High-power lithium batteries from functionalized carbo

Nature Nanotechnology 5, 531-537 DOI: 10.1038/nnano.2010.116

Citation Report

#	Article	IF	CITATIONS
5	Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2010, 49, 7222-7224.	7.2	163
6	Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology, 2010, 5, 651-654.	15.6	2,451
7	Nanowire and Nanocable Intrinsic Quantum Capacitances and Junction Capacitances: Results for Metal and Semiconducting Oxides. Journal of Nanomaterials, 2010, 2010, 1-27.	1.5	5
8	Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent Microbicidal Base with Controlled Release of Therapeutic Agents. Journal of the American Chemical Society, 2010, 132, 17840-17848.	6.6	94
9	Single Nanowire Electrochemical Devices. Nano Letters, 2010, 10, 4273-4278.	4.5	143
10	Hollow Capsules of Reduced Graphene Oxide Nanosheets Assembled on a Sacrificial Colloidal Particle. Journal of Physical Chemistry Letters, 2010, 1, 3442-3445.	2.1	109
11	Annealed binary nanowires: an efficient creation of abundant oxygen deficient states. Journal of Materials Chemistry, 2011, 21, 11730.	6.7	3
12	Nanostructured Film Electrodes for Efficient Li-ion Intercalations. , 2011, , .		0
13	Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9969.	6.7	37
14	Tunable grafting of functional polymers onto carbon nanotubes using diazonium chemistry in aqueous media. Journal of Materials Chemistry, 2011, 21, 4615.	6.7	27
15	Use of vertically-aligned carbon nanotube array to enhance the performance of electrochemical capacitors. , 2011, , .		2
16	Oxygen Reduction by Lithium on Model Carbon and Oxidized Carbon Structures. Journal of the Electrochemical Society, 2011, 158, A1177.	1.3	66
17	Functionally Strain-Graded Nanoscoops for High Power Li-Ion Battery Anodes. Nano Letters, 2011, 11, 377-384.	4.5	101
18	Graphene foam as an anode for high-rate Li-ion batteries. IOP Conference Series: Materials Science and Engineering, 2011, 18, 062006.	0.3	12
19	Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano, 2011, 5, 2930-2938.	7.3	149
20	Improving the Electrical Conductivity of Carbon Nanotube Networks: A First-Principles Study. ACS Nano, 2011, 5, 9726-9736.	7.3	61
21	Rechargeable lithium/iodine battery with superior high-rate capability by using iodine–carbon composite as cathode. Energy and Environmental Science, 2011, 4, 3947.	15.6	131

CITATION REDOR

22	Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery–supercapacitor hybrid system. Nanotechnology, 2011, 22, 405402.	1.3	53
----	---	-----	----

ARTICLE IF CITATIONS # High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries. Journal of the 23 1.3 109 Electrochemical Society, 2011, 158, A1282. Carbon-based layer-by-layer nanostructures: from films to hollow capsules. Nanoscale, 2011, 3, 4515. 24 2.8 25 Nanostructured Materials for Engineering Applications., 2011, , . 22 Nanoreinforcements for Nanocomposite Materials., 2011, , 119-131. Reversible Tuning of the Wettability of Carbon Nanotube Arrays: The Effect of Ultraviolet/Ozone and 27 1.6 54 Vacuum Pyrolysis Treatments. Langmuir, 2011, 27, 9005-9011. Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes. ACS Nano, 2011, 5, 7245-7253. 7.3 Three-dimensional electrodes and battery architectures. MRS Bulletin, 2011, 36, 523-531. 29 1.7 272 Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage 30 4.5 239 Devices. Nano Letters, 2011, 11, 3785-3791. Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell. 31 2.1 60 Synthetic Metals, 2011, 161, 2460-2465. Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and 15.6 346 electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972. Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for 33 7.3255 High-Power and High-Energy Storage Applications. ACS Nano, 2011, 5, 8552-8561. Prospective materials and applications for Li secondary batteries. Energy and Environmental Science, 34 15.6 558 Synthesis, Activity and Durability of Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes 35 1.3 33 for Oxygen Reduction. Journal of the Electrochemical Society, 2011, 158, B1398. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor 5.8 1,040 performance. Nature Communications, 2011, 2, 381. Structure and electrochemical properties for the MoxV3â^'xO7/MWNTs nanocomposites. IOP 37 0.31 Conference Series: Materials Science and Engineering, 2011, 18, 082013. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature 38 1,006 Nanotechnology, 2011, 6, 277-281. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, 39 14.8 467 challenges, and perspectives. Materials Science and Engineering Reports, 2011, 72, 203-252. LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55°C: Analysis of the effect of the 40 particle size. Journal of Power Sources, 2011, 196, 10222-10227.

#	Article	IF	CITATIONS
41	Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries. Materials Chemistry and Physics, 2011, 130, 309-315.	2.0	21
42	High voltage supercapacitors using hydrated graphene film in a neutral aqueous electrolyte. Electrochemistry Communications, 2011, 13, 1166-1169.	2.3	64
43	Water Boiling Inside Carbon Nanotubes: Toward Efficient Drug Release. ACS Nano, 2011, 5, 5647-5655.	7.3	108
44	A Main Group Metal Sandwich: Five Lithium Cations Jammed Between Two Corannulene Tetraanion Decks. Science, 2011, 333, 1008-1011.	6.0	210
45	Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations. Energy and Environmental Science, 2011, 4, 1379.	15.6	76
46	Diffuse charge and Faradaic reactions in porous electrodes. Physical Review E, 2011, 83, 061507.	0.8	216
47	Carbon nanotube nanostructured hybrid materials systems for renewable energy applications. Jom, 2011, 63, 48-53.	0.9	6
48	Tailored Assembly of Carbon Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 1338-1354.	7.8	207
49	Highâ€Performance Supercapacitors Based on Intertwined CNT/V ₂ O ₅ Nanowire Nanocomposites. Advanced Materials, 2011, 23, 791-795.	11.1	788
50	V ₂ O ₅ Loaded on SnO ₂ Nanowires for Highâ€Rate Li Ion Batteries. Advanced Materials, 2011, 23, 746-750.	11.1	132
51	Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of Highâ€Performance Supercapacitors. Advanced Materials, 2011, 23, 2833-2838.	11.1	954
52	Sandwichâ€Like, Grapheneâ€Based Titania Nanosheets with High Surface Area for Fast Lithium Storage. Advanced Materials, 2011, 23, 3575-3579.	11.1	503
53	Vertically Aligned and Penetrated Carbon Nanotube/Polymer Composite Film and Promising Electronic Applications. Advanced Materials, 2011, 23, 3730-3735.	11.1	79
54	Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials, 2011, 1, 917-922.	10.2	831
55	Highâ€Performance Supercapacitors Based on Nanocomposites of Nb ₂ O ₅ Nanocrystals and Carbon Nanotubes. Advanced Energy Materials, 2011, 1, 1089-1093.	10.2	312
56	Engineering materials layerâ€byâ€layer: Challenges and opportunities in multilayer assembly. AICHE Journal, 2011, 57, 2928-2940.	1.8	179
57	Carbon Nanotubes for Sustainable Energy Applications. ChemSusChem, 2011, 4, 913-925.	3.6	86
59	Nanohybridization of Polyoxometalate Clusters and Singleâ€Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angewandte Chemie - International Edition, 2011, 50, 3471-3474.	7.2	208

#	Article	IF	CITATIONS
60	A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules. Biosensors and Bioelectronics, 2011, 26, 3620-3626.	5.3	9
61	Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon, 2011, 49, 457-467.	5.4	250
62	Hydrophobic properties of colloidal films coated with multi-wall carbon nanotubes/reduced graphene oxide multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 54-57.	2.3	30
63	Fabrication and characterization of block copolymer micelle multilayer films prepared using dip-, spin- and spray-assisted layer-by-layer assembly deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 7-12.	2.3	26
64	α-Fe2O3@CNSs nanocomposites as superior anode materials for lithium-ion batteries. Electrochimica Acta, 2011, 56, 7005-7011.	2.6	34
65	Enhanced Li capacity at high lithiation potentials in graphene oxide. Journal of Power Sources, 2011, 196, 5697-5703.	4.0	58
66	Nanotechnologies for efficient solar and wind energy harvesting and storage in smart-grid and transportation applications. Journal of Nanophotonics, 2011, 5, 051704.	0.4	5
67	Improving the Rate Capability of Unburned Carbon from Oil-Fired Fly Ash as an Anode Material in High-Power Lithium Ion Batteries. Advanced Materials Research, 2011, 287-290, 1304-1307.	0.3	0
68	Nanotechnology in the market: promises and realities. International Journal of Nanotechnology, 2011, 8, 592.	0.1	39
69	Binder-free Ge nanoparticles–carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability. Chemical Communications, 2012, 48, 3987.	2.2	85
70	Using Nanoscale Dispersed Particles to Assist in the Retention of Polyphosphinocarboxylic Acid (PPCA) Scale Inhibitor on Rock. , 2012, , .		7
71	Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Physical Review B, 2012, 85, .	1.1	95
72	(LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor: The effect of LiFePO4 content on its performance. Journal of Renewable and Sustainable Energy, 2012, 4, 033114.	0.8	23
73	Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11487-11492.	3.3	93
74	Crystallized Indium-Tin Oxide Composites Grown onto Single-Walled Carbon Nanotubes at a Low Temperature by Nanocluster Deposition. Journal of the Electrochemical Society, 2012, 159, K111-K115.	1.3	1
75	Carbon nanotube structure, synthesis, and applications. , 0, , 1-37.		2
76	In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology, 2012, 7, 749-756.	15.6	533
77	Functionalized Graphene for High Performance Lithium Ion Capacitors. ChemSusChem, 2012, 5, 2328-2333.	3.6	115

#	Article	IF	CITATIONS
78	Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy and Environmental Science, 2012, 5, 5701-5707.	15.6	273
79	A Nanostructured Electrochromic Supercapacitor. Nano Letters, 2012, 12, 1857-1862.	4.5	357
80	Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries. Nanostructure Science and Technology, 2012, , 43-66.	0.1	0
82	Pentadecker Supramolecules with a Lithium Alkoxo Nanobelt Sandwiched between Two Highly Charged Buckybowl Surfaces. Angewandte Chemie - International Edition, 2012, 51, 12194-12198.	7.2	52
83	Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates. RSC Advances, 2012, 2, 4353.	1.7	26
84	pH-Dependent Thermal Transitions in Hydrated Layer-by-Layer Assemblies Containing Weak Polyelectrolytes. Macromolecules, 2012, 45, 9169-9176.	2.2	44
85	Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(iv) disulfide nanosheets heterostructure electrodes for high power Li ion batteries. Journal of Materials Chemistry, 2012, 22, 9330.	6.7	44
86	Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. Journal of Materials Chemistry, 2012, 22, 3404.	6.7	88
87	Modeling of a carbon nanotube ultracapacitor. Nanotechnology, 2012, 23, 095401.	1.3	7
88	Direct Synthesis of Cup-Stacked Carbon Nanofiber Microspheres by the Catalytic Pyrolysis of Poly(ethylene glycol). Langmuir, 2012, 28, 8760-8766.	1.6	11
89	Bottom-Up SiO ₂ Embedded Carbon Nanotube Electrodes with Superior Performance for Integration in Implantable Neural Microsystems. ACS Nano, 2012, 6, 4615-4628.	7.3	22
90	Penetrated and aligned carbon nanotubes for counter electrodes of highly efficient dye-sensitized solar cells. Chemical Physics Letters, 2012, 549, 82-85.	1.2	20
91	Direct Growth of Carbon Nanofibers to Generate a 3D Porous Platform on a Metal Contact to Enable an Oxygen Reduction Reaction. ACS Nano, 2012, 6, 10720-10726.	7.3	33
92	Assembling carbon-coated α-Fe ₂ O ₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy and Environmental Science, 2012, 5, 5252-5256.	15.6	767
93	Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending. Journal of Materials Chemistry, 2012, 22, 21092.	6.7	163
94	Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 2012, 46, 6297-6305.	4.6	119
95	High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites. ACS Nano, 2012, 6, 4319-4327.	7.3	688
96	Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17360-17365.	3.3	728

#	Article	IF	CITATIONS
97	The effects of pristine and carboxylated multi-walled carbon nanotubes as conductive additives on the performance of LiNi0.33Co0.33Mn0.33O2 and LiFePO4 positive electrodes. Electrochimica Acta, 2012, 78, 17-26.	2.6	36
98	Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiâ€Walled Carbon Nanotube Sheets. Advanced Materials, 2012, 24, 5695-5701.	11.1	67
99	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
100	Renewing Functionalized Graphene as Electrodes for Highâ€Performance Supercapacitors. Advanced Materials, 2012, 24, 6348-6355.	11.1	394
102	Challenges Facing Lithium Batteries and Electrical Double‣ayer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	7.2	2,407
103	Direct growth of vertically aligned singleâ€walled carbon nanotubes on conducting substrate and its electrochemical performance in ionic liquids. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2260-2266.	0.8	23
104	High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012, 16, 186-198.	5.6	176
105	A green and high energy density asymmetric supercapacitor based on ultrathin MnO ₂ nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 2012, 4, 807-812.	2.8	276
106	In situ redox functionalization of composite electrodes for high power–high energy electrochemical storage systems via a non-covalent approach. Energy and Environmental Science, 2012, 5, 5379-5386.	15.6	37
107	Fabrication of Alternating Multilayer Films of Graphene Oxide and Carbon Nanotube and Its Application in Mechanistic Study of Laser Desorption/Ionization of Small Molecules. ACS Applied Materials & Interfaces, 2012, 4, 2088-2095.	4.0	39
108	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
112	Enhanced Anode Performances of Polyaniline–TiO ₂ –Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorganic Chemistry, 2012, 51, 9544-9551.	1.9	84
113	Drastically Lowered Protein Adsorption on Microbicidal Hydrophobic/Hydrophilic Polyelectrolyte Multilayers. Biomacromolecules, 2012, 13, 719-726.	2.6	93
114	Nanostructured electrodes for high-power lithium ion batteries. Nano Energy, 2012, 1, 518-533.	8.2	306
115	Highly Tunable Charge Transport in Layer-by-Layer Assembled Graphene Transistors. ACS Nano, 2012, 6, 2432-2440.	7.3	84
116	Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy and Environmental Science, 2012, 5, 5437-5444.	15.6	130
117	Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 2844.	6.7	248
118	Polyaniline/Vanadium Pentoxide Layer-by-Layer Electrodes for Energy Storage. Chemistry of Materials, 2012, 24, 181-189.	3.2	97

ARTICLE

IF CITATIONS

Fuel Cells fuel cell (SOFC): Alternative Approaches fuel cell alternative approaches (Electroytes,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74

