Proteome-wide analysis of protein carboxy termini: C to

Nature Methods 7, 508-511

DOI: 10.1038/nmeth.1467

Citation Report

#	Article	IF	CITATIONS
1	Who gets cut during cell death?. Current Opinion in Cell Biology, 2010, 22, 859-864.	2.6	7
2	Systems Biology and Synthetic Biology: Understanding Biological Complexity on the Critical Path to Personalized Medicine. Current Pharmacogenomics and Personalized Medicine, 2010, 8, 257-267.	0.2	3
3	Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie, 2010, 92, 1705-1714.	1.3	54
4	Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nature Protocols, 2011, 6, 1130-1141.	5.5	164
6	Chemoenzymatic Labeling of Protein C-Termini for Positive Selection of C-Terminal Peptides. ACS Chemical Biology, 2011, 6, 1015-1020.	1.6	40
7	Network Biology. Methods in Molecular Biology, 2011, , .	0.4	3
8	Online Nanoflow Reversed Phase-Strong Anion Exchange-Reversed Phase Liquid Chromatography–Tandem Mass Spectrometry Platform for Efficient and In-Depth Proteome Sequence Analysis of Complex Organisms. Analytical Chemistry, 2011, 83, 6996-7005.	3.2	62
9	C-terminal de novo sequencing of peptides using oxazolone-based derivatization with bromine signature. Analytical Biochemistry, 2011, 419, 211-216.	1.1	16
10	Selective isolation of N-blocked peptide by combining AspN digestion, transamination, and tosylhydrazine glass treatment. Analytical Biochemistry, 2011, 410, 214-223.	1.1	8
11	Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing. Molecular and Cellular Proteomics, 2011, 10, M110.003533.	2.5	47
12	Rho Kinase II Phosphorylation of the Lipoprotein Receptor LR11/SORLA Alters Amyloid- \hat{l}^2 Production. Journal of Biological Chemistry, 2011, 286, 6117-6127.	1.6	50
13	TopFIND, a knowledgebase linking protein termini with function. Nature Methods, 2011, 8, 703-704.	9.0	91
14	Biological role of matrix metalloproteinases: a critical balance. European Respiratory Journal, 2011, 38, 191-208.	3.1	571
15	Protease signalling: the cutting edge. EMBO Journal, 2012, 31, 1630-1643.	3.5	242
16	Targeting Proteases in Cardiovascular Diseases by Mass Spectrometry-Based Proteomics. Circulation: Cardiovascular Genetics, 2012, 5, 265-265.	5.1	7
17	TopFIND 2.0-linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Research, 2012, 40, D351-D361.	6.5	54
18	The Degradative Inventory of the Cell: Proteomic Insights. Antioxidants and Redox Signaling, 2012, 17, 803-812.	2.5	13
19	Isobaric cross-sequence labeling of peptides by using site-selective N-terminus dimethylation. Chemical Communications, 2012, 48, 6265.	2.2	34

