Harnessing transposons for cancer gene discovery

Nature Reviews Cancer 10, 696-706 DOI: 10.1038/nrc2916

Citation Report

#	Article	IF	CITATIONS
1	The expanding universe of transposon technologies for gene and cell engineering. Mobile DNA, 2010, 1, 25.	1.3	113
2	The <i>Drosophila</i> Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities. Genetics, 2011, 188, 731-743.	1.2	330
3	Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics. Journal of Cancer, 2011, 2, 107-115.	1.2	43
4	Towards systematic functional characterization of cancer genomes. Nature Reviews Genetics, 2011, 12, 487-498.	7.7	77
5	High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Research, 2011, 21, 2181-2189.	2.4	39
6	Making sense of cancer genomic data. Genes and Development, 2011, 25, 534-555.	2.7	313
7	Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Research, 2011, 39, 7147-7160.	6.5	62
8	Retroviral Vectors: Post Entry Events and Genomic Alterations. Viruses, 2011, 3, 429-455.	1.5	42
9	Evolution after tumour spread. Nature, 2012, 482, 481-482.	13.7	7
10	Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2998-3007.	3.3	61
11	Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO Journal, 2012, 31, 2670-2684.	3.5	350
12	Identification of transposable elements of the giant panda (Ailuropoda melanoleuca) genome. , 2012, , .		0
13	<i>Sleeping Beauty</i> mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5934-5941.	3.3	201
14	Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Research, 2012, 40, e150-e150.	6.5	109
15	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	12.8	560
16	What We Have Learned About Pancreatic Cancer From Mouse Models. Gastroenterology, 2012, 142, 1079-1092.	0.6	151
17	Life in the Fast Lane: Mammalian Disease Models in the Genomics Era. Cell, 2012, 148, 1099-1109.	13.5	70
18	Cancer gene discovery in the mouse. Current Opinion in Genetics and Development, 2012, 22, 14-20.	1.5	10

#	Article	IF	CITATIONS
19	Using genetically engineered mouse models to validate candidate cancer genes and test new therapeutic approaches. Current Opinion in Genetics and Development, 2012, 22, 21-27.	1.5	24
20	The emerging diversity of transpososome architectures. Quarterly Reviews of Biophysics, 2012, 45, 493-521.	2.4	45
21	Bioinformatic Clonality Analysis of Next-Generation Sequencing-Derived Viral Vector Integration Sites. Human Gene Therapy Methods, 2012, 23, 111-118.	2.1	43
22	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	13.7	349
23	<i>Drosophila</i> as a model for context-dependent tumorigenesis. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	51
24	Genetically engineered mouse models of PI3K signaling inÂbreast cancer. Molecular Oncology, 2013, 7, 146-164.	2.1	34
25	Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Translational Research, 2013, 161, 265-283.	2.2	76
26	Genetically Engineered Animal Models for In Vivo Target Identification and Validation in Oncology. Methods in Molecular Biology, 2013, 986, 281-305.	0.4	4
27	One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 2013, 153, 910-918.	13.5	3,133
28	An embryonic view of tumour development. Nature, 2013, 501, 171-172.	13.7	0
29	Transposable elements and human cancer: A causal relationship?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1835, 28-35.	3.3	37
30	Modified Transposases for Site-Directed Insertion of Transgenes. Topics in Current Genetics, 2013, , 241-265.	0.7	1
31	The Committee for Advanced Therapies' of the European Medicines Agency Reflection Paper on Management of Clinical Risks Deriving from Insertional Mutagenesis. Human Gene Therapy Clinical Development, 2013, 24, 47-54.	3.2	30
32	Low-copy <i>piggyBac</i> transposon mutagenesis in mice identifies genes driving melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3640-9.	3.3	28
33	Cancer Gene Discovery: Exploiting Insertional Mutagenesis. Molecular Cancer Research, 2013, 11, 1141-1158.	1.5	59
34	Cancer of mice and men: old twists and new tails. Journal of Pathology, 2013, 230, 4-16.	2.1	2
35	Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6091-6096.	3.3	19
36	Identification of Sleeping Beauty Transposon Insertions in Solid Tumors using Linker-mediated PCR. Journal of Visualized Experiments, 2013, , e50156.	0.2	2

