Miocene drainage reversal of the Amazon River driven

Nature Geoscience 3, 870-875 DOI: 10.1038/ngeo1017

Citation Report

#	Article	IF	CITATIONS
1	The many surface expressions of mantle dynamics. Nature Geoscience, 2010, 3, 825-833.	12.9	240
2	Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil). Journal of South American Earth Sciences, 2011, 32, 169-181.	1.4	56
3	Origins of Biodiversity—Response. Science, 2011, 331, 399-400.	12.6	23
5	Insight into collision zone dynamics from topography: numerical modelling results and observations. Solid Earth, 2012, 3, 387-399.	2.8	29
6	An implicit free surface algorithm for geodynamical simulations. Physics of the Earth and Planetary Interiors, 2012, 194-195, 25-37.	1.9	51
7	Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies. Journal of South American Earth Sciences, 2012, 37, 214-227.	1.4	12
8	Predicting and testing continental vertical motion histories since the Paleozoic. Earth and Planetary Science Letters, 2012, 317-318, 426-435.	4.4	48
9	Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth and Planetary Science Letters, 2012, 317-318, 126-135.	4.4	70
10	Reconstructing plate-motion changes in the presence of finite-rotations noise. Nature Communications, 2012, 3, 1048.	12.8	46
11	From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 2012, 280, 21-59.	2.1	158
12	The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 2012, 39, 157-169.	1.4	41
13	Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bulletin, 2012, 96, 2037-2064.	1.5	80
14	Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Research, 2012, 22, 658-663.	6.0	22
15	Neogene Eastern Amazon carbonate platform and the palaeoenvironmental interpretation. Swiss Journal of Palaeontology, 2013, 132, 99-118.	1.7	12
16	Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology, 2013, 13, 191.	3.2	41
17	Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Science Reviews, 2013, 116, 128-169.	9.1	363
18	Late Silurian–Middle Devonian long-term shoreline shifts on the northern Gondwanan margin: eustatic versus tectonic controls. Proceedings of the Geologists Association, 2013, 124, 883-892.	1.1	1
19	Dynamic topography in South America. Journal of South American Earth Sciences, 2013, 43, 127-144.	1.4	49

#	Article	IF	CITATIONS
20	Eroding dynamic topography. Geophysical Research Letters, 2013, 40, 1494-1499.	4.0	54
21	A review of observations and models of dynamic topography. Lithosphere, 2013, 5, 189-210.	1.4	277
22	Palaeontological Evidence for the Last Temporal Occurrence of the Ancient Western Amazonian River Outflow into the Caribbean. PLoS ONE, 2013, 8, e76202.	2.5	29
23	Before the flood: Miocene otoliths from eastern Amazon Pirabas Formation reveal a Caribbean-type fish fauna. Journal of South American Earth Sciences, 2014, 56, 422-446.	1.4	32
24	Late Neogene sequence stratigraphic evolution of the <i>Foz do Amazonas</i> Basin, Brazil. Terra Nova, 2014, 26, 179-185.	2.1	51
25	Chapter 10 The rock coast of South and Central America. Geological Society Memoir, 2014, 40, 155-191.	1.7	10
26	Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 2014, 387, 107-119.	4.4	92
27	Use of geothermal methods in outlining deep groundwater flow systems in Paleozoic interior basins of Brazil. Hydrogeology Journal, 2014, 22, 107-128.	2.1	12
28	Erosion of an active fault scarp leads to drainage capture in the Amazon region, Brazil. Earth Surface Processes and Landforms, 2014, 39, 1062-1074.	2.5	27
29	Multiple speciation across the <scp>A</scp> ndes and throughout <scp>A</scp> mazonia: the case of the spotâ€backed antbird species complex (<i><scp>H</scp>ylophylax) Tj ETQq1 1 0.784314 rgBT /Overlock 10</i>) Tf3500 372	7 T d{ (naevius)
30	Paleogeographic record of Eocene Farallon slab rollback beneath western North America. Geology, 2014, 42, 1039-1042.	4.4	60
31	Linking plate tectonics and mantle flow to Earth's topography. Geology, 2014, 42, 927-928.	4.4	8
32	Circumâ€Arctic mantle structure and longâ€wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 2014, 119, 7889-7908.	3.4	31
33	Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology. Journal of South American Earth Sciences, 2014, 54, 158-181.	1.4	53
34	Provenance of quaternary and modern alluvial deposits of the Amazonian floodplain (Brazil) inferred from major and trace elements and Pb–Nd–Sr isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411, 144-154.	2.3	15
35	Is the current stress state in the Central Amazonia caused by surface water loading?. Journal of South American Earth Sciences, 2014, 55, 19-28.	1.4	4
37	Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth and Planetary Science Letters, 2014, 401, 301-312.	4.4	56
38	Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia. Earth and Planetary Science Letters, 2014, 404, 250-260.	4.4	59