120	Fertilizer fertilizer/fertilizing Science fertilizer/fertilizing science and Technology fertilizer/fertilizing technology. , 2012, , 3768-3786.		4
121	Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sensors and Actuators B: Chemical, 2012, 171-172, 374-379.	4.0	54
122	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17456.	6.7	129
123	Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process. Diamond and Related Materials, 2012, 25, 24-28.	1.8	25
124	Enhanced Lithium Ion Storage Property of Sn Nanoparticles: The Confinement Effect of Few-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 22774-22779.	1.5	44
125	Fuel Cell fuel cell Types fuel cell types and Their Electrochemistry fuel cell electrochemistry. , 2012, , 3872-3886.		0
126	Fallout Radionuclides and the Study of Erosion and Sedimentation. , 2012, , 3705-3768.		6
127	Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 153-160.	6.7	555
128	Nitrogen-Doped Multiwall Carbon Nanotubes for Lithium Storage with Extremely High Capacity. Nano Letters, 2012, 12, 2283-2288.	4.5	468
129	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366
130	Improving the Assembly Speed, Quality, and Tunability of Thin Conductive Multilayers. ACS Nano, 2012, 6, 3703-3711.	7.3	53
131	Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries. Nano Letters, 2012, 12, 2205-2211.	4.5	432
132	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	4.5	382
133	A LiF Nanoparticleâ€Modified Graphene Electrode for Highâ€Power and Highâ€Energy Lithium Ion Batteries. Advanced Functional Materials, 2012, 22, 3290-3297.	7.8	70
134	The electrocapacitive properties of graphene oxide reduced by urea. Energy and Environmental Science, 2012, 5, 6391-6399.	15.6	460
135	In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. Advanced Functional Materials, 2012, 22, 1655-1662.	7.8	96
136	Threeâ€Dimensional Nitrogen and Boron Coâ€doped Graphene for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2012, 24, 5130-5135.	11.1	1,270

#	Article	IF	CITATIONS
137	Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2012, 2, 742-769.	10.2	1,125
138	In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Advanced Energy Materials, 2012, 2, 722-741.	10.2	341
141	How Many Lithium Ions Can Be Inserted onto Fused C ₆ Aromatic Ring Systems?. Angewandte Chemie - International Edition, 2012, 51, 5147-5151.	7.2	277
142	An Energy Storage Principle using Bipolar Porous Polymeric Frameworks. Angewandte Chemie - International Edition, 2012, 51, 7850-7854.	7.2	177
143	On the Configuration of Supercapacitors for Maximizing Electrochemical Performance. ChemSusChem, 2012, 5, 818-841.	3.6	429
144	Multiple Hydrogen Bond Interactions in the Processing of Functionalized Multi-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 23-31.	7.3	34
145	Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Composites Science and Technology, 2012, 72, 121-144.	3.8	432
146	Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochimica Acta, 2012, 64, 130-139.	2.6	144
147	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	2.6	26
148	Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni–Sn nanowire networks. Journal of Power Sources, 2012, 211, 46-51.	4.0	79
149	Diffusion induced stresses in buckling battery electrodes. Journal of the Mechanics and Physics of Solids, 2012, 60, 1103-1121.	2.3	56
150	Advanced titania nanostructures and composites for lithium ion battery. Journal of Materials Science, 2012, 47, 2519-2534.	1.7	267
151	New Generation "Nanohybrid Supercapacitor― Accounts of Chemical Research, 2013, 46, 1075-1083.	7.6	492
152	Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries. Advanced Functional Materials, 2013, 23, 1037-1045.	7.8	304
153	Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy, 2013, 2, 1025-1030.	8.2	61
154	Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy and Environmental Science, 2013, 6, 2280.	15.6	1,213
155	Ionic Supramolecular Assemblies. Israel Journal of Chemistry, 2013, 53, 498-510.	1.0	28
156	Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model. Journal of Physical Chemistry C, 2013, 117, 18286-18297	1.5	90

#	Article	IF	CITATIONS
157	Synthesis of Highly Stable Sub-8 nm TiO ₂ Nanoparticles and Their Multilayer Electrodes of TiO ₂ /MWNT for Electrochemical Applications. Nano Letters, 2013, 13, 4610-4619.	4.5	64
158	A Novel Highâ€Energy Hybrid Supercapacitor with an Anatase TiO ₂ –Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Advanced Energy Materials, 2013, 3, 1500-1506.	10.2	510
159	Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Nano Letters, 2013, 13, 3909-3914.	4.5	245
160	Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte. Scientific Reports, 2013, 3, 2986.	1.6	158
161	A composite material made of carbon nanotubes partially embedded in a nanocrystalline diamond film. Carbon, 2013, 52, 408-417.	5.4	17
162	Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. Nano Energy, 2013, 2, 579-585.	8.2	92
163	Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Nanoscale, 2013, 5, 12304.	2.8	38
164	Facile diameter control of vertically aligned, narrow single-walled carbon nanotubes. RSC Advances, 2013, 3, 1434-1441.	1.7	22
165	Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2878.	1.6	53
166	Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical capacitive performance. Journal of Materials Chemistry A, 2013, 1, 15230.	5.2	63
167	Preparation and study of carbon nano-onion for lithium storage. Materials Chemistry and Physics, 2013, 139, 333-337.	2.0	22
168	Covalent Bond Glued Sulfur Nanosheet-Based Cathode Integration for Long-Cycle-Life Li–S Batteries. Nano Letters, 2013, 13, 6244-6250.	4.5	99
169	Double-Gyroid-Structured Functional Materials. Springer Theses, 2013, , .	0.0	42
170	Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon, 2013, 61, 525-536.	5.4	38
171	Free Standing Reduced Graphene Oxide Film Cathodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12295-12303.	4.0	89
172	Structural Perspective on Aggregation of Alkali Metal Ions with Charged Planar and Curved Carbon Ĩ€-Surfaces. Advances in Organometallic Chemistry, 2013, , 375-462.	0.5	39
173	Free-standing heterogeneous hybrid papers based on mesoporous Î ³ -MnO2 particles and carbon nanotubes for lithium-ion battery anodes. Journal of Power Sources, 2013, 244, 747-751.	4.0	50
174	Reliable reference electrodes for lithium-ion batteries. Electrochemistry Communications, 2013, 31, 141-144.	2.3	105

#	Article	IF	CITATIONS
175	Bismuth-Doped Tin Oxide-Coated Carbon Nanotube Network: Improved Anode Stability and Efficiency for Flow-Through Organic Electrooxidation. ACS Applied Materials & Interfaces, 2013, 5, 10054-10066.	4.0	115
176	Surface modification of MoOxSy on porous TiO2 nanospheres as an anode material with highly reversible and ultra-fast lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 15128.	5.2	28
177	The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. Journal of Materials Chemistry A, 2013, 1, 3607.	5.2	73
178	A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9019.	5.2	69
179	A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. Journal of Materials Chemistry A, 2013, 1, 2313.	5.2	186
180	Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices. Carbon, 2013, 53, 292-301.	5.4	102
181	Fabrication of Graphene Sheets Intercalated with Manganese Oxide/Carbon Nanofibers: Toward High apacity Energy Storage. Small, 2013, 9, 248-254.	5.2	92
182	Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon, 2013, 53, 90-100.	5.4	72
183	Electrochemical lithium intercalation at single-wall carbon nanotubes chemically attached to 4-aminothiophenol modified platinum electrodes. Journal of Electroanalytical Chemistry, 2013, 704, 242-248.	1.9	2
184	Chemically shortened multi-walled carbon nanotubes used as anode materials for lithium-ion batteries. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 155-160.	1.3	9
185	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	1.6	84
186	Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes. Sensors and Actuators A: Physical, 2013, 195, 224-230.	2.0	24
187	Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors. Angewandte Chemie - International Edition, 2013, 52, 3722-3725.	7.2	160
188	Carbon nanotubes: controlled growth and application. Materials Today, 2013, 16, 19-28.	8.3	84
189	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	1.2	21
190	Multiwalled nanotube-coated mesophase carbon microbeads for use as anode material in lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2013, 19, 1648-1652.	2.9	15
191	<i>In Situ</i> Fabrication of Porous Graphene Electrodes for High-Performance Energy Storage. ACS Nano, 2013, 7, 2422-2430.	7.3	394
192	Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, 82, 27-47.	2.5	44

#	Article	IF	CITATIONS
193	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. Journal of Materials Chemistry A, 2013, 1, 5212.	5.2	77
194	Binding SnO ₂ Nanocrystals in Nitrogenâ€Doped Graphene Sheets as Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2013, 25, 2152-2157.	11.1	1,089
195	A novel carbon nanotube/polymer composite film for counter electrodes of dye-sensitized solar cells. Polymer Chemistry, 2013, 4, 1680.	1.9	25
196	Bottom-up Approach toward Single-Crystalline VO ₂ -Graphene Ribbons as Cathodes for Ultrafast Lithium Storage. Nano Letters, 2013, 13, 1596-1601.	4.5	263
197	Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy, 2013, 2, 769-778.	8.2	54
198	Fuel Cell Comparison to Alternate Technologies. , 2013, , 77-95.		1
199	Graphene composites as anode materials in lithium-ion batteries. Electronic Materials Letters, 2013, 9, 133-153.	1.0	71
200	Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 128-166.	6.8	66
201	Carbonaceous Electrode Materials for Supercapacitors. Advanced Materials, 2013, 25, 3899-3904.	11.1	625
202	An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5057-5063.	4.0	64
203	"Naked―Mono- and Dianions of Corannulene with Lithium Counterions. Organometallics, 2013, 32, 538-543.	1.1	39
204	Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity. Bioresource Technology, 2013, 142, 209-217.	4.8	117
205	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental Science, 2013, 6, 2465.	15.6	309
206	Polymer coating of vanadium oxide nanowires to improve cathodic capacity in lithium batteries. Journal of Materials Chemistry A, 2013, 1, 7979.	5.2	21
207	Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. Journal of Power Sources, 2013, 242, 560-565.	4.0	57
208	Synthesis and Applications of \hat{I}^3 -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
209	Concentration-Dependent Ordering of Lithiated Amorphous TiO2. Journal of Physical Chemistry C, 2013, 117, 3834-3845.	1.5	18
210	Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage. Physical Chemistry Chemical Physics, 2013, 15, 9654.	1.3	82

ARTICLE IF CITATIONS # Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy 211 15.6 79 devices. Energy and Environmental Science, 2013, 6, 888. Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium ion batteries. Journal of Power Sources, 2013, 241, 619-626. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved 213 4.0 66 performance of supercapacitors. Journal of Power Sources, 2013, 235, 187-192. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and 214 3.1 its electron emission properties. Applied Surface Science, 2013, 265, 66-70. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to 215 1.6 40 efficiently produce high-quality graphene. Scientific Reports, 2013, 3, 2636. Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Letters, 2013, 13, 5480-5484. 4.5 390 Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. Journal of 217 1.5 120 Physical Chemistry C, 2013, 117, 25367-25373. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion 218 5.4 589 storage with excellent performance. Carbon, 2013, 55, 328-334. Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip 219 7.3 90 Devices. ACS Nano, 2013, 7, 6498-6506. Electrochemical Characteristics of Closely Spaced Defect Tuned Carbon Nanotube Arrays. Journal of 1.3 the Electrochemical Society, 2013, 160, H360-H367. Silicon Quantum Dots-Carbon Nanotube Composite as Anode Material for Lithium Ion Battery. 221 0.1 0 Materials Research Society Symposia Proceedings, 2013, 1540, 3801. Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for 1.6 lithium-ion batteries. Scientific Reports, 2013, 3, 2317. Controllable Fabrication and Characterization of Si-coated Multiwalled Carbon Nanotubes. 224 0.3 2 Integrated Ferroelectrics, 2013, 146, 22-28. Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon 0.2 Nanotube Arrays. Journal of Visualized Experiments, 2013, ,. MnO@Carbon Core–Shell Nanowires as Stable Highâ€Performance Anodes for Lithiumâ€Ion Batteries. 226 1.7 111 Chemistry - A European Journal, 2013, 19, 11310-11319. Designed Synthesis of Transition Metal/Oxide Hierarchical Peapods Array with the Superior Lithium Storage Performance. Scientific Reports, 2013, 3, 2717. Evolution of Energy Storage on the Platform of Supercapacitors. Electrochemistry, 2013, 81, 775-776. 228 0.6 7 Safer and Flexible Lithium Ion Batteries: Dream or Reality?. Nanoscience and Nanotechnology - Asia, 229 2013, 3, 36-44.

#	Article	IF	CITATIONS
230	Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology, 2014, 25, 094010.	1.3	100
231	Density Functional Theory Study of Lithium Atom Adsorbing in the Interior and Exterior of a Series of Carbon Nanotubes. Advanced Materials Research, 0, 1053, 150-156.	0.3	2
232	Progress in Application of CNTs in Lithium-Ion Batteries. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	13
233	Nanodevices: fabrication, prospects for low dimensional devices and applications. , 2014, , 399-423.		4
234	Porous carbon nanotubes: Molecular absorption, transport, and separation. Journal of Chemical Physics, 2014, 140, 104704.	1.2	17
235	Predictive model for alignment and deposition of functionalized nanotubes using applied electric field. Journal of Applied Physics, 2014, 115, .	1.1	7
237	Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices. Journal of Physical Chemistry Letters, 2014, 5, 4324-4330.	2.1	31
238	Fluorineâ€Doped Fe ₂ O ₃ as High Energy Density Electroactive Material for Hybrid Supercapacitor Applications. Chemistry - an Asian Journal, 2014, 9, 852-857.	1.7	99
239	11. Batteries/Supercapacitors: Hybrids with CNTs. , 2014, , 297-318.		0
240	Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. Journal of Power Sources, 2014, 246, 19-23.	4.0	114
241	One-pot synthesis of Fe3O4/Fe/MWCNT nanocomposites via electrical wire pulse for Li ion battery electrodes. Journal of Alloys and Compounds, 2014, 606, 204-207.	2.8	19
242	Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 184, 34-43.	1.7	22
243	Binder-free, self-standing films of iron oxide nanoparticles deposited on ionic liquid functionalized carbon nanotubes for lithium-ion battery anodes. Materials Chemistry and Physics, 2014, 144, 396-401.	2.0	19
244	A Facile Moltenâ€Salt Route to Graphene Synthesis. Small, 2014, 10, 193-200.	5.2	224
245	Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Advanced Energy Materials, 2014, 4, 1301448.	10.2	133
246	The contribution of functional groups in carbon nanotube electrodes to the electrochemical performance. Electronic Materials Letters, 2014, 10, 241-245.	1.0	11
247	Influence of Electronic Type Purity on the Lithiation of Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 2399-2409.	7.3	16
248	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67.	11.1	479

#	Article	IF	CITATIONS
249	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	10.2	1,727
250	Electrochemical properties of carbon nanotube/graphene oxide hybrid electrodes fabricated via layer-by-layer self-assembly. Journal of Electroanalytical Chemistry, 2014, 722-723, 141-147.	1.9	16
251	Highâ€Performance All arbon Yarn Microâ€Supercapacitor for an Integrated Energy System. Advanced Materials, 2014, 26, 4100-4106.	11.1	223
252	Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. Journal of Power Sources, 2014, 259, 1-14.	4.0	62
253	Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbideâ€derived carbon, zeoliteâ€templated carbon, carbon aerogels, carbon nanotubes, onionâ€like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 424-473.	1.9	459
254	Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese Journal of Catalysis, 2014, 35, 185-195.	6.9	100
255	Production and Storage of Energy with One-Dimensional Semiconductor Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 109-153.	6.8	9
256	Unusual Formation of ZnCo ₂ O ₄ 3D Hierarchical Twin Microspheres as a Highâ€Rate and Ultralongâ€Life Lithiumâ€Ion Battery Anode Material. Advanced Functional Materials, 2014, 24, 3012-3020.	7.8	382
257	Layerâ€byâ€Layer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	11.1	289
258	Vertical Alignments of Graphene Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors. ACS Nano, 2014, 8, 4580-4590.	7.3	310
259	Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites. Composites Part B: Engineering, 2014, 60, 98-105.	5.9	97
260	TiO2/C composites nanorods synthesized by internal-reflux method for lithium-ion battery anode materials. Materials Letters, 2014, 117, 124-127.	1.3	9
261	Recent progress on flexible lithium rechargeable batteries. Energy and Environmental Science, 2014, 7, 538-551.	15.6	355
262	Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nature Communications, 2014, 5, 3015.	5.8	290
263	Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries. Nano Energy, 2014, 4, 97-104.	8.2	71
264	Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy, 2014, 4, 88-96.	8.2	94
265	Carbon nanofibres from fructose using a light-driven high-temperature spinning disc processor. Chemical Communications, 2014, 50, 1478-1480.	2.2	13
266	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir, 2014, 30, 318-324.	1.6	225

