \hat{l}_{\pm} Kinases and the Evolution of Stress Response in Eukaryotes. , 2016, , 261-276.		1
758	Evolution ofÂTOR and Translation Control. , 2016, , 327-411.		8
759	Evolutionary Aspects of Translation Regulation During Abiotic Stress and Development in Plants., 2016,, 477-490.		4
760	On the Origin and Early Evolution of Translation in Eukaryotes. , 2016, , 81-107.		0
761	Differential proteomic analysis of respiratory samples from patients suffering from influenza. VirusDisease, 2016, 27, 226-233.	1.0	3
762	The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. Journal of Experimental Botany, 2016, 67, 6215-6252.	2.4	206
763	Genome-Wide Analysis of RNA Secondary Structure. Annual Review of Genetics, 2016, 50, 235-266.	3.2	186
764	Translational Control in Echinoderms: The Calm Before the Storm. , 2016, , 413-434.		5

#	Article	IF	CITATIONS
765	elF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature, 2016, 536, 96-99.	13.7	277
766	Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends in Cell Biology, 2016, 26, 918-933.	3.6	96
767	Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature, 2016, 535, 570-574.	13.7	186
768	DHX29 and eIF3 cooperate in ribosomal scanning on structured mRNAs during translation initiation. Rna, 2016, 22, 1859-1870.	1.6	16
769	Molecular analysis of the factorless internal ribosome entry site in Cricket Paralysis virus infection. Scientific Reports, 2016, 6, 37319.	1.6	22
770	New insights into the topology of the scanning ribosome during translation initiation: Lessons from viruses. RNA Biology, 2016, 13, 1223-1227.	1.5	10
771	Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Scientific Reports, 2016, 6, 36832.	1.6	22
772	RNA-Seeded Functional Amyloids Balance Growth and Survival. Developmental Cell, 2016, 39, 131-132.	3.1	8
773	Plant immunity against viruses: antiviral immune receptors in focus. Annals of Botany, 2017, 119, mcw200.	1.4	138
774	PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Research, 2016, 44, gkw609.	6.5	11
775	Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications, 2016, 7, 11663.	5.8	158
776	Pancreatic Islet Biology. Pancreatic Islet Biology, 2016, , .	0.1	2
777	Co-Translational Folding: A Novel Modulator of Local Protein Expression in Mammalian Neurons?. Trends in Genetics, 2016, 32, 788-800.	2.9	13
778	elF $2\hat{l}^2$ is critical for elF5-mediated GDP-dissociation inhibitor activity and translational control. Nucleic Acids Research, 2016, 44, gkw657.	6.5	21
779	Cryo-EM study of start codon selection during archaeal translation initiation. Nature Communications, 2016, 7, 13366.	5.8	25
780	Mechanistic insights into mammalian stress granule dynamics. Journal of Cell Biology, 2016, 215, 313-323.	2.3	296
781	Polyamines release the let-7b-mediated suppression of initiation codon recognition during the protein synthesis of EXT2. Scientific Reports, 2016, 6, 33549.	1.6	25
782	The Minimum Open Reading Frame, AUG-Stop, Induces Boron-Dependent Ribosome Stalling and mRNA Degradation. Plant Cell, 2016, 28, 2830-2849.	3.1	128

#	Article	IF	Citations
783	The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Molecular Cell, 2016, 64, 467-479.	4. 5	91
784	Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70. Scientific Reports, 2016, 6, 32832.	1.6	6
785	Analysis of translation using polysome profiling. Nucleic Acids Research, 2017, 45, gkw907.	6.5	119
786	MicroRNAs: A Link Between Type 1 Diabetes and the Environment?. Pancreatic Islet Biology, 2016, , 159-192.	0.1	0
787	An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the <i>CACNA1A</i> second cistron. Science Translational Medicine, 2016, 8, 347ra94.	5.8	51
788	IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES). Scientific Reports, 2016, 6, 27436.	1.6	46
789	Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system. Scientific Reports, 2016, 6, 24518.	1.6	6
790	The ribosome in action: Tuning of translational efficiency and protein folding. Protein Science, 2016, 25, 1390-1406.	3.1	154
791	Metal ion induced heterogeneity in RNA folding studied by smFRET. Coordination Chemistry Reviews, 2016, 327-328, 123-142.	9.5	23
792	Phosphorylation of elF2 $\hat{l}\pm$ on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Molecular and Biochemical Parasitology, 2016, 205, 16-21.	0.5	8
793	Proteomic analysis of mTOR inhibition-mediated phosphorylation changes in ribosomal proteins and eukaryotic translation initiation factors. Protein and Cell, 2016, 7, 533-537.	4.8	14
794	Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Research, 2016, 44, 3390-3407.	6.5	19
795	An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Research, 2016, 44, 4368-4380.	6.5	27
796	DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context. Nucleic Acids Research, 2016, 44, 4252-4265.	6.5	19
797	Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitology International, 2016, 65, 463-471.	0.6	18
798	elF1A/elF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Research, 2016, 44, gkw552.	6.5	31
799	Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors. Brain Research, 2016, 1646, 459-466.	1,1	2
800	The unfolded protein response in immunity and inflammation. Nature Reviews Immunology, 2016, 16, 469-484.	10.6	581

#	Article	IF	CITATIONS
801	The frontier of RNA metamorphosis and ribosome signature in neocortical development. International Journal of Developmental Neuroscience, 2016, 55, 131-139.	0.7	18
802	Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar) Tj ETQq1 1 Evolution, 2016, 48, 20.	0.784314 1.2	rgBT /Overl 19
803	Seeing translation. Science, 2016, 352, 1391-1392.	6.0	19
804	Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt–Jakob Disease. Journal of Neuropathology and Experimental Neurology, 2016, 75, 755-769.	0.9	21
805	The Yin and Yang of codon usage. Human Molecular Genetics, 2016, 25, R77-R85.	1.4	114
806	Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnology and Bioengineering, 2016, 113, 1777-1786.	1.7	8
807	Structural domains within the <scp>HIV</scp> â€1 mRNA and the ribosomal protein S25 influence capâ€independent translation initiation. FEBS Journal, 2016, 283, 2508-2527.	2.2	33
808	Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Research, 2016, 44, 2362-2377.	6.5	28
809	Translation from the 5′ untranslated region shapes the integrated stress response. Science, 2016, 351, aad3867.	6.0	305
810	Characterizing inactive ribosomes in translational profiling. Translation, 2016, 4, e1138018.	2.9	28
811	All Ribosomes Are Created Equal. Really?. Trends in Biochemical Sciences, 2016, 41, 121-123.	3.7	21
812	Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene, 2016, 578, 1-6.	1.0	20
813	LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Research, 2016, 44, 1309-1325.	6.5	31
814	Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro-Oncology, 2016, 18, 1265-1277.	0.6	24
815	Enhanced translation initiation factor 4G levels correlate with production levels of monoclonal antibodies in recombinant CHO cell lines. Biochemical Journal, 2016, 473, e11-e13.	1.7	0
816	Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cellular and Molecular Life Sciences, 2016, 73, 1881-1893.	2.4	9
817	Lactimidomycin is a broad-spectrum inhibitor of dengue and other RNA viruses. Antiviral Research, 2016, 128, 57-62.	1.9	20
818	An Untranslated <i>cis</i> -Element Regulates the Accumulation of Multiple C ₄ Enzymes in <i>Gynandropsis gynandra</i> Mesophyll Cells. Plant Cell, 2016, 28, 454-465.	3.1	73

#	Article	IF	CITATIONS
819	Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Molecular and Cellular Proteomics, 2016, 15, 1584-1597.	2.5	28
820	Crystal structure of eukaryotic translation initiation factor 2B. Nature, 2016, 531, 122-125.	13.7	103
821	Specific binding of Fusarium graminearum Hex1 protein to untranslated regions of the genomic RNA of Fusarium graminearum virus 1 correlates with increased accumulation of both strands of viral RNA. Virology, 2016, 489, 202-211.	1.1	8
822	Far Upstream Element-Binding Protein 1 Binds the 3′ Untranslated Region of PKD2 and Suppresses Its Translation. Journal of the American Society of Nephrology: JASN, 2016, 27, 2645-2657.	3.0	10
823	Synthetic Polyamines to Regulate mRNA Translation through the Preservative Binding of Eukaryotic Initiation Factor 4E to the Cap Structure. Journal of the American Chemical Society, 2016, 138, 1478-1481.	6.6	33
824	Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene, 2016, 35, 4675-4688.	2.6	116
825	Production of recombinant proteins in plant cells. Russian Journal of Plant Physiology, 2016, 63, 26-37.	0.5	6
826	Systemic Reprogramming of Translation Efficiencies on Oxygen Stimulus. Cell Reports, 2016, 14, 1293-1300.	2.9	73
827	Localized Translation of gurken/TGF-α mRNA during Axis Specification Is Controlled by Access to Orb/CPEB on Processing Bodies. Cell Reports, 2016, 14, 2451-2462.	2.9	39
828	RNA G-Quadruplex Invasion and Translation Inhibition by Antisense Î ³ -Peptide Nucleic Acid Oligomers. Biochemistry, 2016, 55, 1977-1988.	1.2	22
829	Mechanisms of Post-transcriptional Gene Regulation. , 2016, , 1-36.		0
830	The PI3K-mTOR Pathway. , 2016, , 19-45.		1
831	Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates. Molecular Phylogenetics and Evolution, 2016, 94, 383-391.	1.2	15
832	Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. Journal of Molecular Biology, 2016, 428, 344-356.	2.0	14
833	Cap-dependent translation is mediated by †RNA looping' rather than †ribosome scanning'. RNA Biolog 2016, 13, 1-5.	gy _{1.5}	20
834	In silico analysis suggests that PH0702 and PH0208 encode for methylthioribose-1-phosphate isomerase and ribose-1,5-bisphosphate isomerase, respectively, rather than alF2Bβ and alF2BÎ˚. Gene, 2016, 575, 118-126.	1.0	7
835	TRM6/61 connects PKC \hat{l}_{\pm} with translational control through tRNAiMet stabilization: impact on tumorigenesis. Oncogene, 2016, 35, 1785-1796.	2.6	53
836	Identification and Functional Analysis of the NADK Gene Family in Wheat. Plant Molecular Biology Reporter, 2016, 34, 118-135.	1.0	4

#	Article	IF	Citations
837	Gas6/Axl is the sensor of arginine-auxotrophic response in targeted chemotherapy with arginine-depleting agents. Oncogene, 2016, 35, 1632-1642.	2.6	19
838	Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cellular and Molecular Life Sciences, 2017, 74, 183-212.	2.4	12
839	Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine, 2017, 89, 116-121.	1.4	29
840	Effect of nanoâ€sized, elemental selenium supplement on theÂproteome of chicken liver. Journal of Animal Physiology and Animal Nutrition, 2017, 101, 502-510.	1.0	22
841	Analysis of the interacting partners eIF4F and 3′â€CITE required for <i>Melon necrotic spot virus</i> capâ€independent translation. Molecular Plant Pathology, 2017, 18, 635-648.	2.0	27
842	The bent conformation of poly(A)-binding protein induced by RNA-binding is required for its translational activation function. RNA Biology, 2017, 14, 370-377.	1.5	7
843	Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 2017, 130, 927-937.	1.2	203
844	Eukaryotic initiation factor 4E binding protein family members are widely expressed in fish tissues: Cloning and distribution of 4E-BPs in Schizothorax prenanti. Agri Gene, 2017, 3, 109-115.	1.9	1
845	A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Advances in Virus Research, 2017, 97, 61-105.	0.9	41
846	Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation. Scientific Reports, 2017, 7, 42882.	1.6	16
847	Human Herpesvirus 6A Exhibits Restrictive Propagation with Limited Activation of the Protein Kinase R-eIF2α Stress Pathway. Journal of Virology, 2017, 91, .	1.5	4
848	CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes. Cell Reports, 2017, 18, 1884-1892.	2.9	18
849	Regulation Mechanisms of Viral IRES-Driven Translation. Trends in Microbiology, 2017, 25, 546-561.	3.5	123
850	A global characterization of the translational and transcriptional programs induced by methionine restriction through ribosome profiling and RNA-seq. BMC Genomics, 2017, 18, 189.	1.2	27
851	Exploiting the Protein Corona from Cell Lysate on DNA Functionalized Gold Nanoparticles for Enhanced mRNA Translation. ACS Applied Materials & Interfaces, 2017, 9, 10408-10417.	4.0	18
852	Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle, 2017, 16, 927-939.	1.3	34
853	Translation regulation in plants: an interesting past, an exciting present and a promising future. Plant Journal, 2017, 90, 628-653.	2.8	167
854	<i>Eukaryotic translation initiation factor 2Bâ€beta</i> (<i><scp>elF</scp>2B</i> β), a new class of plant virus resistance gene. Plant Journal, 2017, 90, 929-940.	2.8	64

#	ARTICLE	IF	Citations
855	Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus. Biochemical and Biophysical Research Communications, 2017, 492, 617-623.	1.0	34
856	Dynamics of IRES-mediated translation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160177.	1.8	80
857	A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus. Journal of Virology, 2017, 91, .	1.5	19
858	Human elF3: from â€~blobology' to biological insight. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160176.	1.8	59
859	Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens. Plant and Cell Physiology, 2017, 58, 946-961.	1.5	6
860	RNA-Binding Proteins in Female Reproductive Pathologies. American Journal of Pathology, 2017, 187, 1200-1210.	1.9	8
861	ABCE1: A special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biology, 2017, 14, 1279-1285.	1.5	55
862	Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiology of Learning and Memory, 2017, 142, 30-40.	1.0	28
863	Targeting of protein translation as a new treatment paradigm for prostate cancer. Current Opinion in Oncology, 2017, 29, 210-220.	1.1	20
864	Regulation of Tacaribe Mammarenavirus Translation: Positive $5\hat{a} \in \mathbb{Z}^2$ and Negative $3\hat{a} \in \mathbb{Z}^2$ Elements and Role of Key Cellular Factors. Journal of Virology, 2017, 91, .	1.5	14
865	WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. Nucleic Acids Research, 2017, 45, 6894-6910.	6.5	9
866	Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation. Trends in Biochemical Sciences, 2017, 42, 589-611.	3.7	240
867	Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Research, 2017, 45, 7382-7400.	6.5	28
868	Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A. Cell Chemical Biology, 2017, 24, 605-613.e5.	2.5	41
869	FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biology, 2017, 14, 137-145.	1.5	10
870	More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cellular and Molecular Life Sciences, 2017, 74, 1659-1680.	2.4	98
871	p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death and Differentiation, 2017, 24, 1717-1729.	5.0	43
872	Structure of eIF4E in Complex with an eIF4G Peptide Supports a Universal Bipartite Binding Mode for Protein Translation. Plant Physiology, 2017, 174, 1476-1491.	2.3	32

#	Article	IF	CITATIONS
873	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
874	Polypyrimidine tract-binding protein (PTB) and PTB-associated splicing factor in CVB3 infection: an ITAF for an ITAF. Nucleic Acids Research, 2017, 45, 9068-9084.	6.5	21
875	Cytosolic Proteostasis Networks of the Mitochondrial Stress Response. Trends in Biochemical Sciences, 2017, 42, 712-725.	3.7	99
876	Efficient and Accurate Translation Initiation Directed by TISU Involves RPS3 and RPS10e Binding and Differential Eukaryotic Initiation Factor 1A Regulation. Molecular and Cellular Biology, 2017, 37, .	1.1	33
877	Translation initiation factor eIF4G1 preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs. Rna, 2017, 23, 1365-1375.	1.6	32
878	Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Systems, 2017, 4, 636-644.e9.	2.9	62
879	Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6310-6315.	3.3	33
880	DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, 49, 1052-1060.	9.4	235
881	FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Human Molecular Genetics, 2017, 26, 3253-3270.	1.4	18
882	New insights into the heterogeneous ripening in Hass avocado via LC–MS/MS proteomics. Postharvest Biology and Technology, 2017, 132, 51-61.	2.9	38
883	Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells. Bone and Joint Research, 2017, 6, 186-193.	1.3	29
884	An Unchartered Journey for Ribosomes: Circumnavigating Circular RNAs to Produce Proteins. Molecular Cell, 2017, 66, 1-2.	4.5	62
885	Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3′ cap-independent translation element (BTE). Journal of Biological Chemistry, 2017, 292, 5921-5931.	1.6	44
886	mTORC1 senses stresses: Coupling stress to proteostasis. BioEssays, 2017, 39, 1600268.	1.2	59
887	Engineering bacterial translation initiation â€" Do we have all the tools we need?. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3060-3069.	1.1	11
888	Translational control of <i>gurken</i> mRNA in <i>Drosophila</i> development. Cell Cycle, 2017, 16, 23-32.	1.3	7
889	Mammalian Polycistronic mRNAs and Disease. Trends in Genetics, 2017, 33, 129-142.	2.9	36
890	Interaction of p190A RhoGAP with eIF3A and Other Translation Preinitiation Factors Suggests a Role in Protein Biosynthesis. Journal of Biological Chemistry, 2017, 292, 2679-2689.	1.6	14

#	Article	IF	CITATIONS
891	mRNA length-sensing in eukaryotic translation: reconsidering the "closed loop―and its implications for translational control. Current Genetics, 2017, 63, 613-620.	0.8	51
892	Developing anti-neoplastic biotherapeutics against elF4F. Cellular and Molecular Life Sciences, 2017, 74, 1681-1692.	2.4	8
893	Deubiquitinase OTUD6B Isoforms Are Important Regulators of Growth and Proliferation. Molecular Cancer Research, 2017, 15, 117-127.	1.5	37
894	Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2017, 292, 1122-1141.	1.6	8
895	m6A Facilitates eIF4F-Independent mRNA Translation. Molecular Cell, 2017, 68, 504-514.e7.	4.5	197
896	Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Research, 2017, 45, 13016-13028.	6.5	14
897	Targeting RNA helicases in cancer: The translation trap. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 510-520.	3.3	57
898	Regulation of mRNA Translation in Neurons—A Matter of Life and Death. Neuron, 2017, 96, 616-637.	3.8	188
899	Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Research, 2017, 45, 9528-9546.	6.5	83
900	Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes and Development, 2017, 31, 1717-1731.	2.7	322
901	Novel mechanisms of elF2B action and regulation by elF2 \hat{l}_{\pm} phosphorylation. Nucleic Acids Research, 2017, 45, 11962-11979.	6.5	57
902	Integrated stress response stimulates FGF21 expression: Systemic enhancer of longevity. Cellular Signalling, 2017, 40, 10-21.	1.7	72
903	α+-Thalassemia Caused by an 811 bp Deletion in Individuals from Nanning, Guangxi: A Report of Two Cases. Hemoglobin, 2017, 41, 185-188.	0.4	1
904	Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. Rna, 2017, 23, 1712-1728.	1.6	22
905	eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Scientific Reports, 2017, 7, 10563.	1.6	14
906	Chromatin remodeling system p300-HDAC2-Sin3A is involved in Arginine Starvation-Induced HIF- $1\hat{l}\pm$ Degradation at the ASS1 promoter for ASS1 Derepression. Scientific Reports, 2017, 7, 10814.	1.6	23
907	Crystal Structure of the C-terminal Domain of Human eIF2D and Its Implications on Eukaryotic Translation Initiation. Journal of Molecular Biology, 2017, 429, 2765-2771.	2.0	13
908	Programmed cell deathâ€1 (PDâ€1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell–intrinsic PDâ€1. Hepatology, 2017, 66, 1920-1933.	3.6	142

