Making flexible magnetic aerogels and stiff magnetic na nanofibrils as templates

Nature Nanotechnology 5, 584-588

DOI: 10.1038/nnano.2010.155

Citation Report

#	Article	IF	CITATIONS
2	Permeability and Diffusion through Mechanically Deformed Random Polymer Networks. Macromolecules, 2010, 43, 10117-10122.	4.8	32
4	Dry but flexible magnetic materials. Nature Nanotechnology, 2010, 5, 562-563.	31.5	9
5	Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules, 2011, 12, 1641-1650.	5.4	299
6	Highly Active Carbonaceous Nanofibers: A Versatile Scaffold for Constructing Multifunctional Free-Standing Membranes. ACS Nano, 2011, 5, 8148-8161.	14.6	117
7	Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. ACS Nano, 2011, 5, 1967-1974.	14.6	292
8	Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating. Journal of the American Chemical Society, 2011, 133, 6122-6125.	13.7	207
9	Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter, 2011, 7, 10360.	2.7	204
10	Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter, 2011, 7, 2402.	2.7	66
11	One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Advances, 2011, 1, 625.	3.6	105
12	Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764.	38.1	341
13	Tailoring Surface Properties of Paper Using Nanosized Precipitated Calcium Carbonate Particles. ACS Applied Materials & Interfaces, 2011, 3, 3725-3731.	8.0	20
15	Direct Fabrication of <i>all</i> -Cellulose Nanocomposite from Cellulose Microfibers Using Ionic Liquid-Based Nanowelding. Biomacromolecules, 2011, 12, 4080-4085.	5.4	105
16	Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Applied Materials & Interfaces, 2011, 3, 4024-4031.	8.0	103
17	A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale, 2011, 3, 3563.	5.6	80
18	Transparent Large-Strain Thermoplastic Polyurethane Magnetoactive Nanocomposites. ACS Applied Materials & Interfaces, 2011, 3, 2686-2693.	8.0	33
19	Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Applied Materials & Interfaces, 2011, 3, 1813-1816.	8.0	741
20	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	9.0	610
21	High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology, 2011, 71, 1593-1599.	7.8	479

#	Article	IF	CITATIONS
22	Bacterial Cellulose for Skin Repair Materials. , 0, , .		21
23	Production of Cellulose Nanofiber Reinforced Optically Transparent Film and Its Properties. Journal of the Adhesion Society of Japan, 2011, 47, 210-214.	0.0	1
24	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release, 2011, 156, 390-397.	9.9	128
25	Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination, 2011, 281, 429-437.	8.2	85
26	Superhydrophobic and Superoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil. Langmuir, 2011, 27, 1930-1934.	3.5	286
27	Ultraflexible plasmonic nanocomposite aerogel. RSC Advances, 2011, 1, 1265.	3.6	23
28	Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials, 2011, 21, 510-517.	14.9	240
29	Multifunctional Highâ€Performance Biofibers Based on Wetâ€Extrusion of Renewable Native Cellulose Nanofibrils. Advanced Materials, 2011, 23, 2924-2928.	21.0	246
30	Macroscale Elastomeric Conductors Generated from Hydrothermally Synthesized Metalâ€Polymer Hybrid Nanocable Sponges. Advanced Materials, 2011, 23, 3643-3647.	21.0	52
31	Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 2011, 166, 119-135.	14.7	547
32	Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71, 382-387.	7.8	152
33	A photopatternable superparamagnetic nanocomposite: Material characterization and fabrication of microstructures. Sensors and Actuators B: Chemical, 2011, 156, 433-443.	7.8	57
34	Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors and Actuators B: Chemical, 2011, 157, 554-559.	7.8	91
35	Cellulose nanofillers for food packaging. , 2011, , 86-107.		9
36	7 Processing of nanocellulose-based materials. , 0, , .		0
37	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	2.5	78
39	Composites of Cellulose and Metal Nanoparticles. , 0, , .		31
41	Conductive Photoswitchable Vanadium Oxide Nanopaper based on Bacterial Cellulose. ChemSusChem, 2012, 5, 2323-2327.	6.8	37

#	Article	IF	CITATIONS
42	Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	59
43	Direct observation of particle rearrangement during cyclic stress hardening of magnetorheological gels. Soft Matter, 2012, 8, 11995.	2.7	52
44	Magnetic Plasticineâ,,¢: a versatile magnetorheological material. Journal of Materials Chemistry, 2012, 22, 13395.	6.7	34
45	Facile preparation of robust and biocompatible chitin aerogels. Journal of Materials Chemistry, 2012, 22, 5801.	6.7	163
46	Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matter, 2012, 8, 8944.	2.7	33
47	Influence of adsorbed polyelectrolytes on pore size distribution of a water-swollen biomaterial. Soft Matter, 2012, 8, 4740.	2.7	27
48	Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale, 2012, 4, 7549.	5.6	86
49	Design of biocompatible magnetic pectin aerogel monoliths and microspheres. RSC Advances, 2012, 2, 9816.	3.6	58
50	Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential "Click―Reaction and Adsorption. Biomacromolecules, 2012, 13, 736-742.	5.4	116
51	Graphene-Oxide-Sheet-Induced Gelation of Cellulose and Promoted Mechanical Properties of Composite Aerogels. Journal of Physical Chemistry C, 2012, 116, 8063-8068.	3.1	135
52	In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Advances, 2012, 2, 1040-1046.	3.6	157
54	Zeta Potential Time Dependence Reveals the Swelling Dynamics of Wood Cellulose Nanofibrils. Langmuir, 2012, 28, 818-827.	3.5	45
55	Immobilization–Stabilization of Proteins on Nanofibrillated Cellulose Derivatives and Their Bioactive Film Formation. Biomacromolecules, 2012, 13, 594-603.	5.4	108
56	Controlled Release of Nanoparticles and Macromolecules from Responsive Microgel Capsules. ACS Nano, 2012, 6, 212-219.	14.6	79
57	Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. ACS Applied Materials & Interfaces, 2012, 4, 1043-1049.	8.0	299
58	Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. Journal of Materials Chemistry, 2012, 22, 11642.	6.7	218
59	Collagen based magnetic nanocomposites for oil removal applications. Scientific Reports, 2012, 2, 230.	3.3	148
60	A facile route for 3D aerogels from nanostructured 1D and 2D materials. Scientific Reports, 2012, 2, 849.	3.3	174

#	Article	IF	CITATIONS
61	Tough and Catalytically Active Hybrid Biofibers Wet-Spun From Nanochitin Hydrogels. Biomacromolecules, 2012, 13, 4205-4212.	5.4	61
62	Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 19014.	6.7	136
63	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	1.0	216
64	Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano, 2012, 6, 2693-2703.	14.6	1,034
65	Superparamagnetic cellulose fiber networks via nanocomposite functionalization. Journal of Materials Chemistry, 2012, 22, 1662-1666.	6.7	39
66	Towards Highâ€Performance Bioinspired Composites. Advanced Materials, 2012, 24, 5024-5044.	21.0	332
68	Interactions between inorganic nanoparticles and cellulose nanofibrils. Cellulose, 2012, 19, 779-792.	4.9	34
69	Double network hydrogel with high mechanical strength: Performance, progress and future perspective. Science China Technological Sciences, 2012, 55, 2241-2254.	4.0	52
70	Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydrate Polymers, 2012, 89, 551-557.	10.2	77
71	Cellulose–Silica Nanocomposite Aerogels by Inâ€Situ Formation of Silica in Cellulose Gel. Angewandte Chemie - International Edition, 2012, 51, 2076-2079.	13.8	314
72	Functional nanoparticles obtained from cellulose: engineering the shape and size of 6-carboxycellulose. Chemical Communications, 2013, 49, 8818.	4.1	54
73	Diverse applications of fibers surface-functionalized with nano- and microparticles. Composites Science and Technology, 2013, 79, 77-86.	7.8	6
74	Thermal Switching of the Reflection in Chiral Nematic Mesoporous Organosilica Films Infiltrated with Liquid Crystals. ACS Applied Materials & Interfaces, 2013, 5, 6854-6859.	8.0	63
75	An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules, 2013, 14, 248-253.	5.4	507
76	Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. Journal of Materials Chemistry A, 2013, 1, 7963.	10.3	143
77	Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. Journal of Materials Chemistry B, 2013, 1, 3477.	5.8	96
78	Imprinting of Photonic Patterns with Thermosetting Amino-Formaldehyde-Cellulose Composites. ACS Macro Letters, 2013, 2, 818-821.	4.8	88
79	Soy protein–nanocellulose composite aerogels. Cellulose, 2013, 20, 2417-2426.	4.9	85

#	Article	IF	CITATIONS
80	A step forward in metal nitride and carbide synthesis: from pure nanopowders to nanocomposites. Colloid and Polymer Science, 2013, 291, 1297-1311.	2.1	20
81	Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequencyâ€Dependent Pressure and Volume Flow. Advanced Functional Materials, 2013, 23, 3845-3849.	14.9	69
82	Highly transparent and writable wood all-cellulose hybrid nanostructured paper. Journal of Materials Chemistry C, 2013, 1, 6191.	5.5	117
83	High thermal stability of optical transparency in cellulose nanofiber paper. Applied Physics Letters, 2013, 102, .	3.3	112
84	Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers, 2013, 98, 1585-1598.	10.2	538
85	A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. Journal of Materials Chemistry A, 2013, 1, 6678.	10.3	138
86	Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydrate Polymers, 2013, 94, 278-285.	10.2	40
87	Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. Journal of Materials Chemistry A, 2013, 1, 15278.	10.3	104
88	A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. Journal of Polymer Research, 2013, 20, 1.	2.4	47
89	Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Composites Science and Technology, 2013, 87, 135-141.	7.8	55
90	Spatial deformation of nanocellulose hydrogel enhances SERS. Biochip Journal, 2013, 7, 234-241.	4.9	68
91	Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale, 2013, 5, 9289.	5.6	133
93	Multifunctional Fe3O4 nanoparticles-embedded poly(styrene)/poly(thiophene) core/shell composite particles. Synthetic Metals, 2013, 175, 56-61.	3.9	22
94	Sol–gel synthesis of zinc ferrite-based xerogel monoliths with well-defined macropores. RSC Advances, 2013, 3, 3661.	3.6	18
95	Microwave-assisted method for the synthesis of cellulose-based composites and their thermal transformation to Mn2O3. Industrial Crops and Products, 2013, 43, 751-756.	5.2	9
96	The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter, 2013, 9, 1319-1326.	2.7	103
97	lonically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	5.8	25
98	Cellulose nanocomposites based on silane reinforced 3-butynoate-substituted zirconium-oxocluster copolymers: Mechanical, thermal and hydrophobic properties. Progress in Organic Coatings, 2013, 76, 173-180.	3.9	5

