Ultrahigh-power micrometre-sized supercapacitors bas

Nature Nanotechnology 5, 651-654 DOI: 10.1038/nnano.2010.162

Citation Report

#	Article	IF	CITATIONS
12	Proton Conducting Heteropoly Acid Based Electrolyte for High Rate Solid Electrochemical Capacitors. Journal of the Electrochemical Society, 2011, 158, A1371.	2.9	17
13	A First Principles Approach to Develop a Dynamic Model of Electrochemical Capacitors. IEEE Transactions on Power Electronics, 2011, 26, 3472-3480.	7.9	17
14	Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes. Journal of Physical Chemistry C, 2011, 115, 16711-16719.	3.1	238
15	Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 8923-8927.	3.1	143
16	Directed Assembly of Nanoparticles along Predictable Large-Scale Patterns Using Micromolded Hydrogels. Langmuir, 2011, 27, 6598-6605.	3.5	10
17	Carbon coated textiles for flexible energy storage. Energy and Environmental Science, 2011, 4, 5060.	30.8	486
18	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. Journal of Materials Chemistry, 2011, 21, 13025.	6.7	68
19	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy and Environmental Science, 2011, 4, 5000.	30.8	125
20	High-Performance Nanostructured Supercapacitors on a Sponge. Nano Letters, 2011, 11, 5165-5172.	9.1	670
21	Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. Journal of Materials Chemistry, 2011, 21, 5128.	6.7	288
22	Oscillation of Capacitance inside Nanopores. Nano Letters, 2011, 11, 5373-5377.	9.1	290
23	Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields. Journal of Applied Physics, 2011, 110, .	2.5	53
24	Capacitive Energy Storage from â^'50 to 100 °C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.	4.6	361
25	A novel three-dimensional micro supercapacitor using self-support nano composite materials. , 2011, , .		2
26	Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano, 2011, 5, 3693-3700.	14.6	815
27	Layered assembly of graphene oxide and Co–Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications, 2011, 47, 3556.	4.1	284
28	Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972.	30.8	346
29	Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano, 2011, 5, 8552-8561.	14.6	255

#	Article	IF	CITATIONS
30	Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nature Communications, 2011, 2, 381.	12.8	1,040
31	All Solid Electrochemical Capacitors and Hybrid Systems. ECS Meeting Abstracts, 2011, , .	0.0	0
32	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6, 232-236.	31.5	1,914
33	High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes. Journal of Power Sources, 2011, 196, 8855-8857.	7.8	63
34	A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. Journal of Power Sources, 2011, 196, 10465-10471.	7.8	139
35	Three-dimensional nanoporous gold for electrochemical supercapacitors. Scripta Materialia, 2011, 64, 923-926.	5.2	109
36	Hollow graphitic carbon spheres for Pt electrocatalyst support in direct methanol fuel cell. Electrochimica Acta, 2011, 56, 8674-8679.	5.2	30
37	Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochimica Acta, 2011, 56, 9508-9514.	5.2	170
38	Growth of platinum nanoparticles on stainless steel 316L current collectors to improve carbon-based supercapacitor performance. Electrochimica Acta, 2011, 56, 10217-10222.	5.2	58
39	Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale, 2011, 3, 2703.	5.6	138
40	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, , n/a-n/a.	19.5	0
41	Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6, 496-500.	31.5	1,322
42	Metallic Few-Layered VS ₂ Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors. Journal of the American Chemical Society, 2011, 133, 17832-17838.	13.7	1,014
43	Carbideâ€Đerived Carbons – From Porous Networks to Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 810-833.	14.9	585
44	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	14.9	98
45	Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of Highâ€Performance Supercapacitors. Advanced Materials, 2011, 23, 2833-2838.	21.0	954
46	Subâ€Micrometerâ€Thick Allâ€Solidâ€State Supercapacitors with High Power and Energy Densities. Advanced Materials, 2011, 23, 4098-4102.	21.0	343
47	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	19.5	538

#	Article	IF	CITATIONS
48	Flexible Nanoâ€felts of Carbideâ€Derived Carbon with Ultraâ€high Power Handling Capability. Advanced Energy Materials, 2011, 1, 423-430.	19.5	172
49	An Allâ€Solidâ€State Flexible Microâ€supercapacitor on a Chip. Advanced Energy Materials, 2011, 1, 1068-1072.	19.5	344
51	Fiber Supercapacitors Made of Nanowireâ€Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angewandte Chemie - International Edition, 2011, 50, 1683-1687.	13.8	796
52	The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni–Fe alloy catalyst. Carbon, 2011, 49, 1151-1158.	10.3	62
53	Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon, 2011, 49, 3972-3982.	10.3	225
54	Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, 2011, 49, 4890-4897.	10.3	84
55	CuO/graphene composite as anode materials for lithium-ion batteries. Electrochimica Acta, 2011, 56, 2306-2311.	5.2	375
56	Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nanotubes. Journal of Power Sources, 2011, 196, 5761-5768.	7.8	74
57	Circuit model of carbon-nanotube inks for microelectronic and microwave tunable devices. , 2011, , .		7
58	Advances in solid polymer electrochemical capacitors for high rate applications. Proceedings of SPIE, 2011, , .	0.8	0
59	Design, fabrication, and evaluation of on-chip micro-supercapacitors. Proceedings of SPIE, 2011, , .	0.8	7
60	Recent advances in design and fabrication of on-chip micro-supercapacitors. Proceedings of SPIE, 2012,	0.8	8
61	Preparation and Electrochemical Characteristics of Three-dimensional Manganese Oxide Micro-supercapacitor Electrode. Chinese Journal of Chemical Physics, 2012, 25, 209-213.	1.3	4
62	Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Physical Review B, 2012, 85, .	3.2	95
63	Advances in Surface Chemistry of Nanodiamond and Nanodiamond–Polymer Composites. , 2012, , 421-456.		11
64	Friction reducing properties of onion-like carbon based lubricant under high contact pressure. Tribology - Materials, Surfaces and Interfaces, 2012, 6, 116-120.	1.4	19
65	Fundamentals of Electromagnetic Nanonetworks in the Terahertz Band. Foundations and Trends in Networking, 2012, 7, 77-233.	10.2	17
66	Nanostructured manganese dioxides as active materials for micro-supercapacitors. Micro and Nano Letters, 2012, 7, 744.	1.3	9

#	Article	IF	CITATIONS
67	Electrochemical Study of Functionalized Carbon Nano-Onions for High-Performance Supercapacitor Electrodes. Journal of Physical Chemistry C, 2012, 116, 15068-15075.	3.1	105
68	Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band. IEEE Nanotechnology Magazine, 2012, 11, 570-580.	2.0	190
69	A Sol-Gel Process for the Synthesis of NiCo2O4Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors. Journal of the Electrochemical Society, 2012, 159, A1262-A1266.	2.9	53
70	Transparent, flexible supercapacitors from nano-engineered carbon films. Scientific Reports, 2012, 2, 773.	3.3	187
71	Mesoporous Thin Films of Nitrogen-Doped Carbon with Electrocatalytic Properties. Journal of Physical Chemistry C, 2012, 116, 16848-16853.	3.1	39
72	In Situ Electrochemical Dilatometry of Onion-Like Carbon and Carbon Black. Journal of the Electrochemical Society, 2012, 159, A1897-A1903.	2.9	56
73	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	14.6	961
74	Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques. Journal of Natural Gas Chemistry, 2012, 21, 233-240.	1.8	38
75	Carbon Nanotube–Nanocup Hybrid Structures for High Power Supercapacitor Applications. Nano Letters, 2012, 12, 5616-5621.	9.1	164
76	Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 7291-7295.	2.6	11
77	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	14.6	151
78	Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diamond and Related Materials, 2012, 30, 70-76.	3.9	29
79	Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 21272.	6.7	34
80	Charge transport and relaxation in hydrogenated barium titanate films and their potential for integrated supercapacitors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 04D110.	2.1	1
81	Modeling of a carbon nanotube ultracapacitor. Nanotechnology, 2012, 23, 095401.	2.6	7
82	Hydrocarbon on Carbon: Coherent Vibrational Spectroscopy of Toluene on Graphite. Journal of Physical Chemistry Letters, 2012, 3, 280-282.	4.6	20
83	Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. Journal of Physical Chemistry Letters, 2012, 3, 2465-2469.	4.6	42
84	Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. Journal of Solid State Electrochemistry, 2012, 16, 3341-3348.	2.5	56

#	Article	IF	CITATIONS
85	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	14.6	596
86	A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm, 2012, 14, 6710.	2.6	187
87	Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1138-1143.	3.5	27
88	Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012, 215, 317-328.	7.8	147
89	Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage. Advanced Materials, 2012, 24, 5713-5718.	21.0	571
90	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	19.5	401
91	High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology, 2012, 23, 155401.	2.6	140
92	Diamond Phase Transitions at Nanoscale. , 2012, , 181-244.		6
93	Hybrid Nanomembranes for High Power and High Energy Density Supercapacitors and Their Yarn Application. ACS Nano, 2012, 6, 327-334.	14.6	83
94	Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 6061.	6.7	64
95	A joint energy harvesting and consumption model for self-powered nano-devices in nanonetworks. , 2012, , .		32
96	Impedance-based simulation model of Carbon Nano-Onions ultracapacitors for e-bike with compact energy storage system. , 2012, , .		1
97	Superwetting monolithic carbon with hierarchical structure as supercapacitor materials. Microporous and Mesoporous Materials, 2012, 163, 249-258.	4.4	28
98	Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012, 1, 552-565.	16.0	468
99	A Sol–Gel Process for Fabrication of NiO/NiCo ₂ O ₄ /Co ₃ O ₄ Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636.	8.0	202
100	Hydrothermal process for the fabrication of CoMoO4·0.9H2O nanorods with excellent electrochemical behavior. New Journal of Chemistry, 2012, 36, 1713.	2.8	102
101	Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 5560.	6.7	77
102	All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology, 2012, 23, 065401.	2.6	253

#	Article	IF	CITATIONS
103	Chemical Vapor Deposition of Aluminum Nanowires on Metal Substrates for Electrical Energy Storage Applications. ACS Nano, 2012, 6, 118-125.	14.6	93
104	Fabrication and design equation of film-type large-scale interdigitated supercapacitor chips. Nanoscale, 2012, 4, 7350.	5.6	43
105	Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. Journal of Chemical Theory and Computation, 2012, 8, 1058-1063.	5.3	125
106	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.	3.9	36
107	Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Applied Physics Letters, 2012, 100, .	3.3	136
108	Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012, 22, 11494.	6.7	261
109	Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chemical Science, 2012, 3, 1481.	7.4	45
110	Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications. Electrochemistry Communications, 2012, 25, 109-111.	4.7	75
111	Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials & Interfaces, 2012, 4, 2824-2828.	8.0	135
112	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	12.6	3,627
113	Charge-induced restructuring and decomposition of bucky-diamonds. Journal of Materials Chemistry, 2012, 22, 13141.	6.7	5
114	Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano, 2012, 6, 7092-7102.	14.6	1,572
115	The properties and applications of nanodiamonds. Nature Nanotechnology, 2012, 7, 11-23.	31.5	2,327
116	High energy density supercapacitors using macroporous kitchen sponges. Journal of Materials Chemistry, 2012, 22, 14394.	6.7	83
117	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	3.3	559
118	Layer-by-Layer Self-Assembled Multilayer Films Composed of Graphene/Polyaniline Bilayers: High-Energy Electrode Materials for Supercapacitors. Langmuir, 2012, 28, 12637-12646.	3.5	138
119	In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. Advanced Functional Materials, 2012, 22, 1655-1662.	14.9	96
120	Microâ€Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance. Advanced Functional Materials, 2012, 22, 4501-4510.	14.9	736

#	Article	IF	CITATIONS
121	Threeâ€Dimensional Nitrogen and Boron Coâ€doped Graphene for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2012, 24, 5130-5135.	21.0	1,270
122	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	21.0	409
124	Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 4934-4938.	13.8	364
125	Nanocomposites of Ni(OH) ₂ /Reduced Graphene Oxides with Controllable Composition, Size, and Morphology: Performance Variations as Pseudocapacitor Electrodes. ChemPlusChem, 2012, 77, 807-816.	2.8	39
126	On the Configuration of Supercapacitors for Maximizing Electrochemical Performance. ChemSusChem, 2012, 5, 818-841.	6.8	429
127	Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012, 22, 17245.	6.7	350
128	Nitrogen-Vacancy-Assisted Magnetometry of Paramagnetic Centers in an Individual Diamond Nanocrystal. Nano Letters, 2012, 12, 3477-3482.	9.1	69
129	Performance of nanotube-based electrodes from temperature-controlled electrophoretic deposition. Journal of Applied Electrochemistry, 2012, 42, 501-508.	2.9	2
130	Preparation and characterization of three-dimensional micro-electrode for micro-supercapacitor based on inductively coupled plasma reactive etching technology. Science China Technological Sciences, 2012, 55, 2013-2018.	4.0	2
131	Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy. Microsystem Technologies, 2012, 18, 467-473.	2.0	64
132	Onion-like carbon nanoparticles generated by multiple laser irradiations on laser-ablated particles. Carbon, 2012, 50, 1116-1122.	10.3	17
133	Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors. Carbon, 2012, 50, 1740-1747.	10.3	66
134	Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012, 50, 3298-3309.	10.3	218
135	High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 2012, 50, 2179-2188.	10.3	397
136	Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon, 2012, 50, 3513-3521.	10.3	94
137	Ordered mesoporous carbide-derived carbons prepared by soft templating. Carbon, 2012, 50, 3987-3994.	10.3	46
138	Buckling patterns of complete spherical shells filled with an elastic medium under external pressure. International Journal of Mechanical Sciences, 2012, 59, 22-30.	6.7	20
139	Intrinsic limitations of impedance measurements in determining electric double layer capacitances. Electrochimica Acta, 2012, 63, 55-63.	5.2	70

#	Article	IF	CITATIONS
140	Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochimica Acta, 2012, 64, 130-139.	5.2	144
141	Nitrogen-doped hollow carbon spheres with enhanced electrochemical capacitive properties. Materials Research Bulletin, 2012, 47, 1625-1629.	5.2	16
142	Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Materials Letters, 2012, 80, 37-39.	2.6	30
143	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	7.8	100
144	High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources, 2012, 201, 368-375.	7.8	93
145	Electrochemical capacitors of miniature size with patterned carbon nanotubes and cobalt hydroxide. Journal of Power Sources, 2012, 205, 510-515.	7.8	46
146	Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. Journal of Power Sources, 2012, 208, 138-143.	7.8	118
147	Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. Microporous and Mesoporous Materials, 2012, 147, 86-93.	4.4	49
148	Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Double‣ayer Capacitors with Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.	14.9	396
149	Supercapacitor and nanoscale research towards electrochemical energy storage. International Journal of Smart and Nano Materials, 2013, 4, 2-26.	4.2	57
150	New Generation "Nanohybrid Supercapacitor― Accounts of Chemical Research, 2013, 46, 1075-1083.	15.6	492
151	Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries. Advanced Functional Materials, 2013, 23, 1037-1045.	14.9	304
152	Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy, 2013, 2, 1025-1030.	16.0	61
153	Scaling laws for carbon-based electric double layer capacitors. Electrochimica Acta, 2013, 109, 316-321.	5.2	17
154	Supercapacitance behavior of porous oxide layer grown on 302 type stainless steel substrate. Journal of Power Sources, 2013, 236, 103-111.	7.8	22
155	Porous carbon thin films for electrochemical capacitors. Carbon, 2013, 64, 456-463.	10.3	45
156	Dynamic electrosorption analysis: a viable liquid-phase characterization method for porous carbon?. Journal of Materials Chemistry A, 2013, 1, 9332.	10.3	8
157	Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods. Energy, 2013, 58, 519-526.	8.8	69

#	ARTICLE	IF	CITATIONS
158	Rational design of a high performance all solid state flexible micro-supercapacitor on paper. RSC Advances, 2013, 3, 15827.	3.6	45
159	On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy and Environmental Science, 2013, 6, 3218.	30.8	314
161	Excess Thermopower and the Theory of Thermopower Waves. ACS Nano, 2013, 7, 6533-6544.	14.6	72
162	A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomedical Microdevices, 2013, 15, 973-983.	2.8	59
163	Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model. Journal of Physical Chemistry C, 2013, 117, 18286-18297.	3.1	90
164	Cycling characteristics of high energy density, electrochemically activated porous-carbon supercapacitor electrodes in aqueous electrolytes. Journal of Materials Chemistry A, 2013, 1, 10518.	10.3	30
165	Transparent and ultra-bendable all-solid-state supercapacitors without percolation problems. Chemical Science, 2013, 4, 1663.	7.4	64
166	Synthesis of electro-deposited ordered mesoporous RuO using lyotropic liquid crystal and application toward micro-supercapacitors. Journal of Power Sources, 2013, 227, 153-160.	7.8	162
167	Carbon nano-onions for supercapacitor electrodes: recent developments and applications. Journal of Materials Chemistry A, 2013, 1, 13703.	10.3	132
168	Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russian Journal of General Chemistry, 2013, 83, 851-883.	0.8	20
169	Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology, 2013, 24, 205703.	2.6	104
170	Design and synthesis of CoMoO ₄ –NiMoO ₄ ·xH ₂ O bundles with improved electrochemical properties for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 1380-1387.	10.3	328
171	Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2013, 2, 702-712.	16.0	135
172	Planar thin film supercapacitor based on cluster-assembled nanostructured carbon and ionic liquid electrolyte. Carbon, 2013, 59, 212-220.	10.3	47
173	Nitrogen-doped carbon microfibers with porous textures. Carbon, 2013, 58, 128-133.	10.3	29
174	Superior Micro upercapacitors Based on Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 4111-4122.	14.9	595
175	Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources, 2013, 242, 687-698.	7.8	200
176	Cableâ€Type Supercapacitors of Threeâ€Dimensional Cotton Thread Based Multiâ€Grade Nanostructures for Wearable Energy Storage. Advanced Materials, 2013, 25, 4925-4931.	21.0	267

#	Article	IF	CITATIONS
177	Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Research Letters, 2013, 8, 38.	5.7	61
178	On-chip micro-supercapacitors for operation in a wide temperature range. Electrochemistry Communications, 2013, 36, 53-56.	4.7	110
179	Electrochemically Exfoliated Graphene for Electrode Films: Effect of Graphene Flake Thickness on the Sheet Resistance and Capacitive Properties. Langmuir, 2013, 29, 13307-13314.	3.5	96
180	Effect of gold and silver nanoislands on the electrochemical properties of carbon nanofoam. Electrochimica Acta, 2013, 111, 305-313.	5.2	16
181	Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors. Electrochimica Acta, 2013, 113, 141-148.	5.2	44
182	Raising the performance of a 4 V supercapacitor based on an EMIBF4–single walled carbon nanotube nanofluid electrolyte. Chemical Communications, 2013, 49, 10727.	4.1	41
183	Smart Everything: Will Intelligent Systems Reduce Resource Use?. Annual Review of Environment and Resources, 2013, 38, 311-343.	13.4	68
184	Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 3367-3376.	4.6	125
185	Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization. Applied Surface Science, 2013, 278, 101-105.	6.1	13
186	Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science, 2013, 341, 534-537.	12.6	1,666
187	Novel Electric Double‣ayer Capacitor with a Coaxial Fiber Structure. Advanced Materials, 2013, 25, 6436-6441.	21.0	346
188	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	10.3	91
189	Onion-like carbon and carbon nanotube film antennas. Applied Physics Letters, 2013, 103, .	3.3	22
190	Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 104-112.	4.7	58
191	Structure ontrolled, Vertical Grapheneâ€Based, Binderâ€Free Electrodes from Plasmaâ€Reformed Butter Enhance Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1316-1323.	19.5	182
192	Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4, 2487.	12.8	1,104
193	Direct prototyping of 3D micro supercapacitors based on in-situ fabricated nanoporous carbon electrodes. , 2013, , .		2
194	An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Physical Chemistry Chemical Physics, 2013, 15, 8042.	2.8	97

#	Article	IF	CITATIONS
195	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	30.8	168
196	Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 5091-5097.	21.0	420
197	Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. Journal of the American Chemical Society, 2013, 135, 12818-12826.	13.7	174
198	Synthesis and electrochemical performance of a single walled carbon nanohorn–Fe3O4nanocomposite supercapacitor electrode. RSC Advances, 2013, 3, 21390-21393.	3.6	35
199	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	10.3	41
200	Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Advances, 2013, 3, 24567.	3.6	55
201	Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF6-based electrolyte. Nanoscale, 2013, 5, 8122.	5.6	27
202	Binderless thin films of zeolite-templated carbon electrodes useful for electrochemical microcapacitors with ultrahigh rate performance. Physical Chemistry Chemical Physics, 2013, 15, 10331.	2.8	21
203	Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors. Journal of Power Sources, 2013, 222, 301-304.	7.8	22
204	Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. Journal of Power Sources, 2013, 225, 240-244.	7.8	129
205	Integrated power fiber for energy conversion and storage. Energy and Environmental Science, 2013, 6, 805.	30.8	359
206	A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons. Carbon, 2013, 52, 1-9.	10.3	64
207	Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices. Carbon, 2013, 53, 292-301.	10.3	102
208	In situ formation of onion-like carbon from the evaporation of ultra-dispersed nanodiamonds. Carbon, 2013, 52, 145-149.	10.3	22
209	Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon, 2013, 51, 290-300.	10.3	169
210	3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance. Nano Letters, 2013, 13, 72-78.	9.1	672
211	Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon. Carbon, 2013, 52, 150-157.	10.3	14
212	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	30.8	60

#	Article	IF	CITATIONS
213	Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors. Journal of Solid State Electrochemistry, 2013, 17, 175-182.	2.5	8
214	Preparation and characterization of soluble carbon nano-onions by covalent functionalization, employing a Na–K alloy. Chemical Communications, 2013, 49, 2406.	4.1	47
215	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4, 1475.	12.8	1,592
216	Nanoparticles Assume Electrical Potential According to Substrate, Size, and Surface Termination. Langmuir, 2013, 29, 1634-1641.	3.5	41
217	Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochimica Acta, 2013, 113, 17-22.	5.2	49
218	Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes. Journal of Micromechanics and Microengineering, 2013, 23, 114013.	2.6	31
219	Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 2013, 51, 52-58.	10.3	242
220	Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 2013, 132, 254-261.	9.6	337
221	Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5, 3428.	5.6	307
222	Graphene Oxideâ€Ðispersed Pristine CNTs Support for MnO ₂ Nanorods as High Performance Supercapacitor Electrodes. ChemSusChem, 2013, 6, 474-480.	6.8	92
223	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	14.6	781
224	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	16.0	976
225	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	2.5	21
226	Flexible, Planarâ€Integrated, Allâ€Solidâ€State Fiber Supercapacitors with an Enhanced Distributedâ€Capacitance Effect. Small, 2013, 9, 1998-2004.	10.0	133
227	Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition. Carbon, 2013, 52, 337-346.	10.3	47
228	Graphene ultracapacitors: structural impacts. Physical Chemistry Chemical Physics, 2013, 15, 4799.	2.8	57
229	From dead leaves to high energy density supercapacitors. Energy and Environmental Science, 2013, 6, 1249.	30.8	811
230	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. Journal of Materials Chemistry A, 2013, 1, 5212.	10.3	77

#	Article	IF	CITATIONS
231	Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, 2, 249-256.	16.0	530
232	Synergistic Control of SMES and Battery Energy Storage for Enabling Dispatchability of Renewable Energy Sources. IEEE Transactions on Applied Superconductivity, 2013, 23, 5701205-5701205.	1.7	99
233	Ultrathin Two-Dimensional MnO ₂ /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters, 2013, 13, 2151-2157.	9.1	818
234	Direct Laserâ€Patterned Microâ€&upercapacitors from Paintable MoS ₂ Films. Small, 2013, 9, 2905-2910.	10.0	455
235	High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nature Communications, 2013, 4, 1732.	12.8	513
236	High power lithium ion microbatteries with lithographically defined 3-D porous electrodes. , 2013, , .		4
237	Polypyrrole-coated paper for flexible solid-state energy storage. Energy and Environmental Science, 2013, 6, 470.	30.8	580
238	Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1260-1267.	4.6	113
239	Allâ€Graphene Coreâ€6heath Microfibers for Allâ€6olidâ€6tate, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	21.0	1,007
240	Hard corona composition and cellular toxicities of the graphene sheets. Colloids and Surfaces B: Biointerfaces, 2013, 109, 212-218.	5.0	64
241	Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 2013, 5, 6053.	5.6	271
242	Spin–spin interactions between ï€-electronic edge-localized spins and molecular oxygen in defective carbon nano-onions. Carbon, 2013, 61, 173-189.	10.3	8
243	Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. Journal of Power Sources, 2013, 242, 78-85.	7.8	99
244	NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2468.	10.3	344
245	A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chemical Communications, 2013, 49, 291-293.	4.1	272
246	Influence of the configuration in planar interdigitated electrochemical micro-capacitors. Journal of Power Sources, 2013, 230, 230-235.	7.8	88
247	Oxidation Stability of Nanographite Materials. Advanced Energy Materials, 2013, 3, 1176-1179.	19.5	22
248	Allâ€Solidâ€State Flexible Ultrathin Microâ€Supercapacitors Based on Graphene. Advanced Materials, 2013, 25, 4035-4042.	21.0	503

# 249	ARTICLE Efficient Inkjet Printing of Graphene. Advanced Materials, 2013, 25, 3985-3992.	IF 21.0	Citations 425
250	Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 2013, 58, 1388-1442.	32.8	1,648
251	Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale, 2013, 5, 4119.	5.6	103
252	Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Communications, 2013, 4, 1970.	12.8	475
253	A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. Journal of Analytical and Applied Pyrolysis, 2013, 100, 181-185.	5.5	88
254	Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 8593.	10.3	84
255	Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors. RSC Advances, 2013, 3, 6472.	3.6	123
256	Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. Journal of Power Sources, 2013, 242, 560-565.	7.8	57
257	Nanodiamond graphitization: a magnetic resonance study. Journal of Physics Condensed Matter, 2013, 25, 245303.	1.8	37
258	Sandwichâ€Type Microporous Carbon Nanosheets for Enhanced Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1421-1427.	19.5	151
259	Vertically Oriented Propylene Carbonate Molecules and Tetraethyl Ammonium Ions in Carbon Slit Pores. Journal of Physical Chemistry C, 2013, 117, 5752-5757.	3.1	25
260	Approach to Dark Spin Cooling in a Diamond Nanocrystal. ACS Nano, 2013, 7, 3403-3410.	14.6	31
261	A brain-coral-inspired metal–carbon hybrid synthesized using agarose gel for ultra-fast charge and discharge supercapacitor electrodes. Chemical Communications, 2013, 49, 1554.	4.1	22
262	Hydrogen and carbon monoxide generation from laser-induced graphitized nanodiamonds in water. Physical Chemistry Chemical Physics, 2013, 15, 7155.	2.8	11
263	Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature. Journal of Physical Chemistry C, 2013, 117, 9178-9186.	3.1	69
264	Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors. Electrochemistry Communications, 2013, 34, 109-112.	4.7	75
265	Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes. Electrochemistry Communications, 2013, 28, 104-106.	4.7	93
266	An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7000.	10.3	104

#	Article	IF	CITATIONS
267	High Rate Performance of Flexible Pseudocapacitors fabricated using Ionic-Liquid-Based Proton Conducting Polymer Electrolyte with Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) and Its Hydrous Ruthenium Oxide Composite Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 3875-3883.	8.0	75
268	A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies. Journal of Power Sources, 2013, 234, 302-309.	7.8	124
269	Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis. ACS Nano, 2013, 7, 11156-11165.	14.6	92
270	Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano, 2013, 7, 6498-6506.	14.6	90
271	Flexible high performance wet-spun graphene fiber supercapacitors. RSC Advances, 2013, 3, 23957.	3.6	152
272	Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures. Journal of Power Sources, 2013, 221, 252-260.	7.8	71
273	Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications. Journal of Power Sources, 2013, 221, 228-231.	7.8	36
274	Performance of Vertically Aligned MWCNTs/Ni/Ti/Au/Si Electrode for Supercapacitors by CVD. Advanced Materials Research, 2013, 813, 336-339.	0.3	0
275	Preparation and Characterization of a Micro-Supercapacitor with Three-Dimensional Microelectrode Arrays. Key Engineering Materials, 2013, 562-565, 1196-1202.	0.4	1
276	Complex Impedance with Transmission Line Model and Complex Capacitance Analysis of Ion Transport and Accumulation in Hierarchical Core-Shell Porous Carbons. Journal of the Electrochemical Society, 2013, 160, H271-H278.	2.9	50
277	Improvement in the Characteristics of Electric Double Layer Capacitor Using a Mixture of Arc Black and Carbon Nanoballoon. Japanese Journal of Applied Physics, 2013, 52, 11NM05.	1.5	1
278	Ruthenium Oxide Electrodeposition on Titanium Interdigitated Microarrays for Energy Storage. Materials Research Society Symposia Proceedings, 2013, 1494, 265-270.	0.1	0
279	MoO _{<i>x</i>} thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors. Science and Technology of Advanced Materials, 2013, 14, 065005.	6.1	26
280	Electrochemical Characteristics of Closely Spaced Defect Tuned Carbon Nanotube Arrays. Journal of the Electrochemical Society, 2013, 160, H360-H367.	2.9	12
281	Aberrationâ€corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1976-1984.	1.8	38
282	Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices. Scientific Reports, 2013, 3, 2294.	3.3	61
283	TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor. Scientific Reports, 2013, 3, 2939.	3.3	45
284	Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 2013, 3, .	3.3	182

#	Article	IF	CITATIONS
285	Composite Carbon Nano-Tubes (CNT)/Activated Carbon Electrodes for Non-Aqueous Super Capacitors Using Organic Electrolyte Solutions. Journal of the Electrochemical Society, 2013, 160, A1282-A1285.	2.9	39
286	All solid-state micro-supercapacitors using ionogel electrolyte. , 2013, , .		1
287	Towards Energy Autonomy of Wireless Sensors in Aeronautics Applications: SMARTER Collaborative Project. , 2013, , .		6
288	LEGO-like assembly of peelable, deformable components for integrated devices. NPG Asia Materials, 2013, 5, e66-e66.	7.9	12
289	Carbon Materials and Their Energy Conversion and Storage Applications. , 2013, , 59-94.		2
290	Capacitive Electric Storage. Materials and Energy, 2013, , 373-404.	0.1	1
291	Carbon Nanostructures in Biomedical Applications. , 2013, , 233-248.		1
292	Switching polarity of oxidized detonation diamond nanoparticles on substrates. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2095-2099.	1.8	0
293	Nanowire modified carbon fibers for enhanced electrical energy storage. Journal of Applied Physics, 2013, 114, 104306.	2.5	14
294	Quantum transport through single and multilayer icosahedral fullerenes. Journal of Applied Physics, 2013, 114, 144305.	2.5	4
295	Highly N-doped Silicon Nanowires as a Possible Alternative to Carbon for On-chip Electrochemical Capacitors. Electrochemistry, 2013, 81, 777-782.	1.4	18
296	Evolution of Energy Storage on the Platform of Supercapacitors. Electrochemistry, 2013, 81, 775-776.	1.4	7
297	Carbon Nano-Onion Ultracapacitor Model. Materials Research Society Symposia Proceedings, 2013, 1541, 81801.	0.1	0
298	Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein Journal of Nanotechnology, 2014, 5, 1980-1998.	2.8	207
299	Freestanding MoO3â^' nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy, 2014, 9, 355-363.	16.0	146
300	Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters, 2014, 105, .	3.3	42
301	Ion Accumulation and Diffusion Behavior in Micro-/Meso-Pores of Carbon Nanofibers. Journal of the Electrochemical Society, 2014, 161, A1330-A1337.	2.9	19
302	Scaled carbon-ionogel supercapacitors for electronic circuits. , 2014, , .		1

#	Article	IF	Citations
303	Microwave impedance microscopy of high specific surface area carbon. , 2014, , .		0
304	Catalytic performance of Mo ₂ C supported on onion-like carbon for dehydrogenation of cyclohexane. RSC Advances, 2014, 4, 53950-53953.	3.6	22
305	Preparation and characterization of manganese oxide microelectrodes for microelectromechanical system supercapacitor. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228, 77-81.	0.1	1
306	Ultrasonic-assisted rational design of uniform rhombus-shaped ZnMoO _x on graphene for advanced sunlight-driven photocatalysts, functional supercapacitor electrodes, and antibacterial platforms. RSC Advances, 2014, 4, 64994-65003.	3.6	27
307	Realizing a supercapacitor in an electrical circuit. Applied Physics Letters, 2014, 105, .	3.3	3
308	Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104, .	3.3	73
309	Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy, 2014, 10, 222-228.	16.0	111
310	Threeâ€Dimensional Graphitized Carbon Nanovesicles for Highâ€Performance Supercapacitors Based on Ionic Liquids. ChemSusChem, 2014, 7, 777-784.	6.8	28
311	Hierarchical Design for Fabricating Costâ€Effective High Performance Supercapacitors. Advanced Functional Materials, 2014, 24, 4186-4194.	14.9	47
312	Synthesis and characterization of carbon nanoparticle films prepared by plasmaâ€based ion implantation. Surface and Interface Analysis, 2014, 46, 961-965.	1.8	1
313	Enhanced Electrochemical Performance of Reduced Graphene Oxides by H ₂ /Ar Plasma Treatment. Journal of Physical Chemistry C, 2014, 118, 28440-28447.	3.1	29
314	High Throughput Printing of Nanostructured Carbon Electrodes for Supercapacitors. Advanced Materials Interfaces, 2014, 1, 1300014.	3.7	34
315	Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. Journal of Power Sources, 2014, 272, 1122-1133.	7.8	99
317	Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. Journal of Energy Chemistry, 2014, 23, 809-815.	12.9	30
318	Threeâ€Dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of Electrochemical Pseudocapacitors. Advanced Energy Materials, 2014, 4, 1301809.	19.5	27
319	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	12.8	1,645
320	Improving the Energy Storage Performance of Graphene through Insertion of Pristine CNTs and Ordered Mesoporous Carbon Coating. ChemElectroChem, 2014, 1, 772-778.	3.4	43
321	Circuit area optimization in energy temporal sparse scenarios for multiple harvester powered systems. , 2014, , .		1

ARTICLE IF CITATIONS Allâ€Solidâ€State, Washable, Wearable Supercapacitors Fabricated by using a Fibrous Graphite Network 322 3.8 8 and Selfâ€Adhering Architecture. Energy Technology, 2014, 2, 677-684. Multifunctional composites for energy storage., 2014,,. Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by 324 1.5 2 high-temperature annealing of nanodiamond. Russian Chemical Bulletin, 2014, 63, 599-604. Macroporous silicon for high-capacitance devices using metal electrodes. Nanoscale Research Letters, 2014, 9, 473. Electrodeposition of porous graphene networks on nickel foams as supercapacitor electrodes with 326 5.7 43 high capacitance and remarkable cyclic stability. Nanoscale Research Letters, 2014, 9, 2496. Hybrid battery for rapid charging of biomedical application., 2014, , . Mesoporous Hollow Carbon Derived from Soft-Templated Hydrothermal Process for Supercapacitor 328 0.4 1 Electrode. Key Engineering Materials, 0, 616, 134-140. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. National 329 298 Science Review, 2014, 1, 277-292. Graphitic Petal Electrodes for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Energy Materials, 330 19.5 147 2014, 4, 1300515. Development of Lightweight Sustainable Electric Motors., 2014, , 595-626. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochemistry 332 179 4.7Communications, 2014, 41, 20-23. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array 5.2 electrodes. Electrochimica Acta, 2014, 136, 105-111. Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochimica Acta, 2014, 334 5.2 59 117, 159-163. Liquid Phase $\hat{a} \in$ Pulsed Laser Ablation: A route to fabricate different carbon nanostructures. Applied Surface Science, 2014, 302, 141-144. 6.1 Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous 336 scaffold for high performance electrochemical capacitors. Journal of Power Sources, 2014, 245, 59 7.8 1027-1034. Charge Storage Capacity of Renewable Biopolymer/Conjugated Polymer Interpenetrating Networks Enhanced by Electroactive Dopants. Advanced Energy Materials, 2014, 4, 1300443. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from 338 a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. 7.8 289 Journal of Power Sources, 2014, 247, 134-141. 339 Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 2014, 10, 14-31. 685

	CITATION	Report	
#	Article	IF	CITATIONS
340	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	21.0	2,152
341	Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123, 158-166.	5.2	102
342	Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256, 37-42.	7.8	29
343	A generalized multi-dimensional mathematical model for charging and discharging processes in a supercapacitor. Journal of Power Sources, 2014, 256, 369-382.	7.8	25
344	MnO 2 -modified hierarchical graphene fiber electrochemical supercapacitor. Journal of Power Sources, 2014, 247, 32-39.	7.8	207
345	Threeâ€Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors. Advanced Materials, 2014, 26, 615-619.	21.0	396
346	Tuning silicon nanowires doping level and morphology for highly efficient micro-supercapacitors. Nano Energy, 2014, 5, 20-27.	16.0	41
347	Energy Storing Electrical Cables: Integrating Energy Storage and Electrical Conduction. Advanced Materials, 2014, 26, 4279-4285.	21.0	195
348	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	30.8	1,156
349	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	19.5	1,727
350	Study of storage capacity in various carbon/graphene-based solid-state supercapacitors. Applied Physics A: Materials Science and Processing, 2014, 116, 887-891.	2.3	7
351	Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes. Nanoscale, 2014, 6, 4125.	5.6	80
352	Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A, 2014, 2, 4919.	10.3	161
353	Energy Harvesting for Nanostructured Selfâ€Powered Photodetectors. Advanced Functional Materials, 2014, 24, 2591-2610.	14.9	217
354	Electrochemical Performance of Carbon Nanorods with Embedded Cobalt Metal Nanoparticles as an Electrode Material for Electrochemical Capacitors. Electrochimica Acta, 2014, 125, 232-240.	5.2	52
355	Highâ€Performance Allâ€Carbon Yarn Microâ€Supercapacitor for an Integrated Energy System. Advanced Materials, 2014, 26, 4100-4106.	21.0	223
356	Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nature Communications, 2014, 5, 3754.	12.8	1,000
357	Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Advanced Energy Materials, 2014, 4, 1400500.	19.5	234

#	Article	IF	CITATIONS
358	Threeâ€Dimensional Selfâ€Supported Metal Oxides for Advanced Energy Storage. Advanced Materials, 2014, 26, 3368-3397.	21.0	446
359	Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology, 2014, 2, 325-341.	3.8	172
360	Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbideâ€derived carbon, zeoliteâ€templated carbon, carbon aerogels, carbon nanotubes, onionâ€like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 424-473.	4.1	459
361	Ionic Liquids at Electrified Interfaces. Chemical Reviews, 2014, 114, 2978-3036.	47.7	1,101
362	Layerâ€byâ€Layer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	21.0	289
363	Vertical Alignments of Graphene Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors. ACS Nano, 2014, 8, 4580-4590.	14.6	310
364	Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes for High-performance Supercapacitor Electrodes. Electrochimica Acta, 2014, 118, 138-142.	5.2	40
365	Graphitization as a Universal Tool to Tailor the Potentialâ€Dependent Capacitance of Carbon Supercapacitors. Advanced Energy Materials, 2014, 4, 1400316.	19.5	201
366	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	31.5	1,312
367	Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. Journal of Power Sources, 2014, 250, 257-265.	7.8	216
368	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	10.3	79
369	Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 2411-2416.	2.8	14
370	Carbon Nanotube Fiber Based Stretchable Wire‧haped Supercapacitors. Advanced Energy Materials, 2014, 4, 1300759.	19.5	313
371	The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochimica Acta, 2014, 121, 49-56.	5.2	40
372	Flexible planar/fiber-architectured supercapacitors for wearable energy storage. Journal of Materials Chemistry C, 2014, 2, 1184-1200.	5.5	207
373	Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 2014, 4, 65-72.	16.0	366
374	Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation. Chemistry of Materials, 2014, 26, 1144-1153.	6.7	55
375	A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes. Carbon, 2014, 68, 58-66.	10.3	55

