Aptamers as therapeutics

Nature Reviews Drug Discovery 9, 537-550 DOI: 10.1038/nrd3141

Citation Report

#	Article	IF	CITATIONS
3	Intracellular delivery of RNA-based therapeutics using aptamers. Therapeutic Delivery, 2010, 1, 849-861.	1.2	66
4	Immunoassays using polypeptide conjugate binders with tuned affinity. Expert Review of Molecular Diagnostics, 2010, 10, 863-867.	1.5	5
5	Screening and Initial Binding Assessment of Fumonisin B1 Aptamers. International Journal of Molecular Sciences, 2010, 11, 4864-4881.	1.8	131
6	Combinatorial Selection of DNA Thioaptamers Targeted to the HA Binding Domain of Human CD44. Biochemistry, 2010, 49, 9106-9112.	1.2	92
7	Rational Truncation of an RNA Aptamer to Prostate-Specific Membrane Antigen Using Computational Structural Modeling. Nucleic Acid Therapeutics, 2011, 21, 299-314.	2.0	106
8	Synthetic Toxicology: Where Engineering Meets Biology and Toxicology. Toxicological Sciences, 2011, 120, S204-S224.	1.4	26
9	Highly efficient enzymatic synthesis of 3′-deoxyapionucleic acid (apioNA) having the four natural nucleobases. Chemical Communications, 2011, 47, 8700.	2.2	11
10	Enhancing Cell Recognition by Scrutinizing Cell Surfaces with a Nanoparticle Array. Journal of the American Chemical Society, 2011, 133, 680-682.	6.6	63
11	Fabrication of a Highly Sensitive Aptasensor for Potassium with a Nicking Endonuclease-Assisted Signal Amplification Strategy. Analytical Chemistry, 2011, 83, 4085-4089.	3.2	87
12	In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor. Analytical Chemistry, 2011, 83, 7027-7034.	3.2	130
13	Alternative affinity tools: more attractive than antibodies?. Biochemical Journal, 2011, 436, 1-13.	1.7	166
14	Identification of a DNA aptamer that inhibits sclerostin's antagonistic effect on Wnt signalling. Biochemical Journal, 2011, 434, 493-501.	1.7	30
15	Cell-surface sensors for real-time probing of cellular environments. Nature Nanotechnology, 2011, 6, 524-531.	15.6	201
16	Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Aptamer Sensors Using Catalytic Hemin/G-Quadruplexes. ACS Nano, 2011, 5, 7648-7655.	7.3	261
17	Aptamer selection for the detection of <i>Escherichia coli</i> K88. Canadian Journal of Microbiology, 2011, 57, 453-459.	0.8	42
18	Strategies for the discovery of therapeutic aptamers. Expert Opinion on Drug Discovery, 2011, 6, 75-87.	2.5	40
19	Fabrication of Stable and RNase-Resistant RNA Nanoparticles Active in Gearing the Nanomotors for Viral DNA Packaging. ACS Nano, 2011, 5, 237-246.	7.3	95
20	Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 2011, 8, 2101-2141.	2.3	815

ATION REDO

#	Article	IF	CITATIONS
21	Aptamer-Modified Nanodrug Delivery Systems. ACS Nano, 2011, 5, 7696-7699.	7.3	45
22	Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale, 2011, 3, 546-556.	2.8	110
23	Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54, 215-225.	1.9	95
24	Aptamer Binding and Neutralization of 121-Adrenoceptor Autoantibodies: Basics and a Vision of its Future in Cardiomyopathy Treatmentâ [*] † â [*] †This work was supported by the European Regional Development Fund (10141685; Berlin, Germany) and Stiftung Pathobiochemie, Deutsche Gesellschaft für Klinische	2.3	19
25	A Status Update of Modified Oligonucleotides for Chemotherapeutics Applications. Current Protocols in Nucleic Acid Chemistry, 2011, 46, Unit 4.1.1-22.	0.5	44
26	Engineering DNA aptamers for novel analytical and biomedical applications. Chemical Science, 2011, 2, 1003.	3.7	68
27	Cell-Specific Aptamers as Emerging Therapeutics. Journal of Nucleic Acids, 2011, 2011, 1-18.	0.8	79
28	Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood, 2011, 117, 727-735.	0.6	118
29	Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood, 2011, 117, 5514-5522.	0.6	129
30	Oligomeric Nucleic Acids as Antivirals. Molecules, 2011, 16, 1271-1296.	1.7	32
31	Clinical applications of aptamers and nucleic acid therapeutics in haematological malignancies. British Journal of Haematology, 2011, 155, 3-13.	1.2	30
32	Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of inÂvivo efficacy in reversing growth of human breast cancer cells. Surgery, 2011, 150, 224-230.	1.0	45
33	Molecular aptamers for drug delivery. Trends in Biotechnology, 2011, 29, 634-640.	4.9	190
34	New parenteral anticoagulants in development. Therapeutic Advances in Cardiovascular Disease, 2011, 5, 33-59.	1.0	46
35	Aptamer in Bioanalytical Applications. Analytical Chemistry, 2011, 83, 4440-4452.	3.2	693
36	Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opinion on Drug Delivery, 2011, 8, 435-449.	2.4	50
37	Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity. Biosensors and Bioelectronics, 2011, 26, 3464-3468.	5.3	16
38	Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Frontiers of Chemical Science and Engineering, 2011, 5, 275-286.	2.3	11

#	Article	IF	CITATIONS
39	HAPIscreen, a method for high-throughput aptamer identification. Journal of Nanobiotechnology, 2011, 9, 25.	4.2	23
40	Targeted Cell–Cell Interactions by DNA Nanoscaffoldâ€∓emplated Multivalent Bispecific Aptamers. Small, 2011, 7, 1673-1682.	5.2	87
42	Gold Nanoparticles Presenting Hybridized Selfâ€Assembled Aptamers That Exhibit Enhanced Inhibition of Thrombin. Angewandte Chemie - International Edition, 2011, 50, 7660-7665.	7.2	37
43	Exploring the Role of Chirality in Nucleic Acid Recognition. Chemistry and Biodiversity, 2011, 8, 373-413.	1.0	40
44	Synthetic, biofunctional nucleic acid-based molecular devices. Current Opinion in Biotechnology, 2011, 22, 475-484.	3.3	30
45	Polymer therapeutics as nanomedicines: new perspectives. Current Opinion in Biotechnology, 2011, 22, 492-501.	3.3	228
46	Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials, 2011, 32, 2540-2545.	5.7	98
47	Vascular Smooth-Muscle-Cell Activation. International Review of Cell and Molecular Biology, 2011, 288, 43-99.	1.6	39
48	Aptamers as Therapeutics in Cardiovascular Diseases. Current Medicinal Chemistry, 2011, 18, 4169-4174.	1.2	59
49	Nucleic Acid Aptamers Against Proteases. Current Medicinal Chemistry, 2011, 18, 4139-4151.	1.2	23
50	Molecular Imaging with Nucleic Acid Aptamers. Current Medicinal Chemistry, 2011, 18, 4195-4205.	1.2	87
51	Nucleic Acid Aptamers: Clinical Applications and Promising New Horizons. Current Medicinal Chemistry, 2011, 18, 4206-4214.	1.2	266
52	Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 2011, 18, 2086-2102.	1.2	88
53	Tumor-Targeted Drug Delivery with Aptamers. Current Medicinal Chemistry, 2011, 18, 4185-4194.	1.2	104
54	Aptamer-Based Fluorescent Biosensors. Current Medicinal Chemistry, 2011, 18, 4175-4184.	1.2	172
55	Aptamer Therapy for Heart Failure?. Circulation Research, 2011, 109, 982-983.	2.0	8
56	Coupling Aptamers to Short Interfering RNAs as Therapeutics. Pharmaceuticals, 2011, 4, 1434-1449.	1.7	9
57	Methods To Identify Aptamers against Cell Surface Biomarkers. Pharmaceuticals, 2011, 4, 1216-1235.	1.7	62

	CITATION	Report	
#	Article	IF	CITATIONS
58	Bi-specific Aptamers Mediating Tumor Cell Lysis. Journal of Biological Chemistry, 2011, 286, 21896-21905.	1.6	124
60	Locked Nucleic Acid and Aptamers. Nucleic Acid Therapeutics, 2012, 22, 366-370.	2.0	37
61	Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition. Molecular Therapy - Nucleic Acids, 2012, 1, e51.	2.3	28
62	UCLA1, a Synthetic Derivative of a gp120 RNA Aptamer, Inhibits Entry of Human Immunodeficiency Virus Type 1 Subtype C. Journal of Virology, 2012, 86, 4989-4999.	1.5	38
63	Nucleic Acids in Human Glioma Treatment: Innovative Approaches and Recent Results. Journal of Signal Transduction, 2012, 2012, 1-11.	2.0	22
64	Chemical Architecture and Applications of Nucleic Acid Derivatives Containing 1,2,3-Triazole Functionalities Synthesized via Click Chemistry. Molecules, 2012, 17, 12665-12703.	1.7	42
66	Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection. ACS Nano, 2012, 6, 696-704.	7.3	148
67	A General RNA Motif for Cellular Transfection. Molecular Therapy, 2012, 20, 616-624.	3.7	36
68	Advances in binder identification and characterisation: the case of oligonucleotide aptamers. New Biotechnology, 2012, 29, 550-554.	2.4	3
69	The Emerging World of Synthetic Genetics. Chemistry and Biology, 2012, 19, 1360-1371.	6.2	73
70	Challenges and Opportunities in Absorption, Distribution, Metabolism, and Excretion Studies of Therapeutic Biologics. AAPS Journal, 2012, 14, 781-791.	2.2	36
71	Quantitative and sensitive protein detection strategies based on aptamers. Proteomics - Clinical Applications, 2012, 6, 574-580.	0.8	20
72	Aptamers and the next generation of diagnostic reagents. Proteomics - Clinical Applications, 2012, 6, 563-573.	0.8	163
73	Recent advances in luminescent heavy metal complexes for sensing. Coordination Chemistry Reviews, 2012, 256, 3087-3113.	9.5	273
74	Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing. Chemistry and Biology, 2012, 19, 937-954.	6.2	495
75	Following aptamer–ricin specific binding by single molecule recognition and force spectroscopy measurements. Chemical Communications, 2012, 48, 1644-1646.	2.2	29
76	Highly flexible and stable aptamer-caged nanoparticles for control of thrombin activity. RSC Advances, 2012, 2, 1577-1584.	1.7	16
77	Demonstration of a plasmonic thermocycler for the amplification of human androgen receptor DNA. Analyst, The, 2012, 137, 4475.	1.7	38

#	Article	IF	Citations
78	Analyte-Driven Switching of DNA Charge Transport: <i>De Novo</i> Creation of Electronic Sensors for an Early Lung Cancer Biomarker. Journal of the American Chemical Society, 2012, 134, 13823-13833.	6.6	33
79	One round of SELEX for the generation of DNA aptamers directed against KLK6. Biological Chemistry, 2012, 393, 343-353.	1.2	33
80	Nucleic acid aptamers: an emerging frontier in cancer therapy. Chemical Communications, 2012, 48, 10472.	2.2	128
81	RNA Aptamer-Based Functional Ligands of the Neurotrophin Receptor, TrkB. Molecular Pharmacology, 2012, 82, 623-635.	1.0	39
82	Anti-Fab Aptamers for Shielding Virus from Neutralizing Antibodies. Journal of the American Chemical Society, 2012, 134, 17168-17177.	6.6	31
83	Aptamer-based molecular imaging. Protein and Cell, 2012, 3, 739-754.	4.8	20
84	InÂvivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie, 2012, 94, 1595-1606.	1.3	47
85	Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. , 2012, 136, 202-215.		89
86	Structural Investigations on the Antiâ€HIV Gâ€Quadruplexâ€Forming Oligonucleotide TGGGAG and Its Analogues: Evidence for the Presence of an Aâ€Tetrad. ChemBioChem, 2012, 13, 2219-2224.	1.3	23
87	A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiological Reviews, 2012, 92, 897-965.	13.1	928
88	Aptamers and Their Biological Applications. Sensors, 2012, 12, 612-631.	2.1	631
89	Targeting Axl With an High-affinity Inhibitory Aptamer. Molecular Therapy, 2012, 20, 2291-2303.	3.7	138
90	EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine, 2012, 7, 1895-1906.	1.7	112
92	Polyacetal-stilbene conjugates — The first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. Journal of Controlled Release, 2012, 164, 314-322.	4.8	26
93	Targeting chemokine–glycan interactions: the CellJammer® technology platform. Drug Discovery Today: Technologies, 2012, 9, e253-e259.	4.0	6
94	Studies on the mechanism of action of the aptamer BAX499, an Inhibitor of tissue factor pathway inhibitor. Thrombosis Research, 2012, 130, e151-e157.	0.8	22
95	Aptamer-conjugated optical nanomaterials for bioanalysis. TrAC - Trends in Analytical Chemistry, 2012, 39, 72-86.	5.8	49
96	Mapping L1 Ligase Ribozyme Conformational Switch. Journal of Molecular Biology, 2012, 423, 106-122.	2.0	6

#	ARTICLE Aptamer Modified Organic–Inorganic Hybrid Silica Monolithic Capillary Columns for Highly Selective	IF	CITATIONS
97	Recognition of Thrombin. Analytical Chemistry, 2012, 84, 10186-10190.	3.2	81
98	Therapeutic Potential of Aptamer-siRNA Conjugates for Treatment of HIV-1. BioDrugs, 2012, 26, 393-400.	2.2	32
99	Alkynyl Phosphonate DNA: A Versatile "Clickâ€able Backbone for DNA-Based Biological Applications. Journal of the American Chemical Society, 2012, 134, 11618-11631.	6.6	43
100	New anti-HIV aptamers based on tetra-end-linked DNA G-quadruplexes: effect of the base sequence on anti-HIV activity. Chemical Communications, 2012, 48, 9516.	2.2	31
101	pH Sensitive DNA Devices. RSC Biomolecular Sciences, 2012, , 166-189.	0.4	4
102	Electrochemical Techniques as Powerful Readout Methods for Aptamer-based Biosensors. RSC Biomolecular Sciences, 2012, , 211-241.	0.4	3
103	Evolving Concepts of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Disease. Current Atherosclerosis Reports, 2012, 14, 476-483.	2.0	102
104	Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. Journal of the American Chemical Society, 2012, 134, 11876-11879.	6.6	452
105	Rapid Identification of Cell-Specific, Internalizing RNA Aptamers with Bioinformatics Analyses of a Cell-Based Aptamer Selection. PLoS ONE, 2012, 7, e43836.	1.1	103
106	Identification, Characterization and Application of a G-Quadruplex Structured DNA Aptamer against Cancer Biomarker Protein Anterior Gradient Homolog 2. PLoS ONE, 2012, 7, e46393.	1.1	46
107	Development of a Novel DNA Aptamer Ligand Targeting to Primary Cultured Tumor Endothelial Cells by a Cell-Based SELEX Method. PLoS ONE, 2012, 7, e50174.	1.1	36
108	The Effects of <i>α</i> -Lipoic Acid against Testicular Ischemia-Reperfusion Injury in Rats. Scientific World Journal, The, 2012, 2012, 1-8.	0.8	49
109	Challenges and Opportunities for Small Molecule Aptamer Development. Journal of Nucleic Acids, 2012, 2012, 1-20.	0.8	335
110	Development of Anti-VEGF Therapies for Intraocular Use: A Guide for Clinicians. Journal of Ophthalmology, 2012, 2012, 1-13.	0.6	42
111	Current Progress of RNA Aptamer-Based Therapeutics. Frontiers in Genetics, 2012, 3, 234.	1.1	111
113	Nucleic Acid Aptamers for In Vivo Molecular Imaging. , 2012, , .		0
114	Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 2012, 41, 2971.	18.7	1,469
115	Designer Tridentate Mucin 1 Aptamer for Targeted Drug Delivery. Journal of Pharmaceutical Sciences, 2012, 101, 1672-1677.	1.6	15

#	Article	IF	Citations
116	Surface plasmon resonance based biosensor technique: A review. Journal of Biophotonics, 2012, 5, 483-501.	1.1	355
117	Aptamer-Functionalized Nanoparticles for Medical Applications: Challenges and Opportunities. ACS Nano, 2012, 6, 3670-3676.	7.3	149
118	Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst, The, 2012, 137, 1307.	1.7	111
120	Does Chemistry Have a Future in Therapeutic Innovations?. Angewandte Chemie - International Edition, 2012, 51, 8702-8706.	7.2	16
121	Selfâ€Assembled Aptamerâ€Based Drug Carriers for Bispecific Cytotoxicity to Cancer Cells. Chemistry - an Asian Journal, 2012, 7, 1630-1636.	1.7	62
122	Chemical Maturation of a Bivalent Aptamer by Single Domain Variation. ChemBioChem, 2012, 13, 631-634.	1.3	17
123	Development of Anti-Infectives Using Phage Display: Biological Agents against Bacteria, Viruses, and Parasites. Antimicrobial Agents and Chemotherapy, 2012, 56, 4569-4582.	1.4	85
124	Development and Application of Anticancer Nanomedicine. Nanostructure Science and Technology, 2012, , 31-46.	0.1	4
125	RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry and Biology, 2012, 19, 60-71.	6.2	804
126	Enzymatic polymerisation involving 2′-amino-LNA nucleotides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3522-3526.	1.0	12
127	RNA plasticity and selectivity applicable to therapeutics and novel biosensor development. Genes To Cells, 2012, 17, 344-364.	0.5	29
128	A Protease TAMER: a nucleic acid-based anticoagulant. Journal of Thrombosis and Haemostasis, 2012, 10, 867-869.	1.9	0
129	Enzymatic Recognition of 2′â€Modified Ribonucleoside 5′â€Triphosphates: Towards the Evolution of Versatile Aptamers. ChemBioChem, 2012, 13, 19-25.	1.3	51
130	Dual-polarization interferometry for quantification of small molecules using aptamers. Analytical and Bioanalytical Chemistry, 2012, 402, 799-804.	1.9	19
131	Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer. Journal of Drug Targeting, 2013, 21, 739-744.	2.1	39
132	Multivalent DNA Nanospheres for Enhanced Capture of Cancer Cells in Microfluidic Devices. ACS Nano, 2013, 7, 7067-7076.	7.3	207
133	Targeted gene delivery with noncovalent electrostatic conjugates of sgcâ€8c aptamer and polyethylenimine. Journal of Gene Medicine, 2013, 15, 261-269.	1.4	24
134	Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 5288.	2.9	167

#	Article	IF	CITATIONS
135	Aptamer microarray as a novel bioassay for protein–protein interaction discovery and analysis. Biosensors and Bioelectronics, 2013, 42, 248-255.	5.3	15
136	A Calcium Phosphate Nanoparticle-Based Biocarrier for Efficient Cellular Delivery of Antisense Oligodeoxynucleotides. ACS Applied Materials & Interfaces, 2013, 5, 1131-1136.	4.0	23
137	Aptamerâ€Guided Caging for Selective Masking of Protein Domains. Angewandte Chemie - International Edition, 2013, 52, 11912-11915.	7.2	18
138	Quantitative selection and parallel characterization of aptamers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18460-18465.	3.3	115
139	Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 2013, 5, 10702.	2.8	81
140	Investigational anticoagulants for hematological conditions: a new generation of therapies. Expert Opinion on Investigational Drugs, 2013, 22, 1281-1294.	1.9	8
141	Structural basis for discriminatory recognition of <i>Plasmodium</i> lactate dehydrogenase by a DNA aptamer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15967-15972.	3.3	109
142	Thermodynamic Basis for Engineering High-Affinity, High-Specificity Binding-Induced DNA Clamp Nanoswitches. ACS Nano, 2013, 7, 10863-10869.	7.3	58
143	Hairpin ODN-based ligands as potential inhibitors of HMGB1 cytokine activity. RSC Advances, 2013, 3, 12176.	1.7	4
144	Noncanonical Self-Assembly of Multifunctional DNA Nanoflowers for Biomedical Applications. Journal of the American Chemical Society, 2013, 135, 16438-16445.	6.6	357
145	Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine, 2013, 5, 213ra165.	5.8	291
146	Responsive DNAâ€Based Hydrogels and Their Applications. Macromolecular Rapid Communications, 2013, 34, 1271-1283.	2.0	129
147	Advances in pathogen-associated molecules detection using Aptamer based biosensors. Molecular and Cellular Toxicology, 2013, 9, 311-317.	0.8	22
148	Expression of new antigens on tumor cells by inhibiting nonsense-mediated mRNA decay. Immunologic Research, 2013, 57, 44-51.	1.3	15
149	Influence of 2′-Fluoro versus 2′- <i>O</i> -Methyl Substituent on the Sugar Puckering of 4′- <i>C</i> -Aminomethyluridine. Journal of Organic Chemistry, 2013, 78, 9956-9962.	1.7	23
150	Practical Silyl Protection of Ribonucleosides. Organic Letters, 2013, 15, 4710-4713.	2.4	33
151	A polyvalent aptamer system for targeted drug delivery. Biomaterials, 2013, 34, 9728-9735.	5.7	120
152	Biomedically relevant circuitâ€design strategies in mammalian synthetic biology. Molecular Systems Biology, 2013, 9, 691.	3.2	49

#	Article	IF	CITATIONS
153	Synthetically modified Fc domains as building blocks for immunotherapy applications. Chemical Science, 2013, 4, 266-272.	3.7	26
154	Novel Antiplatelet Therapies. , 2013, , 1185-1213.		4
155	Dressed for success – applying chemistry to modulate aptamer functionality. Chemical Science, 2013, 4, 60-67.	3.7	62
156	Recent advances in fluorescent nucleic acid probes for living cell studies. Analyst, The, 2013, 138, 62-71.	1.7	62
157	Opportunity Nox: The Future of NADPH Oxidases as Therapeutic Targets in Cardiovascular Disease. Cardiovascular Therapeutics, 2013, 31, 125-137.	1.1	63
159	DNA Aptamerâ€Mediated Cell Targeting. Angewandte Chemie - International Edition, 2013, 52, 1472-1476.	7.2	137
160	The nuances of new antiplatelet drugs in acute coronary syndrome. Journal of Indian College of Cardiology, 2013, 3, 16-23.	0.1	1
161	Inhibition of Hepatitis C Virus Infection by DNA Aptamer against Envelope Protein. Antimicrobial Agents and Chemotherapy, 2013, 57, 4937-4944.	1.4	37
162	Nanopore Force Spectroscopy of Aptamer–Ligand Complexes. Biophysical Journal, 2013, 105, 1199-1207.	0.2	23
163	A new nucleic acid–based agent inhibits cytotoxic TÂlymphocyte–mediated immune disorders. Journal of Allergy and Clinical Immunology, 2013, 132, 713-722.e11.	1.5	53
164	Functionalization of the 3′â€Ends of DNA and RNA Strands with Nâ€ethylâ€Nâ€coupled Nucleosides: A Promising Approach To Avoid 3′â€Exonucleaseâ€Catalyzed Hydrolysis of Therapeutic Oligonucleotides. ChemBioChem, 2013, 14, 510-520.	1.3	13
165	T-cell-based immunotherapy of autoimmune diseases. Expert Review of Vaccines, 2013, 12, 297-310.	2.0	22
166	Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine, 2013, 8, 449-467.	1.7	206
167	A Colorimetric Aptamer Biosensor Based on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk. Australian Journal of Chemistry, 2013, 66, 485.	0.5	26
168	Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. Analytical Chemistry, 2013, 85, 4141-4149.	3.2	399
169	An Efficient and Faithful in Vitro Replication System for Threose Nucleic Acid. Journal of the American Chemical Society, 2013, 135, 3583-3591.	6.6	82
170	Polymer therapeutics-prospects for 21st century: The end of the beginning. Advanced Drug Delivery Reviews, 2013, 65, 60-70.	6.6	368
171	The application of aptamers in cancer research: an up-to-date review. Future Oncology, 2013, 9, 369-376.	1.1	47

#	Article	IF	CITATIONS
172	Coupling activators for the oligonucleotide synthesis via phosphoramidite approach. Tetrahedron, 2013, 69, 3615-3637.	1.0	32
173	A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in "click chemistry― Polymer Chemistry, 2013, 4, 2989.	1.9	38
174	Nucleic Acid Aptamers as Stabilizers of Proteins: The Stability of Tetanus Toxoid. Pharmaceutical Research, 2013, 30, 1871-1882.	1.7	15
175	Therapeutic RNA aptamers in clinical trials. European Journal of Pharmaceutical Sciences, 2013, 48, 259-271.	1.9	237
176	Liposomes for DNA Nanotechnology: Preparation, Properties, and Applications. , 2013, , 57-76.		2
177	Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nature Biotechnology, 2013, 31, 453-457.	9.4	443
179	Gold Nanotip Array for Ultrasensitive Electrochemical Sensing and Spectroscopic Monitoring. Small, 2013, 9, 2260-2265.	5.2	23
180	Single-nucleotide resolution of RNAs up to 59 nucleotides by high-performance liquid chromatography. Analytical Biochemistry, 2013, 435, 35-43.	1.1	22
181	Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7998-8003.	3.3	495
182	New advances in molecular recognition based on biomolecular scaffolds. Analytical and Bioanalytical Chemistry, 2013, 405, 5679-5685.	1.9	8
183	Colorimetric Sensing of Tetracyclines in Milk Based on the Assembly of Cationic Conjugated Polymer-Aggregated Gold Nanoparticles. Food Analytical Methods, 2013, 6, 1704-1711.	1.3	45
184	Design and synthesis of a nucleoside and a phosphonate analogue constructed on a branched-threo-tetrofuranose skeleton. Tetrahedron Letters, 2013, 54, 3949-3952.	0.7	9
185	Simple DNA-based logic gates responding to biomolecules and metal ions. Chemical Science, 2013, 4, 3366.	3.7	114
186	MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Molecular Pharmaceutics, 2013, 10, 59-68.	2.3	113
187	Current Challenges in Nucleic Acid Synthesis. Israel Journal of Chemistry, 2013, 53, 326-349.	1.0	15
188	Stabilization of bovine insulin against agitation-induced aggregation using RNA aptamers. International Journal of Pharmaceutics, 2013, 452, 257-265.	2.6	10
189	Design and Application of an Easy to Use Oligonucleotide Mass Calculation Program. Journal of the American Society for Mass Spectrometry, 2013, 24, 1315-1318.	1.2	4
190	A Computationally Designed DNA Aptamer Template with Specific Binding to Phosphatidylserine. Nucleic Acid Therapeutics, 2013, 23, 418-426.	2.0	30

