Dissolving polymer microneedle patches for influenza v

Nature Medicine 16, 915-920

DOI: 10.1038/nm.2182

Citation Report

#	Article	IF	CITATIONS
1	Epicutaneous/transcutaneous allergen-specific immunotherapy: rationale and clinical trials. Current Opinion in Allergy and Clinical Immunology, 2010, 10, 582-586.	1.1	17
2	Microneedles offer vaccination alternative. Lab Animal, 2010, 39, 292-292.	0.2	0
3	Advances in transcutaneous vaccine delivery: Do all ways lead to Rome?. Journal of Controlled Release, 2010, 148, 266-282.	4.8	177
4	Skin patch flu vaccine shows promise. Nature Reviews Drug Discovery, 2010, 9, 680-681.	21.5	0
6	Rapidly dissolving silk protein microneedles for transdermal drug delivery. , 2010, , .		3
7	Intanza [®] : a new intradermal vaccine for seasonal influenza. Expert Review of Vaccines, 2010, 9, 1399-1409.	2.0	53
8	Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Review of Medical Devices, 2011, 8, 459-482.	1.4	68
9	Microneedle Vaccination with Stabilized Recombinant Influenza Virus Hemagglutinin Induces Improved Protective Immunity. Vaccine Journal, 2011, 18, 647-654.	3.2	71
11	Delivery of antigens used for vaccination: recent advances and challenges. Therapeutic Delivery, 2011, 2, 1351-1368.	1.2	10
12	Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 1117-1127.	1.5	10
13	Present and future of influenza prevention in pediatrics. Expert Opinion on Biological Therapy, 2011, 11, 641-653.	1.4	15
14	Novel Administration Routes for Allergen-Specific Immunotherapy: A Review of Intralymphatic and Epicutaneous Allergen-Specific Immunotherapy. Immunology and Allergy Clinics of North America, 2011, 31, 391-406.	0.7	28
15	Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine, 2011, 29, 2626-2636.	1.7	85
16	Microneedles: an emerging transdermal drug delivery system. Journal of Pharmacy and Pharmacology, 2011, 64, 11-29.	1.2	292
18	Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. International Journal of Nanomedicine, 2011, 6, 1253.	3.3	37
19	Intradermal delivery of vaccines: potential benefits and current challenges. Bulletin of the World Health Organization, 2011, 89, 221-226.	1.5	155
20	How to Go about Selecting the Optimal Enhancement Method for Transdermal Delivery of a Speci•c Drug Molecule: Case Studies. , 2011, , 187-210.		2
21	Microneedles and their Applications. Recent Patents on Drug Delivery and Formulation, 2011, 5, 95-132.	2.1	51

#	Article	IF	CITATIONS
22	Epicutaneous allergen administration: is this the future of allergen-specific immunotherapy?. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 798-809.	2.7	55
23	Rapidly dissolving fibroin microneedles for transdermal drug delivery. Materials Science and Engineering C, 2011, 31, 1632-1636.	3.8	58
24	Kinetics of skin resealing after insertion of microneedles in human subjects. Journal of Controlled Release, 2011, 154, 148-155.	4.8	237
25	Needle-free and microneedle drug delivery in children: A case for disease-modifying antirheumatic drugs (DMARDs). International Journal of Pharmaceutics, 2011, 416, 1-11.	2.6	74
26	Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discovery Today, 2011, 16, 1061-1068.	3.2	59
27	A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials, 2011, 32, 7705-7710.	5.7	56
28	Delivery Systems for Intradermal Vaccination. Current Topics in Microbiology and Immunology, 2011, 351, 77-112.	0.7	118
29	Adenovirus-vectored drug–vaccine duo as a potential driver for conferring mass protection against infectious diseases. Expert Review of Vaccines, 2011, 10, 1539-1552.	2.0	24
30	Innovative design of hollow polymeric microneedles for transdermal drug delivery. Microsystem Technologies, 2011, 17, 1675-1682.	1.2	11
31	Enabling skin vaccination using new delivery technologies. Drug Delivery and Translational Research, 2011, 1, 7-12.	3.0	78
32	Melt crystallization of ibuprofen on surfaces patterned by a Nd: YAG laser. Korean Journal of Chemical Engineering, 2011, 28, 239-245.	1.2	1
33	Nanoparticle popsicle: Transdermal delivery of nanoparticles using polymeric microneedle array. Korean Journal of Chemical Engineering, 2011, 28, 1913-1917.	1.2	6
34	Carboxymethylcellulose–Chitosanâ€coated microneedles with modulated hydration properties. Journal of Applied Polymer Science, 2011, 121, 395-401.	1.3	26
35	Factors influencing the efficacy of two injections of a pandemic 2009 influenza A (H1N1) nonadjuvanted vaccine in systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 3502-3511.	6.7	42
36	Needleless Vaccine Delivery Using Micro-Shock Waves. Vaccine Journal, 2011, 18, 539-545.	3.2	53
37	Enhanced Delivery of Topically-Applied Formulations Following Skin Pre-Treatment with a Hand-Applied, Plastic Microneedle Array. Current Drug Delivery, 2011, 8, 557-565.	0.8	31
38	Serological Memory and Long-term Protection to Novel H1N1 Influenza Virus After Skin Vaccination. Journal of Infectious Diseases, 2011, 204, 582-591.	1.9	54
39	Recent trends in vaccine delivery systems: A review. International Journal of Pharmaceutical Investigation, 2011, 1, 64.	0.2	119

#	Article	IF	CITATIONS
40	Intradermal influenza vaccine and new devices: a promising chance for vaccine improvement. Expert Opinion on Biological Therapy, 2011, 11, 415-427.	1.4	40
41	Drug Delivery Using Microneedles. , 2011, , 625-642.		4
42	Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles. Journal of Micromechanics and Microengineering, 2012, 22, 095017.	1.5	49
43	New routes for allergen immunotherapy. Human Vaccines and Immunotherapeutics, 2012, 8, 1525-1533.	1.4	29
44	Tapered metal microneedles fabricated by the hybrid process of mechanical dicing and electrochemical corrosion for drug delivery. Micro and Nano Letters, 2012, 7, 1313-1315.	0.6	8
45	Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Scientific Reports, 2012, 2, 357.	1.6	91
46	Current evidence on intradermal influenza vaccines administered by Soluviaâ,"¢ licensed micro injection system. Human Vaccines and Immunotherapeutics, 2012, 8, 67-75.	1.4	53
47	New technologies for influenza vaccines. Human Vaccines and Immunotherapeutics, 2012, 8, 45-58.	1.4	48
48	Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy. Expert Opinion on Drug Delivery, 2012, 9, 541-550.	2.4	74
50	Dissolving polymer microneedle patches for influenza vaccination. Yearbook of Pediatrics, 2012, 2012, 260-261.	0.2	0
53	BioMEMs for drug delivery applications. , 2012, , 218-268.		6
54	Delivery of drugs applied topically to the skin. Expert Review of Dermatology, 2012, 7, 383-397.	0.3	46
55	Chitosan Microneedle Patches for Sustained Transdermal Delivery of Macromolecules. Biomacromolecules, 2012, 13, 4022-4031.	2.6	200
56	Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination. Vaccine, 2012, 30, 1191-1197.	1.7	55
57	Transdermal delivery of methotrexate: past, present and future prospects. Therapeutic Delivery, 2012, 3, 315-325.	1.2	29
58	Old and New: Recent Innovations in Vaccine Biology and Skin T Cells. Journal of Investigative Dermatology, 2012, 132, 829-834.	0.3	29
59	Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials, 2012, 33, 7309-7326.	5.7	131
60	Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 239-247.	2.0	71

#	Article	IF	CITATIONS
61	DNA Vaccination in the Skin Using Microneedles Improves Protection Against Influenza. Molecular Therapy, 2012, 20, 1472-1480.	3.7	68
62	Protein encapsulation in polymeric microneedles by photolithography. International Journal of Nanomedicine, 2012, 7, 3143.	3.3	30
63	Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery. ACS Nano, 2012, 6, 8041-8051.	7.3	170
64	Reservoir-based drug delivery systems utilizing microtechnology. Advanced Drug Delivery Reviews, 2012, 64, 1590-1602.	6.6	196
65	Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 2012, 64, 1579-1589.	6.6	240
66	Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 2012, 64, 1547-1568.	6.6	1,279
67	Polymeric microdevices for transdermal and subcutaneous drug delivery. Advanced Drug Delivery Reviews, 2012, 64, 1603-1616.	6.6	55
68	Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. Journal of Controlled Release, 2012, 162, 529-537.	4.8	80
69	A scalable fabrication process of polymer microneedles. International Journal of Nanomedicine, 2012, 7, 1415.	3.3	57
70	Microneedle and mucosal delivery of influenza vaccines. Expert Review of Vaccines, 2012, 11, 547-560.	2.0	33
71	Complexes of Streptavidin-Fused Antigens with Biotinylated Antibodies Targeting Receptors on Dendritic Cell Surface: A Novel Tool for Induction of Specific T-Cell Immune Responses. Molecular Biotechnology, 2012, 51, 221-232.	1.3	6
72	The contact sensitizer diphenylcyclopropenone has adjuvant properties in mice and potential application in epicutaneous immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 638-646.	2.7	14
73	Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. International Journal of Pharmaceutics, 2012, 434, 80-89.	2.6	58
74	Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials, 2012, 33, 668-678.	5.7	178
75	Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials, 2012, 33, 5156-5165.	5.7	119
76	Delivery of plant-made vaccines and therapeutics. Biotechnology Advances, 2012, 30, 440-448.	6.0	27
77	Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. Journal of Controlled Release, 2012, 158, 93-101.	4.8	121
78	Rapid kinetics to peak serum antibodies is achieved following influenza vaccination by dry-coated densely packed microprojections to skin. Journal of Controlled Release, 2012, 158, 78-84.	4.8	37