#	Article	IF	CITATIONS
267	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93
268	Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Research, 2014, 7, 1-62.	5.8	292
269	3D nitrogen-doped graphene/Co(OH)2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances, 2014, 4, 61753-61758.	1.7	26
270	Electrochemical Performance of Thin-Film Functionalized Carbon Nanotube Electrodes in Nonaqueous Cells. Journal of the Electrochemical Society, 2014, 161, A1625-A1633.	1.3	9
271	Diffusion-Induced Stresses in Transversely Isotropic Cylindrical Electrodes of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2243-A2249.	1.3	20
272	Experimental Evidence of Rapid Water Transport through Carbon Nanotubes Embedded in Polymeric Desalination Membranes. Small, 2014, 10, 2653-2660.	5.2	123
273	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. Journal of Materials Chemistry A, 2014, 2, 17944-17951.	5.2	42
274	Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale, 2014, 6, 7817.	2.8	54
275	Electrocatalytic activity for the oxygen reduction reaction of oxygen-containing nanocarbon synthesized by solution plasma. Journal of Materials Chemistry A, 2014, 2, 10589.	5.2	62
276	An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(<scp>ii</scp>)/V(<scp>)ii</scp>) and V(<scp>iv</scp>)/V(<scp>v</scp>) couples in a vanadium redox flow battery. RSC Advances, 2014, 4, 55666-55670.	1.7	36
277	Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10869-10875.	5.2	83
278	Investigation of various synthetic conditions for large-scale synthesis and electrochemical properties of Li 3.98 Al 0.06 Ti 4.96 O 12 /C as anode material. Journal of Alloys and Compounds, 2014, 615, 817-824.	2.8	7
279	A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3–} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials. Advanced Energy Materials. 2014. 4, 1400631.}	2	196
280	Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Advances, 2014, 4, 7506.	1.7	91
281	Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10161.	5.2	75
282	Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. Journal of Materials Chemistry A, 2014, 2, 14421-14428.	5.2	30
283	CoO Hollow Cube/Reduced Graphene Oxide Composites with Enhanced Lithium Storage Capability. Chemistry of Materials, 2014, 26, 5958-5964.	3.2	135
284	Self-assembled hierarchical mesoporous TiO2–C sub-microspheres from nanorods and their improved properties for lithium storage. RSC Advances, 2014, 4, 19266.	1.7	8

#	Article	IF	CITATIONS
285	Depolarized and Fully Active Cathode Based on Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ Embedded in Carbon Nanotube Network for Advanced Batteries. Nano Letters, 2014, 14, 4700-4706.	4.5	95
286	Synthesis and Characterization of Diazonium Salts with Polyethylene Glycol Appendages and Resulting Films Afforded by Electrodeposition for Use as a Battery Separator Material. Chemistry of Materials, 2014, 26, 5514-5522.	3.2	8
287	Carbon Nanotube Balls and Their Application in Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 706-711.	4.0	36
288	Vacuum-Assisted Layer-by-Layer Nanocomposites for Self-Standing 3D Mesoporous Electrodes. Chemistry of Materials, 2014, 26, 5310-5318.	3.2	38
289	First-Principles Studies of Li Nucleation on Graphene. Journal of Physical Chemistry Letters, 2014, 5, 1225-1229.	2.1	82
290	Preparation of Carbon-Encapsulated ZnO Tetrahedron as an Anode Material for Ultralong Cycle Life Performance Lithium-ion Batteries. Electrochimica Acta, 2014, 146, 52-59.	2.6	78
291	Impact of Redox Stimuli on Ferrocene–Buckybowl Complexes: Switchable Optoelectronic and Nonlinear Optical Properties. Organometallics, 2014, 33, 3341-3352.	1.1	46
292	Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode. ACS Nano, 2014, 8, 8968-8978.	7.3	380
293	Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn. Energy, 2014, 76, 318-325.	4.5	16
294	Highâ€Performance Hybrid Supercapacitor Enabled by a Highâ€Rate Siâ€based Anode. Advanced Functional Materials, 2014, 24, 7433-7439.	7.8	208
295	Highly Efficient Layer-by-Layer-Assisted Infiltration for High-Performance and Cost-Effective Fabrication of Nanoelectrodes. ACS Applied Materials & Interfaces, 2014, 6, 17352-17357.	4.0	16
296	Ni _{0.33} Mn _{0.33} Co _{0.33} Fe ₂ O ₄ nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries. RSC Advances, 2014, 4, 33769-33775.	1.7	4
297	Finely tuning oxygen functional groups of graphene materials and optimizing oxygen levels for capacitors. RSC Advances, 2014, 4, 36377.	1.7	27
298	Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium–Air Batteries. Journal of Physical Chemistry C, 2014, 118, 20137-20151.	1.5	40
299	Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for Highâ€Voltage Bipolar Batteries. Angewandte Chemie - International Edition, 2014, 53, 11467-11472.	7.2	124
300	Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014, 43, 7067-7098.	18.7	1,547
301	Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. Journal of Power Sources, 2014, 267, 831-873.	4.0	138
302	Charging graphene for energy. Nature Nanotechnology, 2014, 9, 739-741.	15.6	100

#	Article	IF	CITATIONS
303	Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core–shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale, 2014, 6, 6772.	2.8	109
304	High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon, 2014, 74, 153-162.	5.4	111
305	Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. Journal of Materials Chemistry A, 2014, 2, 11372.	5.2	58
306	Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups. Physical Chemistry Chemical Physics, 2014, 16, 16003.	1.3	6
307	A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte. Journal of the Electrochemical Society, 2014, 161, A1090-A1093.	1.3	41
308	In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 7214-7222.	4.0	306
309	Enhanced-Ion Transfer via Metallic-Nanopore Electrodes. Journal of the Electrochemical Society, 2014, 161, A1475-A1479.	1.3	4
310	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Li ₄ Ti ₅ O ₁₂ and Activated Carbon. ChemElectroChem, 2014, 1, 125-130.	1.7	137
311	Porous graphene as cathode material for lithium ion capacitor with high electrochemical performance. Powder Technology, 2014, 253, 580-583.	2.1	38
312	Mechanics of filled carbon nanotubes. Diamond and Related Materials, 2014, 44, 11-25.	1.8	11
313	Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochimica Acta, 2014, 120, 46-51.	2.6	23
314	Three-Dimensional Nanoelectrode by Metal Nanowire Nonwoven Clothes. Nano Letters, 2014, 14, 1932-1937.	4.5	48
315	Ultraâ€Uniform SnO <i>_x</i> /Carbon Nanohybrids toward Advanced Lithiumâ€Ion Battery Anodes. Advanced Materials, 2014, 26, 3943-3949.	11.1	311
316	A Layered Carbon Nanotube Architecture for High Power Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A989-A995.	1.3	19
317	Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 2014, 114, 5057-5115.	23.0	3,865
318	Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability. Nano Letters, 2014, 14, 4083-4089.	4.5	122
319	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	4.5	257
320	Nanostructured Ternary Nanocomposite of rGO/CNTs/MnO ₂ for High-Rate Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 70-74.	3.2	102

#	Article	IF	Citations
321	Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation. Journal of Visualized Experiments, 2014, , .	0.2	7
322	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chemistry Letters, 2014, 43, 36-68.	0.7	813
323	1.蓄電æ±ã₽å…ƒç´æ^¦ç•¥. Electrochemistry, 2014, 82, 169-174.	0.6	1
324	Influence of CVD process duration on morphology, structure and sensing properties of carbonaceous-palladium films. Journal of Physics: Conference Series, 2014, 564, 012003.	0.3	Ο
325	Clamshell Opening in the Mixedâ€Metal Supramolecular Aggregates Formed by Fourfold Reduced Corannulene for Maximizing Intercalated Metal Content. Angewandte Chemie - International Edition, 2014, 53, 140-145.	7.2	67
327	A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure. Scientific Reports, 2015, 5, 14155.	1.6	45
329	Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers. Scientific Reports, 2015, 5, 14166.	1.6	31
330	Enhanced lithium ion storage in nanoimprinted carbon. Applied Physics Letters, 2015, 107, 043904.	1.5	1
331	Carbon nanotube web-based current collectors for high-performance lithium ion batteries. Materials Today Communications, 2015, 4, 149-155.	0.9	11
332	Scanning MWCNTâ€Nanopipette and Probe Microscopy: Li Patterning and Transport Studies. Small, 2015, 11, 4946-4958.	5.2	6
333	Rational Construction of a Functionalized V ₂ O ₅ Nanosphere/MWCNT Layerâ€byâ€Layer Nanoarchitecture as Cathode for Enhanced Performance of Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 5633-5639.	7.8	62
334	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
335	Nitrogenâ€Doped Holey Graphene as an Anode for Lithiumâ€Ion Batteries with High Volumetric Energy Density and Long Cycle Life. Small, 2015, 11, 6179-6185.	5.2	115
336	Recent Progress in Obtaining Semiconducting Singleâ€Walled Carbon Nanotubes for Transistor Applications. Advanced Materials, 2015, 27, 7908-7937.	11.1	67
337	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Advanced Energy Materials, 2015, 5, 1500959.	10.2	208
338	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
339	Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes. Nano Letters, 2015, 15, 4472-4476.	4.5	21
340	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	5.8	370

#	Article	IF	CITATIONS
341	Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Materials, 2015, 1, 112-118.	9.5	83
342	Influence of lithium precursors and calcination atmospheres on graphene sheets-modified nano-Li4Ti5O12 anode material. Journal of Power Sources, 2015, 285, 51-62.	4.0	20
343	Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors. Journal of Power Sources, 2015, 283, 484-493.	4.0	93
344	Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Advances, 2015, 5, 14994-15001.	1.7	29
345	Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, 85, 351-362.	5.4	83
346	Simple, effective fabrication of layered carbon nanotube/graphene hybrid field emitters by electrophoretic deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 011802.	0.6	7
347	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	15.6	215
349	Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes. Journal of Alloys and Compounds, 2015, 634, 50-57.	2.8	39
350	Correlations between electrochemical Na ⁺ storage properties and physiochemical characteristics of holey graphene nanosheets. Journal of Materials Chemistry A, 2015, 3, 17282-17289.	5.2	51
351	FeOxand Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries. Nanoscale, 2015, 7, 14344-14350.	2.8	8
352	Progress towards high-power Li/CF _x batteries: electrode architectures using carbon nanotubes with CF _x . Physical Chemistry Chemical Physics, 2015, 17, 22504-22518.	1.3	76
353	Nanotechnology for Chemical Engineers. , 2015, , .		8
354	Long-Life, High-Efficiency Lithium–Sulfur Battery from a Nanoassembled Cathode. Chemistry of Materials, 2015, 27, 5080-5087.	3.2	56
355	From Nanotechnology to Nanoengineering. , 2015, , 79-178.		7
356	A green technique to prepare uniform amine capped multi-walled carbon nanotubes to fabricate high strength, protein resistant polymer nanocomposites. RSC Advances, 2015, 5, 15524-15533.	1.7	11
357	A phosphoric acid-doped electrocatalyst supported on poly(para-pyridine benzimidazole)-wrapped carbon nanotubes shows a high durability and performance. Journal of Materials Chemistry A, 2015, 3, 14318-14324.	5.2	31
358	Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries. Chemical Physics Letters, 2015, 635, 185-189.	1.2	21
359	Organic Cathode Materials for Rechargeable Batteries. Green Energy and Technology, 2015, , 637-671.	0.4	7

#	Article	IF	CITATIONS
360	High-Density Lithium-Ion Energy Storage Utilizing the Surface Redox Reactions in Folded Graphene Films. Chemistry of Materials, 2015, 27, 3291-3298.	3.2	78
361	Carbon surface functionalities and SEI formation during Li intercalation. Carbon, 2015, 92, 193-244.	5.4	97
362	A General Salt-Templating Method To Fabricate Vertically Aligned Graphitic Carbon Nanosheets and Their Metal Carbide Hybrids for Superior Lithium Ion Batteries and Water Splitting. Journal of the American Chemical Society, 2015, 137, 5480-5485.	6.6	310
363	Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized Nanostructured Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 9128-9133.	4.0	36
364	Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015, 15, 104-115.	8.2	263
365	Chemically Reduced Organic Small-Molecule-Based Lithium Battery with Improved Efficiency. Chemistry of Materials, 2015, 27, 2121-2126.	3.2	80
366	Photocurrent Generation in Organic Photodetectors with Tailor-Made Active Layers Fabricated by Layer-by-Layer Deposition. ACS Applied Materials & amp; Interfaces, 2015, 7, 7049-7053.	4.0	14
367	Bowl-like sulfur particles wrapped by graphene oxide as cathode material of lithium–sulfur batteries. RSC Advances, 2015, 5, 28832-28835.	1.7	12
368	Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors. Materials Chemistry and Physics, 2015, 160, 375-382.	2.0	34
369	Fast lithium-ion storage of Nb ₂ O ₅ nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Advances, 2015, 5, 41179-41185.	1.7	51
370	Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: Synthesis and Applications. Chemistry of Materials, 2015, 27, 3785-3796.	3.2	225
371	A nanofibrous silver-nanoparticle/titania/carbon composite as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4354-4360.	5.2	70
372	Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040.	5.8	159
373	A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. Nano Letters, 2015, 15, 4108-4113.	4.5	118
374	Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44, 5926-5940.	18.7	857
375	A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte. Translational Materials Research, 2015, 2, 015001.	1.2	12
376	Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. Journal of Materials Chemistry A, 2015, 3, 10127-10133.	5.2	59
377	ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties. ACS Applied Materials & Interfaces, 2015, 7, 22848-22857.	4.0	56