#	Article	IF	CITATIONS
191	Duplex–quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2403-2411.	2.5	70
192	Probing high-affinity 11-mer DNA aptamer against Lup an 1 (β-conglutin). Analytical and Bioanalytical Chemistry, 2013, 405, 9343-9349.	1.9	26
193	Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals. Journal of the American Chemical Society, 2013, 135, 13238-13241.	6.6	99
194	Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination. Clinical Cancer Research, 2013, 19, 997-1008.	3.2	161
195	Highly Multiplexed Proteomic Platform for Biomarker Discovery, Diagnostics, and Therapeutics. Advances in Experimental Medicine and Biology, 2013, 735, 283-300.	0.8	58
196	Advances in separation and concentration of microorganisms from food samples. , 2013, , 173-192.		6
197	Unmodified Goldnanoparticles Used as Probes for Detection of Coralyne with poly(A40). Advanced Materials Research, 2013, 788, 136-140.	0.3	2
198	Luminescent and colorimetric strategies for the label-free DNA-based detection of enzyme activity. Briefings in Functional Genomics, 2013, 12, 525-535.	1.3	9
199	Midkine Promotes Neuroblastoma through Notch2 Signaling. Cancer Research, 2013, 73, 1318-1327.	0.4	50
200	Oligonucleotide conjugates for therapeutic applications. Therapeutic Delivery, 2013, 4, 791-809.	1.2	117
201	Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Science and Technology of Advanced Materials, 2013, 14, 044405.	2.8	32
202	Current progress on aptamer-targeted oligonucleotide therapeutics. Therapeutic Delivery, 2013, 4, 1527-1546.	1.2	90
203	Use of Oligonucleotide Aptamer Ligands to Modulate the Function of Immune Receptors. Clinical Cancer Research, 2013, 19, 1054-1062.	3.2	68
204	Methods for Evaluating Cell-Specific, Cell-Internalizing RNA Aptamers. Pharmaceuticals, 2013, 6, 295-319.	1.7	30
205	In vivo SELEX for Identification of Brain-penetrating Aptamers. Molecular Therapy - Nucleic Acids, 2013, 2, e67.	2.3	159
206	Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. FEBS Journal, 2013, 280, 6581-6588.	2.2	44
207	A Novel C5a-neutralizing Mirror-image (l-)Aptamer Prevents Organ Failure and Improves Survival in Experimental Sepsis. Molecular Therapy, 2013, 21, 2236-2246.	3.7	74
208	Hematopoietic Stem and Progenitor Cell Mobilization in Mice and Humans by a First-in-Class Mirror-Image Oligonucleotide Inhibitor of CXCL12. Clinical Pharmacology and Therapeutics, 2013, 94, 150-157.	2.3	71

#	Article	IF	CITATIONS
209	In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. Journal of Experimental Medicine, 2013, 210, 951-968.	4.2	121
214	Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma. Journal of Cancer Therapy, 2013, 04, 872-890.	0.1	18
215	Potential uses of G-quadruplex-forming aptamers. General Physiology and Biophysics, 2013, 32, 149-172.	0.4	36
216	Aptamers: Promising Molecules for Cancer Stem Cell Targeting. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2013, 07, .	0.1	1
217	The Use of Sensitive Chemical Antibodies for Diagnosis: Detection of Low Levels of Epcam in Breast Cancer. PLoS ONE, 2013, 8, e57613.	1.1	40
218	Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor. PLoS ONE, 2013, 8, e75419.	1.1	50
219	DNA Aptamers Selectively Target Leishmania infantum H2A Protein. PLoS ONE, 2013, 8, e78886.	1.1	30
220	Using Aptamers for Cancer Biomarker Discovery. Journal of Nucleic Acids, 2013, 2013, 1-7.	0.8	47
221	Cell-SELEX Aptamer for Highly Specific Radionuclide Molecular Imaging of Glioblastoma In Vivo. PLoS ONE, 2014, 9, e90752.	1.1	55
222	Discovering Aptamers by Cell-SELEX against Human Soluble Growth Factors Ectopically Expressed on Yeast Cell Surface. PLoS ONE, 2014, 9, e93052.	1.1	2
223	Targeted Disruption of β-Arrestin 2-Mediated Signaling Pathways by Aptamer Chimeras Leads to Inhibition of Leukemic Cell Growth. PLoS ONE, 2014, 9, e93441.	1.1	43
224	Designing Anti-Influenza Aptamers: Novel Quantitative Structure Activity Relationship Approach Gives Insights into Aptamer – Virus Interaction. PLoS ONE, 2014, 9, e97696.	1.1	38
225	DNA Aptamer Evolved by Cell-SELEX for Recognition of Prostate Cancer. PLoS ONE, 2014, 9, e100243.	1.1	52
226	Recognition of Bungarus multicinctus Venom by a DNA Aptamer against β-Bungarotoxin. PLoS ONE, 2014, 9, e105404.	1.1	25
227	High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces. Molecules, 2014, 19, 4986-4996.	1.7	12
228	Development and Characterization of a ssDNA-based Aptamer that Selectively Targets Epithelial Carcinoma Cells. Journal of Molecular Biomarkers & Diagnosis, 2014, 05, .	0.4	1
229	Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Therapeutic Delivery, 2014, 5, 1101-1121.	1.2	47
230	Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. Molecular Therapy - Nucleic Acids, 2014, 3, e201.	2.3	412

#	Article	IF	CITATIONS
231	Therapeutic Aptamers March On. Molecular Therapy - Nucleic Acids, 2014, 3, e194.	2.3	12
232	Affinity biosensors for tumor-marker analysis. Bioanalysis, 2014, 6, 3417-3435.	0.6	27
233	New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. Molecular Therapy - Nucleic Acids, 2014, 3, e183.	2.3	140
234	Crosstalk between microRNA30a/b/c/d/e-5p and the Canonical Wnt Pathway: Implications for Multiple Myeloma therapy. Cancer Research, 2014, 74, 5351-5358.	0.4	22
235	Agonistic CD200R1 DNA Aptamers Are Potent Immunosuppressants That Prolong Allogeneic Skin Graft Survival. Molecular Therapy - Nucleic Acids, 2014, 3, e190.	2.3	17
236	Two Interconvertible Folds Modulate the Activity of a DNA Aptamer Against Transferrin Receptor. Molecular Therapy - Nucleic Acids, 2014, 3, e144.	2.3	36
237	Targeted and reversible cancer cell-binding DNA nanoparticles. Nanotechnology Reviews, 2014, 3, .	2.6	1
238	Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX. Molecules and Cells, 2014, 37, 742-746.	1.0	48
239	New Strategies for Evaluation and Analysis of SELEX Experiments. BioMed Research International, 2014, 2014, 1-12.	0.9	19
240	Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics. BioMed Research International, 2014, 2014, 1-13.	0.9	70
241	Aptamers as Both Drugs and Drug-Carriers. BioMed Research International, 2014, 2014, 1-21.	0.9	39
242	Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy. BioMed Research International, 2014, 2014, 1-12.	0.9	90
243	Determining the elastic properties of aptamer-ricin single molecule multiple pathway interactions. Applied Physics Letters, 2014, 104, 193702.	1.5	5
244	Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. Biochemical Journal, 2014, 462, 153-162.	1.7	23
245	Myelin Basic Protein and a Multiple Sclerosis-related MBP-peptide Bind to Oligonucleotides. Molecular Therapy - Nucleic Acids, 2014, 3, e192.	2.3	19
246	Silica Nanowire Arrays for Diffractionâ€Based Bioaffinity Sensing. Chemistry - A European Journal, 2014, 20, 10802-10810.	1.7	8
247	Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue. Organic and Biomolecular Chemistry, 2014, 12, 5235-5242.	1.5	27
248	The Current and Future Role of Aptamers in Electroanalysis. Journal of the Electrochemical Society, 2014, 161, H301-H313.	1.3	50

#	Article	IF	CITATIONS
249	Thermophoresis in Nanoliter Droplets to Quantify Aptamer Binding. Angewandte Chemie - International Edition, 2014, 53, 7948-7951.	7.2	20
250	Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Medicine, 2014, 3, 825-834.	1.3	22
251	Devices and approaches for generating specific high-affinity nucleic acid aptamers. Applied Physics Reviews, 2014, 1, 031103.	5.5	8
252	Nucleic Acid Aptamers Stabilize Proteins Against Different Types of Stress Conditions. Journal of Pharmaceutical Sciences, 2014, 103, 100-106.	1.6	11
254	Synthetic Aptamer-Polymer Hybrid Constructs for Programmed Drug Delivery into Specific Target Cells. Journal of the American Chemical Society, 2014, 136, 15010-15015.	6.6	110
255	Fluorescent Biosensors: Design and Application to Motor Proteins. Exs, 2014, 105, 25-47.	1.4	17
256	A clinically useful approach to enhance immunological memory and antitumor immunity. Oncolmmunology, 2014, 3, e28811.	2.1	4
257	Aptamer technology for tracking cells' status & function. Molecular and Cellular Therapies, 2014, 2, 33.	0.2	20
258	Enzymatic Fabrication of Highâ€Density RNA Arrays. Angewandte Chemie - International Edition, 2014, 53, 13514-13517.	7.2	24
260	Inhibition of Hepatitis C Virus Infection by DNA Aptamer against NS2 Protein. PLoS ONE, 2014, 9, e90333.	1.1	23
261	Clinical applications of nucleic acid aptamers in cancer. Molecular and Clinical Oncology, 2014, 2, 341-348.	0.4	74
262	Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor. Journal of Biological Chemistry, 2014, 289, 8706-8719.	1.6	128
263	Polymer therapeutics: Top 10 selling pharmaceuticals — What next?. Journal of Controlled Release, 2014, 190, 371-380.	4.8	147
264	"Programmed packaging―for gene delivery. Journal of Controlled Release, 2014, 193, 316-323.	4.8	20
265	Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Mikrochimica Acta, 2014, 181, 321-327.	2.5	28
266	Pathological implications of nucleic acid interactions with proteins associated with neurodegenerative diseases. Biophysical Reviews, 2014, 6, 97-110.	1.5	30
267	Inhibition of hepatitis C virus infection by NS5A-specific aptamer. Antiviral Research, 2014, 106, 116-124.	1.9	21
268	Aptamer imaging with Cu-64 labeled AS1411: Preliminary assessment in lung cancer. Nuclear Medicine and Biology, 2014, 41, 179-185.	0.3	61

#	Article	IF	CITATIONS
269	DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 60-72.	0.3	9
270	Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discovery Today, 2014, 19, 1309-1321.	3.2	33
272	Targeting kallikrein-related peptidases in prostate cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 365-383.	1.5	25
273	An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates. Rna, 2014, 20, 447-461.	1.6	28
274	Particle Display: A Quantitative Screening Method for Generating Highâ€Affinity Aptamers. Angewandte Chemie - International Edition, 2014, 53, 4796-4801.	7.2	96
275	Oligonucleotide-based therapy for neurodegenerative diseases. Brain Research, 2014, 1584, 116-128.	1.1	34
276	Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFRÎ ² Aptamer. Molecular Therapy, 2014, 22, 828-841.	3.7	118
277	DNA aptamer technology for personalized medicine. Current Opinion in Chemical Engineering, 2014, 4, 79-87.	3.8	49
278	Near-Infrared Fluorescence Imaging Probes for Cancer Diagnosis and Treatment. , 2014, , 55-67.		5
279	Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 2014, 837, 1-15.	2.6	317
280	Aptamer Against Mannose-capped Lipoarabinomannan Inhibits Virulent Mycobacterium tuberculosis Infection in Mice and Rhesus Monkeys. Molecular Therapy, 2014, 22, 940-951.	3.7	60
281	Graphene- and aptamer-based electrochemical biosensor. Nanotechnology, 2014, 25, 205501.	1.3	32
282	Inhibition of Hepatitis C Virus Production by Aptamers against the Core Protein. Journal of Virology, 2014, 88, 1990-1999.	1.5	39
283	A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control, 2014, 37, 188-192.	2.8	60
284	Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66, 2-25.	6.6	2,275
285	Vectors for the delivery of radiopharmaceuticals in cancer therapeutics. Therapeutic Delivery, 2014, 5, 893-912.	1.2	2
286	A Theranostic "SMART―Aptamer for Targeted Therapy of Prostate Cancer. Molecular Therapy, 2014, 22, 1886-1888.	3.7	15
287	Aptamer photoregulation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17099-17103.	3.3	56

#	Article	IF	CITATIONS
288	Trigger of autoimmune diseases (SLE): Identification of LINE transposition based novel therapeutic molecular targets. Medical Hypotheses, 2014, 83, 825-831.	0.8	0
289	Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications, 2014, 50, 10513-10516.	2.2	86
290	Affinity-Based Drug Delivery Systems for Tissue Repair and Regeneration. Biomacromolecules, 2014, 15, 3867-3880.	2.6	106
291	Vesicular aptasensor for the detection of thrombin. Chemical Communications, 2014, 50, 12665-12668.	2.2	13
292	Aptamers in immunological research. Immunology Letters, 2014, 162, 252-255.	1.1	24
293	Improved nuclear delivery of antisense 2'â€Ome RNA by conjugation with the histidineâ€rich peptide H5WYG. Journal of Gene Medicine, 2014, 16, 157-165.	1.4	10
294	Aptamer-targeted Antigen Delivery. Molecular Therapy, 2014, 22, 1375-1387.	3.7	58
295	Nucleic acid therapeutics: basic concepts and recent developments. RSC Advances, 2014, 4, 16618.	1.7	73
296	Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. Molecular Therapy - Nucleic Acids, 2014, 3, e169.	2.3	201
297	Targeted Inhibition of Prostate Cancer Metastases with an RNA Aptamer to Prostate-specific Membrane Antigen. Molecular Therapy, 2014, 22, 1910-1922.	3.7	91
298	A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environmental Sciences: Processes and Impacts, 2014, 16, 1379-1386.	1.7	51
299	A DNA aptamer to c-Met inhibits cancer cell migration. Chemical Communications, 2014, 50, 13131-13134.	2.2	81
300	Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine, 2014, 9, 1499-1515.	1.7	39
301	Electronic tuning of fluorescent 8-aryl-guanine probes for monitoring DNA duplex–quadruplex exchange. Chemical Science, 2014, 5, 788-796.	3.7	28
302	Antisense oligonucleotides: modifications and clinical trials. MedChemComm, 2014, 5, 1454-1471.	3.5	165
303	Microfluidic approaches to rapid and efficient aptamer selection. Biomicrofluidics, 2014, 8, 041501.	1.2	36
304	Determination of minimal sequence for binding of an aptamer. A comparison of truncation and hybridization inhibition methods. RSC Advances, 2014, 4, 47227-47233.	1.7	51
305	Highly Sensitive and Homogeneous Detection of Membrane Protein on a Single Living Cell by Aptamer and Nicking Enzyme Assisted Signal Amplification Based on Microfluidic Droplets. Analytical Chemistry, 2014, 86, 5101-5107.	3.2	92

#	Article	IF	CITATIONS
306	Synthesis and properties of oligonucleotides modified with 2′-O-(2-carboxyethyl)nucleotides and their carbamoyl derivatives. Organic and Biomolecular Chemistry, 2014, 12, 6457.	1.5	10
307	Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform. Analytical Chemistry, 2014, 86, 3273-3278.	3.2	103
308	Aptamers as Drug Delivery Vehicles. ChemMedChem, 2014, 9, 1998-2011.	1.6	50
309	Facile one-pot synthesis of a aptamer-based organic–silica hybrid monolithic capillary column by "thiol–ene―click chemistry for detection of enantiomers of chemotherapeutic anthracyclines. Analyst, The, 2014, 139, 4940-4946.	1.7	41
310	Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nature Chemistry, 2014, 6, 1003-1008.	6.6	118
311	An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab on A Chip, 2014, 14, 4017-4028.	3.1	75
313	Neutralization of pathogenic beta1-receptor autoantibodies by aptamers in vivo: the first successful proof of principle in spontaneously hypertensive rats. Molecular and Cellular Biochemistry, 2014, 393, 177-180.	1.4	21
314	Comprehensive analysis of RNA-protein interactions by high-throughput sequencing–RNA affinity profiling. Nature Methods, 2014, 11, 683-688.	9.0	124
315	Exact tailoring of an ATP controlled streptavidin binding aptamer. RSC Advances, 2014, 4, 15111.	1.7	5
316	Fishing for fire: strategies for biological targeting and criteria for material design in antiâ€inflammatory therapies. Polymers for Advanced Technologies, 2014, 25, 478-498.	1.6	29
317	Target-Induced Conjunction of Split Aptamer Fragments and Assembly with a Water-Soluble Conjugated Polymer for Improved Protein Detection. ACS Applied Materials & Interfaces, 2014, 6, 3406-3412.	4.0	44
318	Monoclonal Surface Display SELEX for Simple, Rapid, Efficient, and Cost-Effective Aptamer Enrichment and Identification. Analytical Chemistry, 2014, 86, 5881-5888.	3.2	70
319	First report of in vitro selection of RNA aptamers targeted to recombinant Loxosceles laeta spider toxins. Biological Research, 2014, 47, 2.	1.5	10
320	Aptaligner: Automated Software for Aligning Pseudorandom DNA X-Aptamers from Next-Generation Sequencing Data. Biochemistry, 2014, 53, 3523-3525.	1.2	19
321	Nucleic Acid Aptamers for Living Cell Analysis. Annual Review of Analytical Chemistry, 2014, 7, 405-426.	2.8	24
322	Aptamers and SELEX in Chemistry & amp; Biology. Chemistry and Biology, 2014, 21, 1055-1058.	6.2	90
323	DNA aptamer-based surface plasmon resonance sensing of human C-reactive protein. RSC Advances, 2014, 4, 30934-30937.	1.7	38
324	Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. Biosensors and Bioelectronics, 2014, 57, 262-268.	5.3	87

#	Article	IF	CITATIONS
325	Probing the Force-Induced Dissociation of Aptamer-Protein Complexes. Analytical Chemistry, 2014, 86, 3084-3091.	3.2	17
326	Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8. Biomaterials, 2014, 35, 578-589.	5 . 7	37
327	High-performance liquid chromatography purification of chemically modified RNA aptamers. Analytical Biochemistry, 2014, 449, 106-108.	1.1	9
328	An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosensors and Bioelectronics, 2014, 55, 149-156.	5.3	138
329	A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. Biosensors and Bioelectronics, 2014, 56, 71-76.	5.3	70
330	DNA-Aptamer Targeting Vimentin for Tumor Therapy <i>In Vivo</i> . Nucleic Acid Therapeutics, 2014, 24, 160-170.	2.0	51
331	Grafting Aptamers onto Gold Nanostars Increases <i>in Vitro</i> Efficacy in a Wide Range of Cancer Cell Types. Molecular Pharmaceutics, 2014, 11, 580-587.	2.3	78
332	Multivalent comb-type aptamer–siRNA conjugates for efficient and selective intracellular delivery. Chemical Communications, 2014, 50, 6765.	2.2	46
333	A rational approach for generating cardiac troponin I selective Spiegelmers. Chemical Communications, 2014, 50, 6801-6804.	2.2	16
334	Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials, 2014, 35, 6998-7007.	5.7	74
335	Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Organic and Biomolecular Chemistry, 2014, 12, 4776.	1.5	92
336	DNAâ€Scaffolded Multivalent Ligands to Modulate Cell Function. ChemBioChem, 2014, 15, 1268-1273.	1.3	43
337	An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials, 2014, 35, 7110-7120.	5.7	62
338	The use of hairpin DNA duplexes as HIV-1 fusion inhibitors: Synthesis, characterization, and activity evaluation. European Journal of Medicinal Chemistry, 2014, 82, 341-346.	2.6	6
339	DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochemical and Biophysical Research Communications, 2014, 444, 433-438.	1.0	38
340	Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry, 2014, 2, 69.	1.8	116
341	Selection of an Aptamer against Mouse GP2 by SELEX. Cell Structure and Function, 2014, 39, 23-29.	0.5	8
343	Liposomal Nanomedicines. Frontiers in Nanobiomedical Research, 2014, , 1-53.	0.1	2

#	Article	IF	CITATIONS
344	Neurons and TÂcells: Understanding this interaction for inflammatory neurological diseases. European Journal of Immunology, 2015, 45, 2712-2720.	1.6	24
345	Rupture of DNA aptamer: New insights from simulations. Journal of Chemical Physics, 2015, 143, 164902.	1.2	4
346	A Drosera-bioinspired hydrogel for catching and killing cancer cells. Scientific Reports, 2015, 5, 14297.	1.6	24
347	Rheostatic Regulation of the SERCA/Phospholamban Membrane Protein Complex Using Non-Coding RNA and Single-Stranded DNA oligonucleotides. Scientific Reports, 2015, 5, 13000.	1.6	8
348	RNA aptamer as potential antidote against botulism: an in vivo report. Botulinum Journal, 2015, 3, 41.	0.2	2
349	Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity. Scientific Reports, 2015, 5, 10757.	1.6	48
350	antaRNA – Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization. BMC Bioinformatics, 2015, 16, 389.	1.2	19
351	Nextâ€Generation Sequencing as Input for Chemometrics in Differential Sensing Routines. Angewandte Chemie - International Edition, 2015, 54, 6339-6342.	7.2	5
353	Bioorthogonal SERS Nanoprobes for Mulitplex Spectroscopic Detection, Tumor Cell Targeting, and Tissue Imaging. Chemistry - A European Journal, 2015, 21, 12914-12918.	1.7	32
354	Selection of cholesterol esterase aptamers using a dualâ€partitioning approach. Electrophoresis, 2015, 36, 2616-2621.	1.3	10
356	A Versatile Approach Towards Nucleobaseâ€Modified Aptamers. Angewandte Chemie - International Edition, 2015, 54, 10971-10974.	7.2	129
357	Nucleic Acids Delivery Systems: A Challenge for Pharmaceutical Technologists. Current Drug Metabolism, 2015, 16, 3-16.	0.7	29
358	Therapeutic aptamers: developmental potential as anticancer drugs. BMB Reports, 2015, 48, 234-237.	1.1	49
359	Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. International Journal of Nanomedicine, 2015, 10, 2537.	3.3	75
360	Aptamers and Their Significant Role in Cancer Therapy and Diagnosis. Biomedicines, 2015, 3, 248-269.	1.4	28
361	Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules, 2015, 20, 6866-6887.	1.7	111
362	Generation of Aptamers with an Expanded Chemical Repertoire. Molecules, 2015, 20, 16643-16671.	1.7	93
363	DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules, 2015, 20, 20979-20997.	1.7	95

#	Article	IF	CITATIONS
364	Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines, 2015, 3, 771-802.	2.1	11
365	Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites. PLoS ONE, 2015, 10, e0119207.	1.1	19
366	Use of a Conformational Switching Aptamer for Rapid and Specific Ex Vivo Identification of Central Nervous System Lymphoma in a Xenograft Model. PLoS ONE, 2015, 10, e0123607.	1.1	16
367	A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy. PLoS ONE, 2015, 10, e0136673.	1.1	70
368	Molecular and Functional Characterization of ssDNA Aptamers that Specifically Bind Leishmania infantum PABP. PLoS ONE, 2015, 10, e0140048.	1.1	25
369	Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model. PLoS ONE, 2015, 10, e0140733.	1.1	27
370	Aptamers Binding to c-Met Inhibiting Tumor Cell Migration. PLoS ONE, 2015, 10, e0142412.	1.1	16
371	A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules, 2015, 20, 11959-11980.	1.7	246
372	Targeting Th17 Cells with Small Molecules and Small Interference RNA. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	15
373	Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget, 2015, 6, 37570-37587.	0.8	49
374	Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chemical Science, 2015, 6, 4284-4290.	3.7	165
375	Nuclease-resistant synthetic drug-DNA adducts: programmable drug-DNA conjugation for targeted anticancer drug delivery. NPG Asia Materials, 2015, 7, e169-e169.	3.8	34
376	Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathogens and Disease, 2015, 73, ftv034.	0.8	30
377	Targeting the PD-1/PD-L1 Immune Evasion Axis With DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers. Molecular Therapy - Nucleic Acids, 2015, 4, e237.	2.3	106
378	Biofunction-assisted aptasensors based on ligand-dependent 3′ processing of a suppressor tRNA in a wheat germ extract. Organic and Biomolecular Chemistry, 2015, 13, 6681-6685.	1.5	6
379	Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX. Scientific Reports, 2015, 5, 10326.	1.6	53
380	Structure-Switching Aptamer Triggering Hybridization Chain Reaction on the Cell Surface for Activatable Theranostics. Analytical Chemistry, 2015, 87, 6470-6474.	3.2	108
381	Safety evaluation of intravenously administered mono-thioated aptamer against E-selectin in mice. Toxicology and Applied Pharmacology, 2015, 287, 86-92.	1.3	13

#	Article	IF	CITATIONS
382	Multifunctional Envelope-Type Nano Device: Evolution from Nonselective to Active Targeting System. Bioconjugate Chemistry, 2015, 26, 1266-1276.	1.8	13
383	Arresting the Colonial Destiny of Metastatic Seeds with DNA Aptamers. Molecular Therapy, 2015, 23, 982-984.	3.7	1
384	Selection of DNA aptamers against Human Cardiac Troponin I for colorimetric sensor based dot blot application. Journal of Biotechnology, 2015, 208, 80-86.	1.9	61
385	Controlling ligand density on nanoparticles as a means to enhance biological activity. Nanomedicine, 2015, 10, 177-180.	1.7	12
386	Aptamers-Guided DNA Nanomedicine for Cancer Theranostics. , 2015, , 111-137.		0
387	Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors and Actuators B: Chemical, 2015, 220, 369-375.	4.0	58
389	Nanocarriers targeting cancer stem cells: how to help drugs to find their way home. Nanomedicine, 2015, 10, 1043-1046.	1.7	0
390	Cytotoxicity of guanine-based degradation products contributes to the antiproliferative activity of guanine-rich oligonucleotides. Chemical Science, 2015, 6, 3831-3838.	3.7	37
391	Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease. Nucleic Acid Therapeutics, 2015, 25, 173-179.	2.0	26
392	Influence of 5-N-carboxamide modifications on the thermodynamic stability of oligonucleotides. Nucleic Acids Research, 2015, 43, 9107-9122.	6.5	14
393	Characterisation of aptamer–target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Research, 2015, 43, gkv700.	6.5	35
394	Antibody―and aptamerâ€strategies for Gv <scp>HD</scp> prevention. Journal of Cellular and Molecular Medicine, 2015, 19, 11-20.	1.6	7
395	DNA Aptamer Assembly as a Vascular Endothelial Growth Factor Receptor Agonist. Nucleic Acid Therapeutics, 2015, 25, 227-234.	2.0	49
396	Aptamers Selected by Cell-SELEX for Molecular Imaging. Journal of Molecular Evolution, 2015, 81, 162-171.	0.8	17
397	Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opinion on Biological Therapy, 2015, 15, 1023-1048.	1.4	38
398	Quantitative PCR Analysis of DNA Aptamer Pharmacokinetics in Mice. Nucleic Acid Therapeutics, 2015, 25, 11-19.	2.0	22
399	Magnetic Resonance Imaging of Tumor with a Self-Traceable Phosphorylcholine Polymer. Journal of the American Chemical Society, 2015, 137, 799-806.	6.6	16
400	Nucleic acid aptamers in cancer research, diagnosis and therapy. Chemical Society Reviews, 2015, 44, 1240-1256.	18.7	217

#	Article	IF	CITATIONS
401	Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. European Neuropsychopharmacology, 2015, 25, 599-656.	0.3	113
402	Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chemical Reviews, 2015, 115, 2045-2108.	23.0	273
403	Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nature Medicine, 2015, 21, 288-294.	15.2	253
404	Cancer stem cells and mesenchymal stem cells in the hypoxic tumor niche: Two different targets for one only drug. Medical Hypotheses, 2015, 84, 227-230.	0.8	1
405	Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. Journal of Controlled Release, 2015, 203, 1-15.	4.8	240
406	Bioconjugates for targeted delivery of therapeutic oligonucleotides. Advanced Drug Delivery Reviews, 2015, 87, 81-89.	6.6	66
407	Evaluation of the formation of a junctional DNA nanostructure through annealing curve analysis. Biochemical and Biophysical Research Communications, 2015, 457, 542-546.	1.0	3
409	Using DNA Aptamer Probe for Immunostaining of Cancer Frozen Tissues. Analytical Chemistry, 2015, 87, 1919-1924.	3.2	44
410	Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Advances, 2015, 5, 11724-11732.	1.7	17
411	Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Research, 2015, 8, 201-218.	5.8	75
412	Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene, 2015, 34, 5216-5228.	2.6	33
413	Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor. Journal of the American Chemical Society, 2015, 137, 982-989.	6.6	163
414	Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell Research, 2015, 25, 390-393.	5.7	51
415	Reducing toxicity of 4–1BB costimulation: targeting 4–1BB ligands to the tumor stroma with bi-specific aptamer conjugates. Oncolmmunology, 2015, 4, e970918.	2.1	17
416	Engineering DNA scaffolds for delivery of anticancer therapeutics. Biomaterials Science, 2015, 3, 1018-1024.	2.6	57
417	Aptamer Selection Technology and Recent Advances. Molecular Therapy - Nucleic Acids, 2015, 4, e223.	2.3	250
418	Selection of LNA-containing DNA aptamers against recombinant human CD73. Molecular BioSystems, 2015, 11, 1260-1270.	2.9	34
419	Targeted gold nanoshells. , 2015, , 267-290.		5