#	Article	IF	CITATIONS
79	Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release, 2012, 161, 363-376.	4.8	93
80	Microneedle technologies for (trans)dermal drug and vaccine delivery. Journal of Controlled Release, 2012, 161, 645-655.	4.8	504
81	Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. Journal of Controlled Release, 2012, 160, 495-501.	4.8	124
82	Dissolvable Microneedle Patches for the Delivery of Cell-Culture-Derived Influenza Vaccine Antigens. Journal of Pharmaceutical Sciences, 2012, 101, 1021-1027.	1.6	97
83	Fabrication of Silk Microneedles for Controlledâ€Release Drug Delivery. Advanced Functional Materials, 2012, 22, 330-335.	7.8	245
84	Development and Clinical Study of a Self-Dissolving Microneedle Patch for Transcutaneous Immunization Device. Pharmaceutical Research, 2013, 30, 2664-2674.	1.7	343
85	Rapidly–Dissolvable Microneedle Patches Via a Highly Scalable and Reproducible Soft Lithography Approach. Advanced Materials, 2013, 25, 5060-5066.	11.1	111
86	Measles vaccination using a microneedle patch. Vaccine, 2013, 31, 3403-3409.	1.7	114
87	BioMEMS in drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 1611-1625.	6.6	61
88	Microneedles for intradermal and transdermal drug delivery. European Journal of Pharmaceutical Sciences, 2013, 50, 623-637.	1.9	331
89	Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and Biology, 2013, , .	0.8	5
90	Characterization of out-of-plane cone metal microneedles and the function of transdermal delivery. Microsystem Technologies, 2013, 19, 617-621.	1.2	9
91	Development of a novel therapeutic approach using a retinoic acid-loaded microneedle patch for seborrheic keratosis treatment and safety study in humans. Journal of Controlled Release, 2013, 171, 93-103.	4.8	39
92	Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomaterialia, 2013, 9, 8952-8961.	4.1	225
93	Transdermal DDS. , 2013, , 1073-1082.		2
94	Nanotechnology in Dermatology. , 2013, , .		8
95	Engineering synthetic vaccines using cues from natural immunity. Nature Materials, 2013, 12, 978-990.	13.3	500
96	Nanotechnology: emerging tools for biology and medicine. Genes and Development, 2013, 27, 2397-2408.	2.7	104

#	Article	IF	CITATIONS
97	Emerging viral diseases of livestock in the developing world. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 291-294.	0.7	11
98	Skin Dendritic Cell Targeting <i>via</i> Microneedle Arrays Laden with Antigen-Encapsulated Poly- <scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses. ACS Nano, 2013, 7, 2042-2055.	7.3	192
99	Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. International Journal of Pharmaceutics, 2013, 447, 22-30.	2.6	72
100	Demonstration of ATP-Dependent, Transcellular Transport of Lipid Across the Lymphatic Endothelium Using an In Vitro Model of the Lacteal. Pharmaceutical Research, 2013, 30, 3271-3280.	1.7	19
101	Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics, 2013, 7, 026502.	1.2	34
102	Droplet-born air blowing: Novel dissolving microneedle fabrication. Journal of Controlled Release, 2013, 170, 430-436.	4.8	216
103	UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers on mechanical and adhesion properties. Soft Matter, 2013, 9, 6270.	1.2	35
104	Under the skin of intradermal vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10049-10051.	3.3	8
105	Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nature Reviews Drug Discovery, 2013, 12, 51-63.	21.5	181
106	Nanoparticle-Based Epidermal and Dermal Vaccination. , 2013, , 165-178.		0
107	Alternative vaccine delivery methods. , 2013, , 1200-1231.		48
108	Fabrication and testing analysis of tapered silicon microneedles for drug delivery applications. Microelectronic Engineering, 2013, 111, 33-38.	1.1	12
109	Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. International Journal of Pharmaceutics, 2013, 441, 570-579.	2.6	81
110	Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine, 2013, 31, 3435-3441.	1.7	75
111	Polymer multilayer tattooing for enhanced DNAÂvaccination. Nature Materials, 2013, 12, 367-376.	13.3	242
112	Transcutaneous vaccines – current and emerging strategies. Expert Opinion on Drug Delivery, 2013, 10, 485-498.	2.4	24
113	Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials, 2013, 34, 3077-3086.	5.7	210
114	New Directions in Immunotherapy. Current Allergy and Asthma Reports, 2013, 13, 178-195.	2.4	54

#	Article	IF	CITATIONS
115	Frontiers of transcutaneous vaccination systems: Novel technologies and devices for vaccine delivery. Vaccine, 2013, 31, 2403-2415.	1.7	46
116	Polymer microneedles for transdermal drug delivery. Journal of Drug Targeting, 2013, 21, 211-223.	2.1	77
117	Novel engineered systems for oral, mucosal and transdermal drug delivery. Journal of Drug Targeting, 2013, 21, 611-629.	2.1	40
118	Skin pretreatment with microneedles prior to pilocarpine iontophoresis increases sweat production. Clinical Physiology and Functional Imaging, 2013, 33, 436-440.	0.5	17
119	Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications. Acta Biomaterialia, 2013, 9, 7767-7774.	4.1	72
120	Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk. Small, 2013, 9, 3704-3713.	5.2	63
121	An update on the use of laser technology in skin vaccination. Expert Review of Vaccines, 2013, 12, 1313-1323.	2.0	28
122	Composite Dissolving Microneedles for Coordinated Control of Antigen and Adjuvant Delivery Kinetics in Transcutaneous Vaccination. Advanced Functional Materials, 2013, 23, 161-172.	7.8	147
123	Intradermal powder immunization with protein-containing vaccines. Expert Review of Vaccines, 2013, 12, 687-702.	2.0	8
124	Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.3	8
125	Long-Term Protective Immunity from an Influenza Virus-Like Particle Vaccine Administered with a Microneedle Patch. Vaccine Journal, 2013, 20, 1433-1439.	3.2	59
126	Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development. Frontiers in Immunology, 2013, 4, 157.	2.2	57
127	Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology. Biomicrofluidics, 2013, 7, 066501.	1.2	29
128	A simple method of microneedle array fabrication for transdermal drug delivery. Drug Development and Industrial Pharmacy, 2013, 39, 299-309.	0.9	53
129	Langerin negative dendritic cells promote potent CD8 ⁺ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3041-3046.	3.3	82
131	Preparation of Highly Concentrated Influenza Vaccine for Use in Novel Delivery Approaches. Journal of Pharmaceutical Sciences, 2013, 102, 866-875.	1.6	9
132	Review of recent literature on microneedle vaccine delivery technologies. Vaccine (Auckland, N Z), 0, , 47.	1.7	9
133	Sodium Alginate Microneedle Arrays Mediate the Transdermal Delivery of Bovine Serum Albumin. PLoS ONE, 2013, 8, e63819.	1.1	53

		CITATION RE	PORT	
#	Article		IF	Citations
134	Microneedle patches for vaccine delivery. Clinical and Experimental Vaccine Research, 2	2014, 3, 42.	1.1	80
135	Novel Strategies for Effective Transdermal Drug Delivery: A Review. Critical Reviews in ⁻ Drug Carrier Systems, 2014, 31, 219-272.	Therapeutic	1.2	32
136	Drug-eluting microneedles for self-administered treatment of keloids. Technology, 201	4, 02, 144-152.	1.4	24
137	"Smart―Surface Capsules for Delivery Devices. Advanced Materials Interfaces, 20	14, 1, 1400237.	1.9	31
138	Fabrication of carbon nanotube—polyimide composite hollow microneedles for trans delivery. Biomedical Microdevices, 2014, 16, 879-886.	dermal drug	1.4	28
139	Vaccine Delivery Using Microneedles. , 2014, , 697-715.			2
140	Evaluation of monophosphoryl lipid A as adjuvant for pulmonary delivered influenza va of Controlled Release, 2014, 174, 51-62.	ccine. Journal	4.8	44
141	Design and physicochemical characterisation of novel dissolving polymeric microneedle transdermal delivery of high dose, low molecular weight drugs. Journal of Controlled Re 180, 71-80.	e arrays for elease, 2014,	4.8	186
142	Structural characterization and in-vivo reliability evaluation of silicon microneedles. Bio Microdevices, 2014, 16, 333-343.	medical	1.4	63
143	Epicutaneous Immunotherapy for Aeroallergen and Food Allergy. Current Treatment O Allergy, 2014, 1, 68-78.	ptions in	0.9	42
144	Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cros influenza immunity. Journal of Controlled Release, 2014, 178, 1-7.	s-protective	4.8	72
145	Seasonal influenza vaccination and technologies. Journal of Clinical Pharmacology, 201	.4, 54, 719-731.	1.0	11
146	Microneedle patches: Usability and acceptability for self-vaccination against influenza. 32, 1856-1862.	Vaccine, 2014,	1.7	220
147	The origins and functions of dendritic cells and macrophages in the skin. Nature Review 2014, 14, 417-428.	vs Immunology,	10.6	396
148	Preparation and pharmaceutical evaluation of nano-fiber matrix supported drug deliver the solvent-based electrospinning method. International Journal of Pharmaceutics, 201	y system using .4, 464, 243-251.	2.6	45
149	Advanced Materials and Nanotechnology for Drug Delivery. Advanced Materials, 2014,	26, 5533-5540.	11.1	66
150	Molecular Vaccines. , 2014, , .			1
151	Treg Vaccination in Autoimmune Type 1 Diabetes. BioDrugs, 2014, 28, 7-16.		2.2	9

#	Article	IF	CITATIONS
152	Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles. Journal of Micromechanics and Microengineering, 2014, 24, 115015.	1.5	42
153	Self-setting bioceramic microscopic protrusions for transdermal drug delivery. Journal of Materials Chemistry B, 2014, 2, 5992-5998.	2.9	36
154	The selection pressures induced non-smooth infectious disease model and bifurcation analysis. Chaos, Solitons and Fractals, 2014, 69, 160-171.	2.5	14
155	Affordable Inactivated Poliovirus Vaccine: Strategies and Progress. Journal of Infectious Diseases, 2014, 210, S459-S464.	1.9	55
156	Micro―and Nanotechnologies for Intracellular Delivery. Small, 2014, 10, 4487-4504.	5.2	70
157	Drug-releasing implants: current progress, challenges and perspectives. Journal of Materials Chemistry B, 2014, 2, 6157-6182.	2.9	112
158	Intrastromal Delivery of Bevacizumab Using Microneedles to Treat Corneal Neovascularization. , 2014, 55, 7376.		65
159	Skin Immunization with Influenza Vaccines. Current Topics in Microbiology and Immunology, 2014, 386, 343-369.	0.7	19
160	Strong and conductive chitosan–reduced graphene oxide nanocomposites for transdermal drug delivery. Journal of Materials Chemistry B, 2014, 2, 3759.	2.9	104
161	Micro-fractional epidermal powder delivery for improved skin vaccination. Journal of Controlled Release, 2014, 192, 310-316.	4.8	42
162	The role of microneedles for drug and vaccine delivery. Expert Opinion on Drug Delivery, 2014, 11, 1769-1780.	2.4	142
163	Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 267-276.	2.0	138
164	Breakthrough discoveries in drug delivery technologies: The next 30 years. Journal of Controlled Release, 2014, 190, 9-14.	4.8	82
165	Nanocompositeâ€Strengthened Dissolving Microneedles for Improved Transdermal Delivery to Human Skin. Advanced Healthcare Materials, 2014, 3, 555-564.	3.9	61
166	Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opinion on Drug Delivery, 2014, 11, 393-407.	2.4	260
167	Engineering vaccines and niches for immune modulation. Acta Biomaterialia, 2014, 10, 1728-1740.	4.1	42
168	Wound healing potential of antibacterial microneedles loaded with green tea extracts. Materials Science and Engineering C, 2014, 42, 757-762.	3.8	65
169	Cutaneous immunization: an evolving paradigm in influenza vaccines. Expert Opinion on Drug Delivery, 2014, 11, 615-627.	2.4	26