#	Article	IF	CITATIONS
37	Analysis of Tumor Heterogeneity and Cancer Gene Networks Using Deep Sequencing of MMTV-Induced Mouse Mammary Tumors. PLoS ONE, 2013, 8, e62113.	1.1	40
38	Simple and Efficient Methods for Enrichment and Isolation of Endonuclease Modified Cells. PLoS ONE, 2014, 9, e96114.	1.1	27
39	In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cellular and Molecular Life Sciences, 2014, 71, 4007-4026.	2.4	42
40	Identification of FoxR2 as an Oncogene in Medulloblastoma. Cancer Research, 2014, 74, 2351-2361.	0.4	42
41	Chromatin Landscapes of Retroviral and Transposon Integration Profiles. PLoS Genetics, 2014, 10, e1004250.	1.5	80
42	Applications of DNA integrating elements: Facing the bias bully. Mobile Genetic Elements, 2014, 4, 1-6.	1.8	5
43	Sleeping Beauty mutagenesis: exploiting forward genetic screens for cancer gene discovery. Current Opinion in Genetics and Development, 2014, 24, 16-22.	1.5	29
44	Rare insights into cancer biology. Oncogene, 2014, 33, 2547-2556.	2.6	74
45	Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Seminars in Cell and Developmental Biology, 2014, 27, 86-95.	2.3	22
46	Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nature Genetics, 2014, 46, 24-32.	9.4	105
47	Inactivating CUX1 mutations promote tumorigenesis. Nature Genetics, 2014, 46, 33-38.	9.4	111
48	Transposon Insertional Mutagenesis Models of Cancer. Cold Spring Harbor Protocols, 2014, 2014, pdb.top069849.	0.2	9
49	A Proteome-Scale Map of the Human Interactome Network. Cell, 2014, 159, 1212-1226.	13.5	1,199
50	Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation. Stem Cell Reviews and Reports, 2014, 10, 408-416.	5.6	1
51	Cancer mouse models: Past, present and future. Seminars in Cell and Developmental Biology, 2014, 27, 54-60.	2.3	46
52	Mechanisms of DNA Transposition. Microbiology Spectrum, 2015, 3, MDNA3-0034-2014.	1.2	80
53	The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biology, 2015, 16, 229.	3.8	28
54	Mechanisms of DNA Transposition. , 0, , 529-553.		11

#	Article	IF	Citations
55	Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nature Genetics, 2015, 47, 142-150.	9.4	101
56	The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Research, 2015, 43, D844-D848.	6.5	109
57	Understanding and Using Information about Cancer Genomes. , 2015, , 357-368.e3.		0
58	Use of DNA transposons for functional genetic screens in mouse models of cancer. Current Opinion in Biotechnology, 2015, 35, 103-110.	3.3	8
59	Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma. Nature Genetics, 2015, 47, 486-495.	9.4	61
60	A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nature Genetics, 2015, 47, 615-624.	9.4	207
61	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
62	CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13982-13987.	3.3	172
64	A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nature Genetics, 2015, 47, 47-56.	9.4	77
65	Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers, 2016, 8, 99.	1.7	4
66	Cancer in Drosophila. Current Topics in Developmental Biology, 2016, 116, 181-199.	1.0	44
67	A recellularized human colon model identifies cancer driver genes. Nature Biotechnology, 2016, 34, 845-851.	9.4	91
68	Neuroblastoma and Its Zebrafish Model. Advances in Experimental Medicine and Biology, 2016, 916, 451-478.	0.8	16
69	Two-Step Forward Genetic Screen in Mice Identifies RalÂGTPase-Activating Proteins as Suppressors of HepatocellularÂCarcinoma. Gastroenterology, 2016, 151, 324-337.e12.	0.6	27
70	Advancements in Modeling Colorectal Cancer in Rodents. Current Colorectal Cancer Reports, 2016, 12, 274-280.	1.0	0
71	Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Scientific Reports, 2016, 6, 31455.	1.6	29
72	Case-oriented pathways analysis in pancreatic adenocarcinoma using data from a sleeping beauty transposon mutagenesis screen. BMC Medical Genomics, 2016, 9, 16.	0.7	0
73	A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis, 2016, 54, 65-77.	0.8	29

