Identity-by-descent filtering of exome sequence data id hyperphosphatasia mental retardation syndrome

Nature Genetics 42, 827-829 DOI: 10.1038/ng.653

Citation Report

#	Article	IF	CITATIONS
2	Congenital disorders of glycosylation. Annals of the New York Academy of Sciences, 2010, 1214, 190-198.	1.8	192
3	Somatic Mutation Profiles of MSI and MSS Colorectal Cancer Identified by Whole Exome Next Generation Sequencing and Bioinformatics Analysis. PLoS ONE, 2010, 5, e15661.	1.1	205
4	From Single Genes to Gene Networks: High-Throughput-High-Content Screening for Neurological Disease. Neuron, 2010, 68, 207-217.	3.8	24
5	Whole-exome sequencing for finding de novo mutations in sporadic mental retardation. Genome Biology, 2010, 11, 144.	13.9	156
6	EX-HOM (EXome HOMozygosity): A Proof of Principle. Human Heredity, 2011, 72, 45-53.	0.4	27
7	Next-generation sequencing applied to molecular diagnostics. Expert Review of Molecular Diagnostics, 2011, 11, 425-444.	1.5	33
8	Pyridoxine dependent epilepsy and antiquitin deficiency. Molecular Genetics and Metabolism, 2011, 104, 48-60.	0.5	258
9	Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Progress in Lipid Research, 2011, 50, 411-424.	5.3	96
11	Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biology, 2011, 12, R68.	13.9	192
12	Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biology, 2011, 12, 227.	13.9	116
13	Unlocking Mendelian disease using exome sequencing. Genome Biology, 2011, 12, 228.	13.9	228
14	Reducing the exome search space for Mendelian diseases using genetic linkage analysis of exome genotypes. Genome Biology, 2011, 12, R85.	13.9	72
15	SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing. Genome Biology, 2011, 12, R91.	13.9	51
16	Golgi Glycosylation and Human Inherited Diseases. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005371-a005371.	2.3	63
17	Early Diagnosis of Werner's Syndrome Using Exome-Wide Sequencing in a Single, Atypical Patient. Frontiers in Endocrinology, 2011, 2, 8.	1.5	11
19	Massively parallel sequencing and identification of genes for primary lymphoedema: a perfect fit. Clinical Genetics, 2011, 80, 110-116.	1.0	4
20	Strategies for exome and genome sequence data analysis in diseaseâ€gene discovery projects. Clinical Genetics, 2011, 80, 127-132.	1.0	81
21	Exome sequencing and the genetics of intellectual disability. Clinical Genetics, 2011, 80, 117-126.	1.0	59

ATION REDO

		REPORT	
#	Article	IF	Citations
22	Exome sequencing in Parkinson's disease. Clinical Genetics, 2011, 80, 104-109.	1.0	17
23	Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics, 2011, 12, 745-755.	7.7	1,484
24	Paroxysmal Nocturnal Hemoglobinuria from Bench to Bedside. Clinical and Translational Science, 2011, 4, 219-224.	1.5	64
25	Exome sequencing: a transformative technology. Lancet Neurology, The, 2011, 10, 942-946.	4.9	125
26	Animal models with pathological mineralization phenotypes. Joint Bone Spine, 2011, 78, 561-567.	0.8	26
27	Multiplexed array-based and in-solution genomic enrichment for flexible and cost-effective targeted next-generation sequencing. Nature Protocols, 2011, 6, 1870-1886.	5.5	65
28	What can exome sequencing do for you?. Journal of Medical Genetics, 2011, 48, 580-589.	1.5	321
29	Whole-Exome Sequencing Identifies FAM20A Mutations as a Cause of Amelogenesis Imperfecta and Gingival Hyperplasia Syndrome. American Journal of Human Genetics, 2011, 88, 616-620.	2.6	147
30	Congenital disorders of glycosylation (CDG): it's (nearly) all in it!. Journal of Inherited Metabolic Disease, 2011, 34, 853-858.	1.7	118
31	From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. Journal of Inherited Metabolic Disease, 2011, 34, 859-867.	1.7	65
32	The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer and Metastasis Reviews, 2011, 30, 199-210.	2.7	69
33	Revisiting Mendelian disorders through exome sequencing. Human Genetics, 2011, 129, 351-370.	1.8	206
34	Identity-by-descent filtering as a tool for the identification of disease alleles in exome sequence data from distant relatives. BMC Proceedings, 2011, 5, S76.	1.8	6
35	Targeted high throughput sequencing in clinical cancer Settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Medical Genomics, 2011, 4, 68.	0.7	154
36	Hyperphosphatasiaâ€mental retardation syndrome due to <i>PIGV</i> mutations: Expanded clinical spectrum. American Journal of Medical Genetics, Part A, 2011, 155, 1917-1922.	0.7	50
37	Novel genomic techniques open new avenues in the analysis of monogenic disorders. Human Mutation, 2011, 32, 144-151.	1.1	102
38	Bioinformatics for Human Genetics: Promises and Challenges. Human Mutation, 2011, 32, 495-500.	1.1	21
39	Whole exome and whole genome sequencing. Current Opinion in Pediatrics, 2011, 23, 594-600.	1.0	124