#	Article	IF	CITATIONS
170	Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. Journal of Controlled Release, 2014, 179, 11-17.	4.8	83
171	DNA Vaccines. Methods in Molecular Biology, 2014, , .	0.4	5
172	Novel cosmetic patches for wrinkle improvement: retinyl retinoate―and ascorbic acidâ€loaded dissolving microneedles. International Journal of Cosmetic Science, 2014, 36, 207-212.	1.2	88
173	Electroâ€Drawn Drug‣oaded Biodegradable Polymer Microneedles as a Viable Route to Hypodermic Injection. Advanced Functional Materials, 2014, 24, 3515-3523.	7.8	81
174	Rapidly Dissolvable Microneedle Patches for Transdermal Delivery of Exenatide. Pharmaceutical Research, 2014, 31, 3348-3360.	1.7	103
175	Smart microneedle coatings for controlled delivery and biomedical analysis. Journal of Drug Targeting, 2014, 22, 790-795.	2.1	48
176	Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 200-211.	2.0	111
177	Drug-Delivery Systems in eMedicine and mHealth. , 2015, , 333-362.		Ο
178	Novel Use of Pectin as a Microneedle Base. Chemical and Pharmaceutical Bulletin, 2015, 63, 300-304.	0.6	14
180	Dissolving Microneedle Arrays for Intradermal Immunization of Hepatitis B Virus DNA Vaccine. Procedia in Vaccinology, 2015, 9, 24-30.	0.4	8
181	MEMS: Enabled Drug Delivery Systems. Advanced Healthcare Materials, 2015, 4, 969-982.	3.9	54
182	Phaseâ€Transition Microneedle Patches for Efficient and Accurate Transdermal Delivery of Insulin. Advanced Functional Materials, 2015, 25, 4633-4641.	7.8	106
184	Transdermal Delivery of Drugs with Microneedles—Potential and Challenges. Pharmaceutics, 2015, 7, 90-105.	2.0	319
185	Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 2015, 7, 438-470.	2.0	642
186	Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Frontiers in Immunology, 2015, 6, 201.	2.2	602
187	Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Frontiers in Immunology, 2015, 6, 534.	2.2	134
188	Microneedle Vaccination Elicits Superior Protection and Antibody Response over Intranasal Vaccination against Swine-Origin Influenza A (H1N1) in Mice. PLoS ONE, 2015, 10, e0130684.	1.1	14
189	Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles. PLoS ONE, 2015, 10, e0134431.	1.1	28

#	Article	IF	CITATIONS
190	Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery. International Journal of Cell Biology, 2015, 2015, 1-25.	1.0	23
193	Drug Delivery Using Microneedlesâ~†. , 2015, , .		Ο
194	Biodegradable and conductive chitosan–graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics. RSC Advances, 2015, 5, 51934-51946.	1.7	58
195	Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses. Journal of Immunology, 2015, 194, 5895-5902.	0.4	83
196	Effective and lesion-free cutaneous influenza vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5005-5010.	3.3	79
197	Design of a Dissolving Microneedle Platform for Transdermal Delivery of a Fixed-Dose Combination of Cardiovascular Drugs. Journal of Pharmaceutical Sciences, 2015, 104, 3490-3500.	1.6	76
198	Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 312-328.	2.0	108
199	Tailored immunity by skin antigen-presenting cells. Human Vaccines and Immunotherapeutics, 2015, 11, 27-36.	1.4	60
200	A method to tune the shape of protein-encapsulated polymeric microspheres. Scientific Reports, 2015, 5, 12634.	1.6	23
201	Skin vaccination with live virus vectored microneedle arrays induce long lived CD8+ T cell memory. Vaccine, 2015, 33, 4691-4698.	1.7	21
202	Bioceramic microneedles with flexible and self-swelling substrate. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 404-410.	2.0	37
203	Fabrication and characterization of novel microneedles made of a polystyrene solution. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 77-81.	1.5	32
204	Rapid implantation of dissolving microneedles on an electrospun pillar array. Biomaterials, 2015, 64, 70-77.	5.7	37
205	Transdermal delivery of drugs with microneedles: Strategies and outcomes. Journal of Drug Delivery Science and Technology, 2015, 29, 16-23.	1.4	79
206	Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits. Pharmaceutical Development and Technology, 2016, 21, 1-7.	1.1	16
207	Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomaterialia, 2015, 24, 106-116.	4.1	111
208	An economic model assessing the value of microneedle patch delivery of the seasonal influenza vaccine. Vaccine, 2015, 33, 4727-4736.	1.7	43
209	Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study. Journal of Biomedical Optics, 2015, 20, 061102.	1.4	23

#	Article	IF	CITATIONS
210	Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials, 2015, 57, 50-58.	5.7	439
211	Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. Biomedical Microdevices, 2015, 17, 44.	1.4	83
212	Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Delivery and Translational Research, 2015, 5, 360-371.	3.0	82
213	Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 11-19.	2.0	66
214	Opportunities and challenges in delivering influenza vaccine by microneedle patch. Vaccine, 2015, 33, 4699-4704.	1.7	46
215	Non-ablative fractional laser in conjunction with microneedle arrays for improved cutaneous vaccination. Proceedings of SPIE, 2015, , .	0.8	0
216	A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine, 2015, 33, 4712-4718.	1.7	141
217	Enhanced immune responses by skin vaccination with influenza subunit vaccine in young hosts. Vaccine, 2015, 33, 4675-4682.	1.7	38
218	Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. International Journal of Pharmaceutics, 2015, 489, 158-169.	2.6	57
219	Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine, 2015, 33, 4683-4690.	1.7	98
220	Protein delivery options: how well have we succeeded?. Therapeutic Delivery, 2015, 6, 537-539.	1.2	4
221	Needle-Free Dermal Delivery of a Diphtheria Toxin CRM ₁₉₇ Mutant on Potassium-Doped Hydroxyapatite Microparticles. Vaccine Journal, 2015, 22, 586-592.	3.2	10
222	IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of Controlled Release, 2015, 218, 53-62.	4.8	78
223	Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Delivery and Translational Research, 2015, 5, 397-406.	3.0	89
224	Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomaterialia, 2015, 24, 96-105.	4.1	61
225	A protective role of murine langerin+ cells in immune responses to cutaneous vaccination with microneedle patches. Scientific Reports, 2015, 4, 6094.	1.6	19
226	Development of a Thermostable Microneedle Patch for Influenza Vaccination. Journal of Pharmaceutical Sciences, 2015, 104, 740-749.	1.6	100
227	Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. Journal of Investigative Dermatology, 2015, 135, 425-434.	0.3	78

#	Article	IF	CITATIONS
228	Laser-engineered dissolving microneedle arrays for protein delivery: potential for enhanced intradermal vaccination. Journal of Pharmacy and Pharmacology, 2015, 67, 409-425.	1.2	33
229	Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. European Journal of Pharmaceutical Sciences, 2015, 66, 148-156.	1.9	69
231	Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. Journal of Materials Chemistry B, 2015, 3, 276-285.	2.9	104
232	Development of a Rapid Prototyping System for Microneedles Using Moving-mask Lithography with Backside Exposure. Advanced Biomedical Engineering, 2016, 5, 63-67.	0.4	2
233	Beyond antigens and adjuvants: formulating future vaccines. Journal of Clinical Investigation, 2016, 126, 799-808.	3.9	309
234	In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography. Biomedical Optics Express, 2016, 7, 1865.	1.5	15
235	Optical lens-microneedle array for percutaneous light delivery. Biomedical Optics Express, 2016, 7, 4220.	1.5	48
236	Microneedles Integrated with Pancreatic Cells and Synthetic Glucoseâ€Signal Amplifiers for Smart Insulin Delivery. Advanced Materials, 2016, 28, 3115-3121.	11.1	193
237	Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. Advanced Functional Materials, 2016, 26, 2512-2522.	7.8	52
238	Polymer-based disposable microneedle array with insertion assisted by vibrating motion. Biomicrofluidics, 2016, 10, 011905.	1.2	7
239	Porous polymer microneedles with interconnecting microchannels for rapid fluid transport. RSC Advances, 2016, 6, 48630-48635.	1.7	74
240	Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering Reports, 2016, 104, 1-32.	14.8	582
241	The success of microneedle-mediated vaccine delivery into skin. Human Vaccines and Immunotherapeutics, 2016, 12, 2975-2983.	1.4	370
242	Effects of limited medical resource on a Filippov infectious disease model induced by selection pressure. Applied Mathematics and Computation, 2016, 283, 339-354.	1.4	26
243	Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods in Molecular Biology, 2016, 1438, 199-224.	0.4	2
244	Systemic delivery of artemether by dissolving microneedles. International Journal of Pharmaceutics, 2016, 508, 1-9.	2.6	47
245	Dry influenza vaccines: towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination. Expert Review of Vaccines, 2016, 15, 1431-1447.	2.0	19
246	Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. ACS Nano, 2016, 10, 8956-8963.	7.3	275

#	Article	IF	Citations
247	Biocompatible polymer–metal–organic framework composite patches for cutaneous administration of cosmetic molecules. Journal of Materials Chemistry B, 2016, 4, 7031-7040.	2.9	34
248	Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges?. Journal of Controlled Release, 2016, 242, 3-15.	4.8	116
249	4â€nâ€butylresorcinol dissolving microneedle patch for skin depigmentation: a randomized, doubleâ€blind, placeboâ€controlled trial. Journal of Cosmetic Dermatology, 2016, 15, 16-23.	0.8	30
250	Rabies vaccination in dogs using a dissolving microneedle patch. Journal of Controlled Release, 2016, 239, 19-26.	4.8	79
251	Application of Microneedles to Skin Induces Activation of Epidermal Langerhans Cells and Dermal Dendritic Cells in Mice. Biological and Pharmaceutical Bulletin, 2016, 39, 1309-1318.	0.6	10
252	Rapid fabrication method of a microneedle mold with controllable needle height and width. Biomedical Microdevices, 2016, 18, 85.	1.4	21
254	Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Analytical and Bioanalytical Chemistry, 2016, 408, 8427-8435.	1.9	104
255	Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Delivery and Translational Research, 2016, 6, 800-815.	3.0	132
256	Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice. Nature Communications, 2016, 7, 10991.	5.8	99
257	Development of Dissoluble Microneedles by Using Droplet-born Air Blowing. Journal of the Japan Society for Precision Engineering, 2016, 82, 1014-1017.	0.0	0
258	Immunization with Streptococcus suis bacterin plus recombinant Sao protein in sows conveys passive immunity to their piglets. BMC Veterinary Research, 2016, 13, 15.	0.7	17
259	Rapidly separating microneedles for transdermal drug delivery. Acta Biomaterialia, 2016, 41, 312-319.	4.1	91
260	Laser facilitates vaccination. Journal of Innovative Optical Health Sciences, 2016, 09, 1630003.	0.5	2
261	Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery. Journal of Drug Delivery Science and Technology, 2016, 35, 1-7.	1.4	35
262	DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Delivery, 2016, 23, 2391-2398.	2.5	84
263	Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. Journal of Controlled Release, 2016, 225, 192-204.	4.8	86
264	Formulations for microprojection/microneedle vaccine delivery: Structure, strength and release profiles. Journal of Controlled Release, 2016, 225, 40-52.	4.8	74
265	Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches. Pharmaceutical Research, 2016, 33, 868-878.	1.7	66