#	Article	IF	CITATIONS
99	Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 2013, 92, 1432-1442.	10.2	440
100	Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method. Ultrasonics Sonochemistry, 2013, 20, 839-845.	8.2	34
101	Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers, 2013, 93, 172-177.	10.2	187
102	Cellulose nanofibers decorated with magnetic nanoparticles – synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. Journal of Materials Chemistry C, 2013, 1, 7963.	5.5	106
103	Cellulose Aerogel from Paper Waste for Crude Oil Spill Cleaning. Industrial & Engineering Chemistry Research, 2013, 52, 18386-18391.	3.7	291
104	Nanocellulose Aerogels Functionalized by Rapid Layerâ€byâ€Layer Assembly for High Charge Storage and Beyond. Angewandte Chemie - International Edition, 2013, 52, 12038-12042.	13.8	196
105	A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers, 2013, 97, 226-234.	10.2	253
106	Uniform Cu2Cl(OH)3 hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution. Journal of Solid State Chemistry, 2013, 204, 305-313.	2.9	43
107	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	21.0	1,249
108	Preparation of dry ultra-porous cellulosic fibres: Characterization and possible initial uses. Carbohydrate Polymers, 2013, 92, 775-783.	10.2	31
109	Self-assembled, robust titanate nanoribbon membranes for highly efficient nanosolid capture and molecule discrimination. Nanoscale, 2013, 5, 3486.	5.6	17
110	Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy. Applied Microbiology and Biotechnology, 2013, 97, 4353-4359.	3.6	23
111	Highly Transparent and Flexible Nanopaper Transistors. ACS Nano, 2013, 7, 2106-2113.	14.6	401
112	Nanostructured paper for flexible energy and electronic devices. MRS Bulletin, 2013, 38, 320-325.	3.5	199
113	Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences, 2013, 50, 69-77.	4.0	209
114	Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Advances, 2013, 3, 2248-2255.	3.6	87
115	Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. Journal of Materials Chemistry A, 2013, 1, 5469.	10.3	58
116	Nanobiocomposite Adhesion: Role of Graft Length and Temperature in a Hybrid Biomimetic Approach. Biomacromolecules, 2013, 14, 1003-1009.	5.4	11

#	Article	IF	CITATIONS
117	Reinforced plastics and aerogels by nanocrystalline cellulose. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	45
118	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	21.0	246
120	Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2, 138-145.	16.0	155
121	Magnetic-Responsive Hybrids of Fe ₃ O ₄ Nanoparticles with β-Lactoglobulin Amyloid Fibrils and Nanoclusters. ACS Nano, 2013, 7, 6146-6155.	14.6	66
122	High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 159-166.	4.7	40
123	Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures. Advanced Functional Materials, 2013, 23, 4423-4436.	14.9	160
124	Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 2013, 9, 2047.	2.7	294
125	Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 261, 53-60.	3.9	61
126	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3â^'xO4 nanolayers. Nanoscale, 2013, 5, 5561.	5.6	12
127	Zn5(OH)8Cl2·H2O sheets formed using cellulose as matrix via microwave-assisted method and its transformation to ZnO. Materials Letters, 2013, 92, 136-138.	2.6	18
128	Resin impregnation of cellulose nanofibril films facilitated by water swelling. Cellulose, 2013, 20, 303-313.	4.9	36
129	Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation. Advanced Healthcare Materials, 2013, 2, 1525-1531.	7.6	59
130	Ni–bacterial cellulose nanocomposite; a magnetically active inorganic–organic hybrid gel. RSC Advances, 2013, 3, 12765.	3.6	32
131	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	2.2	152
132	Magnetic nanoparticles. MRS Bulletin, 2013, 38, 899-903.	3.5	49
133	The Preparation and Characterization of Spherical Cellulose Aerogels with Core-Shell Structure. Advanced Materials Research, 0, 873, 701-707.	0.3	1
134	Nanocellulose Aerogels Functionalized by Rapid Layerâ€byâ€Layer Assembly for High Charge Storage and Beyond. Angewandte Chemie, 2013, 125, 12260-12264.	2.0	26
135	BIOREFINERY: Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nordic Pulp and Paper Research Journal, 2013, 28, 182-189.	0.7	63

ARTICLE IF CITATIONS # Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic 136 1.0 27 Starch Matrix. BioResources, 2014, 9, . Lightweight Foams and Aerogels of Biobased Nanofibers. Materials and Energy, 2014, , 121-137. 137 0.1 138 Aerogels of Cellulose and Chitin Crystals. Materials and Energy, 2014, , 139-161. 0.1 1 Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel. Optics Express, 2014, 22, 2584. Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. 140 258 6.8 ChemSusChem, 2014, 7, 154-161. Tunable Elastic Modulus of Nanoparticle Monolayer Films by Host–Guest Chemistry. Advanced 21.0 Materials, 2014, 26, 5056-5061. Stimuliâ€Responsive Nanocomposite: Potential Injectable Embolization Agent. Macromolecular Rapid 142 3.9 24 Communications, 2014, 35, 579-584. Synthesis and Characterization of Gelatinâ€Based Magnetic Hydrogels. Advanced Functional Materials, 143 14.9 114 2014, 24, 3187-3196. Renewable and Functional Wood Materials by Grafting Polymerization Within Cell Walls. 148 6.8 96 ChemSusChem, 2014, 7, 1020-1025. A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials 12.2 Horizons, 2014, 1, 69-73. Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl 151 10.2 40 hybrids. Carbohydrate Polymers, 2014, 99, 166-172. Influence of supercritical drying fluids on structures and properties of low-density Cu-doped SiO2 2.4 composite aerogels. Journal of Sol-Gel Science and Technology, 2014, 69, 407-411. Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose, 2014, 21, 153 4.9 75 1517-1528. Macroscopic Freeâ€standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice 154 13.8 184 Templating. Angewandte Chemie - International Edition, 2014, 53, 4561-4566. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and 155 4.7 217 Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 128-134. Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892. Synthesis of a novel supermagnetic iron oxide nanocomposite hydrogel based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) onto salep for controlled release of 157 7.3 41 drug. Materials Science and Engineering C, 2014, 36, 277-286. Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and 3.1 wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 279-286.

#	Article	IF	CITATIONS
159	Simultaneous Reinforcing and Toughening of Polyurethane via Grafting on the Surface of Microfibrillated Cellulose. ACS Applied Materials & amp; Interfaces, 2014, 6, 2497-2507.	8.0	107
160	Tailoring porosities and electrochemical properties of composites composed of microfibrillated cellulose and polypyrrole. RSC Advances, 2014, 4, 8489-8497.	3.6	15
161	Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Advances, 2014, 4, 17549.	3.6	129
162	In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration. Angewandte Chemie - International Edition, 2014, 53, 5380-5384.	13.8	186
163	Microbial polysaccharideâ€based membranes: Current and future applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	63
164	Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 2467-2476.	14.6	325
165	Recent advances in bacterial cellulose. Cellulose, 2014, 21, 1-30.	4.9	442
166	Celluloseâ€Based Biotemplated Silica Structuring. Advanced Engineering Materials, 2014, 16, 699-712.	3.5	16
167	An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids, 2014, 385, 55-74.	3.1	555
168	Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers, 2014, 101, 1043-1060.	10.2	354
169	Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43, 1519-1542.	38.1	1,244
170	Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. Journal of Materials Chemistry A, 2014, 2, 350-359.	10.3	232
171	Water-insoluble aerogels made from cellulose nanocrystals and poly(vinyl alcohol). Green Materials, 2014, 2, 169-182.	2.1	9
172	Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content. ACS Applied Materials & Interfaces, 2014, 6, 20524-20534.	8.0	17
173	Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose, 2014, 21, 4349-4358.	4.9	109
174	Multifunctional microparticles with uniform magnetic coatings and tunable surface chemistry. RSC Advances, 2014, 4, 62483-62491.	3.6	17
176	Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 383-396.	7.4	501
177	Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications. Dalton Transactions, 2014, 43, 6762.	3.3	46

#	Article	IF	CITATIONS
178	One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions. RSC Advances, 2014, 4, 31362.	3.6	32
179	A molecular dynamics study on pH response of protein adsorbed on peptide-modified polyvinyl alcohol hydrogel. Biomaterials Science, 2014, 2, 419-426.	5.4	23
180	In situ synthesis of flexible magnetic γ-Fe ₂ O ₃ @SiO ₂ nanofibrous membranes. Nanoscale, 2014, 6, 2102-2105.	5.6	26
181	Conformational changes of a single magnetic particle string within gels. Soft Matter, 2014, 10, 997-1005.	2.7	11
182	Strong Highly Anisotropic Magnetocellulose Nanocomposite Films Made by Chemical Peeling and In Situ Welding at the Interface Using an Ionic Liquid. ACS Applied Materials & Interfaces, 2014, 6, 8165-8172.	8.0	24
183	Microwave-assisted nonaqueous sol–gel synthesis of highly crystalline magnetite nanocrystals. Materials Chemistry and Physics, 2014, 148, 117-124.	4.0	26
184	Facile synthesis of magnetic nanocomposites of cellulose@ultrasmall iron oxide nanoparticles for water treatment. RSC Advances, 2014, 4, 22632-22641.	3.6	56
185	Controlled deposition of magnetic particles within the 3-D template of wood: making use of the natural hierarchical structure of wood. RSC Advances, 2014, 4, 35678-35685.	3.6	35
186	Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Advances, 2014, 4, 21553.	3.6	77
187	Microbeads and Hollow Microcapsules Obtained by Self-Assembly of Pickering Magneto-Responsive Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 16851-16858.	8.0	57
188	Luminescent and Transparent Nanopaper Based on Rare-Earth Up-Converting Nanoparticle Grafted Nanofibrillated Cellulose Derived from Garlic Skin. ACS Applied Materials & Interfaces, 2014, 6, 14945-14951.	8.0	52
189	Biodegradable Material for the Absorption of Organic Compounds and Nanoparticles. Biomacromolecules, 2014, 15, 3321-3327.	5.4	8
190	In Situ Synthesis of Hybrid Aerogels from Single-Walled Carbon Nanotubes and Polyaniline Nanoribbons as Free-Standing, Flexible Energy Storage Electrodes. Chemistry of Materials, 2014, 26, 1678-1685.	6.7	54
191	Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains. Chemistry of Materials, 2014, 26, 5161-5168.	6.7	45
192	NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chemical Communications, 2014, 50, 15673-15676.	4.1	29
193	Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose. Journal of Materials Chemistry C, 2014, 2, 6312-6318.	5.5	33
194	Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose, 2014, 21, 1859-1872.	4.9	49
195	Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 2014, 21, 2557-2566.	4.9	61