#	Article	IF	CITATIONS
376	CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy, 2014, 3, 46-54.	16.0	185
377	Human hair-derived carbon flakes for electrochemical supercapacitors. Energy and Environmental Science, 2014, 7, 379-386.	30.8	907
378	Thermal decomposition of tetraethyl ammonium tetrafluoroborate. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1901-1905.	3.6	10
379	Inorganic nanostructured materials for high performance electrochemical supercapacitors. Nanoscale, 2014, 6, 2037.	5.6	201
380	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. Journal of Materials Chemistry A, 2014, 2, 20916-20922.	10.3	72
381	Ultrasmall Integrated 3D Micro‧upercapacitors Solve Energy Storage for Miniature Devices. Advanced Energy Materials, 2014, 4, 1301269.	19.5	179
382	High-energy-density on-chip Li-ion capacitors. , 2014, , .		0
383	Direct printing and reduction of graphite oxide for flexible supercapacitors. Applied Physics Letters, 2014, 105, .	3.3	45
384	Bias-free, solar-charged electric double-layer capacitors. Nanoscale, 2014, 6, 15316-15320.	5.6	13
385	Graphitic Petal Microâ€Supercapacitor Electrodes for Ultraâ€High Power Density. Energy Technology, 2014, 2, 897-905.	3.8	45
386	Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors. Nanotechnology, 2014, 25, 035402.	2.6	50
387	A low ion-transfer resistance and high volumetric supercapacitor using hydrophilic surface modified carbon electrodes. Journal of Materials Chemistry A, 2014, 2, 6663-6668.	10.3	29
388	Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Advances, 2014, 4, 47827-47832.	3.6	8
389	MnO2 nanolayers on highly conductive TiO0.54N0.46 nanotubes for supercapacitor electrodes with high power density and cyclic stability. Physical Chemistry Chemical Physics, 2014, 16, 8521.	2.8	21
390	Synthesis of novel carbon nano-chains and their application as supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16268-16275.	10.3	16
391	High-resolution on-chip supercapacitors with ultra-high scan rate ability. Journal of Materials Chemistry A, 2014, 2, 7170-7174.	10.3	104
392	3D binder-free Cu ₂ O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18229-18235.	10.3	177
394	Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films. Nanotechnology, 2014, 25, 435401.	2.6	14

# 395	ARTICLE Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. Journal of Materials Chemistry A, 2014, 2, 8288.	IF 10.3	CITATIONS
396	A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper. Journal of Materials Chemistry A, 2014, 2, 17058-17065.	10.3	48
397	Energy Buffer Dimensioning Through Energy-Erlangs in Spatio-Temporal-Correlated Energy-Harvesting-Enabled Wireless Sensor Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4, 301-312.	3.6	19
398	Activation Mechanism Study of Dandelion-Like Co ₉ S ₈ Nanotubes in Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A996-A1000.	2.9	53
399	Interface chemistry engineering in electrode systems for electrochemical energy storage. RSC Advances, 2014, 4, 37491-37502.	3.6	7
400	Tailoring porosity in carbon materials for supercapacitor applications. Materials Horizons, 2014, 1, 157-168.	12.2	278
401	Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. Journal of Materials Chemistry A, 2014, 2, 12262-12269.	10.3	85
402	Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy, 2014, 10, 288-294.	16.0	176
403	Biaxially Stretchable, Integrated Array of High Performance Microsupercapacitors. ACS Nano, 2014, 8, 11639-11650.	14.6	143
404	Fast Supercapacitors Based on Grapheneâ€Bridged V ₂ O ₃ /VO <i>_x</i> Core–Shell Nanostructure Electrodes with a Power Density of 1 MW kg ^{â~1} . Advanced Materials Interfaces, 2014, 1, 1400398.	3.7	101
405	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	10.3	199
406	A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. International Journal of Hydrogen Energy, 2014, 39, 19609-19620.	7.1	83
407	Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2014, 2, 5131.	10.3	27
408	Recovering energy from dye wastewater for a new kind of superior supercapacitor material. RSC Advances, 2014, 4, 21419.	3.6	6
409	Performance enhancement of single-walled nanotube–microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. Journal of Materials Chemistry A, 2014, 2, 14835-14843.	10.3	14
410	MnMoO ₄ ·4H ₂ O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. Journal of Materials Chemistry A, 2014, 2, 20723-20728.	10.3	111
411	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	10.3	158
412	Methane Catalytic Cracking to Make Hydrogen and Graphitic Nano Carbons (Nanotubes, Microfibers,) Tj ETQq1 Nano Metal Chemistry, 2014, 44, 1166-1174.	1 0.78431 0.6	4 rgBT /Overl 3

	CITATION R	EPORT	
#	Article	IF	CITATIONS
413	Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO ₂ nanocomposites. Journal of Materials Chemistry A, 2014, 2, 2152-2159.	10.3	64
414	Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V ₂ O ₅ nanowires integrated with a SnO ₂ nanowire UV sensor. Nanoscale, 2014, 6, 12034-12041.	5.6	89
415	Template-free synthesis of α-Ni(OH) 2 hollow microspheres with flower-like morphology for high-performance supercapacitors. Materials Research Bulletin, 2014, 60, 612-620.	5.2	20
416	Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 15273-15278.	10.3	134
417	Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances, 2014, 4, 41910-41921.	3.6	304
418	High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. Journal of Materials Chemistry A, 2014, 2, 7997-8002.	10.3	135
419	All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon, 2014, 79, 156-164.	10.3	151
420	Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon, 2014, 79, 302-309.	10.3	38
421	A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes. Materials Research Bulletin, 2014, 60, 10-19.	5.2	53
422	Fabrication of 3D Co3O4–Ni3(VO4)2 heterostructured nanorods on nickel foam possessing improved electrochemical properties for supercapacitor electrodes. New Journal of Chemistry, 2014, 38, 3236.	2.8	17
423	Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. Journal of Materials Chemistry A, 2014, 2, 12475-12483.	10.3	123
424	High performance of symmetric micro-supercapacitors based on silicon nanowires using N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide as electrolyte. Nano Energy, 2014, 9, 273-281.	16.0	71
425	Monodispersed N-Doped Carbon Nanospheres for Supercapacitor Application. ACS Applied Materials & Interfaces, 2014, 6, 13968-13976.	8.0	202
426	Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon, 2014, 80, 833-840.	10.3	94
427	Molecular‣cale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 4173-4178.	21.0	161
428	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	30.8	767
429	Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon. Journal of Materials Chemistry A, 2014, 2, 14963-14972.	10.3	40
430	Factors Controlling the Enhanced Mechanical and Thermal Properties of Nanodiamond-Reinforced Cross-Linked High Density Polyethylene. Journal of Physical Chemistry B, 2014, 118, 11341-11352.	2.6	33

#	Article	IF	CITATIONS
431	Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014, 8, 274-290.	16.0	734
432	Enhancement of Capacitance by Electrochemical Oxidation of Nanodiamond Derived Carbon Nano-Onions. Electrochimica Acta, 2014, 139, 82-87.	5.2	30
433	Laminated Ultrathin Chemical Vapor Deposition Graphene Films Based Stretchable and Transparent High-Rate Supercapacitor. ACS Nano, 2014, 8, 9437-9445.	14.6	240
434	Controlled Incorporation of Ni(OH) ₂ Nanoplates Into Flowerlike MoS ₂ Nanosheets for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2014, 24, 6700-6707.	14.9	145
435	Selective Ultrathin Carbon Sheath on Porous Silicon Nanowires: Materials for Extremely High Energy Density Planar Micro-Supercapacitors. Nano Letters, 2014, 14, 1843-1847.	9.1	96
436	Selective Wettingâ€Induced Microâ€Electrode Patterning for Flexible Microâ€Supercapacitors. Advanced Materials, 2014, 26, 5108-5112.	21.0	146
437	VN thin films as electrode materials for electrochemical capacitors. Electrochimica Acta, 2014, 141, 203-211.	5.2	98
438	Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 2014, 5, 4554.	12.8	1,161
439	Conformal coating of ultrathin Ni(OH)2 on ZnO nanowires grown on textile fiber for efficient flexible energy storage devices. RSC Advances, 2014, 4, 6324.	3.6	38
440	Effect of different gel electrolytes on graphene-based solid-state supercapacitors. RSC Advances, 2014, 4, 36253-36256.	3.6	163
441	Synthesis and electrochemical properties of multilayered porous hexagonal Mn(OH) 2 nanoplates as supercapacitor electrode material. Materials Letters, 2014, 136, 7-10.	2.6	13
442	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	21.0	243
443	Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT). Journal of Power Sources, 2014, 272, 766-775.	7.8	55
444	Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6, 13761-13769.	5.6	72
445	Hydrothermally Formed Three-Dimensional Nanoporous Ni(OH) ₂ Thin-Film Supercapacitors. ACS Nano, 2014, 8, 9622-9628.	14.6	148
446	Scalable fabrication of MnO ₂ nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy and Environmental Science, 2014, 7, 2652-2659.	30.8	247
447	Ternary composites of delaminated-MnO ₂ /PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 20367-20373.	10.3	35
448	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	10.3	138

#	Article	IF	CITATIONS
449	Solution processed sun baked electrode material for flexible supercapacitors. RSC Advances, 2014, 4, 20281-20289.	3.6	11
450	High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnO _x nanocomposite electrodes. Nanoscale, 2014, 6, 9655-9664.	5.6	71
451	Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Advances, 2014, 4, 33091-33113.	3.6	279
452	Controllable functionalized carbon fabric for high-performance all-carbon-based supercapacitors. RSC Advances, 2014, 4, 33022.	3.6	40
453	Surface potential of diamond and gold nanoparticles can be locally switched by surrounding materials or applied voltage. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	10
454	Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Advances, 2014, 4, 8466-8471.	3.6	42
455	Graphene-Wrapped Polyaniline Nanowire Arrays on Nitrogen-Doped Carbon Fabric as Novel Flexible Hybrid Electrode Materials for High-Performance Supercapacitor. Langmuir, 2014, 30, 5306-5313.	3.5	190
456	Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Carbon, 2014, 73, 78-86.	10.3	144
457	A Review of Grapheneâ€Based Electrochemical Microsupercapacitors. Electroanalysis, 2014, 26, 30-51.	2.9	317
458	Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes. Carbon, 2014, 74, 163-169.	10.3	71
459	Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions. Carbon, 2014, 66, 272-284.	10.3	90
460	All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy and Environmental Science, 2014, 7, 1095.	30.8	62
461	Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochimica Acta, 2014, 138, 367-375.	5.2	37
462	ZIF-derived porous carbon: a promising supercapacitor electrode material. Journal of Materials Chemistry A, 2014, 2, 12873.	10.3	171
463	High-voltage and high-rate symmetric supercapacitor based on MnO ₂ -polypyrrole hybrid nanofilm. Nanotechnology, 2014, 25, 305401.	2.6	44
464	Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy, 2014, 6, 82-91.	16.0	44
465	Impedance study of adsorption phenomena on three-dimensional nano-nickel electrode deposited on silicon microchannel plate. Electrochimica Acta, 2014, 132, 165-171.	5.2	7
466	Novel hybrid micro-supercapacitor based on conducting polymer coated silicon nanowires for electrochemical energy storage. RSC Advances, 2014, 4, 26462-26467.	3.6	63

#	Article	IF	CITATIONS
467	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	6.7	99
468	Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Journal of Physics Condensed Matter, 2014, 26, 284104.	1.8	40
469	All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite. Journal of Materials Chemistry A, 2014, 2, 10876.	10.3	82
470	Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Advances, 2014, 4, 39066.	3.6	42
471	Photoluminescence of Carbon Nanodots: Dipole Emission Centers and Electron–Phonon Coupling. Nano Letters, 2014, 14, 5656-5661.	9.1	187
472	Enhanced Capacitance Retention in a Supercapacitor Made of Carbon from Sugarcane Bagasse by Hydrothermal Pretreatment. Energy & Fuels, 2014, 28, 4233-4240.	5.1	161
473	Ferroelectric Barium Titanate Nanocubes as Capacitive Building Blocks for Energy Storage Applications. ACS Applied Materials & Interfaces, 2014, 6, 17506-17517.	8.0	71
474	Ultrathin and Lightweight 3D Free-Standing Ni@NiO Nanowire Membrane Electrode for a Supercapacitor with Excellent Capacitance Retention at High Rates. ACS Applied Materials & Interfaces, 2014, 6, 13627-13634.	8.0	71
475	High-Density, Stretchable, All-Solid-State Microsupercapacitor Arrays. ACS Nano, 2014, 8, 8844-8855.	14.6	96
476	A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics, 2014, 16, 6519.	2.8	216
477	Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4, 5838.	3.6	63
478	Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates. Carbon, 2014, 67, 304-317.	10.3	39
479	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	21.0	363
480	The Ti@MoOx nanorod array as a three dimensional film electrode for micro-supercapacitors. Electrochemistry Communications, 2014, 44, 23-26.	4.7	15
481	Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon, 2014, 71, 94-101.	10.3	147
482	Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon, 2014, 75, 236-243.	10.3	139
483	A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance supercapacitors. Electrochimica Acta, 2014, 134, 384-392.	5.2	26
484	Electrodeposition of nanostructured MnO2 electrode on three-dimensional nickel/silicon microchannel plates for miniature supercapacitors. Materials Letters, 2014, 126, 116-118.	2.6	15

#	Article	IF	CITATIONS
485	Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. Journal of Power Sources, 2014, 248, 745-751.	7.8	147
486	Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte. Electrochemistry Communications, 2014, 41, 31-34.	4.7	61
487	Effects of acid vapour mediated oxidization on the electrochemical performance of thermally exfoliated graphene. Carbon, 2014, 74, 195-206.	10.3	24
488	Fabrication of MoO <i>_x</i> Film as a Conductive Anode Material for Micro-Supercapacitors by Electrodeposition and Annealing. Journal of the Electrochemical Society, 2014, 161, A1051-A1057.	2.9	12
489	Flexible patterned micro-electrochemical capacitors based on PEDOT. Chemical Communications, 2014, 50, 6789-6792.	4.1	34
490	Elastic and Wearable Wireâ€5haped Lithiumâ€ŀon Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	13.8	306
491	Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale, 2014, 6, 8595.	5.6	121
492	TiN@VN Nanowire Arrays on 3D Carbon for Highâ€Performance Supercapacitors. ChemElectroChem, 2014, 1, 1027-1030.	3.4	22
493	Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy and Environmental Science, 2014, 7, 867.	30.8	1,112
494	Flexible Energy‣torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	21.0	1,153
495	Flexible and Wire‧haped Micro‧upercapacitor Based on Ni(OH) ₂ â€Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials, 2014, 24, 3405-3412.	14.9	304
496	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	19.5	39
497	Molybdenum oxide film with stable pseudocapacitive property for aqueous micro-scale electrochemical capacitor. Electrochimica Acta, 2014, 134, 84-91.	5.2	21
498	Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors. Nano Letters, 2014, 14, 1938-1943.	9.1	78
499	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	14.6	331
500	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	10.3	402
501	Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?. Journal of Power Sources, 2014, 269, 740-746.	7.8	52
502	Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices. Journal of the American Chemical Society, 2014, 136, 6187-6190.	13.7	108

#	Article	IF	CITATIONS
503	Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy, 2014, 8, 9-16.	16.0	54
504	Meso- and micro- porous composite carbons derived from humic acid for supercapacitors. Electrochimica Acta, 2014, 136, 504-512.	5.2	94
505	Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy, 2014, 8, 44-51.	16.0	248
506	N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance. Journal of Power Sources, 2014, 247, 660-666.	7.8	100
507	Longitudinally unzipped carbon nanotubes for supercapacitors. International Journal of Nanotechnology, 2014, 11, 434.	0.2	0
508	Not just graphene: The wonderful world of carbon and related nanomaterials. MRS Bulletin, 2015, 40, 1110-1121.	3.5	78
509	Advanced Materials for Supercapacitors. Electrochemical Energy Storage and Conversion, 2015, , 423-449.	0.0	0
510	Solution-processed flexible solid-state micro-supercapacitors for on-chip energy storage devices. , 2015, , .		6
511	Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence, 2015, 3, 044005.	2.3	40
512	Quinoneâ€Decorated Onionâ€Like Carbon/Carbon Fiber Hybrid Electrodes for Highâ€Rate Supercapacitor Applications. ChemElectroChem, 2015, 2, 1117-1127.	3.4	49
513	Electronic double layer supercapacitor based on three-dimensional silicon microchannel plates in organic electrolyte. Materials Research Innovations, 2015, 19, 303-309.	2.3	4
514	On hip Microâ€₽seudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	11.2	66
515	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	3.3	243
516	Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors. Scientific Reports, 2015, 5, 17629.	3.3	71
517	High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires. Scientific Reports, 2015, 5, 17858.	3.3	42
518	Writable electrochemical energy source based on graphene oxide. Scientific Reports, 2015, 5, 15173.	3.3	17
519	A New Approach towards Improving the Specific Energy and Specific Power of a Carbon-Based Supercapacitor using Platinum-Nanoparticles on Etched Stainless Steel Current Collector. Electrochemistry, 2015, 83, 1053-1060.	1.4	9
520	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	10.0	164

#	Article	IF	CITATIONS
521	3D RuO ₂ Microsupercapacitors with Remarkable Areal Energy. Advanced Materials, 2015, 27, 6625-6629.	21.0	206
522	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	19.5	271
523	Transforming Pristine Carbon Fiber Tows into High Performance Solid‣tate Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	21.0	193
524	Fast Ion and Electron Transport in a Supercapacitor Based on Monolithic Nanowireâ€Array Electrodes Prepared from a Defectâ€Free Anodic Aluminium Oxide Mold. Advanced Materials Interfaces, 2015, 2, 1500354.	3.7	11
525	MnO ₂ Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with "Bulk― Carbon Electrodes. Advanced Energy Materials, 2015, 5, 1500680.	19.5	60
526	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie, 2015, 127, 8218-8222.	2.0	16
527	Synthesis and Characterization of Farâ€Red/NIRâ€Fluorescent BODIPY Dyes, Solidâ€State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nanoâ€onions. Chemistry - A European Journal, 2015, 21, 9727-9732.	3.3	49
528	Marker Pen Lithography for Flexible and Curvilinear On hip Energy Storage. Advanced Functional Materials, 2015, 25, 4976-4984.	14.9	50
529	Crosslinking Graphene Oxide into Robust 3D Porous Nâ€Đoped Graphene. Advanced Materials, 2015, 27, 5171-5175.	21.0	188
530	Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics. Advanced Energy Materials, 2015, 5, 1500665.	19.5	59
531	Porous Hybrid Composites of Few-Layer MoS ₂ Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance. Small, 2015, 11, 6480-6490.	10.0	106
532	Lithographically Integrated Microsupercapacitors for Compact, High Performance, and Designable Energy Circuits. Advanced Energy Materials, 2015, 5, 1500741.	19.5	67
533	A Highâ€Performance Supercapacitor Based on KOH Activated 1D C ₇₀ Microstructures. Advanced Energy Materials, 2015, 5, 1500871.	19.5	65
534	Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nanoâ€Onions. ChemPhysChem, 2015, 16, 2182-2191.	2.1	27
535	CuCo ₂ O ₄ Nanowires Grown on a Ni Wire for Highâ€Performance, Flexible Fiber Supercapacitors. ChemElectroChem, 2015, 2, 1042-1047.	3.4	93
536	Condimentâ€Derived 3D Architecture Porous Carbon for Electrochemical Supercapacitors. Small, 2015, 11, 4959-4969.	10.0	109
537	Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities. Advanced Materials, 2015, 27, 7476-7482.	21.0	70
539	Ultrathin Printable Graphene Supercapacitors with AC Lineâ€Filtering Performance. Advanced Materials, 2015, 27, 3669-3675.	21.0	237

#	Article	IF	CITATIONS
540	A Flexible Quasi‣olid‣tate Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V ₂ O ₅ Nanosheets on Carbon Nanofibers. Advanced Energy Materials, 2015, 5, 1500753.	19.5	198
541	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Advanced Energy Materials, 2015, 5, 1500959.	19.5	208
542	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie - International Edition, 2015, 54, 8100-8104.	13.8	50
543	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	13.8	97
545	Fast and stable redox reactions of MnO ₂ /CNT hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale, 2015, 7, 11626-11632.	5.6	56
546	Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Advances, 2015, 5, 51382-51391.	3.6	13
547	Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering. Journal of Materials Chemistry A, 2015, 3, 14105-14108.	10.3	52
548	Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Accounts of Chemical Research, 2015, 48, 1666-1675.	15.6	441
549	Electrochemical Hierarchical Composites. , 2015, , 239-286.		1
550	Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy, 2015, 15, 642-653.	16.0	172
551	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	9.1	296
552	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	47.7	1,519
553	Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochimica Acta, 2015, 173, 566-574.	5.2	44
554	Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation. Carbon, 2015, 93, 39-47.	10.3	27
555	Growth of carbon composites by grafting on pregrown vertically aligned single-walled carbon nanotube arrays and their use in high power supercapacitors. RSC Advances, 2015, 5, 45484-45491.	3.6	6
556	Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nature Communications, 2015, 6, 7260.	12.8	534
557	Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. Journal of Materials Chemistry A, 2015, 3, 15225-15234.	10.3	125
558	Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo ₂ N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14617-14624.	10.3	75

#	Article	IF	CITATIONS
559	Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications. Topics in Applied Physics, 2015, , 85-122.	0.8	27
561	In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors. Journal of Power Sources, 2015, 283, 68-73.	7.8	41
562	A Highâ€Energyâ€Density Asymmetric Microsupercapacitor for Integrated Energy Systems. Advanced Electronic Materials, 2015, 1, 1400053.	5.1	21
563	Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon, 2015, 93, 315-324.	10.3	395
564	An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitors. Journal of Materials Chemistry A, 2015, 3, 13978-13985.	10.3	63
565	A paper-like micro-supercapacitor with patterned buckypaper electrodes using a novel vacuum filtration technique. , 2015, , .		5
566	3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid. Scientific Reports, 2015, 5, 9771.	3.3	150
567	A facile approach for fabrication of mechanically strong graphene/polypyrrole films with large areal capacitance for supercapacitor applications. RSC Advances, 2015, 5, 102643-102651.	3.6	39
568	High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 26658-26665.	8.0	52
569	Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8, 3934-3943.	10.4	164
570	Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	26
571	Micro supercapacitors for energy storage, on-chip devices based on prototyping of patterned nanoporous carbon. , 2015, , .		3
572	Series of in-fiber graphene supercapacitors for flexible wearable devices. Journal of Materials Chemistry A, 2015, 3, 2547-2551.	10.3	101
573	All-Solid-State Reduced Graphene Oxide Supercapacitor with Large Volumetric Capacitance and Ultralong Stability Prepared by Electrophoretic Deposition Method. ACS Applied Materials & Interfaces, 2015, 7, 1348-1354.	8.0	113
574	All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure. Nanotechnology, 2015, 26, 045401.	2.6	14
575	High performance, All solid state, flexible Supercapacitor based on Ionic liquid functionalized Graphene. Electrochimica Acta, 2015, 157, 245-251.	5.2	63
576	Dual Support System Ensuring Porous Co–Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors. Advanced Functional Materials, 2015, 25, 1648-1655.	14.9	248
577	Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. Journal of Alloys and Compounds, 2015, 632, 376-385.	5.5	45

# 578	ARTICLE A MnOOH/nitrogen-doped graphene hybrid nanowires sandwich film for flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6136-6145.	IF 10.3	Citations
579	Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon, 2015, 84, 584-598.	10.3	118
580	Air-Stable, High-Performance, Flexible Microsupercapacitor with Patterned Ionogel Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 4608-4615.	8.0	83
581	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 267-274.	3.7	67
582	All conducting polymer electrodes for asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7368-7374.	10.3	112
583	Nanostructured Mo-based electrode materials for electrochemical energy storage. Chemical Society Reviews, 2015, 44, 2376-2404.	38.1	599
584	Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage. Journal of Power Sources, 2015, 282, 394-400.	7.8	37
585	Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 3684-3690.	8.0	261
586	A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors. Journal of Materials Chemistry A, 2015, 3, 5060-5066.	10.3	34
587	Increasing Capacitance of Zeolite-Templated Carbons in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5070-A5076.	2.9	29
588	Facile synthesis of electrochemically active Pt nanoparticle decorated carbon nano onions. New Journal of Chemistry, 2015, 39, 915-920.	2.8	15
589	Honeycomb-like NiMoO ₄ ultrathin nanosheet arrays for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 6128-6135.	10.3	203
590	Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment. Nanoscale, 2015, 7, 7045-7050.	5.6	25
591	A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Advances, 2015, 5, 12782-12791.	3.6	79
593	Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues. Optics and Laser Technology, 2015, 69, 148-153.	4.6	11
594	Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. Nanoscale, 2015, 7, 3712-3718.	5.6	42
595	MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chemical Communications, 2015, 51, 3109-3112.	4.1	145
596	Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 3414-3419.	8.0	352

#	Article	IF	CITATIONS
597	High-Performance Microsupercapacitors Based on Two-Dimensional Graphene/Manganese Dioxide/Silver Nanowire Ternary Hybrid Film. ACS Nano, 2015, 9, 1528-1542.	14.6	222
598	Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Journal of Colloid and Interface Science, 2015, 447, 282-301.	9.4	43
599	Free-Standing Porous Carbon Nanofiber/Ultrathin Graphite Hybrid for Flexible Solid-State Supercapacitors. ACS Nano, 2015, 9, 481-487.	14.6	99
600	SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4 V) and long cycling stability using a protic ionic liquid electrolyte. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 015004.	1.5	10
601	Strongly coupled metal oxide nanorod arrays with graphene nanoribbons and nanosheets enable novel solid-state hybrid cells. Journal of Power Sources, 2015, 283, 95-103.	7.8	11
602	On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochimica Acta, 2015, 163, 107-115.	5.2	50
603	New and Emerging Energy Sources for Implantable Wireless Microdevices. IEEE Access, 2015, 3, 89-98.	4.2	64
604	Meso/microporous nitrogen-containing carbon nanofibers with enhanced electrochemical capacitance performances. Synthetic Metals, 2015, 203, 149-155.	3.9	8
605	Leaf Veinâ€Inspired Nanochanneled Graphene Film for Highly Efficient Microâ€Supercapacitors. Advanced Energy Materials, 2015, 5, 1500003.	19.5	69
606	core/shell structure composite and its high capacitance performance. Journal of Electroanalytical Chemistry, 2015, 743, 53-59.	3.8	20
607	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	3.6	7
608	Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5158-A5178.	2.9	105
609	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	10.3	70
610	A general strategy for the fabrication of high performance microsupercapacitors. Nano Energy, 2015, 16, 1-9.	16.0	72
611	Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015, 294, 31-50.	7.8	107
612	Reactive Carbon Nano-Onion Modified Glassy Carbon Surfaces as DNA Sensors for Human Papillomavirus Oncogene Detection with Enhanced Sensitivity. Analytical Chemistry, 2015, 87, 6744-6751.	6.5	75
613	Alternating Stacked Grapheneâ€Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for Highâ€Energy Microâ€Supercapacitors. Advanced Materials, 2015, 27, 4054-4061.	21.0	290
614	High-Performance Supercapacitors from Niobium Nanowire Yarns. ACS Applied Materials & Interfaces, 2015, 7, 13882-13888.	8.0	39

#	Article	IF	CITATIONS
615	Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability <i>via</i> Improved Interfacial Impedance. ACS Nano, 2015, 9, 7248-7255.	14.6	202
616	Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochimica Acta, 2015, 176, 1153-1164.	5.2	64
617	Functionalization of nanomaterials with aryldiazonium salts. Advances in Colloid and Interface Science, 2015, 225, 16-36.	14.7	139
618	Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. Materials and Design, 2015, 83, 552-556.	7.0	37
619	Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO ₂ perfect core–shell nanostructures for high-performance flexible supercapacitors. Nanoscale, 2015, 7, 14697-14706.	5.6	87
620	A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1379-1409.	1.9	55
621	Influence of Temperature on Supercapacitor Components. SpringerBriefs in Applied Sciences and Technology, 2015, , 27-69.	0.4	1
622	A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. Journal of Power Sources, 2015, 296, 186-196.	7.8	111
623	Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high performance on-chip micro-supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19254-19262.	10.3	71
624	Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte. Journal of Alloys and Compounds, 2015, 650, 123-126.	5.5	23
625	Flexible lithium–oxygen battery based on a recoverable cathode. Nature Communications, 2015, 6, 7892.	12.8	279
626	Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres. Nanotechnology, 2015, 26, 265401.	2.6	20
627	Fast diffusion supercapacitors via an ultra-high pore volume of crumpled 3D structure reduced graphene oxide activation. RSC Advances, 2015, 5, 60914-60919.	3.6	23
628	Highly flexible and transferable supercapacitors with ordered three-dimensional MnO ₂ /Au/MnO ₂ nanospike arrays. Journal of Materials Chemistry A, 2015, 3, 10199-10204.	10.3	53
629	Hybrid MnO ₂ /C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 16695-16707.	10.3	41
630	Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. Journal of Materials Chemistry A, 2015, 3, 16535-16543.	10.3	37
631	Amorphous Ni–Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 24419-24429.	8.0	82
632	Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano, 2015, 9, 7563-7571.	14.6	229

#	Article	IF	CITATIONS
633	Improved performance of asymmetric fiber-based micro-supercapacitors using carbon nanoparticles for flexible energy storage. Journal of Materials Chemistry A, 2015, 3, 15633-15641.	10.3	33
634	Asymmetric and symmetric solid-state supercapacitors based on 3D interconnected polyaniline–carbon nanotube framework. RSC Advances, 2015, 5, 62033-62039.	3.6	25
635	Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano, 2015, 9, 8569-8577.	14.6	113
636	Nickel Oxide/Nickel Foam Composite as Supercapacitor Electrode via Electrophoretic Deposition. Key Engineering Materials, 2015, 654, 58-64.	0.4	3
637	Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors. 2D Materials, 2015, 2, 024006.	4.4	3
638	Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2, 032002.	4.4	79
639	Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy and Environmental Science, 2015, 8, 2396-2401.	30.8	126
640	Facile Synthesis of Nb ₂ O ₅ @Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 2015, 9, 7497-7505.	14.6	411
641	A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochimica Acta, 2015, 174, 696-705.	5.2	47
642	Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy, 2015, 16, 470-478.	16.0	151
643	Porous, One dimensional and High Aspect Ratio Mn3O4 Nanofibers: Fabrication and Optimization for Enhanced Supercapacitive Properties. Electrochimica Acta, 2015, 174, 992-1001.	5.2	83
644	Thermally controlled growth of carbon onions within porous graphitic carbon-detonation nanodiamond monolithic composites. RSC Advances, 2015, 5, 22906-22915.	3.6	10
645	Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge. Physics of Plasmas, 2015, 22, 013510.	1.9	12
646	Gradual-order enhanced stability: a frozen section of electrospun nanofibers for energy storage. Nanoscale, 2015, 7, 8715-8719.	5.6	19
647	Combined and Distinct Contributions of Different Carbon Nano-Forms in Polypropylene. Macromolecular Materials and Engineering, 2015, 300, 611-626.	3.6	3
648	Porous diamond with high electrochemical performance. Carbon, 2015, 90, 102-109.	10.3	71
649	Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11817-11823.	10.3	135
650	Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition. Electrochimica Acta, 2015, 170, 57-62.	5.2	30

#	Article	IF	CITATIONS
651	A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy, 2015, 13, 131-139.	16.0	99
652	Graphene based integrated tandem supercapacitors fabricated directly on separators. Nano Energy, 2015, 15, 1-8.	16.0	30
653	Low-temperature Ni particle-templated chemical vapor deposition growth of curved graphene for supercapacitor applications. Nano Energy, 2015, 13, 458-466.	16.0	37
654	Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors. Small, 2015, 11, 3694-3702.	10.0	243
655	Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized Nanostructured Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 9128-9133.	8.0	36
656	Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform. Biomedical Microdevices, 2015, 17, 7.	2.8	19
657	Asymmetric supercapacitor based on an α-MoO ₃ cathode and porous activated carbon anode materials. RSC Advances, 2015, 5, 37462-37468.	3.6	59
658	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	38.1	1,015
659	Hierarchically structured MnO ₂ /graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11215-11223.	10.3	235
660	3D flower-structured graphene from CO ₂ for supercapacitors with ultrahigh areal capacitance at high current density. Journal of Materials Chemistry A, 2015, 3, 10183-10187.	10.3	88
661	Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015, 9, 5868-5875.	14.6	542
662	Facile fabrication of a novel nanoporous Au/AgO composite for electrochemical double-layer capacitor. RSC Advances, 2015, 5, 38995-39002.	3.6	10
663	Selfâ€Powered Electronics by Integration of Flexible Solidâ€State Grapheneâ€Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 2420-2427.	14.9	142
664	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4233-4238.	7.1	500
665	Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. Journal of Power Sources, 2015, 284, 38-43.	7.8	210
666	Self-generating graphene and porous nanocarbon composites for capacitive energy storage. Journal of Materials Chemistry A, 2015, 3, 11277-11286.	10.3	58
667	Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chemical Communications, 2015, 51, 10494-10497.	4.1	78
668	A novel Cr 2 O 3 -carbon composite as a high performance pseudo-capacitor electrode material. Electrochimica Acta, 2015, 171, 142-149.	5.2	63

#	Article	IF	Citations
669	Solid-state flexible micro supercapacitors by direct-write porous nanofibers. , 2015, , .		2
670	Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44, 5181-5199.	38.1	546
671	Hydrothermal Synthesis of Nickel Phosphate Nanorods for Highâ€Performance Flexible Asymmetric Allâ€5olidâ€5tate Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 880-885.	2.3	33
672	Insight into the formation mechanism of graphene quantum dots and the size effect on their electrochemical behaviors. Physical Chemistry Chemical Physics, 2015, 17, 14028-14035.	2.8	41
673	Note: Rapid reduction of graphene oxide paper by glow discharge plasma. Review of Scientific Instruments, 2015, 86, 056101.	1.3	8
674	Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy and Environmental Science, 2015, 8, 1764-1774.	30.8	138
675	Molecular‣cale Hybridization of Clay Monolayers and Conducting Polymer for Thinâ€Film Supercapacitors. Advanced Functional Materials, 2015, 25, 2745-2753.	14.9	80
676	3D Polyaniline Porous Layer Anchored Pillared Graphene Sheets: Enhanced Interface Joined with High Conductivity for Better Charge Storage Applications. ACS Applied Materials & Interfaces, 2015, 7, 7661-7669.	8.0	68
677	Exfoliation of Bulk Inorganic Layered Materials into Nanosheets by the Rapid Quenching Method and Their Electrochemical Performance. European Journal of Inorganic Chemistry, 2015, 2015, 1973-1980.	2.0	32
678	Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015, 13, 500-508.	16.0	214
679	A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte. Translational Materials Research, 2015, 2, 015001.	1.2	12
680	Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta, 2015, 166, 1-11.	5.2	386
681	Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe ₂ O ₃ with a high performance as a supercapacitor. Dalton Transactions, 2015, 44, 9581-9587.	3.3	31
684	Porous carbon sphere anodes for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 9861-9868.	10.3	130
685	Reactive Force Field Study of Li/C Systems for Electrical Energy Storage. Journal of Chemical Theory and Computation, 2015, 11, 2156-2166.	5.3	59
687	Chemical versus Electrochemical Synthesis of Carbon Nanoâ€onion/Polypyrrole Composites for Supercapacitor Electrodes. Chemistry - A European Journal, 2015, 21, 5783-5793.	3.3	64
688	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	16.0	181
689	High performance solid-state supercapacitors based on compressed graphene foam. RSC Advances, 2015, 5, 84836-84839.	3.6	17

#	Article	IF	CITATIONS
690	Capacitance Performance of Sub-2 nm Graphene Nanochannels in Aqueous Electrolyte. Journal of Physical Chemistry C, 2015, 119, 23813-23819.	3.1	25
691	High-performance fabric-based supercapacitors using water-dispersible polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid). Macromolecular Research, 2015, 23, 749-754.	2.4	17
692	Core–shell MnO ₂ @Fe ₂ O ₃ nanospindles as a positive electrode for aqueous supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22066-22072.	10.3	60
693	Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage. Journal of Power Sources, 2015, 299, 408-416.	7.8	30
694	Recent progress in micro-scale energy storage devices and future aspects. Journal of Materials Chemistry A, 2015, 3, 22507-22541.	10.3	169
695	A review of plasma–liquid interactions for nanomaterial synthesis. Journal Physics D: Applied Physics, 2015, 48, 424005.	2.8	250
696	Flux growth of patterned LiCoO2 crystal arrays directly on a Pt substrate in molten LiNO3. RSC Advances, 2015, 5, 96002-96007.	3.6	8
697	A high performance redox-mediated electrolyte for improving properties of metal oxides based pseudocapacitive materials. Electrochimica Acta, 2015, 186, 478-485.	5.2	17
698	Energy and power densities of capacitors and dielectrics. , 2015, , .		8
699	Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage Materials, 2015, 1, 82-102.	18.0	114
700	Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO ₂ Using Ionic Liquid Gel Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 25378-25389.	8.0	99
701	Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage. ACS Nano, 2015, 9, 8054-8063.	14.6	75
702	Microwave Synthesis of SnWO ₄ Nanoassemblies on DNA Scaffold: A Novel Material for High Performance Supercapacitor and as Catalyst for Butanol Oxidation. ACS Sustainable Chemistry and Engineering, 2015, 3, 2321-2336.	6.7	69
703	Electrophoretic deposition of Li ₄ Ti ₅ O ₁₂ nanoparticles with a novel additive for Li-ion microbatteries. RSC Advances, 2015, 5, 61502-61507.	3.6	16
704	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	5.6	94
705	Functional Pillared Graphene Frameworks for Ultrahigh Volumetric Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1500771.	19.5	184
706	Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Materials, 2015, 1, 119-126.	18.0	82
707	Three-Dimensional Macroporous Polypyrrole-Derived Graphene Electrode Prepared by the Hydrogen Bubble Dynamic Template for Supercapacitors and Metal-Free Catalysts. ACS Applied Materials & Interfaces, 2015, 7, 23731-23740.	8.0	46