#	Article	IF	Citations
909	Study of RNA-A Initiation Translation of The Infectious Pancreatic Necrosis Virus. Virus Research, 2017, 240, 121-129.	1.1	6
910	SIRT1 Functions as a Negative Regulator of Eukaryotic Poly(A)RNA Transport. Current Biology, 2017, 27, 2271-2284.e5.	1.8	23
911	New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. European Journal of Cancer, 2017, 83, 56-70.	1.3	82
912	Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Research, 2017, 238, 226-235.	1.1	6
913	MicroRNAs recruit eIF4E2 to repress translation of target mRNAs. Protein and Cell, 2017, 8, 750-761.	4.8	24
914	GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression. Genes and Development, 2017, 31, 1147-1161.	2.7	67
915	Differential use of 3'CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology, 2017, 510, 194-204.	1.1	20
916	Identification of transcripts with short stuORFs as targets for DENR•MCTS1-dependent translation in human cells. Scientific Reports, 2017, 7, 3722.	1.6	42
917	Structural alteration of a BYDV-like translation element (BTE) that attenuates p35 expression in three mild Tobacco bushy top virus isolates. Scientific Reports, 2017, 7, 4213.	1.6	11
918	TITER: predicting translation initiation sites by deep learning. Bioinformatics, 2017, 33, i234-i242.	1.8	83
919	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 2017, 33, 319-342.	4.0	833
920	Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in <i>Arabidopsis thaliana</i> Plant Cell, 2017, 29, 1952-1969.	3.1	43
921	Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nature Structural and Molecular Biology, 2017, 24, 765-777.	3.6	53
922	RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nature Communications, 2017, 8, 2005.	5.8	172
923	Genome-wide identification and differential analysis of translational initiation. Nature Communications, 2017, 8, 1749.	5.8	100
924	Downregulation of the protein synthesis machinery is a major regulatory event during early adipogenic differentiation of human adipose-derived stromal cells. Stem Cell Research, 2017, 25, 191-201.	0.3	24
925	The role of RNA-binding protein tristetraprolin in cancer and immunity. Medical Oncology, 2017, 34, 196.	1.2	39
926	<i>MRF</i> Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway. Plant Cell, 2017, 29, 2895-2920.	3.1	36

#	Article	IF	Citations
927	Host Factors in Coronavirus Replication. Current Topics in Microbiology and Immunology, 2017, 419, 1-42.	0.7	379
928	Requirement for eukaryotic translation initiation factors in cap-independent translation differs between bipartite genomic RNAs of red clover necrotic mosaic virus. Virology, 2017, 509, 152-158.	1.1	11
929	Translation inhibition and stress granules in the antiviral immune response. Nature Reviews Immunology, 2017, 17, 647-660.	10.6	276
930	mRNA localization in metazoans: A structural perspective. RNA Biology, 2017, 14, 1473-1484.	1.5	15
931	Deletion of eIF2 \hat{I}^2 lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth. Cancer Biology and Therapy, 2017, 18, 560-570.	1.5	5
932	Translational regulation of viral secretory proteins by the $5\hat{a} \in \mathbb{R}^2$ coding regions and a viral RNA-binding protein. Journal of Cell Biology, 2017, 216, 2283-2293.	2.3	20
933	Eukaryotic translation initiation factors and cancer. Tumor Biology, 2017, 39, 101042831770980.	0.8	49
934	A researcher's guide to the galaxy of IRESs. Cellular and Molecular Life Sciences, 2017, 74, 1431-1455.	2.4	68
935	Single gene defects leading to sperm quantitative anomalies. Clinical Genetics, 2017, 91, 208-216.	1.0	43
936	The translation factors of <i>Drosophila melanogaster </i> . Fly, 2017, 11, 65-74.	0.9	18
937	ER fatalitiesâ€"The role of ER-mitochondrial contact sites in yeast life and death decisions. Mechanisms of Ageing and Development, 2017, 161, 225-233.	2.2	9
938	The organization and regulation of <scp>mRNA</scp> â€"protein complexes. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1369.	3.2	68
939	G-Quadruplex in the NRF2 mRNA $5\hat{a}\in^2$ Untranslated Region Regulates <i>De Novo</i> NRF2 Protein Translation under Oxidative Stress. Molecular and Cellular Biology, 2017, 37, .	1.1	48
940	Increased Activity of the Chondrocyte Translational Apparatus Accompanies Osteoarthritic Changes in Human and Rodent Knee Cartilage. Arthritis and Rheumatology, 2017, 69, 586-597.	2.9	22
941	Inhibition of translation initiation factor eIF4A is required for apoptosis mediated by <i>Microplitis bicoloratus</i> bracovirus. Archives of Insect Biochemistry and Physiology, 2017, 96, e21423.	0.6	26
942	Control of the negative IRES <i>trans</i> -acting factor KHSRP by ubiquitination. Nucleic Acids Research, 2017, 45, 271-287.	6.5	231
943	Enteroviruses: Classification, diseases they cause, and approaches to development of antiviral drugs. Biochemistry (Moscow), 2017, 82, 1615-1631.	0.7	63
944	Comparative ribosome profiling uncovers a dominant role for translational control in Toxoplasma gondii. BMC Genomics, 2017, 18, 961.	1.2	23

#	Article	IF	CITATIONS
945	Decreasing Eukaryotic Initiation Factor 3C (EIF3C) Suppresses Proliferation and Stimulates Apoptosis in Breast Cancer Cell Lines Through Mammalian Target of Rapamycin (mTOR) Pathway. Medical Science Monitor, 2017, 23, 4182-4191.	0.5	22
946	Cellular Control of Dengue Virus Replication: Role of Interferon-Inducible Genes. , 0, , .		3
947	Regulation of Translation by TOR, eIF4E and eIF2α in Plants: Current Knowledge, Challenges and Future Perspectives. Frontiers in Plant Science, 2017, 8, 644.	1.7	59
948	Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Frontiers in Plant Science, 2017, 8, 810.	1.7	41
949	Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Molecular Biology and Evolution, 2017, 34, 3064-3080.	3.5	7
950	Kinases of eIF2a Switch Translation of mRNA Subset during Neuronal Plasticity. International Journal of Molecular Sciences, 2017, 18, 2213.	1.8	37
951	Protein Translation and Signaling in Human Eosinophils. Frontiers in Medicine, 2017, 4, 150.	1.2	8
952	Translation Initiation Factor elF4E and elFiso4E Are Both Required for Peanut stripe virus Infection in Peanut (Arachis hypogaea L.). Frontiers in Microbiology, 2017, 8, 338.	1.5	9
953	Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma. Frontiers in Microbiology, 2017, 8, 1602.	1.5	40
954	Viral tRNA Mimicry from a Biocommunicative Perspective. Frontiers in Microbiology, 2017, 8, 2395.	1.5	15
955	Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Frontiers in Neurology, 2017, 8, 89.	1.1	35
956	Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Frontiers in Oncology, 2017, 7, 158.	1.3	57
957	Bioinformatics and Drug Discovery. Current Topics in Medicinal Chemistry, 2017, 17, 1709-1726.	1.0	128
958	Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biology, 2017, 15, e2001882.	2.6	104
959	Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genetics, 2017, 13, e1006623.	1.5	31
960	Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genetics, 2017, 13, e1007117.	1.5	56
961	The meiotic regulator JASON utilizes alternative translation initiation sites to produce differentially localized forms. Journal of Experimental Botany, 2017, 68, 4205-4217.	2.4	6
962	Tryptophan Residues from Cap Binding Slot in elF4E Family Members: Their Contributions to Near-UV Circular Dichroism Spectra. , 2017, 07, .		1

#	Article	IF	CITATIONS
963	The IRES5′UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure. Nucleic Acids Research, 2017, 45, 8993-9004.	6.5	41
964	Protein Translation in Parkinson's Disease. , 2017, , 281-309.		5
965	High expression of eIF3d is associated with poor prognosis in patients with gastric cancer. Cancer Management and Research, 2017, Volume 9, 539-544.	0.9	16
966	Eukaryotic Translation Initiation Factor 3b is both a Promising Prognostic Biomarker and a Potential Therapeutic Target for Patients with Clear Cell Renal Cell Carcinoma. Journal of Cancer, 2017, 8, 3049-3061.	1.2	26
967	Pse-Analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8, 13338-13343.	0.8	119
968	Translational control in plant antiviral immunity. Genetics and Molecular Biology, 2017, 40, 292-304.	0.6	31
969	Sleep, Synaptic Plasticity, and Memory., 2017, , 539-562.		0
970	The Cross-talk between Tristetraprolin and Cytokines in Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1477-1486.	0.9	11
971	5′-non-transcribed flanking region and 5′-untranslated region play distinctive roles in sulfur deficiency induced expression of <i>SULFATE TRANSPORTER 1;2</i> in <i>Arabidopsis</i> roots. Plant Biotechnology, 2017, 34, 51-55.	0.5	0
972	Stabilization of 4E-BP1 by PI3K kinase and its involvement in CHK2 phosphorylation in the cellular response to radiation. International Journal of Medical Sciences, 2017, 14, 452-461.	1.1	4
973	The integrated stress response in budding yeast lifespan extension. Microbial Cell, 2017, 4, 368-375.	1.4	46
974	Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Reports, 2017, 50, 175-185.	1.1	55
975	Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget, 2017, 8, 69435-69455.	0.8	27
976	Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature Reviews Molecular Cell Biology, 2018, 19, 158-174.	16.1	577
977	Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence. Scientific Reports, 2018, 8, 4018.	1.6	34
978	DDX3 in HIV-1 infection and sensing: A paradox. Cytokine and Growth Factor Reviews, 2018, 40, 32-39.	3.2	28
979	eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Research, 2018, 46, 3075-3087.	6.5	33
980	Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet. Virology, 2018, 516, 176-188.	1.1	44

#	Article	IF	Citations
981	The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Annual Review of Biophysics, 2018, 47, 125-151.	4.5	33
982	Lightâ€Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angewandte Chemie, 2018, 130, 2872-2876.	1.6	17
983	5′-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes. Journal of the American Chemical Society, 2018, 140, 5987-5999.	6.6	61
984	Mutant Initiation Factor eIF4A (R362Q) Does Not Suppress the Assembly of the 48S Preinitiation Complex on mRNA with the Leader Sequence of mRNA That Encodes for Obelin. Molecular Biology, 2018, 52, 19-22.	0.4	1
985	Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4649-4654.	3.3	21
986	A $360 \hat{A}^o$ view of circular RNAs: From biogenesis to functions. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1478.	3.2	356
987	Translation initiation of alphavirus mRNA reveals new insights into the topology of the 48S initiation complex. Nucleic Acids Research, 2018, 46, 4176-4187.	6. 5	8
988	Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Research, 2018, 46, 293-313.	6.5	15
989	Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. Journal of Genetics and Genomics, 2018, 45, 13-24.	1.7	40
990	Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Research, 2018, 46, 2678-2689.	6.5	76
991	Lightâ€Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angewandte Chemie - International Edition, 2018, 57, 2822-2826.	7.2	48
992	Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	117
993	elF2B Mechanisms of Action and Regulation: A Thermodynamic View. Biochemistry, 2018, 57, 1426-1435.	1.2	28
994	N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Molecular Cell, 2018, 69, 636-647.e7.	4.5	215
995	General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1829-E1838.	3.3	48
997	Identification of the TXNIP IRES and characterization of the impact of regulatory IRES trans-acting factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 147-157.	0.9	12
998	Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS Central Science, 2018, 4, 71-80.	5. 3	25
999	Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Current Genetics, 2018, 64, 821-839.	0.8	21

#	Article	IF	CITATIONS
1000	Molecular characterization of $5\hat{a} \in 2$ UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3 Biotech, 2018, 8, 75.	1.1	19
1001	Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Research, 2018, 46, e8-e8.	6.5	12
1002	CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications, 2018, 9, 152.	5.8	123
1003	An Iranian genomic sequence of Beet mosaic virus provides insights into diversity and evolution of the world population. Virus Genes, 2018, 54, 272-279.	0.7	8
1004	Translational control of aberrant stress responses as a hallmark of cancer. Journal of Pathology, 2018, 244, 650-666.	2.1	65
1005	Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic elF5B. Cell Reports, 2018, 22, 17-26.	2.9	35
1006	Cytosolic HSC20 integrates de novo iron–sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients. Human Molecular Genetics, 2018, 27, 837-852.	1.4	38
1007	LARP1 on TOP of ribosome production. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1480.	3.2	60
1008	Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. Journal of Proteome Research, 2018, 17, 2102-2111.	1.8	11
1009	Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nature Reviews Genetics, 2018, 19, 431-452.	7.7	181
1010	Translation initiation by capâ€dependent ribosome recruitment: Recent insights and open questions. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1473.	3.2	113
1011	elF4E-Binding Proteins 1 and 2 Limit Macrophage Anti-Inflammatory Responses through Translational Repression of IL-10 and Cyclooxygenase-2. Journal of Immunology, 2018, 200, 4102-4116.	0.4	14
1012	Identification of PP1–Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Molecular Omics, 2018, 14, 121-133.	1.4	11
1013	The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing the miRNA it hosts. Nature Communications, 2018, 9, 1235.	5.8	55
1014	Identification of di-substituted ureas that prevent growth of trypanosomes through inhibition of translation initiation. Scientific Reports, 2018, 8, 4857.	1.6	5
1015	Interactions between the Translation Machinery and Microtubules. Biochemistry (Moscow), 2018, 83, S176-S189.	0.7	16
1016	First Evidence for Internal Ribosomal Entry Sites in Diverse Fungal Virus Genomes. MBio, 2018, 9, .	1.8	31
1017	Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nature Communications, 2018, 9, 1165.	5.8	87

#	Article	IF	CITATIONS
1018	Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream, $\langle i \rangle$ Megalobrama amblycephala $\langle i \rangle$. Aquaculture Nutrition, 2018, 24, 300-309.	1.1	23
1019	Overexpression of elF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Experimental Neurology, 2018, 299, 299-307.	2.0	31
1020	Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1351-1364.	1.9	11
1021	RNA processing in the male germline: Mechanisms and implications for fertility. Seminars in Cell and Developmental Biology, 2018, 79, 80-91.	2.3	29
1022	VP1 and VP3 Are Required and Sufficient for Translation Initiation of Uncapped Infectious Bursal Disease Virus Genomic Double-Stranded RNA. Journal of Virology, 2018, 92, .	1.5	26
1023	Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 2018, 28, 113-127.	3 . 6	445
1024	The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics, 2018, 39, 3-14.	0.9	9
1025	Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. Rna, 2018, 24, 43-55.	1.6	18
1026	Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cellular and Molecular Life Sciences, 2018, 75, 607-621.	2.4	53
1027	Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems. ACS Synthetic Biology, 2018, 7, 218-226.	1.9	17
1028	Gene regulation of mammalian long non-coding RNA. Molecular Genetics and Genomics, 2018, 293, 1-15.	1.0	123
1029	eIF3: a factor for human health and disease. RNA Biology, 2018, 15, 26-34.	1.5	70
1030	The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB Journal, 2018, 32, 1108-1119.	0.2	33
1031	Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1458.	3.2	83
1032	The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication. Virology, 2018, 515, 11-20.	1.1	16
1033	Epstein-Barr Virus Protein EB2 Stimulates Translation Initiation of mRNAs through Direct Interactions with both Poly(A)-Binding Protein and Eukaryotic Initiation Factor 4G. Journal of Virology, 2018, 92, .	1.5	15
1034	Crosstalks between translation and metabolism in cancer. Current Opinion in Genetics and Development, 2018, 48, 75-81.	1.5	33
1035	Recent Discoveries on the Role of TOR (Target of Rapamycin) Signaling in Translation in Plants. Plant Physiology, 2018, 176, 1095-1105.	2.3	89

#	Article	IF	CITATIONS
1036	Translational control of a human <i>CDKN1A</i> mRNA splice variant regulates the fate of UVB-irradiated human keratinocytes. Molecular Biology of the Cell, 2018, 29, 29-41.	0.9	18
1037	Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology, 2018, 136, 350-360.	2.0	61
1038	Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics, 2018, 18, e1700038.	1.3	63
1039	PERK as a hub of multiple pathogenic pathways leading to memory deficits and neurodegeneration in Alzheimer's disease. Brain Research Bulletin, 2018, 141, 72-78.	1.4	39
1040	Kinetic analyses of phosphorylated and non-phosphorylated elFiso4E binding to mRNA cap analogues. International Journal of Biological Macromolecules, 2018, 106, 387-395.	3.6	8
1041	Knockdown of eukaryotic translation initiation factor 3 subunit D (elF3D) inhibits proliferation of acute myeloid leukemia cells. Molecular and Cellular Biochemistry, 2018, 438, 191-198.	1.4	8
1042	Comparative structural dynamic analysis of GTPases. PLoS Computational Biology, 2018, 14, e1006364.	1.5	18
1043	IRES-dependent ribosome repositioning directs translation of a $+1$ overlapping ORF that enhances viral infection. Nucleic Acids Research, 2018, 46, 11952-11967.	6.5	14
1044	ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11904-E11913.	3.3	138
1045	Spatial Organization of Single mRNPs at Different Stages of the Gene Expression Pathway. Molecular Cell, 2018, 72, 727-738.e5.	4.5	112
1046	The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malaria Journal, 2018, 17, 465.	0.8	25
1047	Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. BMC Genomics, 2018, 19, 935.	1.2	66
1048	A case–control genome wide association study of substance use disorder (SUD) identifies novel variants on chromosome 7p14.1 in patients from the United Arab Emirates (UAE). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 180, 68-79.	1.1	3
1049	Revisiting the Closed-Loop Model and the Nature of mRNA 5′–3′ Communication. Molecular Cell, 2018, 72, 805-812.	4.5	89
1050	Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. Journal of Proteome Research, 2019, 18, 309-318.	1.8	29
1051	Burkholderia Lethal Factor 1, a Novel Anti-Cancer Toxin, Demonstrates Selective Cytotoxicity in MYCN-Amplified Neuroblastoma Cells. Toxins, 2018, 10, 261.	1.5	10
1052	tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Reports, 2018, 25, 2676-2688.e7.	2.9	61
1053	Engineering the 5′ UTR-Mediated Regulation of Protein Abundance in Yeast Using Nucleotide Sequence Activity Relationships. ACS Synthetic Biology, 2018, 7, 2709-2714.	1.9	16