#	Article	IF	Citations
40	Exome sequencing and disease-network analysis of a single family implicate a mutation in <i>KIF1A</i> i>in hereditary spastic paraparesis. Genome Research, 2011, 21, 658-664.	2.4	172
41	Congenital disorders of glycosylation. Current Opinion in Pediatrics, 2011, 23, 581-587.	1.0	39
42	Deep Sequencing of Patient Genomes for Disease Diagnosis: When Will It Become Routine?. Science Translational Medicine, 2011, 03, 87ps23.	5.8	98
43	Misregulation of mitotic chromosome segregation in a new type of autosomal recessive primary microcephaly. Cell Cycle, 2011, 10, 2967-2977.	1.3	12
44	Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. Journal of Medical Genetics, 2011, 48, 383-389.	1.5	138
45	Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings in Functional Genomics, 2011, 10, 374-386.	1.3	219
46	Exome Sequencing Identifies ZNF644 Mutations in High Myopia. PLoS Genetics, 2011, 7, e1002084.	1.5	164
47	Identity-by-descent filtering of exome sequence data for disease–gene identification in autosomal recessive disorders. Bioinformatics, 2011, 27, 829-836.	1.8	30
48	Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism. PLoS Genetics, 2012, 8, e1002635.	1.5	164
49	GPI-anchor synthesis is indispensable for the germline development of the nematodeCaenorhabditis elegans. Molecular Biology of the Cell, 2012, 23, 982-995.	0.9	33
50	Disorders of sex development. Middle East Journal of Medical Genetics, 2012, 1, 5-11.	0.0	0
51	Pediatric Biomedical Informatics. Translational Bioinformatics, 2012, , .	0.0	3
52	Mechanism for Release of Alkaline Phosphatase Caused by Glycosylphosphatidylinositol Deficiency in Patients with Hyperphosphatasia Mental Retardation Syndrome. Journal of Biological Chemistry, 2012, 287, 6318-6325.	1.6	82
53	High-Throughput Sequencing and Rare Genetic Diseases. Molecular Syndromology, 2012, 3, 197-203.	0.3	6
54	Chromosome 1p36 in migraine with aura. NeuroReport, 2012, 23, 45-48.	0.6	14
55	Insights into complexity of congenital disorders of glycosylation. Biochemia Medica, 2012, 22, 156-170.	1.2	35
57	Chemical Biology of Glycosylphosphatidylinositol Anchors. Angewandte Chemie - International Edition, 2012, 51, 11438-11456.	7.2	75
58	Application of exome sequencing in the search for genetic causes of rare disorders of copper	1.0	6

# 59	ARTICLE Mutations in PIGO, a Member of the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia with Montal Patardation, American Journal of Human Constiss, 2012, 91, 146, 151	lF 2.6	CITATIONS
61	Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities. Hearing Research, 2012, 288, 67-76.	0.9	101
62	Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1306-1317.	1.1	113
63	GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1050-1058.	1.2	174
64	Identity by Descent Between Distant Relatives: Detection and Applications. Annual Review of Genetics, 2012, 46, 617-633.	3.2	145
65	Human Genome Sequencing in Health and Disease. Annual Review of Medicine, 2012, 63, 35-61.	5.0	404
66	Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. Journal of Human Genetics, 2012, 57, 621-632.	1.1	177
67	Autosomal mutations and human spermatogenic failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1873-1879.	1.8	11
68	Hereditary Hearing Loss: Genetic Counselling. Acta Otorrinolaringologica (English Edition), 2012, 63, 218-229.	0.1	2
69	Congenital Disorders of Glycosylation. , 2012, , 607-616.		3
70	Next Generation Sequencing in the Clinical Domain: Clinical Advantages, Practical, and Ethical Challenges. Advances in Protein Chemistry and Structural Biology, 2012, 89, 27-63.	1.0	21
72	Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases. PLoS ONE, 2012, 7, e28936.	1.1	254
73	Hypophosphatasia. , 2012, , 771-794.		22
74	Disease gene identification strategies for exome sequencing. European Journal of Human Genetics, 2012, 20, 490-497.	1.4	412
75	HapCompass: A Fast Cycle Basis Algorithm for Accurate Haplotype Assembly of Sequence Data. Journal of Computational Biology, 2012, 19, 577-590.	0.8	101
76	Exome sequencing and the genetic basis of complex traits. Nature Genetics, 2012, 44, 623-630.	9.4	340
77	The Coffin–Siris syndrome: A proposed diagnostic approach and assessment of 15 overlapping cases. American Journal of Medical Genetics, Part A, 2012, 158A, 1865-1876.	0.7	69
78	DPAGT1 DG: Report of a patient with fetal hypokinesia phenotype. American Journal of Medical Genetics, Part A, 2012, 158A, 2027-2030.	0.7	27