#	Article	IF	CITATIONS
74	Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma. Cancer Research, 2016, 76, 2254-2264.	0.4	41
75	Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Scientific Reports, 2017, 7, 43613.	1.6	46
76	Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf ^{â^'/â^'} mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3151-3156.	3.3	48
77	Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews Genetics, 2017, 18, 292-308.	7.7	215
78	Identifying transposon insertions and their effects from RNA-sequencing data. Nucleic Acids Research, 2017, 45, 7064-7077.	6.5	9
79	RNA helicase DHX15 acts as a tumour suppressor in glioma. British Journal of Cancer, 2017, 117, 1349-1359.	2.9	14
80	Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematology/Oncology Clinics of North America, 2017, 31, 737-752.	0.9	16
81	Identification of New Tumor Suppressor Genes in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 4089-4101.	0.4	28
82	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784.	2.9	31
83	<i>Sleeping Beauty</i> transposition: from biology to applications. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 18-44.	2.3	40
84	Osteosarcomagenesis: Biology, Development, Metastasis, and Mechanisms of Pain. , 2017, , .		2
85	SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer. PLoS Genetics, 2017, 13, e1006650.	1.5	16
86	Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Molecular Therapy, 2018, 26, 1137-1153.	3.7	53
87	CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. Journal of Plant Physiology, 2018, 224-225, 156-162.	1.6	66
88	A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Reports, 2018, 22, 1211-1224.	2.9	13
89	Mouse Models of Pancreatic Exocrine Cancer. , 2018, , 509-538.		0
90	Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Current Opinion in Genetics and Development, 2018, 49, 85-94.	1.5	19
91	Can-SINE dynamics in the giant panda and three other Caniformia genomes. Mobile DNA, 2018, 9, 32.	1.3	9

#	Article	IF	CITATIONS
92	Warburg Effect Metabolism Drives Neoplasia in a Drosophila Genetic Model of Epithelial Cancer. Current Biology, 2018, 28, 3220-3228.e6.	1.8	33
93	Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene. Scientific Reports, 2018, 8, 15327.	1.6	17
94	SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Nucleic Acids Research, 2018, 46, e94-e94.	6.5	9
95	SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers. Nucleic Acids Research, 2018, 46, D1011-D1017.	6.5	29
96	JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 1929-1945.	4.2	22
97	Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules, 2018, 23, 1360.	1.7	3
98	Mouse models in the era of large human tumour sequencing studies. Open Biology, 2018, 8, .	1.5	7
99	Sleeping beauty genetic screen identifies miR-23b::BTBD7 gene interaction as crucial for colorectal cancer metastasis. EBioMedicine, 2019, 46, 79-93.	2.7	13
100	Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Frontiers in Oncology, 2019, 9, 611.	1.3	5
101	Genome-wide Screen for Culture Adaptation and Tumorigenicity-Related Genes in Human Pluripotent Stem Cells. IScience, 2019, 11, 398-408.	1.9	7
102	Deciphering mechanisms of response and resistance in large-scale mouse cancer screens. Current Opinion in Genetics and Development, 2019, 54, 48-54.	1.5	0
103	Insertional mutagenesis using the Sleeping Beauty transposon system identifies drivers of erythroleukemia in mice. Scientific Reports, 2019, 9, 5488.	1.6	6
104	PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nature Communications, 2019, 10, 1415.	5.8	37
105	MRTFB suppresses colorectal cancer development through regulating SPDL1 and MCAM. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23625-23635.	3.3	22
106	Haematopoiesis in the era of advanced single-cell technologies. Nature Cell Biology, 2019, 21, 2-8.	4.6	89
108	PiggyBac Transposon-Based Insertional Mutagenesis in Mice. Methods in Molecular Biology, 2019, 1907, 171-183.	0.4	6
109	A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Research, 2020, 48, 316-331.	6.5	11
110	New murine models of aggressive lymphoma. Leukemia and Lymphoma, 2020, 61, 788-798.	0.6	4