#	Article	IF	CITATIONS
196	Aerogels with 3D Ordered Nanofiber Skeletons of Liquid rystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angewandte Chemie - International Edition, 2014, 53, 10394-10397.	13.8	426
198	One-pot electrosynthesis of multi-layered magnetic metallopolymer nanocomposites. Nanoscale, 2014, 6, 4683.	5.6	11
199	Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Materials Horizons, 2014, 1, 321.	12.2	70
200	Responsive Mesoporous Photonic Cellulose Films by Supramolecular Cotemplating. Angewandte Chemie - International Edition, 2014, 53, 8880-8884.	13.8	147
201	Hybrid Wood Materials with Magnetic Anisotropy Dictated by the Hierarchical Cell Structure. ACS Applied Materials & Interfaces, 2014, 6, 9760-9767.	8.0	96
202	A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polymer Reviews, 2014, 54, 598-626.	10.9	126
204	3D Networked Grapheneâ€Ferromagnetic Hybrids for Fast Shape Memory Polymers with Enhanced Mechanical Stiffness and Thermal Conductivity. Small, 2014, 10, 3880-3886.	10.0	72
205	Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 2014, 5, 4018.	12.8	402
206	Threeâ€Dimensional Heteroatomâ€Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Advanced Functional Materials, 2014, 24, 5104-5111.	14.9	535
207	Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules, 2014, 15, 2540-2547.	5.4	186
211	Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials, 2015, 27, 6104-6109.	21.0	297
212	Bacterial cellulose composites: Synthetic strategies and multiple applications in bioâ€medical and electroâ€conductive fields. Biotechnology Journal, 2015, 10, 1847-1861.	3.5	124
213	Ambientâ€Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices. Advanced Functional Materials, 2015, 25, 6618-6626.	14.9	155
214	Strengthened Magnetoresistive Epoxy Nanocomposite Papers Derived from Synergistic Nanomagnetiteâ€Carbon Nanofiber Nanohybrids. Advanced Materials, 2015, 27, 6277-6282.	21.0	79
215	Highly Elastic and Conductive Nâ€Đoped Monolithic Graphene Aerogels for Multifunctional Applications. Advanced Functional Materials, 2015, 25, 6976-6984.	14.9	106
216	From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development. , 0, , .		7
217	Structural Characterization and Modifications of Surface-oxidized Cellulose Nanofiber. Journal of the Japan Petroleum Institute, 2015, 58, 365-375.	0.6	16
218	Effect of Plasma Processing Rate on Poplar Veneer Surface and its Application in Plywood. BioResources, 2015, 11, .	1.0	7

ARTICLE IF CITATIONS # Magnetic Cu0.5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose 219 4.9 29 nanocrystals. Cellulose, 2015, 22, 2571-2587. Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties. ACS Sustainable Chemistry 6.7 and Engineering, 2015, 3, 3346-3354. The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper 221 4.9 41 properties and furnish dewatering. Cellulose, 2015, 22, 4003-4015. Toad's egg-like cultivation process for forming microcarriers from nanofibrous hydrogel., 2015, 2015, Bio-inspired functional wood-based materials – hybrids and replicates. International Materials 223 19.3 98 Reviews, 2015, 60, 431-450. Carbon nanotube network varactor. Nanotechnology, 2015, 26, 045201. 2.6 Highly responsive core-shell microactuator arrays for use in viscous and viscoelastic fluids. Journal 225 2.6 9 of Micromechanics and Microengineering, 2015, 25, 025004. Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and 4.9 drying procedure. Cellúlose, 2015, 22, 1091-1102. A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing 227 21.0 185 Poly(ethylene glycol). Advanced Materials, 2015, 27, 2070-2076. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. 6.1 54 Applied Surface Science, 2015, 332, 565-572. Applications of bacterial cellulose and its composites in biomedicine. Applied Microbiology and 229 270 3.6 Biotechnology, 2015, 99, 2491-2511. Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications. Cellulose, 2015, 22, 717-727. 49 Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device. 231 3.6 37 RSC Advances, 2015, 5, 18601-18608. Transparent, Stimuliâ€Responsive Films from Celluloseâ€Based Organogel Nanoparticles. Advanced Functional Materials, 2015, 25, 1434-1441. 14.9 49 Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through 233 8.0 243 One-Step Coagulation. ACS Applied Materials & amp; Interfaces, 2015, 7, 2597-2606. Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. Journal of Materials Chemistry C, 2015, 3, 234 2511-2517. Cellulose nanofibril coreâ€"shell silica coatings and their conversion into thermally stable nanotube 235 10.3 38 aerogels. Journal of Materials Chemistry A, 2015, 3, 15745-15754. Synthesis of well-dispersed magnetic CoFe 2 O 4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method. Carbohydrate Polymers, 2015, 134, 144-150.

#	ARTICLE Facile Synthesis of Well-Dispersed Superparamagnetic Î ³ -Fe ₂ O ₃ Nanoparticles	IF	CITATIONS
237	Encapsulated in Three-Dimensional Architectures of Cellulose Aerogels and Their Applications for Cr(VI) Removal from Contaminated Water. ACS Sustainable Chemistry and Engineering, 2015, 3, 2142-2152.	6.7	107
238	Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustainable Chemistry and Engineering, 2015, 3, 1853-1859.	6.7	183
239	Mechanical property enhancement in laminates through control of morphology and crystal orientation. Journal Physics D: Applied Physics, 2015, 48, 295303.	2.8	15
240	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	12.8	379
241	Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels. Applied Physics A: Materials Science and Processing, 2015, 120, 341-347.	2.3	18
242	In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance. Scientific Reports, 2015, 5, 11336.	3.3	37
243	Three-dimensional porous carbon nanofiber networks decorated with cobalt-based nanoparticles: A robust electrocatalyst for efficient water oxidation. Carbon, 2015, 94, 680-686.	10.3	28
244	Chiral nematic porous germania and germanium/carbon films. Nanoscale, 2015, 7, 13215-13223.	5.6	28
245	Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9, 7296-7305.	14.6	204
246	Hydrothermal synthesis of magnetic wood composites and improved wood properties by precipitation with CoFe ₂ O ₄ /hydroxyapatite. RSC Advances, 2015, 5, 45919-45927.	3.6	27
247	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacre‣ike Structures. Advanced Engineering Materials, 2015, 17, 523-531.	3.5	15
248	Hierarchical wood cellulose fiber/epoxy biocomposites – Materials design of fiber porosity and nanostructure. Composites Part A: Applied Science and Manufacturing, 2015, 74, 60-68.	7.6	52
249	Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalystâ€Free Synthesis and its Application in Energy Storage Devices. Advanced Functional Materials, 2015, 25, 3193-3202.	14.9	262
250	Preparation of mechanically strong and lightweight cellulose aerogels from cellulose-NaOH/PEG solution. Journal of Sol-Gel Science and Technology, 2015, 74, 256-259.	2.4	24
251	Cellulose Gels and Microgels: Synthesis, Service, and Supramolecular Interactions. Advances in Polymer Science, 2015, , 209-251.	0.8	10
252	3 nm Thick Lignocellulose Nanofibers Obtained from Esterified Wood with Maleic Anhydride. ACS Macro Letters, 2015, 4, 80-83.	4.8	57
253	Supramolecular Polymer Networks and Gels. Advances in Polymer Science, 2015, , .	0.8	39
254	Insensitive High Cyclotrimethylenetrinitramine (RDX) Nanostructured Explosives Derived from Solvent/Nonsolvent Method in a Bacterial Cellulose (BC) Gelatin Matrix. Nano, 2015, 10, 1550033.	1.0	2

#	Article	IF	CITATIONS
255	Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano, 2015, 9, 3969-3977.	14.6	266
256	Fabrication of Silica Monoliths with Hierarchically Porous Structure from Freeze-Drying. Materials Science Forum, 0, 814, 76-80.	0.3	0
257	Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 2015, 44, 5821-5835.	38.1	247
258	Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	10.0	166
259	Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydrate Polymers, 2015, 126, 175-178.	10.2	64
260	Cross-linking of cellulose and poly(ethylene glycol) with citric acid. Reactive and Functional Polymers, 2015, 90, 21-24.	4.1	70
261	Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications. Scientific Reports, 2015, 5, 8839.	3.3	45
262	Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chemistry of Materials, 2015, 27, 7569-7572.	6.7	160
263	Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature. Ceramics International, 2015, 41, 14876-14885.	4.8	9
264	Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2015, 7, 20200-20207.	8.0	36
265	Facile preparation of folded structured single-walled carbon nanotube hybrid paper: Toward applications as flexible conductor and temperature-driven switch. Carbon, 2015, 95, 987-994.	10.3	18
266	Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. Journal of Materials Chemistry A, 2015, 3, 3224-3251.	10.3	90
267	Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. Journal of Applied Polymer Science, 2015, 132, .	2.6	44
268	Magnetic adsorbents based on micro- and nano-structured materials. RSC Advances, 2015, 5, 6695-6719.	3.6	135
269	Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chemical Communications, 2015, 51, 5432-5435.	4.1	33
270	Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydrate Polymers, 2015, 117, 950-956.	10.2	69
271	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	31.5	1,103
272	CNF-reinforced polymer aerogels: Influence of the synthesis variables and economic evaluation. Chemical Engineering Journal, 2015, 262, 691-701.	12.7	20

#	Article	IF	CITATIONS
273	Synthesis of monolithic aerogel-like alumina via the accumulation of mesoporous hollow microspheres. Microporous and Mesoporous Materials, 2015, 202, 234-240.	4.4	27
274	Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012027.	0.6	4
275	Biomaterial Wood: Wood-Based and Bioinspired Materials. , 2016, , 259-281.		6
276	Bacterial NanoCellulose Aerogels. , 2016, , 73-108.		4
277	Construction of Fluorescent Cellulose Biobased Plastics and their Potential Application in Anti-Counterfeiting Banknotes. Macromolecular Materials and Engineering, 2016, 301, 377-382.	3.6	14
278	Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polymer Composites, 2016, 37, 1137-1142.	4.6	38
279	Ultrarobust Transparent Cellulose Nanocrystalâ€Graphene Membranes with High Electrical Conductivity. Advanced Materials, 2016, 28, 1501-1509.	21.0	280
280	Magnetic property of oriented films of cellulose nanocrystal/carrageenan composites containing iron oxide nanoparticles: Effect of anisotropic aggregation of the nanoparticles. Polymer, 2016, 99, 147-156.	3.8	14
281	Electrically Activated Paper Actuators. Advanced Functional Materials, 2016, 26, 2446-2453.	14.9	135
282	Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review. Journal of Renewable Materials, 2016, 4, 297-312.	2.2	85
283	Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydrate Polymers, 2016, 150, 172-179.	10.2	131
284	A facile pathway for the incorporation of silica into cellulose aerogels with increased optical transmittance. Materials Technology, 2016, 31, 549-556.	3.0	5
285	CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions. Carbon, 2016, 106, 84-92.	10.3	134
286	Aligned Bacterial Cellulose Arrays as "Green―Nanofibers for Composite Materials. ACS Macro Letters, 2016, 5, 1070-1074.	4.8	53
287	Magnetic Mesoporous Photonic Cellulose Films. Langmuir, 2016, 32, 9329-9334.	3.5	14
288	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	3.6	20
289	Tuning the mechanical properties of cellulose nanofibrils reinforced polyvinyl alcohol composites via altering the cellulose polymorphs. RSC Advances, 2016, 6, 83356-83365.	3.6	21
290	Aerogels: Cellulose-Based. , 2016, , 37-75.		3