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
266	Improving global vaccine accessibility. Current Opinion in Biotechnology, 2016, 42, 67-73.	3.3	34
267	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11, 566-572.	15.6	1,394
268	Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4140-4145.	3.3	51
269	Improvement of Transdermal Delivery of Exendin-4 Using Novel Tip-Loaded Microneedle Arrays Fabricated from Hyaluronic Acid. Molecular Pharmaceutics, 2016, 13, 272-279.	2.3	52
270	Microneedle technology for immunisation: Perception, acceptability and suitability for paediatric use. Vaccine, 2016, 34, 723-734.	1.7	40
271	Induction of mucosal immunity through systemic immunization: Phantom or reality?. Human Vaccines and Immunotherapeutics, 2016, 12, 1070-1079.	1.4	131
272	Nanoparticulate mediated transcutaneous immunization: Myth or reality. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1063-1081.	1.7	26
273	Novel Delivery Routes for Allergy Immunotherapy. Immunology and Allergy Clinics of North America, 2016, 36, 25-37.	0.7	34
274	Microneedle patches for vaccination in developing countries. Journal of Controlled Release, 2016, 240, 135-141.	4.8	166
275	Biomedical applications of microneedles in therapeutics: recent advancements and implications in drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 109-131.	2.4	54
276	Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 2016, 307, 342-360.	9.5	476
277	Dissolving microneedle-based intradermal delivery of interferon-α-2b. Drug Development and Industrial Pharmacy, 2016, 42, 890-896.	0.9	25
278	Considerations in the use of microneedles: pain, convenience, anxiety and safety. Journal of Drug Targeting, 2017, 25, 29-40.	2.1	72
279	Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1403.	3.3	34
280	The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomaterialia, 2017, 48, 341-356.	4.1	36
281	Microneedle, bio-microneedle and bio-inspired microneedle: A review. Journal of Controlled Release, 2017, 251, 11-23.	4.8	285
282	An oral microjet vaccination system elicits antibody production in rabbits. Science Translational Medicine, 2017, 9, .	5.8	44
283	Recent Development of Wearable Microfluidics Applied in Body Fluid Testing and Drug Delivery. Chinese Journal of Analytical Chemistry, 2017, 45, 455-463.	0.9	12

#	Article	IF	CITATIONS
284	Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials, 2017, 128, 1-7.	5.7	414
285	Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen. ACS Omega, 2017, 2, 1321-1332.	1.6	34
286	Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. Journal of Controlled Release, 2017, 265, 66-74.	4.8	64
287	Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice. Vaccine, 2017, 35, 2855-2861.	1.7	20
288	Cutaneous Dendritic Cells in Health and Disease. , 2017, , 137-150.		0
289	Microporation Using Microneedle Arrays. , 2017, , 273-303.		0
290	Efficacy, Safety and Targets in Topical and Transdermal Active and Excipient Delivery. , 2017, , 369-391.		3
291	Skin Vaccination Methods: Gene Gun, Jet Injector, Tattoo Vaccine, and Microneedle. , 2017, , 485-499.		7
292	Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines. Small, 2017, 13, 1700164.	5.2	49
293	Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. Journal of Controlled Release, 2017, 261, 87-92.	4.8	67
294	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	11.1	220
295	Challenges of vaccine presentation and delivery: How can we design vaccines to have optimal programmatic impact?. Vaccine, 2017, 35, 6793-6797.	1.7	22
296	Fabrication, characterization and application of sugar microneedles for transdermal drug delivery. Therapeutic Delivery, 2017, 8, 249-264.	1.2	38
297	BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. Journal of Controlled Release, 2017, 255, 36-44.	4.8	68
298	Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Advanced Healthcare Materials, 2017, 6, 1601411.	3.9	154
299	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36
300	Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS Nano, 2017, 11, 395-406.	7.3	106
301	Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomaterials Science and	2.6	55

ARTICLE IF CITATIONS Solid silicon microneedles for drug delivery applications. International Journal of Advanced 302 1.5 60 Manufacturing Technology, 2017, 93, 407-422. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 921-932. 1.7 Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles. 304 0.7 9 Comparative Immunology, Microbiology and Infectious Diseases, 2017, 50, 78-87. H₂O₂Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620. 3D nano- and micro-patterning of biomaterials for controlled drug delivery. Therapeutic Delivery, 306 1.2 13 2017, 8, 15-28. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance 1.4 transdermal delivery. Biomedical Microdevices, 2017, 19, 84. Microfabricated Drug Delivery Devices: Design, Fabrication, and Applications. Advanced Functional 308 7.8 43 Materials, 2017, 27, 1703606. Longitudinal Monitoring of Antibody Responses against Tumor Cells Using Magneto-nanosensors with a Nanoliter of Blood. Nano Letters, 2017, 17, 6644-6652. 4.5 Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and 310 5.7 49 thermostable. Biomaterials, 2017, 145, 256-265. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with 4.8 whole inactivated influenza vaccine. Journal of Controlled Release, 2017, 265, 83-92. Squid suckerin microneedle arrays for tunable drug release. Journal of Materials Chemistry B, 2017, 5, 312 2.9 30 8467-8478. Development of novel double-decker microneedle patches for transcutaneous vaccine delivery. 2.6 International Journal of Pharmaceutics, 2017, 532, 374-383. Dissolving Microneedle Patches for Dermal Vaccination. Pharmaceutical Research, 2017, 34, 2223-2240. 314 1.7 139 Centrifugal Lithography: Selfâ€Shaping of Polymer Microstructures Encapsulating Biopharmaceutics by Centrifuging Polymer Drops. Advanced Healthcare Materials, 2017, 6, 1700326. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of 316 138 4.8 neonatal sepsis. Journal of Controlled Release, 2017, 265, 30-40. Microneedle patch delivery of influenza vaccine during pregnancy enhances maternal immune responses promoting survival and long-lasting passive immunity to offspring. Scientific Reports, 2017, 23 7, 5705. Acceptability of microneedle-patch vaccines: A qualitative analysis of the opinions of parents. Vaccine, 318 1.7 18 2017, 35, 4896-4904. 319 A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, . 5.6

#	Article	IF	CITATIONS
320	Heating up cancer vaccines. Science Immunology, 2017, 2, .	5.6	2
321	A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. Journal of Controlled Release, 2017, 261, 1-9.	4.8	43
322	Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation. Human Vaccines and Immunotherapeutics, 2017, 13, 50-62.	1.4	52
323	Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Delivery and Translational Research, 2017, 7, 16-26.	3.0	49
324	Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. Journal of Controlled Release, 2017, 265, 113-119.	4.8	85
325	Local delivery of checkpoints antibodies. Human Vaccines and Immunotherapeutics, 2017, 13, 245-248.	1.4	16
326	<i>In Vivo</i> Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers. ACS Biomaterials Science and Engineering, 2017, 3, 195-205.	2.6	77
327	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
328	Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine. Scientific Reports, 2017, 7, 17855.	1.6	14
329	Dual-nozzle spray deposition process for improving the stability of proteins in polymer microneedles. RSC Advances, 2017, 7, 55350-55359.	1.7	18
330	Development of transcutaneous vaccine formulations utilizing the microneedle technology. Drug Delivery System, 2017, 32, 39-45.	0.0	1
331	Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. International Journal of Nanomedicine, 2017, Volume 12, 4763-4772.	3.3	34
332	Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery. Pharmaceutics, 2017, 9, 27.	2.0	27
333	Efficient Transdermal Delivery of Alendronate, a Nitrogen-Containing Bisphosphonate, Using Tip-Loaded Self-Dissolving Microneedle Arrays for the Treatment of Osteoporosis. Pharmaceutics, 2017, 9, 29.	2.0	27
334	Nano- and Microtechnology in Skin Delivery of Vaccines. , 2017, , 327-341.		7
335	From Variation of Influenza Viral Proteins to Vaccine Development. International Journal of Molecular Sciences, 2017, 18, 1554.	1.8	21
336	4.24 Biomaterials in Vaccine and Immunotherapy â~†. , 2017, , 445-463.		0
337	Transdermal protein delivery and immunization by a solid-in-oil nanodispersion technique. Drug Delivery System, 2017, 32, 176-183.	0.0	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
338	Microscale Drug Delivery Systems: Current Perspectives and Novel Approaches. , 2017,	, 1-15.		2
339	Drug-Delivery System Based on Salmon DNA Nano- and Micro-Scale Structures. Scientif 7, 9724.	ic Reports, 2017,	1.6	25
340	Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microem Molecules, 2017, 22, 2022.	ulsion.	1.7	8
341	DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene deli biodegradable microneedle system. European Journal of Pharmaceutics and Biopharmac 127, 288-297.	very from a ceutics, 2018,	2.0	66
342	Puncture performance of sharpen microneedles by using inclined contact UV lithograph Microsystem Technologies, 2018, 24, 3589-3599.	ıy.	1.2	9
343	Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vacci influenza. Journal of Controlled Release, 2018, 276, 1-16.	nation against	4.8	38
344	Comparative Study of Two Dropletâ€Based Dissolving Microneedle Fabrication Method Vaccination. Advanced Healthcare Materials, 2018, 7, e1701381.	s for Skin	3.9	35
345	Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Review 106-118.	ws, 2018, 127,	6.6	242
347	Rotavirus Vaccines: Effectiveness, Safety, and Future Directions. Paediatric Drugs, 2018	3, 20, 223-233.	1.3	83
348	Microneedles containing cross-linked hyaluronic acid particulates for control of degrada swelling behaviour after administration into skin. Journal of Drug Targeting, 2018, 26, 8	ation and 884-894.	2.1	25
349	Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci 2018, 8, 1117.	entific Reports,	1.6	85
350	Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment of type Scientific Reports, 2018, 8, 1170.	2 diabetes.	1.6	29
351	Inclusion complex and nanoclusters of cyclodextrin to increase the solubility and efficate albendazole. Parasitology Research, 2018, 117, 705-712.	cy of	0.6	22
352	Effects of two droplet-based dissolving microneedle manufacturing methods on the act encapsulated epidermal growth factor and ascorbic acid. European Journal of Pharmace Sciences, 2018, 114, 285-292.	ivity of utical	1.9	31
353	A Microneedle Patch for Measles and Rubella Vaccination Is Immunogenic and Protectiv Rhesus Macaques. Journal of Infectious Diseases, 2018, 218, 124-132.	/e in Infant	1.9	55
354	Drug loaded biodegradable polymer microneedles fabricated by hot embossing. Microe Engineering, 2018, 195, 57-61.	lectronic	1.1	26
355	Transdermal immunomodulation: Principles, advances and perspectives. Advanced Drug Reviews, 2018, 127, 3-19.	g Delivery	6.6	70
356	Insulin delivery systems combined with microneedle technology. Advanced Drug Delive 2018, 127, 119-137.	ry Reviews,	6.6	197