#	Article	IF	CITATIONS
708	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	21.0	268
709	Diamond nanowire forest decorated with nickel hydroxide as a pseudocapacitive material for fast charging–discharging. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2533-2538.	1.8	23
710	Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 23932-23940.	8.0	77
711	One-pot synthesis of 3D flower-like heterostructured SnS ₂ /MoS ₂ for enhanced supercapacitor behavior. RSC Advances, 2015, 5, 89069-89075.	3.6	65
712	A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. Journal of Materials Chemistry A, 2015, 3, 23483-23492.	10.3	128
713	Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 23768-23777.	10.3	87
714	Electrochemical investigation of the corrosion properties of three-dimensional nickel electrodes on silicon microchannel plates. Corrosion Science, 2015, 100, 113-120.	6.6	6
715	Single-crystalline Ni(OH)2nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23412-23419.	10.3	45
716	Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite. Journal of Alloys and Compounds, 2015, 651, 126-134.	5.5	36
717	Electron Transfer and Charge Storage in Thin Films of Nanoparticles. , 2015, , 1-62.		3
718	A 3D all-solid-state microsupercapacitor with electrodes consisting of activated carbon/polymer electrolyte composite. , 2015, , .		2
719	High performance supercapacitor under extremely low environmental temperature. RSC Advances, 2015, 5, 71699-71703.	3.6	34
720	Nanotoxicity of Rare Earth Metal Oxide Anchored Graphene Nanohybrid: A Facile Synthesis and In Vitro Cellular Response Studies. Nano, 2015, 10, 1550091.	1.0	6
721	Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. Journal of Materials Chemistry A, 2015, 3, 19304-19309.	10.3	26
722	Supercapacitive behavior of microporous carbon derived from zinc based metal-organic framework and furfuryl alcohol. International Journal of Hydrogen Energy, 2015, 40, 13344-13356.	7.1	15
723	Pt-nanoparticle functionalized carbon nano-onions for ultra-high energy supercapacitors and enhanced field emission behaviour. RSC Advances, 2015, 5, 80990-80997.	3.6	52
724	Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3, 21805-21814.	10.3	81
725	Gravure printing of hybrid MoS2@S-rGO interdigitated electrodes for flexible microsupercapacitors. Applied Physics Letters, 2015, 107, .	3.3	69

#	Article	IF	CITATIONS
726	Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Research, 2015, 8, 3544-3552.	10.4	52
727	Realization of an Asymmetric Interdigitated Electrochemical Micro-Capacitor Based on Carbon Nanotubes and Manganese Oxide. Journal of the Electrochemical Society, 2015, 162, A2016-A2020.	2.9	23
728	Efficient Metal-Free Catalytic Reaction Pathway for Selective Oxidation of Substituted Phenols. ACS Catalysis, 2015, 5, 5921-5926.	11.2	31
729	Facile ion-exchange synthesis of silver films as flexible current collectors for micro-supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21009-21015.	10.3	24
730	Directly deposited MoS ₂ thin film electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24049-24054.	10.3	140
731	A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 949-956.	2.5	32
732	Porous Dual‣ayered MoO _{<i>x</i>} Nanotube Arrays with Highly Conductive TiN Cores for Supercapacitors. ChemElectroChem, 2015, 2, 512-517.	3.4	30
733	N-doped carbon layer coated thermally exfoliated graphene and its capacitive behavior in redox active electrolyte. Carbon, 2015, 85, 60-71.	10.3	54
734	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 2015, 11, 600-610.	16.0	100
735	Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy and Environmental Science, 2015, 8, 702-730.	30.8	2,096
736	Self-assembled three-dimensional hierarchical porous V ₂ O ₅ /graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. Journal of Materials		178
	Chemistry A, 2015, 3, 1828-1832.	10.3	
737	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances, 2015, 5, 4396-4403.	10.3 3.6	38
737 738	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances,		38 5
	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances, 2015, 5, 4396-4403. Acid base co-crystal converted into porous carbon material for energy storage devices. RSC Advances,	3.6	
738	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances, 2015, 5, 4396-4403. Acid base co-crystal converted into porous carbon material for energy storage devices. RSC Advances, 2015, 5, 9110-9115. Electrochemical supercapacitors of anodized-brass-templated NiO nanostrutured electrodes. Scripta	3.6 3.6	5
738 739	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances, 2015, 5, 4396-4403. Acid base co-crystal converted into porous carbon material for energy storage devices. RSC Advances, 2015, 5, 9110-9115. Electrochemical supercapacitors of anodized-brass-templated NiO nanostrutured electrodes. Scripta Materialia, 2015, 99, 29-32.	3.6 3.6 5.2	5 32
738 739 740	Chemistry A, 2015, 3, 1828-1832. Fungi-derived hierarchically porous carbons for high-performance supercapacitors. RSC Advances, 2015, 5, 4396-4403. Acid base co-crystal converted into porous carbon material for energy storage devices. RSC Advances, 2015, 5, 9110-9115. Electrochemical supercapacitors of anodized-brass-templated NiO nanostrutured electrodes. Scripta Materialia, 2015, 99, 29-32. Supercapacitors Performance Evaluation. Advanced Energy Materials, 2015, 5, 1401401. Comparative study on three commercial carbons for supercapacitor applications. Russian Journal of	3.65.219.5	5 32 1,090

	Cı	tation Report	
#	ARTICLE Quaternary ammonium functionalized poly(aryl ether sulfone)s as separators for supercapacitors	IF	CITATIONS
744	based on activated carbon electrodes. Journal of Membrane Science, 2015, 475, 562-570.	8.2	30
745	Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon, 2015, 83, 144-151.	10.3	229
746	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	38.1	498
747	Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy, 2015, 11, 471-480.	16.0	219
748	Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nanc Energy, 2015, 11, 611-620.) 16.0	120
749	Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam f Supercapacitors. Scientific Reports, 2014, 4, 4452.	or 3.3	424
750	Effects of surface oxygen on charge storage in high surface area early transition-metal carbides and nitrides. Journal of Power Sources, 2015, 275, 159-166.	7.8	34
751	Novel Aspects of Diamond. Topics in Applied Physics, 2015, , .	0.8	14
752	The Direct Decomposition of Nitric Oxide Over Fe/CNOs (CNOs: Carbon Nano Onions). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 158-163.	0.6	4
753	Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials. ChemSusChem, 2015, 8, 177-183.	6.8	54
754	Hollow Carbon Microspheres/MnO2 Nanosheets Composites: Hydrothermal Synthesis and Electrochemical Behaviors. Nano-Micro Letters, 2015, 7, 59-67.	27.0	23
755	Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. Journal of Materials Chemistry A, 2015, 3, 617-623.	10.3	44
756	Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers. Scientific Reports, 2014, 4, 6492.	3.3	207
757	Toward wearable and stretchable fabric-based supercapacitors: novel ZnO and SnO2 nanowires—carbon fibre and carbon paper hybrid structure. Journal of Solid State Electrochemistry, 2015, 19, 211-219.	2.5	18
758	Intercrossed Carbon Nanorings with Pure Surface States as Lowâ€Cost and Environmentâ€Friendly Phosphors for Whiteâ€Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2015, 54 1759-1764.	, 13.8	238
759	Microfabricated Pseudocapacitors Using Ni(OH) ₂ Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density. Advanced Energy Materials, 2015, 5, 1401303.	19.5	84
761	Free-Standing Porous Carbon Nanofiber Networks from Electrospinning Polyimide for Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	9
762	Electrochemical Materials Design for Micro-Supercapacitors. , 0, , .		2

#	Article	IF	CITATIONS
763	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	10.3	79
764	Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Advances, 2016, 6, 68141-68149.	3.6	35
765	Flexible in-plane microsupercapacitors with electrospun NiFe ₂ O ₄ nanofibers for portable sensing applications. Nanoscale, 2016, 8, 14986-14991.	5.6	49
766	Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors. Electrochemistry Communications, 2016, 70, 51-55.	4.7	46
767	Hierarchical Ni–Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for Highâ€Energy Asymmetric Supercapacitors. Advanced Functional Materials, 2016, 26, 5460-5470.	14.9	151
768	Selfâ€Propelled Supercapacitors for Onâ€Demand Circuit Configuration Based on WS ₂ Nanoparticles Micromachines. Advanced Functional Materials, 2016, 26, 6662-6667.	14.9	70
769	A Scalable Free‣tanding V ₂ O ₅ /CNT Film Electrode for Supercapacitors with a Wide Operation Voltage (1.6 V) in an Aqueous Electrolyte. Advanced Functional Materials, 2016, 26, 6114-6120.	14.9	109
770	Highly Efficient Materials Assembly Via Electrophoretic Deposition for Electrochemical Energy Conversion and Storage Devices. Advanced Energy Materials, 2016, 6, 1502018.	19.5	50
771	Siliciumâ€kompatible Mikroâ€Superkondensatoren. Angewandte Chemie, 2016, 128, 6244-6246.	2.0	2
772	An Ultralong, Highly Oriented Nickelâ€Nanowireâ€Array Electrode Scaffold for Highâ€Performance Compressible Pseudocapacitors. Advanced Materials, 2016, 28, 4105-4110.	21.0	171
773	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	19.5	138
774	Flexible Aqueous Lithiumâ€Ion Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 7474-7477.	13.8	149
775	Performance of metal oxide nanoparticle sols as binders in activated carbon electrodes. Journal of Energy Storage, 2016, 7, 147-158.	8.1	8
776	3D Interdigital Au/MnO ₂ /Au Stacked Hybrid Electrodes for On hip Microsupercapacitors. Small, 2016, 12, 3059-3069.	10.0	119
777	Photoinduced Charge Separation in the Carbon Nano-Onion C ₆₀ @C ₂₄₀ . Journal of Physical Chemistry A, 2016, 120, 5798-5804.	2.5	10
778	Siliconâ€Compatible Carbonâ€Based Microâ€Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 6136-6138.	13.8	27
779	Aerosolâ€Assisted Chemical Vapor Deposition of Multiâ€Walled Carbon Nanotubes on Steel Substrates for Application in Supercapacitors. Advanced Engineering Materials, 2016, 18, 1059-1065.	3.5	9
780	Fabrications, Applications and Challenges of Solid-State Nanopores: A Mini Review. Nanomaterials and Nanotechnology, 2016, 6, 35.	3.0	30

#	Article	IF	CITATIONS
781	Laser direct writing micro-supercapacitors from graphene oxide films. , 2016, , .		5
782	Graphene-assisted synthesis of three-dimensional Ni/Co hydroxide nanowire network with enhanced electrochemical capacitive performance. Applied Materials Today, 2016, 5, 260-267.	4.3	6
783	Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation. Scientific Reports, 2016, 6, 23913.	3.3	8
784	All-solid-state supercapacitors on silicon using graphene from silicon carbide. Applied Physics Letters, 2016, 108, 183903.	3.3	15
785	All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes. Applied Physics Letters, 2016, 109, .	3.3	62
786	Highly efficient growth of vertically aligned carbon nanotubes on Fe–Ni based metal alloy foils for supercapacitors. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 045016.	1.5	16
787	Engineering micro-supercapacitors of graphene nanowalls/Ni heterostructure based on microfabrication technology. Applied Physics Letters, 2016, 109, .	3.3	17
788	Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT. Materials Chemistry and Physics, 2016, 179, 166-173.	4.0	84
789	Three-Dimensional Microcavity Array Electrodes for High-Capacitance All-Solid-State Flexible Microsupercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 13458-13465.	8.0	46
790	Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Advances, 2016, 6, 50112-50118.	3.6	46
791	The microwave-assisted solvothermal synthesis of a novel β-ketoenamine-linked conjugated microporous polymer for supercapacitors. RSC Advances, 2016, 6, 49425-49428.	3.6	28
792	Superior electrochemical performance of carbon cloth electrode-based supercapacitors through surface activation and nitrogen doping. Ionics, 2016, 22, 1881-1890.	2.4	27
793	Co ₃ O ₄ /ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Advances, 2016, 6, 52137-52142.	3.6	95
794	A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors. Materials Research Express, 2016, 3, 065001.	1.6	11
795	Grapheneâ€Based Electrochemical Microsupercapacitors for Miniaturized Energy Storage Applications. Nanoscience and Technology, 2016, , 271-291.	1.5	3
796	Planar integration of flexible micro-supercapacitors with ultrafast charge and discharge based on interdigital nanoporous gold electrodes on a chip. Journal of Materials Chemistry A, 2016, 4, 9502-9510.	10.3	61
797	Review of Energy and Power of Supercapacitor Using Carbon Electrodes from Fibers of Oil Palm Fruit Bunches. Materials Science Forum, 0, 846, 497-504.	0.3	11
798	Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2016, 27, 5533-5542.	2.2	11

	Сітаті	on Report	
#	Article	IF	CITATIONS
799	Electrochemical analysis of interface adsorption phenomena on three-dimensional nano-nickel electrode deposited on silicon microchannel plate. Electrochimica Acta, 2016, 194, 253-262.	5.2	6
800	Graphene and its nanocomposites used as an active materials for supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 1509-1526.	2.5	23
801	Facile fabrication of porous carbon film/Ni foil double-layer structure for high-rate and high-power flexible electrochemical capacitor. Journal of Electroanalytical Chemistry, 2016, 767, 167-173.	3.8	6
802	Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. Journal of Power Sources, 2016, 317, 57-64.	7.8	45
803	Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Materials Letters, 2016, 175, 126-130.	2.6	28
804	Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance. Nano Energy, 2016, 24, 158-164.	16.0	56
805	Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes. Nano Energy, 2016, 24, 78-86.	16.0	180
806	Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale, 2016, 8, 10406-10414.	5.6	82
807	Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors. Nano Energy, 2016, 25, 68-79.	16.0	37
808	From environmental pollutant to activated carbons for high-performance supercapacitors. Electrochimica Acta, 2016, 201, 96-105.	5.2	29
809	Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. Journal of Materials Chemistry A, 2016, 4, 7601-7605.	10.3	42
810	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	30.8	142
811	Micro-Pseudocapacitors with Electroactive Polymer Electrodes: Toward AC-Line Filtering Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 12748-12755.	8.0	52
812	Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems. Journal of Power Sources, 2016, 326, 717-725.	7.8	82
813	Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy, 2016, 26, 276-285.	16.0	135
814	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. Journal of Physical Chemistry C, 2016, 120, 9685-9691.	3.1	140
815	Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Industrial Crops and Products, 2016, 87, 229-235.	5.2	156
816	Three-dimensional hierarchical NiCo ₂ O ₄ nanowire@Ni ₃ S ₂ nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale, 2016, 8, 10686-10694.	5.6	97

#	Article	IF	Citations
817	All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chinese Chemical Letters, 2016, 27, 1586-1591.	9.0	62
818	Microwave synthesis: Characterization and electrochemical properties of amorphous activated carbon-MnO2 nanocomposite electrodes. Journal of Alloys and Compounds, 2016, 681, 293-300.	5.5	35
819	Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. Journal of Power Sources, 2016, 319, 271-280.	7.8	105
820	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	30.8	205
821	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	16.0	74
822	Meters‣ong Flexible CoNiO ₂ â€Nanowires@Carbonâ€Fibers Based Wireâ€Supercapacitors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600142.	5.8	69
824	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	19.5	368
825	A three-dimensionally stretchable high performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14968-14973.	10.3	52
826	Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy, 2016, 30, 790-800.	16.0	138
827	Ultrathin paper-like boron-doped carbon nanosheet electrodes combined with boron-enriched gel polymer electrolytes for high-performance energy storage. Journal of Materials Chemistry A, 2016, 4, 15589-15596.	10.3	16
828	Performance of High Energy Density Symmetric Supercapacitor Based on Sputtered MnO ₂ Nanorods. ChemistrySelect, 2016, 1, 3885-3891.	1.5	57
829	Synthesis of a MoO ₃ /Ti ₃ C ₂ T _x composite with enhanced capacitive performance for supercapacitors. RSC Advances, 2016, 6, 98506-98513.	3.6	57
830	Hybrid Fe ₂ O ₃ Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors. Chemistry of Materials, 2016, 28, 7296-7303.	6.7	95
831	PSi-Based Supercapacitors. , 2016, , 347-374.		1
832	Active implantable sensor powered by ultrasounds with application in the monitoring of physiological parameters for soft tissues. , 2016, , .		9
833	"Brick-and-mortar―sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V sâ~1 for supercapacitors. Nano Energy, 2016, 30, 84-92.	16.0	84
834	Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale, 2016, 8, 18250-18269.	5.6	79
835	Nanouids: Potential Future Coolants. , 2016, , 805-810.		0

#	Article	IF	CITATIONS
836	A Robust Highly Flexible All-solid-state Micro Pseudocapacitor Based on Ternary Oxide CuCo ₂ O ₄ having Ultrathin Porous Nanowall Type Morphology Blended with CNT. ChemistrySelect, 2016, 1, 5159-5164.	1.5	7
837	Flexible Microsupercapacitors Using Silk and Cotton Substrates. ACS Applied Materials & Interfaces, 2016, 8, 29504-29510.	8.0	34
838	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	5.8	48
839	Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. Journal of Materials Chemistry A, 2016, 4, 17704-17710.	10.3	69
840	Melanin-based flexible supercapacitors. Journal of Materials Chemistry C, 2016, 4, 9516-9525.	5.5	125
841	All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy and Environmental Science, 2016, 9, 2847-2854.	30.8	551
842	Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Research, 2016, 9, 3209-3221.	10.4	78
843	Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature, 2016, 536, 159-164.	27.8	104
844	Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chemical Communications, 2016, 52, 10988-10991.	4.1	101
845	Compatibility of Electrolytes with Inactive Components of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 255-274.	0.0	3
846	Porous, one-dimensional and high aspect ratio nanofibric network of cobalt manganese oxide as a high performance material for aqueous and solid-state supercapacitor (2ÂV). Journal of Power Sources, 2016, 327, 29-37.	7.8	45
847	High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. Nanoscale, 2016, 8, 15611-15620.	5.6	44
848	Allâ€Solidâ€State Cableâ€Type Supercapacitors with Ultrahigh Rate Capability. Advanced Materials Technologies, 2016, 1, 1600012.	5.8	38
849	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	11.2	163
850	Liquidâ€Crystalâ€Mediated Selfâ€Assembly of Porous αâ€Fe ₂ O ₃ Nanorods on PEDOT:PSSâ€Functionalized Graphene as a Flexible Ternary Architecture for Capacitive Energy Storage. Particle and Particle Systems Characterization, 2016, 33, 27-37.	2.3	22
851	In-situ synthesis and optical properties of CNO-ZnO nanocomposite. Materials Letters, 2016, 183, 56-60.	2.6	5
852	High rate capability of mesoporous NiWO4–CoWO4 nanocomposite as a positive material for hybrid supercapacitor. Materials Chemistry and Physics, 2016, 182, 394-401.	4.0	45
853	Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. Journal of Power Sources, 2016, 329, 104-114.	7.8	41

#	Article	IF	CITATIONS
854	All-Carbon Ultrafast Supercapacitor by Integrating Multidimensional Nanocarbons. Small, 2016, 12, 5684-5691.	10.0	39
855	One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage. Carbon, 2016, 109, 747-754.	10.3	75
856	One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. Journal of Power Sources, 2016, 329, 314-322.	7.8	133
857	Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Advances, 2016, 6, 84769-84776.	3.6	77
858	Universal route to fabricate facile and flexible micro-supercapacitors with gold-coated silver electrodes. RSC Advances, 2016, 6, 81936-81942.	3.6	6
859	Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors. RSC Advances, 2016, 6, 81017-81027.	3.6	38
860	High Surface Area Electrodes Derived from Polymer Wrapped Carbon Nanotubes for Enhanced Energy Storage Devices. ACS Applied Materials & Interfaces, 2016, 8, 24918-24923.	8.0	7
861	Wearable Textileâ€Based Inâ€Plane Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601254.	19.5	201
862	Solid Fullerenes under Compression. , 2016, , 195-208.		5
863	Potentialities of micro-supercapacitors as energy storage buffers in embedded micro-systems. , 2016, , .		0
864	Chromate adsorption mechanism on nanodiamond-derived onion-like carbon. Journal of Hazardous Materials, 2016, 320, 368-375.	12.4	25
865	Porous nitrogen-rich carbon materials from carbon self-repairing g-C ₃ N ₄ assembled with graphene for high-performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14307-14315.	10.3	93
866	Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate framework for high performance supercapacitors. RSC Advances, 2016, 6, 78947-78953.	3.6	26
867			
	Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806.	15.6	670
868		15.6 5.2	670 52
868 869	Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806. Sputtered Synthesis of MnO2 Nanorods as Binder Free Electrode for High Performance Symmetric		
	Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806. Sputtered Synthesis of MnO2 Nanorods as Binder Free Electrode for High Performance Symmetric Supercapacitors. Electrochimica Acta, 2016, 222, 1761-1769. Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for	5.2	52

#	Article	IF	CITATIONS
872	Recent Developments in Design and Fabrication of Graphene-Based Interdigital Micro-Supercapacitors for Miniaturized Energy Storage Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1752-1765.	2.5	21
873	Onion-like carbon modified porous graphitic carbon nitride with excellent photocatalytic activities under visible light. Ceramics International, 2016, 42, 18116-18123.	4.8	41
874	Fabrication of Hierarchical Porous Carbon Spheres for Electrochemical Capacitor Application. Chemistry Letters, 2016, 45, 48-50.	1.3	4
875	Highly Stretchable Microsupercapacitor Arrays with Honeycomb Structures for Integrated Wearable Electronic Systems. ACS Nano, 2016, 10, 9306-9315.	14.6	118
876	Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst. Nanoscale Research Letters, 2016, 11, 386.	5.7	118
877	Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 20741-20747.	8.0	79
878	Mechanical behavior of mother-of-pearl and pearl with flat and spherical laminations. Materials Science and Engineering C, 2016, 68, 9-17.	7.3	26
879	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
880	Highâ€Performance Solid‣tate Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	19.5	139
881	Nanostructured Manganese Oxides in Supercapacitors. Nanostructure Science and Technology, 2016, , 345-376.	0.1	3
882	Mathematical Modelling and Simulation of Supercapacitors. Nanostructure Science and Technology, 2016, , 515-562.	0.1	3
883	A Ni _{1â^'x} Zn _x S/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 12929-12939.	10.3	52
884	High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS ₂ Layers. ACS Nano, 2016, 10, 10726-10735.	14.6	209
885	MnO2/PVP/MWCNT hybrid nano composites as electrode materials for high performance supercapacitor. Materials Research Express, 2016, 3, 105503.	1.6	7
886	Facile synthesis of Ni(OH) 2 /graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. Journal of Power Sources, 2016, 335, 76-83.	7.8	60
887	Wire-type MnO 2 /Multilayer graphene/Ni electrode for high-performance supercapacitors. Journal of Power Sources, 2016, 335, 113-120.	7.8	40
888	Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 2016, 7, 12647.	12.8	1,281
889	Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons. Scientific Reports, 2016, 6, 30295.	3.3	314

#	Article	IF	CITATIONS
890	Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 2016, 6, 33923.	3.3	65
891	Ultrafine Carbon Fibers with Hollow-Porous Multilayered Structure for Supercapacitors. Electrochimica Acta, 2016, 222, 1120-1127.	5.2	53
892	Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7, 13370.	12.8	109
893	Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors. Scientific Reports, 2016, 6, 37560.	3.3	85
894	A Flexible Integrated System Containing a Microsupercapacitor, a Photodetector, and a Wireless Charging Coil. ACS Nano, 2016, 10, 11249-11257.	14.6	166
895	Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo ₂ O ₄ Nanowire Cathode and MoO ₂ –C Nanofilm Anode. ACS Applied Materials & Interfaces, 2016, 8, 30232-30238.	8.0	90
896	Monolayer titanium carbide hollow sphere arrays formed via an atomic layer deposition assisted method and their excellent high-temperature supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 18717-18722.	10.3	66
897	The inside-out supercapacitor: induced charge storage in reduced graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 32185-32191.	2.8	6
898	Nanoporous gold–copper oxide based all-solid-state micro-supercapacitors. RSC Advances, 2016, 6, 100467-100475.	3.6	28
899	All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi ₂ S ₄ nanosheets. Chemical Communications, 2016, 52, 13140-13143.	4.1	70
900	Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016, 6, 19777.	3.3	115
901	Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Scientific Reports, 2016, 6, 26890.	3.3	84
902	CO ₂ Laser Direct Written MOF-Based Metal-Decorated and Heteroatom-Doped Porous Graphene for Flexible All-Solid-State Microsupercapacitor with Extremely High Cycling Stability. ACS Applied Materials & Interfaces, 2016, 8, 31841-31848.	8.0	72
903	Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from <i>Moringa oleifera</i> Branches for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 33060-33071.	8.0	137
904	High surface area carbon from polyacrylonitrile for high-performance electrochemical capacitive energy storage. Journal of Materials Chemistry A, 2016, 4, 18294-18299.	10.3	27
905	Synthesis of additive free electrode material of supercapacitor for energy storage applications. , 2016,		2
906	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	21.0	439
907	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	21.0	438

#	Article	IF	CITATIONS
908	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	21.0	390
909	Flexible Aqueous Lithiumâ€Ion Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie, 2016, 128, 7600-7603.	2.0	20
910	Remarkable Improvements in Volumetric Energy and Power of 3D MnO ₂ Microsupercapacitors by Tuning Crystallographic Structures. Advanced Functional Materials, 2016, 26, 1830-1839.	14.9	112
911	Flexible Sodiumâ€lon Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	14.9	270
912	Distributed Timely Throughput Optimal Scheduling for the Internet of Nano-Things. IEEE Internet of Things Journal, 2016, 3, 1202-1212.	8.7	20
913	Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Materials Research Bulletin, 2016, 83, 167-171.	5.2	48
914	Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices. ACS Applied Materials & Interfaces, 2016, 8, 16016-16025.	8.0	112
915	Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale, 2016, 8, 13273-13279.	5.6	144
916	Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy and Environmental Science, 2016, 9, 3392-3398.	30.8	121
917	Tunable Sub-nanopores of Graphene Flake Interlayers with Conductive Molecular Linkers for Supercapacitors. ACS Nano, 2016, 10, 6799-6807.	14.6	70
918	Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11388-11396.	10.3	151
919	Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. Journal of Materials Chemistry A, 2016, 4, 11835-11843.	10.3	50
920	Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. Journal of Power Sources, 2016, 325, 541-548.	7.8	102
921	Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy, 2016, 26, 746-754.	16.0	179
922	Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & Interfaces, 2016, 8, 14622-14627.	8.0	117
923	Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon, 2016, 106, 289-294.	10.3	30
924	Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016, 45, 4340-4363.	38.1	480
925	Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. Journal of Power Sources, 2016, 325, 152-160.	7.8	68

#	Article	IF	CITATIONS
926	Facile fabrication of all-solid-state flexible interdigitated MnO2 supercapacitor via in-situ catalytic solution route. Journal of Power Sources, 2016, 325, 264-272.	7.8	39
927	The preparation and application of mesoporous materials for energy storage. Materials Research Bulletin, 2016, 83, 230-249.	5.2	37
928	Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale, 2016, 8, 13280-13287.	5.6	23
929	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	6.3	83
930	High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon, 2016, 107, 844-851.	10.3	66
931	Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochimica Acta, 2016, 211, 488-498.	5.2	91
932	Ultraflexible Inâ€Plane Microâ€Supercapacitors by Direct Printing of Solutionâ€Processable Electrochemically Exfoliated Graphene. Advanced Materials, 2016, 28, 2217-2222.	21.0	366
933	Highly Stable Laserâ€6cribed Flexible Planar Microsupercapacitor Using Mushroom Derived Carbon Electrodes. Advanced Materials Interfaces, 2016, 3, 1600057.	3.7	58
934	Area Model and Dimensioning Guidelines of Multisource Energy Harvesting for Nano–Micro Interface. IEEE Internet of Things Journal, 2016, 3, 18-26.	8.7	6
935	Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nature Communications, 2016, 7, 10364.	12.8	109
936	Dual tuning of 1 D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Advances, 2016, 6, 9180-9185.	3.6	9
937	High-power supercapacitors based on hierarchical porous nanometer-sized silicon carbide-derived carbon. Electrochimica Acta, 2016, 189, 16-21.	5.2	37
938	Rationally designed nanosheet-based CoMoO ₄ –NiMoO ₄ nanotubes for high-performance electrochemical electrodes. RSC Advances, 2016, 6, 10520-10526.	3.6	33
939	Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. Journal of Materials Chemistry A, 2016, 4, 1671-1679.	10.3	117
940	A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. Journal of Power Sources, 2016, 307, 401-409.	7.8	144
941	Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Letters, 2016, 16, 3448-3456.	9.1	608
942	Preparation of hierarchically porous carbon nanosheet composites with graphene conductive scaffolds for supercapacitors: An electrostatic-assistant fabrication strategy. Carbon, 2016, 100, 664-677.	10.3	63
943	Ultrafast high energy supercapacitors based on pillared graphene nanostructures. Journal of Materials Chemistry A, 2016, 4, 3356-3361.	10.3	22

#	Article	IF	CITATIONS
944	Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte. Journal of Power Sources, 2016, 307, 489-495.	7.8	64
945	Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy, 2016, 21, 90-105.	16.0	65
946	Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy, 2016, 21, 80-89.	16.0	89
947	Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Advances, 2016, 6, 5949-5956.	3.6	56
948	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	10.3	261
949	Review: carbon onions for electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 3172-3196.	10.3	360
950	Monolithic porous carbon derived from polyvinyl alcohol for electrochemical double layer capacitors. Electrochimica Acta, 2016, 188, 175-183.	5.2	16
951	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	1.5	17
952	Optimization of coplanar high rate supercapacitors. Journal of Power Sources, 2016, 315, 1-8.	7.8	22
953	Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11, 82-97.	11.9	73
954	Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 2016, 27, 172001.	2.6	48
955	Flexible carbon micro-supercapacitors prepared by direct cw-laser writing. Proceedings of SPIE, 2016, ,	0.8	1
956	Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016, 227, 210-218.	4.4	32
957	Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. Journal of Energy Chemistry, 2016, 25, 587-593.	12.9	33
958	Electrodeposited Conducting Polyaniline Nanowire Arrays Aligned on Carbon Nanotubes Network for High Performance Supercapacitors and Sensors. Electrochimica Acta, 2016, 199, 234-241.	5.2	98
959	Ultrahighâ€Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electronâ€Correlated Oxides. Advanced Science, 2016, 3, 1500319.	11.2	47
960	New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. Journal of Power Sources, 2016, 326, 702-710.	7.8	31
961	High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy and Environmental Science, 2016, 9, 1458-1467.	30.8	202

ARTICLE IF CITATIONS # In situ formation of nitrogen-doped onion-like carbon as catalyst support for enhanced oxygen 962 10.3 43 reduction activity and durability. Carbon, 2016, 101, 420-430. Metal-free SWNT/carbon/MnO 2 hybrid electrode for high performance coplanar 16.0 64 micro-supercapacitors. Nano Energy, 2016, 22, 11-18. Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. Journal 964 10.3 48 of Materials Chemistry A, 2016, 4, 4570-4579. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science, 2016, 351, 691-695. 965 Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled 966 2.6 37 graphene ink. Nanotechnology, 2016, 27, 105401. Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4, 3754-3764. 10.3 Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm, 2016, 18, 968 2.6 75 4218-4235. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for 10.4 on-chip micro-supercapacitors. Nano Research, 2016, 9, 1012-1021. 970 Carbon-ionogel supercapacitors for integrated microelectronics. Nanotechnology, 2016, 27, 035204. 2.6 3 Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip 971 10.4 micro-supercapacitors for integrated photodetecting applications. Nano Research, 2016, 9, 424-434. Facile wick-and-oil flame synthesis of high-quality hydrophilic onion-like carbon nanoparticles. 972 4.067 Materials Chemistry and Physics, 2016, 174, 112-119. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic 4.1 394 electrolyte. Chemical Communications, 2016, 52, 4764-4767. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors. ACS Nano, 2016, 10, 974 14.6 99 3977-3984. Nitrogen-modified biomass-derived cheese-like porous carbon for electric double layer capacitors. 3.6 RSC Ădvances, 2016, 6, 26738-26744. Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite 976 membranes for electrical double-layer capacitors with activated carbon electrodes. Journal of 8.2 25 Membrane Science, 2016, 505, 148-156. Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for 70 AC line filtering. Journal of Materials Chemistry A, 2016, 4, 5062-5068. Nitrogen-Doped Porous Multi-Nano-Channel Nanocarbons for Use in High-Performance 978 6.7 55 Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2439-2448. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45, 979 38.1 1308-1330.

#	Article	IF	CITATIONS
980	GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 2016, 8, 2418-2427.	5.6	69
981	N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2128-2136.	10.3	64
982	High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite. Nanotechnology, 2016, 27, 045701.	2.6	35
983	A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m ^{â^'3} . Nanoscale, 2016, 8, 3539-3547.	5.6	96
984	Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 2078-2087.	8.0	113
985	A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochemistry Communications, 2016, 63, 34-38.	4.7	39
986	Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon, 2016, 99, 514-522.	10.3	96
987	Graphene-based fibers for supercapacitor applications. Nanotechnology, 2016, 27, 032001.	2.6	60
988	Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. Journal of Power Sources, 2016, 306, 481-488.	7.8	246
989	Electrochemical sensing performance of nanodiamond-derived carbon nano-onions: Comparison with multiwalled carbon nanotubes, graphite nanoflakes, and glassy carbon. Carbon, 2016, 98, 74-82.	10.3	44
990	MnO ₂ nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124.	8.0	82
991	A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98, 162-178.	10.3	527
992	Hierarchical architectures of Co ₃ O ₄ ultrafine nanowires grown on Co ₃ O ₄ nanowires with fascinating electrochemical performance. New Journal of Chemistry, 2016, 40, 377-384.	2.8	7
993	Diamond-Based Supercapacitors: Realization and Properties. ACS Applied Materials & amp; Interfaces, 2016, 8, 28244-28254.	8.0	67
994	A Nanopower Synchronous Charge Extractor IC for Low-Voltage Piezoelectric Energy Harvesting With Residual Charge Inversion. IEEE Transactions on Power Electronics, 2016, 31, 1263-1274.	7.9	77
995	Recent development and challenges of multifunctional structural supercapacitors for automotive industries. International Journal of Energy Research, 2017, 41, 1397-1411.	4.5	79
996	3D Printing of Carbon Nanotubes-Based Microsupercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 4597-4604.	8.0	174
997	A phytic acid etched Ni/Fe nanostructure based flexible network as a high-performance wearable hybrid energy storage device. Journal of Materials Chemistry A, 2017, 5, 3274-3283.	10.3	48

#	Article	IF	CITATIONS
998	Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance. Nano-Micro Letters, 2017, 9, 19.	27.0	50
999	Performance of low-power RFID tags based on modulated backscattering. Comptes Rendus Physique, 2017, 18, 125-136.	0.9	1
1000	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy and Environmental Science, 2017, 10, 538-545.	30.8	602
1001	3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures. Journal of Colloid and Interface Science, 2017, 493, 42-50.	9.4	53
1002	Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility. Nano Energy, 2017, 33, 387-392.	16.0	42
1003	Pencil-drawing assembly to prepare graphite/MWNT hybrids for high performance integrated paper supercapacitors. Journal of Materials Chemistry A, 2017, 5, 4719-4725.	10.3	20
1004	Materials Design and System Construction for Conventional and Newâ€Concept Supercapacitors. Advanced Science, 2017, 4, 1600382.	11.2	365
1005	Ni Foamâ€Ni ₃ S ₂ @Ni(OH) ₂ â€Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance. Chemistry - A European Journal, 2017, 23, 4128-4136.	3.3	43
1006	High Power Inâ€Plane Microâ€ S upercapacitors Based on Mesoporous Polyaniline Patterned Graphene. Small, 2017, 13, 1603388.	10.0	58
1007	Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5290-5302.	10.3	118
1008	Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Scientific Reports, 2017, 7, 40167.	3.3	87
1009	Application of Some Carbon Fabrics as Outstanding Supercapacitor Electrode Materials in Acetonitrile Based Electrolyte. Journal of the Electrochemical Society, 2017, 164, A453-A460.	2.9	4
1010	A Continuous Carbon Nitride Polyhedron Assembly for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2017, 27, 1606219.	14.9	141
1011	Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Advances, 2017, 7, 7688-7693.	3.6	76
1012	Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors. Journal of Colloid and Interface Science, 2017, 494, 355-362.	9.4	40
1013	Cm-size free-standing self-organized buckypaper of bucky-onions filled with ferromagnetic Fe ₃ C. RSC Advances, 2017, 7, 845-850.	3.6	22
1014	Design and integration of flexible planar micro-supercapacitors. Nano Research, 2017, 10, 1524-1544.	10.4	67
1015	A Highly Durable, Transferable, and Substrateâ€Versatile Highâ€Performance Allâ€Polymer Microâ€Supercapacitor with Plugâ€andâ€Play Function. Advanced Materials, 2017, 29, 1605137.	21.0	160

#	Article	IF	CITATIONS
1016	Carbon nanotube forest based electrostatic capacitor with excellent dielectric performances. Carbon, 2017, 116, 648-654.	10.3	30
1017	A new perspective on carbon nano-onion/nickel hydroxide/oxide composites: Physicochemical properties and application in hybrid electrochemical systems. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 193-203.	2.1	10
1018	Maximizing volumetric energy density of all-graphene-oxide-supercapacitors and their potential applications for energy harvest. Journal of Power Sources, 2017, 346, 113-119.	7.8	29
1019	Carbon Nanotubes Grown on Flax Fabric as Hierarchical All arbon Flexible Electrodes for Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1601123.	3.7	26
1020	In situ synthesis of porous Co3O4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors. Ionics, 2017, 23, 2175-2183.	2.4	21
1021	Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability. Nano Energy, 2017, 34, 491-499.	16.0	62
1022	Flexible Graphene-Based Composite Films for Supercapacitors with Tunable Areal Capacitance. Electrochimica Acta, 2017, 235, 233-241.	5.2	18
1023	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	5.2	84
1024	Flexible micro-supercapacitors prepared using direct-write nanofibers. RSC Advances, 2017, 7, 11724-11731.	3.6	26
1025	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	21.0	1,021
1026	High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale, 2017, 9, 5063-5071.	5.6	95
1027	A 1000-Volt planar micro-supercapacitor by direct-write laser engraving of polymers. , 2017, , .		4
1028	Preparing 3D graphene nanowall-nickel hybrid electrode on quartz glass for on-chip micro-supercapacitors. , 2017, , .		0
1029	Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. ACS Nano, 2017, 11, 2171-2179.	14.6	121
1030	Charge storage mechanisms of electrospun Mn ₃ O ₄ nanofibres for high-performance supercapacitors. RSC Advances, 2017, 7, 9958-9963.	3.6	53
1031	Processing of Onion-like Carbon for Electrochemical Capacitors. ECS Journal of Solid State Science and Technology, 2017, 6, M3103-M3108.	1.8	14
1032	Nanoporous Cu/Co alloy based Cu2O/CoO nanoneedle arrays hybrid as a binder-free electrode for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 8755-8763.	2.2	2
1033	Temperature effects on electrochemical performance of carbon nanotube film based flexible all-solid-state supercapacitors. Electrochimica Acta, 2017, 233, 181-189.	5.2	30