	CHARL	N KLPOKI	
#	Article	IF	CITATIONS
79	Exom-Sequenzierung zur Identifizierung von Krankheitsgenen. Medizinische Genetik, 2012, 24, 4-11.	0.1	2
80	The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria. American Journal of Human Genetics, 2012, 90, 295-300.	2.6	146
81	Mutations in the Glycosylphosphatidylinositol Gene PIGL Cause CHIME Syndrome. American Journal of Human Genetics, 2012, 90, 685-688.	2.6	114
82	Neurology of inherited glycosylation disorders. Lancet Neurology, The, 2012, 11, 453-466.	4.9	179
83	Resolving the variable genome and epigenome in human disease. Journal of Internal Medicine, 2012, 271, 379-391.	2.7	14
84	Next-generation sequencing approaches for genetic mapping of complex diseases. Journal of Neuroimmunology, 2012, 248, 10-22.	1.1	19
86	Analysis of DNA sequence variants detected by high-throughput sequencing. Human Mutation, 2012, 33, 599-608.	1.1	34
87	Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). American Journal of Medical Genetics, Part A, 2012, 158A, 553-558.	0.7	40
88	Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theoretical and Applied Genetics, 2012, 124, 63-74.	1.8	58
89	Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Human Genetics, 2012, 131, 471-478.	1.8	33
90	Multiphasic analysis of whole exome sequencing data identifies a novel mutation of ACTG1 in a nonsyndromic hearing loss family. BMC Genomics, 2013, 14, 191.	1.2	37
91	Clinical Aspects of Hypophosphatasia: An Update. Clinical Reviews in Bone and Mineral Metabolism, 2013, 11, 60-70.	1.3	52
92	The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Human Genetics, 2013, 132, 1197-1211.	1.8	107
93	Whole exome sequencing identifies mutation of EDNRA involved in ACTH-independent macronodular adrenal hyperplasia. Familial Cancer, 2013, 12, 657-667.	0.9	26
94	Immune Homeostasis. Methods in Molecular Biology, 2013, , .	0.4	2
95	Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2013, 92, 575-583.	2.6	87
96	Multisystemic Functions of Alkaline Phosphatases. Methods in Molecular Biology, 2013, 1053, 27-51.	0.4	148
97	Next Generation Sequencing. , 2013, , .		10

		CITATION RE	PORT	
#	Article		IF	CITATIONS
98	The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell, 2013, 155,	27-38.	13.5	856
99	A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a som mutation in PIGT. Blood, 2013, 122, 1312-1315.	atic	0.6	77
100	Diagnostic Applications of High-Throughput DNA Sequencing. Annual Review of Pathology Mechanisms of Disease, 2013, 8, 381-410.	r:	9.6	58
101	Approaches to homozygosity mapping and exome sequencing for the identification of nov CDG. Glycoconjugate Journal, 2013, 30, 67-76.	el types of	1.4	16
102	PGAP2 Mutations, Affecting the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia Retardation Syndrome. American Journal of Human Genetics, 2013, 92, 584-589.	with Mental	2.6	98
103	Amish revisited: next-generation sequencing studies of psychiatric disorders among the Pla Trends in Genetics, 2013, 29, 412-418.	ain people.	2.9	24
104	Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genetics, 2013, 45, 234-238.	ure	9.4	76
105	Designs for Massively Parallel Sequencing Approaches to Identify Causal Mutations in Hun Disorders. Methods in Molecular Biology, 2013, 979, 175-187.	nan Immune	0.4	0
106	Molecular Diagnosis of Congenital Disorders of Glycosylation (CDG). , 2013, , 151-165.			1
107	Glycomics, Glycobiology, and Glyco-Medicine. , 2013, , 173-191.			0
108	Next Generation Sequencing Technologies in Medical Genetics. SpringerBriefs in Genetics,	2013,,.	0.1	3
109	Vitamin B ₆ –responsive epilepsy due to inherited GPI deficiency. Neurolog 1467-1469.	y, 2013, 81,	1.5	77
110	GPI biosynthesis is essential for rhodopsin sorting at the <i>trans</i> -Golgi network in <i>Drosophila</i> photoreceptors. Development (Cambridge), 2013, 140, 385-394.		1.2	23
111	190â€kb duplication in 1p36.11 including <i><scp>PIGV</scp></i> and <i><scp>ARID1A< girl with intellectual disability and hexadactyly. Clinical Genetics, 2013, 84, 596-599.</scp></i>	/scp> genes in a	1.0	2
112	Understanding Human Glycosylation Disorders: Biochemistry Leads the Charge. Journal of Chemistry, 2013, 288, 6936-6945.	Biological	1.6	184
113	Generation of Glycosylphosphatidylinositol Anchor Protein-Deficient Blood Cells From Hun Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 819-829.	nan	1.6	18
114	A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygo mutations in <i>PIGT</i> . Journal of Medical Genetics, 2013, 50, 521-528.	us	1.5	108
116	Novel Compound Heterozygous Mutations in MYO7A Associated with Usher Syndrome 1 Family. PLoS ONE, 2014, 9, e103415.	in a Chinese	1.1	7