CITATION REPORT

#	Article	IF	CITATIONS
39	CronologÃa y geologÃa de una asociación de mamÃferos del Mioceno Temprano en el Norte de América del Sur, cerro La Cruz (Formación Castillo), Estado Lara, Venezuela: implicaciones para las hipótesis del â€~cambio del curso del rÃo Orinoco' Andean Geology, 2014, 41, .	0.5	10
40	The ups and downs of North America: Evaluating the role of mantle dynamic topography since the Mesozoic. Reviews of Geophysics, 2015, 53, 1022-1049.	23.0	85
41	Phenotypic and genotypic variations among three allopatric populations of Lutzomyia umbratilis, main vector of Leishmania guyanensis. Parasites and Vectors, 2015, 8, 448.	2.5	21
42	Dynamic Topography. , 2015, , .		0
43	Dynamic uplift during slab flattening. Earth and Planetary Science Letters, 2015, 425, 34-43.	4.4	49
44	Punctuated shortening and subsidence in the Altiplano Plateau of southern Peru: Implications for early Andean mountain building. Lithosphere, 2015, 7, 117-137.	1.4	32
45	A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142490.	2.6	98
46	Physics of Mantle Convection. , 2015, , 23-71.		23
47	Mid-Late Pleistocene OSL chronology in western Amazonia and implications for the transcontinental Amazon pathway. Sedimentary Geology, 2015, 330, 1-15.	2.1	52
48	The global Middle and Late Miocene and the deep earth: Model for earlier orogenies. Marine and Petroleum Geology, 2015, 68, 178-191.	3.3	8
49	Influence of subduction history on South American topography. Earth and Planetary Science Letters, 2015, 430, 9-18.	4.4	67
50	Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar. Sedimentary Geology, 2015, 316, 1-12.	2.1	33
51	Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 26
52	Cryptic speciation in the white-shouldered antshrike (Thamnophilus aethiops, Aves – Thamnophilidae): The tale of a transcontinental radiation across rivers in lowland Amazonia and the northeastern Atlantic Forest. Molecular Phylogenetics and Evolution, 2015, 82, 95-110.	2.7	66
53	Can eustatic charts go beyond first order? Insights from the Permian–Triassic. Lithosphere, 2016, 8, 505-518.	1.4	14
54	Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Earth and Planetary Science Letters, 2016, 454, 132-141.	4.4	24

55	Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. , 2016, 12, 1235-1256.

56	The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River. Geomorphology, 2016, 271, 22-39.	2.6	43
----	---	-----	----