#	ARTICLE	IF	CITATIONS
420	Applications of aptamers for chemistry analysis, medicine and food security. Science China Chemistry, 2015, 58, 1122-1130.	4.2	57
421	Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomaterials Science, 2015, 3, 1253-1265.	2.6	18
422	Aptamer–Drug Conjugates. Bioconjugate Chemistry, 2015, 26, 2186-2197.	1.8	172
423	Fluorescence anisotropy (polarization): from drug screening to precision medicine. Expert Opinion on Drug Discovery, 2015, 10, 1145-1161.	2.5	56
424	Comprehensive Analytical Comparison of Strategies Used for Small Molecule Aptamer Evaluation. Analytical Chemistry, 2015, 87, 8608-8612.	3.2	139
425	Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosensors and Bioelectronics, 2015, 74, 491-497.	5.3	155
426	High Sensitivity, High Selectivity SERS Detection of MnSOD Using Optical Nanoantennas Functionalized with Aptamers. Journal of Physical Chemistry C, 2015, 119, 15532-15540.	1.5	68
427	Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2. Nature Communications, 2015, 6, 6923.	5.8	77
428	A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nano-peroxidase-polymer. Analytical Methods, 2015, 7, 6528-6536.	1.3	18
429	Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System. ACS Applied Materials & Interfaces, 2015, 7, 16458-16465.	4.0	44
430	Oligonucleotide aptamers: emerging affinity probes for bioanalytical mass spectrometry and biomarker discovery. Analytical Methods, 2015, 7, 7416-7430.	1.3	8
431	The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine, 2015, 10, 1863-1879.	1.7	47
432	The Clinical Application of Aptamers: Future Challenges and Prospects. , 2015, , 339-352.		1
433	Self-Assembled Hybrid Aptamer-Fc Conjugates for Targeted Delivery: A Modular Chemoenzymatic Approach. ACS Chemical Biology, 2015, 10, 2158-2165.	1.6	27
434	Conformational structure-dependent molecular recognition of two aptamers for tetracycline. RSC Advances, 2015, 5, 53796-53801.	1.7	26
435	Aptamer-Conjugated Polymeric Nanoparticles for the Detection of Cancer Cells through "Turn-On― Retro-Self-Quenched Fluorescence. Analytical Chemistry, 2015, 87, 4925-4932.	3.2	35
436	Type 2 Diabetes Mellitus: Limitations of Conventional Therapies and Intervention with Nucleic Acid-Based Therapeutics. Chemical Reviews, 2015, 115, 4719-4743.	23.0	62
437	Adipo8, a high-affinity DNA aptamer, can differentiate among adipocytes and inhibit intracellular lipid accumulation in vitro. Science China Chemistry, 2015, 58, 1612-1620.	4.2	11

#	Article	IF	CITATIONS
438	Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 2015, 115, 11043-11078.	23.0	495
439	Affinity of aptamers binding 33-mer gliadin peptide and gluten proteins: Influence of immobilization and labeling tags. Analytica Chimica Acta, 2015, 873, 63-70.	2.6	31
440	Smart functional nucleic acid chimeras: Enabling tissue specific RNA targeting therapy. RNA Biology, 2015, 12, 412-425.	1.5	32
441	Targeting VEGF with LNA-stabilized G-rich oligonucleotide for efficient breast cancer inhibition. Chemical Communications, 2015, 51, 9499-9502.	2.2	48
442	Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Advances, 2015, 5, 22256-22282.	1.7	90
443	Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 2015, 7, 11930-11938.	4.0	44
444	Aptamer-Based Hydrogels and Their Applications. , 2015, , 163-195.		2
445	Kallikrein-related peptidases targeted therapies in prostate cancer: perspectives and challenges. Expert Opinion on Investigational Drugs, 2015, 24, 929-947.	1.9	10
446	Status and Prospects of Aptamers as Drug Components. BioDrugs, 2015, 29, 151-165.	2.2	9
447	Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomaterials Science and Engineering, 2015, 1, 201-217.	2.6	146
448	A Trojan Horse for Human Immunodeficiency Virus. Chemistry and Biology, 2015, 22, 313-314.	6.2	3
449	Aptamer–siRNA Chimeras for HIV. Advances in Experimental Medicine and Biology, 2015, 848, 211-234.	0.8	28
450	Cross-Protection of Influenza A Virus Infection by a DNA Aptamer Targeting the PA Endonuclease Domain. Antimicrobial Agents and Chemotherapy, 2015, 59, 4082-4093.	1.4	38
451	Silica Microcapsules for Longâ€Term, Robust, and Reliable Room Temperature RNA Preservation. Advanced Healthcare Materials, 2015, 4, 1332-1338.	3.9	17
452	MUC1 as a Potential Target in Anticancer Therapies. American Journal of Clinical Oncology: Cancer Clinical Trials, 2015, 38, 108-118.	0.6	54
453	Magnetic-EpCAM nanoprobe as a new platform for efficient targeting, isolating and imaging hepatocellular carcinoma. RSC Advances, 2015, 5, 30687-30693.	1.7	9
454	Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Research, 2015, 8, 3447-3460.	5.8	95
455	APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics, 2016, 32, 161-164.	1.8	55

#	Article	IF	CITATIONS
456	Modulation of the Coagulation Cascade Using Aptamers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2083-2091.	1.1	42
457	Modern affinity reagents: Recombinant antibodies and aptamers. Biotechnology Advances, 2015, 33, 1787-1798.	6.0	106
458	Gene Knockdown by EpCAM Aptamer–siRNA Chimeras Suppresses Epithelial Breast Cancers and Their Tumor-Initiating Cells. Molecular Cancer Therapeutics, 2015, 14, 2279-2291.	1.9	66
459	Therapeutic oligonucleotides with polyethylene glycol modifications. Future Medicinal Chemistry, 2015, 7, 1721-1731.	1.1	24
460	Surface engineering of macrophages with nucleic acid aptamers for the capture of circulating tumor cells. Chemical Communications, 2015, 51, 17428-17430.	2.2	24
461	A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Applied Microbiology and Biotechnology, 2015, 99, 9791-9803.	1.7	21
462	Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. Molecular Therapy, 2015, 23, 1912-1926.	3.7	34
463	Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells. Molecular Therapy - Nucleic Acids, 2015, 4, e235.	2.3	67
464	Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(<scp>iii</scp>) complex. Chemical Communications, 2015, 51, 16033-16036.	2.2	49
465	Aptamer-conjugated magnetic nanoparticles for the efficient removal of HCV particles from human plasma samples. RSC Advances, 2015, 5, 79433-79439.	1.7	24
466	An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Mikrochimica Acta, 2015, 182, 2551-2559.	2.5	27
467	DNA nanotechnology from the test tube to the cell. Nature Nanotechnology, 2015, 10, 748-760.	15.6	501
468	Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Research, 2015, 43, 7702-7716.	6.5	42
469	Promising approaches to circumvent the blood–brain barrier: progress, pitfalls and clinical prospects in brain cancer. Therapeutic Delivery, 2015, 6, 989-1016.	1.2	48
470	Methods and Assays for Specific Targeting and Delivery of RNA Nanoparticles to Cancer Metastases. Methods in Molecular Biology, 2015, 1297, 121-135.	0.4	3
471	Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery. Cancer Immunology Research, 2015, 3, 1195-1200.	1.6	31
472	Selective Lighting Up of Epiberberine Alkaloid Fluorescence by Fluorophore-Switching Aptamer and Stoichiometric Targeting of Human Telomeric DNA G-Quadruplex Multimer. Analytical Chemistry, 2015, 87, 730-737.	3.2	51
473	Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discovery Today, 2015, 20, 147-155.	3.2	200

	CHANG	IN REPORT	
#	Article	IF	CITATIONS
474	Recent progress on DNA based walkers. Current Opinion in Biotechnology, 2015, 34, 56-64.	3.3	127
475	Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Delivery and Translational Research, 2015, 5, 168-186.	3.0	41
476	Functionalizing Liposomes with anti-CD44 Aptamer for Selective Targeting of Cancer Cells. Bioconjugate Chemistry, 2015, 26, 1307-1313.	1.8	145
477	Post-synthesis DNA modifications using a trans-cyclooctene click handle. Organic and Biomolecular Chemistry, 2015, 13, 909-915.	1.5	31
478	Highly stable aptamers selected from a 2′-fully modified fGmH RNA library for targeting biomaterials. Biomaterials, 2015, 36, 110-123.	5.7	38
479	Nucleic Acid Aptamerâ€Mediated Drug Delivery for Targeted Cancer Therapy. ChemMedChem, 2015, 10, 39-45.	1.6	66
480	Aptamers Facilitating Amplified Detection of Biomolecules. Analytical Chemistry, 2015, 87, 274-292.	3.2	176
481	An Aptamer to the MAP Kinase Insert Region. ACS Chemical Biology, 2015, 10, 320-327.	1.6	5
482	Hairpin oligonucleotides forming G-quadruplexes: New aptamers with anti-HIV activity. European Journal of Medicinal Chemistry, 2015, 89, 51-58.	2.6	27
483	Aptamers in Therapeutics. Journal of Clinical and Diagnostic Research JCDR, 2016, 10, BE01-6.	0.8	39
484	Tumor-targeted costimulation by using bi-specific aptamers. Cancer Cell & Microenvironment, 2016, 3, e1333.	0.8	1
485	Aptamers: A Feasible Technology in Cancer Immunotherapy. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	26
486	DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins, 2016, 8, 66.	1.5	24
487	Nano-Engineered Biomaterials for Tissue Regeneration: What Has Been Achieved So Far?. Frontiers in Materials, 2016, 3, .	1.2	44
488	Monitoring Intact Viruses Using Aptamers. Biosensors, 2016, 6, 40.	2.3	30
489	Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics, 2016, 6, 43.	1.3	101
490	Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers. International Journal of Molecular Sciences, 2016, 17, 358.	1.8	50
491	A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery. International Journal of Molecular Sciences, 2016, 17, 380.	1.8	56

#	Article	IF	Citations
492	A Mini-Review for Cancer Immunotherapy: Molecular Understanding of PD-1/PD-L1 Pathway & Translational Blockade of Immune Checkpoints. International Journal of Molecular Sciences, 2016, 17, 1151.	1.8	134
493	Introduction to Nanomedicine. Molecules, 2016, 21, 4.	1.7	24
494	Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer. Pharmaceuticals, 2016, 9, 29.	1.7	47
495	Aptamer-Mediated Targeted Delivery of Therapeutics: An Update. Pharmaceuticals, 2016, 9, 69.	1.7	98
496	Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals, 2016, 9, 78.	1.7	61
497	Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes. BMC Bioinformatics, 2016, 17, 225.	1.2	35
498	Isolation of an Aptamer that Binds Specifically to E. coli. PLoS ONE, 2016, 11, e0153637.	1.1	53
499	Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14. PLoS ONE, 2016, 11, e0160822.	1.1	38
500	Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget, 2016, 7, 44821-44840.	0.8	63
501	Progress in graphene-based optical and electrochemical aptasensors. , 2016, , 393-431.		2
502	Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for <i> In Vivo</i> Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics, 2016, 6, 470-484.	4.6	184
503	Bone site-specific delivery of siRNA. Journal of Biomedical Research, 2016, 30, 264.	0.7	17
504	Nâ€Heterocyclic Carbene–Gold(I) Complexes Conjugated to a Leukemiaâ€5pecific DNA Aptamer for Targeted Drug Delivery. Angewandte Chemie, 2016, 128, 9035-9039.	1.6	13
505	Nâ€Heterocyclic Carbene–Gold(I) Complexes Conjugated to a Leukemiaâ€Specific DNA Aptamer for Targeted Drug Delivery. Angewandte Chemie - International Edition, 2016, 55, 8889-8893.	7.2	82
506	Prevention of Serpin Misfolding by RNA Aptamers. Cell Chemical Biology, 2016, 23, 639-640.	2.5	0
507	Biomedical Applications of DNA onjugated Gold Nanoparticles. ChemBioChem, 2016, 17, 1052-1062.	1.3	44
508	Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBrâ€activated sepharoseâ€4B affinity chromatography. Journal of Molecular Recognition, 2016, 29, 436-445.	1.1	21
509	<scp>HER2 RNA</scp> Aptamer―and Cell Penetrating Peptideâ€Mediated Delivery of Multimeric Antisense Strands of <scp>siRNAs</scp> for Gene Silencing. Bulletin of the Korean Chemical Society, 2016, 37, 1440-1444.	1.0	1

#	Article	IF	CITATIONS
511	Determining Functional Aptamerâ€Protein Interaction by Biolayer Interferometry. Current Protocols in Nucleic Acid Chemistry, 2016, 67, 7.25.1-7.25.15.	0.5	19
512	Creation of DNA aptamers against recombinant bone morphogenetic protein 15. Reproduction, Fertility and Development, 2016, 28, 1164.	0.1	3
513	Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Scientific Reports, 2016, 6, 21665.	1.6	71
514	E-selectin Targeting PEGylated-thioaptamer Prevents Breast Cancer Metastases. Molecular Therapy - Nucleic Acids, 2016, 5, e399.	2.3	26
515	Solidâ€Phase Synthesis of 2′â€ <i>O</i> â€Methoxyethyl Oligonucleotides Using Dimeric Phosphoramidite Blocks. Bulletin of the Korean Chemical Society, 2016, 37, 1754-1759.	1.0	0
516	A morphospace for synthetic organs and organoids: the possible and the actual. Integrative Biology (United Kingdom), 2016, 8, 485-503.	0.6	48
517	Tipping a favorable CNS intratumoral immune response using immune stimulation combined with inhibition of tumor-mediated immune suppression. Oncolmmunology, 2016, 5, e1117739.	2.1	7
518	Aptamer guided delivery of nucleic acid-based nanoparticles. DNA and RNA Nanotechnology, 2016, 2, .	0.7	7
519	A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochimica Acta, 2016, 183, 2251-2258.	2.5	33
520	Structural basis for specific inhibition of Autotaxin by a DNA aptamer. Nature Structural and Molecular Biology, 2016, 23, 395-401.	3.6	59
521	The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. International Journal of Antimicrobial Agents, 2016, 47, 311-316.	1.1	50
522	A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosensors and Bioelectronics, 2016, 83, 15-18.	5.3	53
523	Evaluating TNA stability under simulated physiological conditions. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2418-2421.	1.0	66
524	Biclustering for ssDNA aptamer motif prototypes. , 2016, , .		0
525	Ligand-Guided Selection of Target-Specific Aptamers: A Screening Technology for Identifying Specific Aptamers Against Cell-Surface Proteins. Nucleic Acid Therapeutics, 2016, 26, 190-198.	2.0	52
526	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
527	pHAST (pH-Driven Aptamer Switch for Thrombin) Catch-and-Release of Target Protein. Bioconjugate Chemistry, 2016, 27, 1493-1499.	1.8	22
528	Inhibitory RNA Aptamers of Tau Oligomerization and Their Neuroprotective Roles against Proteotoxic Stress. Molecular Pharmaceutics, 2016, 13, 2039-2048.	2.3	32

#	Article	IF	CITATIONS
529	Self-assembly of large RNA structures: learning from DNA nanotechnology. DNA and RNA Nanotechnology, 2016, 2, .	0.7	3
530	Selective tools for the solid-phase extraction of Ochratoxin A from various complex samples: immunosorbents, oligosorbents, and molecularly imprinted polymers. Analytical and Bioanalytical Chemistry, 2016, 408, 6983-6999.	1.9	26
531	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie - International Edition, 2016, 55, 12372-12375.	7.2	78
532	Toeholdâ€Mediated Displacement of an Adenosineâ€Binding Aptamer from a DNA Duplex by its Ligand. Angewandte Chemie - International Edition, 2016, 55, 13710-13713.	7.2	33
533	Interaction of an Iridium(III) Complex with G-Quadruplex DNA and Its Application in Luminescent Switch-On Detection of Siglec-5. Analytical Chemistry, 2016, 88, 10290-10295.	3.2	51
534	Toeholdâ€Mediated Displacement of an Adenosineâ€Binding Aptamer from a DNA Duplex by its Ligand. Angewandte Chemie, 2016, 128, 13914-13917.	1.6	2
535	Controlling uncertainty in aptamer selection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12076-12081.	3.3	43
536	<i>In vitro</i> evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biology, 2016, 13, 1232-1245.	1.5	94
537	Liquid–liquid extraction of enzymatically synthesized functional RNA oligonucleotides using reverse micelles with a DNA-surfactant. Chemical Communications, 2016, 52, 12376-12379.	2.2	5
538	Aptamers: Scope, Limitations, and Future Prospects. , 2016, , 335-361.		1
539	Characterization of pharmacological properties of isolated single-stranded DNA aptamers against angiotensin II. Molecular and Cellular Probes, 2016, 30, 238-245.	0.9	2
540	Crosslinked duplex DNA nanogels that target specified proteins. Science and Technology of Advanced Materials, 2016, 17, 285-292.	2.8	20
541	Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. American Journal of Pathology, 2016, 186, 2271-2278.	1.9	38
542	Structure and target interaction of a G-quadruplex RNA-aptamer. RNA Biology, 2016, 13, 973-987.	1.5	20
543	Aptamers as a promising approach for the control of parasitic diseases. Brazilian Journal of Infectious Diseases, 2016, 20, 610-618.	0.3	19
544	Online SERS Quantification of <i>Staphylococcus aureus</i> and the Application to Diagnostics in Human Fluids. Advanced Materials Technologies, 2016, 1, 1600163.	3.0	45
545	Specific detection of tetanus toxoid using an aptamer-based matrix. Journal of Biotechnology, 2016, 238, 15-21.	1.9	7
546	Aptamer based lysozyme assay using fluorescent CuInS2 quantum dots and graphene oxide, and its application to inhibitor screening. Mikrochimica Acta, 2016, 183, 2907-2916.	2.5	10

#	Article	IF	CITATIONS
547	Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles. Analytical Biochemistry, 2016, 514, 2-7.	1.1	33
548	Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization. Acta Biomaterialia, 2016, 42, 147-156.	4.1	31
549	A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells. Journal of Controlled Release, 2016, 238, 43-57.	4.8	69
550	An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. Journal of Hazardous Materials, 2016, 318, 247-254.	6.5	33
551	An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach. Organic and Biomolecular Chemistry, 2016, 14, 8141-8153.	1.5	32
552	Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacological Research, 2016, 111, 619-641.	3.1	38
553	Characterizing the Effect of Multivalent Conjugates Composed of Aβ-Specific Ligands and Metal Nanoparticles on Neurotoxic Fibrillar Aggregation. ACS Nano, 2016, 10, 7582-7597.	7.3	46
554	Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF ₁₆₅ toward pharmaceutical applications. Nucleic Acids Research, 2016, 44, gkw619.	6.5	51
555	Enzymatic synthesis and reverse transcription of RNAs incorporating 2′-O-carbamoyl uridine triphosphate. Chemical Communications, 2016, 52, 12889-12892.	2.2	7
556	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie, 2016, 128, 12560-12563.	1.6	9
557	10â€ ⁻ 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors. ACS Sensors, 2016, 1, 1471-1479.	4.0	70
558	Aptamer application in targeted delivery systems for diagnosis and treatment of breast cancer. Journal of Materials Chemistry B, 2016, 4, 7766-7778.	2.9	26
559	From selection hits to clinical leads: progress in aptamer discovery. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16014.	1.8	76
560	Crystal structure of a DNA aptamer bound to PvLDH elucidates novel single-stranded DNA structural elements for folding and recognition. Scientific Reports, 2016, 6, 34998.	1.6	28
561	High-Throughput Discovery of Aptamers for Sandwich Assays. Analytical Chemistry, 2016, 88, 10842-10847.	3.2	14
562	Multianalytical Study of the Binding between a Small Chiral Molecule and a DNA Aptamer: Evidence for Asymmetric Steric Effect upon 3′- versus 5′-End Sequence Modification. Analytical Chemistry, 2016, 88, 11963-11971.	3.2	31
563	In Silico Aptamer Docking Studies: From a Retrospective Validation to a Prospective Case Study'TIM3 Aptamers Binding. Molecular Therapy - Nucleic Acids, 2016, 5, e376.	2.3	40
564	G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Scientific Reports, 2016, 6, 33812.	1.6	48

#	Article	IF	CITATIONS
565	Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein. Biochemistry, 2016, 55, 6221-6229.	1.2	51
566	Dual Therapeutic Action of a Neutralizing Anti-FGF2 Aptamer in Bone Disease and Bone Cancer Pain. Molecular Therapy, 2016, 24, 1974-1986.	3.7	37
567	Site-Specific Fluorescent Labeling of Nucleic Acids by Genetic Alphabet Expansion Using Unnatural Base Pair Systems. , 2016, , 297-319.		0
568	Applications and modifications of aptamers: potential tool for medical microbiology. Reviews in Medical Microbiology, 2016, 27, 107-120.	0.4	5
569	One‧hot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. Advanced Materials, 2016, 28, 2699-2708.	11.1	102
570	Library-based display technologies: where do we stand?. Molecular BioSystems, 2016, 12, 2342-2358.	2.9	90
571	Photoelectrochemical aptasensing. TrAC - Trends in Analytical Chemistry, 2016, 82, 307-315.	5.8	145
572	DNA-aptamers raised against AGEs as a blocker of various aging-related disorders. Glycoconjugate Journal, 2016, 33, 683-690.	1.4	19
573	Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates. ACS Combinatorial Science, 2016, 18, 355-370.	3.8	15
574	Analysis of DNA in Phosphate Buffered Saline Using Kinetic Capillary Electrophoresis. Analytical Chemistry, 2016, 88, 7421-7428.	3.2	20
575	Programmable biomaterials for dynamic and responsive drug delivery. Experimental Biology and Medicine, 2016, 241, 1127-1137.	1.1	9
576	Generation and characterization of novel DNA aptamers against coat protein of grouper nervous necrosis virus (GNNV) with antiviral activities and delivery potential in grouper cells. Antiviral Research, 2016, 129, 104-114.	1.9	50
577	Hybridization-based aptamer labeling using complementary oligonucleotide platform for PET and optical imaging. Biomaterials, 2016, 100, 143-151.	5.7	23
578	Goldâ€Quantum Dot Core–Satellite Assemblies for Lighting Up MicroRNA In Vitro and In Vivo. Small, 2016, 12, 4662-4668.	5.2	90
579	New insights from cluster analysis methods for <scp>RNA</scp> secondary structure prediction. Wiley Interdisciplinary Reviews RNA, 2016, 7, 278-294.	3.2	11
580	Expected and unexpected features of proteinâ€binding <scp>RNA</scp> aptamers. Wiley Interdisciplinary Reviews RNA, 2016, 7, 744-757.	3.2	25
581	Aptamer Affinity Maturation by Resampling and Microarray Selection. Analytical Chemistry, 2016, 88, 6981-6985.	3.2	31
582	Aptamers as smart ligands for nano-carriers targeting. TrAC - Trends in Analytical Chemistry, 2016, 82, 316-327.	5.8	54

#	Article	IF	CITATIONS
583	A novel aptamer-mediated CuInS ₂ quantum dots@graphene oxide nanocomposites-based fluorescence "turn off–on―nanosensor for highly sensitive and selective detection of kanamycin. RSC Advances, 2016, 6, 10205-10214.	1.7	30
584	Smooth Muscle Cell–targeted RNA Aptamer Inhibits Neointimal Formation. Molecular Therapy, 2016, 24, 779-787.	3.7	26
585	Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release, 2016, 240, 267-286.	4.8	154
586	Nucleoapzymes: Hemin/G-Quadruplex DNAzyme–Aptamer Binding Site Conjugates with Superior Enzyme-like Catalytic Functions. Journal of the American Chemical Society, 2016, 138, 164-172.	6.6	226
587	Rapid Exchange Between Free and Bound States in RNA–Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules, 2016, 17, 154-164.	2.6	20
588	Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Nanoscale, 2016, 8, 187-196.	2.8	35
589	Structural computational modeling of RNA aptamers. Methods, 2016, 103, 175-179.	1.9	18
590	Kinetic ESI-MS Studies of Potent Anti-HIV Aptamers Based on the G-Quadruplex Forming Sequence d(TGGGAG). ACS Medicinal Chemistry Letters, 2016, 7, 256-260.	1.3	16
591	Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL. Molecular Therapy - Nucleic Acids, 2016, 5, e289.	2.3	60
592	Selection and Characterization of an $\hat{l}\pm 6\hat{l}^24$ Integrin blocking DNA Aptamer. Molecular Therapy - Nucleic Acids, 2016, 5, e294.	2.3	31
593	Femto-molar detection of cancer marker-protein based on immuno-nanoplasmonics at single-nanoparticle scale. Nanotechnology, 2016, 27, 185103.	1.3	8
594	Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Therapeutics, 2016, 26, 102-110.	2.0	14
595	The past and future of haemophilia: diagnosis, treatments, and its complications. Lancet, The, 2016, 388, 187-197.	6.3	331
596	Highly Porous Polymer Monolith Immobilized with Aptamer (RNA) Anchored Grafted Tentacles and Its Potential for the Purification of Lysozyme. Industrial & Engineering Chemistry Research, 2016, 55, 499-504.	1.8	9
597	Recent Development of Cardiac Troponin I Detection. ACS Sensors, 2016, 1, 106-114.	4.0	131
598	On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry. Journal of the American Chemical Society, 2016, 138, 3610-3622.	6.6	68
599	Rational design of supramolecular hemin/C-quadruplex–dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chemical Science, 2016, 7, 3092-3101.	3.7	63
600	Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Therapeutics, 2016, 26, 127-146.	2.0	103

#	Article	IF	CITATIONS
601	Expectation Maximization of Frequent Patterns, a Specific, Local, Pattern-Based Biclustering Algorithm for Biological Datasets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 812-824.	1.9	3
602	Fabrication and characterization of silicon nitride directional coupler interferometer for sensing aptamer hybridization. Proceedings of SPIE, 2016, , .	0.8	0
603	Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers. ACS Applied Materials & Interfaces, 2016, 8, 6890-6897.	4.0	71
604	A DNA Aptamer Against Influenza A Virus: An Effective Inhibitor to the Hemagglutinin–Glycan Interactions. Nucleic Acid Therapeutics, 2016, 26, 166-172.	2.0	22
605	Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opinion on Therapeutic Targets, 2016, 20, 801-818.	1.5	36
606	An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. Journal of Controlled Release, 2016, 229, 1-9.	4.8	66
607	How to measure the affinity of aptamers for membrane proteins expressed on the surface of living adherent cells. Methods, 2016, 97, 35-43.	1.9	9
608	In vitro RNA SELEX for the generation of chemically-optimized therapeutic RNA drugs. Methods, 2016, 103, 167-174.	1.9	26
609	Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nuclear Medicine and Biology, 2016, 43, 253-271.	0.3	49
610	Ensemble and single-molecule biophysical characterization of D17.4 DNA aptamer–IgE interactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 154-164.	1.1	14
611	Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells. Methods, 2016, 97, 94-103.	1.9	54
612	Aptamer BC007 for neutralization of pathogenic autoantibodies directed against G-protein coupled receptors: A vision of future treatment of patients with cardiomyopathies and positivity for those autoantibodies. Atherosclerosis, 2016, 244, 44-47.	0.4	33
613	Real Colorimetric Thrombin Aptasensor by Masking Surfaces of Catalytically Active Gold Nanoparticles. ACS Applied Materials & amp; Interfaces, 2016, 8, 102-108.	4.0	59
614	Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet, The, 2016, 387, 349-356.	6.3	109
615	Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Therapeutics, 2016, 26, 29-43.	2.0	23
616	The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie, 2016, 122, 283-299.	1.3	68
617	Studying small molecule–aptamer interactions using MicroScale Thermophoresis (MST). Methods, 2016, 97, 27-34.	1.9	114
618	Method for Confirming Cytoplasmic Delivery of RNA Aptamers. Methods in Molecular Biology, 2016,	0.4	6