		CITATION F	Report	
#	Article		IF	Citations
117	Exome sequencing: what clinicians need to know. Advances in Genomics and Genetics,	0, , 15.	0.8	6
118	A New Homozygous ABCB4 Mutation Identified in Two Chinese Siblings Based on Exom Journal of Genetic Syndromes & Gene Therapy, 2014, 05, .	ie Sequencing.	0.2	0
119	Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual D Encephalopathy. PLoS Genetics, 2014, 10, e1004320.	isability and	1.5	72
120	<i>PIGA</i> mutations cause early-onset epileptic encephalopathies and distinctive fear Neurology, 2014, 82, 1587-1596.	tures.	1.5	93
122	Early Frameshift Mutation in <i>PIGA</i> Identified in a Large XLID Family Without Neon Human Mutation, 2014, 35, 350-355.	atal Lethality.	1.1	39
123	A novel germline PIGA mutation in Ferro erebro utaneous syndrome: A neurodeg epileptic encephalopathy with systemic ironâ€overload. American Journal of Medical Ge 2014, 164, 17-28.	enerative Xâ€linked netics, Part A,	0.7	62
124	Expanding the spectrum of phenotypes associated with germline <i>PIGA</i> mutation developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline and progressive CNS abnormalities. American Journal of Medical Genetics, Part A, 2014	s: A child with phosphatase, , 164, 29-35.	0.7	37
125	Missing genetic risk in neural tube defects: Can exome sequencing yield an insight?. Bir Research Part A: Clinical and Molecular Teratology, 2014, 100, 642-646.	th Defects	1.6	13
126	The Use of Autozygosity Mapping and Next-Generation Sequencing in Understanding A Defects Caused by an Abnormal Development of the Lens. Human Heredity, 2014, 77, 2	nterior Segment 118-137.	0.4	11
127	Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatas retardation syndrome. European Journal of Human Genetics, 2014, 22, 762-767.	ia with mental	1.4	39
128	Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box pro Human Molecular Genetics, 2014, 23, 1013-1024.	otein CHIP.	1.4	136
129	Reducing Pervasive False-Positive Identical-by-Descent Segments Detected by Large-Sca Analysis. Molecular Biology and Evolution, 2014, 31, 2212-2222.	le Pedigree	3.5	44
130	Solving Glycosylation Disorders: Fundamental Approaches Reveal Complicated Pathway Journal of Human Genetics, 2014, 94, 161-175.	vs. American	2.6	222
131	Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and molecular diagnosis. Human Molecular Genetics, 2014, 23, 3200-3211.	improves	1.4	222
132	Exome sequencing greatly expedites the progressive research of Mendelian diseases. Fr Medicine, 2014, 8, 42-57.	ontiers of	1.5	48
133	Utility and Challenges of Next Generation Sequencing in Pediatric Disorders. Current Pe Reports, 2014, 2, 82-92.	diatrics	1.7	1
134	Exome-Based Mapping and Variant Prioritization for Inherited Mendelian Disorders. Am of Human Genetics, 2014, 94, 373-384.	erican Journal	2.6	37
135	Integrating Massively Parallel Sequencing into Diagnostic Workflows and Managing the and Clinical Interpretation Challenge. Human Mutation, 2014, 35, 413-423.	Annotation	1.1	23

