A reprogrammable mouse strain from gene-targeted en

Nature Methods 7, 53-55 DOI: 10.1038/nmeth.1409

Citation Report

#	Article	IF	CITATIONS
1	Reprogramming adult hematopoietic cells. Current Opinion in Hematology, 2010, 17, 271-275.	1.2	23
3	Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette Â. Stem Cells, 2010, 28, 1728-1740.	1.4	375
4	Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 2010, 465, 175-181.	13.7	727
5	Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 2010, 28, 848-855.	9.4	1,080
6	Reduce, reuse, reprogram. Nature Methods, 2010, 7, 39-40.	9.0	1
7	Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery. Regenerative Medicine, 2010, 5, 557-568.	0.8	25
8	An imprinted signature helps isolate ESC-equivalent iPSCs. Cell Research, 2010, 20, 974-976.	5.7	3
9	Apoptotic Caspases Regulate Induction of iPSCs from Human Fibroblasts. Cell Stem Cell, 2010, 7, 508-520.	5.2	96
10	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
11	Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Research and Therapy, 2010, 1, 26.	2.4	32
12	Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of Induced Pluripotent Stem Cells. Cell Stem Cell, 2011, 9, 588-598.	5.2	297
13	Historical Origins of Transdifferentiation and Reprogramming. Cell Stem Cell, 2011, 9, 504-516.	5.2	171
14	The Musashi1 RNA-Binding Protein: A Critical Regulator in Glioblastoma. , 0, , .		0
15	Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming. Genes, 2011, 2, 81-106.	1.0	7
16	Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 2011, 13, 215-222.	4.6	587
17	Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics, 2011, 12, 231-242.	7.7	415
18	Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 2011, 12, 253-265.	7.7	257
19	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45

ATION REDO

	CITATION R	CITATION REPORT	
# 20	ARTICLE Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Cell Death and Differentiation, 2012, 19, 1268-1276	IF 5.0	Citations
22	Reprogramming IgH isotype-switched B cells to functional-grade induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13745-13750.	3.3	17
23	A poor imitation of a natural process. Cell Cycle, 2012, 11, 4536-4544.	1.3	13
24	A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell, 2012, 151, 1617-1632.	13.5	762
25	Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells. Journal of Biological Chemistry, 2012, 287, 40767-40778.	1.6	17
26	Generating pluripotent stem cells: Differential epigenetic changes during cellular reprogramming. FEBS Letters, 2012, 586, 2874-2881.	1.3	32
27	Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling. Cell Stem Cell, 2012, 11, 179-194.	5.2	142
28	Induced Pluripotent Stem Cells: Progress and Future Perspectives in the Stem Cell World. Cellular Reprogramming, 2012, 14, 459-470.	0.5	8
29	Highly Coordinated Proteome Dynamics during Reprogramming of Somatic Cells to Pluripotency. Cell Reports, 2012, 2, 1579-1592.	2.9	216
30	Does transcription factor induced pluripotency accurately mimic embryo derived pluripotency?. Current Opinion in Genetics and Development, 2012, 22, 429-434.	1.5	7
31	Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin-Proteasome System. Cell Stem Cell, 2012, 11, 783-798.	5.2	235
32	Induced Pluripotent Stem Cells (iPSCs). SpringerBriefs in Stem Cells, 2012, , 11-19.	0.1	0
33	Development of an All-in-One Inducible Lentiviral Vector for Gene Specific Analysis of Reprogramming. PLoS ONE, 2012, 7, e41007.	1.1	30
34	Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells. Nature Genetics, 2012, 44, 398-405.	9.4	250
35	Accumulative gene integration into a pre-determined site using Cre/loxP. Journal of Bioscience and Bioengineering, 2012, 113, 381-388.	1.1	26
36	Defining Suitable Reference Genes for RT-qPCR Analysis on Intestinal Epithelial Cells. Molecular Biotechnology, 2013, 54, 930-938.	1.3	12
37	The ROSA26-iPSC Mouse: A Conditional, Inducible, and Exchangeable Resource for Studying Cellular (De)Differentiation. Cell Reports, 2013, 3, 335-341.	2.9	35
38	Secondary cell reprogramming systems: as years go by. Current Opinion in Genetics and Development, 2013, 23, 534-539.	1.5	6