#	Article	IF	CITATIONS
111	Genome-Wide Screen for Context-Dependent Tumor Suppressors Identified Using in Vivo Models for Neoplasia in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2999-3008.	0.8	3
112	Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Communications Biology, 2020, 3, 56.	2.0	140
113	The Contribution of Rare Allele and Junk Genome in AMD Pathogenesis. Essentials in Ophthalmology, 2021, , 89-96.	0.0	1
114	Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals clinical features of cancer lncRNAs. NAR Cancer, 2021, 3, zcab013.	1.6	21
115	Identification of cancer driver genes using <i>Sleeping Beauty</i> transposon mutagenesis. Cancer Science, 2021, 112, 2089-2096.	1.7	8
116	Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. International Journal of Molecular Sciences, 2021, 22, 5084.	1.8	55
117	A Platform for Validating Colorectal Cancer Driver Genes Using Mouse Organoids. Frontiers in Genetics, 2021, 12, 698771.	1.1	3
118	Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genetics, 2021, 17, e1009094.	1.5	2
119	The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science, 2021, 373, 1327-1335.	6.0	83
120	Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Research, 2021, 81, 5413-5424.	0.4	2
121	Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation. Cancers, 2021, 13, 225.	1.7	3
122	Transposon Mutagenesis in Disease, Drug Discovery, and Bacterial Evolution. , 2013, , 59-77.		2
127	Somatic Mutagenesis with a Sleeping Beauty Transposon System Leads to Solid Tumor Formation in Zebrafish. PLoS ONE, 2011, 6, e18826.	1.1	30
128	Clonal Expansion Analysis of Transposon Insertions by High-Throughput Sequencing Identifies Candidate Cancer Genes in a PiggyBac Mutagenesis Screen. PLoS ONE, 2013, 8, e72338.	1.1	12
129	CRSPR/CAS9 Technology: A Revolutionary Molecular Scissors for Genome Editing and Genetic Research. MOJ Cell Science & Report, 2016, 3, .	0.1	6
130	Efficacy and Safety of Sleeping Beauty Transposon-Mediated Gene Transfer in Preclinical Animal Studies. Current Gene Therapy, 2011, 11, 341-349.	0.9	55
131	Mutations and Experimental Mutagenesis. , 2015, , 221-265.		0
132	The Mouse Genome. , 2015, , 127-185.		0

# 133	ARTICLE Mouse Models of Pancreatic Exocrine Cancer. , 2017, , 1-30.	IF	CITATIONS 0
137	Mouse Models of Diffuse Lower-Grade Cliomas of the Adult. Neuromethods, 2021, , 3-38.	0.2	0
140	TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae, 2014, 6, 19-40.	1.7	78
141	TNF receptor–related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NFâ€îºBâ€inducing kinase–mediated hepatocyte transdifferentiation. Hepatology, 2023, 77, 395-410.	3.6	7
143	Novel cancer gene discovery using a forward genetic screen in RCAS-PDGFB-driven gliomas. Neuro-Oncology, 2023, 25, 97-107.	0.6	3
144	Transposon Mutagenesis Reveals RBMS3 Silencing as a Promoter of Malignant Progression of BRAFV600E-Driven Lung Tumorigenesis. Cancer Research, 2022, 82, 4261-4273.	0.4	8
146	Sleeping Beauty: Ein "springendes Gen" für Anwendungen in der Gentechnik. , 2023, , 73-86.		0