#	Article	IF	CITATIONS
57	Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquakeâ€generated surface waves. Journal of Geophysical Research: Solid Earth, 2016, 121, 8217-8238.	3.4	26
58	Influence of mantle flow on the drainage of eastern <scp>A</scp> ustralia since the <scp>J</scp> urassic <scp>P</scp> eriod. Geochemistry, Geophysics, Geosystems, 2017, 18, 280-305.	2.5	37
59	Initiation of the Andean orogeny by lower mantle subduction. Earth and Planetary Science Letters, 2017, 463, 189-201.	4.4	84
60	Miocene flooding events of western Amazonia. Science Advances, 2017, 3, e1601693.	10.3	113
61	The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 2017, 153, 51-65.	3.5	165
62	A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics. Geochemistry, Geophysics, Geosystems, 2017, 18, 3854-3868.	2.5	15
63	Rapid Diversification and Time Explain Amphibian Richness at Different Scales in the Tropical Andes, Earth's Most Biodiverse Hotspot. American Naturalist, 2017, 190, 828-843.	2.1	102
64	The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. Journal of South American Earth Sciences, 2017, 79, 57-66.	1.4	28
65	Sedimentology and Palynostratigraphy of a Pliocene-Pleistocene (Piacenzian to Gelasian) deposit in the lower Negro River: Implications for the establishment of large rivers in Central Amazonia. Journal of South American Earth Sciences, 2017, 79, 215-229.	1.4	10
66	Biogeography of the Neotropical genus <i>Malacoptila</i> (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. Journal of Biogeography, 2017, 44, 748-759.	3.0	48
67	A mantle convection perspective on global tectonics. Earth-Science Reviews, 2017, 165, 120-150.	9.1	69
68	Mantle Influence on Andean and Pre-Andean Topography. Springer Earth System Sciences, 2018, , 363-385.	0.2	5
69	Modification of the Western Gondwana craton by plume–lithosphere interaction. Nature Geoscience, 2018, 11, 203-210.	12.9	115
70	Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia. Chemical Geology, 2018, 479, 136-150.	3.3	35
71	Neogene tropical sea catfish (Siluriformes; Ariidae), with insights into paleo and modern diversity within northeastern South America. Journal of South American Earth Sciences, 2018, 82, 108-121.	1.4	4
72	Age and evolution of diachronous erosion surfaces in the Amazon: Combining (U-Th)/He and cosmogenic 3He records. Geochimica Et Cosmochimica Acta, 2018, 229, 162-183.	3.9	39
73	Numerical modeling of stress and topography coupling during subduction: Inferences on global vs. regional observables interpretation. Tectonophysics, 2018, 746, 239-250.	2.2	10
74	Sedimentary record of Andean mountain building. Earth-Science Reviews, 2018, 178, 279-309.	9.1	222

#	Article	IF	CITATIONS
75	The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyology, 2018, 16, .	1.0	125
76	Parallel diversifications of <i>Cremastosperma</i> and <i>Mosannona</i> (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America. Royal Society Open Science, 2018, 5, 171561.	2.4	15
77	Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Research, 2018, 63, 152-168.	6.0	33
78	Role of dynamic topography in sustaining the Nile River over 30 million years. Nature Geoscience, 2019, 12, 1012-1017.	12.9	48
79	Andean Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem. Scientific Reports, 2019, 9, 16879.	3.3	63
80	Record of the rare Caribbean mud eel, Pythonichthys sanguineus (Heterenchelyidae, Anguilliformes), in the region of the Amazon Reef. Acta Amazonica, 2019, 49, 131-138.	0.7	1
81	Unexpected fish diversity gradients in the Amazon basin. Science Advances, 2019, 5, eaav8681.	10.3	88
82	Earth's multi-scale topographic response to global mantle flow. Nature Geoscience, 2019, 12, 845-850.	12.9	51
83	Measuring dynamic topography in South America. , 2019, , 35-66.		6
84	Could coastal plants in western Amazonia be relicts of past marine incursions?. Journal of Biogeography, 2019, 46, 1749-1759.	3.0	26
85	Plate Tectonics., 2019,,.		1
86	Past Amazon Basin fluvial systems, insight into the Cenozoic sequences using seismic geomorphology (Marañón Basin, Peru). Journal of South American Earth Sciences, 2019, 90, 440-452.	1.4	9
87	Miocene paleoenvironmental changes in the Solimões Basin, western Amazon, Brazil: A reconstruction based on palynofacies analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 537, 109450.	2.3	8
88	Continent-wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, 2020, 530, 115910.	4.4	7
89	Global Models From Sparse Data: A Robust Estimate of Earth's Residual Topography Spectrum. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009240.	2.5	6
90	Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: <i>Allobates</i>). Journal of Biogeography, 2020, 47, 2472-2482.	3.0	31
92	Biotectonics: Making and Breaking Barriers. SpringerBriefs in Evolutionary Biology, 2020, , 49-62.	0.2	0
93	Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 2020, 209,	9.1	33