#	Article	IF	CITATIONS
39	Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature, 2013, 502, 340-345.	13.7	443
40	The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 2013, 228, 267-275.	2.0	43
41	Stage-Specific Regulation of Reprogramming to Induced Pluripotent Stem Cells by Wnt Signaling and T Cell Factor Proteins. Cell Reports, 2013, 3, 2113-2126.	2.9	88
42	Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports, 2013, 3, 651-660.	2.9	74
43	Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-11 ³ in reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 872-882.	4.6	205
44	Genome-wide Chromatin Interactions of the Nanog Locus in Pluripotency, Differentiation, and Reprogramming. Cell Stem Cell, 2013, 12, 699-712.	5.2	194
45	Peering into the Black Box of Reprogramming to the Pluripotent State. Current Pathobiology Reports, 2013, 1, 129-136.	1.6	2
46	Toward pluripotency by reprogramming: mechanisms and application. Protein and Cell, 2013, 4, 820-832.	4.8	21
47	Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovascular Research, 2013, 100, 105-113.	1.8	90
49	Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced Pluripotent Stem Cells. New Journal of Science, 2014, 2014, 1-22.	1.0	2
50	A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.	2.9	9
51	X Chromosome Reactivation Dynamics Reveal Stages of Reprogramming to Pluripotency. Cell, 2014, 159, 1681-1697.	13.5	97
52	Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nature Communications, 2014, 5, 4719.	5.8	80
53	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, 417-423.	0.3	5
54	Neural Stem Cells Differentiated From iPS Cells Spontaneously Regain Pluripotency. Stem Cells, 2014, 32, 2596-2604.	1.4	52
55	Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming. Stem Cell Reports, 2014, 3, 574-584.	2.3	68
56	Clinicopathological Sex- Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients. Pathology and Oncology Research, 2014, 20, 427-433.	0.9	24
57	Premature Termination of Reprogramming InÂVivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell, 2014, 156, 663-677.	13.5	368

	Сіта	tion Report	
#	Article	IF	CITATIONS
58	Phases of reprogramming. Stem Cell Research, 2014, 12, 754-761.	0.3	108
59	Concise Review: Dedifferentiation Meets Cancer Development: Proof of Concept for Epigenetic Cancer. Stem Cells Translational Medicine, 2014, 3, 1182-1187.	1.6	40
60	GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells. Differentiation, 2014, 87, 193-199.	1.0	11
61	All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300.	1.1	87
62	Epigenetic regulation leading to induced pluripotency drives cancer development in vivo. Biochemical and Biophysical Research Communications, 2014, 455, 10-15.	1.0	25
63	Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell, 2014, 15, 281-294.	5.2	58
64	Small molecules facilitate rapid and synchronous iPSC generation. Nature Methods, 2014, 11, 1170-117	6. 9.0	91
65	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, E1-E11.	0.3	3
66	Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model. Journal of Visualized Experiments, 2014, , e51728.	0.2	17
67	In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Scientific Reports, 2015, 5, 13559.	1.6	10
68	Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation. BMC Developmental Biology, 2015, 15, 35.	2.1	10
69	Differences in the Gene Expression Profiles of Slow- and Fast-Forming Preinduced Pluripotent Stem Cell Colonies. Stem Cells International, 2015, 2015, 1-10.	1.2	7
70	Induced pluripotent stem cell technology for dissecting the cancer epigenome. Cancer Science, 2015, 106, 1251-1256.	1.7	11
71	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	13.7	244
72	Reprogramming Roadblocks Are System Dependent. Stem Cell Reports, 2015, 5, 350-364.	2.3	34
73	Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy. Molecular Therapy - Nucleic Acids, 2015, 4, e272.	2.3	7
74	m ⁶ A mRNA methylation facilitates resolution of naÃ ⁻ ve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.	6.0	1,288
75	Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nature Communications, 2015, 6, 6188.	5.8	34

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
76	Epigenetic predisposition to reprogramming fates in somatic cells. EMBO Reports, 2015, 16, 370-378.	2.0	21
77	Choosing Cell Fate Through a Dynamic Cell Cycle. Current Stem Cell Reports, 2015, 1, 129-138.	0.7	15
78	Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells and Development, 2015, 24, 2634-2648.	1.1	21
79	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	13.5	206
80	Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nature Biotechnology, 2015, 33, 761-768.	9.4	100
81	Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors. Cell Stem Cell, 2015, 17, 101-115.	5.2	88
82	Emerging roles for the FBXW7 ubiquitin ligase in leukemia and beyond. Current Opinion in Cell Biology, 2015, 37, 28-34.	2.6	22
83	The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods in Molecular Biology, 2015, 1357, 1-22.	0.4	12
84	High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nature Communications, 2015, 6, 8243.	5.8	197
85	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
86	Understanding the Molecular Basis of Heterogeneity in Induced Pluripotent Stem Cells. Cellular Reprogramming, 2015, 17, 427-440.	0.5	2
87	The Combination of Tet1 with Oct4 Generates High-Quality Mouse-Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 686-698.	1.4	39
88	Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2016, 17, 256.	1.8	29
89	A "Hit and Run―Approach to Inducible Direct Reprogramming of Astrocytes to Neural Stem Cells. Frontiers in Physiology, 2016, 7, 127.	1.3	6
90	Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins. Cell Reports, 2016, 15, 247-255.	2.9	75
91	A New, Dynamic Era for Somatic Cell Nuclear Transfer?. Trends in Biotechnology, 2016, 34, 791-797.	4.9	77
93	Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures. Nature Protocols, 2016, 11, 1955-1976.	5.5	11
94	Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nature Cell Biology, 2016, 18, 1127-1138.	4.6	57