#	Article	IF	CITATIONS
1034	A promising vanadium sulfide counter electrode for efficient dye-sensitized solar cells. RSC Advances, 2017, 7, 12474-12478.	3.6	38
1035	Photonic nanomanufacturing of high performance energy device on flexible substrate. Proceedings of SPIE, 2017, , .	0.8	1
1036	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. Journal of the American Chemical Society, 2017, 139, 4506-4512.	13.7	294
1037	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	14.9	220
1038	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie, 2017, 129, 3978-3982.	2.0	22
1039	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie - International Edition, 2017, 56, 3920-3924.	13.8	140
1040	A Planar Grapheneâ€Based Film Supercapacitor Formed by Liquid–Air Interfacial Assembly. Advanced Materials Interfaces, 2017, 4, 1601127.	3.7	19
1041	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	3.6	166
1043	Nylon-Graphene Composite Nonwovens as Monolithic Conductive or Capacitive Fabrics. ACS Applied Materials & Interfaces, 2017, 9, 8308-8316.	8.0	41
1044	Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes. Scientific Reports, 2017, 7, 42425.	3.3	16
1045	Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. Journal of Materials Chemistry A, 2017, 5, 5466-5474.	10.3	111
1046	The limitation of electrode shape on the operational speed of a carbon nanotube based micro-supercapacitor. Sustainable Energy and Fuels, 2017, 1, 1282-1286.	4.9	10
1047	One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14619-14629.	10.3	58
1048	Onâ€Chip Microsupercapacitors Based on Coordination Polymer Frameworks for Alternating Current Lineâ€Filtering. Angewandte Chemie - International Edition, 2017, 56, 6381-6383.	13.8	15
1049	Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017, 4, 453-489.	9.5	651
1050	Computational Insights into Materials and Interfaces for Capacitive Energy Storage. Advanced Science, 2017, 4, 1700059.	11.2	176
1051	Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors. Small, 2017, 13, 1700371.	10.0	71
1052	Nitrogen-rich Fe-N-C materials derived from polyacrylonitrile as highly active and durable catalysts for the oxygen reduction reaction in both acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2017, 502, 44-51.	9.4	34

#	Article	IF	CITATIONS
1053	Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Advances in Colloid and Interface Science, 2017, 249, 163-180.	14.7	44
1054	MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Materials, 2017, 8, 127-133.	18.0	98
1055	Supersonic cluster beam printing of carbon microsupercapacitors on paper. Flexible and Printed Electronics, 2017, 2, 025002.	2.7	11
1056	A high voltage supercapacitor based on ionic liquid with an activated carbon electrode. Materials Research Express, 2017, 4, 075503.	1.6	13
1057	Vertically Aligned Niobium Nanowire Arrays for Fastâ€Charging Microâ€ S upercapacitors. Advanced Materials, 2017, 29, 1700671.	21.0	42
1058	A Three‣ayer Allâ€Inâ€One Flexible Graphene Film Used as an Integrated Supercapacitor. Advanced Materials Interfaces, 2017, 4, 1700004.	3.7	30
1059	Scalable, Selfâ€Aligned Printing of Flexible Graphene Microâ€5upercapacitors. Advanced Energy Materials, 2017, 7, 1700285.	19.5	167
1060	Carbon Nanotubes on Highly Interconnected Carbonized Cotton for Flexible and Lightâ€Weight Energy Storage. Advanced Sustainable Systems, 2017, 1, 1700022.	5.3	23
1061	Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochimica Acta, 2017, 238, 310-318.	5.2	139
1062	Facile fabrication of rGO/CNT hybrid fibers for high-performance flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 12147-12157.	2.2	6
1063	Freestanding Gold/Grapheneâ€Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density. ChemSusChem, 2017, 10, 2736-2741.	6.8	14
1064	Solid‣tate Hybrid Fibrous Supercapacitors Produced by Deadâ€End Tube Membrane Ultrafiltration. Advanced Functional Materials, 2017, 27, 1606461.	14.9	31
1065	Enhancement of the Ni-Co hydroxide response as Energy Storage Material by Electrochemically Reduced Graphene Oxide. Electrochimica Acta, 2017, 240, 323-340.	5.2	39
1066	High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochimica Acta, 2017, 241, 153-161.	5.2	93
1067	Multi-porous Co ₃ O ₄ nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 12569-12577.	10.3	96
1068	The electrochemical performances of NiCo2O4 nanoparticles synthesized by one-step solvothermal method. Ionics, 2017, 23, 2457-2463.	2.4	23
1069	Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon, 2017, 119, 332-338.	10.3	84
1070	Carbon nano onion as versatile contender in polymer compositing and advance application. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 109-123.	2.1	36

#	Article	IF	CITATIONS
1071	Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage. ACS Applied Materials & Interfaces, 2017, 9, 22361-22368.	8.0	81
1072	Promising carbon nanosheet-based supercapacitor electrode materials from low-grade coals. Microporous and Mesoporous Materials, 2017, 253, 80-90.	4.4	35
1073	Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. ACS Applied Materials & Interfaces, 2017, 9, 22652-22664.	8.0	69
1074	Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability. Applied Energy, 2017, 207, 417-426.	10.1	68
1075	In situ growth of single-stranded like poly (o-phenylenediamine) onto graphene for high performance supercapacitors. Electrochimica Acta, 2017, 245, 41-50.	5.2	50
1076	Temperature driven structural transitions in the graphitic-arrangement of carbon onions filled with FePd3 nano crystals. Carbon, 2017, 120, 392-396.	10.3	20
1077	A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Microâ€ S upercapacitors on a Liquid Metal Patterned Foldable Paper. Advanced Functional Materials, 2017, 27, 1700135.	14.9	114
1078	On-Chip-Mikrosuperkondensatoren aus Koordinationspolymeren zur Wechselstromnetzfilterung. Angewandte Chemie, 2017, 129, 6479-6481.	2.0	0
1079	One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density. ACS Nano, 2017, 11, 7284-7292.	14.6	312
1080	A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor. AIP Conference Proceedings, 2017, , .	0.4	2
1081	Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium–iodine batteries. Journal of Materials Chemistry A, 2017, 5, 15235-15242.	10.3	55
1082	Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon, 2017, 122, 162-167.	10.3	105
1083	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591.	19.5	64
1084	Hydrogen doped BaTiO3 films as solid-state electrolyte for micro-supercapacitor applications. Journal of Alloys and Compounds, 2017, 721, 276-284.	5.5	10
1085	In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. Journal of Power Sources, 2017, 360, 48-58.	7.8	40
1086	Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorganica Chimica Acta, 2017, 468, 67-76.	2.4	69
1087	Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochimica Acta, 2017, 244, 112-118.	5.2	68
1088	Novel [111] oriented γ-Mo2N thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors. Electrochimica Acta, 2017, 245, 237-248.	5.2	48

#	Article	IF	Citations
1089	Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube–Agarose Gel Composite Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 19925-19933.	8.0	34
1090	Carbonâ€MEMSâ€Based Alternating Stacked MoS ₂ @rGOâ€CNT Microâ€Supercapacitor with High Capacitance and Energy Density. Small, 2017, 13, 1700639.	10.0	132
1091	Surface potential of nanodiamonds investigated by KPFM. , 2017, , 273-300.		3
1092	Green Fluorescent Onion-Like Carbon Nanoparticles from Flaxseed Oil for Visible Light Induced Photocatalytic Applications and Label-Free Detection of Al(III) Ions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3982-3992.	6.7	123
1093	Fabrication of a sulfonated aramidâ€graphene nanoplatelet composite paper and its performance as a supercapacitor electrode. Journal of Applied Polymer Science, 2017, 134, 45099.	2.6	13
1094	Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Research, 2017, 10, 2471-2481.	10.4	97
1095	Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy and Fuels, 2017, 1, 891-898.	4.9	28
1096	High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. Carbon, 2017, 118, 578-587.	10.3	18
1097	Rationally Engineered Electrodes for a Highâ€Performance Solidâ€&tate Cableâ€Type Supercapacitor. Advanced Functional Materials, 2017, 27, 1606696.	14.9	22
1098	Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors. Chemical Engineering Journal, 2017, 320, 576-587.	12.7	41
1099	High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors. ACS Nano, 2017, 11, 4009-4016.	14.6	96
1100	Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor. ACS Applied Materials & Interfaces, 2017, 9, 13761-13769.	8.0	32
1101	Insights into the surface chemistry and electronic properties of sp ² and sp ³ -hybridized nanocarbon materials for catalysis. Chemical Communications, 2017, 53, 4834-4837.	4.1	41
1102	Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy and Environmental Science, 2017, 10, 1777-1783.	30.8	782
1103	Microwave-assisted synthesis of cobalt sulphide nanoparticle clusters on activated graphene foam for electrochemical supercapacitors. RSC Advances, 2017, 7, 20231-20240.	3.6	11
1104	High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochimica Acta, 2017, 238, 64-73.	5.2	23
1105	Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities. ACS Nano, 2017, 11, 4283-4291.	14.6	176
1106	Aluminumâ€lonâ€lntercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Small, 2017, 13, 1700380.	10.0	107

#	Article	IF	Citations
1107	ArrowrootÂ+ÂNal: a low-cost, fast ion conducting eco-friendly polymer electrolyte system. Ionics, 2017, 23, 2809-2815.	2.4	11
1108	High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 9032-9041.	10.3	79
1109	Sputtered Titanium Carbide Thick Film for High Areal Energy on Chip Carbonâ€Based Microâ€Supercapacitors. Advanced Functional Materials, 2017, 27, 1606813.	14.9	45
1110	Nanocrystalline Intermetallic Tungsten Carbide: Nanoscaled Solidoid Synthesis, Nonfaradaic Pseudocapacitive Property, and Electrode Material Application. Advanced Materials Interfaces, 2017, 4, 1700099.	3.7	7
1111	One-step fabrication of porous GaN crystal membrane and its application in energy storage. Scientific Reports, 2017, 7, 44063.	3.3	38
1112	In situ synthesis of noble metal nanoparticles on onion-like carbon with enhanced electrochemical and supercapacitor performance. RSC Advances, 2017, 7, 4667-4670.	3.6	12
1113	Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Materials, 2017, 7, 216-221.	18.0	94
1114	Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Applied Surface Science, 2017, 411, 251-260.	6.1	81
1115	Stimulusâ€Responsive Microâ€Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window. Advanced Materials, 2017, 29, 1604491.	21.0	153
1116	Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process. Carbon, 2017, 114, 424-434.	10.3	45
1117	Tuning the interlayer of transition metal oxides for electrochemical energy storage. Journal of Materials Research, 2017, 32, 2-15.	2.6	67
1118	Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon, 2017, 114, 533-543.	10.3	110
1119	Ultrafast charge/discharge solid-state thin-film supercapacitors via regulating the microstructure of transition-metal-oxide. Journal of Materials Chemistry A, 2017, 5, 2759-2767.	10.3	45
1120	Facile synthesis of flower-like Ni x Co 3-x O 4 (0≤â‰≇.5) microstructures as high-performance electrode materials for supercapacitors. Electrochimica Acta, 2017, 225, 283-291.	5.2	17
1121	Supramolecular Nanofibers as Ambient Stable Wide Voltage Window Electrolyte for Microâ€ S upercapacitors. ChemNanoMat, 2017, 3, 39-43.	2.8	5
1122	A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life. Journal of Materials Chemistry A, 2017, 5, 1145-1152.	10.3	54
1123	Sandwich-structured MnO2@N-doped Carbon@MnO2 nanotubes forÂhigh-performance supercapacitors. Journal of Alloys and Compounds, 2017, 695, 3339-3347.	5.5	10
1124	Improved electro-grafting of nitropyrene onto onion-like carbon via in situ electrochemical reduction and polymerization: tailoring redox energy density of the supercapacitor positive electrode. Journal of Materials Chemistry A, 2017, 5, 1488-1494.	10.3	21

#	Article	IF	CITATIONS
1125	Metal–Organic Coaxial Nanowire Array Electrodes Combining Large Energy Capacity and High Rate Capability. ChemSusChem, 2017, 10, 701-710.	6.8	9
1126	Flexible Microâ€&upercapacitor Based on Graphene with 3D Structure. Small, 2017, 13, 1603114.	10.0	131
1127	High-performance all-solid-state flexible carbon/TiO ₂ micro-supercapacitors with photo-rechargeable capability. RSC Advances, 2017, 7, 415-422.	3.6	53
1128	A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Materials Chemistry Frontiers, 2017, 1, 958-966.	5.9	57
1129	Self‣upporting GaN Nanowires/Graphite Paper: Novel Highâ€Performance Flexible Supercapacitor Electrodes. Small, 2017, 13, 1603330.	10.0	70
1130	Hierarchically nanostructured boron-doped diamond electrode surface. Diamond and Related Materials, 2017, 72, 13-19.	3.9	22
1131	One-step growth of multilayer-graphene hollow nanospheres via the self-elimination of SiC nuclei templates. Scientific Reports, 2017, 7, 13774.	3.3	6
1132	Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2017, 9, 40580-40592.	8.0	15
1133	Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy, 2017, 42, 187-194.	16.0	85
1134	New electrolyte mixture of propylene carbonate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1114 TFSI) for high performance silicon nanowire (SiNW)-based supercapacitor applications. Electrochimica Acta, 2017, 254, 368-374.	5.2	18
1135	Robust and Conductive Na ₂ Ti ₂ O _{5–<i>x</i>} Nanowire Arrays for High-Performance Flexible Sodium-Ion Capacitor. Chemistry of Materials, 2017, 29, 9133-9141.	6.7	77
1136	Design Strategies for Promising Organic Positive Electrodes in Lithium-Ion Batteries: Quinones and Carbon Materials. Industrial & Engineering Chemistry Research, 2017, 56, 12009-12023.	3.7	49
1137	Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41, 408-416.	16.0	126
1138	Recent Progress in Microâ€Supercapacitors with Inâ€Plane Interdigital Electrode Architecture. Small, 2017, 13, 1701989.	10.0	180
1139	Constructing High Energy and Power Densities Li-Ion Capacitors Using Li Thin Film for Pre-Lithiation. Journal of the Electrochemical Society, 2017, 164, A2164-A2170.	2.9	32
1140	Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38507-38521.	8.0	126
1141	A Formal Definition for Nanorobots and Nanonetworks. Lecture Notes in Computer Science, 2017, , 214-226.	1.3	7
1142	Taper silicon nano-scaffold regulated compact integration of 1D nanocarbons for improved on-chip supercapacitor. Nano Energy, 2017, 41, 618-625.	16.0	14

ARTICLE IF CITATIONS Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived 1143 8.0 8 Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2017, 9, 36350-36357. Tailored Mesoporous Carbon/Vanadium Pentoxide Hybrid Electrodes for High Power Pseudocapacitive 1144 6.7 34 Lithium and Sodium Intercalation. Chemistry of Matérials, 2017, 29, 8653-8662. In situ tracking of hydrodynamic and viscoelastic changes in electrophoretically deposited LiFePO4 1145 0.9 4 electrodes during their charging/discharging. Russian Journal of Electrochemistry, 2017, 53, 980-993. Two-Dimensional Carbon Nanosheets for High-Performance Supercapacitors: Large-Scale Synthesis and Codoping with Nitrogen and Phosphorus. Industrial & amp; Engineering Chemistry Research, 2017, 1146 56, 12344-12353. The Pineâ€Needleâ€Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for 1147 10.0 35 Highâ€Performance Flexible Supercapacitors. Small, 2017, 13, 1702142. Laser-assisted selective lithography of reduced graphene oxide for fabrication of graphene-based out-of-plane tandem microsupercapacitors with large capacitance. Applied Physics Letters, 2017, 111, . 1148 3.3 Fast Sodium Storage in TiO₂@CNT@C Nanorods for Highâ€Performance Naâ€Ion Capacitors. 1149 19.5 296 Advanced Energy Materials, 2017, 7, 1701222. 3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431. 16.0 351 1151 Transparent and Flexible Supercapacitors with Networked Electrodes. Small, 2017, 13, 1701906. 10.0 63 Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. 5.2 24 Electrochimica Acta, 2017, 251, 91-98. High Areal Energy 3Dâ€Interdigitated Microâ€Supercapacitors in Aqueous and Ionic Liquid Electrolytes. 1153 77 5.8Advanced Materials Technologies, 2017, 2, 1700126. Topâ€Down Synthesis of Hollow Graphene Nanostructures for Use in Resistive Switching Memory 1154 5.1 Devices. Advanced Electronic Materials, 2017, 3, 1700264. Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. 1155 10.3 58 Journal of Materials Chemistry A, 2017, 5, 21049-21076. Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices. Advanced Materials, 2017, 29, 1703455. 21.0 High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide 1157 5.254 and activated carbon derived from cork (Quercus Suber). Electrochimica Acta, 2017, 252, 41-54. Substrate-integrated coreâ€"shell Co₃O₄@Au@CuO hybrid nanowires as efficient cathode materials for high-performance asymmetric supercapacitors with excellent cycle life. Journal of Materials Chemistry A, 2017, 5, 21715-21725. Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible 1159 10.3 47 micro-supercapacitors with high specific capacitance. Carbon, 2017, 125, 308-317. Design of Miura Folding-Based Micro-Supercapacitors as Foldable and Miniaturized Energy Storage Devices., 2017,,.

#	Article	IF	CITATIONS
1161	Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility. Journal of Power Sources, 2017, 367, 34-41.	7.8	32
1162	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	12.2	222
1163	Highly Ordered, Ultralong Mnâ€Based Nanowire Films with Low Contact Resistance as Freestanding Electrodes for Flexible Supercapacitors with Enhanced Performance. ChemElectroChem, 2017, 4, 3061-3067.	3.4	5
1164	All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co ₃ O ₄ and three-dimensional reduced graphene oxide electrodes with high energy and power densities. Nanoscale, 2017, 9, 15423-15433.	5.6	86
1165	A new strategy for integrating superior mechanical performance and high volumetric energy density into a Janus graphene film for wearable solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20797-20807.	10.3	37
1166	α-Fe ₂ O ₃ -Based Core-Shell-Nanorod–Structured Positiveand Negative Electrodes for a High-Performance α-Fe ₂ O ₃ /C/ĺ±-Fe ₂ O ₃ /MnO <i>_x</i> Asymmetric Supercapacitor, Journal of the Electrochemical Society, 2017, 164, A2707-A2715.	2.9	22
1167	Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nature Communications, 2017, 8, 536.	12.8	313
1168	Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Research, 2017, 10, 4448-4456.	10.4	27
1169	Facile synthesis of water soluble reduced graphene oxide with a high concentration and its application in printable micro-supercapacitors. Sustainable Energy and Fuels, 2017, 1, 1601-1610.	4.9	9
1170	Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16944-16952.	10.3	37
1171	Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 2017, 4, 035016.	4.4	146
1172	A Review of On-Chip Micro Supercapacitors for Integrated Self-Powering Systems. Journal of Microelectromechanical Systems, 2017, 26, 949-965.	2.5	106
1173	Nanocoating covalent organic frameworks on nickel nanowires for greatly enhanced-performance supercapacitors. Nanotechnology, 2017, 28, 33LT01.	2.6	36
1174	Over‣toichiometric NbO ₂ Nanoparticles for a High Energy and Power Density Lithium Microbattery. ChemNanoMat, 2017, 3, 646-655.	2.8	19
1175	Carbon nanospheres hanging on carbon nanotubes: a hierarchical three-dimensional carbon nanostructure for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16595-16599.	10.3	22
1176	Silicon grass based nano functional electrodes for MEMS supercapacitors of improved energy density. , 2017, , .		0
1177	Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn 2 O 4. Applied Surface Science, 2017, 426, 913-923.	6.1	54
1178	Ternary composite Si/TiN/MnO2 taper nanorod array for on-chip supercapacitor. Electrochimica Acta, 2017, 248, 397-408.	5.2	32

#	Article	IF	CITATIONS
1179	Electrophoretic deposition of activated carbon YP-50 with ethyl cellulose binders for supercapacitor electrodes. Journal of Energy Storage, 2017, 13, 206-210.	8.1	21
1180	Synthesis and Characterization of Aramid Fiberâ€Reinforced Polyimide/Carbon Black Composites and Their Use in a Supercapacitor. Chinese Journal of Chemistry, 2017, 35, 1586-1594.	4.9	14
1181	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	7.3	64
1182	Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. Journal of Colloid and Interface Science, 2017, 507, 271-278.	9.4	72
1183	N, P dual-doped hollow carbon spheres for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2017, 21, 3631-3640.	2.5	15
1184	Nitrogen and oxygen co-doped 3D nanoporous duct-like graphene@carbon nano-cage hybrid films for high-performance multi-style supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18535-18541.	10.3	22
1185	Hierarchical Porous Carbons from Poly(methyl methacrylate)/Bacterial Cellulose Composite Monolith for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 9390-9401.	6.7	41
1186	Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates. ACS Applied Materials & Interfaces, 2017, 9, 28433-28440.	8.0	161
1187	Electronic properties of Bilayer Fullerene onions. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 607-612.	2.1	7
1189	Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (murexide) for supercapacitor application. RSC Advances, 2017, 7, 54626-54637.	3.6	16
1190	Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 44429-44440.	8.0	46
1191	Hexagonal VS ₂ Anchored MWCNTs: First Approach to Design Flexible Solid-State Symmetric Supercapacitor Device. ACS Applied Materials & Interfaces, 2017, 9, 44880-44891.	8.0	111
1192	ITO nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 25177-25186.	10.3	26
1193	Synergistic silver storage in the composite RbAg4I5:graphite: Thermodynamics and kinetics. Solid State Ionics, 2017, 312, 97-105.	2.7	2
1194	Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors. Chinese Chemical Letters, 2017, 28, 2269-2273.	9.0	57
1195	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	38.1	1,567
1196	In–situ growth of carbon nanotubes on two–dimensional titanium carbide for enhanced electrochemical performance. Electrochimica Acta, 2017, 258, 291-301.	5.2	43
1197	Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. Advanced Materials, 2017, 29, 1702747.	21.0	27

	C	ITATION REPORT	
#	ARTICLE	IF	CITATIONS
1198	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	14.2	202
1199	Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Scientific Reports, 2017, 7, 4178.	3.3	44
1200	Photoswitchable Micro-Supercapacitor Based on a Diarylethene-Graphene Composite Film. Journal of the American Chemical Society, 2017, 139, 9443-9446.	f 13.7	96
1201	Linear response formulism of a carbon nano-onion stringed to gold electrodes. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	2
1202	Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano, 2017, 11, 8249-8256.	14.6	280
1203	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2, .	e 39.5	1,626
1204	Carbon Nano-Onions as a Functional Dopant to Modify Hole Transporting Layers for Improving Stability and Performance of Planar Perovskite Solar Cells. Electrochimica Acta, 2017, 247, 548-557.	5.2	53
1205	Investigation of polyacrylamide based hydroxide ion-conducting electrolyte and its application in all-solid electrochemical capacitors. Sustainable Energy and Fuels, 2017, 1, 1580-1587.	4.9	16
1206	An easily manipulated protocol for patterning ofÂMXenes on paper for planar micro-supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19639-19648.	. 10.3	118
1207	Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors. Nanoscale, 2017, 9, 11765-11772.	5.6	30
1208	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.	10.3	25
1209	Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy, 2017, 39, 306-320.	16.0	86
1210	Atypical Properties of FIB-Patterned RuO _{<i>x</i>} Nanosupercapacitors. ACS Energy Lett 2017, 2, 1734-1739.	ters, 17.4	25
1211	Two-Dimensional Planar Supercapacitor Based on Zinc Oxide/Manganese Oxide Core/Shell Nano-architecture. Electrochimica Acta, 2017, 247, 949-957.	5.2	77
1212	High electrochemical performance asymmetric supercapacitor based on La 2 O 3 //Co 3 O 4 electrode Journal of Industrial and Engineering Chemistry, 2017, 56, 90-98.	es. 5.8	41
1213	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-	-120. 11.9	302
1214	Enhanced performance of carbon/carbon supercapacitors upon graphene addition. Nanotechnology for Environmental Engineering, 2017, 2, 1.	3.3	9
1215	Graphene-Fiber-Based Supercapacitors Favor <i>N</i> -Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination. ACS Applied Materials & amp; Interfaces, 2017, 9, 24568-2	24576. ^{8.0}	41

	CITATION	Report	
#	Article	IF	CITATIONS
1216	Capacitive Energy Storage. World Scientific Series in Current Energy Issues, 2017, , 167-214.	0.1	5
1217	Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials, 2017, 27, 1701264.	14.9	1,354
1218	A new approach to create isolated carbon particles by sputtering: A detailed parametric study and a concept of carbon particles embedded carbon coatings. Diamond and Related Materials, 2017, 76, 97-107.	3.9	6
1219	Multilayer core–shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors. Journal of Power Sources, 2017, 361, 122-132.	7.8	47
1220	Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials, 2017, 253, 169-176.	4.4	69
1221	An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy, 2017, 39, 328-336.	16.0	134
1222	Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. Journal of Materials Chemistry A, 2017, 5, 2519-2529.	10.3	42
1223	Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 3819-3831.	10.3	251
1224	Design of Architectures and Materials in Inâ€Plane Microâ€supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017, 29, 1602802.	21.0	373
1225	In-situ direct grafting of graphene quantum dots onto carbon fibre by low temperature chemical synthesis for high performance flexible fabric supercapacitor. Materials Today Communications, 2017, 10, 112-119.	1.9	44
1226	Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600318.	1.8	11
1227	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436.	21.0	872
1228	Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical Energy Storage. Small, 2017, 13, 1602742.	10.0	89
1229	Porous carbons derived from pyrene-based conjugated microporous polymer for supercapacitors. Microporous and Mesoporous Materials, 2017, 240, 73-79.	4.4	31
1230	Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology, 2017, 12, 7-15.	31.5	753
1231	Enhancing effect of boron trifluoride diethyl etherate electrolytes on capacitance performance of electropolymerized poly[poly(N-vinyl-carbazole)] films. Journal of Solid State Electrochemistry, 2017, 21, 81-90.	2.5	4
1232	Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis. Journal of Electronic Materials, 2017, 46, 443-450.	2.2	9
1233	Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cutâ€andâ€Transfer Strategy. Advanced Energy Materials, 2017, 7, 1601257.	19.5	75

#	Article	IF	CITATIONS
1234	Highly densified carbon electrode materials towards practical supercapacitor devices. Science China Materials, 2017, 60, 25-38.	6.3	57
1235	Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon, 2017, 111, 121-127.	10.3	128
1236	Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon, 2017, 113, 283-291.	10.3	171
1237	High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes. High Performance Polymers, 2017, 29, 984-993.	1.8	19
1238	UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature. Journal of Applied Physics, 2017, 122, .	2.5	3
1239	Single hop routing protocol and energy harvesting methodology for self-powered wireless body area network. , 2017, , .		1
1240	On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 2017, 7, 16594.	3.3	30
1241	Ultra-narrowband for energy-scavenging-powered wireless sensor networks. , 2017, , .		1
1242	Preparation of Poly(7-formylindole)/carbon Fibers Nanocomposites and Their High Capacitance Behaviors. International Journal of Electrochemical Science, 2017, 12, 8467-8476.	1.3	3
1243	Metal-semiconductor core–shell nanomaterials for energy applications. , 2017, , 99-132.		1
1244	The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations. Molecules, 2017, 22, 241.	3.8	15
1245	Electrospun TiC/C composite nanofibrous felt and its energy-related applications. , 2017, , 341-369.		2
1246	Energy Storage Devices Based on Polymers. , 2017, , 197-242.		11
1247	Graphene-Based Nanolayers Toward Energy Storage Device. , 2017, , 353-389.		5
1248	Preparation of Ni(OH)2/MWCNTs Composite for Supercapacitor Application. International Journal of Electrochemical Science, 2017, , 9665-9674.	1.3	4
1249	Supercapacitors using Binderless Activated Carbon Monoliths Electrodes consisting of a Graphite Additive and Pre-carbonized Biomass Fibers. International Journal of Electrochemical Science, 2017, 12, 2520-2539.	1.3	27
1250	Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials, 2018, 1, 32-55.	21.1	92
1251	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale, 2018, 10, 5442-5448.	5.6	50

#	Article	IF	CITATIONS
1252	Nitrogen doped carbon nano-onions as efficient and robust electrocatalysts for oxygen reduction reactions. Current Applied Physics, 2018, 18, 417-423.	2.4	27
1253	One Step Construction of Nitrogen–Carbon Derived from <i>Bradyrhizobium japonicum</i> for Supercapacitor Applications with a Soybean Leaf as a Separator. ACS Sustainable Chemistry and Engineering, 2018, 6, 4695-4704.	6.7	82
1254	Largeâ€Area Reduced Graphene Oxide Composite Films for Flexible Asymmetric Sandwich and Microsized Supercapacitors. Advanced Functional Materials, 2018, 28, 1707247.	14.9	103
1255	Impact of intrinsic iron on electrochemical oxidation of pencil graphite and its application as supercapacitors. Electrochimica Acta, 2018, 269, 274-281.	5.2	19
1256	High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers. ACS Applied Materials & Interfaces, 2018, 10, 10157-10164.	8.0	37
1257	Tip-enhanced Raman spectroscopy studies of nanodiamonds and carbon onions. Carbon, 2018, 132, 495-502.	10.3	37
1258	Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nature Communications, 2018, 9, 790.	12.8	154
1259	Capacitive Enhancement Mechanisms and Design Principles of Highâ€Performance Graphene Oxideâ€Based Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1706721.	14.9	27
1260	Nanocarbonâ€Based Materials for Flexible All‣olid‣tate Supercapacitors. Advanced Materials, 2018, 30, e1705489.	21.0	330
1261	Controlled Spacing of Few-Layer Graphene Sheets Using Molecular Spacers: Capacitance That Scales with Sheet Number. ACS Applied Nano Materials, 2018, 1, 1420-1429.	5.0	7
1262	Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins. ACS Applied Materials & Interfaces, 2018, 10, 9620-9628.	8.0	61
1263	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. Carbon, 2018, 132, 698-708.	10.3	26
1264	Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source. Applied Surface Science, 2018, 442, 565-574.	6.1	31
1265	Superficial-defect engineered nickel/iron oxide nanocrystals enable high-efficient flexible fiber battery. Energy Storage Materials, 2018, 13, 160-167.	18.0	48
1266	Power Harvesting and Data Exchange Links. , 2018, , 507-593.		1
1267	Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes <i>via</i> nonsolvent-induced phase separation for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8909-8915.	10.3	23
1268	Flexible Array of Microsupercapacitor for Additive Energy Storage Performance Over a Large Area. ACS Applied Materials & Interfaces, 2018, 10, 15864-15872.	8.0	55
1269	Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustainable Energy and Fuels, 2018, 2, 1350-1355.	4.9	64

#	Article	IF	CITATIONS
1270	Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, 12143-12153.	3.3	37
1271	In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward Highâ€Energy and Stable Nickel–Bismuth Batteries. Advanced Materials, 2018, 30, e1707290.	21.0	139
1272	Hierarchical Porous Carbons Derived from Renewable Poplar Anthers for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 1451-1458.	3.4	24
1273	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	12.8	98
1274	Constructing hierarchical porous carbon via tin punching for efficient electrochemical energy storage. Carbon, 2018, 134, 391-397.	10.3	17
1275	Polystyrene activated linear tube carbon nanofiber for durable and high-performance supercapacitors. Surface and Coatings Technology, 2018, 345, 113-122.	4.8	42
1276	Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors. Ionics, 2018, 24, 2073-2082.	2.4	18
1277	Effect of polymer binders on graphene-based free-standing electrodes for supercapacitors. Electrochimica Acta, 2018, 267, 213-221.	5.2	44
1278	MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors. International Journal of Biological Macromolecules, 2018, 112, 943-950.	7.5	53
1279	Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Materials, 2018, 13, 233-240.	18.0	82
1280	Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China Materials, 2018, 61, 303-352.	6.3	184
1281	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	19.5	226
1282	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	38.1	1,338
1283	Laser processed micro-supercapacitors based on carbon nanotubes/manganese dioxide nanosheets composite with excellent electrochemical performance and aesthetic property. Chinese Chemical Letters, 2018, 29, 592-595.	9.0	7
1284	Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimica Acta, 2018, 266, 420-430.	5.2	93
1285	Ultrafast Allâ€Solidâ€State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	19.5	86
1286	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	27.0	73
1287	All-solid-state pseudocapacitive micro-supercapacitors from laser-treated polymer derivatives. Chinese Chemical Letters, 2018, 29, 596-598.	9.0	5

#	Article	IF	CITATIONS
1288	Rapid Prototyping of Ultralow ost, Inkjetâ€Printed Carbon Microelectrodes for Flexible Bioelectronic Devices. Advanced Biology, 2018, 2, 1700136.	3.0	33
1289	Facile one-step fabrication of a novel 3D honeycomb-like bismuth nanoparticles decorated N-doped carbon nanosheet frameworks: Ultrasensitive electrochemical sensing of heavy metal ions. Electrochimica Acta, 2018, 266, 94-102.	5.2	74
1290	Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems. RSC Advances, 2018, 8, 6806-6813.	3.6	42
1291	Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147, 308-316.	8.8	15
1292	Few-layer graphitic shells networked by low temperature pyrolysis of zeolitic imidazolate frameworks. Materials Chemistry Frontiers, 2018, 2, 520-529.	5.9	9
1293	Ferromagnetically filled carbon nano-onions: the key role of sulfur in dimensional, structural and electric control. Royal Society Open Science, 2018, 5, 170981.	2.4	10
1294	Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer. ACS Applied Materials & Interfaces, 2018, 10, 5404-5412.	8.0	54
1295	Elastic Sandwichâ€Type rGO–VS ₂ /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium–Sulfur Batteries with High Energy Density. Advanced Energy Materials, 2018, 8, 1702337.	19.5	227
1296	Structural evolution of carbon aerogel microspheres by thermal treatment for high–power supercapacitors. Journal of Energy Chemistry, 2018, 27, 439-446.	12.9	17
1297	Layer structured bismuth selenides Bi ₂ Se ₃ and Bi ₃ Se ₄ for high energy and flexible all-solid-state micro-supercapacitors. Nanotechnology, 2018, 29, 085401.	2.6	16
1298	A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors. Carbon, 2018, 129, 819-825.	10.3	98
1299	Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, 7312-7329.	3.3	86
1300	Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes. Energy Storage Materials, 2018, 12, 204-215.	18.0	72
1301	Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Materials Research Express, 2018, 5, 015507.	1.6	41
1302	Direct imaging of construction of carbon onions by curling few-layer graphene flakes. Physical Chemistry Chemical Physics, 2018, 20, 2022-2027.	2.8	11
1303	Stamping of Flexible, Coplanar Microâ€Supercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	14.9	427
1304	Thermal influence on the electrochemical behavior of a supercapacitor containing an ionic liquid electrolyte. Electrochimica Acta, 2018, 263, 249-260.	5.2	38
1305	Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters, 2018, 29, 571-581.	9.0	88

#	Article	IF	CITATIONS
1306	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	19.5	488
1307	MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45, 266-272.	16.0	333
1308	Carbon Nano-onions as Photosensitizers: Stacking-Induced Red-Shift. Journal of Physical Chemistry C, 2018, 122, 2422-2431.	3.1	22
1309	Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained <i>via</i> bimetallic-coordination organic framework modification and their application in supercapacitors. Dalton Transactions, 2018, 47, 7316-7326.	3.3	27
1310	Prepared multifunctional aerogel for high performance supercapacitors and effective adsorbents. Materials Research Express, 2018, 5, 055508.	1.6	1
1311	Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 11187-11198.	2.2	9
1312	3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. Journal of Power Sources, 2018, 390, 186-196.	7.8	94
1313	Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chemical Engineering Journal, 2018, 352, 996-1003.	12.7	74
1314	Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy, 2018, 49, 481-488.	16.0	221
1315	Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chemical Engineering Journal, 2018, 348, 57-66.	12.7	125
1316	Observation of defective mixed Russian doll / jelly roll structure and pseudo-capacitor properties in carbon onions/nanotubes radial structures filled with continuous Fe 3 C crystals. Diamond and Related Materials, 2018, 85, 80-88.	3.9	3
1317	Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today, 2018, 20, 74-83.	11.9	94
1318	On the morphological, structural and electrochemical properties of entangled Cu-filled carbon nano-onions. RSC Advances, 2018, 8, 6870-6877.	3.6	0
1319	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	14.9	144
1320	Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8940-8946.	10.3	87
1321	Nitrogen-rich hollow carbon spheres decorated with FeCo/fluorine-rich carbon for high performance symmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 7522-7531.	10.3	33
1322	A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors. Journal of Power Sources, 2018, 386, 96-105.	7.8	34
1323	High-performance Mg-ion conducting poly(vinyl alcohol) membranes: Preparation, characterization and application in supercapacitors. Journal of Membrane Science, 2018, 555, 280-289.	8.2	17

CITATION REPORT ARTICLE IF CITATIONS Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked 14.6 439 Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148. Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors. 2.8 New Journal of Chemistry, 2018, 42, 7043-7048. Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable 10.3 20 supercell devices. Journal of Materials Chemistry A, 2018, 6, 7246-7256. Modification in supercapacitive behavior of CoO-rGO composite thin film from exposure to 9.4 ferri/ferrocyanide redox active couple. Journal of Colloid and Interface Science, 2018, 522, 111-119. Hand-drawing patterned ultra-thin integrated electrodes for flexible micro supercapacitors. Energy 18.0 43 Storage Materials, 2018, 11, 144-151. Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Fieldâ€Based Techniques. Advanced Materials Technologies, 2018, 3, 1700168. 5.8 Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 2018, 10.3 70 127, 77-84. High-frequency supercapacitors based on doped carbon nanostructures. Carbon, 2018, 126, 305-312. 10.3 65 Facile synthesis and capacitance properties of N-doped porous carbon/iron oxide composites through 2.6 4 the single-step pyrolysis of coal-based polyaniline. Journal of Porous Materials, 2018, 25, 845-853. Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable 64 Chemistry, 2018, 9, 18-24. Integrated perovskite solar capacitors with high energy conversion efficiency and fast 10.3 85 photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052. Tubular TiO₂ Nanostructures: Toward Safer Microsupercapacitors. Advanced Materials 5.8 Technologies, 2018, 3, 1700194. Asymmetric Flexible MXeneâ€Reduced Graphene Oxide Microâ€Supercapacitor. Advanced Electronic 5.1 324 Materials, 2018, 4, 1700339. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 2018, 122, 194-206. 3.1 854 Revealing the formation mechanism of ultrahard nanotwinned diamond from onion carbon. Carbon, 10.3 40 2018, 129, 159-167. Electrospun carbon nanofiber-carbon nanotubes composites coated with polyaniline with improved

1340	Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon, 2018, 129, 380-395.	10.3	135
1341	Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 2018, 12, 128-136.	18.0	167

electrochemical properties for supercapacitors. Electrochimica Acta, 2018, 259, 1110-1119.