#	Article	IF	CITATIONS
291	Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 2016, 93, 547-556.	7.5	89
292	Shape-programmable magnetic soft matter. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6007-E6015.	7.1	438
293	Coherent-Interface-Assembled Ag ₂ O-Anchored Nanofibrillated Cellulose Porous Aerogels for Radioactive Iodine Capture. ACS Applied Materials & Interfaces, 2016, 8, 29179-29185.	8.0	68
294	Mechanically Viscoelastic Properties of Cellulose Nanocrystals Skeleton Reinforced Hierarchical Composite Hydrogels. ACS Applied Materials & Interfaces, 2016, 8, 25621-25630.	8.0	71
295	Efficient Lightweight Supercapacitor with Compression Stability. Advanced Functional Materials, 2016, 26, 6437-6445.	14.9	123
296	Multifunctional Applications of Nanocellulose-Based Nanocomposites. , 2016, , 177-204.		8
297	Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures. Advanced Materials Technologies, 2016, 1, 1600096.	5.8	118
298	Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Applied Materials & Interfaces, 2016, 8, 33608-33618.	8.0	138
299	Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Science China Chemistry, 2016, 59, 1335-1341.	8.2	45
300	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.	47.7	1,110
301	Effects of freeze-drying conditions on aerogel properties. Journal of Materials Science, 2016, 51, 8977-8985.	3.7	46
302	Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced Materials, 2016, 28, 9400-9407.	21.0	457
303	Synthesis and <i>in vitro</i> safety assessment of magnetic bacterial cellulose with porcine aortic smooth muscle cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2801-2809.	4.0	7
304	Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis. Scientific Reports, 2016, 6, 32451.	3.3	7
305	Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electronic Materials Letters, 2016, 12, 574-579.	2.2	19
306	Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles. Journal of Visualized Experiments, 2016, , .	0.3	24
307	Actuating Soft Matter with Magnetic Torque. Advanced Functional Materials, 2016, 26, 3859-3880.	14.9	198
308	A highly sensitive, highly transparent, gel-gated MoS ₂ phototransistor on biodegradable nanopaper. Nanoscale, 2016, 8, 14237-14242.	5.6	38

ARTICLE IF CITATIONS Nanofibril Alignment in Flow Focusing: Measurements and Calculations. Journal of Physical 309 2.6 32 Chemistry B, 2016, 120, 6674-6686. Aerogels for thermal insulation in high-performance textiles. Textile Progress, 2016, 48, 55-118. 311 Use of nanocellulose in printed electronics: a review. Nanoscale, 2016, 8, 13131-13154. 5.6 367 3D Selfâ€6upporting Porous Magnetic Assemblies for Water Remediation and Beyond. Advanced Energy Materials, 2016, 6, 1600473. Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled 313 6.7 99 Regeneration Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 656-660. Magnetic mesoporous iron oxide/silica composite aerogels with high adsorption ability for organic pollutant removal. Journal of Porous Materials, 2016, 23, 655-661. 2.6 16 Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. 315 10.3 141 Journal of Materials Chemistry A, 2016, 4, 2069-2074. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. 99 Materials and Design, 2016, 92, 345-355. 317 Plasmonic Biofoam: A Versatile Optically Active Material. Nano Letters, 2016, 16, 609-616. 9.1 161 Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science, 2016, 51, 5573-5588. Synthesis of highly porous SiO 2 –(WO 3) x ·TiO 2 composite aerogels using bacterial cellulose as 319 12.7 25 témplate with solvothermal assisted crystallization. Chemical Engineering Journal, 2016, 292, 105-112. Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. 5.2 Industrial Crops and Products, 2016, 93, 203-211. Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil 321 2.3 16 adsorption properties. Applied Physics A: Materials Science and Processing, 2016, 122, 1. Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive 10.2 response. Carbohydrate Polymers, 2016, 143, 188-197. Highly Absorbing Antimicrobial Biofoams Based on Wheat Gluten and Its Biohybrids. ACS Sustainable 323 6.7 41 Chemistry and Engineering, 2016, 4, 2395-2404. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and 324 134 Post-Cross-Linking Method. ACS Applied Materials & amp; Interfaces, 2016, 8, 643-650. Surface-Functionalization of Nanostructured Cellulose Aerogels by Solid State Eumelanin Coating. 325 5.445 Biomacromolecules, 2016, 17, 564-571. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 2016, 18, 53-75.

#	Article	IF	CITATIONS
327	Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohydrate Polymers, 2016, 137, 726-731.	10.2	39
328	Aerogels and Foamed Nanostructured Polymer Blends. , 2016, , 75-99.		7
329	Spinel ferrite oxide semiconductor gas sensors. Sensors and Actuators B: Chemical, 2016, 222, 95-105.	7.8	360
330	Magnetic property, thermal stability, UV-resistance, and moisture absorption behavior of magnetic wood composites. Polymer Composites, 2017, 38, 1646-1654.	4.6	9
331	Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole. Carbohydrate Polymers, 2017, 161, 158-165.	10.2	56
332	Multifunctional Cellulosic Scaffolds from Modified Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2017, 9, 2010-2015.	8.0	69
333	Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692.	6.7	100
334	Bacterial Nanocellulose Magnetically Functionalized for Neuroâ€Endovascular Treatment. Macromolecular Bioscience, 2017, 17, 1600382.	4.1	31
335	Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydrate Polymers, 2017, 163, 101-107.	10.2	35
336	Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. International Journal of Biological Macromolecules, 2017, 99, 29-36.	7.5	21
337	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	5.4	57
340	Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper. Scientific Reports, 2017, 7, 43898.	3.3	12
341	Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nature Nanotechnology, 2017, 12, 474-480.	31.5	134
342	Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Letters, 2017, 17, 1439-1447.	9.1	219
343	Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sensors and Actuators B: Chemical, 2017, 245, 946-953.	7.8	80
344	Self-Assembly-Directed Aerogel and Membrane Formation from a Magnetic Composite: An Approach to Developing Multifunctional Materials. ACS Applied Materials & Interfaces, 2017, 9, 7619-7628.	8.0	12
345	3D network of cellulose-based energy storage devices and related emerging applications. Materials Horizons, 2017, 4, 522-545.	12.2	261
346	Physical and tensile properties of epoxy laminated magnetic bacterial cellulose nanocomposite films. Journal of Applied Polymer Science, 2017, 134, 45118.	2.6	13

#	Article		CITATIONS
348	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	16.0	117
349	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 17155-17162.	8.0	124
350	Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. Biomacromolecules, 2017, 18, 1947-1955.	5.4	29
351	Ultrastrong and Bioactive Nanostructured Bio-Based Composites. ACS Nano, 2017, 11, 5148-5159.	14.6	146
352	Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydrate Polymers, 2017, 170, 72-79.	10.2	43
353	An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 13976-13982.	10.3	53
354	Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. Langmuir, 2017, 33, 5707-5712.	3.5	43
355	Sacrificial template method for the synthesis of three-dimensional nanofibrous 58S bioglass scaffold and its inÂvitro bioactivity and cell responses. Journal of Biomaterials Applications, 2017, 32, 265-275.	2.4	22
356	An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. International Journal of Biological Macromolecules, 2017, 103, 1232-1256.	7.5	131
357	Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 2017, 104, 97-106.	7.5	457
358	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	6.7	308
359	Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation. Small, 2017, 13, 1700331.	10.0	24
360	Synthesis of a selfâ€assembled Mn 3 O 4 nanostructure aerogel for the adsorption and oxidative carbonylation of phenol to diphenyl carbonate. Micro and Nano Letters, 2017, 12, 30-34.	1.3	3
361	Carboxylated-nanoncellulose as a template for the synthesis of silver nanoprism. Applied Surface Science, 2017, 422, 32-38.	6.1	19
362	Cellulose Fibers Constructed Convenient Recyclable 3D Graphene-Formicary-like δ-Bi ₂ O ₃ Aerogels for the Selective Capture of Iodide. ACS Applied Materials & Interfaces, 2017, 9, 20554-20560.	8.0	38
363	Bacterial cellulose based flexible multifunctional nanocomposite sheets. Cellulose, 2017, 24, 3341-3351.	4.9	17
364	Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying. Journal of Supercritical Fluids, 2017, 127, 137-145.	3.2	74
365	Fast and Minimalâ€Solvent Production of Superinsulating Silica Aerogel Granulate. Angewandte Chemie, 2017, 129, 4831-4834.	2.0	14

#	Article		CITATIONS
366	Fast and Minimalâ€Solvent Production of Superinsulating Silica Aerogel Granulate. Angewandte Chemie - International Edition, 2017, 56, 4753-4756.	13.8	99
367	3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Scientific Reports, 2017, 7, 45914.	3.3	114
368	Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films. Journal of Materials Science, 2017, 52, 6093-6099.	3.7	19
369	Preparation of cellulose hydrogels via self-assembly in DMAc/LiCl solutions and study of their properties. Polymer Science - Series A, 2017, 59, 76-87.	1.0	12
370	Bistable thermo-chromic and magnetic spin crossover microcrystals embedded in nata de coco bacterial cellulose biofilm. Cellulose, 2017, 24, 2205-2213.	4.9	11
371	A novel magnetically recyclable silver-loaded cellulose-based bionanocomposite catalyst for green synthesis of tetrazolo[1,5-a]pyrimidines. Research on Chemical Intermediates, 2017, 43, 5485-5494.	2.7	88
372	A reusable surface-quaternized nanocellulose-based hybrid cryogel loaded with N-doped TiO ₂ for self-integrated adsorption/photo-degradation of methyl orange dye. RSC Advances, 2017, 7, 17279-17288.	3.6	24
373	Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy, 2017, 34, 541-548.	16.0	128
374	Progress on nanocrystalline cellulose biocomposites. Reactive and Functional Polymers, 2017, 112, 9-21.	4.1	51
375	Soft Actuators for Small cale Robotics. Advanced Materials, 2017, 29, 1603483.	21.0	973
376	Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. Journal of Alloys and Compounds, 2017, 697, 138-146.	5.5	66
377	Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. Journal of Materials Research, 2017, 32, 4153-4165.	2.6	54
378	Programming the mechanics of cohesive fiber networks by compression. Soft Matter, 2017, 13, 8886-8893.	2.7	23
379	Transparent Cellulose–Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol–Gel Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 11117-11123.	6.7	81
380	Enzymeâ€Driven Hasselbackâ€Like DNAâ€Based Inorganic Superstructures. Advanced Functional Materials, 2017, 27, 1704213.	14.9	33
381	Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites. Iranian Polymer Journal (English Edition), 2017, 26, 681-691.	2.4	13
382	Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates. ACS Nano, 2017, 11, 9898-9905.	14.6	38
383	Smart Cellulose Nanofluids Produced by Tunable Hydrophobic Association of Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2017, 9, 31095-31101.	8.0	34

IF CITATIONS ARTICLE # Macroscopicâ€6cale Threeâ€Dimensional Carbon Nanofiber Architectures for Electrochemical Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700826. 384 19.5 152Ultrafine Silk-Derived Nanofibrous Membranes Exhibiting Effective Lysozyme Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 8777-8784. Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from 386 4.9 64 bamboo, softwood, and hardwood pulps. Cellulose, 2017, 24, 4831-4844. Review of recent research on flexible multifunctional nanopapers. Nanoscale, 2017, 9, 15181-15205. Robust and smart hydrogels based on natural polymers. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rgBT /Overlack 10 Tf 388

389	Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9, 14758-14781.	5.6	198
390	Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures. Scientific Reports, 2017, 7, 8018.	3.3	155
391	Synthesis and magnetic properties of bacterial cellulose—ferrite (MFe ₂ O ₄ ,) Tj ETQq Nanoscience and Nanotechnology, 2017, 8, 035005.	1 1 0.784 1.5	-314 rgBT 6
392	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748.	13.8	140
393	Pickering high internal phase emulsions stabilized by worm-like polymeric nanoaggregates. Polymer Chemistry, 2017, 8, 5474-5480.	3.9	43
394	Branched Aramid Nanofibers. Angewandte Chemie, 2017, 129, 11906-11910.	2.0	14
395	Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics. ACS Applied Materials & Interfaces, 2017, 9, 26438-26446.	8.0	52
397	Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose, 2017, 24, 4433-4448.	4.9	149
398	Synthesis of SiO2–W x TiO2 composite aerogels via solvothermal crystallization under the guidance of bacterial cellulose followed by freeze drying method. Journal of Sol-Gel Science and Technology, 2017, 84, 42-50.	2.4	12
399	Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Applied Materials & Interfaces, 2017, 9, 29082-29092.	8.0	99
400	Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties. Cellulose, 2017, 24, 3789-3801.	4.9	18
401	Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 29812-29819.	8.0	119
402	Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohydrate Polymers, 2017, 175, 425-432.	10.2	44