#	Article	IF	CITATIONS
20	Unbiased Selective Isolation of Protein N-terminal Peptides from Complex Proteome Samples Using Phospho Tagging (PTAG) and TiO2-based Depletion. Molecular and Cellular Proteomics, 2012, 11, 832-842.	2.5	51
21	Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 34-43.	1.1	74
22	4.7 Rock, paper, and molecular scissors: regulating the game of extracellular matrix homeostasis, remodeling, and inflammation., 2012, , 377-400.		0
23	Mass spectrometryâ€based proteomics strategies for protease cleavage site identification. Proteomics, 2012, 12, 516-529.	1.3	35
24	Profiling protease activities by dynamic proteomics workflows. Proteomics, 2012, 12, 587-596.	1.3	19
25	Qualitative improvement and quantitative assessment of <scp>N</scp> â€ŧerminomics. Proteomics, 2012, 12, 1207-1216.	1.3	17
26	Enhanced identification of peptides lacking basic residues by LCâ€ESIâ€MS/MS analysis of singly charged peptides. Proteomics, 2012, 12, 1303-1309.	1.3	16
27	New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural and Molecular Biology, 2012, 19, 9-16.	3.6	143
28	Applications of stable isotope dimethyl labeling in quantitative proteomics. Analytical and Bioanalytical Chemistry, 2012, 404, 991-1009.	1.9	61
29	N―and Câ€ŧerminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Physiologia Plantarum, 2012, 145, 5-17.	2.6	45
30	Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontology 2000, 2013, 63, 123-148.	6.3	42
31	Alpha-synuclein Post-translational Modifications as Potential Biomarkers for Parkinson Disease and Other Synucleinopathies. Molecular and Cellular Proteomics, 2013, 12, 3543-3558.	2.5	159
32	Approach for Identification and Quantification of C-Terminal Peptides: Incorporation of Isotopic Arginine Labeling Based on Oxazolone Chemistry. Analytical Chemistry, 2013, 85, 10745-10753.	3.2	17
33	Proteases: Structure and Function. , 2013, , .		31
34	Contemporary positional proteomics strategies to study protein processing. Current Opinion in Chemical Biology, 2013, 17, 66-72.	2.8	31
35	Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Medicine, 2013, 5, 20.	3.6	85
36	Protein TAILS: when termini tell tales of proteolysis and function. Current Opinion in Chemical Biology, 2013, 17, 73-82.	2.8	80
37	Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Review of Proteomics, 2013, 10, 421-433.	1.3	32

#	Article	IF	CITATIONS
38	Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular and Cellular Proteomics, 2013, 12, 3532-3542.	2.5	127
39	Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases. Molecular and Cellular Proteomics, 2013, 12, 2096-2110.	2.5	40
40	C-Terminal Protein Characterization by Mass Spectrometry using Combined Micro Scale Liquid and Solid-Phase Derivatization. Journal of Biomolecular Techniques, 2013, 24, jbt.13-2401-003.	0.8	10
41	Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web. PLoS Biology, 2014, 12, e1001869.	2.6	137
42	Time-resolved Analysis of the Matrix Metalloproteinase 10 Substrate Degradome. Molecular and Cellular Proteomics, 2014, 13, 580-593.	2.5	48
43	Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics - Clinical Applications, 2014, 8, 382-388.	0.8	6
44	Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics - Clinical Applications, 2014, 8, 338-350.	0.8	28
45	Proteomics of protein post-translational modifications implicated in neurodegeneration. Translational Neurodegeneration, 2014, 3, 23.	3.6	59
46	Beyond gene expression: The impact of protein post-translational modifications in bacteria. Journal of Proteomics, 2014, 97, 265-286.	1.2	176
47	What Can Proteomics Tell Us About Platelets?. Circulation Research, 2014, 114, 1204-1219.	2.0	97
48	A novel method for identification and relative quantification of N-terminal peptides using metal-element-chelated tags coupled with mass spectrometry. Science China Chemistry, 2014, 57, 708-717.	4.2	4
49	Microwave-assisted acid hydrolysis of proteins combined with peptide fractionation and mass spectrometry analysis for characterizing protein terminal sequences. Journal of Proteomics, 2014, 100, 68-78.	1.2	6
50	Carboxyterminal Protein Processing in Health and Disease: Key Actors and Emerging Technologies. Journal of Proteome Research, 2014, 13, 4497-4504.	1.8	22
51	Holistic View on the Extended Substrate Specificities of Orthologous Granzymes. Journal of Proteome Research, 2014, 13, 1785-1793.	1.8	8
53	Streamlining Bottom-Up Protein Identification Based on Selective Ultraviolet Photodissociation (UVPD) of Chromophore-Tagged Histidine- and Tyrosine-Containing Peptides. Analytical Chemistry, 2014, 86, 6237-6244.	3.2	15
54	Magnetic Immunoaffinity Enrichment for Selective Capture and MS/MS Analysis of N-Terminal-TMPP-Labeled Peptides. Journal of Proteome Research, 2014, 13, 668-680.	1.8	32
55	Neutrophil Elastase in the capacity of the "H2A-specific protease― International Journal of Biochemistry and Cell Biology, 2014, 51, 39-44.	1.2	11
56	The Human Proteome Organization Chromosome 6 Consortium: Integrating chromosome-centric and biology/disease driven strategies. Journal of Proteomics, 2014, 100, 60-67.	1.2	8