#	Article	IF	CITATIONS
378	Elastic Reduced Graphene Oxide Nanosheets Embedded in Germanium Nanofiber Matrix as Anode Material for High-Performance Li-Ion Battery. Electrochimica Acta, 2015, 186, 64-70.	2.6	26
379	Systematic Effect for an Ultralong Cycle Lithium–Sulfur Battery. Nano Letters, 2015, 15, 7431-7439.	4.5	110
380	Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries. Electrochimica Acta, 2015, 182, 437-444.	2.6	34
381	Transitionâ€Metalâ€Free Magnesiumâ€Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets. Advanced Functional Materials, 2015, 25, 6519-6526.	7.8	66
382	New insight into the heteroatom-doped carbon as the electrode material for supercapacitors. Electrochimica Acta, 2015, 180, 879-886.	2.6	71
383	Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries. RSC Advances, 2015, 5, 90041-90048.	1.7	34
384	Hydrothermal Synthesis of Boron and Nitrogen Codoped Hollow Graphene Microspheres with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 19398-19407.	4.0	83
385	Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage. Nanoscale, 2015, 7, 15051-15058.	2.8	62
386	Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius. Chemical Science, 2015, 6, 6601-6606.	3.7	39
387	Ultrathin Nanotube/Nanowire Electrodes by Spin–Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage. ACS Nano, 2015, 9, 10005-10017.	7.3	55
388	Self-assembly of tetrareduced corannulene with mixed Li–Rb clusters: dynamic transformations, unique structures and record ⁷ Li NMR shifts. Chemical Science, 2015, 6, 1959-1966.	3.7	36
389	Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond. Nanoscale, 2015, 7, 17685-17692.	2.8	32
390	Shape memory fiber supercapacitors. Nano Energy, 2015, 17, 330-338.	8.2	67
391	Controlled synthesis of three-dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 21298-21307.	5.2	23
392	Nitrogen-doped carbon nanofibers with effectively encapsulated GeO ₂ nanocrystals for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 21699-21705.	5.2	39
393	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research, 2015, 8, 3535-3543.	5.8	71
394	Microwave-assisted in situ synthesis of cobalt nanoparticles decorated on reduced graphene oxide as promising electrodes for supercapacitors. International Journal of Hydrogen Energy, 2015, 40, 13003-13013.	3.8	21
395	Effect of crystal morphology transition of polypropylene on interfacial properties of carbon fiber-reinforced composites through AlOOH surface treatment. Composites Part A: Applied Science and Manufacturing, 2015, 78, 362-370.	3.8	15

#	Article	IF	CITATIONS
396	Bioinspired Synthesis of Hierarchical Porous Graphitic Carbon Spheres with Outstanding High-Rate Performance in Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 336-342.	3.2	80
397	Self-powered flexible inorganic electronic system. Nano Energy, 2015, 14, 111-125.	8.2	110
398	Oxidative Intercalation for Monometallic Ni ²⁺ -Ni ³⁺ Layered Double Hydroxide and Enhanced Capacitance in Exfoliated Nanosheets. Small, 2015, 11, 2044-2050.	5.2	48
399	Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 3757-3767.	5.2	72
400	A bottom-up synthesis of α-Fe ₂ O ₃ nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2158-2165.	5.2	45
401	Compact Coupled Graphene and Porous Polyaryltriazineâ€Derived Frameworks as High Performance Cathodes for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 1812-1816.	7.2	142
402	Nanoscale spinel LiFeTiO ₄ for intercalation pseudocapacitive Li ⁺ storage. Physical Chemistry Chemical Physics, 2015, 17, 1482-1488.	1.3	35
403	Ultra-fast aqueous Li-ion redox energy storage from vanadium oxide-carbon nanotube yarn electrodes. Journal of Power Sources, 2015, 277, 59-63.	4.0	9
404	Core–Shell LiFePO ₄ /Carbon oated Reduced Graphene Oxide Hybrids for Highâ€₽ower Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2015, 21, 2132-2138.	1.7	44
405	Controlling Porosity in Ligninâ€Derived Nanoporous Carbon for Supercapacitor Applications. ChemSusChem, 2015, 8, 428-432.	3.6	196
406	Graphdiyne for high capacity and long-life lithium storage. Nano Energy, 2015, 11, 481-489.	8.2	315
407	Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy and Environmental Science, 2015, 8, 941-955.	15.6	740
408	Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy, 2015, 11, 38-47.	8.2	139
409	Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015, 132, 192-206.	1.1	191
410	High interfacial storage capability of porous NiMn ₂ O ₄ /C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale, 2015, 7, 225-231.	2.8	152
411	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429
412	A high power density miniaturized microbial fuel cell having carbon nanotube anodes. Journal of Power Sources, 2015, 273, 823-830.	4.0	112
413	Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon, 2015, 81, 552-563.	5.4	218

#	Article	IF	CITATIONS
414	All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports, 2014, 4, 5278.	1.6	185
415	Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode. Scientific Reports, 2015, 4, 5310.	1.6	19
416	Graphene oxide/lithium titanate composite with binder-free as high capacity anode material for lithium-ion batteries. Journal of Power Sources, 2015, 273, 754-760.	4.0	47
417	Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon, 2015, 81, 314-321.	5.4	68
418	Size-controllable ultrathin carboxylated polypyrrole nanotube transducer for extremely sensitive 17î2-estradiol FET-type biosensors. Journal of Materials Chemistry B, 2016, 4, 5025-5034.	2.9	30
419	Biomassâ€Derived Electrode for Next Generation Lithiumâ€lon Capacitors. ChemSusChem, 2016, 9, 849-854.	3.6	82
420	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Mesoporous <i>T</i> â€Nb ₂ O ₅ Nanospheres Anode and Mesoporous Carbon oated Graphene Cathode. ChemElectroChem, 2016, 3, 1360-1368.	1.7	40
421	Nitrogenâ€Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage. Chemistry - A European Journal, 2016, 22, 2339-2344.	1.7	27
422	Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach. Physical Chemistry Chemical Physics, 2016, 18, 20600-20606.	1.3	39
423	Flexible SnO ₂ /N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. Small, 2016, 12, 853-859.	5.2	292
424	Colorâ€Coded Batteries – Electroâ€Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics. Advanced Materials, 2016, 28, 5681-5688.	11.1	44
425	Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1600278.	10.2	219
426	Porous Carbon Polyhedrons with High-Level Nitrogen-Doping for High-Performance Sodium-Ion Battery Anodes. ChemistrySelect, 2016, 1, 6442-6447.	0.7	14
427	Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy, 2016, 23, 129-137.	8.2	170
428	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	5.2	132
429	On the utility of C24 fullerene framework for Li-ion batteries: Quantum chemical analysis. Applied Surface Science, 2016, 383, 294-299.	3.1	38
430	Applications of Carbon Nanotubes in CFx Electrodes for High-power Li/CFx Batteries. MRS Advances, 2016, 1, 403-408.	0.5	5
431	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205

#	Article	IF	CITATIONS
432	Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 2016, 85, 536-552.	5.3	116
433	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie, 2016, 128, 12975-12980.	1.6	44
434	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 12783-12788.	7.2	172
435	Building a Three-Dimensional Nano–Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect. Analytical Chemistry, 2016, 88, 9622-9629.	3.2	51
436	2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials, 2016, 17, 563-582.	2.8	77
437	Ultrathin paper-like boron-doped carbon nanosheet electrodes combined with boron-enriched gel polymer electrolytes for high-performance energy storage. Journal of Materials Chemistry A, 2016, 4, 15589-15596.	5.2	16
438	Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. Journal of Power Sources, 2016, 329, 536-545.	4.0	26
439	Bond strength of individual carbon nanotubes grown directly on carbon fibers. Nanotechnology, 2016, 27, 405704.	1.3	4
440	Energy storage capabilities of nitrogen-enriched pyropolymer nanoparticles fabricated through rapid pyrolysis. Journal of Power Sources, 2016, 331, 507-514.	4.0	8
441	Electrically Conductive Hierarchical Carbon Nanotube Networks with Tunable Mechanical Response. ACS Applied Materials & Interfaces, 2016, 8, 28004-28011.	4.0	9
442	All arbon Thinâ€Film Transistors as a Step Towards Flexible and Transparent Electronics. Advanced Electronic Materials, 2016, 2, 1600229.	2.6	32
443	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
444	Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon, 2016, 109, 163-172.	5.4	38
445	Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries. Journal of Materials Chemistry A, 2016, 4, 14902-14914.	5.2	84
446	Self-healing of cracks formed in Silicon-Aluminum anodes electrochemically cycled at high lithiation rates. Journal of Power Sources, 2016, 328, 300-310.	4.0	17
447	Three-dimensional porous graphene-like carbon cloth from cotton as a free-standing lithium-ion battery anode. Journal of Materials Chemistry A, 2016, 4, 11762-11767.	5.2	38
448	Growth of carbon nanotubes from waste blast furnace gases at atmospheric pressure. Crystal Research and Technology, 2016, 51, 466-474.	0.6	3
449	Facile synthesis of titanium nitride-graphene nanocomposite and its improved rate-dependent electroactivity with respect to lithium storage. Materials Research Bulletin, 2016, 84, 388-396.	2.7	7

#	Article	IF	CITATIONS
450	Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries. RSC Advances, 2016, 6, 83185-83195.	1.7	24
451	Electrochemically Activated Reduced Graphene Oxide Used as Solid-State Symmetric Supercapacitor: An X-ray Absorption Spectroscopic Investigation. Journal of Physical Chemistry C, 2016, 120, 22134-22141.	1.5	33
452	High-energy asymmetric electrochemical capacitors based on oxides functionalized hollow carbon fibers electrodes. Nano Energy, 2016, 30, 9-17.	8.2	70
453	Efficient Dispersion of "Super-Growth―Single-Walled Carbon Nanotubes Using a Copolymer of Naphathalene Diimide and Poly(dimethylsiloxane). Bulletin of the Chemical Society of Japan, 2016, 89, 183-191.	2.0	9
454	Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Advances, 2016, 6, 71507-71516.	1.7	38
455	Enabling a High Performance of Mesoporous α-Fe ₂ O ₃ Anodes by Building a Conformal Coating of Cyclized-PAN Network. ACS Applied Materials & Interfaces, 2016, 8, 19524-19532.	4.0	29
457	Facile Synthesis of Hierarchical Porous Carbon Monolith: A Free-Standing Anode for Li-Ion Battery with Enhanced Electrochemical Performance. Industrial & Engineering Chemistry Research, 2016, 55, 11818-11828.	1.8	13
458	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	4.0	50
459	High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1, .	19.8	2,421
460	Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. Journal of the American Chemical Society, 2016, 138, 14915-14922.	6.6	360
461	Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 31067-31075.	4.0	71
462	Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Advances, 2016, 6, 104010-104015.	1.7	14
463	Theoretical study of SET operation in carbon nanotube memory cell. Japanese Journal of Applied Physics, 2016, 55, 04EE03.	0.8	0
464	Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional Materials, 2016, 26, 903-910.	7.8	63
465	Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Goldenâ€Toad Eggs toward a Binderâ€Free, Highâ€Rate, and Flexible Electrode. Advanced Materials, 2016, 28, 7494-7500.	11.1	162
466	Everâ€Increasing Pseudocapacitance in RGO–MnO–RGO Sandwich Nanostructures for Ultrahighâ€Rate Lithium Storage. Advanced Functional Materials, 2016, 26, 2198-2206.	7.8	238
467	Synthesizing Nitrogenâ€Doped Core–Sheath Carbon Nanotube Films for Flexible Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1600271.	10.2	93
468	Ionicâ€Liquidâ€Derived Boronâ€Doped Cobaltâ€Coordinating Nitrogenâ€Doped Carbon Materials for Enhanced Catalytic Activity. ChemCatChem, 2016, 8, 1782-1787.	1.8	20

ARTICLE IF CITATIONS Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance 4.0 93 469 Cathode Materials. ACS Applied Materials & amp; Interfaces, 2016, 8, 17352-17359. Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage 5.1 devices. Applied Energy, 2016, 175, 512-521. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized 471 few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale, 2016, 8, 2.8 31 12330-12338. 3D-Frame Structure NiO@CNTs for Ultrafast Charge Slow Discharge Lithium Ion Batteries. Electrochimica Acta, 2016, 210, 456-461. Controlled synthesis of expanded mesocarbon microbeads (EMCMB) by H2SO4-HNO3-CrO3 oxidation 473 2.6 3 for superior lithium-storage application. Electrochimica Acta, 2016, 210, 662-672. Simple method for synthesizing few-layer graphene as cathodes in surface-enabled lithium ion-exchanging cells. Ionics, 2016, 22, 1575-1584. 474 1.2 Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications. 475 5.2 25 Small, 2016, 12, 1044-1052. Hydrothermally Oxidized Singleâ€Walled Carbon Nanotube Networks for High Volumetric 476 5.2 Electrochemical Energy Storage. Small, 2016, 12, 3423-3431. Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical 477 1.2 32 capacitors: A review. Journal of Materials Research, 2016, 31, 1648-1664. A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for 5.2 lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11481-11490. Mesoporous MoS₂ as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li 479 10.2 395 and Naâ€Ion Charge Storage. Advanced Energy Materials, 2016, 6, 1501937. Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂. ACS Applied Materials & amp; 480 4.0 88 Interfaces, 2016, 8, 3446-3451 Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage. Nanoscale, 481 2.8 38 2016, 8, 3671-3677. High-capacity pseudocapacitive Li storage on functional nanoporous carbons with parallel 482 mesopores. Énergy Storage Materials, 2016, 2, 14-20. Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire 483 20 4.5Heterostructures. Nano Letters, 2016, 16, 1179-1185. Impact of cation–΀ interactions on the cell voltage of carbon nanotube-based Li batteries. Nanoscale, 2016, 8, 1451-1455. 484 Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and 485 15.6 1,037 opportunities. Energy and Environmental Science, 2016, 9, 729-762. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11, 82-97. 6.2

#	Article	IF	CITATIONS
487	Dynamic mechanical analysis of layer-by-layer cellulose nanocomposites. Industrial Crops and Products, 2016, 93, 267-275.	2.5	23
488	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 2016, 11, 626-632.	15.6	1,557
489	High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co ₃ O ₄ as anode materials. RSC Advances, 2016, 6, 24320-24330.	1.7	25
490	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
491	Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Microporous and Mesoporous Materials, 2016, 227, 1-8.	2.2	39
492	First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. Journal of the American Chemical Society, 2016, 138, 2374-2382.	6.6	194
493	Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 5877-5889.	5.2	155
494	Carbon-Coated MnMoO4 Nanorod for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 190, 354-359.	2.6	78
495	Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 1423-1431.	5.2	146
496	An optimization of MnO 2 amount in CNT-MnO 2 nanocomposite as a high rate cathode catalyst for the rechargeable Li-O 2 batteries. Electrochimica Acta, 2016, 188, 428-440.	2.6	55
497	Diamond encapsulated photovoltaics for transdermal power delivery. Biosensors and Bioelectronics, 2016, 77, 589-597.	5.3	22
498	A computational study on the application of AlN nanotubes in Li-ion batteries. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1041-1046.	0.9	21
499	Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Scientific Reports, 2017, 7, 40910.	1.6	49
500	Nanotechnology in Batteries. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	1.4	15
501	Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors. Ionics, 2017, 23, 1489-1498.	1.2	12
502	Co(II) ethylene glycol carboxylates for Co3O4 nanoparticle and nanocomposite formation. Journal of Materials Science, 2017, 52, 6697-6711.	1.7	13
503	Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithiumâ€ion Batteries: Firstâ€Principles DFT Modeling. ChemSusChem, 2017, 10, 1584-1591.	3.6	44
504	Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 10643-10651.	4.0	98