#	Article	IF	CITATIONS
619	Preparation of Artificial Antigen and Development of IgY-Based Indirect Competitive ELISA for the Detection of Kanamycin Residues. Food Analytical Methods, 2016, 9, 744-751.	1.3	37
620	Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer?. International Journal of Biological Macromolecules, 2017, 100, 75-88.	3.6	7
621	Comparison of biodistribution profile of monoclonal antibodies nanoparticles and aptamers in rats with breast cancer. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 598-601.	1.9	11
622	What potential do aptamers hold in therapeutic delivery?. Therapeutic Delivery, 2017, 8, 53-55.	1.2	4
623	Aptamer-Targeted Attenuation of IL-2 Signaling in CD8 + T Cells Enhances Antitumor Immunity. Molecular Therapy, 2017, 25, 54-61.	3.7	44
624	RNA Protection is Effectively Achieved by Pullulan Film Formation. ChemBioChem, 2017, 18, 502-505.	1.3	22
625	Combinatorial Screening of DNA Aptamers for Molecular Imaging of HER2 in Cancer. Bioconjugate Chemistry, 2017, 28, 1068-1075.	1.8	58
626	Nanoparticle-Programmed Surface for Drug Release and Cell Regulation via Reversible Hybridization Reaction. ACS Applied Materials & Amp; Interfaces, 2017, 9, 4467-4474.	4.0	10
627	Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology. Journal of the American Chemical Society, 2017, 139, 2532-2540.	6.6	119
628	Specific detection of cancer cells through aggregation-induced emission of a light-up bioprobe. Chemical Communications, 2017, 53, 2398-2401.	2.2	28
629	Tumor Microenvironment Activable Selfâ€Assembled DNA Hybrids for pH and Redox Dualâ€Responsive Chemotherapy/PDT Treatment of Hepatocellular Carcinoma. Advanced Science, 2017, 4, 1600460.	5.6	56
630	Selection of 2′-Fluoro-Modified Aptamers with Optimized Properties. Journal of the American Chemical Society, 2017, 139, 2892-2895.	6.6	66
631	DNA display of folded RNA libraries enabling RNA-SELEX without reverse transcription. Chemical Communications, 2017, 53, 2878-2881.	2.2	6
632	Functional nucleic acids as in vivo metabolite and ion biosensors. Biosensors and Bioelectronics, 2017, 94, 94-106.	5.3	27
633	Aptamer-based liposomes improve specific drug loading and release. Journal of Controlled Release, 2017, 251, 82-91.	4.8	46
634	Systematic Optimization and Modification of a DNA Aptamer with 2'â€Oâ€Methyl RNA Analogues. ChemistrySelect, 2017, 2, 2335-2340.	0.7	24
635	The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology, 2017, 35, 238-248.	9.4	816
636	Regulation of photosensitisation processes by an RNA aptamer. Scientific Reports, 2017, 7, 43272.	1.6	4

#	Article	IF	CITATIONS
637	Synthesis and properties of cross-linkable DNA duplex using 4-amino-2-oxo-6-vinyl-1,3,5-triazine. Tetrahedron, 2017, 73, 1424-1435.	1.0	3
638	DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nature Communications, 2017, 8, 14252.	5.8	75
639	Cardiomyopathy — An approach to the autoimmune background. Autoimmunity Reviews, 2017, 16, 269-286.	2.5	33
640	Detection of K+Efflux from Stimulated Cortical Neurons by an Aptamer-Modified Silicon Nanowire Field-Effect Transistor. ACS Sensors, 2017, 2, 69-79.	4.0	38
641	Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers. Methods in Molecular Biology, 2017, 1575, 253-272.	0.4	42
642	Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules. Methods in Molecular Biology, 2017, 1575, 273-289.	0.4	0
643	Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition. Canadian Journal of Diabetes, 2017, 41, 305-311.	0.4	10
644	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	3.9	274
645	Aptamer-mediated impairment of EGFR-integrin αvβ3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Scientific Reports, 2017, 7, 46659.	1.6	78
646	Replacing antibodies with modified DNA aptamers in vaccine potency assays. Vaccine, 2017, 35, 5495-5502.	1.7	26
647	Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11, 529-536.	2.3	32
648	The Bound Structures of 17βâ€Estradiolâ€Binding Aptamers. ChemPhysChem, 2017, 18, 1881-1887.	1.0	13
649	Aptabody–aptatope interactions in aptablotting assays. Nanoscale, 2017, 9, 7464-7475.	2.8	27
650	Periostin-Binding DNA Aptamer Treatment Ameliorates Peritoneal Dialysis-Induced Peritoneal Fibrosis. Molecular Therapy - Nucleic Acids, 2017, 7, 396-407.	2.3	10
651	Post-synthetic Modification of 3′ Terminus of RNA with Propargylamine: A Versatile Scaffold for RNA Labeling through Copper-catalyzed Azide-Alkyne Cycloaddition. Chemistry Letters, 2017, 46, 767-770.	0.7	7
652	Nanoemulsion as Targeted Drug Delivery System for Cancer Therapeutics. Journal of Pharmaceutical Sciences and Pharmacology, 2017, 3, 83-97.	0.2	49
653	Circular Bivalent Aptamers Enable <i>in Vivo</i> Stability and Recognition. Journal of the American Chemical Society, 2017, 139, 9128-9131.	6.6	156
654	A general double library SELEX strategy for aptamer selection using unmodified nonimmobilized targets. Analytical and Bioanalytical Chemistry, 2017, 409, 5081-5089.	1.9	10

#	Article	IF	CITATIONS
655	New concepts on the therapeutic control of complement anaphylatoxin receptors. Molecular Immunology, 2017, 89, 36-43.	1.0	67
656	Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators B: Chemical, 2017, 251, 637-643.	4.0	52
657	Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Analytical Chemistry, 2017, 89, 6535-6542.	3.2	47
658	Dual Recognition Element Lateral Flow Assay Toward Multiplex Strain Specific Influenza Virus Detection. Analytical Chemistry, 2017, 89, 6781-6786.	3.2	97
659	Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chemical Society Reviews, 2017, 46, 4281-4298.	18.7	547
660	Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and start site usage. Transcription, 2017, 8, 275-287.	1.7	39
661	Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure. Cardiovascular Research, 2017, 113, 633-643.	1.8	41
662	An RNA Aptamer Capable of Forming a Hydrogel by Self-Assembly. Biomacromolecules, 2017, 18, 2056-2063.	2.6	12
663	Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection. Scientific Reports, 2017, 7, 45478.	1.6	22
664	Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. International Journal of Pharmaceutics, 2017, 525, 334-342.	2.6	32
665	Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. Journal of Biological Chemistry, 2017, 292, 7338-7347.	1.6	11
666	Screening ssDNA aptamers against HIV P24 antigen using agarose beads as carriers. BIO Web of Conferences, 2017, 8, 03009.	0.1	1
667	Structural optimization of an aptamer generated from Ligand-Guided Selection (LIGS) resulted in high affinity variant toward mIgM expressed on Burkitt's lymphoma cell lines. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1825-1832.	1.1	22
668	Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX. Scientific Reports, 2017, 7, 45377.	1.6	42
669	Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding. Nanotechnology, 2017, 28, 204004.	1.3	20
670	Antibodies and associates: Partners in targeted drug delivery. , 2017, 177, 129-145.		52
671	Broadly reactive aptamers targeting bacteria belonging to different genera using a sequential toggle cell-SELEX. Scientific Reports, 2017, 7, 43641.	1.6	43
672	Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chemical Society Reviews, 2017, 46, 2237-2271.	18.7	658

#	Article	IF	CITATIONS
673	Pattern recognition of enrichment levels of SELEX-based candidate aptamers for human C-reactive protein. Biomedizinische Technik, 2017, 62, 333-338.	0.9	1
674	New agents in HSC mobilization. International Journal of Hematology, 2017, 105, 141-152.	0.7	42
675	Therapeutic Applications: Strategies and Molecules Targeting the IL-17/Th17 Pathway. , 2017, , 55-99.		0
676	Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Organic and Biomolecular Chemistry, 2017, 15, 1980-1989.	1.5	41
677	Development of a Bifunctional Aptamer Targeting the Transferrin Receptor and Epithelial Cell Adhesion Molecule (EpCAM) for the Treatment of Brain Cancer Metastases. ACS Chemical Neuroscience, 2017, 8, 777-784.	1.7	75
678	Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides. Angewandte Chemie, 2017, 129, 1259-1263.	1.6	15
679	Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides. Angewandte Chemie - International Edition, 2017, 56, 1239-1243.	7.2	44
680	Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers. Angewandte Chemie - International Edition, 2017, 56, 744-747.	7.2	71
681	Isolation and Characterization of RNA Aptamers against a Proteasomeâ€Associated Deubiquitylating Enzyme UCH37. ChemBioChem, 2017, 18, 171-175.	1.3	4
682	Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers. Angewandte Chemie, 2017, 129, 762-765.	1.6	6
683	The application of a G-quadruplex based assay with an iridium(<scp>iii</scp>) complex to arsenic ion detection and its utilization in a microfluidic chip. Journal of Materials Chemistry B, 2017, 5, 479-484.	2.9	55
684	Precipitation SELEX: identification of DNA aptamers for calcium phosphate materials synthesis. Chemical Communications, 2017, 53, 1092-1095.	2.2	17
685	Target-induced catalytic hairpin assembly formation of functional Y-junction DNA structures for label-free and sensitive electrochemical detection of human serum proteins. Sensors and Actuators B: Chemical, 2017, 244, 61-66.	4.0	18
686	"In-House―Production of Single Stranded Oligodeoxyribonucleotides. Nucleic Acid Therapeutics, 2017, 27, 115-120.	2.0	0
687	High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases. Journal of the American Chemical Society, 2017, 139, 324-334.	6.6	114
688	Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-8.	1.9	25
689	A novel nucleic acid sequence encoding strategy for high-performance aptamer identification and the aid of sequence design and optimization. Chemometrics and Intelligent Laboratory Systems, 2017, 170, 32-37.	1.8	5
690	Pharmacokinetic Properties of DNA Aptamers with Base Modifications. Nucleic Acid Therapeutics, 2017, 27, 345-353.	2.0	22

#	Article	IF	CITATIONS
691	Solidâ€Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages. Current Protocols in Nucleic Acid Chemistry, 2017, 70, 4.77.1-4.77.13.	0.5	8
692	Analysis of aptamer discovery and technology. Nature Reviews Chemistry, 2017, 1, .	13.8	566
693	Label-free detection of interleukin-6 using electrolyte gated organic field effect transistors. Biointerphases, 2017, 12, 05F401.	0.6	46
694	PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma. Nanomedicine, 2017, 12, 2611-2624.	1.7	33
695	The Chemistry of Oligonucleotide Delivery. Annual Reports in Medicinal Chemistry, 2017, 50, 17-59.	0.5	3
696	Guanidinium-based "molecular glues―for modulation of biomolecular functions. Chemical Society Reviews, 2017, 46, 6480-6491.	18.7	93
697	Synthesis and biological applications of fluoro-modified nucleic acids. Organic and Biomolecular Chemistry, 2017, 15, 9552-9565.	1.5	52
698	Evolved polymerases facilitate selection of fully 2′-OMe-modified aptamers. Chemical Science, 2017, 8, 8179-8182.	3.7	37
699	Nano-therapeutic Approaches for Targeting Cancer Stem Cells. , 2017, , 117-137.		0
700	Design, isolation and evaluation of the binding efficiency of a DNA aptamer against interleukin 2 receptor alpha, in vitro. International Immunopharmacology, 2017, 53, 96-104.	1.7	3
701	SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir, 2017, 33, 9711-9730.	1.6	121
702	Origins of the enhanced affinity of RNA–protein interactions triggered by RNA phosphorodithioate backbone modification. Chemical Communications, 2017, 53, 10508-10511.	2.2	14
703	Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. Nanoscale, 2017, 9, 14486-14498.	2.8	19
704	Freezing shortens the lifetime of DNA molecules under tension. Journal of Biological Physics, 2017, 43, 511-524.	0.7	13
705	Ligand-Targeted Drug Delivery. Chemical Reviews, 2017, 117, 12133-12164.	23.0	408
706	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	23.0	258
707	Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials, 2017, 147, 68-85.	5.7	150
708	Enzymatic Synthesis, Amplification, and Application of DNA with a Functionalized Backbone. Angewandte Chemie, 2017, 129, 14234-14239.	1.6	5

#	Article	IF	CITATIONS
709	Enzymatic Synthesis, Amplification, and Application of DNA with a Functionalized Backbone. Angewandte Chemie - International Edition, 2017, 56, 14046-14051.	7.2	22
710	In Vitro Selection of Diversely Functionalized Aptamers. Journal of the American Chemical Society, 2017, 139, 13977-13980.	6.6	62
711	A CTLA-4 Antagonizing DNA Aptamer with Antitumor Effect. Molecular Therapy - Nucleic Acids, 2017, 8, 520-528.	2.3	46
712	Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Scientific Reports, 2017, 7, 8490.	1.6	15
713	Virus-Derived Peptides for Clinical Applications. Chemical Reviews, 2017, 117, 10377-10402.	23.0	55
714	RNA Aptamer Binds Heparin-Binding Epidermal Growth Factor-Like Growth Factor with High Affinity and Neutralizes Its Activity. International Journal of Gerontology, 2017, 11, 191-196.	0.7	0
715	NMR monitoring of the SELEX process to confirm enrichment of structured RNA. Scientific Reports, 2017, 7, 283.	1.6	16
716	Impact of modified ribose sugars on nucleic acid conformation and function. Heterocyclic Communications, 2017, 23, 155-165.	0.6	20
717	MUC1 Aptamer Targeted SERS Nanoprobes. Advanced Functional Materials, 2017, 27, 1606632.	7.8	76
718	Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 2017, 190, 64-83.	1.1	374
719	Efficient functional neutralization of lethal peptide toxins in vivo by oligonucleotides. Scientific Reports, 2017, 7, 7202.	1.6	22
720	In vitro selection of DNA aptamers against renal cell carcinoma using living cell-SELEX. Talanta, 2017, 175, 235-242.	2.9	31
721	Developing aptasensors for forensic analysis. TrAC - Trends in Analytical Chemistry, 2017, 94, 150-160.	5.8	34
722	Antiâ€MUC1 aptamer: A potential opportunity for cancer treatment. Medicinal Research Reviews, 2017, 37, 1518-1539.	5.0	102
723	Highly Sensitive Fluorometric Turn-On Detection of Lysozyme Based on a Graphene Oxide/ssDNA Assembly. IEEE Sensors Journal, 2017, 17, 5431-5436.	2.4	10
724	Development of a Dualâ€Functional Hydrogel Using RGD and Antiâ€VEGF Aptamer. Macromolecular Bioscience, 2017, 17, 1700201.	2.1	28
725	A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice. Molecular Therapy, 2017, 25, 2280-2288.	3.7	40
726	Therapeutic targeting of non-coding RNAs in cancer. Biochemical Journal, 2017, 474, 4219-4251.	1.7	228

#	Article	IF	CITATIONS
727	Precision Tuning of DNA- and Poly(ethylene glycol)-Based Nanoparticles via Coassembly for Effective Antisense Gene Regulation. Chemistry of Materials, 2017, 29, 9882-9886.	3.2	34
728	Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2017, 8, 1482.	5.8	193
729	Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants. Journal of the American Chemical Society, 2017, 139, 16442-16445.	6.6	38
730	In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. Scientific Reports, 2017, 7, 14487.	1.6	23
731	A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nature Communications, 2017, 8, 1390.	5.8	192
732	An Albumin-Oligonucleotide Assembly for Potential Combinatorial Drug Delivery and Half-Life Extension Applications. Molecular Therapy - Nucleic Acids, 2017, 9, 284-293.	2.3	23
733	Polymer Microneedle Mediated Local Aptamer Delivery for Blocking the Function of Vascular Endothelial Growth Factor. ACS Biomaterials Science and Engineering, 2017, 3, 3395-3403.	2.6	23
734	Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. Molecular Therapy - Nucleic Acids, 2017, 9, 251-262.	2.3	56
735	MiR-497â^¼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nature Communications, 2017, 8, 16003.	5.8	157
736	Biomolecular engineering for nanobio/bionanotechnology. Nano Convergence, 2017, 4, 9.	6.3	86
737	Therapeutic applications of synthetic nucleic acid aptamers. Current Opinion in Biotechnology, 2017, 48, 180-186.	3.3	47
738	Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Analytica Chimica Acta, 2017, 984, 177-184.	2.6	68
739	Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. Journal of Biomolecular Structure and Dynamics, 2017, 35, 3354-3369.	2.0	28
740	Aptamers as targeted therapeutics: current potential and challenges. Nature Reviews Drug Discovery, 2017, 16, 181-202.	21.5	1,349
741	Biological applications of xeno nucleic acids. Molecular BioSystems, 2017, 13, 235-245.	2.9	94
742	Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. Journal of Molecular Medicine, 2017, 95, 249-256.	1.7	17
743	Advances in the development of aptamer drug conjugates for targeted drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1438.	3.3	61
744	Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 2017, 113, 18-30.	5.7	73

#	Article	IF	CITATIONS
745	Aptamer and its applications in neurodegenerative diseases. Cellular and Molecular Life Sciences, 2017, 74, 683-695.	2.4	49
746	Recent Advances in Aptamers Targeting Immune System. Inflammation, 2017, 40, 295-302.	1.7	12
747	A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1448-1454.	1.1	8
748	Impacts of Aptamer Technology onÂDiagnostics, Biotechnology, andÂTherapy. , 2017, , 125-142.		0
749	Multifunctional Nanoparticles. SpringerBriefs in Applied Sciences and Technology, 2017, , 15-27.	0.2	0
750	The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biology, 2017, 14, 651-668.	1.5	27
751	A Novel PEGylation Method for Improving the Pharmacokinetic Properties of Anti-Interleukin-17A RNA Aptamers. Nucleic Acid Therapeutics, 2017, 27, 36-44.	2.0	43
752	G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1429-1447.	1.1	127
753	Epidermal growth factor receptor aptamer‑conjugated polymer‑lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Experimental and Therapeutic Medicine, 2017, 15, 1247-1256.	0.8	19
754	Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles. Molecular Therapy - Nucleic Acids, 2017, 9, 399-408.	2.3	90
755	As Technologies for Nucleotide Therapeutics Mature, Products Emerge. Molecular Therapy - Nucleic Acids, 2017, 9, 379-386.	2.3	24
756	Effectiveness of C5a aptamers in a TNBS‑induced colitis mouse model. Experimental and Therapeutic Medicine, 2017, 14, 6119-6124.	0.8	2
757	Gefitinib-loaded DSPE-PEG2000 nanomicelles with CD133 aptamers target lung cancer stem cells. World Journal of Surgical Oncology, 2017, 15, 167.	0.8	31
758	Aptamers as a Promising Therapeutic Tool for Cancer Immunotherapy. , 2017, , .		1
759	The Evaluation of Pharmacodynamics and Pharmacokinetics of Anti-thrombin DNA Aptamer RA-36. Frontiers in Pharmacology, 2017, 8, 922.	1.6	17
760	Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics, 2017, 7, 1373-1388.	4.6	90
761	Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX. Theranostics, 2017, 7, 2982-2995.	4.6	32
762	Towards open-ended evolution in self-replicating molecular systems. Beilstein Journal of Organic Chemistry, 2017, 13, 1189-1203.	1.3	54

# 763	ARTICLE Nanoparticles for locked nucleic acid delivery. , 2017, , 113-134.	IF	CITATIONS
764	Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics, 2017, 7, 4071-4086.	4.6	70
765	Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines, 2017, 5, 41.	1.4	50
766	Autoantibody-Directed Therapy in Cardiovascular Diseases. , 2017, , 659-679.		2
767	Surface Plasmon Resonance: A Boon for Viral Diagnostics. , 2017, , .		19
768	Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma. Theranostics, 2017, 7, 164-179.	4.6	69
769	Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1851.	1.8	31
770	Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. International Journal of Molecular Sciences, 2017, 18, 2430.	1.8	71
771	Aptamers and Glioblastoma: Their Potential Use for Imaging and Therapeutic Applications. International Journal of Molecular Sciences, 2017, 18, 2576.	1.8	31
772	Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens. Molecules, 2017, 22, 215.	1.7	70
773	Metal-Based PSMA Radioligands. Molecules, 2017, 22, 523.	1.7	45
774	Generation and Applications of a DNA Aptamer against Gremlin-1. Molecules, 2017, 22, 706.	1.7	9
775	Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures. Molecules, 2017, 22, 2070.	1.7	35
776	Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography. Sensors, 2017, 17, 226.	2.1	14
777	Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon. Toxins, 2017, 9, 24.	1.5	6
778	Manufacturing of Oligonucleotides. , 2017, , 233-279.		3
779	Applications of aptamers for the diagnosis and therapy of different diseases. , 2017, , 591-619.		1
780	Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. International Journal of Molecular Sciences, 2017, 18, 2142.	1.8	299

#	Article	IF	Citations
781	Aptamer Technology: Adjunct Therapy for Malaria. Biomedicines, 2017, 5, 1.	1.4	38
782	Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines, 2017, 5, 45.	1.4	77
783	Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers, 2017, 9, 174.	1.7	70
784	Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. Chemosensors, 2017, 5, 1.	1.8	38
785	Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application <i> In Vivo</i> . Journal of Nucleic Acids, 2017, 2017, 1-12.	0.8	18
786	The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches. Gastroenterology Research and Practice, 2017, 2017, 1-11.	0.7	66
787	Aptamer selection and applications for breast cancer diagnostics and therapy. Journal of Nanobiotechnology, 2017, 15, 81.	4.2	96
788	Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Scientific Reports, 2017, 7, 1178.	1.6	113
789	Selection and analysis of a DNA aptamer binding α-amanitin from Amanita phalloides. Acta Biochimica Polonica, 2017, 64, 401-406.	0.3	9
790	Transfection of Antisense Oligonucleotides Mediated by Cationic Vesicles Based on Non-Ionic Surfactant and Polycations Bearing Quaternary Ammonium Moieties. International Journal of Molecular Sciences, 2017, 18, 1139.	1.8	7
791	Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biology and Medicine, 2017, 14, 242.	1.4	9
792	Analysis of Evolutionarily Independent Protein-RNA Complexes Yields a Criterion to Evaluate the Relevance of Prebiotic Scenarios. Current Biology, 2018, 28, 526-537.e5.	1.8	39
793	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
794	Characterisation of an aptamer against the Runt domain of <scp>AML</scp> 1 (<scp>RUNX</scp> 1) by <scp>NMR</scp> and mutational analyses. FEBS Open Bio, 2018, 8, 264-270.	1.0	4
795	Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab on A Chip, 2018, 18, 1151-1173.	3.1	58
796	Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification. Sensors and Actuators B: Chemical, 2018, 263, 568-574.	4.0	31
797	Photomodulating Gene Expression by Using Caged siRNAs with Singleâ€Aptamer Modification. ChemBioChem, 2018, 19, 1259-1263.	1.3	18
798	Synthetic artificial "long non-coding RNAs" targeting oncogenic microRNAs and transcriptional factors inhibit malignant phenotypes of bladder cancer cells. Cancer Letters, 2018, 422, 94-106.	3.2	6

#	Article	IF	Citations
799	Programmable hydrogels. Biomaterials, 2018, 178, 663-680.	5.7	73
800	A Novel AS1411 Aptamer-Based Three-Way Junction Pocket DNA Nanostructure Loaded with Doxorubicin for Targeting Cancer Cells in Vitro and in Vivo. Molecular Pharmaceutics, 2018, 15, 1972-1978.	2.3	69
801	Tapping the RNA world for therapeutics. Nature Structural and Molecular Biology, 2018, 25, 357-364.	3.6	147
802	A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules, 2018, 19, 2957-2968.	2.6	50
803	Aptamer chemistry. Advanced Drug Delivery Reviews, 2018, 134, 3-21.	6.6	258
804	Development of DNA aptamers targeting low-molecular-weight amyloid-β peptide aggregates <i>in vitro</i> . Chemical Communications, 2018, 54, 4593-4596.	2.2	31
805	Novel DNA Aptamers that Bind to Mutant Huntingtin and Modify Its Activity. Molecular Therapy - Nucleic Acids, 2018, 11, 416-428.	2.3	16
806	RNA–protein interaction detection in living cells. Nature Methods, 2018, 15, 207-212.	9.0	234
807	Combined aptamer and transcriptome sequencing of single cells. Scientific Reports, 2018, 8, 2919.	1.6	23
808	Aptamers in HIV research diagnosis and therapy. RNA Biology, 2018, 15, 327-337.	1.5	41
809	Programmable and Multifunctional DNAâ€Based Materials for Biomedical Applications. Advanced Materials, 2018, 30, e1703658.	11.1	163
810	Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nature Communications, 2018, 9, 535.	5.8	61
811	DNA Nanostructureâ€Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Advanced Healthcare Materials, 2018, 7, e1701153.	3.9	56
812	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	3.2	70
813	STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma. Molecular Therapy - Nucleic Acids, 2018, 10, 398-411.	2.3	72
814	Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sensors, 2018, 3, 174-182.	4.0	73
815	Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response inÂvitro and inÂvivo. Cancer Letters, 2018, 416, 87-93.	3.2	56
816	Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chemical Reviews, 2018, 118, 1599-1663.	23.0	64