#	Article	IF	CITATIONS
57	Automation of C-terminal sequence analysis of 2D-PAGE separated proteins. EuPA Open Proteomics, 2014, 3, 250-261.	2.5	2
58	Metalloprotease meprin \hat{l}^2 is activated by transmembrane serine protease matriptase-2 at the cell surface thereby enhancing APP shedding. Biochemical Journal, 2015, 470, 91-103.	1.7	39
61	Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chemical Biology, 2015, 10, 1754-1764.	1.6	90
62	Câ€terminomics: Targeted analysis of natural and posttranslationally modified protein and peptide Câ€termini. Proteomics, 2015, 15, 903-914.	1.3	51
63	C-terminomics Screen for Natural Substrates of Cytosolic Carboxypeptidase 1 Reveals Processing of Acidic Protein C termini. Molecular and Cellular Proteomics, 2015, 14, 177-190.	2.5	25
64	Systematic Optimization of C-Terminal Amine-Based Isotope Labeling of Substrates Approach for Deep Screening of C-Terminome. Analytical Chemistry, 2015, 87, 10354-10361.	3.2	24
65	Fishing the PTM proteome with chemical approaches using functional solid phases. Chemical Society Reviews, 2015, 44, 8260-8287.	18.7	70
66	Positive Enrichment of C-Terminal Peptides Using Oxazolone Chemistry and Biotinylation. Analytical Chemistry, 2015, 87, 9916-9922.	3.2	26
67	Matrix Metalloproteinase (MMP) Proteolysis of the Extracellular Loop of Voltage-gated Sodium Channels and Potential Alterations in Pain Signaling. Journal of Biological Chemistry, 2015, 290, 22939-22944.	1.6	11
68	Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nature Reviews Cancer, 2015, 15, 712-729.	12.8	481
69	Proteolysis mediated by cysteine cathepsins and legumainâ€"recent advances and cell biological challenges. Protoplasma, 2015, 252, 755-774.	1.0	36
70	LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nature Methods, 2015, 12, 55-58.	9.0	128
71	Proteomic Substrate Identification for Membrane Proteases in the Brain. Frontiers in Molecular Neuroscience, 2016, 9, 96.	1.4	26
72	Protein Câ€terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics, 2016, 16, 60-69.	1.3	13
73	Mass Spectrometry-based Methodologies for Studying Proteolytic Networks and the Degradome. , 2016, , $568-581$.		1
74	Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150364.	1.6	32
75	Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150372.	1.6	8
76	Depletion of internal peptides by site-selective blocking, phosphate labeling, and TiO2 adsorption for in-depth analysis of C-terminome. Analytical and Bioanalytical Chemistry, 2016, 408, 3867-3874.	1.9	11