#	Article	IF	Citations
1054	Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sciences, 2018, 212, 138-144.	2.0	29
1055	Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biology, 2018, 15, 1255-1267.	1.5	10
1056	Decoding cold ischaemia time impact on kidney graft: the kinetics of the unfolded protein response pathways. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 873-885.	1.9	10
1057	Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation. DNA Research, 2018, 25, 195-205.	1.5	22
1058	The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. MSphere, 2018, 3, .	1.3	49
1059	Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. Nucleic Acids Research, 2018, 46, 11726-11742.	6.5	12
1060	Post-transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends in Genetics, 2018, 34, 972-990.	2.9	132
1061	Principles of Molecular Biology. , 2018, , 1-16.		0
1062	Reinvestigation of an O â€Salicylaldehyde Ester Functional Group in Aqueous Buffer and Discovery of a Coumarin Scaffold Probe for Selective Nâ€Terminal Cysteine Labeling. ChemBioChem, 2018, 19, 2545-2549.	1.3	6
1063	Visualizing the Role of 2'-OH rRNA Methylations in the Human Ribosome Structure. Biomolecules, 2018, 8, 125.	1.8	32
1064	Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements. Biochemistry, 2018, 57, 6308-6318.	1.2	7
1065	Design of RNA hairpin modules that predictably tune translation in yeast. Synthetic Biology, 2018, 3, ysy019.	1.2	15
1066	Repeat-associated non-ATG (RAN) translation. Journal of Biological Chemistry, 2018, 293, 16127-16141.	1.6	81
1067	Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Reports, 2018, 19, .	2.0	73
1068	Encoding activities of non-coding RNAs. Theranostics, 2018, 8, 2496-2507.	4.6	42
1069	Modular 5′-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Research, 2018, 46, e127.	6.5	15
1070	Comparative sequence and structure analysis of eIF1A and eIF1AD. BMC Structural Biology, 2018, 18, 11.	2.3	3
1071	Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency. PLoS Genetics, 2018, 14, e1007476.	1.5	27

#	Article	IF	CITATIONS
1072	Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E–binding plant protein. Journal of Biological Chemistry, 2018, 293, 17240-17247.	1.6	25
1073	Major structural rearrangements of the canonical eukaryotic translation initiation complex. Current Opinion in Structural Biology, 2018, 53, 151-158.	2.6	7
1074	Expression profile of translation initiation factor elF2B5 in diffuse large B-cell lymphoma and its correlation to clinical outcome. Blood Cancer Journal, 2018, 8, 79.	2.8	4
1075	Human eIF5 and eIF1A Compete for Binding to eIF5B. Biochemistry, 2018, 57, 5910-5920.	1.2	15
1076	Noncoding RNAs in Retrovirus Replication. , 2018, , 421-478.		1
1077	Translation of Hepatitis A Virus IRES Is Upregulated by a Hepatic Cell-Specific Factor. Frontiers in Genetics, 2018, 9, 307.	1.1	6
1078	Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5279-E5288.	3.3	60
1079	Viruses, IRESs, and a universal translation initiation mechanism. Biotechnology and Genetic Engineering Reviews, 2018, 34, 60-75.	2.4	15
1080	Roadblocks and resolutions in eukaryotic translation. Nature Reviews Molecular Cell Biology, 2018, 19, 526-541.	16.1	177
1081	Role of the visual experience-dependent nascent proteome in neuronal plasticity. ELife, 2018, 7, .	2.8	19
1082	BC200 (BCYRN1) – The shortest, long, non-coding RNA associated with cancer. Non-coding RNA Research, 2018, 3, 131-143.	2.4	40
1083	Ribosome elongating footprints denoised by wavelet transform comprehensively characterize dynamic cellular translation events. Nucleic Acids Research, 2018, 46, e109-e109.	6.5	39
1084	TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response. ELife, 2018, 7, .	2.8	28
1085	Codon usage bias controls mRNA and protein abundance in trypanosomatids. ELife, 2018, 7, .	2.8	74
1086	Influence of eukaryotic translation initiation factor 6 on non–small cell lung cancer development and progression. European Journal of Cancer, 2018, 101, 165-180.	1.3	28
1087	Posttranscriptional regulation of cyclin D1 by ARE-binding proteins AUF1 and HuR in cycling myoblasts. Journal of Biosciences, 2018, 43, 685-691.	0.5	8
1088	Antitumor Activity of Extract From the Sporoderm-Breaking Spore of Ganoderma lucidum: Restoration on Exhausted Cytotoxic T Cell With Gut Microbiota Remodeling. Frontiers in Immunology, 2018, 9, 1765.	2.2	70
1089	Roles of the Chr.9p21.3 ANRIL Locus in Regulating Inflammation and Implications for Anti-Inflammatory Drug Target Identification. Frontiers in Cardiovascular Medicine, 2018, 5, 47.	1.1	18

#	Article	IF	Citations
1090	Insights into Structural and Mechanistic Features of Viral IRES Elements. Frontiers in Microbiology, 2017, 8, 2629.	1.5	100
1091	Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Frontiers in Microbiology, 2018, 9, 644.	1.5	36
1092	Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Frontiers in Neural Circuits, 2018, 12, 25.	1.4	12
1093	40 Years of Research Put p53 in Translation. Cancers, 2018, 10, 152.	1.7	43
1094	Nucleotide Substitution Models and Evolutionary Distances. , 2018, , 269-314.		3
1095	Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells. Nature Chemical Biology, 2018, 14, 844-852.	3.9	5
1096	Translation and Translational Control in Dinoflagellates. Microorganisms, 2018, 6, 30.	1.6	26
1097	Ribosomal RACK1:Protein Kinase C $\langle i \rangle \hat{l}^2 \langle i \rangle II$ Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation. Molecular and Cellular Biology, 2018, 38, .	1.1	16
1098	Distance-Based Phylogenetic Methods. , 2018, , 343-379.		3
1099	Bioinformatics and Translation Initiation. , 2018, , 173-195.		0
1100	Bioinformatics and Translation Elongation. , 2018, , 197-238.		1
1101	Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation in yeast. Nucleic Acids Research, 2018, 46, 6893-6908.	6.5	27
1102	Protein Isoelectric Point and Helicobacter pylori. , 2018, , 397-412.		0
1103	Fundamentals of Proteomics. , 2018, , 421-436.		0
1104	elF2A, an initiator tRNA carrier refractory to elF2α kinases, functions synergistically with elF5B. Cellular and Molecular Life Sciences, 2018, 75, 4287-4300.	2.4	31
1105	Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biology, 2018, 16, e2003903.	2.6	77
1106	Short communication: High incubation temperature in bovine mammary epithelial cells reduced the activity of the mTOR signaling pathway. Journal of Dairy Science, 2018, 101, 7480-7486.	1.4	10
1107	Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. Journal of Molecular Biology, 2018, 430, 1965-1992.	2.0	35

#	Article	IF	CITATIONS
1108	Eukaryotic Translation Initiation Factor 4 Gamma 1 (eIF4G1) is upregulated during Prostate cancer progression and modulates cell growth and metastasis. Scientific Reports, 2018, 8, 7459.	1.6	31
1109	eIF4E Phosphorylation in Prostate Cancer. Neoplasia, 2018, 20, 563-573.	2.3	32
1110	The 3′ mRNA I-shaped structure of maize necrotic streak virus binds to eukaryotic translation factors for eIF4F-mediated translation initiation. Journal of Biological Chemistry, 2018, 293, 9486-9495.	1.6	5
1111	Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032656.	2.3	132
1112	Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033092.	2.3	230
1113	Active-site mTOR inhibitors augment HSV1-dICPO infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathogens, 2018, 14, e1007264.	2.1	20
1114	Roles of eIF4E-binding protein Caf20 in Ste12 translation and P-body formation in yeast. Journal of Microbiology, 2018, 56, 744-747.	1.3	2
1115	Gordon Dixon, protamines, and the atypical patterns of gene expression in spermatogenic cells. Systems Biology in Reproductive Medicine, 2018, 64, 417-423.	1.0	0
1116	Life cycle adapted upstream open reading frames (uORFs) in Trypanosoma congolense: A post-transcriptional approach to accurate gene regulation. PLoS ONE, 2018, 13, e0201461.	1.1	7
1117	A Western Blotting Protocol for Small Numbers of Hematopoietic Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	4
1118	Eukaryotic translation initiation factor 3 (eIF3) subunit e is essential for embryonic development and cell proliferation. FEBS Open Bio, 2018, 8, 1188-1201.	1.0	20
1119	Functions of unconventional mammalian translational GTPases GTPBP1 and GTPBP2. Genes and Development, 2018, 32, 1226-1241.	2.7	25
1120	Investigations on the mode of action of gephyronic acid, an inhibitor of eukaryotic protein translation from myxobacteria. PLoS ONE, 2018, 13, e0201605.	1.1	10
1121	O-GlcNAc modification of elF4GI acts as a translational switch in heat shock response. Nature Chemical Biology, 2018, 14, 909-916.	3.9	26
1122	Stress Granules and Processing Bodies in Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032813.	2.3	325
1123	Serine-threonine protein phosphatases: Lost in translation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 83-89.	1.9	13
1124	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis. Cytokine, 2019, 118, 35-41.	1.4	24
1125	Targeting the N Terminus of eIF4Al for Inhibition of Its Catalytic Recycling. Cell Chemical Biology, 2019, 26, 1417-1426.e5.	2.5	7

#	ARTICLE	IF	CITATIONS
1126	Selection of best reference genes for qRT-PCR analysis of human neural stem cells preconditioned with hypoxia or baicalein-enriched fraction extracted from Oroxylum indicum medicinal plant. Heliyon, 2019, 5, e02156.	1.4	10
1127	Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic Acids Research, 2019, 47, 9789-9802.	6.5	41
1128	mTOR and other effector kinase signals that impact T cell function and activity. Immunological Reviews, 2019, 291, 134-153.	2.8	53
1129	Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. International Journal of Molecular Sciences, 2019, 20, 4043.	1.8	20
1130	Mechanism of Action of Prethioviridamide, an Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptide with a Polythioamide Structure. ACS Chemical Biology, 2019, 14, 1819-1828.	1.6	22
1131	IDH1 fine-tunes cap-dependent translation initiation. Journal of Molecular Cell Biology, 2019, 11, 816-828.	1.5	3
1132	Biologically motivated three-species exclusion model: Effects of leaky scanning and overlapping genes on initiation of protein synthesis. Physical Review E, 2019, 100, 022106.	0.8	1
1133	Posttranscriptional Gene Regulation of the GABA Receptor to Control Neuronal Inhibition. Frontiers in Molecular Neuroscience, 2019, 12, 152.	1.4	16
1135	Translational Regulation by Upstream Open Reading Frames and Human Diseases. Advances in Experimental Medicine and Biology, 2019, 1157, 99-116.	0.8	32
1136	Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer. Advances in Experimental Medicine and Biology, 2019, 1157, 117-132.	0.8	9
1137	Human $5\hat{a} \in ^2$ UTR design and variant effect prediction from a massively parallel translation assay. Nature Biotechnology, 2019, 37, 803-809.	9.4	213
1138	Phosphorylation of eukaryotic initiation factor 4E is dispensable for skeletal muscle hypertrophy. American Journal of Physiology - Cell Physiology, 2019, 317, C1247-C1255.	2.1	9
1139	Protein Kinases at the Intersection of Translation and Virulence. Frontiers in Cellular and Infection Microbiology, 2019, 9, 318.	1.8	12
1140	<p>EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/AKT/mTOR signaling pathway</p> . Cancer Management and Research, 2019, Volume 11, 7877-7891.	0.9	17
1141	An "omic―approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. Journal of Proteomics, 2019, 209, 103502.	1.2	11
1142	Comparative Proteomic Analysis Unveils Critical Pathways Underlying the Role of Nitrogen Fertilizer Treatment in American Elderberry. Proteomes, 2019, 7, 10.	1.7	1
1143	Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Research, 2019, 29, 994-1008.	5.7	23
1144	A MYC–GCN2–elF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	4.6	65

#	Article	IF	Citations
1145	A unique internal ribosome entry site representing a dynamic equilibrium state of RNA tertiary structure in the 5′-UTR of Wheat yellow mosaic virus RNA1. Nucleic Acids Research, 2019, 48, 390-404.	6.5	7
1146	Sam68 Enables Metabotropic Glutamate Receptor-Dependent LTD in Distal Dendritic Regions of CA1 Hippocampal Neurons. Cell Reports, 2019, 29, 1789-1799.e6.	2.9	9
1147	Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules, 2019, 9, 665.	1.8	13
1148	Translating translation in Down syndrome. Science, 2019, 366, 797-798.	6.0	4
1149	An in vitro single-molecule assay for eukaryotic cap-dependent translation initiation kinetics. Nucleic Acids Research, 2020, 48, e6.	6.5	6
1150	The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA. Journal of Biological Chemistry, 2019, 294, 15386-15394.	1.6	7
1151	A new mechanism for translational control in plants. FEBS Journal, 2019, 286, 3775-3777.	2.2	2
1152	Impact of poly(A)-tail G-content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biology, 2019, 20, 189.	3.8	49
1153	Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1): a target for cancer therapeutic intervention?. Cancer Cell International, 2019, 19, 224.	1.8	23
1154	Control of nucleolar stress and translational reprogramming by lncRNAs. Cell Stress, 2019, 3, 19-26.	1.4	20
1155	MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie, 2019, 167, 12-24.	1.3	70
1156	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
1157	Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology, 2019, 161, 107789.	2.0	40
1158	Stress granules and neurodegeneration. Nature Reviews Neuroscience, 2019, 20, 649-666.	4.9	452
1159	Eukaryotic translation initiation factor 6 overexpression plays a major role in the translational control of gallbladder cancer. Journal of Cancer Research and Clinical Oncology, 2019, 145, 2699-2711.	1.2	15
1160	PRMT7 methylates eukaryotic translation initiation factor $2\hat{l}_{\pm}$ and regulates its role in stress granule formation. Molecular Biology of the Cell, 2019, 30, 778-793.	0.9	31
1161	Pleiotropic Effects of PPARD Accelerate Colorectal Tumorigenesis, Progression, and Invasion. Cancer Research, 2019, 79, 954-969.	0.4	41
1162	<scp>EZH</scp> 2 cooperates with gainâ€ofâ€function p53 mutants to promote cancer growth and metastasis. EMBO Journal, 2019, 38, .	3.5	55

#	Article	IF	Citations
1163	A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Computational Biology, 2019, 15, e1007070.	1.5	50
1164	Phosphorylation of <i>Arabidopsis </i> <scp>elF</scp> 4E and <scp>elF</scp> iso4E by Sn <scp>RK</scp> 1 inhibits translation. FEBS Journal, 2019, 286, 3778-3796.	2.2	26
1165	Cellâ€Cycleâ€Dependent Regulation of Translation: New Interpretations of Old Observations in Light of New Approaches. BioEssays, 2019, 41, e1900022.	1.2	6
1166	YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Scientific Reports, 2019, 9, 9059.	1.6	7
1167	Functionally Significant Features in the $5\hat{a}\in^2$ Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates. Cells, 2019, 8, 623.	1.8	10
1168	Regulation of Ribosomal Proteins on Viral Infection. Cells, 2019, 8, 508.	1.8	76
1169	Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture, 2019, 510, 225-233.	1.7	46
1170	Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death and Disease, 2019, 10, 418.	2.7	50
1171	Translational regulation and deregulation in erythropoiesis. Experimental Hematology, 2019, 75, 11-20.	0.2	9
1172	CircRNA-100338 Is Associated With mTOR Signaling Pathway and Poor Prognosis in Hepatocellular Carcinoma. Frontiers in Oncology, 2019, 9, 392.	1.3	62
1173	RGG-motif self-association regulates elF4G-binding translation repressor protein Scd6. RNA Biology, 2019, 16, 1215-1227.	1.5	13
1174	Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions. Methods, 2019, 167, 124-133.	1.9	5
1175	N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biology, 2019, 16, 991-1000.	1.5	49
1176	Direct role for the Drosophila GIGYF protein in 4EHP-mediated mRNA repression. Nucleic Acids Research, 2019, 47, 7035-7048.	6.5	21
1177	Functional analysis of elicitins and identification of cell wall proteins in Phytophthora cinnamomi. Physiological and Molecular Plant Pathology, 2019, 107, 21-32.	1.3	8
1178	RNA control in pain: Blame it on the messenger. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1546.	3.2	12
1179	An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metabolism, 2019, 30, 190-200.e6.	7.2	45
1180	Sam68 Promotes Hepatitis C Virus Replication by Interaction with Stem-Loop 2 of Viral 5′ Untranslated Region. Journal of Virology, 2019, 93, .	1.5	3