#	Article	IF	CITATIONS
95	Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins. Molecular Cell, 2016, 64, 624-635.	4.5	84
96	An improved reprogrammable mouse model harbouring the reverse tetracycline-controlled transactivator 3. Stem Cell Research, 2016, 17, 49-53.	0.3	9
97	A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports, 2016, 6, 704-716.	2.3	50
98	Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 39-65.	5.9	18
99	MicroRNA-29 impairs the early phase of reprogramming process by targeting active DNA demethylation enzymes and Wnt signaling. Stem Cell Research, 2017, 19, 21-30.	0.3	17
100	CRISPR-UMI: single-cell lineage tracing of pooled CRISPR–Cas9 screens. Nature Methods, 2017, 14, 1191-1197.	9.0	95
101	Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nature Biotechnology, 2017, 35, 960-968.	9.4	34
102	Purging Exhausted Virus-Specific CD8 T Cell Phenotypes by Somatic Cell Reprogramming. AIDS Research and Human Retroviruses, 2017, 33, S-59-S-69.	0.5	1
103	REST suppression mediates neural conversion of adult human fibroblasts via microRNAâ€dependent and â€independent pathways. EMBO Molecular Medicine, 2017, 9, 1117-1131.	3.3	87
104	Cellular reprogramming technology for dissecting cancer epigenome <i>in vivo</i> . Epigenomics, 2017, 9, 997-1011.	1.0	4
105	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .	0.1	0
106	Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 2017, 548, 219-223.	13.7	211
107	Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures. Cell Reports, 2018, 22, 2601-2614.	2.9	63
108	Nascent Induced Pluripotent Stem Cells Efficiently Generate Entirely iPSC-Derived Mice while Expressing Differentiation-Associated Genes. Cell Reports, 2018, 22, 876-884.	2.9	12
109	HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype. Oncogene, 2018, 37, 3575-3588.	2.6	29
110	NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nature Cell Biology, 2018, 20, 400-412.	4.6	64
111	Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell, 2018, 172, 106-120.e21.	13.5	123
112	Binding of HMGN proteins to cell specific enhancers stabilizes cell identity. Nature Communications, 2018, 9, 5240.	5.8	32

11	Article	IF	CITATIONS
113	Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. International Journal of Molecular Sciences, 2018, 19, 3752.	1.8	8
114	Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell, 2018, 23, 727-741.e9.	5.2	156
115	AAV vector-mediated in vivo reprogramming into pluripotency. Nature Communications, 2018, 9, 2651.	5.8	43
116	Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming. Cell Stem Cell, 2018, 23, 289-305.e5.	5.2	60
117	Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency. Cell Stem Cell, 2018, 23, 396-411.e8.	5.2	61
118	Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell, 2018, 23, 412-425.e10.	5.2	59
119	Glutamine independence is a selectable feature of pluripotent stem cells. Nature Metabolism, 2019, 1, 676-687.	5.1	46
120	Mitochondrial Akt Signaling Modulated Reprogramming of Somatic Cells. Scientific Reports, 2019, 9, 9919.	1.6	13
121	KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nature Cell Biology, 2019, 21, 1179-1190.	4.6	122
122	Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell, 2019, 176, 928-943.e22.	13.5	411
123	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	4.5	36
124	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695.	5.8	31
124 125	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695. Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , .	5.8 0.1	31 0
124 125 126	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695. Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , . Tox4 modulates cell fate reprogramming. Journal of Cell Science, 2019, 132, .	5.8 0.1 1.2	31 0 12
124 125 126 127	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695. Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , . Tox4 modulates cell fate reprogramming. Journal of Cell Science, 2019, 132, . Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Letters, 2019, 593, 3253-3265.	5.8 0.1 1.2 1.3	31 0 12 4
124 125 126 127 128	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695. Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , . Tox4 modulates cell fate reprogramming. Journal of Cell Science, 2019, 132, . Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Letters, 2019, 593, 3253-3265. Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	5.8 0.1 1.2 1.3 3.5	31 0 12 4 16
124 125 126 127 128 129	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695. Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , . Tox4 modulates cell fate reprogramming. Journal of Cell Science, 2019, 132, . Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Letters, 2019, 593, 3253-3265. Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324. Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency. Stem Cell Reports, 2020, 15, 1233-1245.	5.8 0.1 1.2 1.3 3.5 2.3	 31 0 12 4 16 7