#	Article	IF	CITATIONS
505	Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage. Scientific Reports, 2017, 7, 43582.	1.6	56
506	Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. ACS Nano, 2017, 11, 2171-2179.	7.3	121
507	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	8.2	79
508	Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. Journal of Molecular Graphics and Modelling, 2017, 74, 1-7.	1.3	58
509	Facile synthesis of copper sulfides with different shapes for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10720-10729.	1.1	10
510	Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation for high performance electrochemical energy storage devices. Electrochimica Acta, 2017, 240, 122-128.	2.6	5
511	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36, 322-330.	8.2	469
512	Electrochemical Performance of Lithium-Ion Capacitors Using Pre-Lithiated Multiwalled Carbon Nanotubes as Anode. Nano, 2017, 12, 1750051.	0.5	21
513	Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2010-2015.	0.9	31
514	Ultrafast and Highly Localized Microwave Heating in Carbon Nanotube Multilayer Thin Films. Advanced Materials Interfaces, 2017, 4, 1700371.	1.9	10
515	Highâ€Performance Asymmetric Liâ€lon Pseudocapacitors Based on Pyroprotein Nanowebs. ChemElectroChem, 2017, 4, 2079-2083.	1.7	1
516	Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core–shell nanostructures assembled with honeycomb-like porous carbon. Journal of Materials Chemistry A, 2017, 5, 11100-11113.	5.2	94
517	Hierarchically nanoporous pyropolymer nanofibers for surface-induced sodium-ion storage. Electrochimica Acta, 2017, 242, 38-46.	2.6	15
518	A Computational Study of a Singleâ€Walled Carbonâ€Nanotubeâ€Based Ultrafast Highâ€Capacity Aluminum Battery. Chemistry - an Asian Journal, 2017, 12, 1944-1951.	1.7	20
519	Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 17125-17135.	4.0	94
520	Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochimica Acta, 2017, 238, 310-318.	2.6	139
521	Low-Temperature Carbon Coating of Nanosized Li _{1.015} Al _{0.06} Mn _{1.925} O ₄ and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017, 17, 3744-3751.	4.5	45
522	Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 1588-1594.	5.2	21

#	Article	IF	CITATIONS
523	Asymmetric Energy Storage Devices Based on Surface-Driven Sodium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 616-624.	3.2	30
524	Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon, 2017, 122, 54-63.	5.4	127
525	Amphicharge‧torable Pyropolymers Containing Multitiered Nanopores. Advanced Energy Materials, 2017, 7, 1700629.	10.2	32
526	A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12073-12079.	5.2	30
527	Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube–Agarose Gel Composite Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 19925-19933.	4.0	34
528	Lithiation/Delithiation Behavior of Silver Nitrate as Lithium Storage Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 5686-5693.	3.2	5
530	Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Advances, 2017, 7, 17178-17183.	1.7	19
531	Structural characterization of carbon nanotubes via the vibrational density of states. Carbon, 2017, 118, 58-65.	5.4	15
532	Theoretical investigation of properties of boron nitride nanocages and nanotubes as high-performance anode materials for lithium-ion batteries. Canadian Journal of Chemistry, 2017, 95, 687-690.	0.6	10
533	Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries. Journal of Colloid and Interface Science, 2017, 498, 210-216.	5.0	15
534	Synthesis and modification of activated carbon originated from Indonesian local Orange peel for lithium ion Capacitor's cathode. Journal of Solid State Electrochemistry, 2017, 21, 1331-1342.	1.2	12
535	The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries. Journal of Molecular Liquids, 2017, 229, 167-171.	2.3	59
536	Low Molecular Weight Spandex as a Promising Polymeric Binder for LiFePO ₄ Electrodes. Advanced Energy Materials, 2017, 7, 1602147.	10.2	27
537	Pseudocapacitanceâ€Enhanced Highâ€Rate Lithium Storage in "Honeycombâ€â€like Mn ₂ O ₃ Anodes. ChemElectroChem, 2017, 4, 565-569.	1.7	19
538	Fabrication of Nâ€doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602014.	10.2	304
539	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 2017, 8, 1172.	5.8	357
540	Design Strategies for Promising Organic Positive Electrodes in Lithium-Ion Batteries: Quinones and Carbon Materials. Industrial & Engineering Chemistry Research, 2017, 56, 12009-12023.	1.8	49
542	MOF derived ZnCo ₂ O ₄ porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. Journal of Materials Chemistry A, 2017, 5, 22717-22725.	5.2	69

#	Article	IF	Citations
543	General Strategy for Integrated SnO ₂ /Metal Oxides as Biactive Lithium-Ion Battery Anodes with Ultralong Cycling Life. ACS Omega, 2017, 2, 6415-6423.	1.6	4
544	Interface structure between tetraglyme and graphite. Journal of Chemical Physics, 2017, 147, 124701.	1.2	13
545	Reduced Graphene Oxide/Lil Composite Lithium Ion Battery Cathodes. Nano Letters, 2017, 17, 6893-6899.	4.5	67
546	Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 251, 396-406.	2.6	104
547	Improving rate capability of lithium-ion batteries using holey graphene as the anode material. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 511-517.	2.7	22
548	Polyoxomolybdate–Polypyrrole/Reduced Graphene Oxide Nanocomposite as High-Capacity Electrodes for Lithium Storage. ACS Omega, 2017, 2, 5684-5690.	1.6	39
549	Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017, 5, 19521-19540.	5.2	323
550	Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nature Communications, 2017, 8, 536.	5.8	313
551	Lithium Titanate/Carbon Nanotubes Composites Processed by Ultrasound Irradiation as Anodes for Lithium Ion Batteries. Scientific Reports, 2017, 7, 7614.	1.6	17
552	Strongly coupled FeP@reduced graphene oxide nanocomposites with superior performance for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 728, 328-336.	2.8	41
553	Sub-10-nm Graphene Nanoribbons with Tunable Surface Functionalities for Lithium-ion Batteries. Electrochimica Acta, 2017, 249, 404-412.	2.6	9
554	The Deformations of Carbon Nanotubes under Cutting. ACS Nano, 2017, 11, 8464-8470.	7.3	20
555	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
556	A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. Journal of Molecular Modeling, 2017, 23, 354.	0.8	50
557	Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 42797-42805.	4.0	92
558	High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly. ACS Nano, 2017, 11, 7679-7689.	7.3	18
559	Ion Transport in Polymer Composites with Non-Uniform Distributions of Electronic Conductors. Electrochimica Acta, 2017, 247, 149-162.	2.6	8
560	Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 18612-18618.	1.3	4

#	Article	IF	CITATIONS
561	Sodium Carboxymethylcellulose Derived Oxygenâ€Rich Porous Carbon Anodes for Highâ€Performance Lithium/Sodiumâ€lon Batteries. ChemElectroChem, 2017, 4, 500-507.	1.7	19
562	Design of Flexible and Selfâ€5tanding Electrodes for Liâ€lon Batteries. Chinese Journal of Chemistry, 2017, 35, 41-47.	2.6	14
563	Coupling effect between ultra-small Mn 3 O 4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Materials, 2017, 6, 53-60.	9.5	72
564	Conductive Polymer Composites Based on Carbon Nanomaterials. Springer Series on Polymer and Composite Materials, 2017, , 117-142.	0.5	6
565	Nickel Network Derived from a Block Copolymer Template for MnO ₂ Electrodes as Dimensionally Stabilized Lithiumâ€Ion Battery Anodes. Energy Technology, 2017, 5, 715-724.	1.8	4
566	A Highâ€Performance Lithiumâ€Ion Capacitor Based on 2D Nanosheet Materials. Small, 2017, 13, 1602893.	5.2	70
567	F-encapsulated B 12 N 12 fullerene as an anode for Li-ion batteries: A theoretical study. Journal of Molecular Liquids, 2017, 225, 913-918.	2.3	34
568	Nanostructured porous graphene and its composites for energy storage applications. Nano Convergence, 2017, 4, 29.	6.3	33
569	The Growing Influence of Nanotechnology in Our Lives. , 2017, , 1-20.		5
570	Metal-semiconductor core–shell nanomaterials for energy applications. , 2017, , 99-132.		1
571	Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries. Journal of Molecular Modeling, 2018, 24, 64.	0.8	4
572	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
573	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
574	Graphene Applications in Sensors. , 2018, , 125-132.		0
576	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
577	Graphene Applications in Specialized Materials. , 2018, , 151-154.		0
578	Miscellaneous Applications of Graphene. , 2018, , 155-155.		0
579	Basic Electrochromics of CPs. , 2018, , 251-282.		0

#	Article	IF	CITATIONS
580	Batteries and Energy Devices. , 2018, , 575-600.		0
581	Brief, General Overview of Applications. , 2018, , 43-44.		0
582	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
583	Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for using a layered nanoreactor. Scientific Reports, 2018, 8, 3404.	1.6	14
584	Hollow carbon nanospheres with high surface areas for fast, broad-spectrum and sensitive adsorption of pollutants. Nanoscale, 2018, 10, 5725-5730.	2.8	27
585	DFT Investigation of the Potential of B21N21 and Al21P21 Nanocages as Anode Electrodes in Metal Ion Batteries. Journal of Cluster Science, 2018, 29, 879-887.	1.7	3
586	Hollow Nitrogen Rich Carbon Nanowire Array Electrode for Application in Lithium-Ion Battery. Materials Science Forum, 0, 914, 47-55.	0.3	2
587	The effect of electric field on the cell voltage of inorganic AlN nanosheet based Na–ion batteries. Inorganic Chemistry Communication, 2018, 91, 29-34.	1.8	11
588	High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 35-53.	13.1	514
589	Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage. Electrochimica Acta, 2018, 271, 92-102.	2.6	39
590	A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Materials Today Energy, 2018, 8, 37-44.	2.5	61
591	Highly interconnected hollow graphene nanospheres as an advanced high energy and high power cathode for sodium metal batteries. Journal of Materials Chemistry A, 2018, 6, 9846-9853.	5.2	30
592	Facile synthesis of N-doped carbon-coated nickel oxide nanoparticles embedded in N-doped carbon sheets for reversible lithium storage. Journal of Alloys and Compounds, 2018, 745, 147-154.	2.8	10
593	Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2018, 12, 4824-4834.	7.3	141
594	Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage. Journal of Materials Chemistry A, 2018, 6, 8735-8741.	5.2	95
595	Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors. Ionics, 2018, 24, 2073-2082.	1.2	18
596	Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy, 2018, 46, 266-276.	8.2	135
597	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226

#	Article	IF	Citations
 599	Rod-like nitrogen-doped carbon hollow shells for enhanced capacitive deionization. FlatChem, 2018, 7,	2.8	19
600	10-17. 10 ⁵ Cyclable Pseudocapacitive Na-Ion Storage of Hierarchically Structured Phosphorus-Incorporating Nanoporous Carbons in Organic Electrolytes. ACS Energy Letters, 2018, 3, 724-732.	8.8	68
601	Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature. RSC Advances, 2018, 8, 7102-7109.	1.7	43
602	Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3367-3375.	5.2	28
603	Advances in Carbon Nanotubes–Hydrogel Hybrids in Nanomedicine for Therapeutics. Advanced Healthcare Materials, 2018, 7, e1701213.	3.9	143
604	Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. Small, 2018, 14, e1703710.	5.2	92
605	Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Materials, 2018, 12, 145-152.	9.5	174
606	Reticular V ₂ O ₅ ·0.6H ₂ O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 642-650.	4.0	70
607	Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. Electrochimica Acta, 2018, 260, 430-438.	2.6	21
608	Nâ€Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.	7.8	392
609	Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes. Journal of Power Sources, 2018, 378, 677-684.	4.0	47
610	<i>In situ</i> formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage. Journal of Materials Chemistry A, 2018, 6, 2353-2359.	5.2	66
611	Bloodâ€Capillaryâ€Inspired, Freeâ€Standing, Flexible, and Lowâ€Cost Superâ€Hydrophobic Nâ€CNTs@SS Catho for Highâ€Capacity, Highâ€Rate, and Stable Liâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1702242.	des 10.2	108
612	Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications, 2018, 9, 1720.	5.8	871
613	<i>In situ</i> lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery. Journal of Materials Chemistry A, 2018, 6, 7027-7033.	5.2	37
614	Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 1124-1140.	2.5	30
615	Lowâ€Defect and Lowâ€Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703238.	10.2	414
616	Transient High-Power Output of Aprotic Li-O2Batteries Based on Cathode Capacitance Behavior. Journal of the Electrochemical Society, 2018, 165, A757-A763.	1.3	1

#	ARTICLE	IF	CITATIONS
617	Peanut shaped MnCo2O4 winded by multi-walled carbon nanotubes as an efficient cathode catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 433-440.	2.8	14
618	Facile Synthesis of Nitrogen-Doped Double-Shelled Hollow Mesoporous Carbon Nanospheres as High-Performance Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5999-6007.	3.2	61
619	White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature. Solid State Communications, 2018, 275, 8-11.	0.9	10
620	The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon, 2018, 133, 384-389.	5.4	32
621	Construction of Largeâ€Area Uniform Graphdiyne Film for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1187-1192.	1.7	58
622	High-performance Li-ion hybrid supercapacitors based on microporous pyropolymer nanoplates and orthorhombic Nb 2 O 5 nanocomposites. Journal of Industrial and Engineering Chemistry, 2018, 57, 284-289.	2.9	10
623	Facile synthesis N-doped hollow carbon spheres from spherical solid silica. Journal of Colloid and Interface Science, 2018, 511, 203-208.	5.0	16
624	Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode. Journal of Materials Science, 2018, 53, 749-758.	1.7	29
625	Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. Journal of Energy Chemistry, 2018, 27, 99-116.	7.1	35
626	Electrochemical and electronic properties of nitrogen doped fullerene and its derivatives for lithium-ion battery applications. Journal of Energy Chemistry, 2018, 27, 528-534.	7.1	36
627	Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries. Journal of Power Sources, 2018, 374, 166-174.	4.0	23
628	Nitrogen and oxygen co-doped porous carbon for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 3340-3347.	1.1	12
629	A Lithium–Air Battery Stably Working at High Temperature with High Rate Performance. Small, 2018, 14, 1703454.	5.2	44
630	Electrochemical Properties of Boronâ€Doped Fullerene Derivatives for Lithiumâ€Ion Battery Applications. ChemPhysChem, 2018, 19, 753-758.	1.0	37
631	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
632	Investigation of the deposition of metal nanoclusters on the hidden surface of porous electrode materials by electrophoresis. IOP Conference Series: Materials Science and Engineering, 2018, 387, 012073.	0.3	1
633	Electrophoretic Deposition of Metal Nanoclusters at the Surface of Porous Materials. Russian Engineering Research, 2018, 38, 989-991.	0.2	2
634	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	2.8	46

#	Article	IF	CITATIONS
635	Stitchable supercapacitors with high energy density and high rate capability using metal nanoparticle-assembled cotton threads. Journal of Materials Chemistry A, 2018, 6, 20421-20432.	5.2	21
636	Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 24317-24323.	5.2	174
637	Thinâ€Film Electrode Design for High Volumetric Electrochemical Performance Using Metal Sputteringâ€Combined Ligand Exchange Layerâ€byâ€Layer Assembly. Advanced Functional Materials, 2018, 28, 1804926.	7.8	19
638	Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. Journal of Power Sources, 2018, 408, 82-90.	4.0	41
639	Effects of Nanowire Length on Charge Transport in Vertically Aligned Gold Nanowire Array Electrodes. Langmuir, 2018, 34, 15674-15680.	1.6	8
640	Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries. Electrochimica Acta, 2018, 292, 838-845.	2.6	22
641	Selfâ€Assembled Binary Organic Granules with Multiple Lithium Uptake Mechanisms toward Highâ€Energy Flexible Lithiumâ€Ion Hybrid Supercapacitors. Advanced Energy Materials, 2018, 8, 1802273.	10.2	68
642	Functionalized Phosphorene Quantum Dots as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 11511-11519.	7.3	77
643	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
644	Tuning the Nonlinear Optical Response of Graphitic Carbon Nitride by Doping Li Atoms. Journal of Physical Chemistry C, 2018, 122, 26635-26641.	1.5	16
645	Device Configurations and Future Prospects of Flexible/Stretchable Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1805596.	7.8	132
646	F, Cl, Br Doped Ge44 and Al22P22 Nanocages As Anode Electrode Materials of Li, Na, and K ion Batteries. Russian Journal of Physical Chemistry A, 2018, 92, 2282-2288.	0.1	1
647	Ultra-small V2O3 embedded N-doped porous carbon nanorods with superior cycle stability for sodium-ion capacitors. Journal of Power Sources, 2018, 405, 37-44.	4.0	54
648	Enhanced storage capability by biomass-derived porous carbon for lithium-ion and sodium-ion battery anodes. Sustainable Energy and Fuels, 2018, 2, 2358-2365.	2.5	36
649	Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries. Fuel Processing Technology, 2018, 180, 173-179.	3.7	38
650	Exploring Sodiumâ€Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ballâ€Milling Method. Small, 2018, 14, e1802694.	5.2	127
651	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews, 2018, 118, 6457-6498.	23.0	741
652	Can the C32 and B16N16 nanocages be suitable anode with high performance for Li, Na and K ion batteries?. Inorganic Chemistry Communication, 2018, 97, 18-24.	1.8	11