#	Article	IF	CITATIONS
817	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. , 2018, , 1-92.		10
818	Chemical modifications of nucleic acid drugs and their delivery systems for geneâ€based therapy. Medicinal Research Reviews, 2018, 38, 829-869.	5.0	108
819	Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA Chimera Confers Superior Activity against HER2+ Breast Cancer. Molecular Therapy - Nucleic Acids, 2018, 10, 317-330.	2.3	66
820	Application of the Open qPCR Instrument for the in Vitro Selection of DNA Aptamers against Epidermal Growth Factor Receptor and <i>Drosophila</i> C Virus. ACS Combinatorial Science, 2018, 20, 45-54.	3.8	14
821	New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity. European Journal of Medicinal Chemistry, 2018, 145, 425-430.	2.6	11
822	The Design and Characterization of Multifunctional Aptamer Nanopore Sensors. ACS Nano, 2018, 12, 4844-4852.	7.3	66
823	Advances in the Study of Aptamer–Protein Target Identification Using the Chromatographic Approach. Journal of Proteome Research, 2018, 17, 2174-2181.	1.8	20
824	Rational design and biomedical applications of DNA-functionalized upconversion nanoparticles. Chinese Chemical Letters, 2018, 29, 1321-1332.	4.8	26
825	Fingerprinting Non-Terran Biosignatures. Astrobiology, 2018, 18, 915-922.	1.5	40
826	Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 263-277.	3.3	33
827	Molecular probing of TNF: From identification of therapeutic target to guidance of therapy in inflammatory diseases. Cytokine, 2018, 101, 64-69.	1.4	7
828	Potentiating tumor immunity using aptamer-targeted RNAi to render CD8 ⁺ T cells resistant to TGFÎ ² inhibition. Oncolmmunology, 2018, 7, e1349588.	2.1	11
829	Comparison of Flow Cytometry and ELASA for Screening of Proper Candidate Aptamer in Cell-SELEX Pool. Applied Biochemistry and Biotechnology, 2018, 184, 444-452.	1.4	14
830	Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie, 2018, 145, 53-62.	1.3	46
831	Inâ€Situ Spatial Complementation of Aptamerâ€Mediated Recognition Enables Live ell Imaging of Native RNA Transcripts in Real Time. Angewandte Chemie, 2018, 130, 984-988.	1.6	21
832	Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnology Letters, 2018, 40, 315-324.	1.1	32
833	RNA Aptamer Delivery through Intact Human Skin. Journal of Investigative Dermatology, 2018, 138, 282-290.	0.3	29
834	RNA Aptamers Recognizing Murine CCL17 Inhibit T Cell Chemotaxis and Reduce Contact Hypersensitivity InÂVivo. Molecular Therapy, 2018, 26, 95-104.	3.7	20

#	Article	IF	CITATIONS
835	Inâ€Situ Spatial Complementation of Aptamerâ€Mediated Recognition Enables Liveâ€Cell Imaging of Native RNA Transcripts in Real Time. Angewandte Chemie - International Edition, 2018, 57, 972-976.	7.2	71
836	MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Development and Industrial Pharmacy, 2018, 44, 13-18.	0.9	46
837	Nucleic acid aptamers for neurodegenerative diseases. Biochimie, 2018, 145, 73-83.	1.3	35
838	Protein Nanotube Selectively Cleavable with DNA: Supramolecular Polymerization of "DNA-Appended Molecular Chaperones― Journal of the American Chemical Society, 2018, 140, 26-29.	6.6	53
839	Aptamers as potential therapeutic agents for ovarian cancer. Biochimie, 2018, 145, 34-44.	1.3	17
840	Classification of cancer cells using computational analysis of dynamic morphology. Computer Methods and Programs in Biomedicine, 2018, 156, 105-112.	2.6	24
841	Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. Journal of Biotechnology, 2018, 266, 39-49.	1.9	120
842	Thermodynamic and first-principles biomolecular simulations applied to synthetic biology: promoter and aptamer designs. Molecular Systems Design and Engineering, 2018, 3, 19-37.	1.7	10
843	EGOFET Peptide Aptasensor for Labelâ€Free Detection of Inflammatory Cytokines in Complex Fluids. Advanced Biology, 2018, 2, 1700072.	3.0	63
844	RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1452.	3.2	40
845	Aptamer-mediated selective delivery of a cytotoxic cationic NHC-Au(<scp>i</scp>) complex to cancer cells. Dalton Transactions, 2018, 47, 120-126.	1.6	18
846	Hybrid Feature Selection Method Based on Neural Networks and Cross-Validation for Liver Cancer With Microarray. IEEE Access, 2018, 6, 78214-78224.	2.6	11
847	Quantifying Mg2+ Binding to ssDNA Oligomers: A Self-Consistent Field Theory Study at Varying Ionic Strengths and Grafting Densities. Polymers, 2018, 10, 1403.	2.0	6
848	Investigations on the interface of nucleic acid aptamers and binding targets. Analyst, The, 2018, 143, 5317-5338.	1.7	193
849	<scp>d</scp> -/ <scp>l</scp> -lsothymidine incorporation in the core sequence of aptamer BC15 enhanced its binding affinity to the hnRNP A1 protein. Organic and Biomolecular Chemistry, 2018, 16, 7488-7497.	1.5	5
850	A ZnO-gated porphyrinic metal–organic framework-based drug delivery system for targeted bimodal cancer therapy. Journal of Materials Chemistry B, 2018, 6, 7898-7907.	2.9	50
851	Applications of Aptamers in Cancer Therapy. , 0, , .		3
852	Aptamerâ€modified magnetic metalâ€organic framework MILâ€101 for highly efficient and selective enrichment of ochratoxin A. Journal of Separation Science, 2019, 42, 716-724.	1.3	27

#	Article	IF	CITATIONS
853	Tethered imidazole mediated duplex stabilization and its potential for aptamer stabilization. Nucleic Acids Research, 2018, 46, 11671-11686.	6.5	9
854	Anti-Gal as Cancer Cell Destroying Antibody and as Antibiotics Targeted by $\hat{I}\pm$ -Gal Bifunctional Molecules. , 2018, , 199-205.		0
855	Surface Modification of Macrophages with Nucleic Acid Aptamers for Enhancing the Immune Response against Tumor Cells. Bioconjugate Chemistry, 2018, 29, 4160-4167.	1.8	19
856	AS1411 aptamer-decorated cisplatin-loaded poly(lactic- <i>co</i> -glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine, 2018, 13, 2729-2758.	1.7	89
857	Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget, 2018, 9, 2951-2961.	0.8	40
858	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	18.7	115
859	Various Coupling Agents in the Phosphoramidite Method for Oligonucleotide Synthesis. , 2018, , 17-39.		0
860	Imaging of Neurite Network with an Anti-L1CAM Aptamer Generated by Neurite-SELEX. Journal of the American Chemical Society, 2018, 140, 18066-18073.	6.6	49
861	Cabazitaxel liposomes with aptamer modification enhance tumor‑targeting efficacy in nude mice. Molecular Medicine Reports, 2018, 19, 490-498.	1.1	12
862	Targeted delivery of doxorubicin to cancer cells by a cruciform DNA nanostructure composed of AS1411 and FOXM1 aptamers. Expert Opinion on Drug Delivery, 2018, 15, 1045-1052.	2.4	41
863	Chemical Modification of CRISPR gRNAs Eliminate type I Interferon Responses in Human Peripheral Blood Mononuclear Cells. Journal of Cytokine Biology, 2018, 03, .	1.5	24
864	Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRÎ ² aptamer. Theranostics, 2018, 8, 5178-5199.	4.6	48
865	Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes, 2018, 9, 529.	1.0	33
866	Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Research, 2018, 46, 12177-12185.	6.5	51
867	The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells, 2018, 7, 166.	1.8	47
868	Aptamer-iRNAs as Therapeutics for Cancer Treatment. Pharmaceuticals, 2018, 11, 108.	1.7	37
869	An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosensors and Bioelectronics, 2018, 122, 104-112.	5.3	63
870	Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals, 2018, 11, 86.	1.7	65

#	Article	IF	Citations
871	Synergistic Targeting HER2 and EGFR with Bivalent Aptamer-siRNA Chimera Efficiently Inhibits HER2-Positive Tumor Growth. Molecular Pharmaceutics, 2018, 15, 4801-4813.	2.3	28
872	Organic Semiconductor Laser Platform for the Detection of DNA by AgNP Plasmonic Enhancement. Langmuir, 2018, 34, 14766-14773.	1.6	5
873	Immunomagnetic antibody plus aptamer pseudo-DNA nanocatenane followed by rolling circle amplication for highly-sensitive CTC detection. Biosensors and Bioelectronics, 2018, 122, 239-246.	5.3	32
874	Bio-nano: Theranostic at Cellular Level. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 85-170.	0.2	1
875	Crystal Structure of Autotaxin Complexed with Inhibitory DNA Aptamer and Development of Treatment for Lung Fibrosis. Nihon Kessho Gakkaishi, 2018, 60, 142-145.	0.0	0
876	Amplifying Nanoparticle Targeting Performance to Tumor via Diels–Alder Cycloaddition. Advanced Functional Materials, 2018, 28, 1707596.	7.8	22
877	Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging. Talanta, 2018, 188, 66-73.	2.9	20
878	Aptamer-based polyhedral oligomeric silsesquioxane (POSS)-containing hybrid affinity monolith prepared via a "one-pot―process for selective extraction of ochratoxin A. Journal of Chromatography A, 2018, 1563, 37-46.	1.8	43
879	Selecting Fullyâ€Modified XNA Aptamers Using Synthetic Genetics. Current Protocols in Chemical Biology, 2018, 10, e44.	1.7	16
880	Targeting von Willebrand Factor in Ischaemic Stroke: Focus on Clinical Evidence. Thrombosis and Haemostasis, 2018, 118, 959-978.	1.8	34
881	Development of oligonucleotide-based antagonists of Ebola virus protein 24 inhibiting its interaction with karyopherin alpha 1. Organic and Biomolecular Chemistry, 2018, 16, 4456-4463.	1.5	12
882	RNA Aptamers Rescue Mitochondrial Dysfunction in a Yeast Model of Huntington's Disease. Molecular Therapy - Nucleic Acids, 2018, 12, 45-56.	2.3	12
883	Comparing proteins and nucleic acidsÂfor next-generation biomolecularÂengineering. Nature Reviews Chemistry, 2018, 2, 113-130.	13.8	44
884	Systematic Evolution of Ligands by Exponential Enrichment for Aptamer Selection. , 2018, , 211-243.		7
885	A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers. Analyst, The, 2018, 143, 3579-3585.	1.7	17
886	Biomolecular Therapeutics for HIV. , 2018, , 541-567.		2
887	Functionalâ€ÐNAâ€Ðriven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. Advanced Materials, 2018, 30, e1707351.	11.1	47
888	Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics, 2018, 8, 4016-4032.	4.6	271

#	Article	IF	CITATIONS
889	Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer. Frontiers in Pharmacology, 2018, 9, 125.	1.6	31
890	Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2018, 67, 429-436.	2.9	33
891	Gene Silencing, Disruption and Latency Reactivation with RNA-based and Gene Editing CRISPR/Cas, ZFN and TALEN Technologies for HIV-1/AIDS Therapies. , 0, , 389-400.		0
892	Small RNA-mediated prevention, diagnosis and therapies of cancer. , 2018, , 341-436.		0
893	Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 73.	1.1	44
894	Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers, 2018, 10, 9.	1.7	139
895	Nanomotors for Nucleic Acid, Proteins, Pollutants and Cells Detection. International Journal of Molecular Sciences, 2018, 19, 1579.	1.8	13
896	Potential Inherent Stimulation of the Innate Immune System by Nucleic Acid Aptamers and Possible Corrective Approaches. Pharmaceuticals, 2018, 11, 62.	1.7	23
897	Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules, 2018, 19, 3525-3535.	2.6	21
898	Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials, 2018, 11, 1154.	1.3	352
899	Aptamer Therapeutics in Cancer: Current and Future. Cancers, 2018, 10, 80.	1.7	159
900	Functional Moieties for Intracellular Traffic of Nanomaterials. , 2018, , 399-448.		4
901	Quantifying the Kinetic Residence Time as a Potential Complement to Affinity for the Aptamer Selection. Journal of Physical Chemistry B, 2018, 122, 8380-8385.	1.2	6
902	Aptamer-based targeted therapy. Advanced Drug Delivery Reviews, 2018, 134, 65-78.	6.6	314
903	EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomedicine and Pharmacotherapy, 2018, 107, 849-859.	2.5	23
904	A Synthetic Cross-Species CD200R1 Agonist Suppresses Inflammatory Immune Responses InÂVivo. Molecular Therapy - Nucleic Acids, 2018, 12, 350-358.	2.3	11
905	EpCAM Immunotherapy versus Specific Targeted Delivery of Drugs. Cancers, 2018, 10, 19.	1.7	46
906	A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials, 2018, 182, 216-226.	5.7	75

#	Article	IF	CITATIONS
907	A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Analytica Chimica Acta, 2018, 1033, 185-192.	2.6	27
908	Small-Molecule Lanthanide Complexes Probe for Second Near-Infrared Window Bioimaging. Analytical Chemistry, 2018, 90, 7946-7952.	3.2	61
909	Small Delivery Vehicles of siRNA for Enhanced Cancer Targeting. Biomacromolecules, 2018, 19, 2377-2390.	2.6	28
910	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie - International Edition, 2018, 57, 9739-9743.	7.2	118
911	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie, 2018, 130, 9887-9891.	1.6	17
912	DNA aptamer-based molecular nanoconstructions and nanodevices for diagnostics and therapy. , 2018, , 249-290.		2
913	ExploitingÂStokesÂand antiâ€Stokes type emission profiles of aptamerâ€functionalized luminescent nanoprobes forÂmultiplex sensing applications. ChemistrySelect, 2018, 3, 5814-5823.	0.7	25
914	Targeted siRNA delivery using aptamerâ€siRNA chimeras and aptamerâ€conjugated nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1543.	3.3	31
915	Magnetically triggered release of biologics. International Materials Reviews, 2019, 64, 63-90.	9.4	14
916	Advanced Detection of Endotoxin and Other PAMPs. , 2019, , 547-594.		0
917	Efficient inhibition of RNA self-primed extension by addition of competing 3â€2-capture DNA-improved RNA synthesis by T7 RNA polymerase. Nucleic Acids Research, 2019, 47, e118-e118.	6.5	22
918	A DNA-Based Biosensor Assay for the Kinetic Characterization of Ion-Dependent Aptamer Folding and Protein Binding. Molecules, 2019, 24, 2877.	1.7	25
919	Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation. Analytical and Bioanalytical Chemistry, 2019, 411, 6723-6732.	1.9	13
920	Tissue-Specific Delivery of Oligonucleotides. Methods in Molecular Biology, 2019, 2036, 17-50.	0.4	6
921	Microchip electrophoretic detection of bacterial lipopolysaccharide based on aptamer-modified magnetic beads and polymerase chain amplification. Microchemical Journal, 2019, 150, 104178.	2.3	14
922	Role of Advanced Glycation Endproduct (AGE)-Receptor for Advanced Glycation Endproduct (RAGE) Axis in Cardiovascular Disease and Its Therapeutic Intervention. Circulation Journal, 2019, 83, 1822-1828.	0.7	39
923	Forced Intercalation (FIT)-Aptamers. Journal of the American Chemical Society, 2019, 141, 13744-13748.	6.6	43
924	Optimization of an enzyme linked DNA aptamer assay for cardiac troponin I detection: synchronous multiple sample analysis on an integrated microfluidic platform. Analyst. The, 2019, 144, 4943-4951.	1.7	31

#	Article	IF	CITATIONS
925	Current trends in affinity-based monoliths in microextraction approaches: A review. Analytica Chimica Acta, 2019, 1084, 1-20.	2.6	38
926	A Rapid Colorimetric Sensor for Soluble Interleukinâ€2 Receptor α, Based on Aptamerâ€Adsorbed AuNP. ChemBioChem, 2019, 20, 2236-2240.	1.3	11
927	Developing RNA aptamers for potential treatment of neurological diseases. Future Medicinal Chemistry, 2019, 11, 551-565.	1.1	8
928	Theranostic Application of a Novel G-Quadruplex-Forming DNA Aptamer Targeting Malate Synthase of Mycobacterium tuberculosis. Molecular Therapy - Nucleic Acids, 2019, 18, 661-672.	2.3	19
929	Multifunctional DNA Polycatenane Nanocarriers for Synergistic Targeted Therapy of Multidrugâ€Resistant Human Leukemia. Advanced Functional Materials, 2019, 29, 1905659.	7.8	24
930	Selection Technologies and Applications of Nucleic Acid Aptamers. Analytical Sciences, 2019, 35, 1063-1064.	0.8	7
931	Endocytic Pathways and Intracellular Transport of Aptamer-Drug Conjugates in Live Cells Monitored by Single-Particle Tracking. Analytical Chemistry, 2019, 91, 13818-13823.	3.2	16
932	Cellâ€SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. Advanced Biology, 2019, 3, e1900193.	3.0	34
933	Present Scenario of Bioconjugates in Cancer Therapy: A Review. International Journal of Molecular Sciences, 2019, 20, 5243.	1.8	37
934	Cell isolation via spiral microfluidics and the secondary anchor targeted cell release system. AICHE Journal, 2019, 65, e16844.	1.8	1
935	DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomaterialia, 2019, 99, 469-478.	4.1	31
936	Novel Human Bispecific Aptamer–Antibody Conjugates for Efficient Cancer Cell Killing. Cancers, 2019, 11, 1268.	1.7	38
937	Development and Clinical Trials of Nucleic Acid Medicines for Pancreatic Cancer Treatment. International Journal of Molecular Sciences, 2019, 20, 4224.	1.8	35
938	Aptamer Displacement Reaction from Live-Cell Surfaces and Its Applications. Journal of the American Chemical Society, 2019, 141, 17174-17179.	6.6	51
939	Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science, 2019, 98, 101163.	11.8	189
940	Multifunctional Albumin-Based Delivery System Generated by Programmed Assembly for Tumor-Targeted Multimodal Therapy and Imaging. ACS Applied Materials & Interfaces, 2019, 11, 38385-38394.	4.0	51
941	Hypoxia-Activated PEGylated Conditional Aptamer/Antibody for Cancer Imaging with Improved Specificity. Journal of the American Chemical Society, 2019, 141, 18421-18427.	6.6	85
942	Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death and Disease, 2019, 10, 702.	2.7	33

#	Article	IF	CITATIONS
943	Computational Evolution of Threonine-Rich β-Hairpin Peptides Mimicking Specificity and Affinity of Antibodies. ACS Central Science, 2019, 5, 259-269.	5.3	9
944	Peptide-Aptamer Coassembly Nanocarrier for Cancer Therapy. Bioconjugate Chemistry, 2019, 30, 536-540.	1.8	14
945	Duplexed aptamers: history, design, theory, and application to biosensing. Chemical Society Reviews, 2019, 48, 1390-1419.	18.7	149
946	Targeting strategies for improving the efficacy of nanomedicine in oncology. Beilstein Journal of Nanotechnology, 2019, 10, 168-181.	1.5	48
947	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie - International Edition, 2019, 58, 5582-5586.	7.2	86
948	<p>Novel nanosized AS1411–chitosan–BODIPY conjugate for molecular fluorescent imaging</p> . International Journal of Nanomedicine, 2019, Volume 14, 3543-3555.	3.3	11
949	Recent developments in affinity-based selection of aptamers for binding disease-related protein targets. Chemical Papers, 2019, 73, 2637-2653.	1.0	7
950	DNA-Peptide Amphiphile Nanofibers Enhance Aptamer Function. ACS Applied Bio Materials, 2019, 2, 2955-2963.	2.3	15
951	Peptide and Aptamer Decorated Delivery System for Targeting Delivery of Cas9/sgRNA Plasmid To Mediate Antitumor Genome Editing. ACS Applied Materials & Interfaces, 2019, 11, 23870-23879.	4.0	17
952	Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. American Journal of Sports Medicine, 2019, 47, 2316-2326.	1.9	49
953	HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomedicine and Pharmacotherapy, 2019, 117, 109121.	2.5	50
954	Engineering and design considerations for next-generation snakebite antivenoms. Toxicon, 2019, 167, 67-75.	0.8	43
955	Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials, 2019, 9, 821.	1.9	147
956	DNA-supramolecule conjugates in theranostics. Theranostics, 2019, 9, 3262-3279.	4.6	16
957	Determination of the Equilibrium Constant and Rate Constant of Protein–Oligonucleotide Complex Dissociation under the Conditions of Ideal-Filter Capillary Electrophoresis. Analytical Chemistry, 2019, 91, 8532-8539.	3.2	10
958	The Application of Nucleic Acid Amplification Strategies in Theranostics. , 2019, , 289-305.		0
959	Aptamer-based regulation of transcription circuits. Chemical Communications, 2019, 55, 7378-7381.	2.2	21
960	Raman Spectroscopy and Aptamers for a Label-Free Approach: Diagnostic and Application Tools. Journal of Healthcare Engineering, 2019, 2019, 1-11.	1.1	11

CITATION REPORT ARTICLE IF CITATIONS The Mechanism of the Selective Antiproliferation Effect of Guanine-Based Biomolecules and Its 961 1.6 12 Compensation. ACS Chemical Biology, 2019, 14, 1164-1173. Antimicrobial Peptide LL-37 Facilitates Intracellular Uptake of RNA Aptamer Apt 21-2 Without Inducing 2.2 an Inflammatory or Interferon Response. Frontiers in Immunology, 2019, 10, 857. Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in 963 1.6 24 electrochemical aptasensor. Scientific Reports, 2019, 9, 6642. A ribose modification of Spinach aptamer accelerates lead(ii) cation association in vitro. Chemical 964 Communications, 2019, 55, 5882-5885. Aptamers as Therapeutic Agents: Has the Initial Euphoria Subsided?. Molecular Diagnosis and Therapy, 965 1.6 37 2019, 23, 301-309. Delivery of Cell-Specific Aptamers to the Arterial Wall with an Occlusion Perfusion Catheter. Molecular Therapy - Nucleic Acids, 2019, 16, 360-366. 2.3 Investigation of TiO2 anatase (101), (100) and (110) facets as immobilizer for a potential anticancer 967 0.9 10 RNA aptamer: a classical molecular dynamics simulation. Molecular Simulation, 2019, 45, 849-858. Dual Aptamer-Functionalized in Situ Injectable Fibrin Hydrogel for Promotion of Angiogenesis via Codelivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor-BB. ACS 4.0 54 Applied Materials & amp; Interfaces, 2019, 11, 18123-18132. Enhancement of chemosensitivity in 5-fluorouracil-resistant colon cancer cells with 969 1.0 10 carcinoembryonic antigen-specific RNA aptamer. Molecular Biology Reports, 2019, 46, 3835-3842. Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic 970 1.6 xenograft mouse model. Scientific Reports, 2019, 9, 4976. Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182. 971 2 0.3 Prediction of aptamer–protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier. Mathematical Biosciences, 2019, 311, 103-108. One-Pot Production of RNA Nanoparticles <i>via</i> Automated Processing and Self-Assembly. ACS 973 7.3 23 Nano, 2019, 13, 4603-4612. Chemical methods for the modification of RNA. Methods, 2019, 161, 64-82. 974 63 975 Advances in aptamer screening technologies. Talanta, 2019, 200, 124-144. 2.9 89 Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta, 2019, 1064, 94-103. Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering, 2019, , . 977 0.3 6

978	Electrochemical aptasensor for tumor necrosis factor \hat{l} ± us and cobalt hexacyanoferrate for signal amplification. Journ 1783-1791.	ng aptamer–antibody sandwich structure al of the Iranian Chemical Society, 2019, 16, 1.2	18
-----	--	---	----

#	Article	IF	Citations
979	The sustained and targeted treatment of hemangiomas by propranolol-loaded CD133 aptamers conjugated liposomes-in-microspheres. Biomedicine and Pharmacotherapy, 2019, 114, 108823.	2.5	8
980	Genetically Encoded, Functional Singleâ€Strand RNA Origami: Anticoagulant. Advanced Materials, 2019, 31, e1808262.	11.1	43
981	ITC Measurement for High-Affinity Aptamers Binding to Their Target Proteins. Methods in Molecular Biology, 2019, 1964, 119-128.	0.4	5
982	Enhanced Dispersion and Polarization Interactions Achieved through Dithiophosphate Group Incorporation Yield a Dramatic Binding Affinity Increase for an RNA Aptamer–Thrombin Complex. Journal of the American Chemical Society, 2019, 141, 4445-4452.	6.6	19
983	Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for <i>Vibrio parahemolyticus</i> Determination. Journal of Agricultural and Food Chemistry, 2019, 67, 2313-2320.	2.4	81
984	Nanoamplicon Comparator for Live-Cell MicroRNA Imaging. Analytical Chemistry, 2019, 91, 3374-3381.	3.2	46
985	Side chain determinants of biopolymer function during selection and replication. Nature Chemical Biology, 2019, 15, 419-426.	3.9	17
986	Anti-EGF Receptor Aptamer-Guided Co-Delivery of Anti-Cancer siRNAs and Quantum Dots for Theranostics of Triple-Negative Breast Cancer. Theranostics, 2019, 9, 837-852.	4.6	91
987	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie, 2019, 131, 5638-5642.	1.6	31
988	Current RNA-based Therapeutics in Clinical Trials. Current Gene Therapy, 2019, 19, 172-196.	0.9	82
989	A Single-chain Templated Polymer-based Target Receptor as a New Platform for Label-free Selective Electrochemical Sensing. , 2019, 2019, 1163-1166.		1
990	An RNA Aptamer–Based Biomarker Platform Demonstrates High Soluble CD25 Occupancy by IL2 in the Serum of Follicular Lymphoma Patients. Cancer Immunology Research, 2019, 7, 1511-1522.	1.6	5
991	Nanotechnological strategies involved in the targeted delivery of anticancer drugs. , 2019, , 23-41.		0
992	Prediction of the secondary structure of short DNA aptamers. Biophysics and Physicobiology, 2019, 16, 287-294.	0.5	19
993	Drug delivery systems as advanced nanotechnology. , 2019, , 173-190.		0
994	A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Mikrochimica Acta, 2019, 186, 796.	2.5	25
995	A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Research, 2019, 47, 11527-11537.	6.5	13
996	Towards the crystal structure of thymine: An intermolecular force field development and parallel global cluster optimizations. Journal of Chemical Physics, 2019, 151, 244302.	1.2	6

#	Article	IF	CITATIONS
997	Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. International Journal of Molecular Sciences, 2019, 20, 6358.	1.8	29
998	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. Journal of the American Chemical Society, 2019, 141, 20354-20364.	6.6	68
999	A DNA Aptamer Targeting Galectin-1 as a Novel Immunotherapeutic Strategy for Lung Cancer. Molecular Therapy - Nucleic Acids, 2019, 18, 991-998.	2.3	31
1000	DNA Aptamers to Thrombin Exosite I. Structure-Function Relationships and Antithrombotic Effects. Biochemistry (Moscow), 2019, 84, 1521-1528.	0.7	10
1001	Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules, 2019, 24, 4620.	1.7	23
1002	Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review. Sensors, 2019, 19, 5435.	2.1	70
1003	<p>Delivery Of Curcumin Nanoliposomes Using Surface Modified With CD133 Aptamers For Prostate Cancer</p> . Drug Design, Development and Therapy, 2019, Volume 13, 4021-4033.	2.0	28
1004	The challenges of glycan recognition with natural and artificial receptors. Chemical Society Reviews, 2019, 48, 5488-5505.	18.7	108
1005	In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chemical Neuroscience, 2019, 10, 371-383.	1.7	21
1006	Target-switched triplex nanotweezer and synergic fluorophore translocation for highly selective melamine assay. Mikrochimica Acta, 2019, 186, 42.	2.5	5
1007	Designed and Evolved Nucleic Acid Nanotechnology: Contrast and Complementarity. Bioconjugate Chemistry, 2019, 30, 2-12.	1.8	4
1008	Selfâ€Assembled Aptamer Nanoconstruct: A Highly Effective Moleculeâ€Capturing Platform Having Therapeutic Applications. Advanced Therapeutics, 2019, 2, 1800111.	1.6	4
1009	Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coordination Chemistry Reviews, 2019, 380, 519-549.	9.5	21
1010	Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: New tools for cancer diagnosis. Current Opinion in Electrochemistry, 2019, 14, 32-43.	2.5	20
1011	Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharmaceutical Journal, 2019, 27, 312-319.	1.2	32
1012	Influence of Linker Length on Ligase atalyzed Oligonucleotide Polymerization. ChemBioChem, 2019, 20, 793-799.	1.3	2
1013	An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosensors and Bioelectronics, 2019, 129, 155-163.	5.3	66
1014	Biologically Inspired, Cellâ€Selective Release of Aptamerâ€Trapped Growth Factors by Traction Forces. Advanced Materials, 2019, 31, e1806380.	11.1	47