#	Article	IF	CITATIONS
403	Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A, 2017, 5, 18397-18402.	10.3	257
404	Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano, 2017, 11, 12008-12019.	14.6	107
405	Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels. Journal of Sol-Gel Science and Technology, 2017, 84, 475-485.	2.4	71
406	Co ₉ S ₈ activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction. RSC Advances, 2017, 7, 34763-34769.	3.6	11
407	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	4.9	55
408	Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose, 2017, 24, 3943-3954.	4.9	63
409	A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass. Biomacromolecules, 2017, 18, 2333-2342.	5.4	124
410	Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors. Scientific Reports, 2017, 7, 4317.	3.3	30
411	Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.4	17
412	Nanocellulose-Based Functional Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 69-87.	0.4	1
413	Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs. Carbohydrate Polymers, 2017, 155, 525-534.	10.2	31
414	One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Materials Letters, 2017, 187, 170-172.	2.6	49
415	Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC - Trends in Analytical Chemistry, 2017, 87, 1-18.	11.4	59
416	A Scientometric Analysis of Aerogel Research in 1996-2015. , 2017, , .		0
417	7. Processing of nanocellulose-based materials. , 2017, , 351-418.		3
418	Synthesis and applications of cellulose nanohybrid materials. , 2017, , 289-320.		4
419	Synthesis and Characterization of Cellulose Nanofibril-Reinforced Polyurethane Foam. Polymers, 2017, 9, 597.	4.5	39
420	Structure and Properties of Cellulose and Nanocellulose. , 2017, , 27-40.		2

#	Article	IF	CITATIONS
421	Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance. Biomimetics, 2017, 2, 23.	3.3	23
422	One-Step Preparation of Graphene Oxide/Cellulose Nanofibril Hybrid Aerogel for Adsorptive Removal of Four Kinds of Antibiotics. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	18
424	Hierarchical Materials. , 2017, , 545-574.		6
425	Nanocellulose as a template for the production of advanced nanostructured material. , 2017, , 427-454.		3
426	Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 2018, 30, e1704285.	21.0	341
427	Aerogels Derived from Polymer Nanofibers and Their Applications. Macromolecular Rapid Communications, 2018, 39, e1700724.	3.9	64
428	Catalytically Active Bacterial Nanocelluloseâ€Based Ultrafiltration Membrane. Small, 2018, 14, e1704006.	10.0	59
429	Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5524-5532.	6.7	38
430	Cooperative catalysis of cellulose nanofiber and organocatalyst in direct aldol reactions. Scientific Reports, 2018, 8, 4098.	3.3	18
431	Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 2018, 20, 1571-1582.	9.0	243
432	Liquid-phase synthesis of Ni nanowire/cellulose hybrid structure. Japanese Journal of Applied Physics, 2018, 57, 02CA09.	1.5	2
433	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	21.0	493
434	Interfacial Hydrolysis of Acetals on Protonated TEMPO-oxidized Cellulose Nanofibers. Scientific Reports, 2018, 8, 5021.	3.3	20
435	A facile template approach to preparing stable NFC/Ag/polyaniline nanocomposites for imparting multifunctionality to paper. Carbohydrate Polymers, 2018, 194, 97-102.	10.2	10
436	Photochemical ligation meets nanocellulose: a versatile platform for self-reporting functional materials. Materials Horizons, 2018, 5, 560-568.	12.2	25
437	Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydrate Polymers, 2018, 189, 371-378.	10.2	120
438	Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Applied Materials & Interfaces, 2018, 10, 5030-5037.	8.0	191
439	Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures. ACS Nano, 2018, 12, 2222-2230.	14.6	272

#	Article	IF	CITATIONS
440	Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale, 2018, 10, 3805-3812.	5.6	65
441	All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 2018, 10, 4085-4095.	5.6	87
442	Cellulose Nanopapers. , 2018, , 121-173.		15
443	Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 2018, 6, 864-883.	5.8	127
444	Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 2018, 338, 1-7.	12.7	87
445	Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. Journal of Hazardous Materials, 2018, 346, 199-207.	12.4	165
446	Producing a magnetically anisotropic soft material: synthesis of iron oxide nanoparticles in a carrageenan/PVA matrix and stretching of the hybrid gelatinous bulk. Polymer Journal, 2018, 50, 251-260.	2.7	12
447	Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydrate Polymers, 2018, 186, 176-183.	10.2	17
448	Biopolymerâ€Aerogele und â€5chäme: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 2018, 130, 7704-7733.	2.0	21
449	Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 2018, 57, 7580-7608.	13.8	470
450	Ecofriendly Fruit Switches: Graphene Oxide-Based Wrapper for Programmed Fruit Preservative Delivery To Extend Shelf Life. ACS Applied Materials & Interfaces, 2018, 10, 18478-18488.	8.0	32
451	Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.	6.7	41
452	Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose, 2018, 25, 2915-2924.	4.9	18
453	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	38.1	586
454	Magnetically responsive and flexible bacterial cellulose membranes. Carbohydrate Polymers, 2018, 192, 251-262.	10.2	34
455	Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation – A nanoscale study. Journal of Colloid and Interface Science, 2018, 512, 638-646.	9.4	10
456	Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polymer Chemistry, 2018, 9, 860-868.	3.9	48
457	Green Synthesis of Fe3O4/Cellulose/Polyvinyl Alcohol Hybride Aerogel and Its Application for Dye Removal. Journal of Polymers and the Environment, 2018, 26, 2234-2242.	5.0	53

#	Article		CITATIONS
458	Amyloid Templated Organic–Inorganic Hybrid Aerogels. Advanced Functional Materials, 2018, 28, 1703609.	14.9	39
459	Polymer brush guided templating on well-defined rod-like cellulose nanocrystals. Polymer Chemistry, 2018, 9, 1650-1657.	3.9	39
460	Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 927-936.	6.7	120
461	Production and Characterization of Bacterial Cellulose with Different Nutrient Source and Surface–Volume Ratios. Drvna Industrija, 2018, 69, 141-148.	0.6	11
462	EurOgels: A ferromagnetic semiconductor with a porous structure prepared <i>via</i> the assembly of hybrid nanorods. Nanoscale, 2018, 10, 19272-19276.	5.6	3
464	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	47.7	1,008
465	White magnetic paper based on a bacterial cellulose nanocomposite. Journal of Materials Chemistry C, 2018, 6, 11427-11435.	5.5	30
467	Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules, 2018, 19, 4411-4422.	5.4	20
468	Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Advanced Materials, 2018, 30, e1803430.	21.0	124
469	Development of ultralight nanocellulose magnets using ultrasonic agitation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 061801.	1.2	0
470	Luminescent and Transparent Nanocellulose Films Containing Europium Carboxylate Groups as Flexible Dielectric Materials. ACS Applied Nano Materials, 2018, 1, 4972-4979.	5.0	33
471	A facile and rapid sonochemical synthesis of monodispersed Fe ₃ O ₄ @cellulose nanocrystal nanocomposites without inert gas protection. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2209.	1.5	16
472	Emerging Carbonâ€Nanofiber Aerogels: Chemosynthesis versus Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 15646-15662.	13.8	92
473	Kohlenstoffnanofaserâ€Aerogele: Vergleich von Chemosynthese und Biosynthese. Angewandte Chemie, 2018, 130, 15872-15889.	2.0	8
474	Magnetic torsional actuation of carbon nanotube yarn artificial muscle. RSC Advances, 2018, 8, 17421-17425.	3.6	17
475	Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science, 2018, 85, 1-56.	24.7	312
476	Grafted Nanocellulose as an Advanced Smart Biopolymer. , 2018, , 521-549.		2
477	Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose, 2018, 25, 4525-4536.	4.9	27

		CITATION R	REPORT	
#	Article		IF	CITATIONS
478	"Zylon―Aerogels. Macromolecular Materials and Engineering, 2018, 303, 1800229.		3.6	11
479	Recent developments in nanocellulose-based biodegradable polymers, thermoplastic poly porous nanocomposites. Progress in Polymer Science, 2018, 87, 197-227.	mers, and	24.7	350
480	Mesoscale self-assembly of reactive monomicelles: General strategy toward phloroglucinol-formaldehyde aerogels with ordered mesoporous structures and enhanced mechanical properties. Journal of Colloid and Interface Science, 2018, 532, 77-82.	1	9.4	6
481	Facile Fabrication of Large-Scale Porous and Flexible Three-Dimensional Plasmonic Netwo Applied Materials & amp; Interfaces, 2018, 10, 28242-28249.	rks. ACS	8.0	12
482	Biopolymer as Stabilizer and Adhesive To in Situ Precipitate CuS Nanocrystals on Cellulos for Preparing Multifunctional Composite Papers. ACS Omega, 2018, 3, 8083-8090.	e Nanofibers	3.5	18
483	Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis visible light. Environmental Science: Nano, 2018, 5, 2129-2143.	under	4.3	27
484	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30	,e1801588.	21.0	249
485	Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria. , 2018, , 1-43.			1
487	Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low veorganic transistors. Nature Communications, 2018, 9, 2737.	oltage	12.8	126
488	Aerogel templating on functionalized fibers of nanocellulose networks. Materials Chemist Frontiers, 2018, 2, 1655-1663.	try	5.9	9
489	Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to cell retention in tissue-engineering vascular grafts. Acta Biomaterialia, 2018, 77, 172-181) improve •	8.3	56
490	Enhanced Water Retention Maintains Energy Dissipation in Dehydrated Metal-Coordinate Networks: Another Role for Fe-Catechol Cross-Links?. Chemistry of Materials, 2018, 30, 3		6.7	34
491	Simultaneously depositing polyaniline onto bacterial cellulose nanofibers and graphene n toward electrically conductive nanocomposites. Current Applied Physics, 2018, 18, 933-9		2.4	38
492	Functional nanomaterials through esterification of cellulose: a review of chemistry and ap Cellulose, 2018, 25, 3703-3731.	plication.	4.9	160
493	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric C 2018, , 1-28.	Composites,	0.6	0
494	Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a p flexible lightweight strain sensor. Carbohydrate Polymers, 2018, 201, 228-235.	otentially	10.2	108
495	Efficient, Selfâ€Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidat Pickering Emulsions. ChemSusChem, 2018, 11, 3581-3585.	ion in	6.8	20
496	Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for electromagnetic interference shielding. Materials and Design, 2018, 159, 47-56.	ultra-high	7.0	37