#	Article	IF	CITATIONS
357	Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials, 2018, 167, 69-79.	5.7	71
358	Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1–derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis–like and psoriasis-like dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 137-151.	1.5	15
359	Micro to nanoneedles: a trend of modernized transepidermal drug delivery system. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 19-25.	1.9	25
360	Novel strategy for immunomodulation: Dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 104-112.	2.0	30
361	Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sensors and Actuators B: Chemical, 2018, 255, 1553-1560.	4.0	34
362	Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 35-45.	6.6	237
363	Cationic Niosomes for Enhanced Skin Immunization of Plasmid DNA-Encoding Ovalbumin via Hollow Microneedles. AAPS PharmSciTech, 2018, 19, 481-488.	1.5	35
364	Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. European Journal of Pharmaceutical Sciences, 2018, 114, 84-92.	1.9	47
365	Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Materials Science and Engineering C, 2018, 85, 18-26.	3.8	111
366	MEMS devices for drug delivery. Advanced Drug Delivery Reviews, 2018, 128, 132-147.	6.6	61
367	Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. Journal of Industrial and Engineering Chemistry, 2018, 59, 251-258.	2.9	48
369	Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Science Translational Medicine, 2018, 10, .	5.8	111
370	Microneedleâ€Mediated Vaccine Delivery to the Oral Mucosa. Advanced Healthcare Materials, 2019, 8, e1801180.	3.9	56
371	Preparation, properties and challenges of the microneedles-based insulin delivery system. Journal of Controlled Release, 2018, 288, 173-188.	4.8	97
372	Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. European Journal of Pharmaceutical Sciences, 2018, 125, 54-63.	1.9	21
373	Dissolving microneedles for intradermal vaccination: manufacture, formulation, and stakeholder considerations. Expert Opinion on Drug Delivery, 2018, 15, 1039-1043.	2.4	29
374	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
375	Novel Bletilla striata polysaccharide microneedles: Fabrication, characterization, and in vitro transcutaneous drug delivery. International Journal of Biological Macromolecules, 2018, 117, 928-936.	3.6	52

#	ARTICLE	IF	CITATIONS
376	Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Advances, 2018, 8, 17786-17796.	1.7	33
379	Microneedles integrated with a triboelectric nanogenerator: an electrically active drug delivery system. Nanoscale, 2018, 10, 13502-13510.	2.8	44
380	Technologies to Improve Immunization. , 2018, , 1320-1353.e17.		15
381	Enhancement of Ag85B DNA vaccine immunogenicity against tuberculosis by dissolving microneedles in mice. Vaccine, 2018, 36, 4471-4476.	1.7	25
382	Nanocomposite for transdermal drug delivery. , 2018, , 353-389.		6
383	Fabrication of highâ€density microneedle masters towards the commercialisation of dissolving microneedles. Micro and Nano Letters, 2018, 13, 284-288.	0.6	7
384	Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7758-E7767.	3.3	81
385	Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Scientific Reports, 2018, 8, 11193.	1.6	26
386	Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opinion on Drug Delivery, 2018, 15, 851-867.	2.4	37
387	Microneedles Improve the Immunogenicity of DNA Vaccines. Human Gene Therapy, 2018, 29, 1004-1010.	1.4	14
388	Transdermal Delivery of Living and Biofunctional Probiotics through Dissolvable Microneedle Patches. ACS Applied Bio Materials, 2018, 1, 374-381.	2.3	18
389	Fabrication of Circular Obelisk-Type Multilayer Microneedles Using Micro-Milling and Spray Deposition. Frontiers in Bioengineering and Biotechnology, 2018, 6, 54.	2.0	45
390	Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. Journal of Controlled Release, 2018, 286, 460-466.	4.8	72
391	Enhanced Cancer Vaccination by <i>In Situ</i> Nanomicelle-Generating Dissolving Microneedles. ACS Nano, 2018, 12, 9702-9713.	7.3	127
392	Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioengineering and Translational Medicine, 2018, 3, 186-196.	3.9	48
393	Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Scientific Reports, 2018, 8, 11842.	1.6	65
394	Wearables in Medicine. Advanced Materials, 2018, 30, e1706910.	11.1	358
395	Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy, 2018, 51, 102-112.	8.2	37

#	Article	IF	CITATIONS
396	Biodegradable Therapeutic Microneedle Patch for Rapid Antihypertensive Treatment. ACS Applied Materials & Interfaces, 2019, 11, 30575-30584.	4.0	25
397	Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Science Translational Medicine, 2019, 11, .	5.8	95
398	Smart Microneedle Fabricated with Silk Fibroin Combined Semi-interpenetrating Network Hydrogel for Glucose-Responsive Insulin Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 5781-5789.	2.6	86
400	Protein Encapsulation in Polymeric Microneedles by Photolithography. , 2019, , 57-66.		0
401	Recent Trends in Microneedle Development & Applications in Medicine and Cosmetics (2013–2018). , 2019, , 95-144.		3
402	Photodynamic therapy for skin cancer: How to enhance drug penetration?. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111544.	1.7	70
403	Dissolvable Microneedle-Mediated Transcutaneous Delivery of Tetanus Toxoid Elicits Effective Immune Response. AAPS PharmSciTech, 2019, 20, 257.	1.5	16
404	Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomaterialia, 2019, 97, 230-238.	4.1	47
405	Microneedles for Transdermal Drug Delivery. , 2019, , .		7
406	Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose-Response, 2019, 17, 155932581987858.	0.7	75
407	Micro―and Nanosystems for Advanced Transdermal Delivery. Advanced Therapeutics, 2019, 2, 1900141.	1.6	18
409	3D Printed Microheater Sensorâ€Integrated, Drugâ€Encapsulated Microneedle Patch System for Pain Management. Advanced Healthcare Materials, 2019, 8, e1901170.	3.9	40
410	Novel nanostructured lipid carriers-loaded dissolving microneedles for controlled local administration of aconitine. International Journal of Pharmaceutics, 2019, 572, 118741.	2.6	26
411	Scalp Micro-Pigmentation via Transcutaneous Implantation of Flexible Tissue Interlocking Biodegradable Microneedles. Pharmaceutics, 2019, 11, 549.	2.0	3
413	Polymeric microneedles for controlled transdermal drug delivery. Journal of Controlled Release, 2019, 315, 97-113.	4.8	140
414	Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating. ACS Applied Materials & Interfaces, 2019, 11, 4809-4819.	4.0	42
416	Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 48-69.	2.0	85
417	Understanding the basis of transcutaneous vaccine delivery. Therapeutic Delivery, 2019, 10, 63-80.	1.2	15

#	Article	IF	CITATIONS
418	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108
419	Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsystems and Nanoengineering, 2019, 5, 42.	3.4	156
420	Biopolymers for microneedle synthesis: from then to now. Biomanufacturing Reviews, 2019, 4, 1.	4.8	5
421	<p>Technology update: dissolvable microneedle patches for vaccine delivery</p> . Medical Devices: Evidence and Research, 2019, Volume 12, 379-398.	0.4	50
422	Microneedle-based drug delivery: materials of construction. Journal of Chemical Sciences, 2019, 131, 1.	0.7	73
423	Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Delivery and Translational Research, 2019, 9, 764-782.	3.0	47
424	Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. Journal of Controlled Release, 2019, 306, 69-82.	4.8	88
425	Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano, 2019, 13, 6540-6549.	7.3	99
426	Rapidly dissolving bilayer microneedle arrays – A minimally invasive transdermal drug delivery system for vitamin B12. International Journal of Pharmaceutics, 2019, 566, 299-306.	2.6	43
427	Transcutaneous immunization of recombinant Staphylococcal enterotoxin B protein using a dissolving microneedle provides potent protection against lethal enterotoxin challenge. Vaccine, 2019, 37, 3810-3819.	1.7	27
428	A new way to control the internal structure of microneedles: a case of chitosan lactate. Materials Today Chemistry, 2019, 13, 79-87.	1.7	13
429	A Snapshot of Transdermal and Topical Drug Delivery Research in Canada. Pharmaceutics, 2019, 11, 256.	2.0	24
430	Wearable Devices for Single-Cell Sensing andÂTransfection. Trends in Biotechnology, 2019, 37, 1175-1188.	4.9	23
431	Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 2019, 77, 12-24.	2.9	43
432	Kinetics of collagen microneedle drug delivery system. Journal of Drug Delivery Science and Technology, 2019, 52, 618-623.	1.4	21
433	Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 2019, 21, 299-323.	5.7	45
434	Skin test of tuberculin purified protein derivatives with a dissolving microneedle-array patch. Drug Delivery and Translational Research, 2019, 9, 795-801.	3.0	16
435	Transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination. Journal of Gene Medicine, 2019, 21, e3089.	1.4	19

#	Article	IF	CITATIONS
436	Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharmaceutica Sinica B, 2019, 9, 469-483.	5.7	217
437	Microneedle Patch-Mediated Treatment of Bacterial Biofilms. ACS Applied Materials & Interfaces, 2019, 11, 14640-14646.	4.0	95
438	Optimization Design and Fabrication of Polymer Micro Needle by Hot Embossing Method. International Journal of Precision Engineering and Manufacturing, 2019, 20, 631-640.	1.1	11
439	Spray-Formed Layered Polymer Microneedles for Controlled Biphasic Drug Delivery. Polymers, 2019, 11, 369.	2.0	41
440	Microneedleâ€based intradermal delivery of stabilized dengue virus. Bioengineering and Translational Medicine, 2019, 4, e10127.	3.9	26
441	Drug Delivery Using Microneedles. , 2019, , 594-614.		0
442	A Perspective on Microneedle-Based Drug Delivery and Diagnostics in Paediatrics. Journal of Personalized Medicine, 2019, 9, 49.	1.1	29
443	Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Frontiers in Bioengineering and Biotechnology, 2019, 7, 296.	2.0	68
444	Hydrogel Microfilaments toward Intradermal Health Monitoring. IScience, 2019, 21, 328-340.	1.9	12
445	Microneedles combined with a sticky and heatable hydrogel for local painless anesthesia. Biomaterials Science, 2019, 7, 4503-4507.	2.6	11
446	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	3.9	177
447	Selfâ€Assembly of a Monochromophoreâ€Based Polymer Enables Unprecedented Ratiometric Tracing of Hypoxia. Advanced Materials, 2019, 31, e1805735.	11.1	57
448	Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Applied Surface Science, 2019, 470, 13-18.	3.1	65
449	Recent progress of micro-needle formulations: Fabrication strategies and delivery applications. Journal of Drug Delivery Science and Technology, 2019, 50, 18-26.	1.4	20
450	REVIEW ON TRANSDERMAL MICRONEEDLE-BASED DRUG DELIVERY. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12, 18.	0.3	4
451	Rapidly separable microneedle patch for the sustained release of a contraceptive. Nature Biomedical Engineering, 2019, 3, 220-229.	11.6	310
452	Microneedles for transdermal drug delivery: a systematic review. Drug Development and Industrial Pharmacy, 2019, 45, 188-201.	0.9	106
453	Microneedleâ€Array Patch Fabricated with Enzymeâ€Free Polymeric Components Capable of Onâ€Demand Insulin Delivery. Advanced Functional Materials, 2019, 29, 1807369.	7.8	93