5.2

1324

1326

1327

1328

1329

1330

1331

1332

1334

1336

#	Article	IF	CITATIONS
1342	Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Materials, 2018, 12, 232-240.	18.0	66
1343	Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Materials, 2018, 13, 223-232.	18.0	117
1344	Flexible Solid-State Symmetric Supercapacitor Based on (Fe,Cr) ₂ O ₃ Oxide Layer Developed on the Stainless Steel Mesh. ACS Sustainable Chemistry and Engineering, 2018, 6, 300-310.	6.7	27
1345	Roll-to-Roll Laser-Printed Graphene–Graphitic Carbon Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 1033-1038.	8.0	29
1346	Vanadium dioxide-anchored porous carbon nanofibers as a Na+ intercalation pseudocapacitance material for development of flexible and super light electrochemical energy storage systems. Applied Materials Today, 2018, 10, 72-85.	4.3	88
1347	Direct fabrication of two-dimensional copper sulfide nanoplates on transparent conducting glass for planar supercapacitor. Journal of Alloys and Compounds, 2018, 735, 2378-2383.	5.5	25
1348	Onion-like carbon as dopant/modification-free electrocatalyst for [VO]2+/[VO2]+ redox reaction: Performance-control mechanism. Carbon, 2018, 127, 31-40.	10.3	11
1349	Highly transparent 3D NiO-Ni/Ag-nanowires/FTO micro-supercapacitor electrodes for fully transparent electronic deviceÂpurpose. Electrochimica Acta, 2018, 260, 281-289.	5.2	23
1350	Electrochemical frequency modulation (EFM) technique: Theory and recent practical applications in corrosion research. Journal of Molecular Liquids, 2018, 249, 83-96.	4.9	88
1351	Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. Journal of Materials Chemistry A, 2018, 6, 896-907.	10.3	77
1352	Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy. Nanotechnology, 2018, 29, 055401.	2.6	24
1353	PVP-assisted enhancement in ion storage performance of sol-gel derived nano-structured NiCo2O4 thin films as battery-type electrode. Materials Research Bulletin, 2018, 99, 336-342.	5.2	23
1354	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	12.9	56
1355	Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small, 2018, 14, e1702829.	10.0	208
1356	Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon, 2018, 127, 218-227.	10.3	143
1357	Synthesis and Properties of a Photopatternable Lithiumâ€Ion Conducting Solid Electrolyte. Advanced Materials, 2018, 30, 1703772.	21.0	19
1358	Recent Advances toward Achieving Highâ€Performance Carbonâ€Fiber Materials for Supercapacitors. ChemElectroChem, 2018, 5, 571-582.	3.4	54
1359	Hydrothermal growth of magnesium ferrite rose nanoflowers on Nickel foam; application in high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 650-657	2.2	29

#	Article	IF	CITATIONS
1360	All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Materials, 2018, 10, 24-31.	18.0	55
1361	Effect of Adding Activated Carbon of Palm Kernel Shell on Carbon Papers as Electrochemical Double Layer Capacitors. IOP Conference Series: Earth and Environmental Science, 2018, 209, 012021.	0.3	0
1362	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	30.8	263
1363	Classical Density Functional Theory Insights for Supercapacitors. , 2018, , .		3
1364	Catalysis by hybrid sp ² /sp ³ nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47, 8438-8473.	38.1	130
1365	All-porous heterostructure of reduced graphene oxide–polypyrrole–nanoporous gold for a planar flexible supercapacitor showing outstanding volumetric capacitance and energy density. Journal of Materials Chemistry A, 2018, 6, 22858-22869.	10.3	51
1366	High performance microsupercapacitors based on a nano-micro hierarchical carbon electrode by direct laser writing. Applied Physics Letters, 2018, 113, .	3.3	8
1367	A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems. Energies, 2018, 11, 3122.	3.1	18
1368	Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors. Bulletin of Materials Science, 2018, 41, 1.	1.7	11
1369	Effects of Nanowire Length on Charge Transport in Vertically Aligned Gold Nanowire Array Electrodes. Langmuir, 2018, 34, 15674-15680.	3.5	8
1370	Ultrahighâ€Workingâ€Frequency Embedded Supercapacitors with 1T Phase MoSe ₂ Nanosheets for Systemâ€inâ€Package Application. Advanced Functional Materials, 2019, 29, 1807116.	14.9	47
1371	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	8.6	154
1372	Advances in Flexible Supercapacitors for Portable and Wearable Smart Gadgets. , 2018, , 209-246.		5
1373	Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. Journal of Physical Chemistry C, 2018, 122, 24499-24511.	3.1	149
1374	Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A, 2018, 6, 20254-20266.	10.3	110
1375	N-doped hierarchically micro- and mesoporous carbons with superior performance in supercapacitors. Electrochimica Acta, 2018, 291, 103-113.	5.2	40
1376	Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors. Journal of Power Sources, 2018, 402, 413-421.	7.8	39
1377	Transformation of Freon to 3D graphene frameworks for high-rate supercapacitors with high capacity retention. Journal of Power Sources, 2018, 405, 1-6.	7.8	15

#	Article	IF	CITATIONS
1378	On-Chip Asymmetric Microsupercapacitors Combining Reduced Graphene Oxide and Manganese Oxide for High Energy-Power Tradeoff. Micromachines, 2018, 9, 399.	2.9	19
1379	A Core–Shell Strategy for Improving Alloy Catalyst Activity for Continual Growth of Hollow Carbon Onions. Crystal Growth and Design, 2018, 18, 7470-7480.	3.0	10
1380	Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study. Journal of the American Chemical Society, 2018, 140, 14717-14724.	13.7	48
1381	Symmetric All-Solid-State Supercapacitor Operating at 1.5 V Using a Redox-Active Gel Electrolyte. ACS Applied Energy Materials, 2018, 1, 5800-5809.	5.1	30
1382	Solarâ€Thermal Driven Selfâ€Heating of Microâ€Supercapacitors at Low Temperatures. Solar Rrl, 2018, 2, 1800223.	5.8	36
1383	High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) ₂ Hybrid Nanosheet Films. ACS Applied Materials & Interfaces, 2018, 10, 38341-38349.	8.0	41
1384	Using the Surface Features of Plant Matter to Create All-Polymer Pseudocapacitors with High Areal Capacitance. ACS Applied Materials & Interfaces, 2018, 10, 38574-38580.	8.0	11
1385	Fabrication and Characterization of Laser Scribed Supercapacitor Based on Polyimide for Energy Storage. Key Engineering Materials, 0, 778, 181-186.	0.4	6
1386	Co ₃ O ₄ /carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance. International Journal of Materials Research, 2018, 109, 873-879.	0.3	9
1387	Bandâ€Pass Filter and Relaxation Oscillator using Electric Doubleâ€Layer Capacitor. ChemElectroChem, 2018, 5, 3793-3798.	3.4	8
1388	Application of the Mott-Schottky model to select potentials for EIS studies on electrodes for electrochemical charge storage. Electrochimica Acta, 2018, 289, 47-55.	5.2	53
1389	Activated carbons prepared by hydrothermal pretreatment and chemical activation of Eucommia ulmoides wood for supercapacitors application. Industrial Crops and Products, 2018, 125, 41-49.	5.2	50
1390	A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon, 2018, 140, 634-643.	10.3	48
1391	Metallic layered germanium phosphide GeP ₅ for high rate flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19409-19416.	10.3	31
1392	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	38.1	384
1393	Plasma Heavily Nitrogen-Doped Vertically Oriented Graphene Nanosheets (N-VOGNs) for High Volumetric Performance On-Chip Supercapacitors in Ionic Liquid. Current Smart Materials, 2018, 3, 32-39.	0.5	1
1394	Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. Journal of Power Sources, 2018, 401, 204-212.	7.8	40
1395	Micro-supercapacitors based on oriented coordination polymer thin films for AC line-filtering. RSC Advances, 2018, 8, 30624-30628.	3.6	13

#	Article	IF	CITATIONS
1396	Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289, 363-375.	5.2	23
1397	Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications, 2018, 9, 3484.	12.8	165
1398	Porous Activated Carbons Derived from <i>Pleurotus eryngii</i> for Supercapacitor Applications. Journal of Nanomaterials, 2018, 2018, 1-10.	2.7	15
1399	A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.	21.0	34
1400	Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro‣upercapacitors with Ultrahigh Power Output. Advanced Materials, 2018, 30, e1801384.	21.0	178
1401	Probing the electrical properties and energy storage performance of electrospun ZnMn2O4 nanofibers. Solid State Ionics, 2018, 321, 75-82.	2.7	40
1402	Direct Semiconductor Laser Writing of Few‣ayer Graphene Polyhedra Networks for Flexible Solid‣tate Supercapacitor. Advanced Electronic Materials, 2018, 4, 1800092.	5.1	22
1403	Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, 16930-16943.	3.3	215
1404	Precisely Geometry Controlled Microsupercapacitors for Ultrahigh Areal Capacitance, Volumetric Capacitance, and Energy Density. Chemistry of Materials, 2018, 30, 3979-3990.	6.7	52
1405	All-solid-state flexible planar lithium ion micro-capacitors. Energy and Environmental Science, 2018, 11, 2001-2009.	30.8	160
1406	Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50, 479-488.	16.0	176
1407	Substrate Engineered Interconnected Graphene Electrodes with Ultrahigh Energy and Power Densities for Energy Storage Applications. ACS Applied Materials & Interfaces, 2018, 10, 21235-21245.	8.0	11
1408	Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance. ACS Applied Materials & Interfaces, 2018, 10, 18675-18684.	8.0	37
1409	Facile laser fabrication of high quality graphene-based microsupercapacitors with large capacitance. Carbon, 2018, 137, 136-145.	10.3	29
1410	Highly nitrogen-doped graphitic carbon fibers from sustainable plant protein for supercapacitor. Industrial Crops and Products, 2018, 121, 226-235.	5.2	47
1411	Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 19682-19688.	8.0	19
1412	Waterâ€Soluble Hybrid Graphene Ink for Gravureâ€Printed Planar Supercapacitors. Advanced Electronic Materials, 2018, 4, 1800059.	5.1	42
1413	Extraordinary Areal and Volumetric Performance of Flexible Solidâ€State Microâ€Supercapacitors Based on Highly Conductive Freestanding Ti ₃ C ₂ T <i>_x</i> Films. Advanced Electronic Materials, 2018, 4, 1800179.	5.1	93

#	Article	IF	CITATIONS
1414	High-performance solid state supercapacitors assembling graphene interconnected networks in porous silicon electrode by electrochemical methods using 2,6-dihydroxynaphthalen. Scientific Reports, 2018, 8, 9654.	3.3	43
1415	Nitrogen and oxygen co-doped graphene quantum dots with high capacitance performance for micro-supercapacitors. Carbon, 2018, 139, 67-75.	10.3	98
1416	Important effect of Pt modification at the collector/active material interface of flexible micro-supercapacitors. Applied Surface Science, 2018, 456, 410-418.	6.1	6
1417	Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy, 2018, 51, 604-612.	16.0	176
1418	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	12.8	121
1419	Integration of Porous Carbon Nanowrinkles into Carbon Micropost Array for Microsupercapacitors. Journal of Nanomaterials, 2018, 2018, 1-6.	2.7	0
1420	Selective vacuum filtration-induced microelectrode patterning on paper for high-performance planar microsupercapacitor. Journal of Power Sources, 2018, 396, 632-638.	7.8	15
1421	Monolayer standing MnO2-Nanosheet covered Mn3O4 octahedrons anchored in 3D N-Doped graphene networks as supercapacitor electrodes with remarkable cycling stability. Journal of Power Sources, 2018, 396, 483-490.	7.8	38
1422	Highly flexible, foldable, and rollable microsupercapacitors on an ultrathin polyimide substrate with high power density. Microsystems and Nanoengineering, 2018, 4, 16.	7.0	50
1423	Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model. Plasma Science and Technology, 2018, 20, 095401.	1.5	5
1424	Controlled fabrication of monolayer carbon foam continuously filled with ferromagnetic FePd3 crystals: The key role of filled bilayer/monolayer carbon onions-like capsules as synthesis-precursors. Diamond and Related Materials, 2018, 88, 93-100.	3.9	3
1425	Flexible Anion Microbatteries: Towards Construction of a Hybrid Battery–Capacitor Device. ChemSusChem, 2018, 11, 3081-3086.	6.8	5
1426	Ni3S2 nanorods and three-dimensional reduced graphene oxide electrodes-based high-performance all-solid-state flexible asymmetric supercapacitors. Applied Surface Science, 2018, 458, 656-664.	6.1	16
1427	Engineered Nanomaterials for Renewable Energy. , 2018, , 829-845.		2
1428	Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes. Micromachines, 2018, 9, 242.	2.9	10
1429	Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. Journal of Materials Science: Materials in Electronics, 2018, 29, 16401-16409.	2.2	39
1430	Influence of Nitrogenâ€Doping for Carbideâ€Derived Carbons on the Supercapacitor Performance in an Organic Electrolyte and an Ionic Liquid. Batteries and Supercaps, 2018, 1, 135-148.	4.7	17
1431	Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode. Journal of Solid State Electrochemistry, 2018, 22, 3507-3514.	2.5	8

#	Article	IF	CITATIONS
1432	Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. Journal of Materials Chemistry A, 2018, 6, 14876-14884.	10.3	72
1433	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801149.	19.5	442
1434	Hollow Polypyrrole Sleeve Based Coaxial Fiber Supercapacitors for Wearable Integrated Photosensing System. Advanced Materials Technologies, 2018, 3, 1800115.	5.8	27
1435	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	8.1	14
1436	A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes. Nano-Micro Letters, 2018, 10, 63.	27.0	60
1437	Processing and manufacturing of graphene-based microsupercapacitors. Materials Chemistry Frontiers, 2018, 2, 1750-1764.	5.9	36
1438	In Situ Direct Method To Massively Prepare Hydrophilic Porous Carbide-Derived Carbons for High-Performance Supercapacitors. ACS Applied Energy Materials, 2018, 1, 3544-3553.	5.1	45
1439	Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures. Nanoscale, 2018, 10, 10109-10115.	5.6	51
1440	Sputtered Titanium Nitride Films on Titanium Foam Substrates as Electrodes for Highâ€Power Electrochemical Capacitors. ChemElectroChem, 2018, 5, 2199-2207.	3.4	25
1441	Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology, 2018, 29, 445401.	2.6	44
1442	Nanoarchitectured electrodes for supercapacitance energy storage. , 2018, , 215-244.		2
1443	High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10â€ [−] nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy, 2018, 52, 431-440.	16.0	37
1444	Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy, 2018, 53, 182-188.	16.0	57
1445	Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy, 2018, 53, 337-344.	16.0	143
1446	Influence of Lithium Iron Phosphate Positive Electrode Material to Hybrid Lithium-Ion Battery Capacitor (H-LIBC) Energy Storage Devices. Journal of the Electrochemical Society, 2018, 165, A2774-A2780.	2.9	10
1447	Ultraâ€Stable Asymmetric Supercapacitors Constructed by Inâ€Situ Electroâ€Oxidation Activated Ni@CNTs Composites. ChemElectroChem, 2018, 5, 3213-3221.	3.4	4
1448	Lignin Laser Lithography: A Directâ€Write Method for Fabricating 3D Graphene Electrodes for Microsupercapacitors. Advanced Energy Materials, 2018, 8, 1801840.	19.5	179
1449	Largeâ€5cale Conductive Yarns Based on Twistable Korean Traditional Paper (Hanji) for Supercapacitor Applications: Toward Highâ€Performance Paper Supercapacitors. Advanced Energy Materials, 2018, 8, 1801854.	19.5	43

#	Article	IF	CITATIONS
1450	Edgeâ€Terminated MoS ₂ Nanoassembled Electrocatalyst via In Situ Hybridization with 3D Carbon Network. Small, 2018, 14, e1802191.	10.0	15
1451	Ionic Liquid Mixture Expands the Potential Window and Capacitance of a Supercapacitor in Tandem. Journal of Physical Chemistry C, 2018, 122, 18304-18310.	3.1	27
1452	Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer. Nanotechnology, 2018, 29, 43LT01.	2.6	8
1453	Fe2O3 hollow sphere nanocomposites for supercapacitor applications. IOP Conference Series: Earth and Environmental Science, 2018, 121, 042004.	0.3	1
1454	Hybridization Effects of Nitrogen-Doped Graphene–Carbon Nanotubes and Nano-Onion Carbons on the Electrocatalytic Activity of the Oxygen Reduction Reaction. ECS Journal of Solid State Science and Technology, 2018, 7, M128-M137.	1.8	5
1455	Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydrate Polymers, 2018, 197, 253-259.	10.2	34
1456	Carbon Nano-onions for Bioimaging and Cancer Therapy Applications. Nanomedicine and Nanotoxicology, 2018, , 417-455.	0.2	6
1457	3Dâ€Printed, Superelastic Polypyrrole–Graphene Electrodes with Ultrahigh Areal Capacitance for Electrochemical Energy Storage. Advanced Materials Technologies, 2018, 3, 1800053.	5.8	51
1458	Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420.	4.0	11
1459	Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy Ionogel-Based Microsupercapacitors. Journal of the American Chemical Society, 2018, 140, 8198-8205.	13.7	240
1460	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	10.3	55
1461	Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application. AIP Advances, 2018, 8, .	1.3	20
1462	Recent Development of Fabricating Flexible Microâ€6upercapacitors for Wearable Devices. Advanced Materials Technologies, 2018, 3, 1800028.	5.8	69
1463	Laser-Induced Graphene. Accounts of Chemical Research, 2018, 51, 1609-1620.	15.6	441
1464	Design of an intermediate carbon layer between bimetallic sulfide and a carbon-based substrate for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2018, 42, 12511-12519.	2.8	7
1465	Multifunctional structural supercapacitor based on graphene and magnesium phosphate cement. Journal of Composite Materials, 2019, 53, 719-730.	2.4	23
1466	Sulfonated highly ordered mesoporous graphitic carbon nitride as a super active heterogeneous solid acid catalyst for Biginelli reaction. Microporous and Mesoporous Materials, 2019, 274, 83-93.	4.4	39
1467	New comprehensions on structure superiority of asymmetric carbon membrane and controlled construction of advanced hierarchical inner-structure for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 275, 14-25.	4.4	30

#	Article	IF	CITATIONS
1468	Water-Dispersed High-Quality Graphene: A Green Solution for Efficient Energy Storage Applications. ACS Nano, 2019, 13, 9431-9441.	14.6	33
1469	Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors. Nano Energy, 2019, 65, 103987.	16.0	50
1470	Biopolymer phytagel-derived porous nanocarbon as efficient electrode material for high-performance symmetric solid-state supercapacitors. Journal of Industrial and Engineering Chemistry, 2019, 80, 258-264.	5.8	17
1471	Direct Metalâ€Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Microâ€Supercapacitors with High Volumetric Capacitance. Batteries and Supercaps, 2019, 2, 929-933.	4.7	7
1472	Carbon-based catalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2019, 3, 2890-2906.	4.9	67
1473	MXeneâ€Reduced Graphene Oxide Aerogel for Aqueous Zincâ€Ion Hybrid Supercapacitor with Ultralong Cycle Life. Advanced Electronic Materials, 2019, 5, 1900537.	5.1	259
1474	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	27.5	144
1475	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.	10.3	32
1476	A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel–iron batteries. Chemical Communications, 2019, 55, 10308-10311.	4.1	17
1477	A Nonaqueous Naâ€lon Hybrid Microâ€6upercapacitor with Wide Potential Window and Ultrahigh Areal Energy Density. Batteries and Supercaps, 2019, 2, 918-923.	4.7	30
1478	Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025.	4.5	1
1479	Carbon Nanoâ€Onions Made Directly from CO2by Molten Electrolysis for Greenhouse Gas Mitigation. Advanced Sustainable Systems, 2019, 3, 1900056.	5.3	24
1480	Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy, 2019, 64, 103921.	16.0	90
1481	Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. Journal of Materials Chemistry A, 2019, 7, 18499-18509.	10.3	64
1482	Graphitic carbon nitride decorated with FeNi ₃ nanoparticles for flexible planar micro-supercapacitor with ultrahigh energy density and quantum storage capacity. Dalton Transactions, 2019, 48, 12137-12146.	3.3	29
1483	Synthesis of ultra-long boron nanowires as supercapacitor electrode material. Applied Surface Science, 2019, 493, 787-794.	6.1	2
1484	Transforming lignin into porous graphene <i>via</i> direct laser writing for solid-state supercapacitors. RSC Advances, 2019, 9, 22713-22720.	3.6	52
1485	Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy, 2019, 64, 103938.	16.0	49

#	Article	IF	CITATIONS
1486	Boosting the Capacitance of an Aqueous Zinc-Ion Hybrid Energy Storage Device by Using Poly(3,3′-dihydroxybenzidine)-Modified Nanoporous Carbon Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 14195-14202.	6.7	33
1487	Two Dimensional Transition Metal Dichalcogenides. , 2019, , .		7
1488	Transition Metal Dichalcogenides for Energy Storage Applications. , 2019, , 173-201.		2
1489	A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298.	10.3	40
1490	Tiâ€rich TiO ₂ Tubular Nanolettuces by Electrochemical Anodization for Allâ€Solidâ€State Highâ€Rate Supercapacitor Devices. ChemSusChem, 2019, 12, 4064-4073.	6.8	33
1491	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie, 2019, 131, 12193-12197.	2.0	78
1492	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	14.6	57
1493	Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Nanoscale, 2019, 11, 14392-14399.	5.6	30
1494	Monodisperse starburst carbon spheres-intercalated graphene nanohybrid papers for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2019, 853, 113533.	3.8	7
1495	Constructing molecules supported holey graphene sheets framework in compact graphene film to achieve synergistic effect for ion transport and high gravimetric/volumetric capacitances. Journal of Power Sources, 2019, 441, 227167.	7.8	17
1496	Facile SILAR Processed Bi ₂ S ₃ :PbS Solid Solution on MWCNTs for Highâ€performance Electrochemical Supercapacitor. Chinese Journal of Chemistry, 2019, 37, 1279-1286.	4.9	54
1497	Onâ€Chip Microsupercapacitors: From Material to Fabrication. Energy Technology, 2019, 7, 1900820.	3.8	20
1498	Generation of carbon nano-onions by laser irradiation of gaseous hydrocarbons for high durability catalyst support in proton exchange membrane fuel cells. Journal of Industrial and Engineering Chemistry, 2019, 80, 65-73.	5.8	10
1499	A pH-dependent partial electrochemical exfoliation of highly oriented pyrolytic graphite for high areal capacitance electric double layer capacitor electrode. Electrochimica Acta, 2019, 325, 134933.	5.2	6
1500	A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy, 2019, 66, 104149.	16.0	62
1501	Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 42680-42689.	8.0	25
1502	Investigation of palladium current collectors for vertical graphene-based microsupercapacitors. Journal of Physics: Conference Series, 2019, 1319, 012007.	0.4	4
1503	Demanding energy from carbon. , 2019, 1, 8-12.		118

#	Article	IF	CITATIONS
1504	Intraporeâ€Texturized Vanadiaâ€Hydrate Supercapacitor with Ultrahigh Areaâ€Normalized Capacitance. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900558.	1.8	3
1505	Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery, 2021, 11, 1311-1323.	4.6	39
1506	Photopatterning and Electrochemical Energy Storage Properties of an On-Chip Organic Radical Microbattery. Langmuir, 2019, 35, 16079-16086.	3.5	12
1508	Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 46044-46053.	8.0	70
1509	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	2.7	41
1510	Analysis of the effectiveness of ecological protection work in Dujiangyan area after 5.12 earthquake. IOP Conference Series: Earth and Environmental Science, 2019, 310, 052067.	0.3	0
1511	MnO2/SWCNT buckypaper for high performance supercapacitors. Journal of Energy Storage, 2019, 26, 100960.	8.1	9
1512	Dynamic ICSP Graph Optimization Approach for Car-Like Robot Localization in Outdoor Environments. Computers, 2019, 8, 63.	3.3	3
1513	Detonation synthesis of carbon nano-onions via liquid carbon condensation. Nature Communications, 2019, 10, 3819.	12.8	50
1514	Water-assisted structural manipulation of ferromagnetically filled carbon onions: The case of high pressure Fe3O4. AIP Conference Proceedings, 2019, , .	0.4	1
1515	Selfâ€Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1901051.	11.2	39
1516	Enhanced Power Performance of Highly Mesoporous Sol-Gel TiC Derived Carbons in Ionic Liquid and Non-Aqueous Electrolyte Based Capacitors. Journal of the Electrochemical Society, 2019, 166, A2887-A2895.	2.9	11
1517	Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21496-21506.	10.3	63
1518	Hollow TiN nanotrees derived from a surface-induced Kirkendall effect and their application in high-power supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21378-21385.	10.3	14
1519	Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. Materials Today Nano, 2019, 8, 100050.	4.6	33
1520	Prussian blue-assisted one-pot synthesis of nitrogen-doped mesoporous graphitic carbon spheres for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 22092-22102.	10.3	19
1521	Flexible Textile-based Electrode Materials for Supercapacitors. Materials Today: Proceedings, 2019, 16, 1448-1455.	1.8	4
1522	Facile synthesis of carbon nanotube-supported NiO//Fe ₂ O ₃ for all-solid-state supercapacitor <i>s</i> . Beilstein Journal of Nanotechnology, 2019, 10, 1923-1932.	2.8	16

CITATION REPORT ARTICLE IF CITATIONS Growth of carbon nanosheets on carbon nanotube arrays for the fabrication of three-dimensional 10.3 38 micro-patterned supercapacitors. Carbon, 2019, 155, 453-461. Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on 5.2 59 supercapacitor performance. Electrochimica Acta, 2019, 326, 134989. Enhanced Performance of an Electric Double Layer Microsupercapacitor Based on Novel Carbon-Encapsulated Cu Nanowire Network Structure As the Electrode. ACS Applied Materials & amp; 8.0 40 Interfaces, 2019, 11, 40481-40489. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nature Communications, 2019, 10, 4292. Bottomâ€Up Preparation of Fully sp²â€Bonded Porous Carbons with High Photoactivities. 14.9 23 Advanced Functional Materials, 2019, 29, 1808423. Theoretical investigation of the ferromagnetism on VS2 monolayers with exchange anisotropy. 2.3 Journal of Magnetism and Magnetic Materials, 2019, 477, 232-236. Layer-by-Layer Grown Electrodes Composed of Cationic Fe₃O₄ Nanoparticles and Graphene Oxide Nanosheets for Electrochemical Energy Storage Devices. Journal of Physical 3.134 Chemistry C, 2019, 123, 3393-3401. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. 30.8 192 Energy and Environmental Science, 2019, 12, 1534-1541. Direct electrophoretic deposition of an ultra-strong separator on an anode in a surfactant-free 10.3 30 colloidal system for lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1410-1417. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. Journal of 10.3 63 Materials Chemistry A, 2019, 7, 4055-4062. Synthesis and applications of three-dimensional graphene network structures. Materials Today Nano, 4.6 60 2019, 5, 100027. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a 1.3 review. Polymer-Plastics Technology and Materials, 2019, 58, 821-842 A Ni(OH) ₂ nanopetals network for high-performance supercapacitors synthesized by 2.8 22 immersing Ni nanofoam in water. Beilstein Journal of Nanotechnology, 2019, 10, 281-293. Carbon Nanoâ€Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat, 2019, 5, 2.8 568-580. Scalable Micro-fabrication of Flexible, Solid-State, Inexpensive, and High-Performance Planar

	Micro-supercapacitors through inkjet Printing. ACS Applied Energy Materials, 2019, 2, 1876-1890.		
1538	Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	13
1539	Electrospun Conductive Nanofiber Yarn for a Wearable Yarn Supercapacitor with High Volumetric Energy Density. Materials, 2019, 12, 273.	2.9	22
1540	Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. Journal of Physical Chemistry Letters, 2019, 10, 617-623.	4.6	50

5.1

64

1523

1524

1525

1526

1527

1528

1529

1530

1531

1533

1534

1535

ARTICLE IF CITATIONS Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy 1541 4.7 35 storage. Materials Today Energy, 2019, 12, 155-160. Nanoporous gold–Nitrogen–doped carbon nano-onions all-solid-state micro-supercapacitor. Nano 1542 3.5 39 Structures Nano Objects, 2019, 17, 239-247. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery 1543 8.0 86 for Wearable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 7974-7980. Fiber-Shaped Electrochemical Capacitors Based on Plasma-Engraved Graphene Fibers with Oxygen Vacancies for Alternating Current Line Filtering Performance. ACS Applied Energy Materials, 2019, 2, 1544 5.1 993-999. Structural and electrical properties of an electric double layer formed inside a cylindrical pore 1545 investigated by Monte Carlo and classical density functional theory. Microfluidics and Nanofluidics, 2.2 24 2019, 23, 1. Electronic Applications of Functionalized Graphene Nanocomposites., 2019, , 245-263. One Step Deposition of PEDOTâ€"PSS on ALD Protected Silicon Nanowires: Toward Ultrarobust 1547 5.1 19 Aqueous Microsupercapacitors. ACS Applied Energy Materials, 2019, 2, 436-447. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy 1548 30.8 and Environmental Science, 2019, 12, 96-115. Fe₂P₄O₁₂â€"carbon composite as a highly stable electrode material 1549 2.8 16 for electrochemical capacitors. New Journal of Chemistry, 2019, 43, 399-406. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber 10.3 electrodes. Journal of Materials Chemistry A, 2019, 7, 14447-14454. Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. 1551 7 4.9 Sustainable Energy and Fuels, 2019, 3, 1776-1789. Ultrastable Highâ€Energy Onâ€Chip Nickel–Bismuth Microbattery Powered by Crystalline Bi Anode and Ni–Co Hydroxide Cathode. Energy Technology, 2019, 7, 1900144. The Road Towards Planar Microbatteries and Microâ€Supercapacitors: From 2D to 3D Device Geometries. 1553 21.0 160 Advanced Materials, 2019, 31, e1900583. Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior. Journal of Electronic Materials, 2019, 48, 5813-5820. 1554 2.2 An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance 1555 13.8 226 Microâ€Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 12065-12069. Metal-free multiporous carbon for electrochemical energy storage and electrocatalysis applications. New Journal of Chemistry, 2019, 43, 11653-11659. Oxygen Groups Immobilized on Micropores for Enhancing the Pseudocapacitance. ACS Sustainable 1557 6.7 23 Chemistry and Engineering, 2019, 7, 11407-11414. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free 1558 micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated 30.8 storage device. Energy and Environmental Science, 2019, 12, 2507-2517

#	Article	IF	CITATIONS
1559	One-step synthesis of nanoblocks@nanoballs NiMnO3/Ni6MnO8 nanocomposites as electrode material for supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 18351-18359.	7.1	15
1560	Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor. Russian Journal of Electrochemistry, 2019, 55, 242-246.	0.9	17
1561	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	19.5	113
1562	General Interfacial Selfâ€Assembly Engineering for Patterning Twoâ€Dimensional Polymers with Cylindrical Mesopores on Graphene. Angewandte Chemie - International Edition, 2019, 58, 10173-10178.	13.8	85
1563	General Interfacial Selfâ€Assembly Engineering for Patterning Twoâ€Dimensional Polymers with Cylindrical Mesopores on Graphene. Angewandte Chemie, 2019, 131, 10279-10284.	2.0	25
1564	Hybrid Transparent PEDOT:PSS Molybdenum Oxide Battery-like Supercapacitors. ACS Applied Energy Materials, 2019, 2, 4629-4639.	5.1	50
1565	Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 152, 134-143.	10.3	85
1566	Three-Dimensional Co–S–P Nanoflowers as Highly Stable Electrode Materials for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11448-11454.	6.7	35
1567	Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nature Energy, 2019, 4, 512-518.	39.5	756
1568	Surfaceâ€Engineered Black Niobium Oxide@Graphene Nanosheets for Highâ€Performance Sodiumâ€∤Potassiumâ€Ion Full Batteries. Small, 2019, 15, e1901272.	10.0	88
1569	High performance coin-cell and pouch-cell supercapacitors based on nitrogen-doped reduced graphene oxide electrodes with phenylenediamine-mediated organic electrolyte. Applied Surface Science, 2019, 489, 989-1001.	6.1	28
1570	Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor. IScience, 2019, 16, 50-62.	4.1	43
1571	Vertically Oriented Grid-like Reduced Graphene Oxide for Ultrahigh Power Supercapacitor. Chemistry Letters, 2019, 48, 824-827.	1.3	7
1572	Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor. Electrochimica Acta, 2019, 318, 151-160.	5.2	48
1573	Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of â~'100 °C. Journal of Materials Chemistry A, 2019, 7, 16339-16346.	10.3	21
1574	High performance nanoporous carbon microsupercapacitors generated by a solvent-free MOF-CVD method. Carbon, 2019, 152, 688-696.	10.3	24
1575	Maize-like ionic liquid@polyaniline nanocomposites for high performance supercapacitor. E-Polymers, 2019, 19, 313-322.	3.0	8
1576	Electrolytic molecule in-pore structure and capacitance of supercapacitors with nanoporous carbon electrodes: A coarse-grained molecular dynamics study. Computational Materials Science, 2019, 166, 293,302	3.0	8

#	Article	IF	CITATIONS
1577	Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Applied Energy Materials, 2019, 2, 4335-4344.	5.1	72
1578	Boron-Doped Diamond Powders for Aqueous Supercapacitors with High Energy and High Power Density. Journal of the Electrochemical Society, 2019, 166, A1425-A1431.	2.9	16
1579	Fast Electrochemical Storage Process in Sputtered Nb ₂ O ₅ Porous Thin Films. ACS Nano, 2019, 13, 5826-5832.	14.6	29
1580	Charge Transfer Salt and Graphene Heterostructureâ€Based Microâ€5upercapacitors with Alternating Current Lineâ€Filtering Performance. Small, 2019, 15, e1901494.	10.0	64
1581	Highly Flexible and Durable Graphene Hybrid Film Electrode Modified with Aminated β-Cyclodextrin for Supercapacitor. Journal of the Electrochemical Society, 2019, 166, A1636-A1643.	2.9	3
1582	Wettability-Driven Assembly of Electrochemical Microsupercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 20905-20914.	8.0	37
1583	Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese Journal of Polymer Science (English Edition), 2019, 37, 535-547.	3.8	17
1584	3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance. Small, 2019, 15, 1901224.	10.0	27
1585	Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Materials, 2019, 23, 225-232.	18.0	65
1586	Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO ₂ nanoparticles. Journal of Materials Chemistry A, 2019, 7, 14328-14336.	10.3	34
1587	Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research. Journal of Adhesion Science and Technology, 2019, 33, 1453-1496.	2.6	53
1588	High energy density of all-screen-printable solid-state microsupercapacitors integrated by graphene/CNTs as hierarchical electrodes. Journal of Materials Chemistry A, 2019, 7, 12779-12789.	10.3	38
1589	A planar supercapacitor made of supramolecular nanofibre based solid electrolyte exhibiting 8â€V window. Nano Energy, 2019, 61, 259-266.	16.0	23
1590	Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance. International Journal of Hydrogen Energy, 2019, 44, 13675-13683.	7.1	17
1591	Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and Microengineering, 2019, 29, 093001.	2.6	11
1592	Predicting the capacitance of carbon-based electric double layer capacitors by machine learning. Nanoscale Advances, 2019, 1, 2162-2166.	4.6	52
1593	Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10, 1795.	12.8	649
1594	Co-Electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale, 2019, 11, 7761-7770.	5.6	69

		ÖRT	
#	Article	IF	CITATIONS
1595	Energy Harvesting‧torage Bracelet Incorporating Electrochemical Microsupercapacitors Selfâ€Charged from a Single Hand Gesture. Advanced Energy Materials, 2019, 9, 1900152.	19.5	47
1596	Laser-induced conductive nanofibers for microsupercapacitors. Materials Letters, 2019, 246, 203-205.	2.6	12
1597	Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation. Nanoscale, 2019, 11, 7414-7423.	5.6	22
1598	Allâ€Solidâ€State Onâ€Chip Supercapacitors Based on Freeâ€Standing 4 <i>H</i> â€SiC Nanowire Arrays. Advance Energy Materials, 2019, 9, 1900073.	ed 19.5	32
1599	Modified Nanocarbons for Catalysis. ChemCatChem, 2019, 11, 90-133.	3.7	66
1600	Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Materials and Design, 2019, 169, 107688.	7.0	117
1601	Direct encapsulation of Sm single crystals inside carbon nano-onions by pyrolysis of Tris(tetramethylcyclopentadienyl) samarium (III). Materials Today Chemistry, 2019, 12, 173-177.	3.5	2
1602	Purifying the Phase of NaTi ₂ (PO ₄) ₃ for Enhanced Na ⁺ Storage Properties. ACS Applied Materials & Interfaces, 2019, 11, 10663-10671.	8.0	27
1603	Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6869-6876.	10.3	47
1604	3D honeycomb NiCo2S4 @ Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance. Journal of Alloys and Compounds, 2019, 790, 693-702.	5.5	21
1605	Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. Journal of Materials Chemistry A, 2019, 7, 9478-9485.	10.3	120
1606	Graphene-Based Inks for Printing of Planar Micro-Supercapacitors: A Review. Materials, 2019, 12, 978.	2.9	40
1607	High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps. Journal of Power Sources, 2019, 424, 1-7.	7.8	84
1608	Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy, 2019, 60, 600-619.	16.0	190
1609	High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure. Dalton Transactions, 2019, 48, 5271-5284.	3.3	10
1610	Single-crystalline Co2Si nanowires directly synthesized on silicon substrate for high-performance micro-supercapacitor. Chemical Engineering Journal, 2019, 370, 973-979.	12.7	8
1611	Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world―mixed waste plastics toward excellent-performance supercapacitors. Waste Management, 2019, 87, 691-700.	7.4	76
1612	Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy, 2019, 60, 8-16.	16.0	26

TATION

D

#	Article	IF	CITATIONS
1613	Composite of Gadolinium-Labeled Dendrimer Nanocluster And Graphene Oxide Nanosheet for Highly Efficient Liver <i>T</i> ₁ -Weighted Imaging Probe. ACS Biomaterials Science and Engineering, 2019, 5, 1978-1986.	5.2	5
1614	Charge storage characteristics of layer-by-layer assembled nickel hydroxide and graphene oxide nanosheets. Journal of Solid State Electrochemistry, 2019, 23, 1409-1417.	2.5	6
1615	Carbons from Biomass for Electrochemical Capacitors. Biofuels and Biorefineries, 2019, , 153-184.	0.5	2
1616	Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for Allâ€Solidâ€State Stretchable Microâ€Supercapacitor Arrays. Advanced Science, 2019, 6, 1900529.	11.2	250
1617	Improved Ionâ€Transfer Behavior and Capacitive Energy Storage Characteristics of SnO ₂ Nanospacerâ€Incorporated Reduced Graphene Oxide Electrodes. ChemElectroChem, 2019, 6, 2503-2509.	3.4	13
1618	Shedding Light on Pseudocapacitive Active Edges of Single-Layer Graphene Nanoribbons as High-Capacitance Supercapacitors. ACS Applied Energy Materials, 2019, 2, 3665-3675.	5.1	18
1619	Metal-free nitrogen -doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions. Green Chemistry, 2019, 21, 2448-2461.	9.0	51
1620	Plasma-induced synthesis of boron and nitrogen co-doped reduced graphene oxide for super-capacitors. Journal of Materials Science, 2019, 54, 9632-9642.	3.7	45
1621	Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2. Journal of Materials Science: Materials in Electronics, 2019, 30, 8763-8770.	2.2	5
1622	Alleviating concentration polarization: a micro three-electrode interdigitated glucose sensor based on nanoporous gold from a mild process. RSC Advances, 2019, 9, 10465-10472.	3.6	7
1623	Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. Applied Surface Science, 2019, 483, 481-488.	6.1	44
1624	Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications. Topics in Applied Physics, 2019, , 415-460.	0.8	3
1625	Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chemical Engineering Journal, 2019, 371, 145-153.	12.7	173
1626	Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochimica Acta, 2019, 308, 1-8.	5.2	72
1627	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	8.0	207
1628	Production of Materials from Sustainable Biomass Resources. Biofuels and Biorefineries, 2019, , .	0.5	3
1629	Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Materials Science and Engineering C, 2019, 99, 1502-1508.	7.3	62
1630	Size-dependent stability of ultra-small α-/β-phase tin nanocrystals synthesized by microplasma. Nature Communications, 2019, 10, 817.	12.8	23