#	Article	IF	CITATIONS
77	Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie, 2016, 122, 110-118.	1.3	42
78	Protease Inhibitors in View of Peptide Substrate Databases. Journal of Chemical Information and Modeling, 2016, 56, 1228-1235.	2.5	4
79	Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nature Biotechnology, 2016, 34, 84-88.	9.4	213
80	C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics. Journal of Proteome Research, 2016, 15, 1369-1378.	1.8	26
81	Current trends and challenges in proteomic identification of protease substrates. Biochimie, 2016, 122, 77-87.	1.3	38
82	Matrix metalloproteinases – From the cleavage data to the prediction tools and beyond. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1952-1963.	1.9	39
84	ProC-TEL: Profiling of Protein C-Termini by Enzymatic Labeling. Methods in Molecular Biology, 2017, 1574, 135-144.	0.4	6
85	ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion?. Journal of Proteome Research, 2017, 16, 978-987.	1.8	12
86	The [PSI +] yeast prion does not wildly affect proteome composition whereas selective pressure exerted on [PSI +] cells can promote aneuploidy. Scientific Reports, 2017, 7, 8442.	1.6	12
88	Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2191-2199.	1.9	42
89	Site-Specific Profiling of Serum Glycoproteins Using N-Linked Glycan and Glycosite Analysis Revealing Atypical $\langle i \rangle$ N $\langle i \rangle$ -Glycosylation Sites on Albumin and Î \pm -1B-Glycoprotein. Analytical Chemistry, 2018, 90, 6292-6299.	3.2	44
90	Proteomic approaches beyond expression profiling and PTM analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 4051-4060.	1.9	9
91	Proteolytic Cleavage—Mechanisms, Function, and "Omic―Approaches for a Near-Ubiquitous Posttranslational Modification. Chemical Reviews, 2018, 118, 1137-1168.	23.0	145
92	Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS). Methods in Molecular Biology, 2018, 1731, 15-28.	0.4	3
93	A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Analytica Chimica Acta, 2018, 1000, 2-19.	2.6	26
94	Enzyme and Chemical Assisted N-Terminal Blocked Peptides Analysis, ENCHANT, as a Selective Proteomics Approach Complementary to Conventional Shotgun Approach. Journal of Proteome Research, 2018, 17, 212-221.	1.8	11
95	An Approach to Incorporate Multiâ€Enzyme Digestion into Câ€TAILS for Câ€Terminomics Studies. Proteomics, 2018, 18, 1700034.	1.3	21
96	Digging for Missing Proteins Using Low-Molecular-Weight Protein Enrichment and a "Mirror Protease―Strategy. Journal of Proteome Research, 2018, 17, 4178-4185.	1.8	12

#	Article	IF	Citations
97	Degradomics in Biomarker Discovery. Proteomics - Clinical Applications, 2019, 13, e1800138.	0.8	9
98	LysargiNase and Chemical Derivatization Based Strategy for Facilitating In-Depth Profiling of C-Terminome. Analytical Chemistry, 2019, 91, 14522-14529.	3.2	15
99	ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Scientific Reports, 2019, 9, 12540.	1.6	18
100	Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics. Journal of Proteome Research, 2019, 18, 2954-2964.	1.8	17
101	In-Depth Analysis of C Terminomes Based on LysC Digestion and Site-Selective Dimethylation. Analytical Chemistry, 2019, 91, 6498-6506.	3.2	16
102	New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. Journal of Experimental Botany, 2019, 70, 2021-2038.	2.4	37
103	Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nature Chemistry, 2019, 11, 552-561.	6.6	80
104	Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 968a-981.	2.5	28
105	Proteomics turns functional. Journal of Proteomics, 2019, 198, 36-44.	1.2	74
106	Deuterium-Free, Three-Plexed Peptide Diethylation for Highly Accurate Quantitative Proteomics. Journal of Proteome Research, 2019, 18, 1078-1087.	1.8	17
107	Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140138.	1.1	23
108	Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Frontiers in Genetics, 2020, 11, 581664.	1.1	13
109	What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World?. Proteomes, 2020, 8, 17.	1.7	42
110	Carboxypeptidase B-Assisted Charge-Based Fractional Diagonal Chromatography for Deep Screening of C-Terminome. Analytical Chemistry, 2020, 92, 8005-8009.	3.2	10
111	Development of Multiplexed Immuno-N-Terminomics to Reveal the Landscape of Proteolytic Processing in Early Embryogenesis of <i>Drosophila melanogaster</i> . Analytical Chemistry, 2020, 92, 4926-4934.	3.2	7
112	Basic Strong Cation Exchange Chromatography, BaSCX, a Highly Efficient Approach for C-Terminomic Studies Using LysargiNase Digestion. Analytical Chemistry, 2020, 92, 4742-4748.	3.2	13
113	Tyrosine–EDC Conjugation, an Undesirable Side Effect of the EDC-Catalyzed Carboxyl Labeling Approach. Analytical Chemistry, 2021, 93, 697-703.	3.2	5
114	Proteomics approaches for the identification of protease substrates during virus infection. Advances in Virus Research, 2021, 109, 135-161.	0.9	5