#	Article	IF	CITATIONS
1015	Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. Journal of Controlled Release, 2019, 295, 268-277.	4.8	82
1016	Assembly of Bifunctional Aptamer–Fibrinogen Macromer for VEGF Delivery and Skin Wound Healing. Chemistry of Materials, 2019, 31, 1006-1015.	3.2	40
1017	RNA inhibitors of nuclear proteins responsible for multiple organ dysfunction syndrome. Nature Communications, 2019, 10, 116.	5.8	11
1018	Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosensors and Bioelectronics, 2019, 130, 1-19.	5.3	103
1019	Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor. Analytical Chemistry, 2019, 91, 3270-3276.	3.2	174
1020	Dimerization of an aptamer generated from Ligand-guided selection (LICS) yields a high affinity scaffold against B-cells. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 232-240.	1.1	22
1021	In vitro selection of CD70 binding aptamer and its application in a biosensor design for sensitive detection of SKOV-3 ovarian cells. Talanta, 2019, 194, 399-405.	2.9	21
1022	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
1023	DNA Nanotechnology. , 2019, , 1-12.		0
1024	Use of capillary electrophoresis to select a DNA aptamer that recognizes swine anaphylatoxin C5a. Analytical Biochemistry, 2019, 564-565, 47-53.	1.1	6
1025	Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery, 2019, 18, 273-294.	21.5	579
1026	A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 175, 231-238.	2.5	43
1027	Engineering lymphocytes with RNAi. Advanced Drug Delivery Reviews, 2019, 141, 55-66.	6.6	21
1028	Synthetic antibody: Prospects in aquaculture biosecurity. Fish and Shellfish Immunology, 2019, 86, 361-367.	1.6	14
1029	Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Advanced Drug Delivery Reviews, 2019, 141, 3-22.	6.6	44
1030	In silico studies of the interaction of the colon cancer receptor and RNA aptamer adsorbed on (1 0 1) facet of TiO2 nanoparticle investigated by molecular dynamics simulation. Adsorption, 2020, 26, 941-954.	1.4	5
1031	Current approaches for RNA-labelling to identify RNA-binding proteins. Biochemistry and Cell Biology, 2020, 98, 31-41.	0.9	20
1032	Progress on Modulating Tumorâ€Associated Macrophages with Biomaterials. Advanced Materials, 2020, 32, e1902007.	11.1	116

#	Article	IF	CITATIONS
1033	Changes in Protein Glycosylation as a Result of Aptamer Interactions with Cancer Cells. Proteomics - Clinical Applications, 2020, 14, 1800186.	0.8	3
1034	Graphical and SERS dual-modal identifier for encoding OBOC library. Sensors and Actuators B: Chemical, 2020, 303, 127211.	4.0	7
1035	Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020, 30, 313-335.	1.5	11
1036	Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives. Critical Reviews in Environmental Science and Technology, 2020, 50, 816-867.	6.6	52
1037	Functional nucleic acids for cancer theranostics. Coordination Chemistry Reviews, 2020, 403, 213080.	9.5	31
1038	Endogenous nucleotide as drug carrier: base-paired guanosine-5′-monophosphate:pemetrexed vesicles with enhanced anticancer capability. Science China Chemistry, 2020, 63, 244-253.	4.2	6
1039	Interface biology of stem cell–driven tissue engineering. , 2020, , 19-44.		1
1040	Nanoscale delivery systems for microRNAs in cancer therapy. Cellular and Molecular Life Sciences, 2020, 77, 1059-1086.	2.4	65
1041	RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacological Research, 2020, 152, 104550.	3.1	24
1042	7,8â€Đihydroâ€8â€oxoguanosine Lesions Inhibit the Theophylline Aptamer or Change Its Selectivity. ChemBioChem, 2020, 21, 1347-1355.	1.3	5
1043	Development of hydrogel-like biomaterials via nanoparticle assembly and solid-hydrogel transformation. Journal of Controlled Release, 2020, 318, 185-196.	4.8	16
1044	Molecularly Engineering Triptolide with Aptamers for High Specificity and Cytotoxicity for Triple-Negative Breast Cancer. Journal of the American Chemical Society, 2020, 142, 2699-2703.	6.6	93
1045	PEGylated proteins. , 2020, , 23-40.		1
1046	Single-molecule biosensors: Recent advances and applications. Biosensors and Bioelectronics, 2020, 151, 111944.	5.3	95
1047	Polymeric Engineering of Aptamer–Drug Conjugates for Targeted Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 37-42.	1.8	27
1048	Aptamer-based and immunosorbents. , 2020, , 151-183.		6
1049	Dendrimers in the context of nanomedicine. International Journal of Pharmaceutics, 2020, 573, 118814.	2.6	138
1050	Active targeting of gold nanoparticles as cancer therapeutics. Chemical Society Reviews, 2020, 49, 8774-8789.	18.7	153

#	Article	IF	CITATIONS
1051	Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Research, 2020, 48, 10680-10690.	6.5	24
1052	Tumor-targeted Strategies. , 2020, , 27-55.		0
1053	Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers, 2020, 12, 2889.	1.7	17
1054	Improved Anti-Prion Nucleic Acid Aptamers by Incorporation of Chemical Modifications. Nucleic Acid Therapeutics, 2020, 30, 414-421.	2.0	8
1055	Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics, 2020, 12, 646.	2.0	104
1056	Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. International Journal of Pharmaceutics, 2020, 587, 119650.	2.6	19
1057	Single-molecule DNA origami aptasensors for real-time biomarker detection. Journal of Materials Chemistry B, 2020, 8, 6352-6356.	2.9	12
1058	Natural Materials. , 2020, , 361-375.		0
1059	L, D-Polydeoxyribonucleotides to provide an essential inhibitory effect on DNA polymerase Î ² of human myeloid leukemia HL60Âcells. Biochemistry and Biophysics Reports, 2020, 24, 100835.	0.7	3
1060	Gene expression signatures identify paediatric patients with multiple organ dysfunction who require advanced life support in the intensive care unit. EBioMedicine, 2020, 62, 103122.	2.7	17
1061	Assessment of Aptamer-Targeted Contrast Agents for Monitoring of Blood Clots in Computed Tomography and Fluoroscopy Imaging. Bioconjugate Chemistry, 2020, 31, 2737-2749.	1.8	7
1062	Functional Constitutional Dynamic Networks Revealing Evolutionary Reproduction/Variation/Selection Principles. Journal of the American Chemical Society, 2020, 142, 14437-14442.	6.6	10
1063	Advances in single cell technologies in immunology. BioTechniques, 2020, 69, 226-236.	0.8	9
1064	A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta, 2020, 220, 121437.	2.9	48
1065	Internalized Functional DNA Aptamers as Alternative Cancer Therapies. Frontiers in Pharmacology, 2020, 11, 1115.	1.6	15
1066	2′-fluoro-modified pyrimidines enhance affinity of RNA oligonucleotides to HIV-1 reverse transcriptase. Rna, 2020, 26, 1667-1679.	1.6	16
1067	Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chemical Reviews, 2020, 120, 9554-9582.	23.0	296
1068	A sandwich-type surface-enhanced Raman scattering sensor using dual aptamers and gold nanoparticles for the detection of tumor extracellular vesicles. Analyst, The, 2020, 145, 6232-6236.	1.7	11

#	Article	IF	CITATIONS
1069	Engineering polymerases for applications in synthetic biology. Quarterly Reviews of Biophysics, 2020, 53, e8.	2.4	45
1070	A Homodimeric Aptamer Variant Generated from Ligand-Guided Selection Activates the T Cell Receptor Cluster of Differentiation 3 Complex. Molecular Therapy - Nucleic Acids, 2020, 22, 167-178.	2.3	12
1071	Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. Journal of Cancer, 2020, 11, 6902-6915.	1.2	37
1072	Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases forÂnanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochimica Acta, 2020, 187, 549.	2.5	33
1073	Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 180.	3.5	38
1074	Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 2020, 25, 5858.	1.7	93
1075	Detection and beyond: challenges and advances in aptamer-based biosensors. Materials Advances, 2020, 1, 2663-2687.	2.6	133
1076	Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Frontiers in Immunology, 2020, 11, 599417.	2.2	31
1077	DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences. Journal of the American Chemical Society, 2020, 142, 21530-21537.	6.6	40
1078	Aptamer Functionalized Lipid Multilayer Gratings for Label-Free Analyte Detection. Nanomaterials, 2020, 10, 2433.	1.9	1
1079	Incorporation of a metal-mediated base pair into an ATP aptamer – using silver(I) ions to modulate aptamer function. Beilstein Journal of Organic Chemistry, 2020, 16, 2870-2879.	1.3	16
1080	Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Research, 2020, 48, 11982-11993.	6.5	19
1081	Structure–Activity Relationship Study of a Potent αâ€Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry - A European Journal, 2020, 26, 9589-9597.	1.7	17
1082	Non-Invasive Delivery of Therapeutics into the Brain: The Potential of Aptamers for Targeted Delivery. Biomedicines, 2020, 8, 120.	1.4	25
1083	Porous Silicon Nanoparticles Embedded in Poly(lacticâ€∢i>coâ€glycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. Advanced Functional Materials, 2020, 30, 2002560.	7.8	27
1084	Therapeutic Application of Drug-Conjugated HER2 Oligobody (HER2-DOligobody). International Journal of Molecular Sciences, 2020, 21, 3286.	1.8	4
1085	Riboswitches and aptamers: potential future targets to control drug-resistant bacteria. , 2020, , 421-462.		2
1086	Sublingual dendritic cells targeting by aptamer: Possible approach for improvement of sublingual immunotherapy efficacy. International Immunopharmacology, 2020, 85, 106603.	1.7	17

#	Article	IF	CITATIONS
1087	Measuring Aptamer Folding Energy Using a Molecular Clamp. Journal of the American Chemical Society, 2020, 142, 11743-11749.	6.6	9
1088	Superparamagnetic Nanostructures for Split-Type and Competitive-Mode Photoelectrochemical Aptasensing. Analytical Chemistry, 2020, 92, 8607-8613.	3.2	34
1089	Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers, 2020, 12, 1365.	1.7	8
1090	Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Nucleic Acids Research, 2020, 48, 11130-11145.	6.5	15
1091	Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. International Journal of Molecular Sciences, 2020, 21, 3860.	1.8	23
1092	Modularly Engineered Solidâ€₽hase Synthesis of Aptamerâ€Functionalized Small Molecule Drugs for Targeted Cancer Therapy. Advanced Therapeutics, 2020, 3, 2000074.	1.6	15
1093	Gold nanoparticle-streptavidin conjugates for rapid and efficient screening of aptamer function in lateral flow sensors using novel CD4-binding aptamers identified through Crossover-SELEX. Analyst, The, 2020, 145, 5180-5193.	1.7	19
1094	High-efficiency enrichment enables identification of aptamers to circulating Plasmodium falciparum-infected erythrocytes. Scientific Reports, 2020, 10, 9706.	1.6	13
1095	An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Science Advances, 2020, 6, eaba9381.	4.7	105
1096	COVID-19 diagnostic approaches: different roads to the same destination. VirusDisease, 2020, 31, 97-105.	1.0	115
1097	Improving Tumor Targeting of Exosomal Membrane-Coated Polymeric Nanoparticles by Conjugation with Aptamers. ACS Applied Bio Materials, 2020, 3, 2666-2673.	2.3	42
1098	AptaBlocks Online: A Web-Based Toolkit for the In Silico Design of Oligonucleotide Sticky Bridges. Journal of Computational Biology, 2020, 27, 356-360.	0.8	0
1099	Long Non-coding RNAs Mechanisms of Action in HIV-1 Modulation and the Identification of Novel Therapeutic Targets. Non-coding RNA, 2020, 6, 12.	1.3	15
1100	Extracellular pH-manipulated in situ reconfiguration of aptamer functionalized DNA monomer enables specifically improved affinity, detection and drug delivery. Analyst, The, 2020, 145, 2562-2569.	1.7	9
1101	Aptamer-Modified Nanoparticles in Medical Applications. Advances in Biochemical Engineering/Biotechnology, 2020, 174, 161-193.	0.6	13
1102	Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.	4.6	14
1103	Selected DNA aptamers as hydroxyapatite affinity reagents. Analytica Chimica Acta, 2020, 1110, 115-121.	2.6	9
1104	In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8486-8493.	3.3	49

#	Article	IF	CITATIONS
1105	Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. Biomaterials, 2020, 246, 119971.	5.7	54
1106	Circular Nucleic Acids: Discovery, Functions and Applications. ChemBioChem, 2020, 21, 1547-1566.	1.3	43
1107	State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Critical Reviews in Biotechnology, 2020, 40, 804-820.	5.1	61
1108	Epitope-Imprinted Magnetic Nanoparticles as a General Platform for Efficient <i>In Vitro</i> Evolution of Protein-Binding Aptamers. ACS Sensors, 2020, 5, 2537-2544.	4.0	16
1109	Identification of a DNA Aptamer That Binds to Human Monocytes and Macrophages. Bioconjugate Chemistry, 2020, 31, 1899-1907.	1.8	13
1110	Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells. Nucleic Acid Therapeutics, 2020, 30, 117-128.	2.0	41
1111	A systematic evolution of ligands by exponential enrichment workflow with consolidated counterselection to efficiently isolate highâ€affinity aptamers. Engineering Reports, 2020, 2, e12089.	0.9	7
1112	Aptamer-Based Liquid Biopsy. ACS Applied Bio Materials, 2020, 3, 2743-2764.	2.3	38
1113	Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Materials Today Bio, 2020, 6, 100045.	2.6	17
1114	"Apollo Program―in Nanoscale: Landing and Exploring Cell-Surface with DNA Nanotechnology. ACS Applied Bio Materials, 2020, 3, 2723-2742.	2.3	22
1115	The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovascular Research, 2020, 116, 2055-2068.	1.8	37
1116	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	1.6	32
1117	NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomaterials Science, 2020, 8, 1934-1950.	2.6	9
1118	Designing a new dimerized anti human TNFâ€Î± aptamer with blocking activity. Biotechnology Progress, 2020, 36, e2969.	1.3	13
1119	Fabrication of pH-Adjusted Boronic Acid–Aptamer Conjugate for Electrochemical Analysis of Conjugated <i>N</i> -Glycolylneuraminic Acid. ACS Applied Materials & Interfaces, 2020, 12, 7650-7657.	4.0	12
1120	Selection of Aptamers with Large Hydrophobic 2′-Substituents. Journal of the American Chemical Society, 2020, 142, 2125-2128.	6.6	19
1121	DNA Nanotechnology on Live Cell Membranes. Chemical Research in Chinese Universities, 2020, 36, 203-210.	1.3	5
1122	Ipilimumab and Its Derived EGFR Aptamer-Based Conjugate Induce Efficient NK Cell Activation against Cancer Cells, Cancers, 2020, 12, 331.	1.7	27

#	Article	IF	CITATIONS
1123	TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules, 2020, 25, 627.	1.7	58
1124	Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. IScience, 2020, 23, 100979.	1.9	19
1125	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
1126	A facile biosensor for Aβ40O based on fluorescence quenching of prussian blue nanoparticles. Talanta, 2020, 216, 120930.	2.9	29
1127	A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Science Advances, 2020, 6, eaay2801.	4.7	38
1128	Targeting Chemokine—Glycosaminoglycan Interactions to Inhibit Inflammation. Frontiers in Immunology, 2020, 11, 483.	2.2	78
1129	Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 2793.	1.8	89
1130	A highly stable RNA aptamer probe for the retinoblastoma protein in live cells. Chemical Science, 2020, 11, 4467-4474.	3.7	7
1131	Aptamer technology: a new approach to treat lymphoma?. Blood Science, 2020, 2, 11-15.	0.4	3
1132	Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability. Journal of the American Chemical Society, 2020, 142, 7721-7724.	6.6	73
1133	Review—A Review of Electrochemical Aptasensors for Label-Free Cancer Diagnosis. Journal of the Electrochemical Society, 2020, 167, 067511.	1.3	48
1134	Advances and perspectives in nearâ€infrared fluorescent organic probes for surgical oncology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1635.	3.3	28
1135	Cancer theranostic applications of MXene nanomaterials: Recent updates. Nano Structures Nano Objects, 2020, 22, 100457.	1.9	53
1136	Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2199-2209.	2.0	9
1137	Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Applied Materials & Interfaces, 2021, 13, 9500-9519.	4.0	287
1138	Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications. ACS Applied Materials & Interfaces, 2021, 13, 9369-9389.	4.0	49
1139	Polymer/Aptamer-Integrated Gold Nanoconstruct Suppresses the Inflammatory Process by Scavenging ROS and Capturing Pro-inflammatory Cytokine TNF-α. ACS Applied Materials & Interfaces, 2021, 13, 9390-9401.	4.0	18
1140	Self-Assembled Peptide Drug Delivery Systems. ACS Applied Bio Materials, 2021, 4, 24-46.	2.3	75

	CHAIION	REPORT	
#	Article	IF	CITATIONS
1141	Brain delivery of antidotes by polymeric nanoparticles. Journal of Applied Toxicology, 2021, 41, 20-32.	1.4	11
1142	Mimicking Functions of Native Enzymes or Photosynthetic Reaction Centers by Nucleoapzymes and Photonucleoapzymes. Biochemistry, 2021, 60, 956-965.	1.2	15
1143	Synthetic DNA for Cell‧urface Engineering. Angewandte Chemie, 2021, 133, 11684-11695.	1.6	12
1144	Synthetic DNA for Cell‧urface Engineering. Angewandte Chemie - International Edition, 2021, 60, 11580-11591.	7.2	34
1145	Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opinion on Drug Discovery, 2021, 16, 255-274.	2.5	18
1146	One-step non-competitive fluorescence polarization immunoassay based on a Fab fragment for C-reactive protein quantification. Sensors and Actuators B: Chemical, 2021, 326, 128982.	4.0	18
1147	Recent advances in applications of nanoparticles in <scp>SERS</scp> in vivo imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1672.	3.3	43
1148	The role of non-coding genome in the behavior of infiltrated myeloid-derived suppressor cells in tumor microenvironment; a perspective and state-of-the-art in cancer targeted therapy. Progress in Biophysics and Molecular Biology, 2021, 161, 17-26.	1.4	9
1149	X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie, 2021, 181, 25-33.	1.3	9
1150	A Biomimetic DNAâ€Based Membrane Gate for Proteinâ€Controlled Transport of Cytotoxic Drugs. Angewandte Chemie - International Edition, 2021, 60, 1903-1908.	7.2	30
1151	Aptamer-ligand recognition studied by native ion mobility-mass spectrometry. Talanta, 2021, 224, 121917.	2.9	14
1152	Improving Thermodynamic Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Incorporation of 8-trifluoromethyl-2′-deoxyguanosine. Journal of Medicinal Chemistry, 2021, 64, 711-718.	2.9	16
1153	A Biomimetic DNAâ€Based Membrane Gate for Proteinâ€Controlled Transport of Cytotoxic Drugs. Angewandte Chemie, 2021, 133, 1931-1936.	1.6	6
1154	Molecularly engineered truncated tissue factor with therapeutic aptamers for tumor-targeted delivery and vascular infarction. Acta Pharmaceutica Sinica B, 2021, 11, 2059-2069.	5.7	11
1155	Development of aptamer-based inhibitors for CRISPR/Cas system. Nucleic Acids Research, 2021, 49, 1330-1344.	6.5	19
1156	Engineering G-quadruplex aptamer to modulate its binding specificity. National Science Review, 2021, 8, nwaa202.	4.6	5
1157	A changing trend in diagnostic methods of Influenza A (H3N2) virus in human: a review. 3 Biotech, 2021, 11, 87.	1.1	13
1158	Generation of High-Affinity. Methods in Molecular Biology, 2021, 2359, 109-121.	0.4	Ο

#	Article	IF	CITATIONS
1159	Immunoassays and diagnostic antibodies for Perkinsus spp. pathogens of marine molluscs. Diseases of Aquatic Organisms, 2021, 147, 13-23.	0.5	1
1160	Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Advances, 2021, 11, 17301-17319.	1.7	10
1161	Evolution of DNA aptamers against esophageal squamous cell carcinoma using cell-SELEX. Analyst, The, 2021, 146, 4180-4187.	1.7	7
1162	Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polymer Chemistry, 2021, 12, 3498-3509.	1.9	18
1163	The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. International Journal of Molecular Sciences, 2021, 22, 803.	1.8	11
1164	Aptamer conjugates: A new avenue. , 2021, , 271-306.		0
1165	One Step Histological Detection and Staining of the PTEN Tumor Suppressor Protein by a Single Strand DNA. Diagnostics, 2021, 11, 171.	1.3	2
1166	An enhanced enzyme-linked aptamer assay for the detection of zearalenone based on gold nanoparticles. Analytical Methods, 2021, 13, 1255-1260.	1.3	15
1167	Nonspecific nuclear uptake of anti-MUC1 aptamers by dead cells: the role of cell viability monitoring in aptamer targeting of membrane-bound protein cancer biomarkers. Analytical Methods, 2021, 13, 1191-1203.	1.3	4
1168	Flavin-adenine-dinucleotide gold complex nanoparticles: chemical modeling design, physico-chemical assessment and perspectives in nanomedicine. Nanoscale Advances, 2021, 3, 6144-6156.	2.2	7
1169	Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics, 2021, 11, 104.	1.3	45
1170	mRNA vaccines for COVID-19: what, why and how. International Journal of Biological Sciences, 2021, 17, 1446-1460.	2.6	185
1171	Biosensors: Aptamer Sensors. , 2023, , 363-376.		1
1172	Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Applied Materials & Interfaces, 2021, 13, 9542-9560.	4.0	66
1173	Selection of DNA Aptamers for Root Exudate <scp>l</scp> -Serine Using Multiple Selection Strategies. Journal of Agricultural and Food Chemistry, 2021, 69, 4294-4306.	2.4	8
1174	A Decade of FDA-Approved Drugs (2010–2019): Trends and Future Directions. Journal of Medicinal Chemistry, 2021, 64, 2312-2338.	2.9	145
1175	2D graphene oxide–aptamer conjugate materials for cancer diagnosis. Npj 2D Materials and Applications, 2021, 5, .	3.9	53
1176	Stable Hairpin Structures Formed by Xyloseâ€Based Nucleic Acids. ChemBioChem, 2021, 22, 1638-1645.	1.3	4

#	Article	IF	CITATIONS
1177	Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World Journal of Microbiology and Biotechnology, 2021, 37, 45.	1.7	50
1178	Enhanced targeting of 3D pancreatic cancer spheroids by aptamer-conjugated polymeric micelles with deep tumor penetration. European Journal of Pharmacology, 2021, 894, 173814.	1.7	21
1179	Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. Small, 2021, 17, e2005222.	5.2	12
1180	Precise monitoring of mesenchymal stem cell homing to injured kidney with an activatable aptamer probe generated by cell-SELEX. Applied Materials Today, 2021, 22, 100974.	2.3	4
1181	Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical Reviews, 2021, 121, 12035-12105.	23.0	294
1183	Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Frontiers in Chemistry, 2021, 9, 613209.	1.8	9
1184	Efficacy, accumulation, and transcriptional profile of anti-HIV shRNAs expressed from human U6, 7SK, and H1 promoters. Molecular Therapy - Nucleic Acids, 2021, 23, 1020-1034.	2.3	10
1185	Bioorthogonal Pretargeting Strategy for Anchoring Activatable Photosensitizers on Plasma Membranes for Effective Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 14004-14014.	4.0	16
1186	Systematic Approach to DNA Aptamer Design Using Amino Acid–Nucleic Acid Hybrids (ANHs) Targeting Thrombin. ACS Biomaterials Science and Engineering, 2021, 7, 1338-1343.	2.6	6
1188	Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy. Macromolecular Bioscience, 2021, 21, 2100083.	2.1	1
1189	ĐœĐ°Ñ•ÑĐ¿ĐμĐºÑ,Ñ€Đ¾Đ¼ĐμÑ,Ñ€Đ,Ñ‡Đ½Đ,Đ¹ Đ°Đ½Đ°Đ»Ñ–Đ· Đ¾Đ»Ñ–Đ3Đ¾Ñ€Đ,Đ±Đ¾Đ½ÑƒĐºĐ»Đμŧ)¾Ã) ,Ð,Đ↑	ĺ− 1 в ÑÑfй,
1190	Ultrasensitive electrochemiluminescence biosensor for the detection of carcinoembryonic antigen based on multiple amplification and a DNA walker. Sensors and Actuators B: Chemical, 2021, 333, 129586.	4.0	19
1191	A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta, 2021, 225, 122068.	2.9	8
1192	Affinity Hydrogels for Protein Delivery. Trends in Pharmacological Sciences, 2021, 42, 300-312.	4.0	41
1193	Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta, 2021, 376, 137994.	2.6	61
1194	Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. Journal of Drug Targeting, 2021, 29, 1063-1079.	2.1	10
1195	Multivalent Aptamerâ€Functionalized Singleâ€Strand RNA Origami as Effective, Targetâ€Specific Anticoagulants with Corresponding Reversal Agents. Advanced Healthcare Materials, 2021, 10, e2001826.	3.9	17
1196	Machine learning guided aptamer refinement and discovery. Nature Communications, 2021, 12, 2366.	5.8	56

#	Article	IF	CITATIONS
1198	Precisely Defined Aptamer- <i>b</i> -Poly(phosphodiester) Conjugates Prepared by Phosphoramidite Polymer Chemistry. ACS Macro Letters, 2021, 10, 481-485.	2.3	12
1199	Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers, 2021, 260, 117809.	5.1	103
1200	Efficient and Accurate Potential Energy Surfaces of Puckering in Sugar-Modified Nucleosides. Journal of Chemical Theory and Computation, 2021, 17, 3814-3823.	2.3	7
1201	RNA therapeutics for mood disorders: current evidence toward clinical trials. Expert Opinion on Investigational Drugs, 2021, 30, 721-736.	1.9	2
1202	The Potential of Aptamer-Mediated Liquid Biopsy for Early Detection of Cancer. International Journal of Molecular Sciences, 2021, 22, 5601.	1.8	22
1203	New insight into G-quadruplexes; diagnosis application in cancer. Analytical Biochemistry, 2021, 620, 114149.	1.1	10
1204	MicroRNAs and Oxidative Stress: An Intriguing Crosstalk to Be Exploited in the Management of Type 2 Diabetes. Antioxidants, 2021, 10, 802.	2.2	15
1205	Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles. Analytical Chemistry, 2021, 93, 8309-8317.	3.2	18
1206	Aptamerâ€functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1731.	3.3	12
1207	Multiple Therapeutic Applications of RBM-007, an Anti-FGF2 Aptamer. Cells, 2021, 10, 1617.	1.8	11
1208	Provision of rapid and specific ex vivo diagnosis of central nervous system lymphoma from rodent xenograft biopsies by a fluorescent aptamer. Journal of Neurosurgery, 2021, 134, 1783-1790.	0.9	3
1209	Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: Current status with an emphasis on delivery systems. Life Sciences, 2021, 275, 119368.	2.0	63
1210	Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Advanced Functional Materials, 2021, 31, 2103347.	7.8	41
1211	In Vivo Monitoring of Intracellular Metabolite in a Microalgal Cell Using an Aptamer/Graphene Oxide Nanosheet Complex. ACS Applied Bio Materials, 2021, 4, 5080-5089.	2.3	10
1212	Tackling prion diseases: a review of the patent landscape. Expert Opinion on Therapeutic Patents, 2021, 31, 1097-1115.	2.4	10
1213	Nonspecific Binding—Fundamental Concepts and Consequences for Biosensing Applications. Chemical Reviews, 2021, 121, 8095-8160.	23.0	113
1214	Stoichiometry of multi-specific immune checkpoint RNA Abs for TÂcell activation and tumor inhibition using ultra-stable RNA nanoparticles. Molecular Therapy - Nucleic Acids, 2021, 24, 426-435.	2.3	5
1215	Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-Micro Letters, 2021, 13, 142.	14.4	16