#	Article	IF	CITATIONS
497	Green Synthesis of Ant Nest-Inspired Superelastic Silicone Aerogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 11222-11227.	6.7	22
498	Half-metallicity in two-dimensional Co ₂ Se ₃ monolayer with superior mechanical flexibility. 2D Materials, 2018, 5, 045026.	4.4	29
499	Magnetic Nanofibers: Unique Properties, Fabrication Techniques, and Emerging Applications. ChemistrySelect, 2018, 3, 9127-9143.	1.5	36
500	A facile preparation strategy for conductive and magnetic agarose hydrogels with reversible restorability composed of nanofibrillated cellulose, polypyrrole, and Fe3O4. Cellulose, 2018, 25, 4565-4575.	4.9	16
501	A Rapid Synthesis Method for Au, Pd, and Pt Aerogels Via Direct Solution-Based Reduction. Journal of Visualized Experiments, 2018, , .	0.3	4
502	Influences of solvothermal-assisted crystallization process on the microstructure and properties of SiO2-W0.02TiO2.06 composite aerogels synthesized via ambient pressure drying. Journal of Sol-Gel Science and Technology, 2019, 92, 101-115.	2.4	5
503	Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging. RSC Advances, 2019, 9, 15668-15677.	3.6	15
504	Magnetic Cellulose Green Nanocomposite Adsorbents for the Removal of Heavy Metal Ions in Water/Wastewater. Materials Horizons, 2019, , 423-437.	0.6	0
505	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	4.9	15
506	Gas Permeability of Cellulose Aerogels with a Designed Dual Pore Space System. Molecules, 2019, 24, 2688.	3.8	10
507	Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. Journal of Membrane Science, 2019, 591, 117312.	8.2	44
508	Facile preparation of cellulose-SiO2 composite aerogels with high SiO2 contents using a LiBr aqueous solution. Carbohydrate Polymers, 2019, 222, 114975.	10.2	13
509	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.6	11
510	Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation. ACS Applied Bio Materials, 2019, 2, 4249-4257.	4.6	25
511	Bacterial cellulose as promising biomaterial and its application. , 2019, , 263-277.		10
513	Dipolar Magnetic Interactions in Mn-Doped Magnetite Nanoparticles Loaded into PLGA Nanocapsules for Nanomedicine Applications. Journal of Physical Chemistry C, 2019, 123, 30007-30020.	3.1	6
514	Data on a computationally efficient approximation of part-powder conduction as surface free convection in powder bed fusion process modelling. Data in Brief, 2019, 27, 104559.	1.0	9
515	Evaluation and potential application of novel cellulose nanofibril and lignin-based-graphite functionalized flexible polyurethane foam. Cellulose, 2019, 26, 8685-8697.	4.9	13

#	ARTICLE	IF	CITATIONS
516	Stimuli-Responsive Hydrogel Based on Poly((2-Dimethylamino)Ethyl Methacrylate) Grafted onto Sodium Alginate as a Drug Delivery System. Polymer Science - Series B, 2019, 61, 642-652.	0.8	7
517	Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose, 2019, 26, 9583-9598.	4.9	61
518	ZCIS/ZnS QDs fluorescent aerogels with tunable emission prepared from porous 3D nanofibrillar bacterial cellulose. Carbohydrate Polymers, 2019, 224, 115173.	10.2	7
519	Nanocellulose films with multiple functional nanoparticles in confined spatial distribution. Nanoscale Horizons, 2019, 4, 634-641.	8.0	46
520	Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. Journal of Materials Chemistry A, 2019, 7, 2981-2992.	10.3	90
521	Self-assembly of Fe2O3 nanorods in carbon nanotube network as a 3D aerogel architecture for lithium ion batteries. Ceramics International, 2019, 45, 5796-5800.	4.8	7
522	Cobalt Ferrite Nanoparticles for Three-Dimensional Visualization of Micro- and Nanostructured Cellulose in Paper. ACS Applied Nano Materials, 2019, 2, 3864-3869.	5.0	5
523	Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy, 2019, 63, 103836.	16.0	178
524	Mechanics of Strong and Tough Cellulose Nanopaper. Applied Mechanics Reviews, 2019, 71, .	10.1	74
525	Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization. Carbohydrate Polymers, 2019, 221, 195-201.	10.2	4
526	Synthesis and characterization high purity alumina nanorods by a novel and simple method using nanocellulose aerogel template. Heliyon, 2019, 5, e01816.	3.2	8
527	Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale, 2019, 11, 11719-11729.	5.6	35
528	Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu(II). Cellulose, 2019, 26, 5051-5063.	4.9	34
529	Bio-inspired sensing and actuating materials. Journal of Materials Chemistry C, 2019, 7, 6493-6511.	5.5	112
530	Thermal Insulating and Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material. Forests, 2019, 10, 200.	2.1	35
531	Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose, 2019, 26, 8325-8336.	4.9	9
532	Green Synthesis of Copper Nanoparticles: Evaluation of Catalytic and Antibacterial Activity. Asian Journal of Chemistry, 2019, 31, 622-626.	0.3	4
533	Fabrication and 3D Patterning of Bioâ€Composite Consisting of Carboxymethylated Cellulose Nanofibers and Cobalt Ferrite Nanoparticles. ChemistrySelect, 2019, 4, 4416-4421.	1.5	4

#	Article	IF	CITATIONS
534	Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents. ACS Applied Materials & Interfaces, 2019, 11, 14313-14321.	8.0	83
535	Study on Nanocellulose Properties Processed Using Different Methods and Their Aerogels. Journal of Polymers and the Environment, 2019, 27, 1418-1428.	5.0	13
537	Characterization of lignocellulose aerogels fabricated using a LiCl/DMSO solution. Industrial Crops and Products, 2019, 131, 293-300.	5.2	19
538	Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques. , 2019, , 1-41.		2
539	Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability for Efficient CO ₂ Capture. Journal of Agricultural and Food Chemistry, 2019, 67, 3372-3379.	5.2	54
540	"Stiff–Soft―Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance. Advanced Functional Materials, 2019, 29, 1806407.	14.9	111
541	A fabrication of three-dimensional multi-assembling platform based on polyimide matrix. Polymer, 2019, 183, 121833.	3.8	2
542	Hierarchical Porous Wood Cellulose Scaffold with Atomically Dispersed Pt Catalysts for Low-Temperature Ethylene Decomposition. ACS Nano, 2019, 13, 14337-14347.	14.6	19
543	Programmable Ultralight Magnets via Orientational Arrangement of Ferromagnetic Nanoparticles within Aerogel Hosts. ACS Nano, 2019, 13, 13875-13883.	14.6	24
544	Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation. Applied Surface Science, 2019, 464, 606-615.	6.1	63
545	Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. Environmental Science & Technology, 2019, 53, 412-421.	10.0	56
546	A general aerosol-assisted biosynthesis of functional bulk nanocomposites. National Science Review, 2019, 6, 64-73.	9.5	44
547	Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers, 2019, 207, 44-51.	10.2	47
548	Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chemical Engineering Journal, 2019, 359, 459-475.	12.7	177
549	Bacterial cellulose nanocomposites: An all-nano type of material. Materials Science and Engineering C, 2019, 98, 1277-1293.	7.3	141
550	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 37-64.	0.6	2
551	Cellulose II aerogels: a review. Cellulose, 2019, 26, 81-121.	4.9	175
552	A Robust and Scalable Polydopamine/Bacterial Nanocellulose Hybrid Membrane for Efficient Wastewater Treatment. ACS Applied Nano Materials, 2019, 2, 1092-1101.	5.0	89

#	Article	IF	Citations
553	Rechargeable Photoactive Silk-Derived Nanofibrous Membranes for Degradation of Reactive Red 195. ACS Sustainable Chemistry and Engineering, 2019, 7, 986-993.	6.7	21
554	The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. Journal of Cleaner Production, 2019, 206, 498-507.	9.3	20
555	Biopolymers in the Synthesis of Different Nanostructures. , 2020, , 29-43.		10
556	Biocompatible AIE material from natural resources: Chitosan and its multifunctional applications. Carbohydrate Polymers, 2020, 227, 115338.	10.2	60
557	Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers, 2020, 229, 115454.	10.2	103
558	Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation. Cellulose, 2020, 27, 703-712.	4.9	10
559	Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor. Journal of Hazardous Materials, 2020, 388, 121743.	12.4	49
560	The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils. Chemosphere, 2020, 261, 128123.	8.2	18
561	Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12, 22845-22890.	5.6	108
562	Magnetically Collectable Nanocellulose-Coated Polymer Microparticles by Emulsion Templating. Langmuir, 2020, 36, 9235-9240.	3.5	8
563	Natural fiber-metallic composites with remarkable gradient structures. Materials Today Communications, 2020, 25, 101453.	1.9	1
564	Synthesis of Co ₉ S ₈ @N, S Co-Doped Porous Carbon Core-Shell Nanocomposite with Highly Coulombic Efficiency in Electrochemical Hydrogen Storage Application. Journal of the Electrochemical Society, 2020, 167, 110539.	2.9	8
565	Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithiumâ€Ion Battery Anodes. ChemistrySelect, 2020, 5, 8207-8217.	1.5	9
566	Weg mit dem Lignin. Nachrichten Aus Der Chemie, 2020, 68, 35-37.	0.0	0
567	From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials, 2020, 13, 5062.	2.9	88
568	Cold Sintered Metal–Ceramic Nanocomposites for Highâ€Frequency Inductors. Advanced Electronic Materials, 2020, 6, 2000868.	5.1	18
569	Enhanced rheological properties and conductivity of bacterial cellulose hydrogels and aerogels through complexation with metal ions and PEDOT/PSS. Cellulose, 2020, 27, 8075-8086.	4.9	15
570	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	21.0	77

		REPORT	
#	Article	IF	Citations
571	Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution. Royal Society Open Science, 2020, 7, 200857.	2.4	49
572	Pulmonary toxicity and RNA sequencing analyses of mouse in response to exposure to cellulose nanofibrils. Inhalation Toxicology, 2020, 32, 388-401.	1.6	3
573	Ternary Synergistic Strengthening and Toughening of Bio-Inspired TEMPO-Oxidized Cellulose Nanofibers/Borax/Polyvinyl Alcohol Composite Film with High Transparency. ACS Sustainable Chemistry and Engineering, 2020, 8, 15661-15669.	6.7	25
574	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	6.1	244
575	Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules, 2020, 25, 4045.	3.8	48
576	Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Zâ€Scheme Heterojunction for Photoelectrochemical Water Reduction. Advanced Materials, 2020, 32, e2002486.	21.0	34
577	Collagen polymer and magnetic collagen nanocomposite recycled from waste to reduce polluted water toxicity. Polymers and Polymer Composites, 2021, 29, 1515-1527.	1.9	5
578	Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications. Polymers, 2020, 12, 1104.	4.5	45
579	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
580	Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers, 2020, 12, 1071.	4.5	13
581	Nanocellulose and nanohydrogel matrices as sustainable biomass materials: structure, properties, present status, and future prospects in construction and other engineering. , 2020, , 177-195.		2
582	Multifaceted applications of cellulosic porous materials in environment, energy, and health. Progress in Polymer Science, 2020, 106, 101253.	24.7	63
583	Advanced thermal properties of carbon-based aerogels. , 2020, , 221-269.		4
585	Photonic Thin Films Assembled from Amphiphilic Cellulose Nanofibrils Displaying Iridescent Full-Colors. ACS Applied Bio Materials, 2020, 3, 4522-4530.	4.6	2
586	Thermomechanical, antioxidant and moisture behaviour of PVA films in presence of citric acid esterified cellulose nanocrystals. International Journal of Biological Macromolecules, 2020, 161, 617-626.	7.5	39
587	Ultralight Magnetic Nanofibrous GdPO ₄ Aerogel. ACS Omega, 2020, 5, 14180-14185.	3.5	9
588	In-Situ Growth of Metal Oxide Nanoparticles on Cellulose Nanofibrils for Dye Removal and Antimicrobial Applications. ACS Applied Nano Materials, 2020, 3, 7172-7181.	5.0	44
589	Drawing advanced electromagnetic functional composites with ultra-low filler loading. Chemical Engineering Journal, 2020, 399, 125720.	12.7	13