#	Article	IF	CITATIONS
1631	Grapheneâ€Based Planar Microsupercapacitors: Recent Advances and Future Challenges. Advanced Materials Technologies, 2019, 4, 1800200.	5.8	54
1632	Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 542, 400-409.	9.4	72
1633	Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations. Nano Energy, 2019, 58, 803-810.	16.0	68
1634	Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nature Communications, 2019, 10, 675.	12.8	213
1635	Laser utting Fabrication of Mxeneâ€Based Flexible Microâ€Supercapacitors with High Areal Capacitance. ChemNanoMat, 2019, 5, 658-665.	2.8	38
1636	Scalable Production of Graphene Inks via Wetâ€Jet Milling Exfoliation for Screenâ€Printed Microâ€Supercapacitors. Advanced Functional Materials, 2019, 29, 1807659.	14.9	174
1637	Carbon Nanomaterials in Renewable Energy Production and Storage Applications. Environmental Chemistry for A Sustainable World, 2019, , 51-104.	0.5	14
1638	One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Advanced Powder Technology, 2019, 30, 861-868.	4.1	22
1639	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	38.1	824
1640	Postsynthetic treatment of carbon nano-onions: Surface modification by heteroatoms to enhance their capacitive and electrocatalytic properties. Carbon, 2019, 147, 90-104.	10.3	26
1641	Fabrication of MnO2/carbon micro/nanostructures based on Carbon-MEMS technique on stainless steel substrate for supercapacitive microelectrodes. Electrochimica Acta, 2019, 303, 323-328.	5.2	8
1642	Photo-responsive heterojunction nanosheets of reduced graphene oxide for photo-detective flexible energy devices. Journal of Materials Chemistry A, 2019, 7, 7736-7744.	10.3	15
1643	Quantitative characterization of the interfacial morphology and bulk porosity of nanoporous cluster-assembled carbon thin films. Applied Surface Science, 2019, 479, 395-402.	6.1	25
1644	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	7.8	54
1645	Facial electrosynthesis of hydrophilic poly(aniline-co-p-phenylenediamine) nanostructures for high performance supercapacitor electrodes. Journal of Energy Storage, 2019, 22, 116-130.	8.1	10
1646	Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 9947-9954.	8.0	27
1647	Superb pseudocapacitance observed from eco-friendly multi-dimensional quaternary composite electrode based on Ce and Cu oxides and sulfides. Ceramics International, 2019, 45, 11114-11118.	4.8	4
1648	Metal organic frameworks derived hierarchical hollow Ni0.85Se P composites for high-performance hybrid supercapacitor and efficient hydrogen evolution. Electrochimica Acta, 2019, 303, 94-104.	5.2	26

#	Article	IF	CITATIONS
1649	Three-Dimensional Porous Carbon Nanotubes/Reduced Graphene Oxide Fiber from Rapid Phase Separation for a High-Rate All-Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 9283-9290.	8.0	66
1650	PDMS-encapsulated supercapacitor with an electrolyte being a liquid. , 2019, , .		0
1651	In-Situ Arc Discharge-Derived FeSn2/Onion-Like Carbon Nanocapsules as Improved Stannide-Based Electrocatalytic Anode Materials for Lithium-Ion Batteries. Catalysts, 2019, 9, 950.	3.5	8
1652	Carbons with Regular Pore Geometry Yield Fundamental Insights into Supercapacitor Charge Storage. ACS Central Science, 2019, 5, 1813-1823.	11.3	44
1653	Enhanced electrochemical supercapacitor performance with a three-dimensional porous boron-doped diamond film. New Journal of Chemistry, 2019, 43, 18813-18822.	2.8	16
1654	Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Advances, 2019, 9, 29384-29395.	3.6	64
1655	Improved pseudocapacitive charge storage in highly ordered mesoporous TiO ₂ /carbon nanocomposites as high-performance Li-ion hybrid supercapacitor anodes. RSC Advances, 2019, 9, 37882-37888.	3.6	9
1656	Nitrogen-doped hierarchical porous CNF derived from fibrous structured hollow ZIF-8 for a high-performance supercapacitor electrode. RSC Advances, 2019, 9, 40636-40641.	3.6	13
1657	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	10.3	183
1658	Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics, 2019, 11, 621.	4.5	50
1659	Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors. New Carbon Materials, 2019, 34, 403-416.	6.1	10
1660	In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycleâ€Life Energy Storage. Small, 2019, 15, e1905903.	10.0	11
1661	Boron-doped Nanodiamond as an Electrode Material for Aqueous Electric Double-layer Capacitors. Scientific Reports, 2019, 9, 17846.	3.3	18
1662	Graphiteâ€Aligned Ni/Ni(OH) ₂ Nanowireâ€Based Aqueous Asymmetric Supercapacitors Exhibiting Excellent Cycle Stability, High Rate Performance, and Wide Operation Voltage. ChemistrySelect, 2019, 4, 13543-13550.	1.5	4
1663	Recent progress in supercapacitors based on the advanced carbon electrodes. Nanotechnology Reviews, 2019, 8, 299-314.	5.8	52
1664	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	5.6	15
1665	Synthesis of T-Nb2O5 thin-films deposited by Atomic Layer Deposition for miniaturized electrochemical energy storage devices. Energy Storage Materials, 2019, 16, 581-588.	18.0	40
1666	Template-Free Synthesis of Honeycomblike Porous Carbon Rich in Specific 2–5 nm Mesopores from a Pitch-Based Polymer for a High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 2116-2126.	6.7	51

#	Article	IF	CITATIONS
1667	Fast response electrochemical capacitor electrodes created by laser-reduction of carbon nanodots. Materials Today Energy, 2019, 11, 114-119.	4.7	19
1668	Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors. Electrochimica Acta, 2019, 297, 767-777.	5.2	64
1669	Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Materials, 2019, 21, 154-161.	18.0	221
1670	Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. Journal of Materiomics, 2019, 5, 303-312.	5.7	13
1671	Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous and Mesoporous Materials, 2019, 279, 293-315.	4.4	78
1672	Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage. Nano Energy, 2019, 56, 792-798.	16.0	21
1673	Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. Electrochimica Acta, 2019, 298, 717-725.	5.2	52
1674	In-plane flexible solid-state microsupercapacitors for on-chip electronics. Energy, 2019, 170, 338-348.	8.8	28
1675	Electrochemical performances of electrospun carbon nanofibers, interconnected carbon nanofibers, and carbon-manganese oxide composite nanofibers. Journal of Alloys and Compounds, 2019, 781, 541-552.	5.5	35
1676	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	11.9	138
1677	Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 1468-1479.	2.2	23
1678	Znâ€lon Hybrid Microâ€6upercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	21.0	266
1679	A rapid heat pressing strategy to prepare fluffy reduced graphene oxide films with meso/macropores for high-performance supercapacitors. Chemical Engineering Journal, 2019, 361, 1437-1450.	12.7	44
1680	Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. Journal of Power Sources, 2019, 409, 112-122.	7.8	94
1681	Recent Advancement in the Fabrication of Energy Storage Devices for Miniaturized Electronics. Energy, Environment, and Sustainability, 2019, , 215-240.	1.0	3
1682	Synthesis and capacitance properties of N-doped porous carbon/NixCoyOz/carbon micro–nanotubes composites using coal-based polyaniline as a carbon and nitrogen source. Journal of Materials Science: Materials in Electronics, 2019, 30, 1056-1067.	2.2	7
1683	Flexible Asymmetric Microsupercapacitors from Freestanding Hollow Nickel Microfiber Electrodes. Advanced Electronic Materials, 2019, 5, 1800584.	5.1	3
1684	MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule, 2019, 3, 164-176.	24.0	250

#	Article	IF	CITATIONS
1685	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiberã€6haped Supercapacitors. Small, 2019, 15, e1804732.	10.0	171
1686	Less-Common Carbon Nanostructures. , 2019, , 111-302.		0
1687	Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. Journal of Physical Chemistry B, 2019, 123, 1340-1347.	2.6	58
1688	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
1689	All-solid-state flexible supercapacitors based on sodium copper chlorophyllin with ultra-high rate capability. Materials Letters, 2019, 236, 383-386.	2.6	7
1690	Binder–free of NiCo–layered double hydroxides on Ni–coated textile for wearable and flexible supercapacitors. Applied Surface Science, 2019, 467-468, 963-967.	6.1	46
1691	High-performance sodium hybrid capacitor enabled by presodiated Li4Ti5O12. Journal of Power Sources, 2019, 409, 48-57.	7.8	14
1692	Review on Nanoarchitectured Current Collectors for Pseudocapacitors. Small Methods, 2019, 3, 1800341.	8.6	43
1693	Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. Journal of Colloid and Interface Science, 2019, 540, 88-96.	9.4	105
1694	Modelling voltametric data from electrochemical capacitors. Journal of Power Sources, 2019, 417, 193-206.	7.8	24
1695	High Energy Density Micro-Supercapacitor Based on a Three-Dimensional Bicontinuous Porous Carbon with Interconnected Hierarchical Pores. ACS Applied Materials & amp; Interfaces, 2019, 11, 948-956.	8.0	42
1696	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. Small, 2019, 15, e1804104.	10.0	77
1697	Diamond nanofeathers. Diamond and Related Materials, 2019, 91, 165-172.	3.9	9
1698	Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte. Journal of Alloys and Compounds, 2019, 780, 276-283.	5.5	32
1699	Selecting Favorable Energy Storage Technologies for Nuclear Power. , 2019, , 119-175.		12
1700	Vertically edge-oriented graphene on plasma pyrolyzed cellulose fibers and demonstration of kilohertz high-frequency filtering electrical double layer capacitors. Carbon, 2019, 141, 523-530.	10.3	33
1701	Laserâ€Induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 31, e1803621.	21.0	512
1702	Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16, 126-145.	18.0	214

#	Article	IF	CITATIONS
1703	Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT) – A review with focus on mechanical vibrations. Journal of King Saud University - Science, 2019, 31, 66-74.	3.5	62
1704	Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs. Friction, 2020, 8, 47-57.	6.4	42
1705	In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors. Journal of Energy Chemistry, 2020, 41, 209-215.	12.9	75
1706	Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. Advanced Materials, 2020, 32, e1901806.	21.0	225
1707	Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 2020, 7, 64-72.	9.5	148
1708	Recent Development of Printed Micro‧upercapacitors: Printable Materials, Printing Technologies, and Perspectives. Advanced Materials, 2020, 32, e1805864.	21.0	142
1709	Towards high-efficient microsupercapacitors based on reduced graphene oxide with optimized reduction degree. Energy Storage Materials, 2020, 25, 740-749.	18.0	18
1710	Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Materials, 2020, 26, 313-324.	18.0	114
1711	Transformation of g-C3N4 into onion like carbon on nickel nanoparticles for ultrafast hydrogenation. Materials Chemistry and Physics, 2020, 240, 122157.	4.0	13
1712	Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon, 2020, 157, 106-112.	10.3	48
1713	Laser direct writing of heteroatom-doped porous carbon for high-performance micro-supercapacitors. Energy Storage Materials, 2020, 25, 404-415.	18.0	62
1714	Doping reduced graphene oxide and graphitic carbon nitride hybrid for dual functionality: High performance supercapacitance and hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 856, 113503.	3.8	21
1715	Effect of nitrogen doping on the catalytic activity of carbon nano-onions for the oxygen reduction reaction in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2020, 81, 269-277.	5.8	34
1716	Strategies for Development of High-Performance Graphene-Based Supercapacitor. Current Graphene Science, 2020, 3, 2-10.	0.5	0
1717	Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318.	3.7	15
1718	Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6â€V all-in-one supercapacitors. Energy Storage Materials, 2020, 25, 893-902.	18.0	27
1719	Highly porous CNTs knotted cerium oxide hollow tubes with exalted energy storage performance for hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 819, 152942.	5.5	12
1720	Overview of different carrier systems for advanced drug delivery. , 2020, , 179-233.		15

#	Article	IF	CITATIONS
1721	Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application. Journal of Materials Science and Technology, 2020, 40, 196-203.	10.7	49
1723	Engineering multiple defects for active sites exposure towards enhancement of Ni3S2 charge storage characteristics. Chemical Engineering Journal, 2020, 384, 123364.	12.7	34
1724	Hydrothermal synthesis of coralloid-like vanadium nitride/carbon nanocomposites for high-performance and long-life supercapacitors. Journal of Alloys and Compounds, 2020, 818, 152895.	5.5	14
1725	3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2020, 82, 309-316.	5.8	105
1726	One pot and large-scale synthesis of nanostructured metal sulfides: Synergistic effect on supercapacitor performance. Energy and Environment, 2020, 31, 1367-1384.	4.6	17
1727	Preparation of a Self‣upported SiO ₂ Membrane as a Separator for Lithiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 456-462.	4.7	13
1728	High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state supercapacitors. Journal of Solid State Electrochemistry, 2020, 24, 533-544.	2.5	28
1729	3D Printing of Additive-Free 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano, 2020, 14, 640-650.	14.6	285
1730	Recycle of industrial waste: a new method of applying the paint residue to supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 274-285.	2.2	2
1731	Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes. Chemical Engineering Journal, 2020, 386, 123972.	12.7	11
1732	A simple inorganic hybrids strategy for graphene fibers fabrication with excellent electrochemical performance. Journal of Power Sources, 2020, 450, 227637.	7.8	29
1733	Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti ₃ C ₂ (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 586-596.	5.1	40
1734	Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. ACS Nano, 2020, 14, 632-639.	14.6	44
1735	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€5upercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	14.9	60
1736	Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state electrolytes for energy storage devices. Electrochimica Acta, 2020, 332, 135536.	5.2	45
1737	Rational Design of 2D Manganese Phosphate Hydrate Nanosheets as Pseudocapacitive Electrodes. ACS Energy Letters, 2020, 5, 23-30.	17.4	37
1738	Do Carbon Nanoâ€onions Behave as Nanoscopic Faraday Cages? A Comparison of the Reactivity of C ₆₀ , C ₂₄₀ , C ₆₀ @C ₂₄₀ , Li ⁺ @C ₆₀ , Li ⁺ @C ₂₄₀ , and Li ⁺ @C ₆₀ @C ₂₄₀ . Chemistry - A European Journal, 2020, 26, 804-808.	3.3	12
1739	A low-temperature-operated direct fabrication method for all-solid-state flexible micro-supercapacitors. Journal of Power Sources, 2020, 448, 227415.	7.8	9

#	Article	IF	CITATIONS
1740	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	12.7	44
1741	Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy, 2020, 68, 104306.	16.0	90
1742	A synergistic self-assembled 3D PEDOT:PSS/graphene composite sponge for stretchable microsupercapacitors. Journal of Materials Chemistry A, 2020, 8, 554-564.	10.3	72
1743	Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 498-511.	6.7	58
1744	Theoretical identification of buckyonion fullerene C20@C60 isomers by XPS and NEXAFS spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117904.	3.9	2
1745	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€6upercapacitors. ChemSusChem, 2020, 13, 1255-1274.	6.8	16
1746	TiN Paper for Ultrafast-Charging Supercapacitors. Nano-Micro Letters, 2020, 12, 3.	27.0	44
1747	Natural gas partial oxidation process as a way to synthesize onion-like carbon. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 250-255.	2.1	7
1748	Nanostructured Nickel/Ruthenium/Rutheniumâ€Oxide Supercapacitor Displaying Exceptional High Frequency Response. Advanced Electronic Materials, 2020, 6, 1900844.	5.1	20
1749	In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor. Electrochimica Acta, 2020, 331, 135363.	5.2	39
1750	Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. Journal of Materials Science, 2020, 55, 4213-4224.	3.7	66
1751	Hydrothermal Synthesis of Three-Dimensional Perovskite NiMnO3 Oxide and Application in Supercapacitor Electrode. Energies, 2020, 13, 36.	3.1	38
1752	Electrochemical capacitance of intermetallic vanadium carbide. Intermetallics, 2020, 127, 106976.	3.9	12
1753	Silicon-nanoforest-based solvent-free micro-supercapacitors with ultrahigh spatial resolution <i>via</i> IC-compatible <i>in situ</i> fabrication for on-chip energy storage. Journal of Materials Chemistry A, 2020, 8, 22736-22744.	10.3	12
1754	Interwoven Nanowire Based Onâ€Chip Asymmetric Microsupercapacitor with High Integrability, Areal Energy, and Power Density. Advanced Energy Materials, 2020, 10, 2001873.	19.5	40
1755	Ultrahighâ€Rate Supercapacitor Based on Carbon Nanoâ€Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter. Advanced Energy Materials, 2020, 10, 2002132.	19.5	42
1756	Boosting gravimetric and volumetric energy density of supercapacitors by 3D pomegranate-like porous carbon structure design. Applied Surface Science, 2020, 534, 147613.	6.1	23
1757	Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Materials, 2020, 33, 230-238.	18.0	36

#	Article	IF	CITATIONS
1758	A direct-write method for preparing a bimetal sulfide/graphene composite as a free-standing electrode for high-performance microsupercapacitors. RSC Advances, 2020, 10, 35490-35498.	3.6	1
1759	A stable Ni-based coordination polymer used as anode materials for supercapacitors. Journal of Solid State Chemistry, 2020, 292, 121711.	2.9	2
1760	Physicochemical Properties of Nitrogen Doped Carbon Nanoâ€onions Grown by Flame Pyrolysis from Grapeseed Oil for Use in Supercapacitors. Electroanalysis, 2020, 32, 2946-2957.	2.9	14
1761	Core–shell carbon fiber@Co1.5Mn1.5O4 mesoporous spinel electrode for high performance symmetrical supercapacitors. Applied Surface Science, 2020, 534, 147678.	6.1	10
1762	Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy, 2020, 77, 105058.	16.0	72
1763	Oxidized graphitic carbon nitride as a sustainable metal-free catalyst for hydrogen transfer reactions under mild conditions. Green Chemistry, 2020, 22, 5084-5095.	9.0	71
1764	Microfluidic fabrication of hierarchically porous superconductive carbon black/graphene hybrid fibers for wearable supercapacitor with high specific capacitance. Electrochimica Acta, 2020, 354, 136731.	5.2	14
1765	Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon, 2020, 168, 701-709.	10.3	118
1766	Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. Carbon, 2020, 168, 419-438.	10.3	103
1767	The First Flexible Dualâ€lon Microbattery Demonstrates Superior Capacity and Ultrahigh Energy Density: Small and Powerful. Advanced Functional Materials, 2020, 30, 2002086.	14.9	43
1768	Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors. Energy Storage Materials, 2020, 32, 30-36.	18.0	31
1769	Carbon nano-onion-powered optically transparent and economical dye-sensitized solar cells. Nanoscale, 2020, 12, 20621-20630.	5.6	18
1770	Metal-Free Carbon-Based Supercapacitors—A Comprehensive Review. Electrochem, 2020, 1, 410-438.	3.3	18
1771	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nature Communications, 2020, 11, 6185.	12.8	93
1772	Electrochemical evaluation of binary Ni2V2O7 nanorods as pseudocapacitor electrode material. Ceramics International, 2020, 46, 22709-22717.	4.8	16
1773	Manipulation of structural and electronic properties of B-doped carbon nano–onions based on DFT modelling. Applied Surface Science, 2020, 532, 147267.	6.1	10
1774	Stamping Fabrication of Flexible Planar Microâ€&upercapacitors Using Porous Graphene Inks. Advanced Science, 2020, 7, 2001561.	11.2	49
1775	High Electrochemical Performance of Bi2WO6/Carbon Nano-Onion Composites as Electrode Materials for Pseudocapacitors. Frontiers in Chemistry, 2020, 8, 577.	3.6	11

#	Article	IF	CITATIONS
1776	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
1777	Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon, 2020, 169, 225-234.	10.3	73
1778	Enhanced Rate Capability of Ionâ€Accessible Ti ₃ C ₂ T <i>_x</i> â€NbN Hybrid Electrodes. Advanced Energy Materials, 2020, 10, 2001411.	19.5	50
1779	CoMoO ₄ /bamboo charcoal hybrid material for high-energy-density and high cycling stability supercapacitors. Dalton Transactions, 2020, 49, 10799-10807.	3.3	39
1780	Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon, 2020, 170, 1-29.	10.3	132
1781	Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors. Frontiers in Chemistry, 2020, 8, 686.	3.6	10
1782	Site-selective synthesis of onion like carbon from nanodiamond thin film via laser-assisted photothermal process. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	3
1783	Novel electrode geometry for high performance CF/Fe ₂ O ₃ based planar solid state micro-electrochemical capacitors. Nanoscale, 2020, 12, 19438-19449.	5.6	17
1784	Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass and Bioenergy, 2020, 143, 105838.	5.7	91
1785	A High Energy Density 2D Microsupercapacitor Based on an Interconnected Network of a Horizontally Aligned Carbon Nanotube Sheet. ACS Applied Materials & Interfaces, 2020, 12, 50011-50023.	8.0	9
1786	<i>In situ</i> controlled synthesis of porous Fe–N–C materials from oily sludge by chlorinating calcination and their novel application in supercapacitors. Environmental Science: Nano, 2020, 7, 3814-3823.	4.3	12
1787	A three-dimensional structure of ternary carbon for high performance supercapacitor. Diamond and Related Materials, 2020, 109, 108075.	3.9	10
1788	Triple perovskite oxide as an advanced pseudocapacitive material: multifarious element approach with an ordered structure. Journal of Materials Chemistry A, 2020, 8, 24013-24023.	10.3	17
1789	Binderâ€Free Highâ€Performance MXene Supercapacitors Fabricated by a Simple Electrospray Deposition Technique. Advanced Materials Interfaces, 2020, 7, 2000750.	3.7	13
1790	Boosting the Electrochemical Performance of Graphene-Based On-Chip Micro-Supercapacitors by Regulating the Functional Groups. ACS Applied Materials & Interfaces, 2020, 12, 42933-42941.	8.0	25
1791	Photolithographic fabrication of planar on-chip micro-supercapacitors based on reduced graphene oxide films by modified liquid-air interface self-assembly. Ferroelectrics, 2020, 564, 146-152.	0.6	2
1792	Graphitic Nanocup Architectures for Advanced Nanotechnology Applications. Nanomaterials, 2020, 10, 1862.	4.1	2
1793	Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window. ACS Applied Materials & Interfaces, 2020, 12, 47425-47434.	8.0	20

CITA	TION.	DEDO	DT
	I I O N	REPC	ואו

#	Article	IF	CITATIONS
1794	Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO ₂ /PEDOT:PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode. Journal of Materials Chemistry A, 2020, 8, 19588-19602.	10.3	59
1795	Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 7136-7143.	9.1	79
1797	Impact of electrode geometry and thickness on planar on-chip microsupercapacitors. RSC Advances, 2020, 10, 31435-31441.	3.6	7
1798	Solid Phase Exfoliation for Producing Dispersible Transition Metal Dichalcogenides Nanosheets. Advanced Functional Materials, 2020, 30, 2004139.	14.9	27
1799	Wood nanotechnology: a more promising solution toward energy issues: a mini-review. Cellulose, 2020, 27, 8513-8526.	4.9	14
1800	Solutionâ€processed Nonstoichiometry NiOx Nanocrystal Aggregations for Supercapacitor Electrodes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1904-1910.	1.2	1
1801	Densified Laser-Induced Graphene for Flexible Microsupercapacitors. Energies, 2020, 13, 6567.	3.1	12
1802	Direct Laser Writing of Transparent Polyimide Film for Supercapacitor. Nanomaterials, 2020, 10, 2547.	4.1	12
1803	Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 56319-56329.	8.0	28
1804	Self-templated formation of (NiCo) ₉ S ₈ yolk–shelled spheres for high-performance hybrid supercapacitors. Nanoscale, 2020, 12, 23497-23505.	5.6	18
1805	Rethinking Pseudocapacitance: A Way to Harness Charge Storage of Crystalline RuO ₂ . ACS Applied Energy Materials, 2020, 3, 4144-4148.	5.1	11
1806	Layer-by-layer-stacked graphene/graphene-island supercapacitor. AIP Advances, 2020, 10, 055202.	1.3	6
1807	Layered Siliconâ€Based Nanosheets as Electrode for 4 V Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2002200.	14.9	42
1808	High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 74, 104928.	16.0	96
1809	Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage. Journal of Industrial and Engineering Chemistry, 2020, 87, 173-179.	5.8	7
1810	Long term durability of solid-state supercapacitor based on reduced graphene oxide aerogel and carbon nanotubes composite electrodes. Electrochimica Acta, 2020, 353, 136540.	5.2	34
1811	Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diamond and Related Materials, 2020, 107, 107897.	3.9	58
1812	An Ultrafast Supercapacitor Based on 3D Ordered Porous Graphene Film with AC Line Filtering Performance. ACS Applied Energy Materials, 2020, 3, 5182-5189.	5.1	13

ARTICLE IF CITATIONS Sr2Nb3O10 nanosheet thin film grown via LB method for high-performance planar-type 1813 6.1 5 pseudocapacitor. Applied Surface Science, 2020, 525, 146640. Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable 1814 16.0 90 micro-supercapacitor-arrays. Nano Energy, 2020, 74, 104812. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for 1815 27.0 146 Supercapacitors. Nano-Micro Letters, 2020, 12, 118. Effect of an activating agent on the physicochemical properties and supercapacitor performance of naturally nitrogen-enriched carbon derived from Albizia procera leaves. Arabian Journal of 1816 Chemistry, 2020, 13, 6161-6173. Defect Engineering of 2D Materials for Electrochemical Energy Storage. Advanced Materials 1817 3.7 19 Interfaces, 2020, 7, 2000494. Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Science Bulletin, 2020, 65, 1659-1666. Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical 1819 8.0 116 Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 27821-27852. Practical Works on Nanotechnology: Middle School to Undergraduate Students. IEEE Nanotechnology Magazine, 2020, 14, 21-28. 1821 1.3 Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on lonogel Electrolyte for 1822 2.9 20 Powering the Internet of Things. Journal of the Electrochemical Society, 2020, 167, 100551. Nickel Alloying Significantly Enhances the Power Density of Rutheniumâ€Based Supercapacitors. 4.7 Batteries and Supercaps, 2020, 3, 946-952. Formation of large area closely packed carbon onions film by plasma-based ion implantation. Scientific 1824 3.3 5 Reports, 2020, 10, 10037. Electrochemistry of redox probes at thin films of carbon nano-onions produced by thermal annealing 5.2 of nanodiamonds. Electrochimica Acta, 2020, 353, 136495. All Pseudocapacitive Nitrogen-Doped Reduced Graphene Oxide and Polyaniline Nanowire Network for 1826 5.1 13 High-Performance Flexible On-Chip Energy Storage. ACS Applied Energy Materials, 2020, 3, 6845-6852. Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple 1827 25.5 26 Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612. A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance 1828 12.7 63 supercapacitors. Chemical Engineering Journal, 2020, 399, 125788. Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring 1829 38 graphene composition. Energy Storage Materials, 2020, 30, 412-419. Evidence of band gap features in Fe₃O₄ Bbmm filled carbon nano-onions. 1830 1.6 2 Materials Research Express, 2020, 7, 055603. Electric field assisted assembly of 1D supramolecular nanofibres for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2020, 8, 13106-13113.

#	Article	IF	CITATIONS
1832	Direct Conversion of Fe ₂ O ₃ to 3D Nanofibrillar PEDOT Microsupercapacitors. Advanced Functional Materials, 2020, 30, 2003394.	14.9	30
1833	Phthalocyanineâ€Based 2D Conjugated Metalâ€Organic Framework Nanosheets for Highâ€Performance Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 2002664.	14.9	104
1834	In Situ Nitrogenâ€Doped Covalent Triazineâ€Based Multiporous Crossâ€Linking Framework for Highâ€Performance Energy Storage. Advanced Electronic Materials, 2020, 6, 2000253.	5.1	23
1835	Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screenâ€Printed Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2000716.	21.0	241
1836	Sandwich-Structured Transition Metal Oxide/Graphene/Carbon Nanotube Composite Yarn Electrodes for Flexible Two-Ply Yarn Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 5752-5759.	3.7	26
1837	All Solid-State Coaxial Supercapacitor with Ultrahigh Scan Rate Operability of 250â€ ⁻ 000 mV/s by Thermal Engineering of the Electrode–Electrolyte Interface. ACS Applied Energy Materials, 2020, 3, 3454-3464.	5.1	17
1838	Characterization methods for supercapacitors. , 2020, , 315-372.		1
1839	Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	12.8	100
1840	Anti-freezing flexible aqueous Zn–MnO ₂ batteries working at â^'35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 6828-6841.	10.3	196
1841	Electrode materials for supercapacitors. , 2020, , 35-204.		8
1842	Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon, 2020, 163, 85-94.	10.3	66
1843	Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy, 2020, 72, 104666.	16.0	65
1844	Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery. Journal of Power Sources, 2020, 455, 227975.	7.8	46
1845	A Novel Flexible Hybrid Battery–Supercapacitor Based on a Selfâ€Assembled Vanadiumâ€Graphene Hydrogel. Advanced Functional Materials, 2020, 30, 1910738.	14.9	53
1846	Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.	27.0	136
1847	An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors. Chinese Journal of Polymer Science (English Edition), 2020, 38, 558-564.	3.8	21
1848	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	16.0	78
1849	High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres. Electrochimica Acta, 2020, 342, 136111.	5.2	24

#	Article	IF	CITATIONS
1850	Green Carbon Nanofiber Networks for Advanced Energy Storage. ACS Applied Energy Materials, 2020, 3, 3530-3540.	5.1	36
1851	Alternate Integration of Vertically Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-supercapacitors. ACS Applied Energy Materials, 2020, 3, 3692-3703.	5.1	35
1852	A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124683.	4.7	45
1853	Heteroatom-doped Porous Carbon Nanosheets Derived from Green Deep Eutectic Solvents for High-performance Micro-supercapacitors. Chemistry Letters, 2020, 49, 585-588.	1.3	8
1854	Recent Developments of Planar Microâ€Supercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials, 2020, 30, 1910000.	14.9	86
1855	Efficient coating fabrication of onion-like carbon nanoparticles via aerosol deposition. Particuology, 2020, 53, 58-62.	3.6	4
1856	All-climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate. Journal of Energy Chemistry, 2020, 49, 198-204.	12.9	63
1857	Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chemical Engineering Journal, 2020, 393, 124672.	12.7	93
1858	A kilohertz frequency response pseudocapacitor. Journal of Power Sources, 2020, 465, 228242.	7.8	12
1859	Interdigital electrodes of air@NiO porous nanoshells for high performance microsupercapacitors by thermally-assisted 3D printing. Nanotechnology, 2020, 31, 375301.	2.6	3
1860	Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114392.	3.8	37
1861	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	21.0	148
1862	Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Advanced Materials Technologies, 2020, 5, 2000100.	5.8	37
1863	MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. Journal of Materiomics, 2020, 6, 138-144.	5.7	27
1864	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	16.0	70
1865	Nitrogenâ€Doped Carbon Nanoâ€Onions Decorated on Graphene Network: A Novel Allâ€Carbon Composite Counter Electrode for Dyeâ€Sensitized Solar Cell with a 10.28% Power Conversion Efficiency. Solar Rrl, 2020, 4, 2000263.	5.8	12
1866	Porous yolk–shell-structured carbon nanospheres for electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2020, 31, 13321-13329.	2.2	2
1867	Polymers for advanced applications. , 2020, , 325-340.		5

#	Article	IF	Citations
1868	Highly stretchable CNT Fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor. Composites Part B: Engineering, 2020, 198, 108246.	12.0	47
1869	A selective etching approach to pore structure control of polymeric precursors: creating hierarchical porous N, P co-doped carbon nanospheres for semi-solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 14254-14264.	10.3	22
1870	Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 4677-4699.	10.3	111
1871	Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties. Journal of Materials Research, 2020, 35, 922-930.	2.6	14
1872	Supercapacitors with alternating current line-filtering performance. BMC Materials, 2020, 2, .	6.8	40
1873	An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors. Nano-Micro Letters, 2020, 12, 63.	27.0	81
1874	An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Materials, 2020, 28, 82-90.	18.0	109
1875	Wafer-scale fabrication of high-purity reduced graphene oxide films as ultrahigh-frequency capacitors with minimal self-discharge. Chemical Engineering Journal, 2020, 390, 124560.	12.7	19
1876	Investigation of Device Dimensions on Electric Double Layer Microsupercapacitor Performance and Operating Mechanism. IEEE Access, 2020, 8, 28367-28374.	4.2	14
1877	In Situ Engineering of the Core–Shell Ag@Cu Structure on Porous Nanowire Arrays for High Energy and Stable Aqueous Ag–Bi Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10332-10340.	8.0	7
1878	A Lean Control Theoretic Approach to Energy-Harvesting in Diffusion-Based Molecular Communications. IEEE Communications Letters, 2020, 24, 981-985.	4.1	7
1879	High grafting strength from chemically bonded 2D layered material onto carbon microfibres for reinforced composites and ultra-long flexible cable electronic devices. Materials Today Communications, 2020, 24, 100994.	1.9	2
1880	Direct Grapheneâ€Carbon Nanotube Composite Ink Writing Allâ€Solidâ€State Flexible Microsupercapacitors with High Areal Energy Density. Advanced Functional Materials, 2020, 30, 1907284.	14.9	79
1881	FIBâ€Patterned Nanoâ€Supercapacitors: Minimized Size with Ultrahigh Performances. Advanced Materials, 2020, 32, e1908072.	21.0	25
1882	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	18.0	113
1883	SiO2 stabilizes electrochemically active nitrogen in few-layer carbon electrodes of extraordinary capacitance. Journal of Energy Chemistry, 2020, 49, 179-188.	12.9	7
1884	Insight into the role of interfacial reconstruction of manganese oxides toward enhanced electrochemical capacitors. Chemical Engineering Journal, 2020, 388, 124293.	12.7	6
1885	Rational design and engineering of carbon nano-onions reinforced natural protein nanocomposite hydrogels for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103696.	3.1	43

#	Article	IF	Citations
1886	Enhanced photocatalytic ability and easy retrievable photocatalysts of Bi2WO6 quantum dots decorated magnetic carbon nano-onions. Journal of Alloys and Compounds, 2020, 826, 154217.	5.5	19
1887	Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. Journal of Power Sources, 2020, 453, 227851.	7.8	69
1888	Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 10211-10223.	8.0	10
1889	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	12.8	55
1890	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	21.0	136
1891	Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres (NPCM) loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-performance lithium-ion capacitors. Electrochimica Acta, 2020, 337, 135749.	5.2	20
1892	Ultrafast shock synthesis of nanocarbon from a liquid precursor. Nature Communications, 2020, 11, 353.	12.8	33
1893	Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors. Nano-Micro Letters, 2020, 12, 40.	27.0	45
1894	Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. Journal of Supercritical Fluids, 2020, 159, 104774.	3.2	21
1895	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€6upercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	19.5	36
1896	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	18.0	223
1897	Micro-patterned metal current collectors for high aspect ratio flexible graphene supercapacitors. Applied Surface Science, 2020, 510, 145432.	6.1	24
1898	Electrospun cyclodextrin nanofibers as precursor for carbon nanofibers. Journal of Materials Science, 2020, 55, 5655-5666.	3.7	5
1899	Electrochemical capacitors operating in aqueous electrolyte with volumetric characteristics improved by sustainable templating of electrode materials. Electrochimica Acta, 2020, 338, 135788.	5.2	20
1900	Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Materials, 2020, 27, 169-186.	18.0	64
1901	Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. Journal of Molecular Liquids, 2020, 303, 112625.	4.9	31
1902	An ultrafast supercapacitor built by Co3O4 with tertiary hierarchical architecture. Vacuum, 2020, 174, 109219.	3.5	37
1903	Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 8456-8465.	8.0	41

#	Article	IF	CITATIONS
1904	All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process. ACS Applied Energy Materials, 2020, 3, 4965-4973.	5.1	32
1905	Dense Reduced Graphene Oxide Films Obtained by Pressing Create Stable and Compact Capacitive Energy Storage. ChemElectroChem, 2020, 7, 1987-1991.	3.4	4
1906	Electrophoretic Deposition of Binderâ€Free MOFâ€Derived Carbon Films for Highâ€Performance Microsupercapacitors. Chemistry - A European Journal, 2020, 26, 10283-10289.	3.3	6
1907	An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene. Chinese Journal of Polymer Science (English Edition), 2020, 38, 491-505.	3.8	9
1908	Rational design and construction of nickel molybdate nanohybrid composite for high-performance supercapattery. Applied Surface Science, 2020, 515, 146023.	6.1	15
1909	Boron and nitrogen co-doped double-layered mesopore-rich hollow carbon microspheres as high-performance electrodes for supercapacitors. Journal of Colloid and Interface Science, 2020, 573, 232-240.	9.4	35
1910	Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. Journal of Energy Chemistry, 2020, 49, 224-232.	12.9	53
1911	Electrochemical synthesis of titanium nitride nanoparticles onto titanium foil for electrochemical supercapacitors with ultrafast charge/discharge. Sustainable Energy and Fuels, 2020, 4, 2480-2490.	4.9	34
1912	An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 8397-8409.	10.3	98
1913	Nitrogen-doped black titania for high performance supercapacitors. Science China Materials, 2020, 63, 1227-1234.	6.3	17
1914	3D crumbled MXene for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 2305-2308.	9.0	23
1915	Stamp-assisted flexible graphene-based micro-supercapacitors. Journal of Power Sources, 2020, 462, 228166.	7.8	27
1916	Morphological optimization and nitrogen functionalization of vertically oriented CNW for high performance electrical double layer capacitor electrode. Electrochimica Acta, 2020, 348, 136210.	5.2	9
1917	In Situ Ice Template Approach to Fabricate 3D Flexible MXene Filmâ€Based Electrode for High Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000922.	14.9	188
1918	Carbon nano-onions from waste oil for application in energy storage devices. New Journal of Chemistry, 2020, 44, 7369-7375.	2.8	57
1919	Current progresses and trends in carbon nanomaterialsâ€based electrochemical and electrochemiluminescence biosensors. Journal of the Chinese Chemical Society, 2020, 67, 937-960.	1.4	32
1920	A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO2/graphene/Poly(3,4-ethylenedioxythiophene) nanocomposite electrode through pen lithography. Journal of Power Sources, 2020, 453, 227898.	7.8	18
1921	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	47.7	277