#	Article	IF	CITATIONS
1216	Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 27749-27773.	4.0	52
1217	Potential applications of aptamers in veterinary science. Veterinary Research, 2021, 52, 79.	1.1	5
1218	Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis. Cells, 2021, 10, 1455.	1.8	4
1219	2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin. Talanta, 2021, 228, 122219.	2.9	38
1220	Singleâ€Round DNA Aptamer Selection by Combined Use of Capillary Electrophoresis and Next Generation Sequencing: An Aptaomics Approach for Identifying Unique Functional Proteinâ€Binding DNA Aptamers. Chemistry - A European Journal, 2021, 27, 10058-10067.	1.7	4
1221	Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. Sensing and Bio-Sensing Research, 2021, 32, 100416.	2.2	14
1222	Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chemical Reviews, 2021, 121, 13797-13868.	23.0	84
1223	Ligand-mediated delivery of RNAi-based therapeutics for the treatment of oncological diseases. NAR Cancer, 2021, 3, zcab030.	1.6	16
1224	Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells, 2021, 10, 1697.	1.8	18
1225	Circular L-RNA aptamer promotes target recognition and controls gene activity. Nucleic Acids Research, 2021, 49, 7280-7291.	6.5	22
1226	Protein-Based Nanohydrogels for Bioactive Delivery. Frontiers in Chemistry, 2021, 9, 573748.	1.8	32
1227	DNAâ€Based Synthetic Growth Factor Surrogates with Fineâ€Tuned Agonism**. Angewandte Chemie, 2021, 133, 22927.	1.6	4
1228	Structural and Binding Effects of Chemical Modifications on Thrombin Binding Aptamer (TBA). Molecules, 2021, 26, 4620.	1.7	4
1229	Facile Construction of a Solely-DNA-Based System for Targeted Delivery of Nucleic Acids. Nanomaterials, 2021, 11, 1967.	1.9	3
1230	DNAâ€Based Synthetic Growth Factor Surrogates with Fine‶uned Agonism**. Angewandte Chemie - International Edition, 2021, 60, 22745-22752.	7.2	17
1231	Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews, 2021, 121, 12181-12277.	23.0	227
1232	Breast Cancer Aptamers: Current Sensing Targets, Available Aptamers, and Their Evaluation for Clinical Use in Diagnostics. Cancers, 2021, 13, 3984.	1.7	17
1233	Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons. Nano Today, 2021, 39, 101177.	6.2	100

#	Article	IF	CITATIONS
1234	Supramolecular "Click Chemistry―for Targeting in the Body. Bioconjugate Chemistry, 2021, 32, 1935-1946.	1.8	20
1235	Generation of Nucleic Acid Aptamer Candidates against a Novel Calicivirus Protein Target. Viruses, 2021, 13, 1716.	1.5	2
1236	In vitro selection of DNA aptamers against human osteosarcoma. Investigational New Drugs, 2022, 40, 172-181.	1.2	4
1237	Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. Journal of the American Chemical Society, 2021, 143, 13937-13943.	6.6	9
1238	PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 2021, 12, 731798.	1.6	134
1239	Inhibition of cell migration and invasion by ICAM-1 binding DNA aptamers. Analytical Biochemistry, 2021, 628, 114262.	1.1	8
1240	Development and characterization of a DNA aptamer for MLL-AF9 expressing acute myeloid leukemia cells using whole cell-SELEX. Scientific Reports, 2021, 11, 19174.	1.6	8
1241	Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. Photoacoustics, 2022, 25, 100307.	4.4	21
1242	Synthesis and duplex-forming ability of oligonucleotides modified with 4′-C,5′-C-methylene-bridged nucleic acid (4′,5′-BNA). Bioorganic and Medicinal Chemistry, 2021, 46, 116359.	1.4	2
1243	PolyPurine Reverse Hoogsteen Hairpins Work as RNA Species for Gene Silencing. International Journal of Molecular Sciences, 2021, 22, 10025.	1.8	3
1244	Multiple myeloma: therapeutic delivery of antibodies and aptamers. Therapeutic Delivery, 2021, 12, 705-722.	1.2	2
1245	The Application of Microfluidic Technologies in Aptamer Selection. Frontiers in Cell and Developmental Biology, 2021, 9, 730035.	1.8	11
1246	Streifenschnelltest mit pptâ€Empfindlichkeit durch Kombination von Elektrochemilumineszenzâ€Detektion mit Aptamerâ€gesteuerter Indikatorfreisetzung aus mesoporösen Nanopartikeln. Angewandte Chemie, 2021, 133, 26491-26501.	1.6	4
1247	Spectrally filtered photodiode pairs for on-chip ratiometric aptasensing of cytokine dynamics. Sensors and Actuators B: Chemical, 2021, 345, 130330.	4.0	0
1248	An insight into aptamer engineered dendrimer for cancer therapy. European Polymer Journal, 2021, 159, 110746.	2.6	47
1249	Combining Electrochemiluminescence Detection with Aptamerâ€Gated Indicator Releasing Mesoporous Nanoparticles Enables ppt Sensitivity for Stripâ€Based Rapid Tests. Angewandte Chemie - International Edition, 2021, 60, 26287-26297.	7.2	32
1250	RNA aptamers for AMPA receptors. Neuropharmacology, 2021, 199, 108761.	2.0	5
1251	In silico screening of ssDNA aptamer against Escherichia coli O157:H7: A machine learning and the Pseudo K-tuple nucleotide composition based approach. Computational Biology and Chemistry, 2021, 95, 107568	1.1	3

#	Article	IF	CITATIONS
1252	Translational control of enzyme scavenger expression with toxin-induced micro RNA switches. Scientific Reports, 2021, 11, 2462.	1.6	2
1253	Aptamers for the Diagnosis of Malign Tumors. , 2021, , 239-277.		1
1254	Aptamers for the Diagnosis and Therapy of Neurodegenerative Diseases. , 2021, , 351-374.		0
1255	Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Medicinal Chemistry, 2021, 12, 1640-1649.	1.7	8
1256	Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Analytical Chemistry, 2021, 93, 3209-3216.	3.2	62
1257	Potent aptamer-based nanosensors for early detection of lung cancer. , 2021, , 505-529.		1
1258	Feeder-Free Human Induced Pluripotent Stem Cell Culture Using a DNA Aptamer-Based Mimic of Basic Fibroblast Growth Factor. Methods in Molecular Biology, 2021, 2312, 301-305.	0.4	3
1259	Synthesis, Structural, and Conformational Analysis of 4′â€ <i>C</i> â€Alkylâ€2′â€ <i>O</i> â€Ethylâ€Uridine Nucleosides. European Journal of Organic Chemistry, 2021, 2021, 924-932.	Modified 1.2	6
1260	Multivalent Sgc8c-aptamer decorated polymer scaffolds for leukemia targeting. Chemical Communications, 2021, 57, 2744-2747.	2.2	12
1261	Engineering Aptamers for Biomedical Applications: Part I. , 2014, , 397-426.		2
1262	Perspectives in Glycomics and Lectin Engineering. Methods in Molecular Biology, 2014, 1200, 421-445.	0.4	11
1263	Cell-Internalization SELEX: Method for Identifying Cell-Internalizing RNA Aptamers for Delivering siRNAs to Target Cells. Methods in Molecular Biology, 2015, 1218, 187-199.	0.4	63
1264	HPLC Purification of RNA Aptamers up to 59 Nucleotides with Single-Nucleotide Resolution. Methods in Molecular Biology, 2015, 1297, 83-93.	0.4	2
1265	In Vitro and In Vivo Imaging of Fluorescent Aptamers. Methods in Molecular Biology, 2016, 1380, 135-150.	0.4	8
1266	X-Aptamer Selection and Validation. Methods in Molecular Biology, 2017, 1632, 151-174.	0.4	26
1267	Design and Preparation of Aptamer–siRNA Chimeras (AsiCs) for Targeted Cancer Therapy. Methods in Molecular Biology, 2017, 1632, 175-186.	0.4	4
1268	Aptamer Selection for Detecting Molecular Target Using Cell-SELEX (Systematic Evolution of Ligands) Tj ETQq0 0	0 rgBT /O 0:4	verlock 10 T

1269	The Principles of RNA Structure Architecture.	Methods in Molecular Biology, 2014, 1097, 33-43.	0.4	4
------	---	--	-----	---

#	Article	IF	Citations
1270	RNA Nanotechnology Approach for Targeted Delivery of RNA Therapeutics Using Cell-Internalizing Aptamers. , 2013, , 395-423.		1
1271	Unnatural Nucleic Acids for Aptamer Selection. , 2015, , 35-65.		2
1272	Drug Targeting and Delivery. , 2017, , 279-303.		1
1273	Nucleic Acid Guided Molecular Tool for In-Vivo Theranostic Applications. , 2019, , 101-122.		1
1274	Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomaterialia, 2020, 112, 29-51.	4.1	42
1275	Chapter 2. Quantum Dots in the Analysis of Food Safety and Quality. Food Chemistry, Function and Analysis, 2017, , 17-60.	0.1	1
1276	Antibodies <i>Versus</i> Aptamers: A Comparative View. RSC Detection Science, 2019, , 303-331.	0.0	4
1279	Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. Journal of Clinical Investigation, 2014, 124, 188-197.	3.9	112
1280	Anti-Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma. Nanoscale Research Letters, 2020, 15, 101.	3.1	52
1281	Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	44
1282	Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. Advances in Chromatography, 2016, , 143-170.	1.0	3
1283	Synthetic Antibodies: The Emerging Field of Aptamers. BioProcessing: Advances and Trends in Biological Product Development, 2013, 11, 46-49.	0.1	26
1284	Acyclic Identification of Aptamers for Human alpha-Thrombin Using Over-Represented Libraries and Deep Sequencing. PLoS ONE, 2011, 6, e19395.	1.1	49
1285	A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death. PLoS ONE, 2011, 6, e24071.	1.1	141
1286	DNA Aptamers against the Lup an 1 Food Allergen. PLoS ONE, 2012, 7, e35253.	1.1	46
1287	Prediction of Aptamer-Target Interacting Pairs with Pseudo-Amino Acid Composition. PLoS ONE, 2014, 9, e86729.	1.1	41
1288	From Ugly Duckling to Swan: Unexpected Identification from Cell-SELEX of an Anti-Annexin A2 Aptamer Targeting Tumors. PLoS ONE, 2014, 9, e87002.	1.1	36
1289	SDA, a DNA Aptamer Inhibiting E- and P-Selectin Mediated Adhesion of Cancer and Leukemia Cells, the First and Pivotal Step in Transendothelial Migration during Metastasis Formation. PLoS ONE, 2014, 9, e93173.	1.1	26

ARTICLE IF CITATIONS # Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry. PLoS ONE, 1290 1.1 23 2014, 9, e97747. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX. PLoS ONE, 2014, 9, 1291 1.1 e114693. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX. 1292 29 1.1 PLoS ONE, 2015, 10, e0125863. Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic 1293 1.1 Application for Ischemic Injury. PLoS ONE, 2015, 10, e0131785. ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 1294 1.1 11 Cells. PLoS ONE, 2016, 11, e0147674. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state. PLoS ONE, 2017, 12, e0176229. 1295 1.1 1296 Selection and targeting of EpCAM protein by ssDNA aptamer. PLoS ONE, 2017, 12, e0189558. 1.1 34 Thioaptamer Conjugated Liposomes for Tumor Vasculature Targeting. Oncotarget, 2011, 2, 298-304. 1298 0.8 1299 Is nanomedicine still promising?. Oncotarget, 2011, 2, 430-432. 0.8 4 Targeted therapy using nanotechnology: focus on cancer. International Journal of Nanomedicine, 3.3 299 2014, 9, 467 1301 Therapeutic Potential of Aptamer-siRNA Conjugates for Treatment of HIV-1. BioDrugs, 2012, 26, 393-400. 17 2.2 Aptamer Oligonucleotides as Potential Therapeutics in Hematologic Diseases. Mini-Reviews in 1.1 Medicinal Chemistry, 2019, 19, 788-795. Advances in Targeted Gene Delivery. Current Drug Delivery, 2019, 16, 588-608. 1303 0.8 15 Toward Small-Molecule Inhibition of Protein–Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Current Topics in Medicinal Chemistry, 2018, 18, 674-699. 1304 1.0 69 New Parenteral Anticoagulants: Focus on Factor Xa and Thrombin Inhibitors. Current Drug Discovery 1305 0.6 5 Technologies, 2012, 9, 129-136. Oligonucleotide Aptamers for Glioma Targeting: An Update. Central Nervous System Agents in 13 Medicinal Chemistry, 2015, 15, 126-137. New trends in NanoBio-Sensing. Drug Delivery System, 2011, 26, 15-19. 1307 0.0 1 Y-Shaped Circular Aptamer–DNAzyme Conjugates for Highly Efficient in Vivo Gene Silencing. CCS 1309 Chemistry, 2020, 2, 631-641.

ARTICLE IF CITATIONS # Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. International Journal of 1310 1.8 11 Molecular Sciences, 2020, 21, 3565. High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents. Journal of Microbiology and Biotechnólogy, 2017, 27, 838-843. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Research in 1312 0.6 20 Pharmaceutical Sciences, 2017, 12, 88. Aptamers as Novel Reagents for Biomarker Discovery Applications. Translational Medicine (Sunnyvale,) Tj ETQq1 1 Q.784314 ggBT /Ov Aptamersâ€"A Promising Approach for Sensing of Biothreats Using Different Bioinformatics Tools. Soft 1314 0.8 3 Nanoscience Letters, 2013, 03, 1-5. Stereocontrolled Synthesis of Phosphate-modified Oligonucleotides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 31-44. The Importance of FACS Analysis in the Development of Aptamers Specific to Pathogens. Journal of 1316 1.2 4 Biosystems Engineering, 2014, 39, 111-114. Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: the Next Generation of Cancer 4.6 184 Medicine. Theranostics, 2015, 5, 23-42. Targeting a conserved structural element from the SARS-CoV-2 genome using <scp>l</scp>-DNA 1318 2.0 9 aptamers. RSC Chemical Biology, 2022, 3, 79-84. AS1411 Aptamer Linked to DNA Nanostructures Diverts Its Traffic Inside Cancer Cells and Improves Its Therapeutic Efficacy. Pharmaceutics, 2021, 13, 1671. Novel DNA Aptameric Sensors to Detect the Toxic Insecticide Fenitrothion. International Journal of 1320 20 1.8 Molecular Sciences, 2021, 22, 10846. Prospective Cancer Therapies Using Stimuliâ€Responsive DNA Nanostructures. Macromolecular 1321 2.1 Bioscience, 2021, 21, e2100272. Ultrasound-targeted nucleic acid delivery for solid tumor therapy. Journal of Controlled Release, 1322 4.8 13 2021, 339, 531-546. Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. 5.5 Applied Physics Reviews, 2021, 8, . 1325 Aptamer-Mediated siRNA Targeting. Advances in Delivery Science and Technology, 2013, , 207-220. 0.4 1 MicroRNAs: Biology and Role in RNA Nanotechnology., 2013, , 551-562. Induction of Tumor Immunity by Targeted Inhibition of Nonsense-Mediated mRNA Decay., 2014, , 67-82. 1327 0 1329 Multifunctional Nanoscale Delivery Systems for Nucleic Acids., 2014, , 475-512.

# 1330	ARTICLE Engineering Aptamers for Biomedical Applications: Part II. , 2014, , 427-447.	IF	Citations 0
1332	Targeting Noncoding RNA for Treatment of Autism Spectrum Disorders. , 2014, , 203-228.		0
1334	Progress in Targeting Epigenetic Readers. RSC Drug Discovery Series, 2015, , 192-229.	0.2	0
1335	Properties of Nucleic Acid Amphiphiles and Their Biomedical Applications. , 2015, , 139-161.		0
1336	NGO-isation and the Plight of Women in Developing Nations. Canadian Young Scientist Journal, 2015, 8,	0.0	0
1337	Anti-angiogenic Therapy by Targeting the Tumor Vasculature with Liposomes. Fundamental Biomedical Technologies, 2016, , 201-228.	0.2	0
1340	Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model. , 2018, , .		0
1341	Conjugate-mediated Delivery of RNAi-based Therapeutics: Enhancing Pharmacokinetics–Pharmacodynamics Relationships of Medicinal Oligonucleotides. RSC Drug Discovery Series, 2019, , 206-232.	0.2	0
1342	The Role of Aptamers in the Treatment of Glioblastoma Multiform. The Neuroscience Journal of Shefaye Khatam, 2019, 7, 91-105.	0.4	1
1343	Aptamer: Apt System for Target-Specific Drug Delivery. , 2019, , 59-71.		0
1344	DNA Nanotechnology. , 2019, , 3561-3572.		0
1345	Aptamer: A Next Generation Tool for Application in Agricultural Industry for Food Safety. , 2019, , 175-186.		1
1346	Prostate-specific Membrane Antigen (PSMA) Aptamers for Prostate Cancer Imaging and Therapy. RSC Drug Discovery Series, 2019, , 339-366.	0.2	1
1347	Advancements and New Technologies in Drug Delivery System. , 2019, , 681-700.		0
1348	Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle. Current Drug Targets, 2019, 20, 1624-1635.	1.0	0
1352	Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chemical Reviews, 2022, 122, 4791-4825.	23.0	19
1353	Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines?. Chemical Reviews, 2022, 122, 340-384.	23.0	97
1354	A comparative analysis of cell surface targeting aptamers. Nature Communications, 2021, 12, 6275.	5.8	32

#	Article	IF	CITATIONS
1355	Single-Stranded DNA Aptamers Against TNF and Their Potential Applications. Methods in Molecular Biology, 2020, 2108, 181-196.	0.4	2
1356	Development of HER2-Specific Aptamer-Drug Conjugate for Breast Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 9764.	1.8	20
1357	Nanoparticles for Targeting of Prostate Cancer. Current Pharmaceutical Design, 2020, 26, 5393-5413.	0.9	4
1358	Aptamers: Magic Bullet for Theranostic Applications. , 0, , .		2
1359	Shortened and multivalent aptamers for ultrasensitive and rapid detection of alternariol in wheat using optical waveguide sensors. Biosensors and Bioelectronics, 2022, 196, 113702.	5.3	20
1360	Circular and linear: a tale of aptamer selection for the activation of SIRT1 to induce death in cancer cells. RSC Advances, 2020, 10, 45008-45018.	1.7	1
1361	Potential Applications of Aptamers for Targeting Senescent Cells. Healthy Ageing and Longevity, 2020, , 181-200.	0.2	0
1362	Small-angle scattering applications to the analysis of aptamer structure and conformational changes. AIP Conference Proceedings, 2020, , .	0.3	0
1363	Ligand Nanoparticle Conjugation Approach for Targeted Cancer Chemotherapy. , 2020, , 377-403.		1
1365	Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromolecular Research, 2021, 29, 665-680.	1.0	7
1366	Evolution of Functionally Enhanced α- <scp>l</scp> -Threofuranosyl Nucleic Acid Aptamers. ACS Synthetic Biology, 2021, 10, 3190-3199.	1.9	24
1368	Potentialities of aptasensors in cancer diagnosis. Materials Letters, 2022, 308, 131240.	1.3	18
1369	Report on biopharmaceutical profile of recent biotherapeutics and insilco docking studies on target bindings of known aptamer biotherapeutics. Biotechnology and Genetic Engineering Reviews, 2020, 36, 57-80.	2.4	4
1371	RNA Nanotechnology Approach for Targeted Delivery of RNA Therapeutics Using Cell-Internalizing Aptamers. , 2013, , 395-423.		1
1373	Receptors in Immunodiagnostics: Antibodies, Antibody Fragments, Single Domain Antibodies and Aptamers. , 2021, , 223-245.		0
1374	Alternative Analyte-Binding Compounds for Immunosensor-Like Point-of-Care Application. , 2021, , 111-124.		0
1375	Exploring Nanoemulsion for Liver Cancer Therapy. Current Cancer Therapy Reviews, 2020, 16, 260-268.	0.2	5
1381	RNA aptamers and their therapeutic and diagnostic applications. International Journal of Biochemistry and Molecular Biology, 2013, 4, 27-40.	0.1	67

#	Article	IF	CITATIONS
1383	Aptamers and apple pies: a mini-review of PSMA aptamers and lessons from Donald S. Coffey. American Journal of Clinical and Experimental Urology, 2018, 6, 78-86.	0.4	4
1384	Anti-Mucin1 Aptamer-Conjugated Chitosan Nanoparticles for Targeted Co-Delivery of Docetaxel and IGF-1R siRNA to SKBR3 Metastatic Breast Cancer Cells. Iranian Biomedical Journal, 2019, 23, 21-33.	0.4	9
1385	Aptamer-guided targeting of the intracellular long-noncoding RNA. American Journal of Cancer Research, 2021, 11, 945-954.	1.4	3
1386	Experimental and mathematical evidence that thrombin-binding aptamers form a 1 aptamer:2 protein complex. Aptamers, 2018, 2, 64-73.	0.5	3
1387	Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomaterials Research, 2021, 25, 42.	3.2	36
1388	Tumor-Targeting Agents. , 2022, , 217-236.		3
1389	Development of a DNA Aptamer against Multidrug-Resistant Hepatocellular Carcinoma for <i>In Vivo</i> Imaging. ACS Applied Materials & Interfaces, 2021, 13, 54656-54664.	4.0	11
1390	Aptamers based sensing of pregnancy associated glycoproteins (PAC) of bovine for early pregnancy detection. Scientific Reports, 2021, 11, 23193.	1.6	0
1392	PEGâ€Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Advanced Materials, 2022, 34, e2107852.	11.1	19
1393	Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112530.	2.5	41
1394	Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mechanisms of Ageing and Development, 2022, 202, 111618.	2.2	16
1395	A Survey of DNA-based Computing Devices and their Applications. , 2021, , .		1
1396	Fabrication of Graphene Electrode via Graphene Transfer Method for Bisphenol A (BPA) Detection. , 2021, , .		0
1397	Quantitative Characterization of Partitioning in Selection of DNA Aptamers for Protein Targets by Capillary Electrophoresis. Analytical Chemistry, 2022, 94, 2578-2588.	3.2	7
1398	An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 41, 102528.	1.7	9
1399	Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi. Chemical Communications, 2022, 58, 2870-2873.	2.2	3
1400	Albumin-Binding Aptamer Chimeras for Improved siRNA Bioavailability. Cellular and Molecular Bioengineering, 2022, 15, 161-173.	1.0	7
1401	Molecular fluorophores for in vivo bioimaging in the second near-infrared window. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3226-3246.	3.3	14

	Сг	tation Report	
#	Article	IF	CITATIONS
1402	Drug discovery of sclerostin inhibitors. Acta Pharmaceutica Sinica B, 2022, 12, 2150-2170.	5.7	20
1403	Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS Applied Bio Materials, 2022, 5, 1901-1915.	2.3	11
1404	Selective Viramidine-Loaded Aptamer-Nanoparticles Trigger Cell Cycle Arrest in Nucleolin-Expressed Hepatoma Cells Through Modulation of CDC25A/p53/PI3k Pathway. Journal of Cluster Science, 0, , 1.	1.7	1
1405	Understanding viruses and viral infections by biophotonic methods. Translational Biophotonics, 0, , .	1.4	2
1406	Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. Materials Science and Engineering C, 2022, 135, 112689.	3.8	17
1407	Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. Journal of Materials Chemistry B, 2021, 10, 20-33.	2.9	19
1408	Chemical–biological approaches for the direct regulation of cell–cell aggregation. Aggregate, 202 3, .	22, 5.2	6
1410	Selection and identification of highâ€affinity aptamer of Kunitz trypsin inhibitor and their application rapid and specific detection. Food Science and Nutrition, 2022, 10, 953-963.	in 1.5	2
1411	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	1.4	22
1412	Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances, 2022, 55, 107902.	6.0	67
1413	The many faces of the AMPA-type ionotropic glutamate receptor. Neuropharmacology, 2022, 208, 108975.	2.0	4
1414	Fluorescent probe strategy for live cell distinction. Chemical Society Reviews, 2022, 51, 1573-1591.	18.7	56
1415	Growth Factor Immobilization Strategies for Musculoskeletal Disorders. Current Osteoporosis Reports, 2022, 20, 13-25.	1.5	6
1416	Simultaneous probing of dual intracellular metabolites (ATP and paramylon) in live microalgae using graphene oxide/aptamer nanocomplex. Mikrochimica Acta, 2022, 189, 88.	2.5	4
1417	Anti-HER2 therapy in metastatic breast cancer: many choices and future directions. Cancer and Metastasis Reviews, 2022, 41, 193-209.	2.7	23
1418	Nanomaterial Probes for Nuclear Imaging. Nanomaterials, 2022, 12, 582.	1.9	10
1419	Increased Photostability of the Integral mRNA Vaccine Component N ₁ â€Methylpseudou Compared to Uridine. Chemistry - A European Journal, 2022, 28, .	ridine 1.7	4
1420	Development of RNA-Based Medicine for Colorectal Cancer: Current Scenario. , 2022, , 339-360.		1

		CITATION RE	PORT	
#	Article		IF	Citations
1421	Nanoemulsions for antitumor activity. , 2022, , 435-454.			0
1422	Selection of CD133-targeted DNA aptamers for the efficient and specific therapy of colc Journal of Materials Chemistry B, 2022, 10, 2057-2066.	orectal cancer.	2.9	4
1423	A multiparametric fluorescence assay for screening aptamer–protein interactions base microbeads. Scientific Reports, 2022, 12, 2961.	ed on	1.6	6
1424	Development of a Biomimetic Extracellular Matrix with Functions of Protein Sequestratic Attachment Using Dual Aptamer-Functionalized Hydrogels. ACS Biomaterials Science ar 2022, 8, 1279-1289.		2.6	4
1425	Innovative developments and emerging technologies in RNA therapeutics. RNA Biology,	2022, 19, 313-332.	1.5	19
1426	Aptamers for Viral Detection and Inhibition. ACS Infectious Diseases, 2022, 8, 667-692.		1.8	17
1427	Characterizing Aptamers with Reconfigurable Chiral Plasmonic Assemblies. Langmuir, 20 2954-2960.)22, 38,	1.6	6
1428	Recent Progress on Heparin–Protamine Particles for Biomedical Application. Polymers	, 2022, 14, 932.	2.0	6
1429	Rational design of nanocarriers for mitochondria-targeted drug delivery. Chinese Chemic 2022, 33, 4146-4156.	cal Letters,	4.8	26
1430	Three-dimensional modeling of streptomycin binding single-stranded DNA for aptamer-b biosensors, a molecular dynamics simulation approach. Journal of Biomolecular Structur Dynamics, 2022, , 1-10.	ased e and	2.0	4
1431	Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delive Nucleic Acids, Peptides, and Proteins. Advanced Healthcare Materials, 2022, 11, e21026	ry of 500.	3.9	15
1432	Near-Infrared Fluorescence Tumor-Targeted Imaging in Lung Cancer: A Systematic Revie 446.	w. Life, 2022, 12,	1.1	9
1433	Research progress of whole-cell-SELEX selection and the application of cell-targeting apt Molecular Biology Reports, 2022, 49, 7979-7993.	amer.	1.0	11
1435	Multivalent Aptamer Approach: Designs, Strategies, and Applications. Micromachines, 2	022, 13, 436.	1.4	20
1436	RNA Therapeutics: the Next Generation of Drugs for Cardiovascular Diseases. Current Atherosclerosis Reports, 2022, 24, 307-321.		2.0	12
1437	Advances in aptamer-based nuclear imaging. European Journal of Nuclear Medicine and Imaging, 2022, 49, 2544-2559.	Molecular	3.3	23
1438	Graphene-Based Electrochemical Sensor for Detection of Hepatocellular Carcinoma Mar Frontiers in Chemistry, 2022, 10, 883627.	kers.	1.8	3
1439	Selective Delivery of Clinically Approved Tubulin Binding Agents through Covalent Conju Active Targeting Moiety. Current Medicinal Chemistry, 2022, 29, 5179-5211.	igation to an	1.2	1