#	Article	IF	CITATIONS
653	Stackingâ€Controlled Assembly of Cabbage‣ike Graphene Microsphere for Charge Storage Applications. Small, 2018, 14, 1801948.	5.2	10
654	Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. Journal of Power Sources, 2018, 398, 149-158.	4.0	22
655	Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage. Chemical Engineering Journal, 2018, 348, 850-859.	6.6	107
656	Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage. Energy Storage Materials, 2018, 14, 324-334.	9.5	23
657	Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 2018, 51, 366-372.	8.2	289
658	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018, 6, 12932-12944.	5.2	218
659	Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Materials, 2019, 17, 143-150.	9.5	380
660	Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Materials, 2019, 16, 426-433.	9.5	85
661	Nanocarbons in Li-lon Batteries. Nanostructure Science and Technology, 2019, , 419-453.	0.1	0
662	Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries. Ionics, 2019, 25, 1531-1539.	1.2	14
663	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 31799-31805.	4.0	28
664	Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31972-31979.	4.0	11
665	Structural Strategies for Germaniumâ€Based Anode Materials to Enhance Lithium Storage. Particle and Particle Systems Characterization, 2019, 36, 1900248.	1.2	14
666	Carbon-based catalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2019, 3, 2890-2906.	2.5	67
667	Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Advances, 2019, 9, 19441-19449.	1.7	20
668	Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Materials, 2019, 22, 235-255.	9.5	135
669	Direct Synthesis of cubic shaped Ag2S on Ni mesh as Binder-free Electrodes for Energy Storage Applications. Scientific Reports, 2019, 9, 10108.	1.6	34
670	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	8.2	118

#	Article	IF	CITATIONS
671	Performance and Applications of Lithium Ion Capacitors. , 2019, , .		0
672	Flexible Grapheneâ€, Grapheneâ€Oxideâ€, and Carbonâ€Nanotubeâ€Based Supercapacitors and Batteries. Annal Der Physik, 2019, 531, 1800507.	en _{0.9}	44
673	Hierarchically Porous Nanostructured Nickel Phosphide with Carbon Particles Embedded by Dielectric Barrier Discharge Plasma Deposition as a Binder-Free Electrode for Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 14805-14814.	3.2	24
674	Heterocarbides Reinforced Electrochemical Energy Storage. Small, 2019, 15, 1903652.	5.2	7
675	Intensification of Pseudocapacitance by Nanopore Engineering on Waste-Bamboo-Derived Carbon as a Positive Electrode for Lithium-Ion Batteries. Materials, 2019, 12, 2733.	1.3	5
676	Surface Reconstruction Limited Conductivity in Blockâ€Copolymer Li Battery Electrolytes. Advanced Functional Materials, 2019, 29, 1905977.	7.8	26
677	Pyrenetetrone Derivatives Tailored by Nitrogen Dopants for High-Potential Cathodes in Lithium-Ion Batteries. IScience, 2019, 21, 206-216.	1.9	14
679	Recent Developments in Layer-by-Layer Technique for Drug Delivery Applications. ACS Applied Bio Materials, 2019, 2, 5512-5527.	2.3	59
680	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	23.0	46
681	Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions. ACS Nano, 2019, 13, 11665-11675.	7.3	28
682	Hierarchically hybrid nanostructure of carbon nanoparticles decorated graphene sheets as an efficient electrode material for supercapacitors, aqueous Al-ion battery and capacitive deionization. Electrochimica Acta, 2019, 324, 134870.	2.6	29
683	Effective carbon nanotubes/graphene hybrid films for electron field emission application. Vacuum, 2019, 169, 108917.	1.6	18
684	MOF-derived Cu–C loaded with SnOx as a superior anode material for lithium-ion batteries. Electrochimica Acta, 2019, 326, 134960.	2.6	24
685	Bottomâ€Up Preparation of Fully sp ² â€Bonded Porous Carbons with High Photoactivities. Advanced Functional Materials, 2019, 29, 1808423.	7.8	23
686	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	5.2	43
687	Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nature Energy, 2019, 4, 123-130.	19.8	446
688	A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes. Philosophical Magazine, 2019, 99, 992-1013.	0.7	9
689	Achieving High Volumetric Lithium Storage Capacity in Compact Carbon Materials with Controllable Nitrogen Doping. Advanced Functional Materials, 2019, 29, 1807441.	7.8	39

		CITATION R	EPORT	
#	Article		IF	CITATIONS
690	Liquid flow-induced electricity in carbon nanomaterials. Sustainable Energy and Fuels, 201	9, 3, 599-610.	2.5	22
691	Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer cascades. Nature Nanotechnology, 2019, 14, 719-727.	metastatic	15.6	131
692	Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. Electronic Materials, 2019, 5, 1900247.	Advanced	2.6	40
693	CuO ultrathin nanosheets decorated reduced graphene oxide as a high performance anod lithium-ion batteries. Journal of Alloys and Compounds, 2019, 805, 355-362.	e for	2.8	27
694	Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeab Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 23520-23526.	le	4.0	73
695	Kinetics Enhanced Nitrogenâ€Doped Hierarchical Porous Hollow Carbon Spheres Boosting Potassiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1903496.	Advanced	7.8	267
696	A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering. Nano Ene 63, 103824.	rgy, 2019,	8.2	94
697	Nanostrucutres and Nanomaterials for Lithium-Ion Batteries. , 2019, , 89-158.			1
698	Potential of Carbon, Silicon, Boron Nitride and Aluminum Phosphide Nanocages as Anodes Sodium and Potassium Ion Batteries: A DFT Study. Russian Journal of Physical Chemistry B 156-164.		0.2	7
699	Nanostructures and Nanomaterials for Batteries. , 2019, , .			12
700	Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lith capacitors. Energy Storage Materials, 2019, 23, 409-417.	ium ion	9.5	42
701	Pseudocapacitive T-Nb2O5/N-doped carbon nanosheets anode enable high performance li capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 82-88.	thium-ion	1.9	33
702	Capacitive Sodiumâ€lon Storage Based on Doubleâ€Layered Mesoporous Graphene with I Charging/Discharging Rate. ChemSusChem, 2019, 12, 4323-4331.	High Capacity and	3.6	7
703	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic con Nature Nanotechnology, 2019, 14, 594-601.	ditions.	15.6	451
704	Controlling carbon-oxygen double bond and pseudographic structure in shaddock peel de carbon for enhanced sodium storage properties. Electrochimica Acta, 2019, 313, 109-115		2.6	28
705	Structural Recovery of Highly Oxidized Single-Walled Carbon Nanotubes Fabricated by Kno Electrochemical Applications. Chemistry of Materials, 2019, 31, 3468-3475.	eading and	3.2	28
706	Roomâ€Temperature Metallic Fusionâ€Induced Layerâ€byâ€Layer Assembly for Highly Flez Applications. Advanced Functional Materials, 2019, 29, 1806584.	kible Electrode	7.8	23
707	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. Journal of Ma Chemistry A, 2019, 7, 9997-10003.	aterials	5.2	102

# 708	ARTICLE Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. Journal of Materials Chemistry A, 2019, 7, 11117-11126.	IF 5.2	CITATIONS
709	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	7.8	68
710	Lithium ion capacitors (LICs): Development of the materials. Energy Storage Materials, 2019, 19, 314-329.	9.5	180
712	Heteroatomâ€Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900036.	10.2	212
713	Amino-substituted binuclear phthalocyanines bonding with multi-wall carbon nanotube as efficient electrocatalysts for lithium-thionyl chloride battery. Journal of Materials Research, 2019, 34, 921-931.	1.2	4
714	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small, 2019, 15, e1805389.	5.2	277
715	Metal–Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Liâ€lon Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1900532.	7.8	141
716	Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 216-222.	0.4	11
717	Examination of properties of nanocages (B18N18 and B18P18) as anode electrodes in metal-ion batteries. Chemical Physics, 2019, 522, 279-284.	0.9	3
718	Biosynthesis of LiFePO4/C Cathode Materials by a Sol-gel Route for Use in Lithium Ion Batteries. International Journal of Electrochemical Science, 2019, , 2846-2856.	0.5	7
720	Quantitative characterization of a voltage-dependent pseudocapacitance on heteroatom-enriched nanoporous carbons. Electrochimica Acta, 2019, 302, 71-77.	2.6	8
721	Diffusion Control of Organic Cathode Materials in Lithium Metal Battery. Scientific Reports, 2019, 9, 1213.	1.6	18
722	Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale, 2019, 11, 5330-5335.	2.8	131
723	Utilizing Hidden Surfaces: End-Cap Removal of Carbon Nanotubes for Improved Lithium Storage. Journal of Physical Chemistry C, 2019, 123, 6220-6228.	1.5	4
724	Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Microporous and Mesoporous Materials, 2019, 280, 337-346.	2.2	56
725	Controllably fabricating carbon microspheres with hierarchical porous structure for supercapacitors. Ionics, 2019, 25, 3341-3349.	1.2	9
726	Vanadium Nitride Nanoparticles as Anode Material for Lithium Ion Hybrid Capacitor Applications. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1274-1278.	0.4	4
727	Investigation of the deposition of metal nanoclusters on the surface of porous electrode materials by electrophoresis. IOP Conference Series: Materials Science and Engineering, 2019, 498, 012032.	0.3	0

#	Article	IF	CITATIONS
728	N-Enriched carbon nanofibers for high energy density supercapacitors and Li-ion batteries. RSC Advances, 2019, 9, 36075-36081.	1.7	13
729	Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage. IEEE Access, 2019, 7, 182113-182172.	2.6	100
730	A novel storage design for ultrahigh-cell-voltage Al-ion batteries utilizing cation–π interactions. Chemical Communications, 2019, 55, 14198-14201.	2.2	5
731	Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 47929-47938.	4.0	38
732	Asymmetric faradaic assembly of Bi ₂ O ₃ and MnO ₂ for a high-performance hybrid electrochemical energy storage device. RSC Advances, 2019, 9, 32154-32164.	1.7	31
733	Potential application of AlN nanostructures in sodium ion batteries: a DFT study. Molecular Physics, 2019, 117, 359-367.	0.8	6
734	Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Applied Surface Science, 2019, 463, 879-888.	3.1	21
735	Utilization of nutrient rich duckweed to create N, P Co-doped porous carbons for high performance supercapacitors. Journal of Alloys and Compounds, 2019, 771, 1009-1017.	2.8	31
736	Improved Lithium Storage Properties of the Reduced Graphene Oxide/Graphite Composites Based on Functional Groups Control Synthesis. International Journal of Electrochemical Science, 2019, , 848-860.	0.5	5
737	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100â€ ⁻ 000 Cycles Stability with 1% Capacity Fade. ACS Sustainable Chemistry and Engineering, 2019, 7, 2867-2877.	3.2	38
738	Improved stability of silver nanowire (AgNW) electrode for high temperature applications using selective photoresist passivation. Microelectronic Engineering, 2019, 206, 6-11.	1.1	10
739	Potential of Si14Ge14 and B14P14 nanocages as electrodes of metal-ion batteries: a theoretical investigation. Journal of Solid State Electrochemistry, 2019, 23, 759-769.	1.2	3
740	Reduced irreversible capacities of graphene oxide-based anodes used for lithium ion batteries via alkali treatment. Journal of Energy Chemistry, 2019, 37, 73-81.	7.1	16
741	Layer by Layer Assemble of Colloid Nanomaterial and Functional Multilayer Films for Energy Storage and Conversion. , 2019, , 255-278.		4
742	One pot synthesis of ordered mesoporous carbon–silica–titania with parallel alignment against graphene as advanced anode material in lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 71, 93-98.	2.9	9
743	Carbon nanotubes enhanced Sb6O13 as a new anode material for sodium-ion batteries. Ionics, 2019, 25, 523-531.	1.2	9
744	\$\$hbox {C}_{32}hbox {, Si}_{32}\$\$ C 32 , Si 32 and \$\$hbox {B}_{16}hbox {N}_{. Bulletin of Materials Science, 2019, 42, 1.	0.8	0
745	Biomimetic Solid-State Zn ²⁺ Electrolyte for Corrugated Structural Batteries. ACS Nano, 2019, 13, 1107-1115.	7.3	66

#	Article	IF	CITATIONS
746	Hollow Multishelled Heterostructured Anatase/TiO ₂ (B) with Superior Rate Capability and Cycling Performance. Advanced Materials, 2019, 31, e1805754.	11.1	117
747	High-performance sodium hybrid capacitor enabled by presodiated Li4Ti5O12. Journal of Power Sources, 2019, 409, 48-57.	4.0	14
748	Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon, 2019, 143, 138-146.	5.4	90
749	Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy, 2019, 55, 327-340.	8.2	209
750	Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodiumâ€lon Capacitors. Small Methods, 2019, 3, 1800371.	4.6	41
751	From biological waste to honeycomb-like porous carbon for high energy density supercapacitor. Journal of Materials Science, 2019, 54, 4917-4927.	1.7	29
752	Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chemical Engineering Journal, 2020, 382, 121759.	6.6	98
753	N plasma treatment on graphene oxide-MoS2 composites for improved performance in lithium ion batteries. Materials Chemistry and Physics, 2020, 240, 122169.	2.0	29
754	Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Advanced Functional Materials, 2020, 30, 1907486.	7.8	20
755	A Functionalized Carbon Surface for Highâ€Performance Sodiumâ€ion Storage. Small, 2020, 16, e1902603.	5.2	51
756	Conjugacy of organic cathode materials for high-potential lithium-ion batteries: Carbonitriles versus quinones. Energy Storage Materials, 2020, 24, 237-246.	9.5	33
757	A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 818, 152849.	2.8	15
758	Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. Journal of Alloys and Compounds, 2020, 832, 152824.	2.8	8
759	Substituent effect on the cell voltage of nanographene based Li-ion batteries: A DFT study. Solid State Communications, 2020, 306, 113770.	0.9	31
760	Short-range ordered graphitized-carbon nanotubes with large cavity as high-performance lithium-ion battery anodes. Carbon, 2020, 158, 642-650.	5.4	24
761	Emulsifying performance of near-infrared light responsive polydopamine-based silica particles to control drug release. Powder Technology, 2020, 359, 17-26.	2.1	20
762	Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors. Carbon, 2020, 160, 80-87.	5.4	75
763	Nitrogen-doped carbon nanotubes by multistep pyrolysis process as a promising anode material for lithium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31, 2239-2244.	4.8	7