# 1922	ARTICLE Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews, 2020, 49, 3005-3039.	IF 38.1	Citations
1923	Recent advances in off-grid electrochemical capacitors. Energy Storage Materials, 2021, 34, 53-75.	18.0	26
1924	Carbon Related Materials. , 2021, , .		5
1925	Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. Chemical Engineering Journal, 2021, 413, 127520.	12.7	44
1926	Binder-free pseudocapacitive nickel cobalt sulfide/MWCNTs hybrid electrode directly grown on nickel foam for high rate supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114898.	3.5	32
1927	A novel synthesis of Nb2O5@rGO nanocomposite as anode material for superior sodium storage. Chinese Chemical Letters, 2021, 32, 1144-1148.	9.0	21
1928	Robust Highâ€Temperature Supercapacitors Based on SiC Nanowires. Advanced Functional Materials, 2021, 31, 2008901.	14.9	28
1929	Redox-additive electrolyte–driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors. Energy, 2021, 218, 119436.	8.8	44
1930	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	10.4	24
1931	Protonic acid catalysis to generate fast electronic transport channels in O-functionalized carbon textile with enhanced energy storage capability. Nano Energy, 2021, 80, 105572.	16.0	11
1932	Electronic Doping of Metalâ€Organic Frameworks for Highâ€Performance Flexible Microâ€Supercapacitors. Small Structures, 2021, 2, 2000095.	12.0	25
1933	Microsupercapacitor with a 500Ânm gap between MXene/CNT electrodes. Nano Energy, 2021, 81, 105616.	16.0	61
1934	Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance. Journal of Alloys and Compounds, 2021, 859, 157797.	5.5	67
1935	Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers. Journal of Alloys and Compounds, 2021, 859, 157816.	5.5	34
1936	Engineering of carbon nano-onion bioconjugates for biomedical applications. Materials Science and Engineering C, 2021, 120, 111698.	7.3	48
1937	Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nature Nanotechnology, 2021, 16, 206-213.	31.5	30
1938	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	10.3	117
1939	Coldâ€Resistant Nitrogen/Sulfur Dualâ€Đoped Graphene Fiber Supercapacitors with Solar–Thermal Energy Conversion Effect. Chemistry - A European Journal, 2021, 27, 3473-3482.	3.3	13

#	ARTICLE Comparison of Thermally Grown Carbon Nanofiberâ€Based and Reduced Graphene Oxideâ€Based	IF	CITATIONS
1940	CMOSâ€Compatible Microsupercapacitors. Physica Status Solidi (B): Basic Research, 2021, 258, 2000358.	1.5	1
1941	Asymmetric supercapacitors based on La-doped MoO3 nanobelts as advanced negative electrode and VOR nanosheets as positive electrode. Journal of Materials Science, 2021, 56, 1612-1629.	3.7	22
1942	Study of the structural curvature in Mo2C derived carbons with contrast matched small-angle neutron scattering. Carbon, 2021, 171, 695-703.	10.3	18
1943	Emerging applications of nanodiamonds in photocatalysis. Functional Diamond, 2021, 1, 93-109.	3.8	13
1944	Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Applied Bio Materials, 2021, 4, 252-266.	4.6	21
1945	Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 1192-1206.	10.3	6
1946	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	21.0	250
1947	Soft-chemistry synthesis, solubility and interlayer spacing of carbon nano-onions. RSC Advances, 2021, 11, 6850-6858.	3.6	14
1948	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	5.5	30
1949	A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15880-15918.	10.3	484
1950	Laserâ€Assisted Printing of Electrodes Using Metal–Organic Frameworks for Microâ€Supercapacitors. Advanced Functional Materials, 2021, 31, 2009057.	14.9	75
1951	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
1952	Comparison of diamond nanoparticles captured on the floating and grounded membranes in the hot filament chemical vapor deposition process. RSC Advances, 2021, 11, 5651-5657.	3.6	8
1953	Highly porous Mn ₃ O ₄ nanosheets with <i>in situ</i> coated carbon enabling fully screen-printed planar supercapacitors with remarkable volumetric performance. Journal of Materials Chemistry A, 2021, 9, 4273-4280.	10.3	11
1954	Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage. Nature Communications, 2021, 12, 445.	12.8	41
1955	Green quasi-solid-state planar asymmetric supercapacitors with high working voltage and extraordinary volumetric energy density. Journal of Materials Chemistry A, 2021, 9, 14363-14371.	10.3	14
1956	Lignin-derived 3D porous graphene on carbon cloth for flexible supercapacitors. RSC Advances, 2021, 11, 19695-19704.	3.6	11
1957	Methodologies for Fabricating Flexible Supercapacitors. Micromachines, 2021, 12, 163.	2.9	14

ARTICLE IF CITATIONS BBB: Simplifying Persistent Programming using Battery-Backed Buffers., 2021,,. 1958 18 Electrochemical self-assembled core/shell PEDOT@MoS2 composite with ultra-high areal capacitance 5.2 for supercapacitor. Electrochimica Acta, 2021, 370, 137791. Polyaniline and rare earth metal oxide composition: A distinctive design approach for supercapacitor. 1960 5.215 Electrochimica Acta, 2021, 370, 137714. B/N-Enriched Semi-Conductive Polymer Film for Micro-Supercapacitors with AC Line-Filtering 1961 Performance. Langmuir, 2021, 37, 2523-2531. Recent Developments and Future Prospects for Zincâ€ion Hybrid Capacitors: a Review. Advanced Energy 1962 19.5 219 Materials, 2021, 11, 2003994. Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to 1963 Enable Higha€Performance Flexible Alla€Solida€State Supercapacitors. Advanced Energy Materials, 2021, 11, 128 2003010 Preparation and photocatalytic property of onion-like carbon/Bi12O17Cl2 photocatalyst. Journal of 1964 2.2 2 Materials Science: Materials in Electronics, 2021, 32, 7647-7656. A Terpyridine-Fe2+-Based Coordination Polymer Film for On-Chip Micro-Supercapacitor with AC 1965 4.5 16 Line-Filtering Performance. Polymers, 2021, 13, 1002. Catecholâ€Coordinated Framework Filmâ€based Microâ€Supercapacitors with AC Line Filtering 1966 3.3 20 Performance. Chemistry - A European Journal, 2021, 27, 6340-6347. DRIE Si Nanowire Arrays Supported Nano-Carbon Film for Deriving High Specific Energy 0.4 Supercapacitors On-Chip. Journal of Physics: Conference Series, 2021, 1837, 012005. A Novel Carbon Support: Few‣ayered Graphdiyneâ€Decorated Carbon Nanotubes Capture Metal Clusters 1968 10.0 32 as Effective Metalâ€Supported Catalysts. Small, 2021, 17, e2006442. Microfluidic-architected core–shell flower-like δ-MnO2@graphene fibers for high energy-storage 1969 5.2 wearable supercapacitors. Electrochimica Acta, 2021, 372, 137827. Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synthetic Metals, 1970 3.9 83 2021, 273, 116674. Significant enhancement of the electrochemical performance of hierarchical Co3O4 electrodes for supercapacitors via architecture design and training activation. Journal of Energy Storage, 2021, 35, 1971 8.1 102258. Graphene Nanosphere as Advanced Electrode Material to Promote High Performance Symmetrical 1972 10.0 56 Supercapacitor. Small, 2021, 17, e2007915. Symmetric Supercapacitors with layer-by-layer Molybdenum disulfide - reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. Journal of 8.1 Energy Storage, 2021, 35, 102289. Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, 1974 3.526 Challenges, and Prospects. Advanced Engineering Materials, 2021, 23, 2100068. Highâ€Voltage Potassium Ion Microâ€Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System. Advanced Energy Materials, 2021, 11, 2003835.

#	Article	IF	CITATIONS
1976	Further Improving the Current and Power Density of Miniaturized Microbial Fuel Cells. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	5
1977	Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications. Waste Disposal & Sustainable Energy, 2021, 3, 31-39.	2.5	11
1978	A moisture-enabled fully printable power source inspired by electric eels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
1979	Facile synthesis of multidimensional nanoscaled-carbon via simplified arc underwater: An integrated process for 0-D, 1-D and 2-D. Nano Structures Nano Objects, 2021, 26, 100684.	3.5	0
1980	Enhanced Electrochemical Performance of Micro-Supercapacitors Via Laser-Scribed Cobalt/Reduced Graphene Oxide Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 18821-18828.	8.0	18
1981	A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material. Carbon, 2021, 175, 534-575.	10.3	72
1982	Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors. ACS Nano, 2021, 15, 7799-7810.	14.6	27
1983	Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2021, 13, 17726-17735.	8.0	43
1985	Aqueous MXene/PH1000 Hybrid Inks for Inkjetâ€Printing Microâ€Supercapacitors with Unprecedented Volumetric Capacitance and Modular Selfâ€Powered Microelectronics. Advanced Energy Materials, 2021, 11, 2100746.	19.5	85
1986	Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor. Energies, 2021, 14, 2547.	3.1	6
1987	Weak Ionization Induced Interfacial Deposition and Transformation towards Fastâ€Charging NaTi ₂ (PO ₄) ₃ Nanowire Bundles for Advanced Aqueous Sodiumâ€Ion Capacitors. Advanced Functional Materials, 2021, 31, 2101027.	14.9	25
1988	Hierarchical porous nitrogen-doped graphite from tissue paper as efficient electrode material for symmetric supercapacitor. Journal of Power Sources, 2021, 492, 229670.	7.8	17
1989	Chalcone as Anode Material for Aqueous Rechargeable Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2021, 57, 419-433.	0.9	0
1990	Tungstenâ€Disulfide/Polyaniline High Frequency Supercapacitors. Advanced Electronic Materials, 2021, 7, 2100025.	5.1	25
1991	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. Energies, 2021, 14, 2649.	3.1	26
1992	Role of nitrogen doping in stoichiometric and defective carbon nano-onions: Structural diversity from DFT calculations. Carbon, 2021, 176, 198-208.	10.3	16
1994	N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries. Journal of Energy Storage, 2021, 37, 102453.	8.1	22
1995	Two-Dimensional MXene Based Materials for Micro-Supercapacitors. , 0, , .		2

#	Article	IF	CITATIONS
1996	Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed <i>In Situ</i> Heteroatom-Doped Porous Graphene. ACS Applied Materials & Interfaces, 2021, 13, 22426-22437.	8.0	35
1997	Hierarchical Polyacrylonitrile-Derived Nitrogen Self-Doped 3D Carbon Superstructures Enabling Electrochemical Detection of Calcium Channel Blocker Nimodipine in Real Human Blood Serum. ACS Sustainable Chemistry and Engineering, 2021, 9, 6586-6598.	6.7	7
1998	Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal, 2021, 412, 128744.	12.7	37
1999	Screen-printable and flexible in-plane micro-supercapacitors with fractal electrode design. Flexible and Printed Electronics, 2021, 6, 025008.	2.7	7
2000	Interlayer Structure Engineering of MXeneâ€Based Capacitorâ€Type Electrode for Hybrid Microâ€Supercapacitor toward Batteryâ€Level Energy Density. Advanced Science, 2021, 8, e2100775.	11.2	104
2001	Towards high performance flexible planar supercapacitors: In-situ laser scribing doping and reduction of graphene oxide films. Applied Surface Science, 2021, 551, 149457.	6.1	32
2002	On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Materials, 2021, 38, 520-527.	18.0	39
2003	Sol-gel synthesized carbon nanoparticles as supercapacitor electrodes with ultralong cycling stability. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 1045-1052.	2.1	21
2004	Exploring the impact of MoS2 on the performance of the planar solid micro-supercapacitor. Materials Chemistry and Physics, 2021, 265, 124490.	4.0	5
2005	Directly transfer-printing tailored micro-supercapacitors. Materials Today Communications, 2021, 27, 102342.	1.9	4
2006	Conversion of Lagenaria Siceraria peel to reduced graphene oxide doped with zinc oxide nanoparticles for supercapacitor applications. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2021, 24, 115-123.	1.0	2
2007	Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 2021, 497, 229882.	7.8	46
2008	Graphene Aerosol Gel Ink for Printing Micro-Supercapacitors. ACS Applied Energy Materials, 2021, 4, 7632-7641.	5.1	19
2009	Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries‣evel Energy. Advanced Science, 2021, 8, e2004957.	11.2	16
2010	Facile Fabrication of Multivalent VO <i>_x</i> /Graphene Nanocomposite Electrodes for Highâ€Energyâ€Density Symmetric Supercapacitors. Advanced Energy Materials, 2021, 11, 2100768.	19.5	40
2011	Ultrahighâ€Areal Capacitance Flexible Supercapacitors Based on Laser Assisted Construction of Hierarchical Aligned Carbon Nanotubes. Advanced Functional Materials, 2021, 31, 2104531.	14.9	19
2012	In-Situ Growth of Urchin Manganese Sulfide Anchored Three-Dimensional Graphene (γ-MnS@3DG) on Carbon Cloth as a Flexible Asymmetric Supercapacitor. Journal of Physical Chemistry Letters, 2021, 12, 6574-6581.	4.6	29
2013	Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink. Materials Research Bulletin, 2021, 139, 111266.	5.2	18

#	Article	IF	CITATIONS
2014	Electrospun Polymerâ€Đerived Carbyne Supercapacitor for Alternating Current Line Filtering. Small, 2021, 17, e2102971.	10.0	30
2015	Template and solâ€gel routed <scp> CoMn ₂ O ₄ </scp> nanofibers for supercapacitor applications. International Journal of Energy Research, 2021, 45, 19413-19422.	4.5	19
2016	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021, 31, 2102300.	14.9	26
2017	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	5.3	18
2018	Microfluidic Spinning of Core–Shell α-MnO ₂ @graphene Fibers with Porous Network Structure for All-Solid-State Flexible Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 070514.	2.9	4
2019	Nonhalogenated Surface-Active Ionic Liquid as an Electrolyte for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 7775-7785.	5.1	9
2020	A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions. Polymers, 2021, 13, 2267.	4.5	35
2021	Laser-Induced Modification of Hydrogenated Detonation Nanodiamonds in Ethanol. Nanomaterials, 2021, 11, 2251.	4.1	3
2022	Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy, 2021, 86, 106083.	16.0	57
2023	Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. Journal of Energy Chemistry, 2021, 63, 514-520.	12.9	25
2024	Self-organized hierarchically porous carbon coated on carbon cloth for high-performance freestanding supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2021, 895, 115456.	3.8	18
2025	Predictive Study of Electrical Performances of Interdigitated, Cost-Effective Supercapacitor for Autonomous Microsystems. Arabian Journal for Science and Engineering, 0, , 1.	3.0	1
2026	Ultralong and Millimeter-Thick Graphene Oxide Supercapacitors with High Volumetric Capacitance. ACS Applied Energy Materials, 2021, 4, 8059-8069.	5.1	13
2027	Natural Biomass Hydrogel Based on Cotton Fibers/PVA for Acid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9144-9153.	5.1	21
2028	Synthesis of High-Performance Hard Carbon from Waste Coffee Ground as Sodium Ion Battery Anode Material: A Review. Materials Science Forum, 0, 1044, 25-39.	0.3	1
2029	Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni foam for high-performance supercapacitors. Surface and Coatings Technology, 2021, 421, 127455.	4.8	17
2030	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie, 2021, 133, 24710-24714.	2.0	7
2031	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie - International Edition, 2021, 60, 24505-24509.	13.8	15

#	Article	IF	CITATIONS
2032	A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. Energies, 2021, 14, 5819.	3.1	7
2033	Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 148, 111288.	16.4	31
2034	One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. Journal of Materials Science, 2021, 56, 18636-18649.	3.7	36
2035	High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS ₂ nanosheets. Science and Technology of Advanced Materials, 2021, 22, 875-884.	6.1	16
2036	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	3.3	9
2037	Rational Formulation of Graphene Nanocomposite Ink for 2D Mutually Embedded Structure Interdigital Microsupercapacitors. ACS Applied Energy Materials, 2021, 4, 10948-10957.	5.1	1
2038	High electrochemical performance of spinel Mn3O4 over Co3O4 nanocrystals. Journal of Molecular Structure, 2021, 1241, 130619.	3.6	8
2039	Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 109-118.	9.4	72
2040	Facile fabrication of novel heterostructured tin disulfide (SnS2)/tin sulfide (SnS)/N-CNO composite with improved energy storage capacity for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 899, 115695.	3.8	51
2041	Scalable fabrication of vanadium carbide/graphene electrodes for high-energy and flexible microsupercapacitors. Carbon, 2021, 183, 840-849.	10.3	16
2042	Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. Energy Storage Materials, 2021, 42, 430-437.	18.0	25
2043	2-amino-6-methylpyridine based salt converted to carbon electrode material for supercapacitive application. Journal of Molecular Structure, 2021, 1244, 130895.	3.6	0
2044	Hierarchical ITO nanofibers coated Mn3O4 nanoplates core-shell nanocomposites for high performance all-solid-state symmetric supercapacitor device. Ceramics International, 2021, 47, 29771-29785.	4.8	8
2045	3D printable ink for double-electrical-layer-enhanced electrode of microsupercapaitors. Journal of Power Sources, 2021, 512, 230468.	7.8	3
2046	Possibility of large-scale patterning of a printed circuit board to produce copper oxide nanowire all-solid-state micro-supercapacitors array with high specific capacity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115436.	3.5	3
2047	Three-dimensional porous carbon decorated with FeS2 nanospheres as electrode material for electrochemical energy storage. Applied Surface Science, 2021, 565, 150538.	6.1	23
2048	Effect of electrolyte on supercapacitor performance of two-dimensional molybdenum carbide (Mo2CTx) MXene prepared by hydrothermal etching. Applied Surface Science, 2021, 568, 150971.	6.1	34
2049	Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor. Journal of Energy Chemistry, 2022, 64, 475-484.	12.9	92

# 2050	ARTICLE A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. Journal of Energy Chemistry, 2022, 64, 442-450.	IF 12.9	Citations 24
2051	Studies on surface morphology of under liquid laser ablated magnesium alloy. Materials Today: Proceedings, 2021, 46, 1071-1076.	1.8	2
2052	Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. Journal of Materials Chemistry A, 2021, 9, 17292-17299.	10.3	31
2053	Natively stretchable micro-supercapacitors based on a PEDOT:PSS hydrogel. Journal of Materials Chemistry C, 2021, 9, 1685-1692.	5.5	23
2054	Nitrogen/phosphorus co-doped porous carbon materials for supercapacitor electrodes. New Journal of Chemistry, 2021, 45, 7239-7246.	2.8	9
2055	Ni@onion-like carbon and Co@amorphous carbon: control of carbon structures by metal ion species in MOFs. Chemical Communications, 2021, 57, 5897-5900.	4.1	4
2056	Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors. Nanoscale, 2021, 13, 3285-3294.	5.6	12
2057	Hybrid Fibers Assembled From MoSe2/Graphene Heterostructures Endow Improved Supercapacitive Performance. SSRN Electronic Journal, 0, , .	0.4	0
2058	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	10.3	37
2059	A Facile, High‥ield, and Freezeâ€andâ€Thawâ€Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in Onâ€Chip Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 1910048.	14.9	158
2060	Hierarchical Carbideâ€Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energyâ€Storage Material. Advanced Energy Materials, 2014, 4, 1300645.	19.5	96
2061	Sustainable Energy‧torage Materials from Lignin–Graphene Nanocompositeâ€Đerived Porous Carbon Film. Energy Technology, 2017, 5, 1927-1935.	3.8	29
2062	Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures. , 2013, , 83-104.		6
2063	Application of Carbon Nanotubes for Resolving Issues and Challenges on Electrochemical Capacitors. , 2015, , 415-445.		2
2064	All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes. Applied Surface Science, 2018, 435, 1228-1236.	6.1	39
2065	Supramolecular Purification and Regioselective Functionalization of Fullerenes and Endohedral Metallofullerenes. CheM, 2020, 6, 3219-3262.	11.7	38
2066	Asymmetric Carbon Supercapacitor with Activated Expanded Graphite as Cathode and Pinecone Tree Activated Carbon as Anode Materials. Energy Procedia, 2017, 105, 4098-4103.	1.8	20
2067	Dominant role of wettability in improving the specific capacitance. Green Energy and Environment, 2019, 4, 171-179.	8.7	57

#	Article	IF	CITATIONS
2068	Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Materials Chemistry and Physics, 2020, 244, 122714.	4.0	68
2069	Sulfur Doping: Unique Strategy To Improve the Supercapacitive Performance of Carbon Nano-onions. ACS Applied Materials & Interfaces, 2019, 11, 8040-8050.	8.0	89
2070	Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy and Environmental Science, 2020, 13, 949-957.	30.8	78
2071	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	5.6	28
2072	A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials, 2021, 60, 756-783.	1.3	50
2073	High performance of filter capacitor based on nitrogen-doped carbon nanotube supercapacitor. Nanotechnology, 2020, 31, 495601.	2.6	4
2074	Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2, 042001.	12.7	96
2075	Temperature-dependent c-axis lattice-spacing reduction and novel structural recrystallization in carbon nano-onions filled with Fe3C/α-Fe nanocrystals. Nano Express, 2020, 1, 020016.	2.4	6
2077	Phytic Acid Assisted Formation of Phosphorus-Doped Graphene Aerogel as Electrode Material for High-Performance Supercapacitor. International Journal of Electrochemical Science, 2020, 15, 12578-12586.	1.3	10
2078	Onion-Like Carbon Nanostructures: An Overview of Bio-Applications. Current Medicinal Chemistry, 2019, 26, 6896-6914.	2.4	11
2079	Double Layer Energy Storage in Graphene - a Study. Micro and Nanosystems, 2012, 4, 180-185.	0.6	8
2080	Fabrication of Graphene Supercapacitors for Flexible Energy Storage. Korean Journal of Materials Research, 2017, 27, 248-254.	0.2	5
2081	Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes. AIMS Materials Science, 2014, 1, 59-69.	1.4	7
2082	Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators. Journal of the Korean Electrochemical Society, 2014, 17, 237-244.	0.1	2
2083	Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application. Chemical Communications, 2021, 57, 11591-11603.	4.1	8
2084	All-solid-state planar on-chip micro-supercapacitors with superior electrochemical performances by two-step reduction method. Ferroelectrics, 2021, 581, 221-229.	0.6	0
2085	Threeâ€dimensional mesostructured single crystalline Fe 3 O 4 for ultrafast electrochemical capacitor electrode with AC line filtering performance. International Journal of Energy Research, 0, , .	4.5	3
2087	Synthesis of silicon-based nanosheets decorated with Pd/Li particles with enhanced hydrogen storage properties. Advanced Composites and Hybrid Materials, 2021, 4, 1343-1353.	21.1	22

#	Article	IF	CITATIONS
2088	Sustainable Visible Light-Driven Heck and Suzuki Reactions Using NiCu Nanoparticles Adorned on Carbon Nano-onions. ACS Sustainable Chemistry and Engineering, 2021, 9, 14061-14069.	6.7	8
2089	Enhanced energy storage for nano-structural porous MnO2//AC/MWCNTs asymmetric hybrid supercapacitor device in Na2SO4 aqueous electrolyte. Journal of Materials Science: Materials in Electronics, 2021, 32, 27721-27743.	2.2	8
2090	Flexible and Highâ€Performance MXene/MnO ₂ Film Electrodes Fabricated by Inkjet Printing: Toward a New Generation Supercapacitive Application. Advanced Materials Interfaces, 2021, 8, 2101453.	3.7	16
2091	MoO ₃ @ZnO Nanocomposite as an Efficient Anode Material for Supercapacitors: A Cost Effective Synthesis Approach. Energy & Fuels, 2021, 35, 16850-16859.	5.1	19
2092	Carbon Nano-onions: Potassium Intercalation and Reductive Covalent Functionalization. Journal of the American Chemical Society, 2021, 143, 18997-19007.	13.7	15
2093	Material and structural design of microsupercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 313-334.	2.5	7
2094	Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors. Sustainable Chemistry and Pharmacy, 2021, 24, 100535.	3.3	6
2095	Peroxymonosulfate activation on carbon nano-onions modified graphitic carbon nitride via light-tuning radical and nonradical pathways. Journal of Environmental Chemical Engineering, 2021, 9, 106592.	6.7	4
2096	Gradient architecture to boost the electrochemical capacitance of hard carbon. Journal of Power Sources, 2021, 515, 230621.	7.8	8
2097	Electronic and magnetic properties in nitrogen-doped 2D titanium carbides (MXenes): Insight from first-principles calculations. Solid State Communications, 2021, 340, 114549.	1.9	7
2098	Evaluation of Carbon Onions as Electrode Material for Electric Double Layer Capacitor. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 337-341.	0.1	0
2099	Development on the Preparation and Application of Onion-like Carbon. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 793.	1.3	0
2100	Nanocebulki węglowe oraz ich potencjalne zastosowanie w biomedycynie. Engineering Sciences and Technologies, 2015, , .	0.1	0
2103	Electron Transfer and Charge Storage in Thin Films of Nanoparticles. , 2016, , 869-939.		0
2104	Basic Elements for Energy Storage and Conversion. , 2016, , 1-27.		1
2105	Cluster-Assembled Carbon Thin Films for Planar Supercapacitors. , 0, , 1-7.		0
2106	Electrochemical Characteristics of Supercapacitor Electrode Using MnO2Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer. Journal of the Korean Wood Science and Technology, 2016, 44, 750-759.	3.0	1
2107	Polymer/Graphene Composites for Energy Storage. Engineering Materials and Processes, 2017, , 337-364.	0.4	0

#	Article	IF	CITATIONS
2108	Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper for Flexible Supercapacitors. Springer Theses, 2018, , 91-104.	0.1	0
2109	Carbon-based nanosensors: An efficient tool for use in the food industry and agricultural and environmental sectors. , 2020, , 217-236.		0
2110	Flexible planar micro-supercapacitors based on carbon nanotubes. Chinese Journal of Chemical Physics, 2022, 35, 562-569.	1.3	6
2111	Printable electrode materials for supercapacitors. ChemPhysMater, 2022, 1, 17-38.	2.8	10
2112	Oxygenâ€Rich Nonâ€Graphitic Carbon Derived fromÂCitrus sinensisÂfor Highâ€Energy Density Pseudocapacitive Charge Storage. ChemistrySelect, 2020, 5, 14993-15003.	1.5	0
2113	Carbon Microrod Material Derived From Human Hair and Its Electrochemical Supercapacitor Application. Gazi University Journal of Science, 2021, 34, 695-708.	1.2	4
2114	The role and the necessary features of electrolytes for microsupercapacitors. , 2022, , 47-116.		3
2115	Advanced functional materials and devices for energy conversion and storage applications. , 2022, , 43-96.		2
2116	High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage. Carbon, 2022, 186, 624-631.	10.3	15
2117	Design and technology processes used for microsupercapacitors. , 2022, , 215-255.		0
2118	Towards Long-Lasting Nanoscale Wireless Communications in the Terahertz Band for Biomedical Applications. Lecture Notes in Computer Science, 2020, , 145-158.	1.3	0
2119	A Feedback Control Strategy for Energy-Harvesting in Diffusion-Based Molecular Communication Systems. IEEE Transactions on Communications, 2020, , 1-1.	7.8	1
2120	lonic transport kinetics and enhanced energy storage in the electrode/poly(<i>N</i> -vinyl imidazole) interface for micro-supercapacitors. RSC Advances, 2020, 10, 45019-45027.	3.6	1
2121	Heterogeneous activated carbon with graphitized shell and hydrophilic pores integrating high conductivity and pore affinity for excellent rate performance supercapacitors. Fuel, 2022, 310, 122410.	6.4	13
2122	Hybrid fibers assembled from MoSe2/graphene heterostructures endow improved supercapacitive performance. Carbon, 2022, 187, 165-172.	10.3	29
2123	Ultrafast Nonvolatile Ionic Liquids-Based Supercapacitors with Al Foam-Enhanced Carbon Electrode. ACS Applied Materials & Interfaces, 2021, 13, 53904-53914.	8.0	4
2124	Layered nanoreactor assisted to produce B-doped and P-doped 3D carbon nanostructures for supercapacitor electrodes. Journal of Energy Storage, 2021, 44, 103514.	8.1	13
2125	From Unidimensional Carbonaceous Materials to Multidimensional Structures Through Molecular Modeling. , 2021, , 1-21.		0

#	Article	IF	Citations
2126	Nanostructured Carbon-Based Electrode Materials for Supercapacitor Applications. , 2021, , 317-355.		3
2127	Highly flexible all-solid-state microsupercapacitors for on chip applications using a transfer-free fabrication process. Journal of Power Sources, 2022, 520, 230779.	7.8	9
2128	Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor. Energy Storage Materials, 2022, 45, 119-129.	18.0	44
2129	Laser In-Situ synthesis of metallic cobalt decorated porous graphene for flexible In-Plane microsupercapacitors. Journal of Colloid and Interface Science, 2022, 610, 775-784.	9.4	10
2130	Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. Chinese Chemical Letters, 2022, 33, 3921-3924.	9.0	13
2131	Multi‣ayer Printable Lithium Ion Microâ€Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics. Small, 2022, 18, e2104506.	10.0	13
2132	Joule Heating-Driven Transformation of Hard-Carbons to Onion-like Carbon Monoliths for Efficient Capture of Volatile Organic Compounds. ACS Materials Au, 2022, 2, 154-162.	6.0	7
2133	An interface-free integrative graphitic carbon network film with defective and S/O-Codoped hollow units for voltage-stable, Ultra-fast and long-life potassium ion storage. Chemical Engineering Journal, 2022, 431, 133736.	12.7	6
2134	Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances, 2022, 2, .	2.8	23
2135	One-dimensional covalent organic framework—Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	3.3	9
2136	An approach for quantum capacitance of graphene, carbon nanotube, silicene and hexagonal boron nitride nanoscale supercapacitors by non-equilibrium Green's function method. FlatChem, 2022, 31, 100313.	5.6	1
2137	A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochimica Acta, 2022, 403, 139633.	5.2	54
2138	Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.	5.1	5
2139	Low-temperature solid-state synthesis of interlayer engineered VS4 for high-capacity and ultrafast sodium-ion storage. Chemical Engineering Journal, 2022, 433, 133765.	12.7	12
2140	Alkylâ€Amino Functionalized Reducedâ€Grapheneâ€Oxide–heptadecanâ€9â€amineâ€Based Spinâ€Coated Microsupercapacitors for Onâ€Chip Low Power Electronics. Physica Status Solidi (B): Basic Research, 2022, 259, 2100304.	1.5	2
2141	Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. EScience, 2021, 1, 124-140.	41.6	57
2142	Laser Scribed Graphene-Based Flexible Microsupercapacitors With Fractal Design. IEEE Access, 2021, 9, 154957-154964.	4.2	6
2143	Supercapacitors operated at extremely low environmental temperatures. Journal of Materials Chemistry A, 2021, 9, 26603-26627.	10.3	25

#	Article	IF	CITATIONS
2144	Untying the Bundles of Solutionâ€Synthesized Graphene Nanoribbons for Highly Capacitive Microâ€Supercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	14.9	13
2145	Efficient oxygen evolution reaction on RuO2 nanoparticles decorated onion-like carbon (OLC). Nanotechnology, 2022, 33, 135710.	2.6	1
2146	3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. Journal of Materials Chemistry A, 2022, 10, 2027-2034.	10.3	23
2147	The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage. Journal of Alloys and Compounds, 2022, 897, 163187.	5.5	45
2148	Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes. Materials Today Sustainability, 2022, 17, 100096.	4.1	18
2149	Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy, 2022, 94, 106902.	16.0	23
2150	Densely packed hollow structured carbon with graphene-like shells on carbon cloth for high power supercapacitors. , 2020, , .		0
2151	A Novel Hybridized Needle-Like Co ₃ O ₄ /N-CNO Composite for Superior Energy Storage Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2152	Cotton Fibers/PVA Based Neutral Hydrogel with Internal Cross-Linking as Electrolyte for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2153	Advanced characterization techniques for electrochemical capacitors. Advances in Inorganic Chemistry, 2022, , 151-207.	1.0	2
2154	Enhancing the Performance of a Metal-Free Self-Supported Carbon Felt-Based Supercapacitor with Facile Two-Step Electrochemical Activation. Nanomaterials, 2022, 12, 427.	4.1	6
2155	Ultrathin Paper Microsupercapacitors for Electronic Skin Applications. Advanced Materials Technologies, 2022, 7, .	5.8	15
2156	Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous and Mesoporous Materials, 2022, 331, 111658.	4.4	26
2157	A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Applied Sciences (Switzerland), 2022, 12, 862.	2.5	24
2158	A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids. Journal of Materials Chemistry A, 2022, 10, 4611-4620.	10.3	5
2159	Hexadecyl trimethyl ammonium bromide assisted growth of NiCo ₂ O ₄ @reduced graphene oxide/ nickel foam nanoneedle arrays with enhanced performance for supercapacitor electrodes. RSC Advances, 2022, 12, 4029-4041.	3.6	11
2160	Biomass-Derived Graphene-Based Materials Embedded with Onion-Like Carbons for High Power Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 010509.	2.9	23
2161	Self-Assembled 1T-MoS ₂ /Functionalized Graphene Composite Electrodes for Supercapacitor Devices. ACS Applied Energy Materials, 2022, 5, 61-70.	5.1	31

#	Article	IF	CITATIONS
2162	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	19.5	44
2163	Wafer-Scale Fabrication and Encapsulation of Micro Supercapacitor. IEEE Electron Device Letters, 2022, 43, 474-477.	3.9	7
2164	Simplified Synthesis of Fluoride-Free Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching toward High-Performance Electrochemical Capacitors. ACS Nano, 2022, 16, 2461-2470.	14.6	99
2165	In situ formation of Co3O4 nanocrystals embedded in laser-induced graphene foam for high-energy flexible micro-supercapacitors. Dalton Transactions, 2022, , .	3.3	2
2166	Supercapacitors. , 2022, , 383-417.		7
2167	Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts, 2022, 12, 125.	3.5	13
2168	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	8.6	5
2169	MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity. Electrochimica Acta, 2022, 407, 139929.	5.2	12
2170	High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. Journal of Power Sources, 2022, 524, 231102.	7.8	17
2171	Specializing liquid electrolytes and carbon-based materials in EDLCs for low-temperature applications. Journal of Energy Chemistry, 2022, 68, 580-602.	12.9	14
2172	Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. Journal of Materials Chemistry A, 2022, 10, 4489-4516.	10.3	62
2173	Redoxâ€Active Metaphosphateâ€Like Terminals Enable Highâ€Capacity MXene Anodes for Ultrafast Naâ€Ion Storage. Advanced Materials, 2022, 34, e2108682.	21.0	52
2174	Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy & Fuels, 2022, 36, 2811-2820.	5.1	9
2175	Co3V2O8 hollow spheres with mesoporous walls as high-capacitance electrode for hybrid supercapacitor device. Chemical Engineering Journal, 2022, 436, 135225.	12.7	42
2176	Differences in the structure and functionalities of graphene oxide and reduced graphene oxide obtained from graphite with various degrees of graphitization. Journal of Physics and Chemistry of Solids, 2022, 164, 110614.	4.0	27
2177	Polyaryletherâ€Based 2D Covalentâ€Organic Frameworks with Inâ€Plane D–A Structures and Tunable Energy Levels for Energy Storage. Advanced Science, 2022, 9, e2104898.	11.2	31
2179	Rationally Designed Co3v2o8 Hollow Spheres with Mesoporous Walls as High-Capacitance Electrode for Hybrid Supercapacitor Device. SSRN Electronic Journal, 0, , .	0.4	0
2180	Ambient-Air <i>in Situ</i> Fabrication of High-Surface-Area, Superhydrophilic, and Microporous Few-Layer Activated Graphene Films by Ultrafast Ultraviolet Laser for Enhanced Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2181	SrFeO _{3â^'<i>δ</i>} : a novel Fe ⁴⁺ ↔ Fe ²⁺ redox mediated pseudocapacitive electrode in aqueous electrolyte. Physical Chemistry Chemical Physics, 2022, 24, 11066-11078.	2.8	12
2182	2-Ethylhexylsulfate Anion-Based Surface-Active Ionic Liquids (Sails) as Temperature Persistent Electrolytes for Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2183	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	10.3	43
2184	Anomalous electrochemical capacitance in Mott-insulator titanium sesquioxide. Journal of Materials Chemistry A, 2022, 10, 7314-7325.	10.3	7
2185	Polymer/fullerene nanocomposite coatings—frontÂline potential. Emergent Materials, 2022, 5, 29-40.	5.7	7
2186	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & Fuels, 2022, 36, 2390-2406.	5.1	67
2187	Unlocking Zinc-Ion Energy Storage Performance of Onion-Like Carbon by Promoting Heteroatom Doping Strategy. ACS Applied Materials & Interfaces, 2022, 14, 9013-9023.	8.0	27
2188	MOFâ€Derived Onionâ€Like Carbon with Superior Surface Area and Porosity for High Performance Lithiumâ€Ion Capacitors. Batteries and Supercaps, 2022, 5, .	4.7	6
2189	Superior Volumetric Capability Dualâ€lon Batteries Enabled by A Microsize Niobium Tungsten Oxide Anode. Advanced Functional Materials, 2022, 32, .	14.9	14
2190	High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor. Journal of Energy Chemistry, 2022, 72, 352-360.	12.9	26
2192	A novel twoâ€dimensional conjugated coordination framework with a narrow bandgap for microâ€supercapacitors. Energy Technology, 0, , .	3.8	4
2193	Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors. ACS Applied Energy Materials, 2022, 5, 4221-4231.	5.1	2
2194	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	2.8	15
2195	Significant Enhancement in the Power Density of Micro-Supercapacitors by the In Situ Growth of TiN/TiO <i>_x</i> N <i>_y</i> -Laminated Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 3614-3622.	6.7	4
2196	One-step hydrothermal synthesis of carbon nano onions anchored on graphene sheets for potential use in electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2022, 33, 7444-7462.	2.2	3
2197	A Narrow Bandgap, Isocyanideâ€Based Coordination Polymer Framework for Microâ€6upercapacitors with AC Lineâ€Filtering Performance. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	5
2198	Ultrafast high-energy micro-supercapacitors based on open-shell polymer-graphene composites. Cell Reports Physical Science, 2022, 3, 100792.	5.6	12
2199	Fullerene Reinforced Polymeric Nanocomposites for Energy Storage—Status and Prognoses. Frontiers in Materials, 2022, 9, .	2.4	10