#	Article	IF	CITATIONS
454	Materials for Immunotherapy. Advanced Materials, 2020, 32, e1901633.	11.1	132
455	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	11.1	160
456	Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials, 2020, 232, 119740.	5.7	143
457	Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials, 2020, 232, 119733.	5.7	67
458	Rapid microneedle fabrication by heating and photolithography. International Journal of Pharmaceutics, 2020, 575, 118992.	2.6	25
459	Micro and nano-needles as innovative approach in nanomedicine. , 2020, , 379-406.		4
460	3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing. Micromachines, 2020, 11, 17.	1.4	67
461	A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. Journal of Materials Chemistry B, 2020, 8, 216-225.	2.9	45
462	Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients, 2020, 12, 138.	1.7	86
463	Multifunctional Graphene-Oxide-Reinforced Dissolvable Polymeric Microneedles for Transdermal Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 352-360.	4.0	74
464	Temporal release of a three-component protein subunit vaccine from polymer multilayers. Journal of Controlled Release, 2020, 317, 130-141.	4.8	30
465	Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. Journal of Controlled Release, 2020, 317, 336-346.	4.8	81
466	Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA. Advanced Healthcare Materials, 2020, 9, e1900635.	3.9	57
467	Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. Journal of Controlled Release, 2020, 327, 350-359.	4.8	15
468	Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 2020, 60, 102046.	1.4	193
469	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
470	Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. International Journal of Pharmaceutics, 2020, 591, 119928.	2.6	30
471	Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. Npj Vaccines, 2020, 5, 88.	2.9	21

ARTICLE IF CITATIONS # Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in 472 1.6 52 Release Profile Tuning. Advanced Therapeutics, 2020, 3, 2000171. Synthetic polymers for microneedle synthesis: From then to now. Journal of Drug Delivery Science 473 1.4 and Technology, 2020, 60, 102071. Rapid biodegradable microneedles with allergen reservoir for skin allergy test. Micro and Nano 474 1.7 10 Systems Letters, 2020, 8, . Improved Cutaneous Genetic Immunization by Microneedle Array Delivery of an Adjuvanted Adenovirus 0.3 Vaccine. Journal of Investigative Dermatology, 2020, 140, 2528-2531.e2. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nature 476 11.6 111 Biomedical Engineering, 2021, 5, 998-1007. Current trends in polymer microneedle for transdermal drug delivery. International Journal of Pharmaceutics, 2020, 587, 119673. 2.6 Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination 478 2.4 34 Improves Immunotherapeutic Efficacy. ACS Applied Nano Materials, 2020, 3, 8037-8051. Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 2020, 12, 16724-16729. 479 2.8 57 Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of 480 5 1.4 anti-ganglioside antibodies. Human Vaccines and Immunotherapeutics, 2020, 16, 2072-2091. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated 8.2 wearable system in the IoT era. Nano Energy, 2020, 78, 105155. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug 482 2.0 27 Delivery: Trends and Progress. Pharmaceutics, 2020, 12, 693. Metal–Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 13500-13511. Microneedles loaded with anti-PD-1–cisplatin nanoparticles for synergistic cancer 484 2.8 67 immuno-chemotherapy. Nanoscale, 2020, 12, 18885-18898. Safe Coated Microneedles with Reduced Puncture Occurrence after Administration. Micromachines, 485 1.4 2020, 11, 710. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal 486 1.2 44 density and elasticity. International Journal of Cosmetic Science, 2020, 42, 302-309. Temperature-Stable Boronate Gel-Based Microneedle Technology for Self-Regulated Insulin Delivery. 487 ACS Applied Polymer Materials, 2020, 2, 2781-2790. Bioresorbable, Miniaturized Porous Silicon Needles on a Flexible Water-Soluble Backing for 488 7.3 50 Unobtrusive, Sustained Delivery of Chemotherapy. ACS Nano, 2020, 14, 7227-7236. Biosafety materials: an emerging new research direction of materials science from the COVID-19 489 3.2 outbreak. Materials Chemistry Frontiers, 2020, 4, 1930-1953.

#	Article	IF	Citations
490	Innate and Adaptive Immunity. , 2020, , 747-775.		8
491	The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Review of Vaccines, 2020, 19, 175-194.	2.0	16
492	Engineering Microneedles for Therapy and Diagnosis: A Survey. Micromachines, 2020, 11, 271.	1.4	52
493	C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Delivery and Translational Research, 2020, 10, 815-825.	3.0	18
494	Microbiomics: A Focal Point in GCBR and Biosecurity. , 2020, , 333-360.		1
495	Progress in Microneedle-Mediated Protein Delivery. Journal of Clinical Medicine, 2020, 9, 542.	1.0	81
496	Transdermal drug delivery system through polymeric microneedle: A recent update. Journal of Drug Delivery Science and Technology, 2020, 60, 101877.	1.4	43
497	Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & Interfaces, 2020, 12, 34337-34361.	4.0	72
498	A facile fabrication of dissolving microneedles containing 5-aminolevulinic acid. International Journal of Pharmaceutics, 2020, 586, 119554.	2.6	21
499	Dissolving microneedles for the delivery of peptides – Towards tolerance-inducing vaccines. International Journal of Pharmaceutics, 2020, 586, 119590.	2.6	22
500	Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proceedings of the United States of America, 2020, 117, 3687-3692.	3.3	163
501	Current Advances in Sustained Release Microneedles. Pharmaceutical Fronts, 2020, 02, e11-e22.	0.4	29
502	Experimental and theoretical studies of drug-polymer interactions to control the drug distributions in dissolving microneedles. Journal of Industrial and Engineering Chemistry, 2020, 84, 280-289.	2.9	10
503	Advances in the Formulations of Microneedles for Manifold Biomedical Applications. Advanced Materials Technologies, 2020, 5, 1900552.	3.0	47
504	Development and clinical study of the use of infrared radiation to accelerate the dissolution rate of a microneedle array patch (MAP). Drug Delivery and Translational Research, 2020, 10, 791-800.	3.0	6
505	Aquatic Biopolymers. Springer Series on Polymer and Composite Materials, 2020, , .	0.5	6
506	Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. Journal of Materials Chemistry B, 2020, 8, 1171-1181.	2.9	50
507	Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedizinische Technik, 2020, 65, 243-272.	0.9	90

#	ARTICLE	IF	CITATIONS
508	Optimal design and fabrication of a microneedle arrays patch. Journal of Manufacturing Processes, 2020, 54, 274-285.	2.8	23
509	Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.	2.7	304
510	Polyvinylpyrrolidone microneedles for localized delivery of sinomenine hydrochloride: preparation, release behavior of <i>inÂvitro</i> & <i>inÂvivo,</i> and penetration mechanism. Drug Delivery, 2020, 27, 642-651.	2.5	37
511	Microneedles in Smart Drug Delivery. Advances in Wound Care, 2021, 10, 204-219.	2.6	20
512	Progress in microneedle array patch (MAP) for vaccine delivery. Human Vaccines and Immunotherapeutics, 2021, 17, 316-327.	1.4	45
513	Continuous Highâ€Throughput Fabrication of Architected Micromaterials via Inâ€Air Photopolymerization. Advanced Materials, 2021, 33, e2006336.	11.1	18
514	Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay and Drug Development Technologies, 2021, 19, 97-114.	0.6	20
515	Microneedle Array Patches Integrated with Nanoparticles for Therapy and Diagnosis. Small Structures, 2021, 2, 2000097.	6.9	37
516	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	4.8	131
518	Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opinion on Drug Delivery, 2021, 18, 151-167.	2.4	15
519	Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 2021, 264, 120410.	5.7	65
520	Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy. RSC Advances, 2021, 11, 10393-10399.	1.7	22
521	Nanomedicines and microneedles: a guide to their analysis and application. Analytical Methods, 2021, 13, 3326-3347.	1.3	4
522	Advances in MEMS micropumps and their emerging drug delivery and biomedical applications. , 2021, , 411-452.		8
523	Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics, 2021, 13, 100.	2.0	31
524	Ionic Liquids for Transdermal Vaccination. , 2021, , 187-193.		0
525	Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research, 2021, 11, 353-372.	3.0	41
526	Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 151-169.	2.0	18

#	Article	IF	CITATIONS
527	Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 44-76.	2.0	137
528	Highâ€Đose Steroid Dissolving Microneedle for Relieving Atopic Dermatitis. Advanced Healthcare Materials, 2021, 10, e2001691.	3.9	27
529	cGAMP/Saponin Adjuvant Combination Improves Protective Response to Influenza Vaccination by Microneedle Patch in an Aged Mouse Model. Frontiers in Immunology, 2020, 11, 583251.	2.2	14
530	Live Vaccinia Virus-Coated Microneedle Array Patches for Smallpox Vaccination and Stockpiling. Pharmaceutics, 2021, 13, 209.	2.0	30
531	Immunization coverage among asplenic patients and strategies to increase vaccination compliance: a systematic review and meta-analysis. Expert Review of Vaccines, 2021, 20, 297-308.	2.0	15
532	Innovative Systems to Deliver Allergen Powder for Epicutaneous Immunotherapy. Frontiers in Immunology, 2021, 12, 647954.	2.2	13
533	Immune Checkpoint Inhibitorâ€Based Strategies for Synergistic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2002104.	3.9	47
534	Engineered drug delivery devices to address Global Health challenges. Journal of Controlled Release, 2021, 331, 503-514.	4.8	35
535	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	7.8	26
536	Microneedle for transdermal drug delivery: current trends and fabrication. Journal of Pharmaceutical Investigation, 2021, 51, 503-517.	2.7	142
537	Aliphatic Polyesterâ€Based Materials for Enhanced Cancer Immunotherapy. Macromolecular Bioscience, 2021, 21, e2100087.	2.1	7
538	Microneedles: A New Generation Vaccine Delivery System. Micromachines, 2021, 12, 435.	1.4	82
539	Progress in micro/nano sensors and nanoenergy for future AloT-based smart home applications. Nano Express, 2021, 2, 022005.	1.2	50
540	Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines, 2021, 9, 320.	2.1	36
541	Vaccine Inoculation Route Modulates Early Immunity and Consequently Antigen-Specific Immune Response. Frontiers in Immunology, 2021, 12, 645210.	2.2	38
542	Vaccine delivery alerts innate immune systems for more immunogenic vaccination. JCI Insight, 2021, 6, .	2.3	11
543	Microarray patches enable the development of skin-targeted vaccines against COVID-19. Advanced Drug Delivery Reviews, 2021, 171, 164-186.	6.6	45
544	Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16, 933-941.	15.6	130