#	Article	IF	CITATIONS
131	YAP Non-cell-autonomously Promotes Pluripotency Induction in Mouse Cells. Stem Cell Reports, 2020, 14, 730-743.	2.3	19
132	Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming. Cell Reports, 2020, 30, 2150-2169.e9.	2.9	9
133	The levels of reprogramming factors influence the induction and maintenance of pluripotency: the case of CD1 mouse strain cells. International Journal of Developmental Biology, 2021, 65, 365-376.	0.3	0
134	Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Molecular Cell, 2021, 81, 859-869.e8.	4.5	29
135	PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nature Cell Biology, 2021, 23, 424-436.	4.6	115
136	In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nature Communications, 2021, 12, 3094.	5.8	51
137	Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biology, 2021, 22, 171.	3.8	12
138	Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Proliferation, 2021, 54, e13090.	2.4	1
139	Chromatin accessibility dynamics during cell fate reprogramming. EMBO Reports, 2021, 22, e51644.	2.0	20
140	Isolation of Reprogramming Intermediates During Generation of Induced Pluripotent Stem Cells from Mouse Embryonic Fibroblasts. Methods in Molecular Biology, 2015, 1330, 205-218.	0.4	3
144	Remote control of induced dopaminergic neurons in parkinsonian rats. Journal of Clinical Investigation, 2014, 124, 3215-3229.	3.9	104
145	Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency. PLoS ONE, 2015, 10, e0140192.	1.1	19
146	Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX: Alternatives To Animal Experimentation, 2010, , 16-41.	0.9	32
147	Linking chromatin dynamics, cell fate plasticity, and tissue homeostasis in adult mouse hair follicle stem cells. Molecular Life, 2017, 1, 15-21.	0.0	3
148	Stem-cell induction made simpler. Nature, 0, , .	13.7	0
149	Modeling Disease in a Dish. SpringerBriefs in Stem Cells, 2012, , 33-49.	0.1	0
150	Towards a Combined Gene and Cell Therapy for Lung Diseases: The Case of Induced Pluripotent Stem Cells. Advancements in Genetic Engineering, 2012, 01, .	0.1	2
151	Uncover the black box of reprogramming in the post-Yamanaka era. OA Biotechnology, 2013, 2,	0.5	0

ARTICLE IF CITATIONS # In Vivo Reprogramming Towards Pluripotency for Tissue Repair and Regeneration. Pancreatic Islet 152 0.1 0 Biology, 2017, , 83-98. Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming., 2017, , 71-91. 154 In Vivo Cell Reprogramming to Pluripotency. Pancreatic Islet Biology, 2017, , 65-82. 0.1 0 Cell Type of Origin Dictates the Route to Pluripotency. SSRN Electronic Journal, 0, , . 156 0.4 Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic Induction of 157 0.4 0 Naive Pluripotency. SSRN Electronic Journal, O, , . iPS Cell Technology for Dissecting Cancer Epigenetics. Current Human Cell Research and Applications, 0.1 2019, , 29-43. Temporal Dynamics of Tet1 and Oct4 Gene Activation Resolve Distinct Stages of Global DNA 161 Demethylation and Transcriptomic Changes in the Final Phases of Induced Pluripotency. SSRN 0.4 0 Electronic Journal, 0, , . Somatic Reprogrammingâ€"Above and Beyond Pluripotency. Cells, 2021, 10, 2888. 1.8 The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing 171 2.9 7 pro-differentiation genes. Cell Reports, 2022, 38, 110524. An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. 174 1.2 Stem Cells International, 2022, 2022, 1-17. Retrotransposon instability dominates the acquired mutation landscape of mouse induced 176 7 5.8 pluripotent stem cells. Nature Communications, 2022, 13, . Metabolic Changes Associated With Cardiomyocyte Dedifferentiation Enable Adult Mammalian Cardiac Regeneration. Circulation, 2022, 146, 1950-1967. Highly efficient reprogrammable mouse lines with integrated reporters to track the route to pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2022, 178 3.3 2 119, Cohesin controls X chromosome structure remodeling and X-reactivation during mouse iPSC-reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . 179 3.3 Transformation of Pluripotency States during Morphogenesis of Mouse and Human Epiblast. Russian 189 0.1 0 Journal of Developmental Biology, 2023, 54, 276-291.