#	Article	IF	CITATIONS
590	Manufactory and Properties of Poly(<i>p</i> -Phenylenebenzobisoxazole) Aerogels Prepared by a Simple Freeze-Drying Procedure. Materials Science Forum, 0, 993, 662-668.	0.3	0
591	Hydrogen storage in two-dimensional and three-dimensional materials. , 2020, , 227-243.		1
592	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	11.2	303
593	Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Progress in Organic Coatings, 2020, 147, 105858.	3.9	58
594	Hierarchical growth of nickel oxyhydroxide on bacterial cellulose hydrogel: role of water channels in hydrogel to form hierarchical structure. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2415.	1.5	0
595	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	14.6	254
596	Self-aligned fabrication process for active membrane in magnetically driven micropump using photosensitive composite. Journal of Micromechanics and Microengineering, 2020, 30, 025006.	2.6	6
597	Musselâ€inspired Dualâ€6uperlyophobic Biomass Membranes for Selective Oil/Water Separation. Advanced Materials Interfaces, 2020, 7, 1901756.	3.7	25
598	Flexible Magnetostrictive Nanocellulose Membranes for Actuation, Sensing, and Energy Harvesting Applications. Frontiers in Materials, 2020, 7, .	2.4	6
599	Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 2020, 394, 122571.	12.4	75
600	Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter, 2020, 16, 4756-4766.	2.7	14
601	Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials. Nanoscale, 2020, 12, 10149-10157.	5.6	56
602	Nanocellulose-based paper actuators. , 2021, , 163-183.		3
603	Bacterial cellulose-based magnetic nanocomposites: A review. Carbohydrate Polymers, 2021, 254, 117228.	10.2	39
604	How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approach. Carbohydrate Polymers, 2021, 254, 117406.	10.2	12
605	A Simple and Scalable Approach for Fabricating High-Performance Superparamagnetic Natural Cellulose Fibers and Papers. Carbohydrate Polymers, 2021, 256, 117425.	10.2	4
606	Boehmite Nanofiber–Polymethylsilsesquioxane Composite Aerogels: Synthesis, Analysis, and Thermal Conductivity Control via Compression Processing. Bulletin of the Chemical Society of Japan, 2021, 94, 70-75.	3.2	3
607	Magnetic aerogel: an advanced material of high importance. RSC Advances, 2021, 11, 7187-7204.	3.6	22

	Сітаті	on Report	
#	Article	IF	CITATIONS
608	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	7.6	61
609	Versatile Wood Cellulose for Biodegradable Electronics. Advanced Materials Technologies, 2021, 6, 2000928.	5.8	40
610	Copper- and Iron-Based Bio-Nanocomposites for Green Applications. Nanotechnology in the Life Sciences, 2021, , 41-72.	0.6	0
611	From natural cellulose to functional nanocomposites for environmental applications. , 2021, , 111-151.		2
612	Magnetic Nanoparticles. , 2021, , 1-36.		0
613	Fabrication and application of macroscopic nanowire aerogels. Nanoscale, 2021, 13, 7430-7446.	5.6	8
614	Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property. Cellulose, 2021, 28, 2353-2364.	4.9	6
615	Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced Materials, 2021, 33, e2005538.	21.0	77
616	Femtosecond Laser-Induced Graphitization of Transparent Cellulose Nanofiber Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 2955-2961.	6.7	21
617	Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy, 2021, 80, 105569.	16.0	99
618	Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Advanced Materials, 2021, 33, e2005569.	21.0	311
619	Magnetically induced demulsification of water and castor oil dispersions stabilized by Fe3O4-coated cellulose nanocrystals. Cellulose, 2021, 28, 4807-4823.	4.9	12
620	Green and Facile Fabrication of Thermal Superamphiphobic Nanofibrillated-cellulose/Chitosan/OTS Composites Through Mechano-Chemical Method. Fibers and Polymers, 2021, 22, 1407-1415.	2.1	6
621	Enhancement of magnetic film with light penetration by immobilization of Fe3O4 nanoparticles in a spherical bamboo nanocellulose network. Cellulose, 2021, 28, 4179-4189.	4.9	7
622	Acetobacter Biofilm: Electronic Characterization and Reactive Transduction of Pressure. ACS Biomaterials Science and Engineering, 2021, 7, 1651-1662.	5.2	11
623	Cellulose-based polymers. ChemistrySelect, 2023, 8, 2001-2048.	1.5	2
624	Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid and Polymer Science, 2021, 299, 1139.	2.1	1
625	Probiotic cellulose: Antibiotic-free biomaterials with enhanced antibacterial activity. Acta Biomaterialia, 2021, 124, 244-253.	8.3	23

#	Article	IF	CITATIONS
626	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. Langmuir, 2021, 37, 5923-5931.	3.5	10
627	Loads transfer behavior of graphene oxide/halloysite organic-inorganic hybrid aerogel: Motion of polymer â€`bridge'. Ceramics International, 2021, 47, 11829-11839.	4.8	1
628	Elastic piezoelectric aerogels from isotropic and directionally ice-templated cellulose nanocrystals: comparison of structure and energy harvesting. Cellulose, 2021, 28, 6323.	4.9	24
629	3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry, 2021, 20, 100459.	3.5	58
630	Promising grafting strategies on cellulosic backbone through radical polymerization processes – A review. European Polymer Journal, 2021, 152, 110448.	5.4	29
631	Application of nanocellulose composites in the environmental engineering: A review. Journal of Composites and Compounds, 2021, 3, 114-128.	0.5	18
632	Hard magnetic membrane based on bacterial cellulose – Barium ferrite nanocomposites. Carbohydrate Polymers, 2021, 264, 118016.	10.2	15
633	Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface. Science China Materials, 2022, 65, 193-200.	6.3	4
634	Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions. International Journal of Biological Macromolecules, 2021, 183, 760-771.	7.5	26
635	Dense and strong, but superinsulating silica aerogel. Acta Materialia, 2021, 213, 116959.	7.9	42
636	Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Carbohydrate Polymers, 2021, 263, 117976.	10.2	40
637	Bioactive Films from Willow Bark Extract and Nanocellulose Double Network Hydrogels. Frontiers in Chemical Engineering, 2021, 3, .	2.7	7
638	Removal of perfluorooctanoic acid (PFOA) from aqueous solution by amino-functionalized graphene oxide (AGO) aerogels: Influencing factors, kinetics, isotherms, and thermodynamic studies. Science of the Total Environment, 2021, 783, 147041.	8.0	32
639	A scalable molecular-templating strategy toward well-defined microporous carbon aerogels for efficient water treatment and electrocatalysis. Chemical Engineering Journal, 2021, 418, 129315.	12.7	8
640	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	47.7	113
641	Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials. Materials, 2021, 14, 5390.	2.9	10
642	3D-printing of ceramic aerogels by spatial photopolymerization. Applied Materials Today, 2021, 24, 101083.	4.3	15
643	Localized heating driven selective growth of metal-organic frameworks (MOFs) in wood: A novel synthetic strategy for significantly enhancing MOF loadings in wood. Applied Surface Science, 2021, 564, 150325	6.1	16

# 644	ARTICLE Crafting controllable Fe-based hierarchically organic-frameworks from bacterial cellulose nanofibers for efficient electrocatalysts in microbial fuel cells. Journal of Power Sources, 2021, 512, 230522.	IF 7.8	CITATIONS
645	Preparation protocol of urea cross-linked chitosan aerogels with improved mechanical properties using aqueous aluminum ion medium. Journal of Supercritical Fluids, 2022, 179, 105414.	3.2	9
646	Platinum Encapsulated within a Bacterial Nanocellulosic–Graphene Nanosandwich as a Durable Thin-Film Fuel Cell Catalyst. ACS Applied Energy Materials, 2021, 4, 1286-1293.	5.1	4
649	Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1â€; 2â€; and 3â€D Nanocellulosic Materials. Small, 2020, 16, e1906567.	10.0	122
650	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2016, , 1-39.		1
651	Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques. , 2019, , 409-449.		21
652	Flexible Paper Electronics. , 2015, , 101-115.		4
653	Preparation of magnetic MnFe2O4-Cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose, 2018, 25, 735-751.	4.9	54
654	Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers. Biomacromolecules, 2021, 22, 880-889.	5.4	19
655	Facile preparation of nanofiller-paper using mixed office paper without deinking. Tappi Journal, 2015, 14, 167-174.	0.5	15
656	Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films. Carbon Letters, 2016, 20, 26-31.	5.9	1
657	Magnetic Responsive Cellulose Nanocomposites and Their Applications. , 0, , .		11
658	A Simple and Efficient Approach to Cellulose/Silica Composite Aerogel with High Silica Utilization Efficiency. Journal of Research Updates in Polymer Science, 2015, 4, 56-61.	0.3	3
659	A simple and green strategy for preparing flexible thermoplastic polyimide foams with exceptional mechanical, thermal-insulating properties, and temperature resistance for high-temperature lightweight composite sandwich structures. Composites Part B: Engineering, 2022, 228, 109405.	12.0	25
660	Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiology Reviews, 2022, 46, .	8.6	28
662	Easy way to magnetic nanomaterials. Nature Middle East, 2010, , .	0.0	Ο
663	New Products and Product Categories in the Global Forest Sector. , 2013, , 145-166.		0
665	Receiving modified wood chemi-mechanical process and Ñ^nvestigation of its properties. Forestry Engineering Journal, 2015, 5, 177-187.	0.4	1