#	Article	IF	CITATIONS
764	Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward V2+/V3+ redox reaction for vanadium redox flow battery. International Journal of Hydrogen Energy, 2020, 45, 3959-3970.	3.8	50
765	A novel synthesis towards a vanadium pentoxide porous nanodisk film as a cathode material for advanced Li-ion hybrid capacitors. Chemical Communications, 2020, 56, 70-73.	2.2	10
766	Novel composite separator for high power density lithium-ion battery. International Journal of Hydrogen Energy, 2020, 45, 2917-2924.	3.8	20
767	Highly Exfoliated and Functionalized Single-Walled Carbon Nanotubes as Fast-Charging, High-Capacity Cathodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 1322-1329.	4.0	27
768	Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochemical Energy Reviews, 2020, 3, 155-186.	13.1	163
769	Oriented layered assemblies of graphene nanosheets/Fe3O4 nanoparticles as a superior anode material for lithium ion batteries. Applied Surface Science, 2020, 508, 144416.	3.1	14
770	All graphene electrode for highâ€performance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255.	2.2	19
771	Toward Nextâ€Generation Carbonâ€Based Materials Derived from Waste and Biomass for Highâ€Performance Energy Applications. Energy Technology, 2020, 8, 2000714.	1.8	15
772	Understanding the Influence of Surface Oxygen Groups on the Electrochemical Behavior of Porous Carbons as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 36054-36065.	4.0	17
773	Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 17257-17265.	5.2	61
774	Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Materials, 2020, 32, 65-90.	9.5	225
775	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	10.2	189
776	Enhancement of lithium storage capacity and rate performance of Se-modified MnO/Mn3O4 hybrid anode material via pseudocapacitive behavior. Transactions of Nonferrous Metals Society of China, 2020, 30, 1904-1915.	1.7	17
777	Hierarchically Nanoporous 3D Assembly Composed of Functionalized Onionâ€Like Graphitic Carbon Nanospheres for Anodeâ€Minimized Li Metal Batteries. Small, 2020, 16, e2003918.	5.2	18
778	Recent progress in sodium/potassium hybrid capacitors. Chemical Communications, 2020, 56, 13933-13949.	2.2	41
779	Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€byâ€Layer Assembly. Advanced Materials, 2020, 32, e2001924.	11.1	22
780	Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications, 2020, 11, 4181.	5.8	204
781	A theoretical study on the application of different carbonaceous nanostructures in K-ion batteries. Monatshefte Für Chemie, 2020, 151, 1329-1336.	0.9	7

#	Article	IF	CITATIONS
782	Zigzag and armchair AlN nanotubes as anode materials for Mg-ion batteries: Computational study. Solid State Sciences, 2020, 110, 106448.	1.5	4
783	Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chemical Science, 2020, 11, 12269-12281.	3.7	44
784	All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes. ACS Nano, 2020, 14, 5659-5667.	7.3	57
785	Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage. Journal of Industrial and Engineering Chemistry, 2020, 87, 173-179.	2.9	7
786	High cell voltage and storage capacity of graphyne as the anode of K-ion batteries: computational studies. Journal of Molecular Modeling, 2020, 26, 141.	0.8	5
787	A review on Fe O -based materials for advanced lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 127, 109884.	8.2	36
788	3D graphene-like nanosheets/silicon wrapped by catalytic graphite as a superior lithium storage anode. Journal of Electroanalytical Chemistry, 2020, 873, 114350.	1.9	9
789	Investigation of N and S Co-doped Porous Carbon for Sodium-Ion Battery, Synthesized by Using Ammonium Sulphate for Simultaneous Activation and Heteroatom Doping. Journal of the Electrochemical Society, 2020, 167, 100531.	1.3	7
790	Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes. Small, 2020, 16, e2002094.	5.2	41
791	Solid State Electrolytes. , 2022, , 382-392.		2
791 792	Solid State Electrolytes. , 2022, , 382-392. Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661.	8.2	2 42
	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor.	8.2	
792	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661. AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters,		42
792 793	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661. AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126396. The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries.	0.9	42 11
792 793 794	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661. AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126396. The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 98, 107578. Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive	0.9 1.3	42 11 9
792 793 794 795	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661. AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126396. The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 98, 107578. Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium ion capacitors. Ionics, 2020, 26, 4129-4140. Narrowing Working Voltage Window to Improve Layered GeP Anode Cycling Performance for	0.9 1.3 1.2	42 11 9 15
792 793 794 795 796	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661. AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126396. The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 98, 107578. Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium ion capacitors. Ionics, 2020, 26, 4129-4140. Narrowing Working Voltage Window to Improve Layered GeP Anode Cycling Performance for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 17466-17473. High-Energy Density Li〓O ₂ Battery with a Polymer Electrolyte-Coated CNT Electrode via	0.9 1.3 1.2 4.0	42 11 9 15 33

CITATION	DEDODT
CITATION	KFF()KI
onnon	

#	Article	IF	CITATIONS
800	Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Metals, 2020, 39, 1053-1062.	3.6	70
801	Coprecipitation synthesis of Co-doped LiMn1.5Ni0.5O4 material as 5ÂV cathode of Li-ion batteries with huge rate capability for high power applications. Journal of Electroanalytical Chemistry, 2020, 873, 114413.	1.9	5
802	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
803	Enhancing Na-ion storage in Na ₃ V ₂ (PO ₄) ₃ /C cathodes for sodium ion batteries through Br and N co-doping. Inorganic Chemistry Frontiers, 2020, 7, 1289-1297.	3.0	32
804	A computational study on the BN-yne sheet application in the Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 97, 107567.	1.3	4
805	Insight into the charge/discharge behaviour of intercalation cathode materials: relation between delivered capacity and applied rate and analysis of multi-particle intercalation mechanisms. Physical Chemistry Chemical Physics, 2020, 22, 6351-6360.	1.3	20
806	High Capacity Adsorption—Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene. Advanced Energy Materials, 2020, 10, 1903280.	10.2	72
807	Insights into the Surface Oxygen Functional Group-Driven Fast and Stable Sodium Adsorption on Carbon. ACS Applied Materials & Interfaces, 2020, 12, 6991-7000.	4.0	63
808	Insights on Redox Properties of Sumanene Derivatives for High-Performance Organic Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 8333-8341.	4.0	10
809	A computational study on the potential application of zigzag carbon nanotubes in Mg-ion batteries. Structural Chemistry, 2020, 31, 1073-1078.	1.0	18
810	Rapid, tunable synthesis of porous carbon xerogels with expanded graphite and their application as anodes for Li-ion batteries. Journal of Colloid and Interface Science, 2020, 565, 368-377.	5.0	12
811	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	11.1	191
812	Carbon-based nanomaterials and ZnO ternary compound layers grown by laser technique for environmental and energy storage applications. Applied Surface Science, 2020, 509, 145359.	3.1	11
813	Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus. Journal of Power Sources, 2020, 451, 227769.	4.0	24
814	Synthesis of LiTi2(PO4)3@carbon anode material with superior performance using β-cyclodextrin as carbon sources. Ionics, 2020, 26, 2845-2853.	1.2	7
815	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale, 2020, 12, 3677-3685.	2.8	64
816	C ₆₀ (OH) ₁₂ and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano, 2020, 14, 1600-1608.	7.3	11
817	High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Research, 2020, 13, 1044-1052.	5.8	44

#	Article	IF	CITATIONS
818	Development of MWCNT thin film electrode transparent in the mid-IR range. Ceramics International, 2020, 46, 11340-11345.	2.3	4
819	Enhanced Lithium Storage of an Organic Cathode via the Bipolar Mechanism. ACS Applied Energy Materials, 2020, 3, 3728-3735.	2.5	18
820	A quantum mechanical study on the application of inorganic BC2N nanotubes in the Na-ion batteries. Inorganic Chemistry Communication, 2020, 116, 107886.	1.8	3
821	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	11.1	108
822	Crucial role of cyanides for high-potential electrochemical reduction reaction. Energy Storage Materials, 2020, 29, 140-148.	9.5	14
823	Hierarchically Nanoporous Pyropolymers Derived from Waste Pinecone as a Pseudocapacitive Electrode for Lithium Ion Hybrid Capacitors. Scientific Reports, 2020, 10, 5817.	1.6	4
824	A Carbon Nanotube–Metal Oxide Hybrid Material for Visible-Blind Flexible UV-Sensor. Micromachines, 2020, 11, 368.	1.4	16
825	Chloride functionalized carbon nanotube sponge: High charge capacity and high magnetic saturation. Carbon, 2020, 164, 324-336.	5.4	18
826	Potential application of kekulene nanoring in the Li-ion batteries: DFT studies. Computational and Theoretical Chemistry, 2020, 1181, 112796.	1.1	8
827	Graphyne as an anode material for Mg-ion batteries: A computational study. Journal of Molecular Liquids, 2020, 308, 113009.	2.3	45
828	N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 854, 157207.	2.8	100
829	Millimeter-sized few-layer graphene sheets with aligned channels for fast lithium-ion charging kinetics. Journal of Energy Chemistry, 2021, 55, 62-69.	7.1	17
830	Unveiling the pseudocapacitive effects of ultramesopores on nanoporous carbon. Applied Surface Science, 2021, 537, 148037.	3.1	9
831	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021, 57, 451-468.	7.1	245
832	Size-controlled flow synthesis of metal-organic frameworks crystals monitored by in-situ ultraviolet–visible absorption spectroscopy. Chinese Chemical Letters, 2021, 32, 1131-1134.	4.8	16
833	sp3-like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. Journal of Energy Chemistry, 2021, 57, 189-197.	7.1	20
834	Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chemical Engineering Journal, 2021, 413, 127486.	6.6	27
835	Functionalized N-doped hollow graphitic carbon-nanotube/carbon -nanosphere composite. Composites Communications, 2021, 23, 100578.	3.3	23

#	Article	IF	CITATIONS
836	Protonic acid catalysis to generate fast electronic transport channels in O-functionalized carbon textile with enhanced energy storage capability. Nano Energy, 2021, 80, 105572.	8.2	11
837	Electrochemistry of Multilayer Electrodes: From the Basics to Energy Applications. Accounts of Chemical Research, 2021, 54, 57-69.	7.6	16
838	Redox-active engineered holey reduced graphene oxide films for K+ storage. Carbon, 2021, 174, 173-179.	5.4	12
839	Silicon carbide and III-Nitrides nanosheets: Promising anodes for Mg-ion batteries. Materials Chemistry and Physics, 2021, 257, 123785.	2.0	29
840	Nanoscale Heterogeneity in Amorphous and Semi-Crystalline Materials: A Technical Perspective. , 2021, ,		1
841	Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications. Nanoscale Advances, 2021, 3, 2902-2910.	2.2	9
842	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
843	Production of novel carbon nanostructures by electrochemical reduction of polychlorinated organic rings under mild conditions for supercapacitors. New Journal of Chemistry, 2021, 45, 14765-14778.	1.4	4
844	Research progress in transition metal chalcogenide based anodes for K-ion hybrid capacitor applications: a mini-review. RSC Advances, 2021, 11, 25450-25460.	1.7	37
845	A solvent decomposition and explosion approach for boron nanoplate synthesis. Chemical Communications, 2021, 57, 4922-4925.	2.2	3
846	Recent progress and applications of niobium-based nanomaterials and their composites for supercapacitors and hybrid ion capacitors. Sustainable Energy and Fuels, 2021, 5, 3039-3083.	2.5	20
847	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	10.2	16
848	High Rate Lithium Ion Battery with Niobium Tungsten Oxide Anode. Journal of the Electrochemical Society, 2021, 168, 010525.	1.3	23
849	Carbon defects applied to potassium-ion batteries: a density functional theory investigation. Nanoscale, 2021, 13, 13719-13734.	2.8	21
850	Li–air battery and ORR activity of nanocarbons produced with good synthesis rate by solution plasma process. Materials Advances, 2021, 2, 2636-2641.	2.6	5
851	V ₂ O ₃ Nanoparticles Confined in High-Conductivity and High-Throughput Carbon Nanofiber Nanohybrids for Advanced Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 10001-10012.	4.0	36
852	Carbon-based Multi-layered Films for Electronic Application: A Review. Journal of Electronic Materials, 2021, 50, 1845-1892.	1.0	14
853	On the Development of All-Cellulose Capsules by Vesicle-Templated Layer-by-Layer Assembly. Polymers, 2021, 13, 589.	2.0	8

		CITATION REPORT	
#	Article	IF	CITATIONS
854	Lithium-Ion Capacitors: A Review of Design and Active Materials. Energies, 2021, 14, 979.	1.6	41
855	Rationale approach of nitrogen doping at defect sites of multiwalled carbon nanotubes: A strategy for oxygen reduction electrocatalysis. International Journal of Hydrogen Energy, 2021, 46, 10268-10280.	3.8	18
856	Aluminum textile-based binder-free nanostructured battery cathodes using a layer-by-layer assembly of metal/metal oxide nanoparticles. Applied Physics Reviews, 2021, 8, .	5.5	12
857	A Layerâ€byâ€Layer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	5.2	13
858	Preâ€Lithiation Strategies for Nextâ€Generation Practical Lithiumâ€lon Batteries. Advanced Science, 2021, 8, e2005031.	5.6	103
859	Grapheneâ€Based Nanomaterials for Flexible and Stretchable Batteries. Small, 2021, 17, e2006262.	5.2	28
860	High-performance organic pseudocapacitors via molecular contortion. Nature Materials, 2021, 20, 1136-1141.	13.3	103
861	Tailoring electrochemically active sites in carbon fiber by edge oxygen functionalized strategy for high performance yarn energy storage. Journal of Power Sources, 2021, 491, 229579.	4.0	3
862	Impact of Polypyrrole Functionalization on the Anodic Performance of Boron Nitride Nanosheets: Insights From First-Principles Calculations. Frontiers in Chemistry, 2021, 9, 670833.	1.8	6
863	Methodology for the identification of carbonyl absorption maxima of carbon surface oxides in DRIFT spectra. Carbon Trends, 2021, 3, 100020.	1.4	9
864	Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. Energy Storage Materials, 2021, 38, 482-488.	9.5	52
865	Effect of the defect densities of reduced graphene oxide network on the stability of lithium-metal anodes. Materials Today Communications, 2021, 27, 102276.	0.9	6
866	Layerâ€by‣ayer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÂAÂcm ^{â^2} in Waterâ€5plitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	7.8	15
867	The application of graphyne and its boron nitride analogue in Li-ion batteries. Computational and Theoretical Chemistry, 2021, 1200, 113243.	1.1	4
868	A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 2021, 145, 111029.	8.2	105
869	Porous 3D Siliconâ€Điamondyne Blooms Excellent Storage and Diffusion Properties for Li, Na, and K Ions. Advanced Energy Materials, 2021, 11, 2101197.	10.2	35
870	Textileâ€Type Lithiumâ€Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reactionâ€Mediated Assembly. Advanced Energy Materials, 2021, 11, 2101631.	10.2	19
871	PdCu bimetallic nanoparticles decorated on ordered mesoporous silica (SBA-15) /MWCNTs as superior electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25468-25485.	3.8	15