#	Article	IF	CITATIONS
1181	Identification of SNP and InDel variations in the promoter and $5\hat{a} \in \mathbb{R}^2$ untranslated regions of \hat{I}^3 -tocopherol methyl transferase (ZmVTE4) affecting higher accumulation of \hat{I}_\pm -tocopherol in maize kernel. Crop Journal, 2019, 7, 469-479.	2.3	6
1182	Proteomics of Cadmium Tolerance in Plants. , 2019, , 143-175.		3
1183	Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame. Nitric Oxide - Biology and Chemistry, 2019, 88, 50-60.	1.2	4
1184	Single-stranded regions modulate conformational dynamics and ATPase activity of eIF4A to optimize $5\hat{a}$ \in 2-UTR unwinding. Nucleic Acids Research, 2019, 47, 5260-5275.	6.5	21
1185	Viral Regulation of RNA Granules in Infected Cells. Virologica Sinica, 2019, 34, 175-191.	1.2	50
1186	Arabidopsis translation initiation factors <scp>elF</scp> iso4G1/2 link repression of <scp>mRNA</scp> capâ€binding complex <scp>elF</scp> iso4F assembly with <scp>RNA</scp> â€binding protein <scp>SOAR</scp> 1â€mediated <scp>ABA</scp> signaling. New Phytologist, 2019, 223, 1388-1406.	3.5	19
1187	Translational repression of <i>Ccl5</i> and <i>Cxcl10</i> by 4Eâ€BP1 and 4Eâ€BP2 restrains the ability of mouse macrophages to induce migration of activated TÂcells. European Journal of Immunology, 2019, 49, 1200-1212.	1.6	15
1188	Multiple roles of CTDK-I throughout the cell. Cellular and Molecular Life Sciences, 2019, 76, 2789-2797.	2.4	2
1189	Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucleic Acids Research, 2019, 47, 5193-5209.	6.5	30
1190	Function and Evolution of Upstream ORFs in Eukaryotes. Trends in Biochemical Sciences, 2019, 44, 782-794.	3.7	101
1191	Selective translational usage of TSS and core promoters revealed by translatome sequencing. BMC Genomics, 2019, 20, 282.	1.2	10
1192	Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opinion on Therapeutic Targets, 2019, 23, 495-509.	1.5	11
1193	IRF2BP2: A new player in the regulation of cell homeostasis. Journal of Leukocyte Biology, 2019, 106, 717-723.	1.5	34
1194	Translational Control under Stress: Reshaping the Translatome. BioEssays, 2019, 41, e1900009.	1.2	122
1195	eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. Journal of Physiology, 2019, 597, 3107-3131.	1.3	16
1196	Translation arrest as a protein quality control system for aberrant translation of the 3′â€UTR in mammalian cells. FEBS Letters, 2019, 593, 777-787.	1.3	9
1197	Cardiomyogenic differentiation is fine-tuned by differential mRNA association with polysomes. BMC Genomics, 2019, 20, 219.	1.2	27
1199	Role of Protein Translation in Unfolded Protein Response. Cancer Drug Discovery and Development, 2019, , 109-120.	0.2	0

#	Article	IF	CITATIONS
1200	RGS2 promotes the translation of stress-associated proteins ATF4 and CHOP via its elF2B-inhibitory domain. Cellular Signalling, 2019, 59, 163-170.	1.7	11
1201	A threonyl-tRNA synthetase-mediated translation initiation machinery. Nature Communications, 2019, 10, 1357.	5.8	52
1202	A role for TOR signaling at every stage of plant life. Journal of Experimental Botany, 2019, 70, 2285-2296.	2.4	21
1203	Emerging Role of Eukaryote Ribosomes in Translational Control. International Journal of Molecular Sciences, 2019, 20, 1226.	1.8	49
1204	Targeting mRNA translation in Parkinson's disease. Drug Discovery Today, 2019, 24, 1295-1303.	3.2	7
1205	Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex. Molecular Cell, 2019, 74, 494-507.e8.	4.5	371
1206	ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathologica, 2019, 138, 49-65.	3.9	48
1207	Eukaryotic initiation factor 4A (elF4A) during viral infections. Virus Genes, 2019, 55, 267-273.	0.7	16
1208	Polypyrimidine Tract-Binding Protein Regulates Enterovirus 71 Translation Through Interaction with the Internal Ribosomal Entry Site. Virologica Sinica, 2019, 34, 66-77.	1.2	11
1209	Translational Control of Canonical and Non-Canonical Translation Initiation Factors at the Sea Urchin Egg to Embryo Transition. International Journal of Molecular Sciences, 2019, 20, 626.	1.8	5
1210	Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Research, 2019, 47, e42-e42.	6.5	47
1211	Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathologica, 2019, 137, 535-555.	3.9	23
1212	The Secret Life of Translation Initiation in Prostate Cancer. Frontiers in Genetics, 2019, 10, 14.	1.1	14
1213	It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. European Journal of Sport Science, 2019, 19, 952-963.	1.4	33
1214	DAP5 increases axonal outgrowth of hippocampal neurons by enhancing the cap-independent translation of DSCR1.4 mRNA. Cell Death and Disease, 2019, 10, 49.	2.7	11
1215	Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Translational Neurodegeneration, 2019, 8, 6.	3 . 6	21
1216	Activation of GCN2 by the ribosomal P-stalk. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4946-4954.	3.3	125
1217	Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. International Journal of Molecular Sciences, 2019, 20, 939.	1.8	14

#	Article	IF	CITATIONS
1218	Small open reading frames and cellular stress responses. Molecular Omics, 2019, 15, 108-116.	1.4	54
1219	Visualisation of ribosomes in <i>Drosophila</i> axons using Ribo-BiFC. Biology Open, 2020, 8, .	0.6	3
1220	<scp>DDX</scp> 3X and specific initiation factors modulate <i>> <scp>FMR</scp> 1 </i> repeatâ€associated nonâ€AUGâ€initiated translation. EMBO Reports, 2019, 20, e47498.	2.0	53
1221	mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biology, 2019, 20, 300.	3.8	38
1222	Suppression of Ribosomal Pausing by eIF5A is Necessary to Maintain the Fidelity of Start Codon Selection. Cell Reports, 2019, 29, 3134-3146.e6.	2.9	44
1223	Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential. Cells, 2019, 8, 1542.	1.8	11
1224	A novel eIF4E-interacting protein that forms non-canonical translation initiation complexes. Nature Plants, 2019, 5, 1283-1296.	4.7	26
1225	Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines, 2019, 7, 209.	2.1	25
1226	Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Research, 2019, 47, 533-545.	6.5	21
1227	The <i>Leishmania</i> PABP1–elF4E4 interface: a novel 5′–3′ interaction architecture for trans-spliced mRNAs. Nucleic Acids Research, 2019, 47, 1493-1504.	6.5	12
1228	RNA processing in skeletal muscle biology and disease. Transcription, 2019, 10, 1-20.	1.7	28
1229	In vivo analysis of protein translation activity in sea urchin eggs and embryos. Methods in Cell Biology, 2019, 151, 335-352.	0.5	4
1230	Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron, 2019, 101, 232-245.e6.	3.8	99
1231	Kinetic Model of Translational Autoregulation. Journal of Physical Chemistry B, 2019, 123, 369-378.	1.2	4
1232	The Triticum Mosaic Virus Internal Ribosome Entry Site Relies on a Picornavirus-Like YX-AUG Motif To Designate the Preferred Translation Initiation Site and To Likely Target the 18S rRNA. Journal of Virology, 2019, 93, .	1.5	11
1233	MiR-24 inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats through targeting NLRP3. Pathology Research and Practice, 2019, 215, 683-688.	1.0	32
1234	YB-1, an abundant core mRNA-binding protein, has the capacity to form an RNA nucleoprotein filament: a structural analysis. Nucleic Acids Research, 2019, 47, 3127-3141.	6.5	32
1235	Role of the uS9/yS16 C-terminal tail in translation initiation and elongation inSaccharomyces cerevisiae. Nucleic Acids Research, 2019, 47, 806-823.	6.5	20

#	Article	IF	Citations
1236	The Sn <scp>RK</scp> 1â€ <scp>elF</scp> iso4G1 signaling relay regulates the translation of specific <scp>mRNA</scp> s in Arabidopsis under submergence. New Phytologist, 2019, 222, 366-381.	3.5	37
1237	MAPK- and glycogen synthase kinase 3–mediated phosphorylation regulates the DEAD-box protein modulator Gle1 for control of stress granule dynamics. Journal of Biological Chemistry, 2019, 294, 559-575.	1.6	20
1238	Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metabolic Engineering, 2019, 52, 110-123.	3.6	10
1239	Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Research, 2019, 47, 3086-3100.	6.5	24
1240	Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Reports, 2019, 26, 594-607.e7.	2.9	61
1241	MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Molecular Diagnosis and Therapy, 2019, 23, 155-171.	1.6	44
1242	Muscle wasting in the presence of disease, why is it so variable?. Biological Reviews, 2019, 94, 1038-1055.	4.7	7
1243	Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 2019, 27, 824-836.	3.7	191
1244	Translation regulation in skin cancer from a tRNA point of view. Epigenomics, 2019, 11, 215-245.	1.0	25
1245	Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Experimental Eye Research, 2019, 179, 32-46.	1.2	40
1246	Phosphorylation of translation initiation factor elFiso4E promotes translation through enhanced binding topotyvirusVPg. Journal of Biochemistry, 2019, 165, 167-176.	0.9	7
1247	The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 2019, 176, 391-403.e19.	13.5	289
1248	Control of mRNA Translation by Versatile ATP-Driven Machines. Trends in Biochemical Sciences, 2019, 44, 167-180.	3.7	33
1249	Length and secondary structure of the $5\hat{a}\in^2$ non-coding regions of mouse p53 mRNA transcripts - mouse as a model organism for p53 gene expression studies. RNA Biology, 2019, 16, 25-41.	1.5	5
1250	Circular RNA involvement in aging: An emerging player with great potential. Mechanisms of Ageing and Development, 2019, 178, 16-24.	2.2	105
1251	Styryl-cinnamate hybrid inhibits glioma by alleviating translation, bioenergetics and other key cellular responses leading to apoptosis. Experimental Cell Research, 2019, 375, 11-21.	1.2	0
1252	Computational resources for ribosome profiling: from database to Web server and software. Briefings in Bioinformatics, 2019, 20, 144-155.	3.2	36
1253	The unfolded protein response in neurodegenerative disorders – therapeutic modulation of the PERK pathway. FEBS Journal, 2019, 286, 342-355.	2.2	137

#	Article	IF	CITATIONS
1254	Translational control by secondary-structure formation in mRNA in a eukaryotic system. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 195-203.	0.4	3
1255	Reinventing the Wheel: Synthetic Circular RNAs for Mammalian Cell Engineering. Trends in Biotechnology, 2020, 38, 217-230.	4.9	22
1256	Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Seminars in Cell and Developmental Biology, 2020, 101, 20-35.	2.3	25
1257	Protein Translation and Psychiatric Disorders. Neuroscientist, 2020, 26, 21-42.	2.6	28
1258	eIF2α phosphorylation and the regulation of translation. Current Genetics, 2020, 66, 293-297.	0.8	36
1259	Frailty and Sarcopenia in Cirrhosis. , 2020, , .		5
1260	Multisite rate control analysis identifies ribosomal scanning as the sole highâ€capacity/lowâ€fluxâ€control step in mRNA translation. FEBS Journal, 2020, 287, 925-940.	2.2	0
1261	Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. Journal of Virology, 2020, 94, .	1.5	35
1262	Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1429-1437.	3.3	17
1263	Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Research, 2020, 48, 1843-1871.	6.5	35
1264	Overexpression of a modified eIF4E regulates potato virus Y resistance at the transcriptional level in potato. BMC Genomics, 2020, 21, 18.	1.2	17
1265	Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Natural Product Reports, 2020, 37, 609-616.	5.2	34
1266	A novel picornavirus identified in wild Macaca mulatta in China. Archives of Virology, 2020, 165, 495-504.	0.9	6
1267	eIF4EBP3 was downregulated by methylation and acted as a tumor suppressor by targeting eIF4E \hat{l}^2 -catenin in gastric cancer. Gastric Cancer, 2020, 23, 483-496.	2.7	3
1268	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	4.9	195
1269	Scaffold protein GhMORG1 enhances the resistance of cotton to ⟨i⟩Fusarium oxysporum⟨ i⟩ by facilitating the MKK6â€MPK4 cascade. Plant Biotechnology Journal, 2020, 18, 1421-1433.	4.1	23
1270	Synthetic Antibody Binding to a Preorganized RNA Domain of Hepatitis C Virus Internal Ribosome Entry Site Inhibits Translation. ACS Chemical Biology, 2020, 15, 205-216.	1.6	14
1271	Interactions between the 5′ UTR mRNA of the <i>spe2</i> gene and spermidine regulate translation in <i>S. pombe</i> . Rna, 2020, 26, 137-149.	1.6	5

#	Article	IF	CITATIONS
1272	Interactions between SAM and the $5\hat{a} \in 2$ UTR mRNA of the <i>sam1</i> gene regulate translation in <i>S. pombe</i> Rna, 2020, 26, 150-161.	1.6	9
1273	The landscape of eukaryotic mRNPs. Rna, 2020, 26, 229-239.	1.6	61
1274	WD Repeat Domain 77 Protein Regulates Translation of E2F1 and E2F3 mRNA. Molecular and Cellular Biology, 2020, 40, .	1.1	4
1275	UV damage induces G3BP1-dependent stress granule formation that is not driven by translation arrest via mTOR inhibition. Journal of Cell Science, 2020, 133, .	1.2	15
1276	Characterization of Local and Systemic Impact of Whitefly (Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. International Journal of Molecular Sciences, 2020, 21, 7241.	1.8	6
1277	Therapeutic Potential of PI3K/AKT/mTOR Pathway in Gastrointestinal Stromal Tumors: Rationale and Progress. Cancers, 2020, 12, 2972.	1.7	52
1278	Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Research, 2020, 30, 1418-1433.	2.4	26
1279	Identification and characterization of a new isoform of small GTPase RhoE. Communications Biology, 2020, 3, 572.	2.0	2
1280	Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Advanced Science, 2020, 7, 2002221.	5.6	24
1281	Infection by the Protozoan Parasite Toxoplasma gondii Inhibits Host MNK1/2-eIF4E Axis to Promote Its Survival. Frontiers in Cellular and Infection Microbiology, 2020, 10, 488.	1.8	2
1282	Differential gene expression of virulence factors modulates infectivity of Tcl Trypanosoma cruzi strains. Parasitology Research, 2020, 119, 3803-3815.	0.6	5
1283	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	3.9	82
1284	Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex. Nature Communications, 2020, 11, 5003.	5.8	26
1285	Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Research, 2020, 30, 974-984.	2.4	24
1286	BDNF-induced local translation of <i>GluA1</i> is regulated by HNRNP A2/B1. Science Advances, 2020, 6,	4.7	16
1287	Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments. Molecular Cell, 2020, 80, 980-995.e13.	4.5	42
1288	Exploratory RNA-seq analysis in healthy subjects reveals vulnerability to viral infections during a 12-month period of isolation and confinement. Brain, Behavior, & Immunity - Health, 2020, 9, 100145.	1.3	2
1289	Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces. Molecular Cell, 2020, 80, 903-914.e8.	4.5	20

#	Article	IF	CITATIONS
1290	Nanomolar Protein–Protein Interaction Monitoring with a Label-Free Protein-Probe Technique. Analytical Chemistry, 2020, 92, 15781-15788.	3.2	15
1291	Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers, 2020, 12, 3455.	1.7	26
1292	Eukaryotic Elongation Factor 3 Protects Saccharomyces cerevisiae Yeast from Oxidative Stress. Genes, 2020, 11, 1432.	1.0	8
1293	Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. Journal of Molecular Biology, 2020, 432, 166702.	2.0	14
1294	Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex. Biochemistry, 2020, 59, 4439-4448.	1.2	4
1295	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	2.9	21
1296	Reshaping the role of m6A modification in cancer transcriptome: a review. Cancer Cell International, 2020, 20, 353.	1.8	37
1297	Persistent Activation of mRNA Translation by Transient Hsp90 Inhibition. Cell Reports, 2020, 32, 108001.	2.9	2
1298	Interaction of ferritin iron responsive element (IRE) mRNA with translation initiation factor eIF4F. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118776.	2.0	5
1299	Stress Granules in Cancer. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 25-52.	0.9	35
1300	uORFs: Important Cis-Regulatory Elements in Plants. International Journal of Molecular Sciences, 2020, 21, 6238.	1.8	31
1301	Conserved UBE3A subcellular distribution between human and mice is facilitated by non-homologous isoforms. Human Molecular Genetics, 2020, 29, 3032-3043.	1.4	11
1302	Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nature Structural and Molecular Biology, 2020, 27, 1095-1104.	3.6	30
1303	Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. Journal of Clinical Medicine, 2020, 9, 2934.	1.0	57
1304	The Halastavi \tilde{A}_i rva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Reports, 2020, 33, 108476.	2.9	11
1305	Circular RNA: metabolism, functions and interactions with proteins. Molecular Cancer, 2020, 19, 172.	7.9	526
1306	LncRNAs in Cancer: From garbage to Junk. Cancers, 2020, 12, 3220.	1.7	41
1307	Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Communication and Signaling, 2020, 18, 175.	2.7	52

#	ARTICLE	IF	CITATIONS
1308	Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Applied and Environmental Microbiology, 2020, 86, .	1.4	8
1309	Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angewandte Chemie - International Edition, 2020, 59, 23374-23385.	7.2	34
1310	Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and eIF4A-sensitive immune-related transcripts. PLoS Pathogens, 2020, 16, e1008291.	2.1	24
1311	Vaccinia Virus as a Master of Host Shutoff Induction: Targeting Processes of the Central Dogma and Beyond. Pathogens, 2020, 9, 400.	1.2	19
1312	5′ UTR variants in the quantitative trait gene <i>Hnrnph1</i> support reduced 5′ UTR usage and hnRNP H protein as a molecular mechanism underlying reduced methamphetamine sensitivity. FASEB Journal, 2020, 34, 9223-9244.	0.2	12
1313	Translational control of breast cancer plasticity. Nature Communications, 2020, 11, 2498.	5.8	80
1314	Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Frontiers in Microbiology, 2020, 11, 733.	1.5	38
1315	Targeting Protein Synthesis in Colorectal Cancer. Cancers, 2020, 12, 1298.	1.7	32
1316	cis -Acting Sequences and Secondary Structures in Untranslated Regions of Duck Tembusu Virus RNA Are Important for Cap-Independent Translation and Viral Proliferation. Journal of Virology, 2020, 94, .	1.5	10
1317	5′-UTR recruitment of the translation initiation factor elF4Gl or DAP5 drives cap-independent translation of a subset of human mRNAs. Journal of Biological Chemistry, 2020, 295, 11693-11706.	1.6	33
1318	New Pancreatic Cancer Biomarkers eIF1, eIF2D, eIF3C and eIF6 Play a Major Role in Translational Control in Ductal Adenocarcinoma. Anticancer Research, 2020, 40, 3109-3118.	0.5	21
1319	CReP mediates selective translation initiation at the endoplasmic reticulum. Science Advances, 2020, 6, eaba0745.	4.7	15
1320	Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses, 2020, 12, 612.	1.5	23
1321	Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. International Journal of Molecular Sciences, 2020, 21, 4075.	1.8	15
1322	Molecular tools for engineering resistance in hosts against plant viruses., 2020,, 637-647.		0
1323	Identification and manipulation of host factors for the control of plant viruses., 2020,, 671-695.		2
1324	Plant translation factors and virus resistance. , 2020, , 657-669.		1
1325	Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Current Genetics, 2020, 66, 791-811.	0.8	7