#	Article	IF	CITATIONS
545	Dissolving Candlelit Microneedle for Chronic Inflammatory Skin Diseases. Advanced Science, 2021, 8, 2004873.	5.6	30
546	NIR Laserâ€Triggered Microneedleâ€Based Liquid Bandâ€Aid for Wound Care. Advanced Functional Materials, 2021, 31, 2100218.	7.8	69
547	Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. International Journal of Pharmaceutics, 2021, 600, 120473.	2.6	10
548	Cryomicroneedles for transdermal cell delivery. Nature Biomedical Engineering, 2021, 5, 1008-1018.	11.6	97
549	Flexible Microneedle Array Patch for Chronic Wound Oxygenation and Biofilm Eradication. ACS Applied Bio Materials, 2021, 4, 5405-5415.	2.3	41
550	Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Bio-Design and Manufacturing, 2021, 4, 902-911.	3.9	29
551	Engineering Micro–Nanomaterials for Biomedical Translation. Advanced NanoBiomed Research, 2021, 1, 2100002.	1.7	20
553	Thermostability of Measles and Rubella Vaccines in a Microneedle Patch. Advanced Therapeutics, 2021, 4, 2100095.	1.6	4
554	Fabrication, evaluation and applications of dissolving microneedles. International Journal of Pharmaceutics, 2021, 604, 120749.	2.6	57
555	Smart Responsive Microarray Patches for Transdermal Drug Delivery and Biological Monitoring. Advanced Healthcare Materials, 2021, 10, e2100996.	3.9	15
556	Microneedle-Mediated Vaccination: Innovation and Translation. Advanced Drug Delivery Reviews, 2021, 179, 113919.	6.6	76
557	Vaccine delivery systems toward lymph nodes. Advanced Drug Delivery Reviews, 2021, 179, 113914.	6.6	62
558	Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Delivery and Translational Research, 2022, 12, 395-414.	3.0	37
559	Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharmaceutica Sinica B, 2021, 11, 2326-2343.	5.7	49
560	Development of a thermostable oxytocin microneedle patch. Journal of Controlled Release, 2021, 337, 81-89.	4.8	9
561	Designing spatial and temporal control of vaccine responses. Nature Reviews Materials, 2022, 7, 174-195.	23.3	130
562	Enhancing influenza vaccine immunogenicity and efficacy through infection mimicry using silk microneedles. Vaccine, 2021, 39, 5410-5421.	1.7	21
563	Advances of Microneedles in Biomedical Applications. Molecules, 2021, 26, 5912.	1.7	39

#	Article	IF	CITATIONS
564	Conventional and nontraditional delivery methods and routes of vaccine administration. , 2022, , 329-355.		0
565	Build an implanted "arsenalâ€: detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomaterials Science, 2021, 9, 4737-4745.	2.6	8
566	Microneedles for drug delivery and monitoring. , 2021, , 225-260.		3
567	Targeting the Skin for Microneedle Delivery of Influenza Vaccine. Advances in Experimental Medicine and Biology, 2013, 785, 121-132.	0.8	33
568	Microneedle Applications for DNA Vaccine Delivery to the Skin. Methods in Molecular Biology, 2014, 1143, 141-158.	0.4	5
569	Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. Journal of Controlled Release, 2020, 324, 280-288.	4.8	27
570	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	11.6	353
571	Microneedle Systems for Vaccine Delivery: the story so far. Expert Review of Vaccines, 2020, 19, 1153-1166.	2.0	26
572	Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. Journal of Clinical Investigation, 2019, 129, 1960-1971.	3.9	41
573	A stimulating way to improve T cell responses to poxvirus-vectored vaccines. Journal of Clinical Investigation, 2011, 121, 19-21.	3.9	2
574	Near-Infrared Laser Adjuvant for Influenza Vaccine. PLoS ONE, 2013, 8, e82899.	1.1	39
575	Vaccination with Human Papillomavirus Pseudovirus-Encapsidated Plasmids Targeted to Skin Using Microneedles. PLoS ONE, 2015, 10, e0120797.	1.1	43
576	Biocompatible Mater Constructed Microneedle Arrays as a Novel Vaccine Adjuvant- Delivery System for Cutaneous and Mucosal Vaccination. Current Pharmaceutical Design, 2015, 21, 5245-5255.	0.9	16
577	Controlled Drug Delivery Using Microdevices. Current Pharmaceutical Biotechnology, 2016, 17, 772-787.	0.9	39
578	Transdermal Delivery of Luteinizing Hormone-releasing Hormone with Chitosan Microneedles: A Promising Tool for Androgen Deprivation Therapy. Anticancer Research, 2017, 37, 6791-6797.	0.5	11
579	Smart Microneedles for Therapy and Diagnosis. Research, 2020, 2020, 7462915.	2.8	62
580	Drug Loading on Microneedles. Advances in Chemical Engineering and Science, 2019, 09, 204-222.	0.2	4
581	Porous Microneedle Patch for Electroosmosisâ€Promoted Transdermal Delivery of Drugs and Vaccines. Advanced NanoBiomed Research, 2022, 2, 2100066.	1.7	11

#	Article	IF	CITATIONS
582	An ultra-low-cost electroporator with microneedle electrodes (ePatch) for SARS-CoV-2 vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
583	A Review on Solid Microneedles for Biomedical Applications. Journal of Pharmaceutical Innovation, 2022, 17, 1464-1483.	1.1	23
584	Research Techniques Made Simple: Skin-Targeted DrugÂand Vaccine Delivery Using Dissolvable Microneedle Arrays. Journal of Investigative Dermatology, 2021, 141, 2549-2557.e1.	0.3	1
585	Novel Oral Targeted Mini Gene-Vaccine Platform Resists Influenza A Challenge. Journal of Vaccines & Vaccination, 2012, 03, .	0.3	0
587	Vaccine Delivery Systems: Roles, Challenges and Recent Advances. , 2014, , 743-752.		0
588	Vaccine and Needle-Free Vaccination Delivery System. Journal of Microbial & Biochemical Technology, 2014, 06, .	0.2	3
589	Modulating Oxidative Stress: A Nanotechnology Perspective for Cationic Peptides. Food Engineering Series, 2015, , 283-297.	0.3	0
590	Droplet-born Air Blowing(DAB) Technology for the Industrialization of Dissolving Microneedle. , 0, , .		3
592	Microneedle Mediated Vaccine Delivery: A Comprehensive Review. Journal of Pharmaceutical Technology Research and Management, 2017, 5, 163-184.	0.3	3
593	Economic Evaluation of Microneedles for Vaccinations. Journal of Pharmacovigilance, 2018, 06, .	0.2	0
594	REVIEW ON TRANSDERMAL MICRONEEDLE-BASED DRUG DELIVERY. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12, 18.	0.3	3
595	INTRODUCTION OF PHOSPHONATE GROUP INTO KOJIC ACID BY DIPHOSPHONATE. Phosphorus Research Bulletin, 2019, 35, 55-58.	0.1	0
596	Intermittent Drug Supply Device Using Hydrogel and Microfluidic Channel. Journal of the Korean Society of Manufacturing Technology Engineers, 2019, 28, 166-175.	0.1	0
598	Rapid Extraction and Detection of Biomolecules via a Microneedle Array of Wetâ€Crosslinked Methacrylated Hyaluronic Acid. Advanced Materials Technologies, 2022, 7, 2100874.	3.0	25
599	A Colorimetric Dermal Tattoo Biosensor Fabricated by Microneedle Patch for Multiplexed Detection of Healthâ€Related Biomarkers. Advanced Science, 2021, 8, e2103030.	5.6	65
600	Measles and rubella microarray array patches to increase vaccination coverage and achieve measles and rubella elimination in Africa. Pan African Medical Journal, 2020, 35, 3.	0.3	9
601	Collagen. Springer Series on Polymer and Composite Materials, 2020, , 261-285.	0.5	0
604	Porous silicon microneedles and nanoneedles for biomedical applications. , 2021, , 545-570.		1

#	Article	IF	CITATIONS
605	Bio-offense: Black biology. , 2022, , 109-126.		1
606	Biodefense build 2.0: The muscle. , 2022, , 167-182.		0
607	Bio-offense: Technical means, tactical approaches, operational orientations, and strategic concepts. , 2022, , 127-140.		0
608	Microneedles enable the development of skin-targeted vaccines against coronaviruses and influenza viruses. Pharmaceutical Development and Technology, 2022, 27, 83-94.	1.1	3
609	Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo. Nature Protocols, 2021, 16, 5707-5738.	5.5	17
610	Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. ACS Nano, 2021, 15, 17842-17853.	7.3	148
611	A Facile Low-Dose Photosensitizer-Incorporated Dissolving Microneedles-Based Composite System for Eliciting Antitumor Immunity and the Abscopal Effect. ACS Nano, 2021, 15, 19468-19479.	7.3	50
613	A Review on Polymeric Invasive and Non-Invasive Nanocarriers Assisted Transdermal Drug Delivery for Improved Penetration and Bioavailability. Drug Delivery Letters, 2022, 12, 19-34.	0.2	1
614	Intradermal Administration of Influenza Vaccine with Trehalose and Pullulan-Based Dissolving Microneedle Arrays. Journal of Pharmaceutical Sciences, 2022, 111, 1070-1080.	1.6	15
615	Dissolving microneedles. , 2022, , 49-72.		1
616	Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery. Scientific Reports, 2022, 12, 1853.	1.6	24
617	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	23.3	65
618	Solid-in-Oil Nanodispersion Technique for Transdermal Drug Delivery System of Biopharmaceutical Molecules. Oleoscience, 2022, 22, 121-126.	0.0	0
619	Dissolving microneedles with a biphasic release of antibacterial agent and growth factor to promote wound healing. Biomaterials Science, 2022, 10, 2409-2416.	2.6	18
620	Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine. Npj Vaccines, 2022, 7, 26.	2.9	16
621	Stimuli-Responsive Microneedles as a Transdermal Drug Delivery System: A Demand-Supply Strategy. Biomacromolecules, 2022, 23, 1519-1544.	2.6	36
622	Mapping the Mechanical and Immunological Profiles of Polymeric Microneedles to Enable Vaccine and Immunotherapy Applications. Frontiers in Immunology, 2022, 13, 843355.	2.2	15
623	Advanced Biomaterials for Cell‧pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26