	CITATION	CITATION REPORT	
# 94	ARTICLE Post-rift regional volcanism in southern Santos Basin and the uplift of the adjacent South American coastal range. Journal of South American Earth Sciences, 2020, 104, 102855.	IF 1.4	CITATIONS
95	Amphi-American Neogene teleostean tropical fishes. Journal of South American Earth Sciences, 2020, 102, 102657.	1.4	2
96	Dynamic Topography and Ice Age Paleoclimate. Annual Review of Earth and Planetary Sciences, 2020, 48, 585-621.	11.0	10
97	Diversification history of clown tree frogs in Neotropical rainforests (Anura, Hylidae,) Tj ETQq1 1 0.784314 rg	BT /Overlock 2.7	10 ₂₁ f 50 622
98	Reappraisal of the relative importance of dynamic topography and Andean orogeny on Amazon landscape evolution. Earth and Planetary Science Letters, 2020, 546, 116423.	4.4	16
99	Reversible subsidence on the North West Shelf of Australia. Earth and Planetary Science Letters, 2020, 534, 116070.	4.4	11
100	Overriding Plate Velocity Control on Surface Topography in 2â€Ð Models of Subduction Zones. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008900.	2.5	15
101	Upper Oligocene-Miocene deposits of Eastern Amazonia: Implications for the collapse of Neogene carbonate platforms along the coast of northern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 563, 110178.	2.3	10
102	Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of Western Amazonia. Palynology, 2021, 45, 3-14.	1.5	8
103	Large River Floodplains. , 2021, , .		1
104	Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 123-140.	1.5	7
105	Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses. Geophysical Journal International, 2021, 226, 1432-1460.	2.4	12
106	Biogeography of the neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continentâ€scale paleogeographic change and drainage evolution. Journal of Biogeography, 2021, 48, 1406-1419.	3.0	31
107	News Feature: A sea in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2102396118.	7.1	5
108	Late Pleistocene–Holocene stress in the South American intraplate evidenced by tectonic instability in central Amazonia. Quaternary Research, 0, , 1-17.	1.7	3
110	Constraining the effects of dynamic topography on the development of Late Cretaceous Cordilleran foreland basin, western United States. Bulletin of the Geological Society of America, 2022, 134, 446-462.	3.3	10
113	Simulating Miocene Warmth: Insights From an Opportunistic Multiâ€Model Ensemble (MioMIP1). Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004054.	2.9	52
114	The rate and extent of wind-gap migration regulated by tributary confluences and avulsions. Earth Surface Dynamics, 2021, 9, 687-700.	2.4	6