#	Article	IF	Citations
1326	iTRAQ-Based Proteomic Reveals Cell Cycle and Translation Regulation Involving in Peanut Buds Cold Stress. Russian Journal of Plant Physiology, 2020, 67, 103-110.	0.5	6
1327	Eukaryotic Translation Initiation Factors Shape RNA Viruses Resistance in Plants. Horticultural Plant Journal, 2020, 6, 81-88.	2.3	9
1328	RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 56.	1.8	18
1329	Tumor-specific transcript variants of cyclin D1 in mantle cell lymphoma and multiple myeloma with chromosome 11q13 abnormalities. Experimental Hematology, 2020, 84, 45-53.e1.	0.2	3
1330	Srsf7 Establishes the Juvenile Transcriptome through Age-Dependent Alternative Splicing in Mice. IScience, 2020, 23, 100929.	1.9	21
1331	Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon. BMC Genetics, 2020, 21, 25.	2.7	30
1332	Mammalian Alternative Translation Initiation Is Mostly Nonadaptive. Molecular Biology and Evolution, 2020, 37, 2015-2028.	3.5	13
1333	Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to \hat{I}^2 -Cell Failure in Diabetes. Diabetes, 2020, 69, 499-507.	0.3	12
1334	A Retrospective on eIF2Aâ€"and Not the Alpha Subunit of eIF2. International Journal of Molecular Sciences, 2020, 21, 2054.	1.8	43
1335	Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Experimental Cell Research, 2020, 391, 111973.	1.2	49
1336	eIF2B and the Integrated Stress Response: A Structural and Mechanistic View. Biochemistry, 2020, 59, 1299-1308.	1.2	21
1337	Translating Translation to Mechanisms of Cardiac Hypertrophy. Journal of Cardiovascular Development and Disease, 2020, 7, 9.	0.8	18
1338	Long-Lost Cousins? eIF3 Recognition of the HCV IRES and Cellular mRNAs. Journal of Molecular Biology, 2020, 432, 1856-1860.	2.0	1
1339	AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 33-53.	2.3	46
1340	uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	24
1341	Translational Regulations in Response to Endoplasmic Reticulum Stress in Cancers. Cells, 2020, 9, 540.	1.8	38
1342	The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC Plant Biology, 2020, 20, 96.	1.6	11
1343	Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 2020, 21, 268-283.	16.1	595

#	Article	IF	CITATIONS
1344	Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells. Molecular Cell, 2020, 79, 561-574.e5.	4.5	96
1345	Moderne Konzepte der Nanobiotechnologie für mRNAâ€Abgabesysteme. Angewandte Chemie, 2020, 132, 23578-23590.	1.6	4
1346	Posttranscriptional and translational control of neurogenesis. , 2020, , 731-750.		4
1347	Nutrient Control of mRNA Translation. Annual Review of Nutrition, 2020, 40, 51-75.	4.3	25
1348	The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Progress in Molecular Biology and Translational Science, 2020, 174, 187-223.	0.9	16
1349	Crystal structure of the C-terminal domain of DENR. Computational and Structural Biotechnology Journal, 2020, 18, 696-704.	1.9	3
1350	Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-17.	1.9	10
1351	Regulation of GABAA Receptor Subunit Expression in Substance Use Disorders. International Journal of Molecular Sciences, 2020, 21, 4445.	1.8	29
1352	Modification of the 5' End of mRNA Leader Sequence Alters the Set of Initiation Factors Essential for Initiation of Translation. Molecular Biology, 2020, 54, 421-426.	0.4	0
1353	Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics, 2020, 20, 1900177.	1.3	2
1354	Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway. Scientific Reports, 2020, 10, 233.	1.6	25
1355	Ribosome and Translational Control in Stem Cells. Cells, 2020, 9, 497.	1.8	66
1356	Translational Inhibition of α-Neurexin 2. Scientific Reports, 2020, 10, 3403.	1.6	9
1357	Knock-in mutations of scarecrow, a Drosophila homolog of mammalian Nkx2.1, reveal a novel function required for development of the optic lobe in Drosophila melanogaster. Developmental Biology, 2020, 461, 145-159.	0.9	12
1358	The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochemical Research, 2020, 45, 1306-1327.	1.6	22
1359	Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA). Biochemistry and Cell Biology, 2020, 98, 502-510.	0.9	7
1360	A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cellular and Molecular Life Sciences, 2020, 77, 4693-4708.	2.4	7
1361	Identification of eukaryotic translation initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech, 2020, 10, 75.	1.1	5

#	Article	IF	Citations
1362	Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES. Journal of Biological Chemistry, 2020, 295, 1843-1856.	1.6	2
1363	Structure of the RNA Specialized Translation Initiation Element that Recruits eIF3 to the 5′-UTR of c-Jun. Journal of Molecular Biology, 2020, 432, 1841-1855.	2.0	16
1364	Dynamic Post-Transcriptional Events Governing CD8+ T Cell Homeostasis and Effector Function. Trends in Immunology, 2020, 41, 240-254.	2.9	39
1365	N-Terminal Proteoforms in Human Disease. Trends in Biochemical Sciences, 2020, 45, 308-320.	3.7	34
1366	Surface protein imputation from single cell transcriptomes by deep neural networks. Nature Communications, 2020, 11, 651.	5.8	47
1367	Mechanical Regulation of Protein Translation in the Cardiovascular System. Frontiers in Cell and Developmental Biology, 2020, 8, 34.	1.8	24
1368	Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell, 2020, 26, 138-159.	5.2	54
1369	elF3b regulates the cell proliferation and apoptosis processes in chronic myelogenous leukemia cell lines via regulating the expression of C3G. Biotechnology Letters, 2020, 42, 1275-1286.	1.1	2
1370	PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation. Journal of Investigative Dermatology, 2020, 140, 2166-2177.e6.	0.3	10
1371	Emerging Roles of Translational Control in Circadian Timekeeping. Journal of Molecular Biology, 2020, 432, 3483-3497.	2.0	11
1372	How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Molecular Cell, 2020, 78, 9-29.	4.5	396
1373	Translational derepression of Elavl4Âisoforms at their alternative 5′ UTRs determines neuronal development. Nature Communications, 2020, 11, 1674.	5.8	40
1374	Uncovering the Translational Regulatory Activity of the Tumor Suppressor BRCA1. Cells, 2020, 9, 941.	1.8	3
1375	Hepatitis C Virus Translation Regulation. International Journal of Molecular Sciences, 2020, 21, 2328.	1.8	27
1376	Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 2661.	1.8	40
1377	Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virology Journal, 2020, 17, 60.	1.4	22
1378	Structural Insights into the Mammalian Late-Stage Initiation Complexes. Cell Reports, 2020, 31, 107497.	2.9	47
1379	The flavivirus polymerase NS5 regulates translation of viral genomic RNA. Nucleic Acids Research, 2020, 48, 5081-5093.	6.5	22

#	Article	IF	CITATIONS
1380	Autophagy Regulation by the Translation Machinery and Its Implications in Cancer. Frontiers in Oncology, 2020, 10, 322.	1.3	21
1381	Optimization of 5′ Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 622-633.	1.8	26
1382	FOXD1â€AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway. Molecular Oncology, 2021, 15, 299-316.	2.1	47
1383	Dendritic Targeting and Regulatory RNA Control of Local Neuronal Translation. , 0, , 105-130.		3
1384	Emerging translation strategies during virus–host interaction. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1619.	3.2	17
1385	Variants in the 5′UTR reduce SHOX expression and contribute to SHOX haploinsufficiency. European Journal of Human Genetics, 2021, 29, 110-121.	1.4	12
1386	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	13.1	57
1387	Translational Control during Cellular Senescence. Molecular and Cellular Biology, 2021, 41, .	1.1	29
1388	Targeting translation regulators improves cancer therapy. Genomics, 2021, 113, 1247-1256.	1.3	12
1389	Integrated Analysis of an IncRNA-Associated ceRNA Network Reveals Potential Biomarkers for Hepatocellular Carcinoma. Journal of Computational Biology, 2021, 28, 330-344.	0.8	5
1390	Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant, Cell and Environment, 2021, 44, 821-841.	2.8	41
1391	elF3i regulation of protein synthesis, cell proliferation, cell cycle progression, and tumorigenesis. Cancer Letters, 2021, 500, 11-20.	3.2	14
1392	The Internal Ribosome Entry Site of Dengue Virus mRNA Is Active When Cap-Dependent Translation Initiation Is Inhibited. Journal of Virology, 2021, 95, .	1.5	17
1393	Protein Synthesis and Translational Control in Neural Stem Cell Development and Neurogenesis. , 0, , 397-424.		4
1394	Translational control in aging and neurodegeneration. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1628.	3.2	17
1395	Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
1396	Plant nonhost resistance against viruses: Current status and future prospects., 2021,, 45-57.		0
1397	eIF3 interacts with histone H4 messenger RNA to regulate its translation. Journal of Biological Chemistry, 2021, 296, 100578.	1.6	5

#	Article	IF	CITATIONS
1399	Tumor starvation by L-arginine deprivation. , 2021, , 25-111.		1
1400	Structural similarity-based prediction of host factors associated with SARS-CoV-2 infection and pathogenesis. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5868-5879.	2.0	12
1401	Treading a HOSTile path: Mapping the dynamic landscape of host cellâ€"rotavirus interactions to explore novel host-directed curative dimensions. Virulence, 2021, 12, 1022-1062.	1.8	10
1402	High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 2020, 10, 617998.	1.8	11
1403	The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Virulence, 2021, 12, 1771-1794.	1.8	18
1404	The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders. Clinical and Translational Immunology, 2021, 10, e1247.	1.7	30
1405	Reprogramming translation for gene therapy. Progress in Molecular Biology and Translational Science, 2021, 182, 439-476.	0.9	5
1406	Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. Science China Life Sciences, 2021, 64, 1645-1660.	2.3	7
1407	Highly deregulated IncRNA LOC is associated with overall worse prognosis in Hepatocellular Carcinoma patients. Journal of Cancer, 2021, 12, 3098-3113.	1.2	2
1408	Genomic Action of Sigma-1 Receptor Chaperone Relates to Neuropathic Pain. Molecular Neurobiology, 2021, 58, 2523-2541.	1.9	10
1409	Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Reports, 2021, 22, e52072.	2.0	37
1410	The regulation of protein translation and its implications for cancer. Signal Transduction and Targeted Therapy, 2021, 6, 68.	7.1	54
1411	Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer's disease. Science Signaling, 2021, 14, .	1.6	75
1412	Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathogens, 2021, 17, e1008690.	2.1	83
1413	Sestrin2 protects against bavachin induced ER stress through AMPK/mTORC1 signaling pathway in HepG2 cells. Journal of Pharmacological Sciences, 2021, 145, 175-186.	1.1	19
1414	Tools for Assessing Translation in Cryptococcus neoformans. Journal of Fungi (Basel, Switzerland), 2021, 7, 159.	1.5	5
1415	The Role of LncRNAs in Translation. Non-coding RNA, 2021, 7, 16.	1.3	38
1416	Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. Journal of Cell Biology, 2021, 220, .	2.3	21

#	Article	IF	Citations
1417	KRASG12C Can Either Promote or Impair Cap-Dependent Translation in Two Different Lung Adenocarcinoma Cell Lines. International Journal of Molecular Sciences, 2021, 22, 2222.	1.8	3
1418	The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Viruses, 2021, 13, 275.	1.5	5
1419	Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nature Communications, 2021, 12, 1076.	5.8	37
1420	DDX3X: structure, physiologic functions and cancer. Molecular Cancer, 2021, 20, 38.	7.9	95
1421	Nutrient sensing. Current Opinion in Gastroenterology, 2021, 37, 114-120.	1.0	1
1422	Interactome Mapping of eIF3A in a Colon Cancer and an Immortalized Embryonic Cell Line Using Proximity-Dependent Biotin Identification. Cancers, 2021, 13, 1293.	1.7	1
1423	A Profound Basic Characterization of elFs in Gliomas: Identifying elF3I and 4H as Potential Novel Target Candidates in Glioma Therapy. Cancers, 2021, 13, 1482.	1.7	9
1424	R3HDM1 haploinsufficiency is associated with mild intellectual disability. American Journal of Medical Genetics, Part A, 2021, 185, 1776-1786.	0.7	0
1425	Hypoxia/HIF Modulates Immune Responses. Biomedicines, 2021, 9, 260.	1.4	40
1426	Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates—A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms, 2021, 9, 540.	1.6	16
1427	Selection for Cheaper Amino Acids Drives Nucleotide Usage at the Start of Translation in Eukaryotic Genes. Genomics, Proteomics and Bioinformatics, 2021, 19, 949-957.	3.0	4
1428	Nonsense suppression therapies in human genetic diseases. Cellular and Molecular Life Sciences, 2021, 78, 4677-4701.	2.4	38
1429	Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast. Biomolecules and Therapeutics, 2021, 29, 234-247.	1.1	0
1430	Picornavirus 3C $\hat{a}\in$ a protease ensuring virus replication and subverting host responses. Journal of Cell Science, 2021, 134, .	1.2	15
1431	Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Research, 2021, 30, 401-426.	1.3	29
1433	Supplementing with L-Tryptophan Increases Medium Protein and Alters Expression of Genes and Proteins Involved in Milk Protein Synthesis and Energy Metabolism in Bovine Mammary Cells. International Journal of Molecular Sciences, 2021, 22, 2751.	1.8	8
1434	The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. IScience, 2021, 24, 102145.	1.9	16
1435	PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO Journal, 2021, 40, e105806.	3.5	16

#	ARTICLE	IF	CITATIONS
1436	Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochemical Society Transactions, 2021, 49, 775-792.	1.6	12
1437	Discovery of RSV-Induced BRD4 Protein Interactions Using Native Immunoprecipitation and Parallel Accumulationâ€"Serial Fragmentation (PASEF) Mass Spectrometry. Viruses, 2021, 13, 454.	1.5	20
1438	Aberrant phase separation and cancer. FEBS Journal, 2022, 289, 17-39.	2.2	42
1439	Translational remodeling by <scp>RNA</scp> â€binding proteins and noncoding <scp>RNAs</scp> . Wiley Interdisciplinary Reviews RNA, 2021, 12, e1647.	3.2	23
1441	Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses, 2021, 13, 617.	1.5	13
1442	Translational control of gene expression by eIF2 modulates proteostasis and extends lifespan. Aging, 2021, 13, 10989-11009.	1.4	6
1443	Mapping of sequences in the 5' region and 3' UTR of tomato ringspot virus RNA2 that facilitate cap-independent translation of reporter transcripts in vitro. PLoS ONE, 2021, 16, e0249928.	1.1	3
1444	The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166046.	1.8	10
1445	PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Molecular Cell, 2021, 81, 1425-1438.e10.	4.5	13
1446	The SARSâ€unique domain (SUD) of SARSâ€CoV and SARSâ€CoVâ€2 interacts with human Paip1 to enhance viral RNA translation. EMBO Journal, 2021, 40, e102277.	3.5	26
1448	Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Reports, 2021, 35, 109032.	2.9	23
1450	The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Frontiers in Cell and Developmental Biology, 2021, 9, 683254.	1.8	15
1451	High overexpression of CERES, a plant regulator of translation, induces different phenotypical defence responses during TuMV infection. Plant Journal, 2021, 107, 256-267.	2.8	1
1454	Somatic Functional Deletions of Upstream Open Reading Frame-Associated Initiation and Termination Codons in Human Cancer. Biomedicines, 2021, 9, 618.	1.4	7
1455	miRNA-467b inhibits Th 17 differentiation by targeting elF4E in experimental autoimmune encephalomyelitis. Molecular Immunology, 2021, 133, 23-33.	1.0	14
1456	Acrylamide inhibits vaccinia virus through vimentinâ€independent <scp>antiâ€viral</scp> granule formation. Cellular Microbiology, 2021, 23, e13334.	1.1	4
1457	Circadian Clock Control of Translation Initiation Factor eIF2α Activity Requires eIF2γ-Dependent Recruitment of Rhythmic PPP-1 Phosphatase in <i>Neurospora crassa</i>). MBio, 2021, 12, .	1.8	7
1458	Predicting mean ribosome load for 5'UTR of any length using deep learning. PLoS Computational Biology, 2021, 17, e1008982.	1.5	17

#	Article	IF	CITATIONS
1459	Presence of rRNA-like regions in Genbank viral sequences. , 2021, , .		1
1460	OseIF3h Regulates Plant Growth and Pollen Development at Translational Level Presumably through Interaction with OsMTA2. Plants, 2021, 10, 1101.	1.6	4
1461	Aberrant expression of m6A mRNA methylation regulators in colorectal adenoma and adenocarcinoma. Life Sciences, 2021, 273, 119258.	2.0	16
1462	Iron in Translation: From the Beginning to the End. Microorganisms, 2021, 9, 1058.	1.6	8
1463	C81â€evoked inhibition of the TNFR1â€NFκB pathway during inflammatory processes for stabilization of the impaired vascular endothelial barrier for leukocytes. FASEB Journal, 2021, 35, e21656.	0.2	3
1464	A tool for analyzing and visualizing ribo-seq data at the isoform level. BMC Bioinformatics, 2021, 22, 271.	1.2	0
1466	N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene, 2021, 40, 3885-3898.	2.6	42
1467	NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. International Journal of Molecular Sciences, 2021, 22, 6714.	1.8	12
1469	Vps34 and TOR Kinases Coordinate <i>HAC1</i> mRNA Translation in the Presence or Absence of Ire1-Dependent Splicing. Molecular and Cellular Biology, 2021, 41, e0066220.	1.1	5
1470	Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nature Communications, 2021, 12, 3285.	5.8	27
1471	Molecular mechanisms underlying nucleotide repeat expansion disorders. Nature Reviews Molecular Cell Biology, 2021, 22, 589-607.	16.1	151
1472	Crystallin gene expression: Insights from studies of transcriptional bursting. Experimental Eye Research, 2021, 207, 108564.	1.2	11
1473	Mapping the interaction between eukaryotic initiation factor 4A (eIF4A) and the inhibitor hippuristanol using carbene footprinting and mass spectrometry. Proteomics, 2021, 21, 2000288.	1.3	4
1474	Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Research, 2021, 49, 6908-6924.	6.5	14
1476	Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. Journal of Virology, 2021, 95, e0023821.	1.5	17
1477	Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. , 2021, 11, 2249-2278.		28
1478	ORFik: a comprehensive R toolkit for the analysis of translation. BMC Bioinformatics, 2021, 22, 336.	1.2	16
1479	Efficient translation of Eggplant mottled dwarf nucleorhabdovirus N and X genes requires both $5\hat{a} \in \mathbb{Z}$ and $3\hat{a} \in \mathbb{Z}$ UTRs. Virology Journal, 2021, 18, 129.	1.4	1