#	Article	IF	CITATIONS
1441	Targeting nanoparticles to malignant tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188703.	3.3	15
1442	Aptamer-drug conjugates: New probes for imaging and targeted therapy. Biosensors and Bioelectronics: X, 2022, 10, 100126.	0.9	3
1443	Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. Applied Sciences (Switzerland), 2021, 11, 12111.	1.3	8
1444	Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines, 2021, 9, 1921.	1.4	8
1445	2D Materials-Based Aptamer Biosensors: Present Status and Way Forward. Current Medicinal Chemistry, 2022, 29, 5815-5849.	1.2	14
1446	Chemical Modifications in Nucleic Acids for Therapeutic and Diagnostic Applications. Chemical Record, 2022, 22, e202100270.	2.9	5
1448	Challenges for the Development of Extracellular Vesicle-Based Nucleic Acid Medicines. Cancers, 2021, 13, 6137.	1.7	11
1449	DNA-Scaffolded Synergistic Catalysis. Journal of the American Chemical Society, 2021, 143, 21402-21409.	6.6	12
1450	T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals, 2022, 15, 15.	1.7	10
1451	Development of Chimeric Molecules That Degrade the Estrogen Receptor Using Decoy Oligonucleotide Ligands. ACS Medicinal Chemistry Letters, 2022, 13, 134-139.	1.3	15
1452	CMC and regulatory aspects of oligonucleotide therapeutics. , 2022, , 263-320.		0
1453	Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials, 2022, 285, 121532.	5.7	9
1454	DNA aptamers specific for Legionella pneumophila: systematic evolution of ligands by exponential enrichment in whole bacterial cells. Biotechnology Letters, 2022, 44, 777-786.	1.1	2
1455	Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discovery Today, 2022, 27, 2288-2299.	3.2	15
1456	Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 18064-18078.	4.0	12
1457	Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. International Journal of Pharmaceutics, 2022, 620, 121751.	2.6	38
1468	Towards Detection of Biomarkers in the Eye Using an Aptamer-Based Graphene Affinity Nanobiosensor. SSRN Electronic Journal, 0, , .	0.4	0
1469	Repurposing of thermally stable nucleic-acid aptamers for targeting tetrodotoxin (TTX). Computational and Structural Biotechnology Journal, 2022, 20, 2134-2142.	1.9	2

#	Article	IF	CITATIONS
1470	Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst, The, 2022, 147, 2597-2614.	1.7	5
1472	Biomolecules capturing live bacteria from clinical samples. Trends in Biochemical Sciences, 2022, 47, 673-688.	3.7	2
1474	A Novel Sandwich ELASA Based on Aptamer for Detection of Largemouth Bass Virus (LMBV). Viruses, 2022, 14, 945.	1.5	12
1475	Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chemical Research in Chinese Universities, 2022, 38, 866-878.	1.3	7
1476	Current Status and Challenges of Aptamers Screening and Optimization. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 1067-1082.	0.6	1
1477	Aptamer Sandwich Lateral Flow Assay (AptaFlow) for Antibody-Free SARS-CoV-2 Detection. Analytical Chemistry, 2022, 94, 7278-7285.	3.2	25
1478	Rationally Screened and Designed ABCG2-Binding Aptamers for Targeting Cancer Stem Cells and Reversing Multidrug Resistance. Analytical Chemistry, 2022, 94, 7375-7382.	3.2	7
1479	Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sciences, 2022, 300, 120593.	2.0	20
1480	Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosensors and Bioelectronics, 2022, 210, 114300.	5.3	23
1481	Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1482	DNA hydrogels as selective biomaterials for specifically capturing DNA, protein and bacteria. Acta Biomaterialia, 2022, 147, 158-167.	4.1	2
1483	DNA Hydrogels in the Perspective of Mechanical Properties. Macromolecular Rapid Communications, 2022, 43, e2200281.	2.0	7
1484	Aptamers used for molecular imaging and theranostics - recent developments. Theranostics, 2022, 12, 4010-4050.	4.6	14
1486	A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. Nanoscale, 2022, 14, 9369-9378.	2.8	8
1487	Insights into Aptamer–Drug Delivery Systems against Prostate Cancer. Molecules, 2022, 27, 3446.	1.7	6
1489	Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Research, 2022, 10, .	5.4	64
1490	Mincle-binding DNA aptamer demonstrates therapeutic potential in a model of inflammatory bowel disease. Molecular Therapy - Nucleic Acids, 2022, 28, 935-947.	2.3	3
1491	Al-powered aptamer generation. Nature Computational Science, 2022, 2, 356-357.	3.8	2

#	Article	IF	CITATIONS
1492	Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence ontrolled, DNAâ€Based Biosensor Technology. Angewandte Chemie, 2022, 134, .	1.6	3
1493	Spatiotemporally Selective Molecular Imaging via Upconversion Luminescenceâ€Controlled, DNAâ€Based Biosensor Technology. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
1494	Efficient synthesis of artificial pharmaceutical solid-phase modules for constructing aptamer-drug conjugates. Bioorganic Chemistry, 2022, 126, 105919.	2.0	2
1495	Ultra high diversity factorizable libraries for efficient therapeutic discovery. Genome Research, 0, , gr.276593.122.	2.4	0
1496	Selection and characterization of DNA aptamers inhibiting a druggable target of osteoarthritis, ADAMTS-5. Biochimie, 2022, 201, 168-176.	1.3	4
1497	Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. Biosensors, 2022, 12, 418.	2.3	5
1498	InÂvivo positron emission tomography imaging for PD-L1 expression in cancer using aptamer. Biochemical and Biophysical Research Communications, 2022, 620, 105-112.	1.0	6
1499	Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). Sensors, 2022, 22, 4758.	2.1	21
1500	SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. Journal of Biotechnology, 2022, 354, 10-20.	1.9	5
1501	Identification and structural analysis of novel malathion-specific DNA aptameric sensors designed for food testing. Biomaterials, 2022, 287, 121617.	5.7	25
1502	Towards detection of biomarkers in the eye using an aptamer-based graphene affinity nanobiosensor. Talanta, 2022, 250, 123697.	2.9	4
1503	Calcium phosphate bioceramics for improved angiogenesis. , 2022, , 185-203.		1
1504	Aptamer-based nanomaterials for drug/gene delivery systems and diagnostics to combat microbial infections. , 2022, , 591-626.		0
1505	RNA therapies for cardiovascular disease. , 2022, , 413-425.		0
1506	Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Advances, 2022, 12, 20432-20446.	1.7	5
1507	Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug?. Metallomics, 2022, 14, .	1.0	6
1508	Molecular regulation of hypoxia through the lenses of noncoding <scp>RNAs</scp> and epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	6
1509	Exploring the Utility of ssDNA Aptamers Directed against Snake Venom Toxins as New Therapeutics for Snakebite Envenoming. Toxins, 2022, 14, 469.	1.5	5

#	Article	IF	CITATIONS
1511	Recent progress and perspectives of continuous in vivo testing device. Materials Today Bio, 2022, 16, 100341.	2.6	4
1512	Analytical techniques for characterizing diastereomers of phosphorothioated oligonucleotides. Journal of Chromatography A, 2022, 1678, 463349.	1.8	9
1513	In situ signal amplification improves the capture efficiency of circulating tumor cells with low expression of EpCAM. Analytica Chimica Acta, 2022, 1221, 340133.	2.6	3
1514	RNA solutions to treat inborn errors of metabolism. Molecular Genetics and Metabolism, 2022, 136, 289-295.	0.5	6
1515	Stimuli-responsive polyprodrug for cancer therapy. Materials Today Advances, 2022, 15, 100266.	2.5	4
1516	Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioactive Materials, 2023, 20, 166-178.	8.6	29
1517	Electrochemical aptasensors for clinical diagnosis. A review of the last five years. Sensors and Actuators B: Chemical, 2022, 369, 132318.	4.0	14
1518	Portable Breathalyzer for Exhaled Volatile Organic Compounds Monitoring in Lung Diseases. , 2022, , .		2
1519	The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals, 2022, 15, 909.	1.7	15
1520	Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Frontiers in Immunology, 0, 13, .	2.2	2
1521	Modulation of α-Synuclein Aggregation In Vitro by a DNA Aptamer. Biochemistry, 2022, 61, 1757-1765.	1.2	5
1522	Development of fluorescent aptasensor for detection of acephate by utilizing graphene oxide platform. Talanta, 2023, 252, 123843.	2.9	7
1523	A Longâ€Circulating Vector for Aptamers Based upon Polyphosphodiesterâ€Backboned Molecular Brushes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
1524	RNA-As-Graphs Motif Atlas—Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications. International Journal of Molecular Sciences, 2022, 23, 9249.	1.8	1
1525	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	1.8	8
1526	New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery. International Journal of Molecular Sciences, 2022, 23, 8750.	1.8	5
1527	Nucleic-Acid-Based Targeted Degradation in Drug Discovery. Journal of Medicinal Chemistry, 2022, 65, 10217-10232.	2.9	20
1528	The state of water molecules induces changes in the topologies and interactions of G-quadruplex DNA aptamers in hydrated ionic liquid. Journal of Molecular Liquids, 2022, 366, 120175.	2.3	5

ARTICLE IF CITATIONS # Considerations in the Immunogenicity Assessment Strategy for Oligonucleotide Therapeutics (ONTs). 1529 2.2 3 AAPS Journal, 2022, 24, . A Long $\hat{a} \in C$ irculating Vector for Aptamers Based upon Polyphosphodiester $\hat{a} \in B$ ackboned Molecular Brushes. Angewandte Chemie, 0, , . 1.6 Targeted delivery of doxorubicin to tumor cells using engineered circular bivalent aptamer. Journal 1531 1.4 0 of Drug Delivery Science and Technology, 2022, 75, 103692. Aptamer-based and sensitive label-free colorimetric sensing of phenylalanine via cascaded signal amplifications. Analytica Chimica Acta, 2022, 1230, 340393. DNA phosphoramidites., 2024, , 913-917. 1533 0 Recent developments of sonodynamic therapy in antibacterial application. Nanoscale, 2022, 14, 1534 2.8 39 12999-13017 Nondestructive Isolation of Mesenchymal Stem Cells from Bone Marrow Using DNA Aptamers. Analyst, 1535 1.7 0 The, 0, , . Bio-interfacial DNA self-assemblies for biomedical applications., 2022, , 259-273. 1536 Synthesis and structure–activity relationship of peptide nucleic acid probes with improved 1537 interstrand-crosslinking abilities: application to biotin-mediated RNA-pulldown. RSC Chemical Biology, 2.0 3 2022, 3, 1129-1143. Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers 1539 2.2 from RNA templates. Chemical Communications, 2022, 58, 11248-11251. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta, 2023, 1540 2.9 24 253, 123977. Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS Nano, 2022, 16, 13279-13293. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A 1542 2.9 4 Critical Review. Chemical Record, 2022, 22, . Role of Paper-Based Sensors in Fight against Cancer for the Developing World. Biosensors, 2022, 12, 1543 2.3 737 Development of Nucleic Acidâ€based Electrochemical Biosensors for Clinical Applications. Angewandte 1544 1.6 1 Chemie, 0, , . Development and characterization of DNA aptamer against Retinoblastoma by Cell-SELEX. Scientific 1545 Reports, 2022, 12, . Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS Applied Materials & amp; 1546 4.0 9 Interfaces, 2022, 14, 45079-45095. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Current Pharmaceutical Design, 1547 2022, 28, 3114-3126.

#	Article	IF	CITATIONS
1548	Development of Nucleicâ€Acidâ€Based Electrochemical Biosensors for Clinical Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1549	Transferrin Aptamers Increase the <i>In Vivo</i> Blood–Brain Barrier Targeting of Protein Spherical Nucleic Acids. Bioconjugate Chemistry, 2022, 33, 1803-1810.	1.8	8
1550	Synthetic receptors in medicine. Progress in Molecular Biology and Translational Science, 2023, , 303-335.	0.9	1
1551	Therapeutic Uses of TheraCourâ"¢ Polymeric Nanomicelles Against Cancer, Infectious Diseases, and More. , 2022, , 473-506.		0
1552	Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells, 2022, 11, 3079.	1.8	8
1553	Plasma proteome profiling identifies changes associated to AD but not to FTD. Acta Neuropathologica Communications, 2022, 10, .	2.4	4
1554	Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Molecular and Cellular Oncology, 2022, 9, .	0.3	0
1555	Bulk Affinity Assays in Aptamer Selection: Challenges, Theory, and Workflow. Analytical Chemistry, 0, ,	3.2	1
1556	Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system. Molecular Therapy, 2023, 31, 260-268.	3.7	1
1557	G-Quadruplex Aptamer-Ligand Characterization. Molecules, 2022, 27, 6781.	1.7	1
1558	A perspective on oligonucleotide therapy: Approaches to patient customization. Frontiers in Pharmacology, 0, 13, .	1.6	23
1559	Review—Recent Advances in Polydopamine-based Electrochemical Biosensors. Journal of the Electrochemical Society, 2022, 169, 107505.	1.3	9
1560	Swine enteric colibacillosis: Current treatment avenues and future directions. Frontiers in Veterinary Science, 0, 9, .	0.9	5
1561	Aptamer–Protein Structures Guide In Silico and Experimental Discovery of Aptamer–Short Peptide Recognition Complexes or Aptamer–Amino Acid Cluster Complexes. Journal of Physical Chemistry B, O, , .	1.2	1
1562	Potential of Lipid Based Nanodrug Carriers for Targeted Treatment of Glioblastoma: Recent Progress and Challenges Ahead. , 0, , .		0
1563	Ultrasensitive evanescent wave optical fiber aptasensor for online, continuous, type-specific detection of sulfonamides in environmental water. Analytica Chimica Acta, 2022, 1233, 340505.	2.6	8
1564	Design and Biological Application of RTK Agonist Aptamers. , 2022, , 1-23.		0
1565	Polydopamine Nanoparticles Functionalized Electrochemical DNA Aptasensor for Serum Glycated Albumin Detection. International Journal of Molecular Sciences, 2022, 23, 13699.	1.8	1

#	Article	IF	CITATIONS
1566	Therapeutic Potential of Aptamer–Protein Interactions. ACS Pharmacology and Translational Science, 2022, 5, 1211-1227.	2.5	9
1567	Selection and characterization of a new human Interleukin-17A blocking DNA aptamer using protein-SELEX. Biochemical and Biophysical Research Communications, 2022, 637, 32-39.	1.0	3
1568	The past, present, and future of chemotherapy with a focus on individualization of drug dosing. Journal of Controlled Release, 2022, 352, 840-860.	4.8	9
1569	BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Selfâ€Assembly, Properties, and Applications. Advanced Materials, 2023, 35, .	11.1	50
1570	Thermodynamics and Kinetics of Unfolding of Antiparallel G-Quadruplexes in Anti-Thrombin Aptamers. Biochemistry (Moscow), 2022, 87, 1292-1300.	0.7	0
1572	Endogenous C-quadruplex-forming RNAs inhibit the activity of SARS-CoV-2 RNA polymerase. Chemical Communications, 2023, 59, 872-875.	2.2	2
1573	Stimuli-responsive nucleic acid nanostructures for efficient drug delivery. Nanoscale, 2022, 14, 17862-17870.	2.8	10
1574	Protein labeling and crosslinking by covalent aptamers. Methods in Enzymology, 2022, , .	0.4	0
1575	Investigating RNA–protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	6
1576	Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. Biosensors, 2022, 12, 1082.	2.3	4
1578	Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. International Journal of Molecular Sciences, 2022, 23, 14475.	1.8	4
1579	Dose-Dependent Von Willebrand Factor Inhibition by Aptamer BB-031 Correlates with Thrombolysis in a Microfluidic Model of Arterial Occlusion. Pharmaceuticals, 2022, 15, 1450.	1.7	2
1580	Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics, 2022, 14, 2561.	2.0	11
1581	Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Molecular and Cellular Biochemistry, 2023, 478, 1573-1598.	1.4	15
1583	Rapid production of multimeric RNA aptamers stabilized by a designed pseudo ircular structure in <i>E. coli</i> . Biotechnology Journal, 2023, 18, .	1.8	1
1584	Targeting treatment of bladder cancer using PTK7 aptamer-gemcitabine conjugate. Biomaterials Research, 2022, 26, .	3.2	5
1585	PDâ€L1 Aptamerâ€Functionalized Metal–Organic Framework Nanoparticles for Robust Photoâ€Immunotherapy against Cancer with Enhanced Safety. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1586	In Situ Visualization of Epidermal Growth Factor Receptor Nuclear Translocation with Circular Bivalent Aptamer. Analytical Chemistry, 2022, 94, 17413-17421.	3.2	3

#	Article	IF	CITATIONS
1587	Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1588	Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacology and Translational Science, 0, , .	2.5	0
1589	Application of engineered extracellular vesicles to overcome drug resistance in cancer. Frontiers in Oncology, 0, 12, .	1.3	1
1590	Measuring the Affinities of RNA and DNA Aptamers with DNA Origami-Based Chiral Plasmonic Probes. Analytical Chemistry, 2022, 94, 17577-17586.	3.2	2
1591	PDâ€L1 Aptamerâ€Functionalized Metal–Organic Framework Nanoparticles for Robust Photoâ€Immunotherapy against Cancer with Enhanced Safety. Angewandte Chemie, 2023, 135, .	1.6	1
1592	Ensemble Modified Aptamer Based Pattern Recognition for Adaptive Target Identification. Nano Letters, 2022, 22, 10057-10065.	4.5	2
1593	Bifunctional G-Quadruplex Aptamer Targeting Nucleolin and Topoisomerase 1: Antiproliferative Activity and Synergistic Effect of Conjugated Drugs. Bioconjugate Chemistry, 2023, 34, 238-247.	1.8	1
1594	Aptamer-Based Electrochemical Biosensors for the Detection of Salmonella: A Scoping Review. Diagnostics, 2022, 12, 3186.	1.3	4
1595	Targeted systematic evolution of an RNA platform neutralizing DNMT1 function and controlling DNA methylation. Nature Communications, 2023, 14, .	5.8	7
1596	Aptamers in cancer therapy: problems and new breakthroughs. Journal of Materials Chemistry B, 2023, 11, 1609-1627.	2.9	7
1597	Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Research, 2023, 51, 966-981.	6.5	12
1598	Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Molecular Cancer, 2023, 22, .	7.9	13
1599	Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. International Journal of Molecular Sciences, 2023, 24, 1515.	1.8	8
1600	High-throughput quantitative binding analysis of DNA aptamers using exonucleases. Nucleic Acids Research, 2023, 51, e19-e19.	6.5	8
1601	Dissecting Functional Biological Interactions Using Modular RNA Nanoparticles. Molecules, 2023, 28, 228.	1.7	1
1602	Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential. Journal of Genetic Engineering and Biotechnology, 2022, 20, 172.	1.5	0
1603	Nearâ€Quantitative Preparation of Short Singleâ€Stranded DNA Circles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1604	Aptamer-functionalized liposomes for targeted cancer therapy. , 2023, , 141-172.		8

#	Article	IF	CITATIONS
1605	Nearâ \in Quantitative Preparation of Short Singleâ \in Stranded DNA Circles. Angewandte Chemie, 2023, 135, .	1.6	0
1606	Challenges of aptamers as targeting ligands for anticancer therapies. , 2023, , 455-480.		0
1607	Clinical use and future perspective of aptamers. , 2023, , 481-520.		2
1608	Aptamer-conjugated carbon nanotubes or graphene for targeted cancer therapy and diagnosis. , 2023, , 277-294.		7
1609	Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	12
1611	Aptamer-functionalized dendrimers for targeted cancer therapy. , 2023, , 255-275.		1
1612	Computational approaches in COVID-19 vaccine development. , 2023, , 339-350.		0
1613	Application of a Dual-Probe Coloading Nanodetection System in the Process Monitoring and Efficacy Assessment of Photodynamic Therapy: An <i>In Vitro</i> Study. ACS Biomaterials Science and Engineering, 2023, 9, 1089-1103.	2.6	1
1614	A Novel In silico SELEX Method to Screen and Identify Aptamers against Vibrio Cholerae. Current Computer-Aided Drug Design, 2023, 19, .	0.8	0
1615	Recent progress of aptamer‒drug conjugates in cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 1358-1370.	5.7	18
1616	Aptamer-based microfluidics for circulating tumor cells. , 2023, , 403-432.		0
1617	Polymer composites for biosensors. , 2023, , 323-342.		3
1618	Sensing of amino acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchemical Journal, 2023, 188, 108452.	2.3	4
1619	Bioinspired molecular engineering of bivalent aptamers by ligand-induced self-dimerization. Chemical Communications, 0, , .	2.2	0
1620	Rational selection of an ideal oncolytic virus to address current limitations in clinical translation. International Review of Cell and Molecular Biology, 2023, , 241-261.	1.6	0
1621	Recent advances in aptamer-based therapeutic strategies for targeting cancer stem cells. Materials Today Bio, 2023, 19, 100605.	2.6	3
1622	Advantages of Material Biofunctionalization Using Nucleic Acid Aptamers in Tissue Engineering and Regenerative Medicine. Molecular Biotechnology, 0, , .	1.3	0
1623	An aptamer-based sandwich assay for detection of alpha-defensin human neutrophil protein 1 on a microfluidic platform. Biosensors and Bioelectronics, 2023, 229, 115120.	5.3	3

TATION

D

#	Article	IF	CITATIONS
1624	A label-free and ratiometric fluorescent immunosensor by integrating CRISPR/Cas 12a and 3D DNA nanomachine. Talanta Open, 2023, 7, 100210.	1.7	1
1625	ssDNA-Modified Gold Nanoparticles as a Tool to Detect miRNA Biomarkers in Osteoarthritis. ACS Omega, 2023, 8, 7529-7535.	1.6	4
1626	Aptámeros: agentes diagnósticos y terapéuticos. latreia, 2012, 25, 159-168.	0.1	3
1627	Development of a bispecific DNA-aptamer-based lysosome-targeting chimera for HER2 protein degradation. Cell Reports Physical Science, 2023, 4, 101296.	2.8	5
1628	Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioengineering and Translational Medicine, 2023, 8, .	3.9	1
1629	Investigating the competition between ACE2 natural molecular interactors and SARS-CoV-2 candidate inhibitors. Chemico-Biological Interactions, 2023, 374, 110380.	1.7	1
1630	Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics, 2023, 15, 765.	2.0	2
1631	Nucleic Acid Pharmaceutical Agents. , 2023, , 231-268.		0
1632	A Lambda-Exonuclease SELEX Method for Generating Aptamers to Bacterial Targets. Methods in Molecular Biology, 2023, , 145-161.	0.4	0
1633	Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. , 2023, 1, 100005.		4
1634	A dielectrophoresisâ€based platform of cancerous cell capture using aptamerâ€functionalized gold nanoparticles in a microfluidic channel. Electrophoresis, 2023, 44, 1002-1015.	1.3	4
1635	Current progress in PLGA-based nanoparticles for treatment of cancer diseases. , 2023, , 153-177.		0
1636	Targeting strategies using PLGA nanoparticles for efficient drug delivery. , 2023, , 123-151.		0
1637	Aptamer-Based Targeted Protein Degradation. ACS Nano, 2023, 17, 6150-6164.	7.3	17
1638	Novel technologies for applying immune checkpoint blockers. International Review of Cell and Molecular Biology, 2024, , 1-101.	1.6	2
1639	Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics, 2023, 15, 1130.	2.0	11
1640	Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review. Results in Chemistry, 2023, 5, 100918.	0.9	3
1641	The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Communications Chemistry, 2023, 6, .	2.0	7

#	Article	IF	CITATIONS
1642	Complexation of drug and hapten-conjugated aptamer with universal hapten antibody for pancreatic cancer treatment. Journal of Controlled Release, 2023, 360, 940-952.	4.8	3
1643	High-Affinity Neutralizing DNA Aptamers against SARS-CoV-2 Spike Protein Variants. Covid, 2023, 3, 520-542.	0.7	2
1644	Environmentally benign synthesis of bioconjugated materials. Comprehensive Analytical Chemistry, 2023, , 93-121.	0.7	0
1645	Predicting motifs and secondary structure of steroid aptamers using APTANI. , 2023, , .		0
1646	Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorganic Chemistry, 2023, 136, 106550.	2.0	10
1647	Self-constrained DNAzyme for aptamer-based and sensitive label-free fluorescent assay of sarafloxacin via signal amplification cascades. Analyst, The, 0, , .	1.7	2
1648	Construction of Rapid Electrochemical Biosensor Consisted of nanozyme/aptamer conjugate for waterborne microcystin detection. Analyst, The, 0, , .	1.7	2
1653	Multianalyte tests in clinical care. , 2024, , 221-237.		1
1654	<i>In Vitro</i> Evolution and Aptamers. , 2022, , 403-420.		0
1659	Production and Testing of RNA Origami Anticoagulants. Methods in Molecular Biology, 2023, , 339-350.	0.4	0
1668	Hydrogel-Based Multi-enzymatic System for Biosynthesis. Advances in Biochemical Engineering/Biotechnology, 2023, , 51-76.	0.6	1
1671	Nucleic Acid Pulmonary Therapy: From Concept to Clinical Stance. , 2023, , 439-457.		0
1673	Therapeutic targeting non-coding RNAs. , 2023, , 349-417.		0
1683	Rapid Diagnostic of Emerging Human Viral Pathogens: Lessons Learnt From COVID-19 Pandemic. , 2023, , 527-563.		0
1686	Design and Biological Application of RTK Agonist Aptamers. , 2023, , 2397-2419.		0
1693	Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Advances, 2023, 13, 26288-26301.	1.7	2
1694	Recent advances in aptamer-based biosensors for potassium detection. Analyst, The, 2023, 148, 5340-5354.	1.7	2
1695	Establishing stereochemical comparability in phosphorothioate oligonucleotides with nuclease P1 digestion coupled with LCMS analysis. Analyst, The, 2023, 148, 5361-5365.	1.7	0

#	Article	IF	CITATIONS
1716	Polymeric micelles in drug delivery and targeting. , 2024, , 161-182.		0
1718	Aptamers and antisense oligonucleotide-based delivery. , 2024, , 63-78.		0
1725	Engineered aptamers for molecular imaging. Chemical Science, 0, , .	3.7	0
1728	Aptamer-mediated nano-therapy for pancreatic cancer. , 2024, , 375-399.		0
1749	Dendrimers-Mediated Delivery of Phytoconstituents. , 2024, , 265-303.		0
1751	Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
1759	Aptamers as an emerging concept for the management of parasitic diseases. , 2024, , 333-353.		0
1763	DNA nanotechnology for diagnostic applications. , 2024, , 77-99.		0
1767	Real-time Monitoring of DNA Binding by Plasmonic Chip Using an Optical Fiber. , 2023, , .		0