#	Article	IF	CITATIONS
115	N-terminomics – its past and recent advancements. Journal of Proteomics, 2021, 233, 104089.	1.2	25
116	Proteomic approaches to assist in diagnosis and prognosis of oral cancer. Expert Review of Proteomics, 2021, 18, 261-284.	1.3	8
117	Proteolysis and inflammation of the kidney glomerulus. Cell and Tissue Research, 2021, 385, 489-500.	1.5	4
118	Fractionation-free negative enriching for in-depth C-terminome analysis. Chinese Chemical Letters, 2021, , .	4.8	2
120	Insights into protease sequence similarities by comparing substrate sequences and phylogenetic dynamics. Mathematical Biosciences and Engineering, 2021, 18, 837-850.	1.0	0
121	Preparation of Arabidopsis thaliana Seedling Proteomes for Identifying Metacaspase Substrates by N-terminal COFRADIC. Methods in Molecular Biology, 2014, 1133, 255-261.	0.4	8
122	Identification and Relative Quantification of Native and Proteolytically Generated Protein C-Termini from Complex Proteomes: C-Terminome Analysis. Methods in Molecular Biology, 2011, 781, 59-69.	0.4	23
124	Microbial proteomics: how far have we come?. Microbiology Australia, 2011, 32, 169.	0.1	1
125	PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE, 2012, 7, e50300.	1,1	265
126	The Functional Human C-Terminome. PLoS ONE, 2016, 11, e0152731.	1.1	11
127	Engineered peptide ligases for cell signaling and bioconjugation. Biochemical Society Transactions, 2020, 48, 1153-1165.	1.6	6
128	Shedding light on both ends: An update on analytical approaches for N- and C-terminomics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119137.	1.9	6
129	The protease web. , 2022, , 229-250.		0
130	"Omics―approaches to determine protease degradomes in complex biological matrices. , 2022, , 209-228.		0
131	One-Step Isolation of Protein C-Terminal Peptides from V8 Protease-Digested Proteins by Metal Oxide-Based Ligand-Exchange Chromatography. Analytical Chemistry, 2022, 94, 944-951.	3.2	7
133	Ac-LysargiNase efficiently helps genome reannotation of Mycolicibacterium smegmatis MC2 155. Journal of Proteomics, 2022, 264, 104622.	1.2	1
134	Proteolysis: a key post-translational modification regulating proteoglycans. American Journal of Physiology - Cell Physiology, 2022, 323, C651-C665.	2.1	14
135	Validation of Top-Down Proteomics Data by Bottom-Up-Based N-Terminomics Reveals Pitfalls in Top-Down-Based Terminomics Workflows. Journal of Proteome Research, 2022, 21, 2185-2196.	1.8	4

CITATION REPORT

#	ARTICLE	IF	CITATIONS
136	Separation methods for systemâ€wide profiling of protein terminome. Proteomics, 2023, 23, .	1.3	3
137	NAPT, an unbiased approach for sequential analysis of the protein N- and C-terminome. Chemical Communications, 2022, 58, 9397-9400.	2.2	1
138	PBC, an easy and efficient strategy for high-throughput protein C-terminome profiling. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	0
139	Degradomics technologies in matrisome exploration. Matrix Biology, 2022, 114, 1-17.	1.5	5
140	Mass Spectrometry-based Methodologies for Studying Proteolytic Networks and the Degradome. , 2016, , 396-410.		0
141	Mass spectrometry-based candidate substrate and site identification of PTM enzymes. TrAC - Trends in Analytical Chemistry, 2023, 160, 116991.	5.8	0