#	Article	IF	CITATIONS
1480	Mass Spectrometry versus Conventional Techniques of Protein Detection: Zika Virus NS3 Protease Activity towards Cellular Proteins. Molecules, 2021, 26, 3732.	1.7	1
1482	ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. Journal of Translational Medicine, 2021, 19, 287.	1.8	13
1483	Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Research, 2021, 49, 7298-7317.	6.5	22
1484	Dissection of a rice OsMac1 mRNA 5' UTR to uncover regulatory elements that are responsible for its efficient translation. PLoS ONE, 2021, 16, e0253488.	1.1	4
1485	Role of RONS and elFs in Cancer Progression. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	3
1486	Unconventional translation initiation factor <scp>EIF2A</scp> is required for Drosophila spermatogenesis. Developmental Dynamics, 2022, 251, 377-389.	0.8	2
1487	Large-scale translatome profiling annotates the functional genome and reveals the key role of genic $3\hat{a} \in \mathbb{R}^2$ untranslated regions in translatomic variation in plants. Plant Communications, 2021, 2, 100181.	3.6	15
1488	elF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Seminars in Cell and Developmental Biology, 2022, 125, 101-109.	2.3	13
1490	Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Cells, 2021, 10, 1711.	1.8	13
1493	The Importance of the Epi-Transcriptome in Translation Fidelity. Non-coding RNA, 2021, 7, 51.	1.3	6
1495	Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Research, 2021, 49, 9404-9423.	6.5	22
1496	The role of endoplasmic reticulum stress in astrocytes. Glia, 2022, 70, 5-19.	2.5	30
1498	The plasticity of mRNA translation during cancer progression and therapy resistance. Nature Reviews Cancer, 2021, 21, 558-577.	12.8	100
1499	Investigating the Potential Roles of SINEs in the Human Genome. Annual Review of Genomics and Human Genetics, 2021, 22, 199-218.	2.5	16
1501	Evaluation of yeast hydrolysate as a substitute to dietary fish meal of juvenile Jian carp (<i>Cyprinus) Tj ETQq0 0</i>)	verlock 10 T
1502	Insulin-induced genes INSIG1 and INSIG2 mediate oxysterol-dependent activation of the PERK–eIF2α–ATF4 axis. Journal of Biological Chemistry, 2021, 297, 100989.	1.6	5
1503	The RNA helicase DHX36–G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat–associated translation. Journal of Biological Chemistry, 2021, 297, 100914.	1.6	24
1504	The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirusÂsmall mRNA. PLoS Pathogens, 2021, 17, e1009931.	2.1	2

#	Article	IF	CITATIONS
1505	AMPK–mTOR Signaling and Cellular Adaptations in Hypoxia. International Journal of Molecular Sciences, 2021, 22, 9765.	1.8	56
1506	Deep computational analysis details dysregulation of eukaryotic translation initiation complex eIF4F in human cancers. Cell Systems, 2021, 12, 907-923.e6.	2.9	11
1507	ĐϔуÑ,ĐμÑʹĐμÑÑ,Đ²Đ,Đμ Đ,Đ½Ñ,,Đ¾Ñ€Đ¼Đ¾Đ¾Đ¾ Đ²Đ¾ Đ²Ñ€ĐμĐ¼ĐμĐ½Đ;: Ñ€Đ°Đ½Đ½ÑÑ•ĐºĐ¾	₊ĐΦ∕ ∕ ΦцĐμ∙	Đ ϼ Ñ†Đ¸Ñ•Đ¼
1508	Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Research Reviews, 2021, 70, 101417.	5.0	43
1510	Informosomes Travel in Time: An Early mRNA Concept in the Current mRNP Landscape. Biochemistry (Moscow), 2021, 86, 1044-1052.	0.7	0
1511	DDX21, a Host Restriction Factor of FMDV IRES-Dependent Translation and Replication. Viruses, 2021, 13, 1765.	1.5	17
1512	Novel Molecular Basis for Synapse Formation: Small Non-coding Vault RNA Functions as a Riboregulator of MEK1 to Modulate Synaptogenesis. Frontiers in Molecular Neuroscience, 2021, 14, 748721.	1.4	2
1513	The Role of m6A Ribonucleic Acid Modification in the Occurrence of Atherosclerosis. Frontiers in Genetics, 2021, 12, 733871.	1.1	16
1514	Targeted Restriction of Viral Gene Expression and Replication by the ZAP Antiviral System. Annual Review of Virology, 2021, 8, 265-283.	3.0	39
1515	Translation of human Δ133p53 mRNA and its targeting by antisense oligonucleotides complementary to the 5′-terminal region of this mRNA. PLoS ONE, 2021, 16, e0256938.	1.1	2
1517	In situ detection of the eIF4F translation initiation complex in mammalian cells and tissues. STAR Protocols, 2021, 2, 100621.	0.5	1
1519	Oncogene-dependent sloppiness in mRNA translation. Molecular Cell, 2021, 81, 4709-4721.e9.	4.5	21
1520	Peculiarities of the regulation of translation initiation in plants. Current Opinion in Plant Biology, 2021, 63, 102073.	3.5	15
1521	The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. International Journal of Biochemistry and Cell Biology, 2021, 139, 106059.	1.2	14
1522	ATF4-mediated transcriptional regulation protects against \hat{l}^2 -cell loss during endoplasmic reticulum stress in a mouse model. Molecular Metabolism, 2021, 54, 101338.	3.0	26
1523	Ribosome cycle—Assembly, degradation, and recycling. , 2021, , 109-127.		0
1524	A null allele of granule bound starch synthase (Wx-B1) may be one of the major genes controlling chapatti softness. PLoS ONE, 2021, 16, e0246095.	1.1	2
1525	Translation initiation and its relevance in colorectal cancer. FEBS Journal, 2021, 288, 6635-6651.	2.2	10

#	Article	IF	CITATIONS
1527	Translationâ€"Process and control. , 2021, , 183-211.		1
1528	Linking depression, mRNA translation, and serotonin. , 2021, , 79-88.		1
1529	Ras and Ras Signaling as a Therapeutic Target in Cancer. , 2021, , .		0
1530	SZB120 Exhibits Immunomodulatory Effects by Targeting eIF2α to Suppress Th17 Cell Differentiation. Journal of Immunology, 2021, 206, 953-962.	0.4	2
1531	Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses, 2021, 13, 200.	1.5	4
1532	Identification and characterization of SaelF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii. Planta, 2021, 253, 12.	1.6	0
1533	A translation enhancer element from black beetle virus engages yeast elF4G1 to drive cap-independent translation initiation. Scientific Reports, 2021, 11, 2461.	1.6	6
1534	Expression of the Tomato pot-1 Gene Confers Potato Virus Y (PVY) Resistance in Susceptible Potato Varieties. American Journal of Potato Research, 2021, 98, 42-50.	0.5	5
1537	Regulation of Pancreatic Protein Synthesis and Growth., 0,, 127-135.		1
1538	RNA–Protein Interactions: An Overview. Methods in Molecular Biology, 2014, 1097, 491-521.	0.4	102
1539	Engineering Protein-Responsive mRNA Switch in Mammalian Cells. Methods in Molecular Biology, 2014, 1111, 183-196.	0.4	6
1540	The Pathogenesis of Physical Frailty and Sarcopenia. , 2020, , 33-53.		1
1541	Gene Expression Engineering. , 2016, , 7-30.		1
1542	Rotavirus Biology., 2017,, 19-42.		1
1543	Toward Multiscale Modeling of Molecular and Biochemical Events Occurring at Fertilization Time in Sea Urchins. Results and Problems in Cell Differentiation, 2018, 65, 69-89.	0.2	2
1544	The Role of the Postsynaptic Density in the Pathology of the Fragile X Syndrome. Results and Problems in Cell Differentiation, 2012, 54, 61-80.	0.2	11
1545	elF4E and Its Binding Proteins. , 2014, , 73-113.		2
1546	Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. Advances in Experimental Medicine and Biology, 2017, 983, 129-146.	0.8	15

#	Article	IF	Citations
1547	Cap-independent translation initiation of the unspliced RNA of retroviruses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194583.	0.9	14
1548	MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Seminars in Cancer Biology, 2019, 54, 63-71.	4.3	42
1549	Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase <i>su(var)3-9</i> and translation regulator <i>elF2γ</i> in <i>Tribolium castaneum</i> . Biochemical Journal, 2020, 477, 3059-3074.	1.7	4
1550	Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Biochemical Society Transactions, 2020, 48, 1199-1211.	1.6	9
1551	CDK1 couples proliferation with protein synthesis. Journal of Cell Biology, 2020, 219, .	2.3	58
1552	Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection. Journal of General Virology, 2016, 97, 867-879.	1.3	24
1553	Evidence supporting a premature termination mechanism for subgenomic RNA transcription in Pelargonium line pattern virus: identification of a critical long-range RNA–RNA interaction and functional variants through mutagenesis. Journal of General Virology, 2016, 97, 1469-1480.	1.3	7
1554	Better together: the role of IFIT protein–protein interactions in the antiviral response. Journal of General Virology, 2018, 99, 1463-1477.	1.3	69
1570	The Nuclear Export Receptors TbMex67 and TbMtr2 Are Required for Ribosome Biogenesis in Trypanosoma brucei. MSphere, 2019, 4, .	1.3	7
1571	TLR7 dosage polymorphism shapes interferogenesis and HIV-1 acute viremia in women. JCI Insight, 2020, 5, .	2.3	36
1572	An RNA decay factor wears a new coat: UPF3B modulates translation termination. F1000Research, 2017, 6, 2159.	0.8	9
1573	Linking Α to Ω: diverse and dynamic RNA-based mechanisms to regulate gene expression by 5′-to-3′ communication. F1000Research, 2016, 5, 2037.	0.8	4
1574	Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites. PLoS Computational Biology, 2016, 12, e1005198.	1.5	7
1575	High Glucose Suppresses Human Islet Insulin Biosynthesis by Inducing miR-133a Leading to Decreased Polypyrimidine Tract Binding Protein-Expression. PLoS ONE, 2010, 5, e10843.	1.1	76
1576	Determinants of Initiation Codon Selection during Translation in Mammalian Cells. PLoS ONE, 2010, 5, e15057.	1.1	14
1577	Neurite Outgrowth Mediated by Translation Elongation Factor eEF1A1: A Target for Antiplatelet Agent Cilostazol. PLoS ONE, 2011, 6, e17431.	1.1	22
1578	Differential Phosphorylation of Ribosomal Proteins in Arabidopsis thaliana Plants during Day and Night. PLoS ONE, 2011, 6, e29307.	1.1	54
1579	Functional and Structural Analysis of the Internal Ribosome Entry Site Present in the mRNA of Natural Variants of the HIV-1. PLoS ONE, 2012, 7, e35031.	1.1	39

#	ARTICLE	IF	CITATIONS
1580	Identification of Global Alteration of Translational Regulation in Glioma In Vivo. PLoS ONE, 2012, 7, e46965.	1.1	21
1581	Differential Localization of the Two T. brucei Poly(A) Binding Proteins to the Nucleus and RNP Granules Suggests Binding to Distinct mRNA Pools. PLoS ONE, 2013, 8, e54004.	1.1	45
1582	Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells. PLoS ONE, 2013, 8, e58367.	1.1	33
1583	Analysis of Genome-Wide Changes in the Translatome of Arabidopsis Seedlings Subjected to Heat Stress. PLoS ONE, 2013, 8, e71425.	1.1	98
1584	Investigating the Consequences of eIF4E2 (4EHP) Interaction with 4E-Transporter on Its Cellular Distribution in HeLa Cells. PLoS ONE, 2013, 8, e72761.	1,1	23
1585	Molecular Dynamics Simulation of the Allosteric Regulation of elF4A Protein from the Open to Closed State, Induced by ATP and RNA Substrates. PLoS ONE, 2014, 9, e86104.	1.1	11
1586	The S. pombe Translation Initiation Factor eIF4G Is Sumoylated and Associates with the SUMO Protease Ulp2. PLoS ONE, 2014, 9, e94182.	1,1	9
1587	Genome-Wide Analysis of the NADK Gene Family in Plants. PLoS ONE, 2014, 9, e101051.	1.1	37
1588	Differential Proteome Analysis Identifies TGF- \hat{l}^2 -Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS ONE, 2015, 10, e0126483.	1.1	20
1589	Different Blood Cell-Derived Transcriptome Signatures in Cows Exposed to Vaccination Pre- or Postpartum. PLoS ONE, 2015, 10, e0136927.	1.1	2
1590	CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation. PLoS ONE, 2016, 11, e0146792.	1.1	11
1591	Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like $3\hat{A}$ -Translational Enhancer that Communicates with the Corresponding $5\hat{A}$ -Region through a Long-Distance RNA-RNA Interaction. PLoS ONE, 2016, 11, e0152593.	1.1	21
1592	Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity. PLoS ONE, 2016, 11, e0167914.	1.1	10
1593	The Triticum Mosaic Virus 5' Leader Binds to Both eIF4G and eIFiso4G for Translation. PLoS ONE, 2017, 12, e0169602.	1.1	22
1594	Variations of five eIF4E genes across cassava accessions exhibiting tolerant and susceptible responses to cassava brown streak disease. PLoS ONE, 2017, 12, e0181998.	1.1	7
1595	Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS ONE, 2018, 13, e0192633.	1.1	20
1596	Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS ONE, 2018, 13, e0192648.	1.1	20
1597	A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathogens, 2016, 12, e1005379.	2.1	40

#	Article	IF	CITATIONS
1598	The 5'-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PLoS Pathogens, 2017, 13, e1006602.	2.1	44
1599	KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS Pathogens, 2017, 13, e1006677.	2.1	59
1600	New insights into 4E-BP1-regulated translation in cancer progression and metastasis. Cancer Cell $\&$ Microenvironment, 2014, 1, .	0.8	12
1601	The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO Journal, 2019, 38, e102226.	3.5	16
1602	Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging, 2019, 11, 2512-2540.	1.4	129
1603	Acute lymphoblastic leukemia cells are sensitive to disturbances in protein homeostasis induced by proteasome deubiquitinase inhibition. Oncotarget, 2017, 8, 21115-21127.	0.8	14
1604	Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6. Oncotarget, 2017, 8, 101224-101243.	0.8	34
1605	Targeting Translation Dependence in Cancer. Oncotarget, 2011, 2, 76-88.	0.8	50
1606	Hypoxia-mediated translational activation of ITGB3 in breast cancer cells enhances TGF- \hat{l}^2 signaling and malignant features <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 114856-114876.	0.8	35
1607	CpG promoter hypo-methylation and up-regulation of microRNA-190b in hormone receptor-positive breast cancer. Oncotarget, 2019, 10, 4664-4678.	0.8	3
1608	MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget, 2015, 6, 1101-1114.	0.8	24
1609	Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells. Oncotarget, 2016, 7, 27819-27837.	0.8	17
1610	Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget, 2016, 7, 30307-30322.	0.8	52
1611	Endoplasmic Reticulum Stress Signaling Pathways: Activation and Diseases. Current Protein and Peptide Science, 2019, 20, 935-943.	0.7	26
1612	Ribosome recycling is coordinated by processive events in two asymmetric ATP sites of ABCE1. Life Science Alliance, 2018, 1, e201800095.	1.3	17
1613	Prognostic and Predictive Significance of Eukaryotic Elongation Factor 1D (eEF1D) in Breast Cancer: A Potential Marker of Response to Endocrine Therapy. Oncologie, 2020, 22, 147-154.	0.2	2
1614	Crosstalk Between Hypoxia and ER Stress Response: A Key Regulator of Macrophage Polarization. Frontiers in Immunology, 2019, 10, 2951.	2.2	77
1615	eIF4Eâ€'related miRâ€'320a and miRâ€'340â€'5p inhibit endometrial carcinoma cell metastatic capability by preventing TGFâ€'β1â€'induced epithelialâ€'mesenchymal transition. Oncology Reports, 2020, 43, 447-460.	1.2	25

#	Article	IF	CITATIONS
1616	Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences and Engineering, 2017, 15, 507-522.	1.0	3
1617	Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regeneration Research, 2014, 9, 1031.	1.6	10
1618	Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. Translation, 2014, 2, e29211.	2.9	1
1619	Translation initiation mediated by nuclear cap-binding protein complex. BMB Reports, 2017, 50, 186-193.	1.1	28
1620	Translational control of mRNAs by 3'-Untranslated region binding proteins. BMB Reports, 2017, 50, 194-200.	1.1	26
1621	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	2.8	541
1622	Less translational control, more memory. ELife, 2013, 2, e00895.	2.8	4
1623	Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor $2\hat{l}\pm$ dephosphorylation. ELife, 2015, 4, .	2.8	73
1624	Community effects in regulation of translation. ELife, 2016, 5, e10965.	2.8	11
1625	Kinetics of initiating polypeptide elongation in an IRES-dependent system. ELife, 2016, 5, .	2.8	25
1626	Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. ELife, 2016, 5, .	2.8	116
1627	Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. ELife, 2016, 5, .	2.8	54
1628	Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling. ELife, 2016, 5, .	2.8	48
1629	Dual tRNA mimicry in the Cricket Paralysis Virus IRES uncovers an unexpected similarity with the Hepatitis C Virus IRES. ELife, 2018, 7, .	2.8	36
1630	Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. ELife, 2019, 8, .	2.8	157
1631	An mRNA-binding channel in the ES6S region of the translation 48S-PIC promotes RNA unwinding and scanning. ELife, $2019,8,.$	2.8	12
1632	A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate. ELife, 2020, 9 , .	2.8	19
1633	Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo. ELife, 2020, 9, .	2.8	24