#	Article	IF	Citations
115	Geodynamic modeling on the formation mechanism of Linxi Basin: New constraints on the closure time of the Paleo-Asian Ocean. Tectonophysics, 2021, 810, 228866.	2.2	1
116	Superimposed Rifting at the Junction of the Central and Equatorial Atlantic: Formation of the Passive Margin of the Guiana Shield. Tectonics, 2021, 40, e2020TC006159.	2.8	10
117	Miocene paleoenvironments and paleoclimatic reconstructions based on the palynology of the Solimões Formation of Western Amazonia (Brazil). Palynology, 2022, 46, 1-19.	1.5	1
118	Marine influence in western Amazonia during the late Miocene. Global and Planetary Change, 2021, 205, 103600.	3.5	10
119	Spatial and temporal uplift history of <scp>S</scp> outh <scp>A</scp> merica from calibrated drainage analysis. Geochemistry, Geophysics, Geosystems, 2017, 18, 2321-2353.	2.5	38
120	Biotic and Landscape Evolution in an Amazonian Contact Zone: Insights from the Herpetofauna of the Tapajós River Basin, Brazil. Fascinating Life Sciences, 2020, , 683-712.	0.9	9
121	Neogene sharks and rays from the Brazilian â€ [~] Blue Amazon'. PLoS ONE, 2017, 12, e0182740.	2.5	24
122	Genetic diversity and structuring in the arapaima (Osteoglossiformes, Osteoglossidae) population reveal differences between the Amazon and the Tocantins-Araguaia basins. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20180496.	0.8	3
123	Conceptual and empirical advances in Neotropical biodiversity research. PeerJ, 2018, 6, e5644.	2.0	107
127	The Miocene wetland of western Amazonia and its role in Neotropical biogeography. Botanical Journal of the Linnean Society, 2022, 199, 25-35.	1.6	27
128	Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system. PeerJ, 2021, 9, e12533.	2.0	8
129	Fast Response of Amazon Rivers to Quaternary Climate Cycles. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006416.	2.8	9
131	Incision and aggradation phases of the Amazon River in central-eastern Amazonia during the late Neogene and Quaternary. Geomorphology, 2022, 399, 108073.	2.6	7
132	Provenance of Miocene-Pleistocene siliciclastic deposits in the Eastern Amazonia coast (Brazil) and paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110799.	2.3	4
133	Role of double-subduction dynamics in the topographic evolution of the Sunda Plate. Geophysical Journal International, 2022, 230, 696-713.	2.4	3
135	Existence of a continental-scale river system in eastern Tibet during the late Cretaceous–early Palaeogene. Nature Communications, 2021, 12, 7231.	12.8	28
136	Cenozoic weathering of fluvial terraces and emergence of biogeographic boundaries in Central Amazonia. Global and Planetary Change, 2022, 212, 103815.	3.5	5
137	Detrital zircon age signatures of the basal Cambrian sandstone unit in North China: implications for drainage divides during global Sauk transgression and separation from Gondwanaland. International Geology Review, 2023, 65, 1524-1540.	2.1	2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
138	The sediment routing systems of Northern South America since 250 Ma. Earth-Science Reviews, 2022, 232, 104139.	9.1	4
139	Berge über abtauchenden Platten: Subduktionszonen. , 2022, , 205-291.		Ο
140	Location, extent, and magnitude of dynamic topography in the Late Cretaceous Cordilleran Foreland Basin, <scp>USA</scp> : New insights from <scp>3D</scp> flexural backstripping. Basin Research, 2023, 35, 120-140.	2.7	2
141	The Acre Basin basement (NW Brazil) and the transition from the intracratonic to retroarc foreland basin system. Basin Research, 2023, 35, 86-119.	2.7	2
142	Broken foreland basins and the influence of subduction dynamics, tectonic inheritance, and mechanical triggers. Earth-Science Reviews, 2022, 234, 104193.	9.1	13
143	A Review of the Ecological and Biogeographic Differences of Amazonian Floodplain Forests. Water (Switzerland), 2022, 14, 3360.	2.7	4
144	Diversification of the <i>Pristimantis conspicillatus</i> group (Anura: Craugastoridae) within distinct neotropical areas throughout the Neogene. Systematics and Biodiversity, 2022, 20, 1-16.	1.2	7
145	Mountains and Plunging Plates: Subduction Zones. , 2022, , 207-302.		Ο
146	The "Snow Line―on Venus's Maxwell Montes: Varying Elevation Implies a Dynamic Atmosphere. Planetary Science Journal, 2022, 3, 264.	3.6	1
147	A different path to the Negro River in the Chibanian as a window to temporalize the eastward-flowing transcontinental Amazon. Journal of South American Earth Sciences, 2023, 122, 104187.	1.4	0
148	Observations and Models of Dynamic Topography: Current Status and Future Directions. , 2023, , 223-269.		3
149	The Amazon paleoenvironment resulted from geodynamic, climate, and sea-level interactions. Earth and Planetary Science Letters, 2023, 605, 118033.	4.4	3
150	New stratigraphic and paleoenvironmental constraints on the Paleogene paleogeography of Western Amazonia. Journal of South American Earth Sciences, 2023, 124, 104256.	1.4	2
151	Deconstructing plate tectonic reconstructions. Nature Reviews Earth & Environment, 2023, 4, 185-204.	29.7	5
152	New insights into the Cretaceous evolution of the Western Amazonian paleodrainage system. Sedimentary Geology, 2023, 453, 106434.	2.1	3
153	Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data. Annual Review of Earth and Planetary Sciences, 2023, 51, 419-446.	11.0	Ο
154	The evolution of extant South American tropical biomes. New Phytologist, 2023, 239, 477-493.	7.3	7
155	Sediment routing systems to the Atlantic rifted margin of the Guiana Shield. , 2023, 19, 957-974.		1

IF CITATIONS ARTICLE # Evaluating tomotectonic plate reconstructions using geodynamic models with data assimilation, the case for North America. Earth-Science Reviews, 2023, 244, 104518. 9.1 2 156 Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous. Nature Ecology and Evolution, 0, , . The ocean carbon sinks and climate change. Chaos, 2023, 33, . 158 2.5 0 Co-evolution of continental lithosphere and deep mantle dynamics. Chinese Science Bulletin, 2023, , . Geodiversity in the Amazon drainage basin. Philosophical Transactions Series A, Mathematical, 160 3.4 2 Physical, and Engineering Sciences, 2024, 382, .

CITATION REPORT