#	Article	IF	CITATIONS
624	Advanced materials for the delivery of vaccines for infectious diseases. Biosafety and Health, 2022, 4, 95-104.	1.2	7
625	Recent Advances in Polymer Microneedles for Drug Transdermal Delivery: Design Strategies and Applications. Macromolecular Rapid Communications, 2022, 43, e2200037.	2.0	20
626	Microneedle-Based Vaccine Delivery: Review of an Emerging Technology. AAPS PharmSciTech, 2022, 23, 103.	1.5	14
627	Trends in drug- and vaccine-based dissolvable microneedle materials and methods of fabrication. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 54-72.	2.0	38
628	Low-Temperature Multiple Micro-Dispensing on Microneedles for Accurate Transcutaneous Smallpox Vaccination. Vaccines, 2022, 10, 561.	2.1	4
629	Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. International Journal of Biological Macromolecules, 2022, 207, 90-99.	3.6	23
630	Beyond powders: Monoliths on the basis of metal-organic frameworks (MOFs). Chemical Engineering Journal, 2022, 441, 135953.	6.6	25
631	Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioactive Materials, 2022, 18, 471-491.	8.6	24
632	Pharmacokinetic Evaluation of a Novel Donepezil-Loaded Dissolving Microneedle Patch in Rats. Pharmaceutics, 2022, 14, 5.	2.0	7
633	Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics, 2021, 13, 2091.	2.0	19
637	Thermal-Sensitive Hydrogel Microneedle for Controlled Transdermal Drug Delivery. SSRN Electronic Journal, 0, , .	0.4	0
639	Differential Dualâ€Release Bilayer Microneedles Loaded with Aluminum Adjuvants as a Safe and Effective Vaccine Platform. Advanced Functional Materials, 2022, 32, .	7.8	14
640	An Ultrahighâ€Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Death by Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. Advanced NanoBiomed Research, 2022, 2, .	1.7	6
641	Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics, 2022, 14, 1066.	2.0	11
642	Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
643	Chemische AnsÃæe für synthetische Wirkstofftransportsysteme für systemische Anwendungen. Angewandte Chemie, 2022, 134, .	1.6	3
644	Semi-Implantable Bioelectronics. Nano-Micro Letters, 2022, 14, .	14.4	14
645	Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles. Biomaterials, 2022, 287, 121644.	5.7	21

ARTICLE IF CITATIONS # Sustained delivery approaches to improving adaptive immune responses. Advanced Drug Delivery 35 646 6.6 Reviews, 2022, 187, 114401. Dissolving microneedles: Applications and growing therapeutic potential. Journal of Controlled 647 4.8 89 Release, 2022, 348, 186-205. 648 Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics, 2022, 14, 1372. 2.0 14 Nanomaterials Utilized in Food Packaging: State-of-the-Art. Food Engineering Reviews, 2022, 14, 629-654. 649 3.1 Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review. 650 1.1 4 Diabetes Research and Clinical Practice, 2022, 194, 109996. Recent advancements in single dose slowâ€release devices for prophylactic vaccines. Wiley 3.3 Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, O, Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Research, 2022, 15, 652 5.8 16 8336-8344. Micromolding of Amphotericin-B-Loaded Methoxyethylene–Maleic Anhydride Copolymer 2.0 10 Microneedles. Pharmaceutics, 2022, 14, 1551. Mechanistic modeling-guided optimization of microneedle-based skin patch for rapid transdermal 654 delivery of naloxone for opioid overdose treatment. Drug Delivery and Translational Research, 2023, 3.0 3 13, 320-338. Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems. 2.3 Biosensors, 2022, 12, 606. Simvastatin Loaded Dissolvable Microneedle Patches with Improved Pharmacokinetic Performance. 656 1.4 6 Micromachines, 2022, 13, 1304. Microneedles assisted controlled and improved transdermal delivery of high molecular drugs via <i>in situ</i> forming depot thermoresponsive poloxamers gels in skin microchannels. Drug 0.9 Development and Industrial Pharmacy, 0, , 1-14. Intradermal vaccination via electroosmotic injection from a porous microneedle patch. Journal of 658 1.4 5 Drug Delivery Science and Technology, 2022, 75, 103711. Celecoxib nanocrystal-loaded dissolving microneedles with highly efficient for osteoarthritis 2.6 treatment. International Journal of Pharmaceutics, 2022, 625, 122108. Conditioned media-integrated microneedles for hair regeneration through perifollicular 660 17 4.8 angiogenesis. Journal of Controlled Release, 2022, 350, 204-214. A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring. Smart Materials in Médicine, 2023, 4, 69-77. Polymeric microneedles for transdermal drug delivery- a review of recent studies. Journal of Drug 662 1.4 11 Delivery Science and Technology, 2022, 77, 103760. Wearable microneedle-integrated sensors for household health monitoring. Engineered Regeneration, 2022, 3, 420-426.

#	Article	IF	CITATIONS
664	Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomaterialia, 2022, 153, 308-319.	4.1	32
665	A microarray patch SARS-CoV-2 vaccine induces sustained antibody responses and polyfunctional cellular immunity. IScience, 2022, 25, 105045.	1.9	3
666	TOXICOLOGICAL EVALUATION OF NATURAL AND SYNTHETIC POLYMER BASED DISSOLVABLE MICRONEEDLE PATCHES HAVING VARIABLE RELEASE PROFILES. Cellulose Chemistry and Technology, 2022, 56, 777-786.	0.5	3
667	Research progress on detachable microneedles for advanced applications. Expert Opinion on Drug Delivery, 2022, 19, 1115-1131.	2.4	3
668	A Microneedle Patch with Self-Oxygenation and Glutathione Depletion for Repeatable Photodynamic Therapy. ACS Nano, 2022, 16, 17298-17312.	7.3	33
669	Strong and Tough Supramolecular Microneedle Patches with Ultrafast Dissolution and Rapidâ€Onset Capabilities. Advanced Materials, 2022, 34, .	11.1	14
670	Inorganic nanoparticle empowered biomaterial hybrids: Engineered payload release. Frontiers in Nanotechnology, 0, 4, .	2.4	1
671	A Singleâ€Administration Microneedle Skin Patch for Multiâ€Burst Release of Vaccine against SARS oVâ€2. Advanced Materials Technologies, 2023, 8, .	3.0	4
672	Tackling the challenges of developing microneedle-based electrochemical sensors. Mikrochimica Acta, 2022, 189, .	2.5	14
673	Transcutaneous immunization via dissolving microneedles protects mice from lethal influenza H7N9 virus challenge. Vaccine, 2022, 40, 6767-6775.	1.7	3
674	Polymeric microneedles for enhanced drug delivery in cancer therapy. , 2022, 142, 213151.		6
675	Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer. Materials, 2022, 15, 7693.	1.3	10
676	Polymer-based microneedle composites for enhanced non-transdermal drug delivery. Applied Materials Today, 2022, 29, 101659.	2.3	4
677	Design principles of microneedles for drug delivery and sampling applications. Materials Today, 2023, 63, 137-169.	8.3	24
678	A semi-interpenetrating network-based microneedle for rapid local anesthesia. Journal of Drug Delivery Science and Technology, 2022, 78, 103984.	1.4	5
679	Transdermal delivery of allopurinol to acute hyperuricemic mice <i>via</i> polymer microneedles for the regulation of serum uric acid levels. Biomaterials Science, 2023, 11, 1704-1713.	2.6	10
680	Glucose-responsive microneedle patch for closed-loop dual-hormone delivery in mice and pigs. Science Advances, 2022, 8, .	4.7	31
681	Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery. , 2023, 145, 213248.		8

#	Article	IF	CITATIONS
682	A Thermostable Dissolving Microneedle Vaccine with Recombinant Protein of Botulinum Neurotoxin Serotype A. Toxins, 2022, 14, 881.	1.5	2
683	Recent Advances in Oral and Transdermal Protein Delivery Systems. Angewandte Chemie, 0, , .	1.6	0
684	Recent Advances in Oral and Transdermal Protein Delivery Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
685	PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 986-1017.	1.9	15
686	Unmanned Aerial Vehicle Mediated Drug Delivery for First Aid. Advanced Materials, 2023, 35, .	11.1	11
687	Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics, 2023, 15, 277.	2.0	15
688	3D printing fabrication process for fine control of microneedle shape. Micro and Nano Systems Letters, 2023, 11, .	1.7	1
689	Latch Applicator for Efficient Delivery of Dissolving Microneedles Based on Rapid Release of Elastic Strain Energy by Thumb Force. Advanced Functional Materials, 2023, 33, .	7.8	8
690	Dissolvable microneedles for transdermal drug delivery showing skin penetration and modified drug release. European Journal of Pharmaceutical Sciences, 2023, 182, 106371.	1.9	3
691	Emerging adjuvants for intradermal vaccination. International Journal of Pharmaceutics, 2023, 632, 122559.	2.6	9
692	Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. Journal of Functional Biomaterials, 2023, 14, 16.	1.8	7
693	Missingâ€Linkerâ€Confined Singleâ€Atomic Pt Nanozymes for Enzymatic Theranostics of Tumor. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
694	Microneedle-Mediated Immunization Promotes Lung CD8+ T-Cell Immunity. Journal of Investigative Dermatology, 2023, 143, 1983-1992.e3.	0.3	0
695	Exploring new frontiers in drug delivery with minimally invasive microneedles: fabrication techniques, biomedical applications, and regulatory aspects. Expert Opinion on Drug Delivery, 2023, 20, 739-755.	2.4	1
696	Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. Journal of Controlled Release, 2023, 356, 196-204.	4.8	9
697	Missingâ€Linkerâ€Confined Singleâ€Atomic Pt Nanozymes for Enzymatic Theranostics of Tumor. Angewandte Chemie, 2023, 135, .	1.6	1
698	Drying Technologies for Vaccines. , 2023, , 81-205.		0
699	Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina (Lithuania), 2023, 59, 778.	0.8	9

#	Article	IF	CITATIONS
704	Microneedles with Recessed Microcavities for Electrochemical Sensing in Dermal Interstitial Fluid. , 2023, 5, 1851-1858.		3
706	Lithography in Drug Delivery. Advanced Clinical PharmacyÂ- Research, Development and Practical Applications, 2023, , 249-274.	0.0	0
718	Technologies to Improve Immunization. , 2023, , 1397-1431.e18.		0
732	Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Molecular Biotechnology, 0, , .	1.3	2
754	Kollagen. , 2024, , 293-321.		0