	Сітатіо	n Report	
#	Article	IF	CITATIONS
136	The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics, 2014, 59, 5-15.	1,1	404
137	Using familial information for variant filtering in high-throughput sequencing studies. Human Genetics, 2014, 133, 1331-1341.	1.8	10
138	Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics, 2014, 15, 193-200.	0.7	61
139	Mutations in PGAP3 Impair GPI-Anchor Maturation, Causing a Subtype of Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2014, 94, 278-287.	2.6	88
140	Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in <i>PIGW</i> is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. Journal of Medical Genetics, 2014, 51, 203-207.	1.5	93
141	Exome sequencing identifies a recessive PIGN splice site mutation as a cause of syndromic Congenital Diaphragmatic Hernia. European Journal of Medical Genetics, 2014, 57, 487-493.	0.7	44
142	Genes and infertility. , 0, , 113-126.		0
143	Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 130-143.	1.6	119
144	Cell-type–specific transcriptional regulation of PIGM underpins the divergent hematologic phenotype in inherited GPI deficiency. Blood, 2014, 124, 3151-3154.	0.6	3
145	DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Scientific Reports, 2015, 5, 11649.	1.6	28
146	Targeted gene capture and massively parallel sequencing identify <i>TMC1</i> as the causative gene in a sixâ€generation Chinese family with autosomal dominant hearing loss. American Journal of Medical Genetics, Part A, 2015, 167, 2357-2365.	0.7	15
147	Whole-exome analysis of foetal autopsy tissue reveals a frameshift mutation in OBSL1, consistent with a diagnosis of 3-M Syndrome. BMC Genomics, 2015, 16, S12.	1.2	9
148	Both <scp><i>PIGA</i></scp> and <scp><i>PIGL</i></scp> mutations cause <scp>GPI</scp> â€a deficient isolates in the <scp>T</scp> k6 cell line. Environmental and Molecular Mutagenesis, 2015, 56, 663-673.	0.9	24
149	Clinical Impact and Cost-Effectiveness of Whole Exome Sequencing as a Diagnostic Tool: A Pediatric Center's Experience. Frontiers in Pediatrics, 2015, 3, 67.	0.9	159
150	Low-Frequency IL23R Coding Variant Associated with Crohn's Disease Susceptibility in Japanese Subjects Identified by Personal Genomics Analysis. PLoS ONE, 2015, 10, e0137801.	1.1	8
151	Structural Changes of GPI Anchor After Its Attachment to Proteins: Functional Significance. Advances in Experimental Medicine and Biology, 2015, 842, 17-25.	0.8	8
152	Exome Sequencing for The Identification of Mendelian Disease Genes. Erciyes Tip Dergisi, 2015, 36, 139-143.	0.1	0
153	Next-Generation Sequencing in Intellectual Disability. Journal of Pediatric Genetics, 2015, 04, 128-135.	0.3	30

#	Article	IF	CITATIONS
154	Cerebral visual impairment and intellectual disability caused by PGAP1 variants. European Journal of Human Genetics, 2015, 23, 1689-1693.	1.4	15
155	Mutations in <i>PIGL</i> in a patient with Mabry syndrome. American Journal of Medical Genetics, Part A, 2015, 167, 777-785.	0.7	30
156	MAP4-Dependent Regulation of Microtubule Formation Affects Centrosome, Cilia, and Golgi Architecture as a Central Mechanism in Growth Regulation. Human Mutation, 2015, 36, 87-97.	1.1	21
157	Expanding the clinical and molecular characteristics of PIGT-CDG, a disorder of glycosylphosphatidylinositol anchors. Molecular Genetics and Metabolism, 2015, 115, 128-140.	0.5	44
158	Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases. Current Topics in Membranes, 2015, 75, 269-303.	0.5	35
159	The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 23.	1.2	70
160	Congenital CD59 Deficiency. Hematology/Oncology Clinics of North America, 2015, 29, 495-507.	0.9	11
161	Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations. Sub-Cellular Biochemistry, 2015, 76, 25-43.	1.0	40
162	Clinical Forms and Animal Models of Hypophosphatasia. Sub-Cellular Biochemistry, 2015, 76, 3-24.	1.0	10
163	Exome sequencing reveals a nonsense mutation in MMP13 as a new cause of autosomal recessive metaphyseal anadysplasia. European Journal of Human Genetics, 2015, 23, 264-266.	1.4	13
164	Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL). Journal of Inherited Metabolic Disease, 2015, 38, 171-178.	1.7	51
165	Novel PIGT Variant in Two Brothers: Expansion of the Multiple Congenital Anomalies-Hypotonia Seizures Syndrome 3 Phenotype. Genes, 2016, 7, 108.	1.0	25
166	Rare Noncoding Mutations Extend the Mutational Spectrum in the <i>PGAP3</i> Subtype of Hyperphosphatasia with Mental Retardation Syndrome. Human Mutation, 2016, 37, 737-744.	1.1	46
167	Fryns Syndrome Associated with Recessive Mutations in PIGN in two Separate Families. Human Mutation, 2016, 37, 695-702.	1.1	43
168	Exome sequencing a review of new strategies for rare genomic disease research. Genomics, 2016, 108, 109-114.	1.3	23
169	Genomics and Personalized Medicine. , 2016, , 187-219.		0
170	Bioinformatics and Orphan Diseases. Translational Bioinformatics, 2016, , 313-338.	0.0	0
172	Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. American Journal of Human Genetics, 2016, 99, 337-351.	2.6	198