#	Article	IF	CITATIONS
872	Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. Chemical Engineering Journal, 2021, 417, 129242.	6.6	15
873	Biomimetic N-doped sea-urchin-structured porous carbon for the anode material of high-energy-density potassium-ion batteries. Electrochimica Acta, 2021, 388, 138565.	2.6	14
874	Feasibility of using the anode functionalized with Calix[4]pyridine in lithium and sodium atom/ion batteries: DFT study. Computational and Theoretical Chemistry, 2021, 1202, 113332.	1.1	1
875	Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors, 2021, 21, 5847.	2.1	15
876	Structure and properties of nanocarbons-encapsulated WC synthesized by solution plasma process in palm oils. Materials Express, 2021, 11, 1602-1607.	0.2	1
877	Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. Journal of Controlled Release, 2021, 337, 494-504.	4.8	10
878	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	1.9	4
879	Constructing MoO3@MoO2 heterojunction on g-C3N4 nanosheets with advanced Li-ion storage ability. Journal of Alloys and Compounds, 2021, 875, 160077.	2.8	21
880	Aging investigations and consideration for automotive high power lithium-ion batteries in a 48ÂV mild hybrid operating strategy. Automotive and Engine Technology, 2021, 6, 219-234.	0.7	3
881	Preparation of Network-Structured Carbon Nanofiber Mats Based on PAN Blends Using Electrospinning and Hot-Pressing Methods for Supercapacitor Applications. Nanomaterials, 2021, 11, 2447.	1.9	6
882	Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Materials, 2021, 41, 448-465.	9.5	60
883	Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage. Carbon, 2021, 184, 534-543.	5.4	35
884	Dispersion of single wall carbon nanotube using air entraining agent and its application to portland cement paste. Construction and Building Materials, 2021, 302, 124421.	3.2	7
885	A novel carbon aerogel enabling respiratory monitoring for bio-facial masks. Journal of Materials Chemistry A, 2021, 9, 13143-13150.	5.2	9
886	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	7.8	102
887	Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 2021, 12, 119.	5.8	93
888	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
889	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1

	Сітаті	Citation Report	
#	Article	IF	Citations
890	CNT Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 73-75.		1
891	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. , 2018, , 141-146.		4
892	Characterization Methods. , 2018, , 403-488.		2
893	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
894	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
895	Understanding the electrochemistry of armchair graphene nanoribbons containing nitrogen and oxygen functional groups: DFT calculations. Physical Chemistry Chemical Physics, 2020, 22, 4533-4543.	1.3	15
896	Enhanced thermal conductivity of nanocomposites with MOF-derived encapsulated magnetic oriented carbon nanotube-grafted graphene polyhedra. RSC Advances, 2020, 10, 3357-3365.	1.7	22
897	Metal-organic framework derived Co ₃ Se ₄ @Nitrogen-doped porous carbon as a high-performance anode material for lithium ion batteries. Nanotechnology, 2020, 31, 215602.	1.3	6
898	Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Nanomaterials, 2021, 11, 50.	1.9	7
899	High-Performance Lithium-Ion Capacitors Produced by Atom-Thick Carbon Cathode and Nitrogen-Doped Porous Carbon Anode. Energy & Fuels, 2021, 35, 16894-16902.	2.5	6
900	C10F as a potential anode material for alkali-ion batteries; a quantum chemical approach. Computational and Theoretical Chemistry, 2021, 1206, 113470.	1.1	5
901	Fuel Cell fuel cell Comparison to Alternate Technologies fuel cell comparison to alternate technologies. , 2012, , 3847-3860.		1
902	Templating of Metal Oxides by Electrodeposition. Springer Theses, 2013, , 85-115.	0.0	0
903	Recent Progress in Layer-by-layer Assembly of Nanomaterials for Electrochemical Energy Storage Applications. Journal of the Korean Electrochemical Society, 2014, 17, 139-148.	0.1	0
904	Fuel Cell Comparison to Alternate Technologies. , 2017, , 1-16.		0
905	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
906	Miscellaneous CNT Applications. , 2018, , 89-90.		0
907	CNT Applications in Specialized Materials. , 2018, , 45-48.		0

#	Article	IF	CITATIONS
908	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
909	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		Ο
910	Electrochromics. , 2018, , 601-624.		1
911	Classes of CPs: Part 1. , 2018, , 489-507.		Ο
912	Electro-Optic and Optical Devices. , 2018, , 671-684.		2
913	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		Ο
914	Miscellaneous Applications. , 2018, , 695-715.		0
915	CNT Applications in the Environment and in Materials Used in Separation Science. , 2018, , 81-87.		Ο
916	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 147-14	8.	0
917	Classes of CPs: Part 2. , 2018, , 509-545.		Ο
918	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		0
919	Syntheses and Processing of CPs. , 2018, , 311-388.		0
920	Physical, Mechanical, and Thermal Properties of CNTs. , 2018, , 33-36.		0
921	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Supercondu 2018, , 77-79.	ctors. ,	1
922	Toxicology of CNTs. , 2018, , 37-39.		0
923	Synthesis, Purification, and Chemical Modification of CNTs. , 2018, , 17-31.		0
924	Introducing Graphene. , 2018, , 93-99.		0
925	Unveiled Correlations between Electron Affinity and Solvation in Redox Potential of Quinone-Base Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	d 0.4	1

#	Article	IF	CITATIONS
927	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
928	Brief, General Overview of Applications. , 2018, , 123-124.		ο
929	Electrochemomechanical, Chemomechanical, and Related Devices. , 2018, , 685-693.		0
930	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
931	Fuel Cell Comparison to Alternate Technologies. , 2019, , 11-25.		0
932	Milimetre Uzunluğunda Dikey Hizalanmış Karbon Nanotüpler Büyütmek için Sıcaklığa Bağlı İncelenmesi ve Optimize Edilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020, 13, 1354-1361.	Parametre 0.1	erin 1
933	Nanoporous Activated Carbon and Multi-walled Carbon Nanotubes from Renewable Botanical Hydrocarbons and their Impact on Efficiency of Supercapacitor Performance. Journal of Environmental Nanotechnology, 2020, 9, 01-04.	0.1	1
934	Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices. Sustainable Materials and Technologies, 2021, 30, e00357.	1.7	14
935	Near-infrared spectroscopy: An important noninvasive and sensitive tool for point-of-care biosensing application. , 2022, , 161-184.		0
936	Fibrous cathode materials for advanced sodium-chalcogen batteries. Energy Storage Materials, 2022, 45, 265-280.	9.5	15
937	Women in Electrochemistry- Contributions, Challenges and Potential Solutions. Journal of the Electrochemical Society, 0, , .	1.3	0
938	Alkaline oxygen evolution: exploring synergy between fcc and hcp cobalt nanoparticles entrapped in N-doped graphene. Materials Today Chemistry, 2022, 23, 100668.	1.7	20
939	Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Materials Today Energy, 2022, 24, 100931.	2.5	19
940	Research progress and prospect of hybrid supercapacitors as boosting the performance. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.	1.2	5
941	Extraction of unburned carbon from coal fly ash. , 2022, , 403-449.		1
942	Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 615, 485-493.	5.0	24
943	Valence Engineering of Polyvalent Cobalt Encapsulated in a Carbon Nanofiber as an Efficient Trifunctional Electrocatalyst for the Zn–Air Battery and Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 4399-4408.	4.0	15
944	Understanding the steric effect of graphene in graphene wrapped silicon suboxides anodes for Li-ion batteries. Journal of Power Sources, 2022, 522, 231007.	4.0	3

#	Article	IF	CITATIONS
945	Silicon doped carbon nanotubes as high energy anode for lithium-ion batteries. Materials Today Communications, 2022, 30, 103158.	0.9	8
947	Nitrogenâ€Enriched Mesoporous Carbon Spheres as Efficient Anode Material for Longâ€Cycle Li/Naâ€Ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	7
948	Regulation of Dual-Ion Batteries Via the Defects Design in Carbon Electrode Based on the Different Storage Behaviors of Pf6- and Li+. SSRN Electronic Journal, 0, , .	0.4	0
949	Graphene: Chemistry and Applications for Lithium-Ion Batteries. Electrochem, 2022, 3, 143-183.	1.7	16
951	Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6â'' and Li+. Journal of Power Sources, 2022, 527, 231169.	4.0	6
952	A First-Principles Study on the Multilayer Graphene Nanosheets Anode Performance for Boron-Ion Battery. Nanomaterials, 2022, 12, 1280.	1.9	11
953	Tuning the Porous Structure in PMMA-Templated Mesoporous MoO ₂ for Pseudocapacitive Li-Ion Electrodes. Journal of the Electrochemical Society, 2022, 169, 040545.	1.3	4
954	Recent progress on carbon-based composites in multidimensional applications. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106906.	3.8	48
955	Unveiling the Na-ions storage mechanism and sodiation-induced brittleness of multiwalled carbon nanotubes. Journal of Power Sources, 2022, 532, 231357.	4.0	6
956	Hetero-Element-Doped Molybdenum Oxide Materials for Energy Storage Systems. Nanomaterials, 2021, 11, 3302.	1.9	5
957	Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry. Advanced Functional Materials, 2022, 32, .	7.8	12
958	Robust, Ultrasmooth Fluorinated Lithium Metal Interphase Feasible via Lithiophilic Graphene Quantum Dots for Dendriteâ€Less Batteries. Small, 2022, 18, e2200919.	5.2	16
959	Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100862.	2.8	9
960	Optimizations of Graphitic Carbon/Silicon Hybrids for Scalable Preparation with High-Performance Lithium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 5590-5598.	3.2	12
961	An overview of the application of atomic layer deposition process for lithiumâ€ion based batteries. International Journal of Energy Research, 2022, 46, 10499-10521.	2.2	8
962	Sustainable lithium-ion batteries based on metal-free tannery waste biochar. Green Chemistry, 2022, 24, 4119-4129.	4.6	16
963	A facile synthesis of hierarchically porous graphene for high-performance lithium storage. New Journal of Chemistry, 2022, 46, 9999-10003.	1.4	3
964	Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 9354-9362.	6.6	30

#	Article	IF	CITATIONS
965	Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors. Carbon, 2022, 196, 727-735.	5.4	17
966	Nanocomposites of Carbon Nanotubes for Electrochemical Energy Storage Applications. Advances in Material Research and Technology, 2022, , 245-265.	0.3	1
967	Unraveling the Design Principles of Batteryâ€Supercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	49
968	A Review of Cobalt-Containing Nanomaterials, Carbon Nanomaterials and Their Composites in Preparation Methods and Application. Nanomaterials, 2022, 12, 2042.	1.9	6
970	Thioâ€∤LISICON and LGPSâ€Type Solid Electrolytes for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	35
971	Soft Ionics: Governing Physics and State of Technologies. Frontiers in Physics, 0, 10, .	1.0	5
972	Carbon Quantum Dot Modified Reduced Graphene Oxide Framework for Improved Alkali Metal Ion Storage Performance. Small, 2022, 18, .	5.2	11
973	Resolution-enhanced optical inspection system to examine metallic nanostructures using structured illumination. Applied Optics, 2022, 61, 6819.	0.9	0
974	Carbon nanotubeâ€polybutadieneâ€poly(ethylene oxide)â€based composite fibers: Role of cryogenic treatment on intrinsic properties. Polymers for Advanced Technologies, 0, , .	1.6	0
975	Precursor chemistry-mediated defect regulation of asphalt-derived carbonaceous materials for slope-dominated sodium storage. Journal of Alloys and Compounds, 2022, 928, 167103.	2.8	4
976	Sequentially optimizing carbon nanotubes framework towards flexible and compact capacitive energy storage. Journal of Materials Chemistry A, 2022, 10, 21430-21445.	5.2	5
977	Renewable biomass-derived carbon-based hosts for lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 5211-5242.	2.5	6
978	Reconstructing bridging carbon atoms (from sp3-C to sp2-C) of pyrolytic N-doped carbon to enhance oxygen reduction reaction. Fuel, 2023, 332, 126158.	3.4	7
979	Review—Heteroatom-Doped High Porous Carbon Metal Free Nanomaterials for Energy Storage and Conversion. ECS Journal of Solid State Science and Technology, 2022, 11, 091006.	0.9	1
980	Molecular engineering of interplanar spacing via ï€-conjugated phenothiazine linkages for high-power 2D covalent organic framework batteries. CheM, 2023, 9, 117-129.	5.8	13
981	Exploring the role of Stone-Wales defect in boron nitride nano-sheet as a anode Mg-ion batteries. Inorganic Chemistry Communication, 2022, 146, 110098.	1.8	2
982	Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage. Journal of Colloid and Interface Science, 2023, 630, 86-98.	5.0	18
983	Evaluation of the role perfect and defect boron nitride monolayer in calcium ion batteries as a anode. Computational and Theoretical Chemistry, 2023, 1219, 113940.	1.1	7

ARTICLE IF CITATIONS Dispersibility study of carbon nanotubes using multiple light scattering: A mini-review. Colloids and 984 2.0 3 Interface Science Communications, 2023, 52, 100686. Electronic structures of defects in bottom-up N-doped graphene nanoribbons: Experiment and theory. 3.1 Applied Surface Science, 2023, 612, 155874. 986 Carbon Nanotubes for Energy Conversion and Storage., 2022, , 1369-1390. 0 Growth and Performance of High-Quality SWCNT Forests on Inconel Foils as Lithium-Ion Battery 4.0 Anodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 54981-54991. Research Trends on the Dispersibility of Carbon Nanotube Suspension with Surfactants in Their 988 2.1 2 Application as Electrodes of Batteries: A Mini-Review. Batteries, 2022, 8, 254. Highly Aligned Graphene Oxide for Lithium Storage in Lithiumâ€Ion Battery Through A Novel Microfluidic Process: The Pulse Freezing. Advanced Materials Interfaces, 2023, 10, . Green Synthesis of ZnO Nanostructures Using Pyrus pyrifolia: Antimicrobial, Photocatalytic and 990 1.0 3 Dielectric Properties. Crystals, 2022, 12, 1808. Inspired by plants: Carbonization mechanism, micro architecture and electrochemical applications of 5.4 corn stalks. Carbon, 2023, 204, 516-525. Highly selective electrosynthesis of H2O2 by N, O co-doped graphite nanosheets for efficient 992 9 6.5 electro-Fenton degradation of p-nitrophenol. Journal of Hazardous Materials, 2023, 446, 130733. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and 993 cancerous cell membrane in doxorubicin delivery. Computer Methods and Programs in Biomedicine, 2.6 2023, 230, 107332. Conductive Electrode Quality Research Based on Screen Printing Technology. Lecture Notes in 994 0 0.3 Electrical Engineering, 2023, , 217-222. Formation of Carbon-Incorporated NiO@Co₃O₄ Nanostructures via a Direct Calcination Method and Their Application as Battery-Type Electrodes for Hybrid Supercapacitors. ACS 1.6 Omega, 2023, 8, 10503-10511 Redox active cement-based electrolyte towards high-voltage asymmetric solid supercapacitor. Cement 996 4.6 7 and Concrete Composites, 2023, 138, 104987. Phase separation strategy achieves printable corrosion-resistant ternary SiOC supercapacitors with 6.6 sustained capacitance increase. Chemical Engineering Journal, 2023, 465, 142746. Reviewâ€"Heterogeneous Functionalized-Based Electrode Materials for Energy Conversion and Storage 998 0 1.3 Processes. Journal of the Electrochemical Society, 0, , . Energiespeicher für Hybridfahrzeuge. , 2023, , 293-360.

CITATION REPORT

0

1003 $\,$ A review: Properties and applications of carbon nanotubes. , 2023, , .