#	Article	IF	CITATIONS
666	Bacterial Cellulose: Biotechnology. , 0, , 385-404.		0
667	Aerogels: Cellulose-Based. , 2017, , 19-57.		0
668	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2018, , 3213-3251.		0
669	Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria. , 2019, , 2703-2744.		0
670	Antibacterial and Anticancer Potentials of Presynthesized Photosensitive Plectranthus cylindraceus Oil/TiO2/Polyethylene Glycol Polymeric Bionanocomposite. Bioinorganic Chemistry and Applications, 2021, 2021, 1-20.	4.1	3
671	Optimal control and design of magnetic field-responsive smart polymer composites. Applied Mathematical Modelling, 2022, 103, 141-161.	4.2	6
672	Biopolymerâ€Templated Deposition of Ordered and Polymorph Titanium Dioxide Thin Films for Improved Surfaceâ€Enhanced Raman Scattering Sensitivity. Advanced Functional Materials, 2022, 32, 2108556.	14.9	12
673	Facile and Quantitative Method for Estimating the Isolation Degree of Cellulose Nanocrystals (CNCs) Suspensions. Materials, 2021, 14, 6463.	2.9	3
674	Advances in aggregation induced emission (AIE) materials in biosensing and imaging of bacteria. Progress in Molecular Biology and Translational Science, 2021, 184, 61-79.	1.7	2
675	Magnetically hard ferrite nanoparticles synthesized through aerogel nanoreactor. Nanotechnology, 2020, 31, 465606.	2.6	0
676	Magnetic Nanoparticles. , 2021, , 1011-1046.		0
677	Shape-Programmable Magnetic Miniature Robots: A Critical Review. , 2022, , 211-242.		1
678	Magnetically Steerable Serial and Parallel Structures by Moldâ€Free Origami Templating and Domain Setting. Advanced Materials Technologies, 2022, 7, .	5.8	18
679	Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydrate Polymers, 2022, 278, 118995.	10.2	53
680	A review on nanofiber reinforced aerogels for energy storage and conversion applications. Journal of Energy Storage, 2022, 46, 103927.	8.1	39
681	Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 2022, 125, 100915.	32.8	73
682	The Trend of Bacterial Nanocellulose Research Published in the Science Citation Index Expanded From 2005 to 2020: A Bibliometric Analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 795341.	4.1	17
683	Magnetic cellulose: does extending cellulose versatility with magnetic functionality facilitate its use in devices?. Journal of Materials Chemistry C, 2022, 10, 805-818.	5.5	8

		CITATION REPORT		
#	Article		IF	CITATIONS
685	Humidity Response of Cellulose Thin Films. Biomacromolecules, 2022, 23, 1148-1157.		5.4	9
686	Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, he and microwave absorption. Nature Communications, 2022, 13, 1227.	at allocation	12.8	168
687	Cellulose-assisted electrodeposition of zinc for morphological control in battery metal Materials Advances, 0, , .	recycling.	5.4	5
689	Templated synthesis and assembly with sustainable cellulose nanomaterial for functior nanostructure. Cellulose, 2022, 29, 4287-4321.	nal	4.9	6
690	Living wearables: Bacterial reactive glove. BioSystems, 2022, 218, 104691.		2.0	10
691	Sustainable non-cytotoxic ultra-light aerogel derived from waste tissue paper as an effe hemostatic agent. Biomass Conversion and Biorefinery, 0, , .	ective	4.6	5
692	Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their A Nanomaterials, 2022, 12, 1837.	Assemblies.	4.1	15
693	An Opto―and Thermalâ€Rewrite PCM/CNFâ€ i R 780 Energy Storage Nanopaper with Performance. Small, 2022, 18, .	Mechanical Regulated	10.0	8
694	Role of bacterial nanocellulose polymer composites on the adsorption of organic dyes wastewater. , 2022, , 665-680.	from		1
695	Î ³ -Irradiation crosslinking of graphene oxide/cellulose nanofiber/poly (acrylic acid) hydr sensing patch. International Journal of Biological Macromolecules, 2022, 213, 1037-10	ogel as a urea 146.	7.5	16
696	Cellulose nanofibers reinforced nanocomposites with high strength and toughness by wet-drawing and ionic cross-linking method. Composites Part B: Engineering, 2022, 24	tunable 2, 110078.	12.0	14
697	Polymer-based bionanomaterials for biomedical applications. , 2022, , 187-225.			1
698	Nanocellulose Membranes for Air Filtration. , 2022, , 777-808.			0
699	When MOFs meet wood: From opportunities toward applications. CheM, 2022, 8, 234	-2-2361.	11.7	53
700	Advanced "Green―Prebiotic Composite of Bacterial Cellulose/Pullulan Based on S Biology-Powered Microbial Coculture Strategy. Polymers, 2022, 14, 3224.	ynthetic	4.5	9
701	Assembling nanocelluloses into fibrous materials and their emerging applications. Cart Polymers, 2023, 299, 120008.	pohydrate	10.2	10
702	Bioinspired highly anisotropic, robust and environmental resistant wood aerogel comp semi-interpenetrating polymer networks for Cu(II) ion removal. Cellulose, 2022, 29, 83		4.9	3
703	Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for p Advances in Colloid and Interface Science, 2022, 308, 102758.	rotein sensing.	14.7	2

#	Article	IF	Citations
704	Large-scale synthesis of macroscopic layered inorganic-organic hybrid nanobelt aerogel monoliths with multifunctionality. Cell Reports Physical Science, 2022, , 101079.	5.6	0
705	Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials. Nature Communications, 2022, 13, .	12.8	25
706	Ultra-low Concentration of Cellulose Nanofibers (CNFs) for Enhanced Nucleation and Yield of ZnO Nanoparticles. Langmuir, 2022, 38, 12480-12490.	3.5	6
707	Recent Development of Multifunctional Nanocomposites Based on Bacterial Nanocellulose. Nanoscience and Technology, 2023, , 75-105.	1.5	0
708	Nanocellulose Aerogels. Nanoscience and Technology, 2023, , 107-139.	1.5	0
709	Development Status and Application Prospect of Aerogels. Journal of Engineering Studies, 2017, 09, 558-567.	0.0	0
710	An investigation of reconfigurable magnetoâ€mechanical metamaterials. Physica Status Solidi (B): Basic Research, 0, , .	1.5	1
711	Adsorption behaviours of copper(II), lead(II), and cadmium(II) ions from aqueous solution by polyethylenimine -modified magnetic hydrogel nanocomposites. Journal of Polymer Research, 2022, 29, .	2.4	1
712	Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 132, .	2.5	5
713	Polymer-Modified Cellulose Nanofibrils Cross-Linked with Cobalt Iron Oxide Nanoparticles as a Gel Ink for 3D Printing Objects with Magnetic and Electrochemical Properties. Fibers, 2023, 11, 2.	4.0	3
714	Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chemical Reviews, 2023, 123, 1889-1924.	47.7	15
715	Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science, 2023, 3, .	9.9	11
716	Physicochemical and Photocatalytic Properties of 3D-Printed TiO2/Chitin/Cellulose Composite with Ordered Porous Structures. Polymers, 2022, 14, 5435.	4.5	0
717	An all-cellulose sponge with a nanofiller-assisted hierarchical cellular structure for fruit maintaining freshness. International Journal of Biological Macromolecules, 2023, 225, 1361-1373.	7.5	1
718	Interfacial Electrostatic Selfâ€Assembly of Amyloid Fibrils into Multifunctional Protein Films. Advanced Science, 2023, 10, .	11.2	8
719	Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: A Review. Al-MaÄŸallatl^ Al-Qawmiyyatl^ Lil DirÄsÄt Al-TaÊ¿Äé¹Ä« Wa Al-IdmÄn, 2022, 2, 15-45	5.0.1	2
720	Photodegradation of emerging contaminant tetracycline using a zinc titanate nanocellulose composite as an efficient photocatalyst. Materials Advances, 2023, 4, 2088-2098.	5.4	4
721	Nanopaper Electronics. Advanced Functional Materials, 2023, 33, .	14.9	6

#	Article	IF	CITATIONS
722	Versatile Assembly of Metal–Phenolic Network Foams Enabled by Tannin–Cellulose Nanofibers. Advanced Materials, 2023, 35, .	21.0	10
723	Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers, 2023, 15, 853.	4.5	4
724	Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review. Chemosensors, 2023, 11, 134.	3.6	4
725	Incorporation of chondroitin sulfate into macroporous bacterial cellulose scaffold for improved bioactivity. Journal of Materials Research, 0, , .	2.6	0
726	Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. Nanomaterials, 2023, 13, 1110.	4.1	5
727	Composite magnetic properties of cobalt ferrite nanoparticles embedded in bacterial nanocellulose of different porosity levels. Materials Chemistry and Physics, 2023, 303, 127798.	4.0	3
728	Correlation between morphology and performance of cellulose nanofibril-based films. Current Research in Green and Sustainable Chemistry, 2023, 6, 100363.	5.6	4
729	Multiâ€Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystalâ€Based Activated Carbon Aerogels. Small, 2023, 19, .	10.0	9
730	High-performance green composites made by cellulose long filament-reinforced vanillin epoxy resin. Polymer Testing, 2023, 123, 108042.	4.8	3
731	Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nature Communications, 2023, 14, .	12.8	11
732	Sustainable Production of Stable Lignin Nanoparticle-Stabilized Pickering Emulsions via Cellulose Nanofibril-Induced Depletion Effect. ACS Sustainable Chemistry and Engineering, 2023, 11, 9132-9142.	6.7	2
733	Cellulose Nanofiber Modified Poly (Acrylic Acid-Co-N-Vinyl Pyrrolidone) Hydrogel as Forward Osmosis Draw Agent. Journal of Polymers and the Environment, 0, , .	5.0	0
734	Different amount of carboxyl-aldehyde fractionated nanofibril cellulose and main characteristics of chitosan, gelatin, alginate added composites. International Journal of Biological Macromolecules, 2023, 242, 124824.	7.5	1
735	Co-precipitation methods for the synthesis of metal oxide nanostructures. , 2023, , 39-60.		0
736	Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding. Nano-Micro Letters, 2023, 15, .	27.0	21
737	Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioactive Materials, 2023, 29, 151-176.	15.6	2
738	Low Temperature Hydrothermal Synthesis of Ultra-light and Superelastic Graphene Oxide/Cellulose Aerogels for Absorption of Organic Liquids. , 2018, 3, 17-25.		0
739	Potential of Anisotropic Cellulose Aerogels. Springer Handbooks, 2023, , 727-745.	0.6	0

#	Article	IF	CITATIONS
740	Bacterial cellulose: Recent advances in biosynthesis, functionalization strategies and emerging applications. European Polymer Journal, 2023, 199, 112446.	5.4	1
741	Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment. Carbohydrate Polymers, 2024, 323, 121392.	10.2	4
742	Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels, 2023, 9, 878.	4.5	1
743	Magnetite nanoparticles decorated on cellulose aerogel for p-nitrophenol Fenton degradation: Effects of the active phase loading, cross-linker agent and preparation method. Heliyon, 2023, 9, e22319.	3.2	0
744	Biobased, cellulose long filament-reinforced vanillin-derived epoxy composite for high-performance and flame-retardant applications. International Journal of Biological Macromolecules, 2024, 256, 128411.	7.5	0
745	Hydrophobic sponge derived from natural loofah for efficient oil/water separation. Separation and Purification Technology, 2024, 330, 125519.	7.9	0
746	Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Advanced Materials, 2024, 36, .	21.0	3
747	Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels, 2023, 9, 986.	4.5	0
748	Rationally Designed Conductive Wood with Mechanoresponsive Electrical Resistance. Composites Part A: Applied Science and Manufacturing, 2023, , 107970.	7.6	0
749	Advanced nanofabrication for elastic inorganic aerogels. Nano Research, O, , .	10.4	0
750	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
751	A Bioinspired Gradient Design Strategy for Cellulose-Based Electromagnetic Wave Absorbing Structural Materials. Nano Letters, 2024, 24, 881-889.	9.1	0
752	A review study on derivation of nanocellulose to its functional properties and applications in drug delivery system, food packaging, and biosensing devices. Polymer Bulletin, 0, , .	3.3	0
753	In situ Synthesis of Single Layered Metal–Organic Frameworks via Inkjet Printing on a Cellulose Nanofiber Film. ACS Applied Materials & Interfaces, 2024, 16, 15617-15631.	8.0	0