#	Article	IF	CITATIONS
1634	Relationship between Protein kinase C isoforms, Telomerase and Alpha- fetoprotein through PI3K/AKT/mTOR pathway in Hepatocellular carcinoma. Y Hoc Thanh Pho Ho Chi Minh, 2021, 5, 12-26.	0.1	O
1635	Effect of the Ile222Thr Missense Mutation in SsoIF2γ on the Affinity of γ and β Subunits of aIF2. Crystallography Reports, 2021, 66, 797-801.	0.1	1
1636	Proteomics reveal cap-dependent translation inhibitors remodel the translation machinery and translatome. Cell Reports, 2021, 37, 109806.	2.9	15
1637	SINEUPs: a novel toolbox for RNA therapeutics. Essays in Biochemistry, 2021, 65, 775-789.	2.1	13
1639	Identification of cryptic putative IRESs within the ORF encoding the nonstructural proteins of the human rhinovirus 16 genome. Archives of Virology, 2021, 166, 3373-3386.	0.9	3
1640	elF3k Domain-Containing Protein Regulates Conidiogenesis, Appressorium Turgor, Virulence, Stress Tolerance, and Physiological and Pathogenic Development of Magnaporthe oryzae Oryzae. Frontiers in Plant Science, 2021, 12, 748120.	1.7	10
1641	Identification and genome analysis of a novel picornavirus from captive belugas (Delphinapterus) Tj ETQq0 0 0 rg	;BT_/Overlo	ock 10 Tf 50 5
1642	elF2Aâ€knockout mice reveal decreased life span and metabolic syndrome. FASEB Journal, 2021, 35, e21990.	0.2	14
1643	Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. Journal of Microbiological Methods, 2021, 190, 106341.	0.7	1
1645	Post-transcriptional Gene Silencing and Translation in Giardia. , 2011, , 233-244.		1
1646	UPR Activation in Cancer Cells: A Double-Edged Sword. , 2012, , 383-412.		1
1647	X-Ray Analysis of Prokaryotic and Eukaryotic Ribosomes. , 2012, , 1-25.		0
1649	Translation Initiation in Eukaryotes, Reinitiation., 2013,, 2267-2271.		0
1650	Translation Initiation. , 2013, , 2263-2267.		0
1651	Internal Ribosome Entry Site, Eukaryotic., 2013, , 1047-1052.		0
1652	UORF-mediated Translational Control in Eukaryotes. , 2013, , 2325-2328.		0
1653	Translation Initiation: A Eukaryotic Perspective. , 2013, , 2644-2650.		1
1654	How hantaviruses modulate cellular pathways for efficient replication. Frontiers in Bioscience - Elite, 2013, E5, 154-166.	0.9	7

#	Article	IF	CITATIONS
1655	Aberrant translation of proteins implicated in Alzheimer�s disease pathology. OA Genetics, 2013, 1, .	0.0	1
1658	Mechanism of Translation in Eukaryotes. , 2014, , 7-37.		0
1659	eIF4E Phosphorylation Downstream of MAPK Pathway. , 2014, , 363-374.		1
1660	mRNA Translation. , 2014, , 2932-2936.		O
1661	Recent Progress in Ribosome Structure Studies. , 2014, , 23-43.		0
1662	Nonsense-Mediated mRNA Decay Immunity Can Help Identify Human Polycistronic Transcripts. PLoS ONE, 2014, 9, e91535.	1.1	1
1663	Targeting Alternative Splicing in Human Genetic Disease. , 2014, , 347-374.		0
1665	Traducción independiente de la estructura 5´cap del ARN genómico del virus dengue. Revista Peruana De Medicina De Experimental Y Salud Publica, 2015, 32, 11.	0.1	0
1668	Evolution of eIF4E-Interacting Proteins. , 2016, , 207-234.		3
1695	Functions and Dynamics of Methylation in Eukaryotic mRNA. RNA Technologies, 2019, , 333-351.	0.2	0
1702	Eukaryotic translation initiation factor 3B downregulation inhibits cell proliferation and promotes cell apoptosis through negatively regulating tumor necrosis factor receptor superfamily member 21 in gastric cancer. Translational Cancer Research, 2019, 8, 2242-2251.	0.4	5
1708	A report on DNA sequence determinants in gene expression. Bioinformation, 2020, 16, 422.	0.2	2
1713	RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both?. Viruses, 2021, 13, 2172.	1.5	11
1714	A deterministic model for non-monotone relationship between translation of upstream and downstream open reading frames. Mathematical Medicine and Biology, 2021, 38, 490-515.	0.8	1
1715	Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Frontiers in Immunology, 2021, 12, 769543.	2.2	28
1716	Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochemistry International, 2022, 152, 105219.	1.9	5
1718	elF4E Overexpression Is Associated with Poor Prognoses of Ovarian Cancer. Analytical Cellular Pathology, 2020, 2020, 1-7.	0.7	9
1719	Grad-cryo-EM: Tool to Isolate Translation Initiation Complexes from Rabbit Reticulocyte Lysate Suitable for Structural Studies. Methods in Molecular Biology, 2020, 2113, 329-339.	0.4	1

#	Article	IF	CITATIONS
1723	Competitive binding and molecular crowding regulate the cytoplasmic interactome of non-viral polymeric gene delivery vectors. Nature Communications, 2021, 12, 6445.	5.8	10
1725	A Robust Protocol for CRISPRâ€Cas9 Gene Editing in Human Suspension Cell Lines. Current Protocols, 2021, 1, e286.	1.3	3
1726	The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Molecular Cell, 2021, 81, 4493-4508.e9.	4.5	38
1727	The integrated stress response in ischemic diseases. Cell Death and Differentiation, 2022, 29, 750-757.	5.0	23
1728	Novel Roles of Small Extracellular Vesicles in Regulating the Quiescence and Proliferation of Neural Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 762293.	1.8	10
1729	Proteasome- and Calpain-Mediated Proteolysis, but Not Autophagy, Is Required for Leucine-Induced Protein Synthesis in C2C12 Myotubes. Physiologia, 2021, 1, 22-33.	0.6	4
1731	Expression of Glycosaminoglycan-Related Genes and the Role of Polyamines in the Glycosaminoglycan Biosynthetic Pathways. Trends in Glycoscience and Glycotechnology, 2020, 32, E167-E175.	0.0	2
1732	Expression of Glycosaminoglycan-Related Genes and the Role of Polyamines in the Glycosaminoglycan Biosynthetic Pathways. Trends in Glycoscience and Glycotechnology, 2020, 32, J143-J151.	0.0	0
1742	Knockdown of elF3D inhibits breast cancer cell proliferation and invasion through suppressing the Wnt/ \hat{l}^2 -catenin signaling pathway. International Journal of Clinical and Experimental Pathology, 2015, 8, 10420-7.	0.5	18
1743	elF3a mediates HlF1 \hat{l} ±-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. American Journal of Cancer Research, 2019, 9, 1079-1090.	1.4	7
1744	Tip of the iceberg: roles of circRNAs in hematological malignancies. American Journal of Cancer Research, 2020, 10, 367-382.	1.4	5
1745	An In Vitro Single-Molecule Imaging Assay for the Analysis of Cap-Dependent Translation Kinetics. Journal of Visualized Experiments, 2020, , .	0.2	1
1746	Translational regulation of viral RNA in the type I interferon response. Current Research in Virological Science, 2021, 2, 100012.	1.8	4
1747	Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells, 2021, 10, 3239.	1.8	8
1748	Bi-directional ribosome scanning controls the stringency of start codon selection. Nature Communications, 2021, 12, 6604.	5.8	15
1749	The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Science Alliance, 2022, 5, e202101232.	1.3	17
1750	Expression and Functional Roles of Eukaryotic Initiation Factor 4A Family Proteins in Human Cancers. Frontiers in Cell and Developmental Biology, 2021, 9, 711965.	1.8	20
1751	Dysregulated mRNA Translation in the G2019S LRRK2 and LRRK2 Knock-Out Mouse Brains. ENeuro, 2021, 8, ENEURO.0310-21.2021.	0.9	6

#	Article	IF	CITATIONS
1752	elF4Eâ€homologous protein (4EHP): a multifarious capâ€binding protein. FEBS Journal, 2023, 290, 266-285.	2.2	15
1753	Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nature Communications, 2021, 12, 6971.	5.8	19
1754	Gated residual neural networks with self-normalization for translation initiation site recognition. Knowledge-Based Systems, 2021, , 107783.	4.0	6
1755	Uncovering the impacts of alternative splicing on the proteome with current omics techniques. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1707.	3.2	22
1757	Dihydrocapsaicin induces translational repression and stress granule through HRI-eIF2 $\hat{l}\pm$ phosphorylation axis. Biochemical and Biophysical Research Communications, 2022, 588, 125-132.	1.0	2
1758	Dynamic interaction network involving the conserved intrinsically disordered regions in human eIF5. Biophysical Chemistry, 2022, 281, 106740.	1.5	4
1759	An In Vitro Single-Molecule Imaging Assay for the Analysis of Cap-Dependent Translation Kinetics. Journal of Visualized Experiments, 2020, , .	0.2	3
1760	RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses, 2022, 14, 188.	1.5	8
1761	Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Frontiers in Immunology, 2021, 12, 794580.	2.2	19
1762	S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. Frontiers in Plant Science, 2021, 12, 802802.	1.7	10
1763	Stepwise assembly of the eukaryotic translation initiation factor 2 complex. Journal of Biological Chemistry, 2022, 298, 101583.	1.6	6
1764	Double stranded DNA breaks and genome editing trigger loss of ribosomal protein RPS27A. FEBS Journal, 2022, 289, 3101-3114.	2.2	13
1765	elF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5′-Untranslated Regions. Frontiers in Molecular Biosciences, 2021, 8, 787664.	1.6	5
1766	Integrated Stress Response in Neuronal Pathology and in Health. Biochemistry (Moscow), 2022, 87, S111-S127.	0.7	2
1767	Premature Termination Codon in 5′ Region of Desmoplakin and Plakoglobin Genes May Escape Nonsense-Mediated Decay through the Reinitiation of Translation. International Journal of Molecular Sciences, 2022, 23, 656.	1.8	2
1768	Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. Life, 2022, 12, 57.	1.1	6
1769	Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Human Molecular Genetics, 2022, 31, 2317-2332.	1.4	7
1770	The cap-proximal RNA secondary structure inhibits preinitiation complex formation on HAC1 mRNA. Journal of Biological Chemistry, 2022, 298, 101648.	1.6	4

#	Article	IF	CITATIONS
1771	Structural characterization of a new subclass of panicum mosaic virus-like 3′ cap-independent translation enhancer. Nucleic Acids Research, 2022, , .	6.5	2
1772	PABP1 Drives the Selective Translation of Influenza A Virus mRNA. Journal of Molecular Biology, 2022, 434, 167460.	2.0	5
1773	Going beyond the limit: Increasing global translation activity leads to increased productivity of recombinant secreted proteins in Pichia pastoris. Metabolic Engineering, 2022, 70, 181-195.	3.6	11
1774	Phosphorylation of the alpha-subunit of plant eukaryotic initiation factor 2 prevents its association with polysomes but does not considerably suppress protein synthesis. Plant Science, 2022, 317, 111190.	1.7	1
1777	The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Frontiers in Microbiology, 2021, 12, 814635.	1.5	23
1778	Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia. International Journal of Molecular Sciences, 2022, 23, 1830.	1.8	2
1780	Machine Learning for Designing Next-Generation mRNA Therapeutics. Accounts of Chemical Research, 2022, 55, 24-34.	7.6	25
1781	Dynamic elF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature Chemical Biology, 2022, 18, 134-141.	3.9	14
1782	The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Research, 2022, 50, 411-429.	6.5	14
1783	Posttranscriptional regulation of cyclin D1 by ARE-binding proteins AUF1 and HuR in cycling myoblasts. Journal of Biosciences, 2018, 43, 685-691.	0.5	4
1784	Single Particle Cryo-EM of Ribosomal Complexes: Visualization of How Ribosome Works in Translation. Seibutsu Butsuri, 2022, 62, 28-31.	0.0	0
1785	Translational Reprogramming of mRNA in Oxidative Stress and Cancer. , 2022, , 1-15.		0
1786	A Ribosomal Perspective on Neuronal Local Protein Synthesis. Frontiers in Molecular Neuroscience, 2022, 15, 823135.	1.4	9
1787	Reconstitution of $3\hat{a}\in^2$ end processing of mammalian pre-mRNA reveals a central role of RBBP6. Genes and Development, 2022, 36, 195-209.	2.7	26
1788	The transcription factor $Xrp1$ orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. ELife, 2022, 11 , .	2.8	19
1789	Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules, 2022, 12, 314.	1.8	3
1790	Dysregulation of Translation in TDP-43 Proteinopathies: Deficits in the RNA Supply Chain and Local Protein Production. Frontiers in Neuroscience, 2022, 16, 840357.	1.4	20
1792	The Role of IL-6 Released During Exercise to Insulin Sensitivity and Muscle Hypertrophy. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2419-2428.	1.1	1

#	Article	IF	CITATIONS
1793	Mitochondrion-encoded circular RNAs are widespread and translatable in plants. Plant Physiology, 2022, 189, 1482-1500.	2.3	9
1794	Epigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene, 2022, 41, 2778-2785.	2.6	6
1795	Identification of Novel 5′ and 3′ Translation Enhancers in Umbravirus-Like Coat Protein-Deficient RNA Replicons. Journal of Virology, 2022, 96, e0173621.	1.5	5
1796	Short 5′ Untranslated Region Enables Optimal Translation of Plant Virus Tricistronic RNA via Leaky Scanning. Journal of Virology, 2022, 96, e0214421.	1.5	3
1797	The Structural Dynamics of Translation. Annual Review of Biochemistry, 2022, 91, 245-267.	5.0	18
1798	Roles of RNA-binding proteins in immune diseases and cancer. Seminars in Cancer Biology, 2022, 86, 310-324.	4.3	14
1799	Translational Regulation by hnRNP H/F Is Essential for the Proliferation and Survival of Glioblastoma. Cancers, 2022, 14, 1283.	1.7	3
1800	Single-molecule imaging of microRNA-mediated gene silencing in cells. Nature Communications, 2022, 13, 1435.	5.8	24
1801	Insight into the structure, physiological function, and role in cancer of m6A readersâ€"YTH domain-containing proteins. Cell Death Discovery, 2022, 8, 137.	2.0	27
1802	The translational landscape as regulated by the RNA helicase DDX3. BMB Reports, 2022, 55, 125-135.	1.1	5
1803	Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. Journal of Biological Chemistry, 2022, 298, 101882.	1.6	10
1804	Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO Journal, 2022, 41, e109823.	3.5	24
1805	mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Frontiers in Molecular Biosciences, 2022, 9, 863885.	1.6	10
1806	Transcriptome Analysis of the Marine Nematode Litoditis marina in a Chemically Defined Food Environment with Stearic Acid Supplementation. Journal of Marine Science and Engineering, 2022, 10, 428.	1.2	1
1807	CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-elF4G1 translational regulation axis. Cell Death and Disease, 2022, 13, 250.	2.7	4
1808	The role of altered translation in intellectual disability and epilepsy. Progress in Neurobiology, 2022, 213, 102267.	2.8	9
1810	Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Research, 2022, 50, 1052-1068.	6.5	5
1811	Disrupting the Molecular Pathway in Myotonic Dystrophy. International Journal of Molecular Sciences, 2021, 22, 13225.	1.8	5

#	Article	IF	Citations
1812	GADD34-mediated dephosphorylation of eIF2α facilitates pseudorabies virus replication by maintaining de novo protein synthesis. Veterinary Research, 2021, 52, 148.	1.1	5
1813	A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines, 2022, 10, 13.	1.4	5
1814	Short and Sweet: Viral 5'-UTR as a Canonical and Non-Canonical Translation Initiation Switch. , $2021, 3, 296-304$.		0
1815	Functional role and ribosomal position of the unique N-terminal region of DHX29, a factor required for initiation on structured mammalian mRNAs. Nucleic Acids Research, 2021, 49, 12955-12969.	6.5	7
1816	Co-option of an extracellular protease for transcriptional control of nutrient degradation in the fungus Aspergillus nidulans. Communications Biology, 2021, 4, 1409.	2.0	7
1817	Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Research, 2022, 50, 5282-5298.	6.5	15
1818	Regulation and outcomes of localized <scp>RNA</scp> translation. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1721.	3.2	19
1819	FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis. Archives of Biochemistry and Biophysics, 2022, 722, 109216.	1.4	13
1820	Pharmacodynamic and therapeutic pilot studies of single-agent ribavirin in patients with human papillomavirus–related malignancies. Oral Oncology, 2022, 128, 105806.	0.8	4
1834	Molecular interaction of stress granules with Tau and autophagy in Alzheimer's disease. Neurochemistry International, 2022, 157, 105342.	1.9	8
1835	Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy. Nature Communications, 2022, 13, 2201.	5.8	10
1836	The translational landscape as regulated by the RNA helicase DDX3 BMB Reports, 2022, , .	1.1	0
1837	Decoding the functional role of extracellular vesicles in hepatocellular carcinoma: implications in clinical theranostics., 2022,, 301-339.		0
1839	Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biology, 2022, 12, 210308.	1.5	1
1841	A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Frontiers in Oncology, 2022, 12, 817916.	1.3	9
1843	A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nature Cell Biology, 2022, 24, 766-782.	4.6	84
1844	KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming. Molecular Therapy, 2022, 30, 2828-2843.	3.7	4
1846	Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiology of Disease, 2022, 170, 105749.	2.1	6