#	Article	IF	CITATIONS
173	Genotype–phenotype correlation of congenital anomalies in multiple congenital anomalies hypotonia seizures syndrome (MCAHS1)/ <i>PIGN</i> â€related epilepsy. American Journal of Medical Genetics, Part A, 2016, 170, 77-86.	0.7	41
174	A <i>PIGN</i> mutation responsible for multiple congenital anomalies–hypotonia–seizures syndrome 1 (MCAHS1) in an Israeli–Arab family. American Journal of Medical Genetics, Part A, 2016, 170, 176-182.	0.7	26
175	Clinical and genetic analysis of two Chinese infants with Mabry syndrome. Brain and Development, 2016, 38, 807-818.	0.6	31
176	Practical considerations in the clinical application of wholeâ€exome sequencing. Clinical Genetics, 2016, 89, 173-181.	1.0	54
177	Thematic Review Series: Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. Journal of Lipid Research, 2016, 57, 6-24.	2.0	207
178	Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. American Journal of Human Genetics, 2016, 98, 615-626.	2.6	71
179	A novel <i>PIGN</i> mutation and prenatal diagnosis of inherited glycosylphosphatidylinositol deficiency. American Journal of Medical Genetics, Part A, 2016, 170, 183-188.	0.7	25
180	Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility. Journal of Biological Chemistry, 2016, 291, 3905-3917.	1.6	17
181	Can whole-exome sequencing data be used for linkage analysis?. European Journal of Human Genetics, 2016, 24, 581-586.	1.4	12
182	Reduced cell surface levels of GPI-linked markers in a new case with PIGG loss of function. Human Mutation, 2017, 38, 1394-1401.	1.1	20
183	Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Human Molecular Genetics, 2017, 26, 1706-1715.	1.4	39
184	Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Human Mutation, 2017, 38, 805-815.	1.1	29
185	Microduplication of the ARID1A gene causes intellectual disability with recognizable syndromic features. Genetics in Medicine, 2017, 19, 701-710.	1.1	13
186	Mutations in GPAA1 , Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia. American Journal of Human Genetics, 2017, 101, 856-865.	2.6	49
187	Hyperphosphatasia with Mental Retardation Syndrome Due to a Novel Mutation in PGAP3. Journal of Pediatric Genetics, 2017, 06, 191-193.	0.3	10
188	Prenatal presentation of Mabry syndrome with congenital diaphragmatic hernia and phenotypic overlap with Fryns syndrome. , 2017, 173, 2776-2781.		12
189	Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals, 2017, 10, 79.	1.7	31
190	Hypotonia and intellectual disability without dysmorphic features in a patient with PIGN-related disease. BMC Medical Genetics, 2017, 18, 124.	2.1	15

#	Article	IF	CITATIONS
191	Hyperphosphatasia with mental retardation syndrome, expanded phenotype of PIGL related disorders. Molecular Genetics and Metabolism Reports, 2018, 15, 46-49.	0.4	13
192	Early infancy-onset stimulation-induced myoclonic seizures in three siblings with inherited glycosylphosphatidylinositol (GPI) anchor deficiency. Epileptic Disorders, 2018, 20, 42-50.	0.7	7
193	Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life, 2018, 70, 355-383.	1.5	18
194	Whole exome sequencing identifies a pathogenic mutation in WFS1 in two large Chinese families with autosomal dominant all-frequency hearing loss and prenatal counseling. International Journal of Pediatric Otorhinolaryngology, 2018, 106, 113-119.	0.4	6
195	A novel PGAP3 mutation in a Croatian boy with brachytelephalangy and a thin corpus callosum. Human Genome Variation, 2018, 5, 18005.	0.4	17
196	Perspectives on Glycosylation and Its Congenital Disorders. Trends in Genetics, 2018, 34, 466-476.	2.9	184
197	<i><scp>PGAP3</scp></i> â€related hyperphosphatasia with mental retardation syndrome: Report of 10 new patients and a homozygous founder mutation. Clinical Genetics, 2018, 93, 84-91.	1.0	20
198	Recurrent aseptic meningitis with <i>PIGT</i> mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Reports, 2018, 2018, bcr-2018-225910.	0.2	11
199	Genomic Interventions in Medicine. Bioinformatics and Biology Insights, 2018, 12, 117793221881610.	1.0	5
200	Mutations in PIGS, Encoding a GPI Transamidase, Cause a Neurological Syndrome Ranging from Fetal Akinesia to Epileptic Encephalopathy. American Journal of Human Genetics, 2018, 103, 602-611.	2.6	44
201	Delineating the phenotypic spectrum of hyperphosphatasia with mental retardation syndrome 4 in 14 patients of Middleâ€Eastern origin. American Journal of Medical Genetics, Part A, 2018, 176, 2850-2857.	0.7	5
202	Large deletion in PIGL: a common mutational mechanism in CHIME syndrome?. Genetics and Molecular Biology, 2018, 41, 85-91.	0.6	6
203	Analytical Approaches for Exome Sequence Data. Translational Bioinformatics, 2018, , 121-136.	0.0	0
204	Applied Computational Genomics. Translational Bioinformatics, 2018, , .	0.0	0
205	Evaluating Runs of Homozygosity in Exome Sequencing Data - Utility in Disease Inheritance Model Selection and Variant Filtering. Communications in Computer and Information Science, 2018, , 268-288.	0.4	2
206	Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 403-419.	2.3	34
207	Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Medicine, 2018, 10, 3.	3.6	67
208	The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Archives of Biochemistry and Biophysics, 2018, 656, 1-18.	1.4	33