#	Article	IF	CITATIONS
2200	Nitrogen-doped hierarchically porous carbon obtained via single step method for high performance supercapacitors. International Journal of Hydrogen Energy, 2022, 47, 12829-12840.	7.1	15
2201	Ultrafast Electrochemical Capacitors with Carbon Related Materials as Electrodes for AC Line Filtering. Chemistry - A European Journal, 2022, 28, .	3.3	4
2202	Multifunctional quasi-solid-state zinc-ion hybrid supercapacitors beyond state-of-the-art structural energy storage. Materials Today Physics, 2022, 24, 100654.	6.0	8
2203	Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materials. Electrochimica Acta, 2022, 415, 140239.	5.2	12
2204	Large-scale paper supercapacitors on demand. Journal of Energy Storage, 2022, 50, 104191.	8.1	23
2205	Effect of the second heat treatment on the porosity and conductivity of a template-synthesized carbon material for use in supercapacitor electrodes. Solid State Sciences, 2022, 128, 106871.	3.2	5
2206	A novel hybridized needle-like Co3O4/N-CNO composite for superior energy storage asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 908, 164447.	5.5	16
2207	Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Applied Catalysis B: Environmental, 2022, 308, 121216.	20.2	67
2208	Zinc-ion hybrid supercapacitors with ultrahigh areal and gravimetric energy densities and long cycling life. Journal of Energy Chemistry, 2022, 70, 480-491.	12.9	19
2209	An implantable flexible fiber generator without encapsulation made from differentially oxidized carbon nanotube fibers. Chemical Engineering Journal, 2022, 441, 136106.	12.7	4
2210	Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. Journal of Materials Science and Technology, 2022, 120, 159-166.	10.7	11
2211	Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. Türk Doğa Ve Fen Dergisi, 2021, 10, 199-205.	0.5	6
2212	Three-Dimensional Porous Network Electrodes with Cu(OH) ₂ Nanosheet/Ni ₃ S ₂ Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors. ACS Omega, 2021, 6, 34276-34285.	3.5	7
2213	Large-Pore Ordered Mesoporous Turbostratic Carbon Films Prepared Using Rapid Thermal Annealing for High-Performance Micro-pseudocapacitors. ACS Applied Materials & Interfaces, 2021, 13, 61027-61038.	8.0	10
2214	MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces, 2022, 5, 1-36.	2.3	25
2215	Supercapacitance/Resistance Behaviors of Helminth Eggs as Reliable Recognition and Direct Differentiation Probe. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782380.	4.1	1
2218	Supercapacitors: An introduction. , 2022, , 459-466.		2
2219	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	14.2	66

#	Article	IF	CITATIONS
2220	Recent advances in solidâ€state supercapacitors: From emerging materials to advanced applications. International Journal of Energy Research, 2022, 46, 10389-10452.	4.5	16
2221	Remote Plasma-Induced Synthesis of Self-Assembled MoS2/Carbon Nanowall Nanocomposites and Their Application as High-Performance Active Materials for Supercapacitors. Nanomaterials, 2022, 12, 1338.	4.1	4
2222	Macro―and Nanoâ€Porous 3Dâ€Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	25
2223	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	6.3	11
2225	Fabrication of ultra-bright carbon nano-onions <i>via</i> a one-step microwave pyrolysis of fish scale waste in seconds. Green Chemistry, 2022, 24, 3969-3976.	9.0	16
2226	Designing supercapacitor electrolyte <i>via</i> ion counting. Energy and Environmental Science, 2022, 15, 2948-2957.	30.8	17
2227	Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte. Journal of Energy Chemistry, 2022, 72, 195-202.	12.9	12
2228	On-Chip 3D Zn/NiOOH Helical Electrodes for High-Energy-Density Microbattery. ACS Applied Energy Materials, 2022, 5, 6282-6290.	5.1	2
2229	High-Energy-Density Sputtered Iridium Oxide Micro-Supercapacitors Operating in Physiological Electrolytes. Journal of the Electrochemical Society, 2022, 169, 050508.	2.9	3
2230	Stretchable Sodium-Ion Capacitors Based on Coaxial CNT Supported Na2Ti3O7 with High Capacitance Contribution. Nanoscale, 0, , .	5.6	4
2232	Carbon Nanocomposite-Based SCs as Wearable Energy Storage. Advances in Material Research and Technology, 2022, , 451-483.	0.6	2
2233	Modern practices in electrophoretic deposition to manufacture energy storage electrodes. International Journal of Energy Research, 2022, 46, 13205-13250.	4.5	17
2234	Nanodiamond-derived carbon nano-onions decorated with silver nanodendrites as an effective sensing platform for methamphetamine detection. Surfaces and Interfaces, 2022, 31, 102061.	3.0	3
2235	High-Performance Aqueous Potassium Ion Batteries Based on Tunable 2d Transition Metal Oxides. SSRN Electronic Journal, 0, , .	0.4	0
2236	Synthesis of Hollow Carbon Spheres by Chemical Activation of Carbon Nanoparticles for Their Use in Electrochemical Capacitor. SSRN Electronic Journal, 0, , .	0.4	0
2237	Synergistic Incorporation of Fe and Co into Nickel Boride Nanosheets to Tune Voltage Plateau and Charge Storage in Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2238	Unraveling the Design Principles of Battery‣upercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	49
2239	Facile Synthesis of Nitrogen/Sulfur Co-doped Three-Dimensional Holey Graphene Hydrogels for High Supercapacitive Performance. Energy & Fuels, 2022, 36, 6468-6475.	5.1	5

#	Article	IF	CITATIONS
2240	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Advanced Functional Materials, 2022, 32, .	14.9	35
2241	2-Ethylhexylsulfate Anion-based Surface-Active Ionic Liquids (SAILs) as temperature persistent electrolytes for supercapacitors. Journal of Ionic Liquids, 2022, 2, 100034.	2.7	4
2242	Highâ€Performance and Flexible Coâ€Planar Integrated Microsystem of Carbonâ€Based Allâ€Solidâ€State Microâ€Supercapacitor and Realâ€Time Temperature Sensor. Energy and Environmental Materials, 2023, 6, .	12.8	7
2243	Cotton Fibers/Pva Based Neutral Hydrogel with Al3+ as Electrolyte Additive for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2244	Ultra-foldable integrated high-performance in-plane micro-supercapacitors from laser-induced selective metallization. Energy Storage Materials, 2022, 51, 139-148.	18.0	8
2245	Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. , 2022, 1, e9120018.		60
2246	Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite. Journal of Energy Storage, 2022, 52, 104987.	8.1	30
2247	Graphitized porous silicon decorated with cobalt hexacyanoferrate nanocubes as hybrid electrode for high-performance supercapacitors. Electrochimica Acta, 2022, 424, 140632.	5.2	4
2248	Conjugated polymers and graphene-based composites for flexible electrochemical energy storage devices: synthesis to device fabrication. , 2022, , 181-214.		0
2249	Hierarchical porous carbon foam electrodes fabricated from waste polyurethane elastomer template for electric double-layer capacitors. Scientific Reports, 2022, 12, .	3.3	10
2250	Energy storage systems: a review. Energy Storage and Saving, 2022, 1, 166-216.	7.5	160
2251	Graphene nanobuds as a novel anode design paradigm with superior Li-ion storage capacity and rate capability. Carbon, 2022, 199, 486-496.	10.3	3
2252	N-doped hollow carbon nanoplates with mesoporous thin shells towards high-performance supercapacitors. Journal of Power Sources, 2022, 542, 231776.	7.8	12
2253	Ambient Conditioned, Solution Processed CuO Nanoflakes over Carbon Fabric for Supercapacitor Application: Performance Enhancement via Nanoparticle Attachment. Journal of Atomic Molecular Condensate and Nano Physics, 2015, 2, 153-159.	0.2	2
2254	Electrochemical behavior of heteroatom doped on reduced graphene oxide with RuO2 for HER, OER, and supercapacitor applications. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138, 104471.	5.3	20
2255	Structural Engineering and Carbon Enrichment in V2ctx Mxene: An Approach for Enhanced Supercapacitive Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0
2256	All-solid-state planar on-chip micro-supercapacitors based on reduced graphene oxide with ultrahigh energy characteristics. Ferroelectrics, 2022, 593, 200-209.	0.6	0
2257	Functional MXeneâ€Based Materials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2022, 34, .	21.0	42

#	Article	IF	CITATIONS
2258	Recycled ZnOâ€fused macroporous 3D graphene oxide aerogel composites for highâ€performance asymmetric supercapacitors. Journal of the American Ceramic Society, 2022, 105, 7467-7478.	3.8	4
2259	Flexible iontronics based on 2D nanofluidic material. Nature Communications, 2022, 13, .	12.8	21
2260	Structurally integrated 3D carbon tube grid–based high-performance filter capacitor. Science, 2022, 377, 1004-1007.	12.6	52
2261	A review of carbon materials for supercapacitors. Materials and Design, 2022, 221, 111017.	7.0	128
2262	Overcharging-Non-overcharging transition curve in cylindrical nano-pores. Journal of Molecular Liquids, 2022, 364, 119964.	4.9	0
2263	Nitrogen and sulfur co-doped MXene ink without additive for high-performance inkjet-printing micro-supercapacitors. Chemical Engineering Journal, 2022, 450, 138372.	12.7	17
2264	Application of laser Scribed method to fabricate graphene/graphene oxide multilayer. , 0, , 9-18.		6
2265	Micro-electrochemical capacitors: Progress and future status. Journal of Energy Storage, 2022, 55, 105702.	8.1	7
2266	Plant- and fungi-inspired hierarchical structures as electrode materials: a review. Materials Chemistry Frontiers, 2022, 6, 3460-3488.	5.9	9
2267	Nanostructured materials for electrochemical capacitors. , 2022, , .		0
2268	Solution-processable hierarchical SiNW/PEDOT/MnO _x electrodes for high-performance supercapacitors. Materials Chemistry Frontiers, 2022, 6, 2894-2904.	5.9	2
2269	Visible-light-mediated synthesis of β-keto sulfones using g-C ₃ N ₄ as a recyclable photocatalyst under sustainable conditions. Green Chemistry, 2022, 24, 7122-7130.	9.0	23
2270	All-solid-state planar on-chip micro-supercapacitors with excellent areal power performance at ultrahigh scan rates by photolithography. Ferroelectrics, 2022, 595, 88-94.	0.6	1
2271	Ultrafast response planar on-chip micro-supercapacitors based on nitrogen and oxygen co-doped graphene quantum dots with both ultrahigh power and energy densities. Ferroelectrics, 2022, 595, 109-116.	0.6	0
2272	Carbon Nano-Onions: Synthesis, Properties and Electrochemical Applications. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 39-60.	0.3	0
2273	Molten Salt Self-Template Synthesis Strategy of Oxygen-Rich Porous Carbon Cathodes for Zinc Ion Hybrid Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 43431-43441.	8.0	21
2274	Polyacrylonitrile-Coated Onion-like Carbon Nanoparticles for Carbon Nanofibers with Enhanced Strength and Toughness. ACS Applied Nano Materials, 2022, 5, 14771-14784.	5.0	5
2275	Multifunctional devices based on planar microsupercapacitors: Progress and challenges. Science China Materials, 2022, 65, 3202-3228.	6.3	8

#	Article	IF	CITATIONS
2276	Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor. Carbon Trends, 2022, 9, 100220.	3.0	3
2277	Electrochemical Double‣ayer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
2278	Electrochemical Double‣ayer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angewandte Chemie, 2022, 134, .	2.0	5
2279	High-capacity three-dimensional solar rechargeable micro-supercapacitor using MnO2/V2O5-based binary metal oxide nanocomposite ink. Journal of Industrial and Engineering Chemistry, 2022, 115, 544-553.	5.8	5
2280	From pollution to wealth: Soot-graphene hybrid structure as supercapacitor electrode for high-performance alternating current filtering. Diamond and Related Materials, 2022, 129, 109397.	3.9	3
2281	Advanced aqueous sodium-ion capacitors based on Ni _{0.25} Mn _{0.75} O nanoparticles encapsulated in electrospinning carbon nanofibers. Dalton Transactions, 2022, 51, 16236-16242.	3.3	1
2282	Progress and prospects of graphene for in-plane micro-supercapacitors. New Carbon Materials, 2022, 37, 781-801.	6.1	5
2283	Ionic liquid-wrapped MXene film with bowl-like structures for highly integrated micro-supercapacitor array with ultrahigh output voltage. Nano Research, 2023, 16, 4926-4932.	10.4	12
2284	3D Porous Compact 1D/2D Fe ₂ O ₃ /MXene Composite Aerogel Film Electrodes for Allâ€Solidâ€State Supercapacitors. Small, 2022, 18, .	10.0	20
2285	Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors. Electrochimica Acta, 2022, 435, 141372.	5.2	9
2286	High-performance aqueous potassium ion asymmetric supercapacitors based on tunable 2D transition metal oxides. Journal of Power Sources, 2022, 551, 232201.	7.8	2
2287	Recently emerging trends in MXene hybrid conductive polymer energy storage nanoarchitectures. Polymer-Plastics Technology and Materials, 2022, 61, 861-887.	1.3	16
2288	Biomimetic platinum forest enables 3D micro-supercapacitors with enhanced areal performance. Chemical Engineering Journal, 2023, 454, 140357.	12.7	10
2289	Supercapacitor application of a three-dimensional carbon sphere–intercalated porous carbon fabricated using a hard template and a biomass material. Diamond and Related Materials, 2022, 130, 109528.	3.9	9
2290	Experimental and computational physics of fullerenes and their nanocomposites: Synthesis, thermo-mechanical characteristics and nanomedicine applications. Physics Reports, 2023, 996, 1-116.	25.6	10
2291	Co/Zn bimetallic organic framework nanoparticles on carbon fibers as cathode for a high-performance rechargeable aqueous Zn-ion hybrid supercapacitor. Scripta Materialia, 2023, 225, 115171.	5.2	6
2292	High Power―and Energyâ€density Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie, 0, , .	2.0	0
2293	High Power―and Energyâ€Density Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie - International Edition, 2023, 62, .	13.8	15

#	Article	IF	CITATIONS
2294	Enhanced ion conductivity of "water-in-salt―electrolytes by nanochannel membranes. Journal of Materials Chemistry A, 2023, 11, 1394-1402.	10.3	7
2295	Effect of strontium doping on the electrochemical pseudocapacitance of Y _{1â``<i>x</i>} Sr _{<i>x</i>} MnO _{3â``<i>δ</i>} perovskites. Physical Chemistry Chemical Physics, 2022, 25, 326-340.	2.8	6
2296	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023, 10, 670-697.	12.2	13
2297	Improved electrochemical performance for alkali and alkaline metal doped nanostructures as electrode material for energy storage applications. Inorganic Chemistry Communication, 2023, 147, 110285.	3.9	2
2298	Size-controllable synthesis of covalently interconnected few-shelled Fe3O4@onion-like carbons for high-performance asymmetric supercapacitors. Carbon, 2023, 203, 261-272.	10.3	9
2299	Improving the electrochemical performance of α-MoO3 electrode using aluminium trifluoromethanesulfonate water-in-salt electrolyte. Journal of Energy Chemistry, 2023, 78, 123-134.	12.9	3
2300	Molecular Dynamical Investigation of Lithium-Ion Adsorption on Multilayer Fullerene. Coatings, 2022, 12, 1824.	2.6	1
2302	Co-doped In-Situ Engineered Carbon Nano-Onions Enabled High-Performance Supercapacitors. Nanomaterials, 2023, 13, 19.	4.1	1
2303	Engineering Coï£;P Alloy Foil to a Wellâ€Designed Integrated Electrode Toward Highâ€Performance Electrochemical Energy Storage. Advanced Materials, 2023, 35, .	21.0	7
2304	Hierarchical Multiscale Engineered Fe ₃ O ₄ /Ni Electrodes with Ultrafast Supercapacitive Energy Storage for Alternate Current Lineâ€Filtering. Small Science, 0, , 2200074.	9.9	0
2305	Enhancement of the Performance Properties of Pure Cotton Fabric by Incorporating Conducting Polymer (PEDOT:PSS) for Flexible and Foldable Electrochemical Applications. Journal of Electronic Materials, 2023, 52, 2201-2215.	2.2	7
2306	Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Microâ€5upercapacitor. Advanced Energy Materials, 2023, 13, .	19.5	15
2307	Synthesis, characterization and electrochemical investigation on Nickel Manganese Oxide - Polybutylene Sebacate composite electrode of biodegradable nature for micro capacitor applications. Journal of the Indian Chemical Society, 2023, 100, 100896.	2.8	2
2308	Synthetic porous carbons for clean energy storage and conversion. EnergyChem, 2023, 5, 100099.	19.1	6
2309	Monolithic integrated MXene supercapacitors may power future electronics. National Science Review, 2023, 10, .	9.5	6
2310	Best practices for electrochemical characterization of supercapacitors. Journal of Energy Chemistry, 2023, 80, 265-283.	12.9	12
2311	Cotton Fiber/PVA-Based Neutral Hydrogel with Al ³⁺ as an Electrolyte Additive for High-Performance Supercapacitors. ACS Applied Energy Materials, 2023, 6, 644-656.	5.1	9
2312	Probing the supercapacitive properties of hydrothermal routed MWCNTs@Cd0.98MoO4:Eu3+0.02 nanoparticles. Surfaces and Interfaces, 2023, 36, 102605.	3.0	1

#	Article	IF	CITATIONS
2313	Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors. Electrochimica Acta, 2023, 442, 141828.	5.2	17
2314	Molecular insights into temperature oscillation of electric double-layer capacitors in charging–discharging cycles. Journal of Power Sources, 2023, 559, 232596.	7.8	5
2315	Laserâ€Induced Transient Selfâ€Organization of TiN <i> _x </i> Nanoâ€Filament Percolated Networks for High Performance Surfaceâ€Mountable Filter Capacitors. Advanced Materials, 0, , 2210038.	21.0	5
2316	Fullerene: Fundamentals and state-of-the-art. , 2023, , 1-19.		0
2317	Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.		0
2318	Design and fabrication of supercapacitors. , 2023, , 361-404.		0
2319	A Comprehensive Compilation of Graphene/Fullerene Polymer Nanocomposites for Electrochemical Energy Storage. Polymers, 2023, 15, 701.	4.5	15
2320	Robust Singleâ€Walled Carbon Nanotubeâ€Infiltrated Carbon Fiber Electrodes for Structural Supercapacitors: from Reductive Dissolution to High Performance Devices. Advanced Functional Materials, 2023, 33, .	14.9	11
2321	Role of the electrode-edge in optically sensitive three-dimensional carbon foam-MoS ₂ based high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2023, 11, 4963-4976.	10.3	6
2322	Carbon Nano tube based Thermoelectric generator and Graphite Nanoparticle based supercapacitor for smart wearable sensors. , 2023, , .		1
2323	Pushing the Electrochemical Performance Limits of Polypyrrole Toward Stable Microelectronic Devices. Nano-Micro Letters, 2023, 15, .	27.0	10
2324	Floating Catalyst Chemical Vapor Deposition Patterning Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes for Shape Tailorable and Flexible Micro‣upercapacitors. Advanced Functional Materials, 2023, 33, .	14.9	9
2325	Molecular scale roughness effects on electric double layer structure in asymmetric ionic liquids. Electrochimica Acta, 2023, 450, 142261.	5.2	2
2326	Synergistic incorporation of Fe and Co into nickel boride/NiCoHydroxide nanosheets to tune voltage plateau and charge storage in supercapacitors. Electrochimica Acta, 2023, 449, 142144.	5.2	6
2327	Preparation and electrothermal performance of onion-like carbon/carbon nanofibre composite film. Chemical Physics Letters, 2023, 818, 140429.	2.6	2
2328	Ion transport phenomena in electrode materials. Chemical Physics Reviews, 2023, 4, 021302.	5.7	0
2329	Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems. Journal of Energy Chemistry, 2023, 81, 410-431.	12.9	6
2330	Enhancing the performance and mechanical stability of 2D-based hybrid micro-supercapacitors using dendritic-gold as framework layer. Electrochimica Acta, 2023, 453, 142346.	5.2	0

#	Article	IF	CITATIONS
2331	Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance. Journal of Materials Science and Technology, 2023, 154, 22-29.	10.7	3
2332	Passivation of macroporous Si using sputtered TiN coating for on-chip energy storage. Journal of Power Sources, 2023, 561, 232743.	7.8	1
2333	Synthesis and Growth of Onion-Like Polyhedral Graphitic Nanocapsules by Thermal Plasma. Plasma Chemistry and Plasma Processing, 2023, 43, 413-427.	2.4	3
2334	Combination of multiple active sites in N, O coâ€doped defective carbon materials for high performance aqueous supercapacitors. Nano Select, 0, , .	3.7	0
2335	Impact of modulated temperature on photovoltaic properties of automated spray fabricated zirconium doped cobalt selenide films. Materials Research Innovations, 2023, 27, 382-391.	2.3	4
2336	The Progress and Comprehensive Analysis of Supercapacitors for Alternating Current Line Filtering: A Review. Batteries and Supercaps, 2023, 6, .	4.7	3
2337	Nanostructured MnO ₂ Films for 3D Microâ€Supercapacitors: From New Insights of the Growth Mechanism to the Fine Tuning of Areal Capacitance Values. Journal of the Electrochemical Society, 2023, 170, 030530.	2.9	0
2338	Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?. ACS Omega, 2023, 8, 8977-8990.	3.5	6
2339	Polyimide and polystyreneâ€based activated carbon nanofibers with tubular structure for supercapacitor. Polymers for Advanced Technologies, 2023, 34, 1990-2000.	3.2	0
2340	Laser Cutting Coupled with Electro-Exfoliation to Prepare Versatile Planar Graphene Electrodes for Energy Storage. International Journal of Molecular Sciences, 2023, 24, 5599.	4.1	1
2341	Fullerene nanowhisker nanocomposite—current stance and high-tech opportunities. Polymer-Plastics Technology and Materials, 2022, 61, 1908-1923.	1.3	3
2342	Nanocone—versatile nanofiller for cutting-edge polymeric nanocomposite. Polymer-Plastics Technology and Materials, 2022, 61, 989-1002.	1.3	2
2343	SecPB: Architectures for Secure Non-Volatile Memory with Battery-Backed Persist Buffers. , 2023, , .		0
2344	A high-energy/power and ultra-stable aqueous ammonium ion microbattery based on amorphous/crystalline dual-phase layered metal oxides. Chemical Engineering Journal, 2023, 464, 142600.	12.7	2
2345	Silo: Speculative Hardware Logging for Atomic Durability in Persistent Memory. , 2023, , .		1
2346	Direct ink writing of PEDOT:PSS inks for flexible micro-supercapacitors. Journal of Industrial and Engineering Chemistry, 2023, 123, 272-277.	5.8	2
2347	Microcrack Arrays in Dense Graphene Films for Fastâ€ŀonâ€Ðiffusion Supercapacitors. Small, 2023, 19, .	10.0	3
2348	Additive Engineering Enables Ionic-Liquid Electrolyte-Based Supercapacitors To Deliver Simultaneously High Energy and Power Density. ACS Sustainable Chemistry and Engineering, 2023, 11, 5685-5695.	6.7	11

#	Article	IF	Citations
2349	High-Capacitance γ-rGO/MXene Cathode and Rapid Na ⁺ -Transfer Dynamics Sodium Titanate Anode for a Quasi-Solid-State Sodium-Ion Capacitor. ACS Applied Energy Materials, 2023, 6, 4179-4190.	5.1	1
2350	Enhanced supercapacitor performance of Mg-doped SnO2 nanorods synthesized through the solvothermal method. Bulletin of Materials Science, 2023, 46, .	1.7	3
2351	High-frequency supercapacitors with phosphorus-doped Ketjen black. Journal of Energy Chemistry, 2023, 82, 464-474.	12.9	2
2352	Ultrasonically compactified thick MoS2 films with reduced nanosheet size for high performance compact energy storage. Journal of Power Sources, 2023, 571, 233060.	7.8	6
2353	Synthesis of magnetic activated carbon-supported cobalt(II) chloride derived from pecan shell (Aleurites moluccana) with co-precipitation method as the electrode in supercapacitors. Materials Science for Energy Technologies, 2023, 6, 429-436.	1.8	1
2354	9,10-phenanthrenequinone anchored on nitrogen-doped carbon nanotubes for symmetrical supercapacitors with enhanced performance. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
2355	Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials. International Journal of Molecular Sciences, 2023, 24, 7866.	4.1	3
2356	Synthesis and Electrochemical Applications of Carbon Nano-Onions. Current Nanoscience, 2023, 19, .	1.2	0
2357	Experimental study of a carbon-based planar supercapacitor in an aqueous electrolyte. Journal of Energy Storage, 2023, 66, 107399.	8.1	1
2358	New development in carbon-based electrodes and electrolytes for enhancement of supercapacitor performance and safety. , 2023, , 353-408.		1
2359	Recent Progress in Polyaniline and its Composites for Supercapacitors. Chemical Record, 2024, 24, .	5.8	10
2360	N-Doped Graphene-like Film/Silicon Structures as Micro-Capacitor Electrodes. Materials, 2023, 16, 4007.	2.9	1
2361	Microscopic-Level Insights into Solvation Chemistry for Nonsolvating Diluents Enabling High-Voltage/Rate Aqueous Supercapacitors. Journal of the American Chemical Society, 2023, 145, 13828-13838.	13.7	14
2362	Modulation of p―and nâ€Type Transitions in Co _{3â^'} <i>_x</i> Ni <i>_x</i> O ₄ Nanoparticles for Enhanced Supercapacitor Electrochemical Performance. Small, 2023, 19, .	10.0	1
2363	Selective laser carving-induced patterned electrodes for high-performance binder-free and substrate-free all-carbon-based micro-supercapacitors. Carbon, 2023, 213, 118177.	10.3	2
2364	Evolution of an Electrochemically Inactive Metal–Organic Framework to Reticulated Porous Carbon Particles with High Supercapacitance. Energy & Fuels, 0, , .	5.1	1
2365	Novel strategy for high-performance supercapacitors through the polyvinylpyrrolidone (PVP)-assisted <i>in situ</i> growth of FeS ₂ . Dalton Transactions, 2023, 52, 8685-8694.	3.3	2
2366	Uniform doping of onion-like carbon nanofillers in carbon nanofibers via functionalization and in-situ polymerization for improved fiber graphitic structure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674, 131874.	4.7	1

#	Article	IF	CITATIONS
2368	Metal-organic framework-mediated construction of confined ultrafine nickel phosphide immobilized in reduced graphene oxide with excellent cycle stability for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2023, 649, 616-625.	9.4	0
2369	Excellent electrochemical performance of all-solid-state planar on-chip micro-supercapacitors with narrow interdigital electrode configuration. Ferroelectrics, 2023, 609, 66-74.	0.6	1
2370	2D MXene integrated strategies: A bright future for supercapacitors. Journal of Energy Storage, 2023, 71, 107975.	8.1	7
2371	Synthesis of carbon nano-onions filled with γ-Fe and Gd/GdCl3: A candidate multifunctional system. Diamond and Related Materials, 2023, 137, 110158.	3.9	1
2372	Metal-organic framework (MOF) templated hierarchical Al-doped CoxPÂ@Âgraphene composite: A promising solid-state asymmetric supercapacitor with PANI derived carbon nanorods. Journal of Alloys and Compounds, 2023, 965, 171183.	5.5	13
2373	Synthesis of carbon spheres from glucose using the hydrothermal carbonization method for the fabrication of EDLCs. Diamond and Related Materials, 2023, 136, 110010.	3.9	4
2374	A comprehensive review on recent progress in carbon nano-onion based polymer nanocomposites. European Polymer Journal, 2023, 194, 112143.	5.4	7
2375	Review of Design Routines of MXene Materials for Magnesiumâ€lon Energy Storage Device. Small, 2023, 19, .	10.0	14
2376	Revealing Electrolytic Ion Sorption in Layered Graphene Galleries through Low-Temperature Solid-State NMR. Chemistry of Materials, 2023, 35, 3841-3848.	6.7	1
2377	Green biomass derived porous carbon materials for electrical double-layer capacitors (EDLCs). Materials Today Chemistry, 2023, 30, 101582.	3.5	8
2378	Recent advances and challenges of carbon nano onions (CNOs) for application in supercapacitor devices (SCDs). Journal of Energy Storage, 2023, 71, 107928.	8.1	5
2379	High capacitance performance of hierarchically SiO2 self-doped porous activated carbon derived from palm empty fruit bunches. Journal of Energy Storage, 2023, 71, 108153.	8.1	2
2380	Simple Synthesis of Carboxylate–Rich Porous Carbon Microspheres for High-Performance Supercapacitor Electrode Materials. International Journal of Electrochemical Science, 2013, 8, 7088-7098.	1.3	7
2381	Fabrication of NiO Nanowires/G Composite as Electrode Material for High Performance Supercapacitor. International Journal of Electrochemical Science, 2014, 9, 7206-7216.	1.3	25
2382	Preparation of a Highly Porous Binderless Activated Carbon Monolith from Rubber Wood Sawdust by a Multi-Step Activation Process for Application in Supercapacitors. International Journal of Electrochemical Science, 2011, 6, 3301-3315.	1.3	111
2383	Activated carbon prepared by hydrothermal pretreatment-assisted chemical activation of date seeds for supercapacitor application. Inorganic Chemistry Communication, 2023, 155, 111012.	3.9	7
2384	Three-dimensional organization of pyrrolo[3,2-b]pyrrole-based triazine framework using nanostructural spherical carbon: enhancing electrochemical performance of materials for supercapacitors. Scientific Reports, 2023, 13, .	3.3	3
2385	High electrochemical energy storage device via cation insertion kinetics in Cs3Bi2(Cl0.5l0.5)9@NiO composite electrodes with wide potential window. Materials Chemistry and Physics, 2023, 307, 128155.	4.0	0

#	Article	IF	Citations
2386	Enhancing energy storage capacity of supercapacitors via constructing a porous PPy/carbon cloth electrode by a template-assisted method. Journal of Energy Storage, 2023, 72, 108312.	8.1	1
2387	Recent advances of chitosan-based nanocomposites for supercapacitor applications: Key challenges and future research directions. Journal of Energy Storage, 2023, 72, 108344.	8.1	5
2388	Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors. ACS Nano, 2023, 17, 14974-14980.	14.6	5
2389	Flexible interdigitated symmetric solid-state micro-supercapacitors with higher energy density for wearable electronics. Journal of Power Sources, 2023, 581, 233489.	7.8	1
2390	Fabrication of carbon nanotube components using 3D printing: Review. Materials Today: Proceedings, 2023, , .	1.8	1
2391	Core–shell construction of metal@carbon by mechanochemically recycling plastic wastes: towards an efficient oxygen evolution reaction. Green Chemistry, 2023, 25, 8047-8056.	9.0	4
2392	Functionalized Carbon and Its Derivatives Dedicated to Supercapacitors in Industrial Applications. Materials Horizons, 2024, , 569-598.	0.6	0
2393	Metal–organic framework and graphene composites: advanced materials for electrochemical supercapacitor applications. Materials Advances, 2023, 4, 4679-4706.	5.4	1
2394	An Ultra‣owâ€Temperature Alternating Current Filter. Small, 0, , .	10.0	0
2395	Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. Materials, 2023, 16, 6549.	2.9	0
2396	MXenes: A comprehensive review of synthesis, properties, and progress in supercapacitor applications. Journal of Materiomics, 2023, 9, 1196-1241.	5.7	8
2397	Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Application. ACS Nano, 2023, 17, 20537-20550.	14.6	4
2398	Tailoring ion dynamics in energy storage conductors for ultra-stable, high-performance solid-state microsupercapacitor array. Chemical Engineering Journal, 2023, 472, 144903.	12.7	1
2399	Synergistic Effect of Nickel and Cobalt in Nanowire Array for High Energy Storage with Rapid Charge Transfer in Asymmetric Supercapacitor. ChemistrySelect, 2023, 8, .	1.5	1
2400	Laser-induced reduction and pattern regulation of graphene oxide film with high biosafety for wearable micro-supercapacitors. Journal of Alloys and Compounds, 2023, 969, 172285.	5.5	1
2401	Energy storage performance of in-situ grown titanium nitride current collector/titanium oxynitride laminated thin film electrodes. Chemical Engineering Journal, 2023, 474, 145603.	12.7	2
2402	Alpha-Ni(OH)2 nanoflakes incorporated on MOF derived ZnO hybrid Faradaic arrays for high-performance asymmetric supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 298, 116813.	3.5	3
2403	Optical, vibrational, electrical, and electrochemical studies of new plasticized methylcelluloseâ€based solid polymer electrolytes for supercapacitor application. Electrochemical Science Advances, 0, , .	2.8	Ο

#	Article	IF	CITATIONS
2404	A comprehensive review of carbon nanotube-based metal oxide nanocomposites for supercapacitors. Journal of Energy Storage, 2023, 73, 108847.	8.1	3
2405	Ultralong Cycle Life and High Rate of Zn‖I ₂ Battery Enabled by MBeneâ€Hosted I ₂ Cathode. Advanced Functional Materials, 2024, 34, .	14.9	3
2406	Low-cost micro-supercapacitors using porous Ni/MnO2 entangled pillars and Na-based ionic liquids. Energy Storage Materials, 2023, 63, 102986.	18.0	0
2407	Carbon Nano-Onion as Next-Generation Functional Nanomaterial: Synthesis Methods and Practical Applications. Functional Materials Letters, 0, , .	1.2	0
2408	Synthesis and Capacitive Properties of Mesoporous Tungsten Oxide Films Prepared by Ultrasonic Spray Deposition. ACS Omega, 0, , .	3.5	0
2409	Facile green synthesis of oxygen-functionalized carbon nano-onion from lignin and biochar and its application in high-performance polylactic acid. Journal of Cleaner Production, 2023, 428, 139361.	9.3	2
2410	Electrochemical sensor based on onion-like carbon (OLC) materials modified electrode for sensitive determination of 4-nitrophenol. International Journal of Electrochemical Science, 2023, 18, 100390.	1.3	0
2412	Multi-walled carbon nanotubes decorated ZnMoO4 nanoflakes and their supercapacitive property. Diamond and Related Materials, 2023, 140, 110551.	3.9	1
2413	Fabrication of Porous Heteroatomâ€Doped Carbon Networks via Polymerâ€Assisted Rapid Thermal Annealing. Advanced Functional Materials, 2024, 34, .	14.9	0
2414	Uniform Co9S8 nanosheets on carbon nanotube arrays grown on Ni mesh as free-standing electrodes for asymmetric supercapacitors. Diamond and Related Materials, 2024, 141, 110570.	3.9	0
2415	Nano-tablets and rods-shaped Fe and Ni oxide/hydroxide encapsulated graphene for asymmetric supercapacitor and OER applications. Journal of Energy Storage, 2023, 74, 109435.	8.1	1
2416	Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays. Nano Research, 2023, 16, 12849-12854.	10.4	0
2417	Integration of SrFeO3-δ with reduced graphene oxide nanoribbon for symmetric/asymmetric capacitive charge storage. Journal of Alloys and Compounds, 2024, 976, 173031.	5.5	3
2418	Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature, 2023, 624, 74-79.	27.8	3
2419	Applications for Energy Storage. , 2024, , 153-220.		0
2420	Analysis of the potential of nickel selenide micro-supercapacitors as energy storage device. Journal of Energy Storage, 2024, 76, 109722.	8.1	1
2421	Sustainable Ketjenblackâ€Based Carbon Ink for 3D Extrusion Microâ€Printing to Fabricate Flexible Supercapacitors. Batteries and Supercaps, 0, , .	4.7	0
2422	Analysis of carbon nano particle variant as the propellant fuel to increase specific impulses of rockets. F1000Research, 0, 12, 1414.	1.6	0

#	Article	IF	CITATIONS
2423	Analysis of carbon nano particle variant as the propellant fuel to increase specific impulses of rockets. F1000Research, 0, 12, 1414.	1.6	0
2424	Wood and PAN-derived hierarchically porous low-tortuosity carbon electrodes for high-areal-performance supercapacitors. Journal of Energy Storage, 2024, 78, 110014.	8.1	0
2426	Phosphorusâ€Doped Nickel Oxide Microâ€Supercapacitor: Unleashing the Power of Energy Storage for Miniaturized Electronic Devices. Small, 0, , .	10.0	1
2427	3D hierarchical NiCo2O4@Co3S4@MnS@PPy core-sheath nanowire arrays as high-performance electrode for all-solid-state asymmetric supercapacitors. Journal of Energy Storage, 2024, 79, 110130.	8.1	1
2428	Carbon nano-onions: Individualization and enhanced water dispersibility. Carbon, 2024, 218, 118760.	10.3	1
2429	Waste frying oil derived carbon nano-onions as a cost-effective cathode material for high-voltage zinc-ion hybrid supercapacitors. Materials Today Sustainability, 2024, 25, 100656.	4.1	1
2430	Manipulating the Curie point in γ-Fe filled carbon nano-onions: The role of Mn and Gd for enhanced magnetic functionalities. Materials Today Communications, 2024, 38, 108045.	1.9	0
2431	Boron, oxygen co-doped porous carbon derived from waste tires with enhanced hydrophilic interface as sustainably high-performance material for supercapacitors. Journal of Energy Storage, 2024, 80, 110320.	8.1	2
2432	Engineered MXene quantum dots for micro-supercapacitors with excellent capacitive behaviors. Nano Energy, 2024, 122, 109332.	16.0	0
2433	Anionâ€Regulated Sulfur Conversion in Highâ€Content Carbon Layer Confined Sulfur Cathode Maximizes Voltage and Rate Capability of K–S Batteries. Advanced Materials, 2024, 36, .	21.0	0
2434	Recent progress in electrode materials for micro-supercapacitors. IScience, 2024, 27, 108786.	4.1	0
2435	High-yield ramie derived carbon toward high-performance supercapacitors. Nano Energy, 2024, 120, 109147.	16.0	1
2436	"Graphene Bubble Bridging―Enabled Flexible Multifunctional Carbon Fiber Membrane Toward K ⁺ Storage Devices. Advanced Functional Materials, 2024, 34, .	14.9	0
2437	Electronic properties of zero-dimensional carbon–based nanomaterials. , 2024, , 185-248.		0
2438	Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. Advanced Materials, 0, , .	21.0	0
2440	Design of efficient, reliable, and wide-band filter electrochemical capacitors via matching positive with negative electrodes. Joule, 2024, 8, 764-779.	24.0	0
2441	Three-dimensional multi-layer carbon tube electrodes for AC line-filtering capacitors. Joule, 2024, 8, 1080-1091.	24.0	0
2442	Supercapacitor with Ultra-High power and energy density enabled by Nitrogen/Oxygen-Doped interconnected hollow carbon Nano-Onions. Chemical Engineering Journal, 2024, 484, 149663.	12.7	0

#	Article	IF	CITATIONS
2443	Performance optimization of bimetallic Co3(PO4)2@Ni3(PO4)2 electrodes for supercapacitive applications. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	0
2444	High-Performance Carbon from Recycled Mattress for Supercapacitor Devices. Engineering Materials, 2024, , 321-346.	0.6	0
2445	Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nature Materials, 2024, 23, 670-679.	27.5	0
2446	Nanocomposites of Carbon for Supercapacitors. Engineering Materials, 2024, , 301-320.	0.6	0
2447	Vascular System Inspired 3D Electrolyte Network for High Rate and High Mass Loading Graphene Supercapacitor. Advanced Functional Materials, 0, , .	14.9	0
2448	Heteroatom SiO2-N/S co-dopant on hierarchical meso/macroporous palm empty fruit bunches carbon for flexible solid-state supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 303, 117282.	3.5	0
2449	Deformable micro-supercapacitor fabricated via laser ablation patterning of Graphene/liquid metal. Npj Flexible Electronics, 2024, 8, .	10.7	0
2450	Structural Characteristics of Graphene Oxide Films Produced from an Intercalated Graphite Compound. Coke and Chemistry, 2023, 66, 622-629.	0.4	0
2451	Noncovalent Functionalization of Graphene Nanoplatelets and Their Applications in Supercapacitors. ACS Applied Materials & Interfaces, 2024, 16, 16630-16640.	8.0	0