#	Article	IF	CITATIONS
1847	Non-AUG translation initiation in mammals. Genome Biology, 2022, 23, 111.	3.8	25
1848	The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Research, 2022, 50, 5424-5442.	6.5	8
1849	Genome Editing for Sustainable Agriculture in Africa. Frontiers in Genome Editing, 2022, 4, .	2.7	24
1850	Ataluren binds to multiple protein synthesis apparatus sites and competitively inhibits release factor-dependent termination. Nature Communications, 2022, 13, 2413.	5.8	19
1852	The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene, 2022, 832, 146562.	1.0	8
1853	Interplay between SERCA, 4E-BP, and eIF4E in the Drosophila heart. PLoS ONE, 2022, 17, e0267156.	1.1	6
1855	Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. ELife, 0, 11 , .	2.8	5
1856	mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	160
1857	Secondary structures in RNA synthesis, splicing and translation. Computational and Structural Biotechnology Journal, 2022, 20, 2871-2884.	1.9	13
1858	Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5'-UTRs. Molecular and Cellular Biochemistry, 2022, 477, 2643-2656.	1.4	3
1859	Translation initiation factor elF4G1 modulates the assembly of PET region in yeast ribosome biogenesis. Journal of Cell Science, 0 , , .	1.2	2
1860	Role of Stress Granules in Suppressing Viral Replication by the Infectious Bronchitis Virus Endoribonuclease. Journal of Virology, 2022, 96, .	1.5	5
1861	mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. Journal of Biological Chemistry, 2022, 298, 102084.	1.6	3
1863	A bioisosteric approach to the discovery of novel N-aryl-N′-[4-(aryloxy)cyclohexyl]squaramide-based activators of eukaryotic initiation factor 2 alpha (elF2l±) phosphorylation. European Journal of Medicinal Chemistry, 2022, 239, 114501.	2.6	1
1864	DEAD box 1 (DDX1) protein binds to and protects cytoplasmic stress response mRNAs in cells exposed to oxidative stress. Journal of Biological Chemistry, 2022, 298, 102180.	1.6	7
1865	A little less aggregation a little more replication: Viral manipulation of stress granules. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	7
1866	Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death. Journal of Cell Science, 2022, 135, .	1.2	9
1867	The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects. Nucleic Acids Research, 2022, 50, 6497-6510.	6.5	5

#	Article	IF	CITATIONS
1868	Single polysome analysis of mRNP. Biochemical and Biophysical Research Communications, 2022, 618, 73-78.	1.0	2
1870	Protein Synthesis/Degradation: Translation $\hat{a} \in \mathbb{C}^*$ Components, Initiation, Elongation, Termination, and Regulation. , 2022, , .		0
1871	Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. Journal of Experimental Botany, 2022, 73, 7016-7025.	2.4	8
1872	elF4E1 Regulates Arabidopsis Embryo Development and Root Growth by Interacting With RopGEF7. Frontiers in Plant Science, 0, 13, .	1.7	3
1873	Engineering circular RNA for enhanced protein production. Nature Biotechnology, 2023, 41, 262-272.	9.4	83
1874	Molecular architecture of <scp>40S</scp> translation initiation complexes on the hepatitis C virus <scp>IRES</scp> . EMBO Journal, 2022, 41, .	3.5	10
1875	High expression of elF4A1 predicts unfavorable prognosis in clear cell renal cell carcinoma. Molecular and Cellular Probes, 2022, , 101845.	0.9	4
1876	The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
1877	mRNA- and factor-driven dynamic variability controls eIF4F-cap recognition for translation initiation. Nucleic Acids Research, 2022, 50, 8240-8261.	6.5	6
1878	Investigation of the Molecular Mechanisms Leading to Protein Translation Inhibition in Response to Endoplasmic Reticulum Stress. MağallatÌ^ Al-Muẗtar Li-l-Ê¿ulÅ«m, 2018, 33, 169-181.	0.1	0
1879	Building the Plant SynBio Toolbox through Combinatorial Analysis of DNA Regulatory Elements. ACS Synthetic Biology, 2022, 11, 2741-2755.	1.9	6
1880	PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	25
1881	Cyst stem cell lineage eIF5 non-autonomously prevents testicular germ cell tumor formation via eIF1A/eIF2 \hat{I}^3 -mediated pre-initiation complex. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
1882	Identification of unannotated coding sequences and their physiological functions. Journal of Biochemistry, 2023, 173, 237-242.	0.9	2
1883	HER2 c-Terminal Fragments Are Expressed via Internal Translation of the HER2 mRNA. International Journal of Molecular Sciences, 2022, 23, 9549.	1.8	1
1884	PABP/purine-rich motif as an initiation module for cap-independent translation in pattern-triggered immunity. Cell, 2022, 185, 3186-3200.e17.	13.5	23
1885	Multiple Roles of m6A RNA Modification in Translational Regulation in Cancer. International Journal of Molecular Sciences, 2022, 23, 8971.	1.8	11
1886	<scp>Capâ€independent</scp> translation of <scp>GPLD1</scp> enhances markers of brain health in <scp>longâ€lived</scp> mutant and <scp>drugâ€treated</scp> mice. Aging Cell, 2022, 21, .	3.0	9

#	Article	IF	CITATIONS
1887	RNA structure mediated thermoregulation: What can we learn from plants?. Frontiers in Plant Science, $0,13,.$	1.7	8
1888	Protective Effects of Recombinant Human Angiogenin in Keratinocytes: New Insights on Oxidative Stress Response Mediated by RNases. International Journal of Molecular Sciences, 2022, 23, 8781.	1.8	3
1889	Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. Advances in Protein Chemistry and Structural Biology, 2022, , $111-141$.	1.0	1
1891	Early signaling events in the heat stress response of Pyropia haitanensis revealed by phosphoproteomic and lipidomic analyses. Algal Research, 2022, 67, 102837.	2.4	2
1892	Noncoding RNAs in cataract formation: Star molecules emerge in an endless stream. Pharmacological Research, 2022, 184, 106417.	3.1	6
1893	Regulation of the Interactions between Human Eif5 and Eif1a by the Ck2 Kinase. SSRN Electronic Journal, $0, , .$	0.4	O
1894	Regulation of the interactions between human eIF5 and eIF1A by the CK2 kinase. Current Research in Structural Biology, 2022, 4, 308-319.	1.1	0
1895	Translational Reprogramming of mRNA in Oxidative Stress and Cancer. , 2022, , 3925-3939.		O
1896	Stapled peptidomimetic therapeutics. , 2022, , 99-124.		0
1897	eIF5B Stimulates IRES Activity by Nucleating Biological Condensate Formation. SSRN Electronic Journal, 0, , .	0.4	0
1898	The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1. Nucleic Acids Research, 2022, 50, 9355-9367.	6.5	2
1900	Wogonin, a Compound in Scutellaria baicalensis, Activates ATF4–FGF21 Signaling in Mouse Hepatocyte AML12 Cells. Nutrients, 2022, 14, 3920.	1.7	1
1901	Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses, 2022, 14, 2129.	1.5	5
1902	<scp>EIF3B</scp> stabilizes <scp>PTGS2</scp> expression by counteracting <scp>MDM2</scp> â€mediated ubiquitination to promote the development and progression of malignant melanoma. Cancer Science, 0, , .	1.7	1
1903	Targeting EIF3C to suppress the development and progression of nasopharyngeal carcinoma. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	2
1904	Global 5′-UTR RNA structure regulates translation of a <i>SERPINA1</i> mRNA. Nucleic Acids Research, 2022, 50, 9689-9704.	6.5	5
1905	Sequestering the 5′ ap for viral RNA packaging. BioEssays, 2022, 44, .	1,2	2
1908	Cytoplasmic and mitochondrial aminoacyl-tRNA synthetases differentially regulate lifespan in Caenorhabditis elegans. IScience, 2022, 25, 105266.	1.9	0

#	Article	IF	CITATIONS
1910	Expression, oncological and immunological characterizations of BZW1/2 in pancreatic adenocarcinoma. Frontiers in Genetics, 0, 13 , .	1.1	3
1911	C9orf72 regulates the unfolded protein response and stress granule formation by interacting with eIF2α. Theranostics, 2022, 12, 7289-7306.	4.6	6
1912	Cloning and Characterization of Eukaryotic Translation Initiation Factor 4E (eIF4E) Gene Family in & Cloning amp; It; Ipomoea batatas & Clamp; It; Isamp;	0.1	0
1913	The translation regulator Zar1l controls timing of meiosis in <i>Xenopus</i> oocytes. Development (Cambridge), 2022, 149, .	1.2	8
1914	An emerging role for stress granules in neurodegenerative disease and hearing loss. Hearing Research, 2022, 426, 108634.	0.9	5
1915	The Role of m6A Modification and m6A Regulators in Esophageal Cancer. Cancers, 2022, 14, 5139.	1.7	2
1916	Host adaptive mutations in the 2009 H1N1 pandemic influenza A virus PA gene regulate translation efficiency of viral mRNAs via GRSF1. Communications Biology, 2022, 5, .	2.0	4
1917	<scp>DDX60</scp> selectively reduces translation off viral type <scp>II</scp> internal ribosome entry sites. EMBO Reports, 2022, 23, .	2.0	6
1918	mRNAs encoding neurodevelopmental regulators have equal N6-methyladenosine stoichiometry in Drosophila neuroblasts and neurons. Neural Development, 2022, 17, .	1.1	2
1920	P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis. Plant Biotechnology Reports, 2022, 16, 665-681.	0.9	2
1921	The Food and Drug Administration-approved antipsychotic drug trifluoperazine, a calmodulin antagonist, inhibits viral replication through PERK-elF2 $\hat{l}\pm$ axis. Frontiers in Microbiology, 0, 13, .	1.5	1
1922	N6-methyladenosine (m6A) RNA modification in the pathophysiology of heart failure: a narrative review. Cardiovascular Diagnosis and Therapy, 2022, 12, 908-925.	0.7	2
1923	Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer, 2022, 4, .	1.6	2
1924	Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability. International Journal of Molecular Sciences, 2022, 23, 13516.	1.8	8
1925	The genome of a hadal sea cucumber reveals novel adaptive strategies to deep-sea environments. IScience, 2022, 25, 105545.	1,9	5
1926	Targeting the integrated stress response in hematologic malignancies. Experimental Hematology and Oncology, 2022, $11,\dots$	2.0	1
1927	The alternative proteome in neurobiology. Frontiers in Cellular Neuroscience, $0,16,.$	1.8	3
1928	Splicing factor SRSF3 represses translation of p21cip1/waf1 mRNA. Cell Death and Disease, 2022, 13, .	2.7	1

#	Article	IF	CITATIONS
1929	Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell, 2022, 185, 4474-4487.e17.	13.5	32
1931	Constructing and validating of m7G-related genes prognostic signature for hepatocellular carcinoma and immune infiltration: potential biomarkers for predicting the overall survival. Journal of Gastrointestinal Oncology, 2022, 13, 3169-3182.	0.6	2
1932	The antitumor activity of a novel GCN2 inhibitor in head and neck squamous cell carcinoma cell lines. Translational Oncology, 2023, 27, 101592.	1.7	3
1933	IRES-mediated translation in bacteria. Biochemical and Biophysical Research Communications, 2023, 641, 110-115.	1.0	0
1934	Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction. Pattern Recognition, 2023, 136, 109234.	5.1	15
1935	The role of circular RNAs in the pathophysiology of oral squamous cell carcinoma. Non-coding RNA Research, 2023, 8, 109-114.	2.4	11
1936	A pan-cancer analysis of the oncogenic role of ATP binding cassette subfamily E member 1 (ABCE1) in human tumors: An observational study. Medicine (United States), 2022, 101, e31849.	0.4	1
1937	Discovery of the hidden coding information in cancers: Mechanisms and biological functions. International Journal of Cancer, 2023, 153, 20-32.	2.3	3
1939	Biological roles of the RNA m6A modification and its implications in cancer. Experimental and Molecular Medicine, 2022, 54, 1822-1832.	3.2	10
1940	Translation-complex profiling of fission yeast cells reveals dynamic rearrangements of scanning ribosomal subunits upon nutritional stress. Nucleic Acids Research, 2022, 50, 13011-13025.	6.5	3
1941	A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Therapy, 0 , , .	2.2	4
1942	Eukaryotic translation initiation factor <scp>elF4G2</scp> opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Proliferation, 2023, 56, .	2.4	4
1943	Synergetic effects of concurrent chronic exposure to a mixture of OCPs and high-fat diets on type 2 diabetes and beneficial effects of caloric restriction in female zebrafish. Journal of Hazardous Materials, 2023, 446, 130659.	6.5	1
1944	The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers, 2022, 14, 6031.	1.7	1
1946	The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochemical Society Transactions, 2022, 50, 1885-1895.	1.6	8
1947	Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 0, , .	1.9	0
1948	Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathogens, 2022, 18, e1011041.	2.1	12
1949	Expression of miRNA-Targeted and Not-Targeted Reporter Genes Shows Mutual Influence and Intercellular Specificity. International Journal of Molecular Sciences, 2022, 23, 15059.	1.8	1

#	Article	IF	CITATIONS
1950	Distance-dependent inhibition of translation initiation by downstream out-of-frame AUGs is consistent with a Brownian ratchet process of ribosome scanning. Genome Biology, 2022, 23, .	3.8	10
1951	Structural Elements of DNA and RNA Eukaryotic Expression Vectors for In Vitro and In Vivo Genome Editor Delivery. Molecular Biology, 2022, 56, 950-962.	0.4	4
1952	Translation factor eIF5a is essential for IFN \hat{I}^3 production and cell cycle regulation in primary CD8+ T lymphocytes. Nature Communications, 2022, 13, .	5.8	6
1954	An E3 ligase network engages GCN1 to promote the degradation of translation factors on stalled ribosomes. Cell, 2023, 186, 346-362.e17.	13.5	18
1955	Protein translation paradox: Implications in translational regulation of aging. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	5
1957	All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event. Seminars in Cell and Developmental Biology, 2023, 148-149, 51-61.	2.3	2
1958	OSppc: A web server for online survival analysis using proteome of pan-cancers. Journal of Proteomics, 2023, 273, 104810.	1.2	3
1959	Translation initiation and dysregulation of initiation factors in rare diseases. Gene Reports, 2023, 30, 101738.	0.4	0
1960	An RNA stem-loop functions in conjunction with an upstream open reading frame to direct preferential translation in the integrated stress response. Journal of Biological Chemistry, 2023, 299, 102864.	1.6	3
1962	elF4A1 Is a Prognostic Marker and Actionable Target in Human Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2023, 24, 2055.	1.8	1
1963	MicroRNAs associated with Helicobacter pylori and Epstein-Barr virus infections in gastric cancer. , 2023, , 71-94.		0
1964	A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chemical Reviews, 2023, 123, 9036-9064.	23.0	22
1965	Single-molecule visualization of mRNA circularization during translation. Experimental and Molecular Medicine, 2023, 55, 283-289.	3.2	2
1966	Interaction between Stress Granules and Retroviruses. Hans Journal of Biomedicine, 2023, 13, 129-136.	0.0	0
1967	Molecular basis for GIGYF–TNRC6 complex assembly. Rna, 2023, 29, 724-734.	1.6	3
1968	Translation reinitiation after uORFs does not fully protect mRNAs from nonsense-mediated decay. Rna, 2023, 29, 735-744.	1.6	5
1969	Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Molecular Cell, 2023, 83, 589-606.e6.	4. 5	18
1970	The Functional Meaning of 5′UTR in Protein-Coding Genes. International Journal of Molecular Sciences, 2023, 24, 2976.	1.8	11

#	Article	IF	CITATIONS
1971	Arabidopsis translation factor eEF1Bî³ impacts plant development and is associated with heat-induced cytoplasmic foci. Journal of Experimental Botany, 2023, 74, 2585-2602.	2.4	0
1972	Identification of potential immune-related ceRNA Regulatory Network in UVB-irradiated human skin. Biotechnology and Genetic Engineering Reviews, 0, , 1-24.	2.4	0
1973	Plant HEM1 specifies a condensation domain to control immune gene translation. Nature Plants, 2023, 9, 289-301.	4.7	9
1975	Optimization of 5′UTR to evade SARS-CoV-2 Nonstructural protein 1-directed inhibition of protein synthesis in cells. Applied Microbiology and Biotechnology, 2023, 107, 2451-2468.	1.7	2
1976	PRRC2 proteins impact translation initiation by promoting leaky scanning. Nucleic Acids Research, 2023, 51, 3391-3409.	6.5	6
1977	Recognition of \hat{I}^3 -Subunit by \hat{I}^2 -Subunit in Translation Initiation Factor \hat{A}^2 . Stabilization of the GTP-Bound State of I/F \hat{A}^2 in Archaea and Eukaryotes. Biochemistry (Moscow), 2023, 88, 221-230.	0.7	0
1979	Advances and Breakthroughs in IRES-Directed Translation and Replication of Picornaviruses. MBio, 2023, 14, .	1.8	5
1980	The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells, 2023, 12, 990.	1.8	6
1981	$5\hat{a}\in^2$ -tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Frontiers of Medicine, 2023, 17, 476-492.	1.5	4
1982	Inherently Emissive Puromycin Analogues for Live Cell Labelling. Angewandte Chemie, 0, , .	1.6	0
1983	Inherently Emissive Puromycin Analogues for Live Cell Labelling. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
1984	elF3d: A driver of noncanonical cap–dependent translation of specific mRNAs and a trigger of biological/pathological processes. Journal of Biological Chemistry, 2023, 299, 104658.	1.6	4
1985	Translation and mRNA Stability Control. Annual Review of Biochemistry, 2023, 92, 227-245.	5.0	7
1986	Translation Rate Prediction andÂRegulatory Motif Discovery withÂMulti-task Learning. Lecture Notes in Computer Science, 2023, , 139-154.	1.0	1
1987	Principles, mechanisms, and biological implications of translation termination–reinitiation. Rna, 2023, 29, 865-884.	1.6	6
1988	Crystal structure of a highly conserved enteroviral $5\hat{a} \in \mathbb{Z}^2$ cloverleaf RNA replication element. Nature Communications, 2023, 14, .	5.8	6
1990	Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. Rna, 2023, 29, 1051-1068.	1.6	1
1991	ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase byÂcalmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2

#	Article	IF	CITATIONS
1995	Translation Phases in Eukaryotes. Methods in Molecular Biology, 2022, , 217-228.	0.4	7
1997	Role of Bioinformatics in Drug Design and Discovery. , 2023, , 1-33.		O
2029	Regulation and functions of non-m6A mRNA modifications. Nature Reviews Molecular Cell Biology, 2023, 24, 714-731.	16.1	25
2037	Current understanding of proteomics in plants under drought stress conditions. , 2023, , 277-301.		0
2051	Circular RNA vaccine in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3
2069	Post-transcriptional regulation of myeloid cell-mediated inflammatory responses. Advances in Immunology, 2023, , .	1.1	0
2113	Viral RNA Is a Hub for Critical Host–Virus Interactions. Sub-Cellular Biochemistry, 2023, , 365-385.	1.0	0
2114	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	18.7	0
2115	Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Therapy, 0, , .	2.2	0
2116	RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 267-281.	8.2	0
2135	Production of Plant Proteins and Peptides with Pharmacological Potential. Advances in Biochemical Engineering/Biotechnology, 2024, , .	0.6	0