#	Article	IF	CITATIONS
209	Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genetics in Medicine, 2019, 21, 553-563.	1.1	41
210	Clinical, genetic, and molecular characterization of hyperphosphatasia with mental retardation: a case report and literature review. Diagnostic Pathology, 2019, 14, 123.	0.9	7
212	Cerebral and portal vein thrombosis, macrocephaly and atypical absence seizures in Glycosylphosphatidyl inositol deficiency due to a PIGM promoter mutation. Molecular Genetics and Metabolism, 2019, 128, 151-161.	0.5	9
213	Mutations in the PIGW gene associated with hyperphosphatasia and mental retardation syndrome: a case report. BMC Pediatrics, 2019, 19, 68.	0.7	9
214	Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. Environmental and Molecular Mutagenesis, 2019, 60, 470-493.	0.9	8
215	Longitudinal study of tâ€cell somatic mutations conferring glycosylphosphatidylinositolâ€anchor deficiency in gulf war I veterans exposed to depleted uranium. Environmental and Molecular Mutagenesis, 2019, 60, 494-504.	0.9	10
216	Intellectual Disability Associated With Pyridoxine-Responsive Epilepsies: The Need to Protect Cognitive Development. Frontiers in Psychiatry, 2019, 10, 116.	1.3	9
217	PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: description of 13 novel patients and expansion of the clinical characteristics. Genetics in Medicine, 2019, 21, 2216-2223.	1.1	21
218	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.1	2
219	Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. Journal of Biological Chemistry, 2019, 294, 5038-5049.	1.6	27
220	Detecting genetic modifiers of spondyloepimetaphyseal dysplasia with joint laxity in the Caucasian Afrikaner community. Human Molecular Genetics, 2019, 28, 1053-1063.	1.4	1
221	A Rare Mutation in <i>SPLUNC1</i> Affects Bacterial Adherence and Invasion in Meningococcal Disease. Clinical Infectious Diseases, 2020, 70, 2045-2053.	2.9	6
222	A post glycosylphosphatidylinositol (GPI) attachment to proteins, type 2 (PGAP2) variant identified in Mabry syndrome index cases: Molecular genetics of the prototypical inherited GPI disorder. European Journal of Medical Genetics, 2020, 63, 103822.	0.7	8
223	Molecular analysis of GPI-anchor biosynthesis pathway genes in rat strains used for the Pig-a gene mutation assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 858-860, 503256.	0.9	4
224	Ranbow: A fast and accurate method for polyploid haplotype reconstruction. PLoS Computational Biology, 2020, 16, e1007843.	1.5	23
225	The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet Journal of Rare Diseases, 2020, 15, 129.	1.2	25
226	Persistent idiopathic hyperphosphatasemia from bone alkaline phosphatase in a healthy boy. Bone, 2020, 138, 115459.	1.4	4
227	Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology, 2020, 10, 190290.	1.5	166

ARTICLE IF CITATIONS # Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Molecular Genetics 228 0.5 15 and Metabolism, 2020, 130, 49-57. Target region sequencing and applications in plants. Journal of Crop Science and Biotechnology, 2021, 229 24, 13-26. 230 Diseases Associated With GPI Anchors., 2021, , 346-363. 0 Congenital Disorders of Glycosylation., 2021,, 294-334. HiCancer: accurate and complete cancer genome phasing with Hi-C reads. Scientific Reports, 2021, 11, 232 1.6 0 6609. The evolving genetic landscape of congenital disorders of glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129976. 1.1 24 A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and 234 exhibits hippocampal synaptic dysfunctions. Proceedings of the National Academy of Sciences of the 3.3 8 United States of America, 2021, 118, . The Power of Homozygosity Mapping: Discovery of New Genetic Defects in Patients with Retinal 0.8 Dystrophy. Advances in Experimental Medicine and Biology, 2012, 723, 345-351. Glycosylphosphatidylinositol-N-Acetylglucosaminyltransferase (GPI-GlcNAc Transferase): A Complex 236 1 Comprised of PIGA, PIGC, PIGH, PIGQ, PIGP, PIGY and DPM2., 2014, , 1193-1208. Congenital Disorders of Glycosylation: Glycosylphosphatidylinositol (GPI)-Related., 2015, , 1229-1236. Synthesis, Genetics, and Congenital Diseases of GPI-Anchored Proteins., 2017, , 11-54. 238 5 From GWAS to Next-Generation Sequencing on Human Complex Diseases: The Implications for Translational Medicine and Therapeutics. Translational Bioinformatics, 2012, , 157-179. Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome. Sub-Cellular Biochemistry, 2015, 76, 240 1.0 13 343-361. Whole-Exome Re-Sequencing in a Family Quartet Identifies POP1 Mutations As the Cause of a Novel Skeletal Dysplasia. PLoS Genetics, 2011, 7, e1002027. 243 1.5 Statistical Guidance for Experimental Design and Data Analysis of Mutation Detection in Rare 244 1.1 24 Monogenic Mendelian Diseases by Exome Sequencing. PLoS ONE, 2012, 7, e31358. Exomic Sequencing of Immune-Related Genes Reveals Novel Candidate Variants Associated with 245 Alopecia Universalis. PLoS ONE, 2013, 8, e53613. A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to 246 1.1 13 complement-mediated toxicity in a human iPSC model. PLoS ONE, 2017, 12, e0174074. Identification of Novel TMC1 Compound Heterozygous Mutations Related to Autosomal Recessive 247 Hearing Loss by Targeted Capture Sequencing. Scientific Journal of Genetics and Gene Therapy, 2019, 2, 013-016.

		CITATION REPORT	
# 248	ARTICLE Hypophosphatasia: Biological and Clinical Aspects, Avenues for Therapy. , 2020, 41, 13-26.	IF	CITATIONS
250	Potential Roles of GPI-Anchor Remodeling in Protein Trafficking and Raft Association in Mammalia Cells. Trends in Glycoscience and Glycotechnology, 2012, 24, 244-257.	n 0.0	1
251	Exome Sequencing in Mendelian Disorders. Journal of Genetic Medicine, 2010, 7, 119-124.	0.1	1
253	Orphan Diseases, Bioinformatics and Drug Discovery. Translational Bioinformatics, 2012, , 287-30	7. 0.0	1
255	Analytical Approaches for Exome Sequence Data. Translational Bioinformatics, 2012, , 105-120.	0.0	0
256	Exome Sequencing as a Discovery and Diagnostic Tool. SpringerBriefs in Genetics, 2013, , 75-86.	0.1	0
257	A Survey of Next-Generation–Sequencing Technologies. SpringerBriefs in Genetics, 2013, , 13-2	.4. 0.1	0
258	Next-generation whole-exome sequencing contribution to identification of rare autosomal recessi diseases. Acta Medica Lituanica, 2013, 20, 43-51.	ve 0.2	2
259	Congenital Disorders of Glycosylation: Glycosylphosphatidylinositol (GPI) Related. , 2014, , 1-7.		0
261	GPI Mannose Extension (PIGM, PIGV, PIGB, PIGZ). , 2014, , 1209-1220.		0
262	Coffin–Siris Syndrome. , 1987, , 307-310.		0
264	Vitamin and Cofactor Responsive Encephalopathies and Seizures. Journal of International Child Neurology Association, 0, , .	0.0	0
265	Congenital Disorders of Glycosylation. , 2016, , 121-125.		0
270	Human X-linked CUL4B Gene Mutation Mediated Changes in Function during Development of Tes after Prediction of 3D Structure. Perceptions in Reproductive Medicine, 2020, 4, .	tis 0.1	0
271	C18orf32 loss-of-function is associated with a neurodevelopmental disorder with hypotonia and contractures. Human Genetics, 2022, , 1.	1.8	0
272	Glycan Biosynthesis in Eukaryotes. , 2022, , 53-114.		0
273	Congenital diaphragmatic hernia and early lethality in PIGL-related disorder. European Journal of Medical Genetics, 2022, 65, 104501.	0.7	2
274	Pyridoxine-Dependent Epilepsy and Antiquitin Deficiency Resulting in Neonatal-Onset Refractory Seizures. Brain Sciences, 2022, 12, 65.	1.1	8

#	Article	IF	CITATIONS
277	Ethanolamineâ€phosphate on the second mannose is a preferential bridge for some GPIâ€anchored proteins. EMBO Reports, 2022, 23, .	2.0	7
278	Establishment of mouse model of inherited PIGO deficiency and therapeutic potential of AAV-based gene therapy. Nature Communications, 2022, 13, .	5.8	4
279	Hyperphosphatasia with mental retardation syndrome 3: Cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid. JIMD Reports, 2023, 64, 42-52.	0.7	4
280	LOF variants identifying candidate genes of laterality defects patients with congenital heart disease. PLoS Genetics, 2022, 18, e1010530.	1.5	1
281	Excluding Digenic Inheritance of PGAP2 and PGAP3 Variants in Mabry Syndrome (OMIM 239300) Patient: Phenotypic Spectrum Associated with PGAP2 Gene Variants in Hyperphosphatasia with Mental Retardation Syndrome-3 (HPMRS3). Genes, 2023, 14, 359.	1.0	2