High-throughput generation, optimization and analysis

Nature Biotechnology 28, 977-982

DOI: 10.1038/nbt.1672

Citation Report

#	Article	IF	CITATIONS
1	The challenges of integrating multi-omic data sets. Nature Chemical Biology, 2010, 6, 787-789.	3.9	154
2	Structural and operational complexity of the <i>Geobacter sulfurreducens</i> genome. Genome Research, 2010, 20, 1304-1311.	2.4	75
3	Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models. Biophysical Journal, 2011, 100, 544-553.	0.2	203
4	Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols, 2011, 6, 1290-1307.	5.5	1,408
5	Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications, $2011, 2, 589$.	5.8	413
6	Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Briefings in Functional Genomics, 2011, 10, 322-333.	1.3	41
7	A Practical Guide to Genome-Scale Metabolic Models and Their Analysis. Methods in Enzymology, 2011, 500, 509-532.	0.4	45
8	Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biology, 2011, 12, R127.	13.9	30
9	Applications of systems biology towards microbial fuel production. Trends in Microbiology, 2011, 19, 516-524.	3.5	23
10	Strengths and Weaknesses of Selected Modeling Methods Used in Systems Biology. , 2011, , .		2
11	Flux-Balance Modeling of Plant Metabolism. Frontiers in Plant Science, 2011, 2, 38.	1.7	124
12	Genome-Scale Consequences of Cofactor Balancing in Engineered Pentose Utilization Pathways in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e27316.	1.1	51
13	The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinformatics, 2011, 8, 187-203.	1.0	67
15	Systems-biology approaches for predicting genomic evolution. Nature Reviews Genetics, 2011, 12, 591-602.	7.7	112
16	In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 2011, 9, 39-50.	13.6	128
17	Green systems biology — From single genomes, proteomes and metabolomes to ecosystems research	1.2	100
	and biotechnology. Journal of Proteomics, 2011, 75, 284-305.	1,2	189
18	and biotechnology. Journal of Proteomics, 2011, 75, 284-305. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor. BMC Research Notes, 2011, 4, 325.	0.6	2

#	Article	IF	CITATIONS
20	Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets. Briefings in Functional Genomics, 2011, 10, 354-364.	1.3	13
21	Microbial Metagenomics: Beyond the Genome. Annual Review of Marine Science, 2011, 3, 347-371.	5.1	323
22	A survey of metabolic databases emphasizing the MetaCyc family. Archives of Toxicology, 2011, 85, 1015-1033.	1.9	72
23	Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing. Analytical and Bioanalytical Chemistry, 2011, 400, 1967-1978.	1.9	87
24	Ecosystems biology of microbial metabolism. Current Opinion in Biotechnology, 2011, 22, 541-546.	3.3	98
25	Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Systems Biology, 2011, 5, 150.	3.0	86
26	The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Systems Biology, 2011, 5, 155.	3.0	60
27	The evolution of metabolic networks of E. coli. BMC Systems Biology, 2011, 5, 182.	3.0	60
28	Prediction of metabolic pathways from genome-scale metabolic networks. BioSystems, 2011, 105, 109-121.	0.9	30
30	Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology, 2011, 29, 251-258.	4.9	74
31	Sustainable Model Building. Methods in Enzymology, 2011, 500, 371-395.	0.4	11
32	Modeling Metabolic Networks for Mammalian Cell Systems: General Considerations, Modeling Strategies, and Available Tools., 2011, 127, 71-108.		9
33	GLAMM: Genome-Linked Application for Metabolic Maps. Nucleic Acids Research, 2011, 39, W400-W405.	6.5	26
34	MrBac: A web server for draft metabolic network reconstructions for bacteria. Bioengineered Bugs, 2011, 2, 284-287.	2.0	8
35	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
36	A comprehensive genomeâ€scale reconstruction of <i>Escherichia coli</i> metabolism—2011. Molecular Systems Biology, 2011, 7, 535.	3.2	917
37	Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence. PLoS Genetics, 2012, 8, e1002887.	1.5	108
38	OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities. PLoS Computational Biology, 2012, 8, e1002363.	1.5	322

#	ARTICLE	IF	Citations
39	RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics. Nucleic Acids Research, 2012, 40, W604-W608.	6.5	24
40	Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Reprograming Microbial Metabolic Pathways. Sub-Cellular Biochemistry, 2012, 64, 21-42.	1.0	8
41	CytoSEED: a Cytoscape plugin for viewing, manipulating and analyzing metabolic models created by the Model SEED. Bioinformatics, 2012, 28, 891-892.	1.8	12
42	Phenomenological Model for Predicting the Catabolic Potential of an Arbitrary Nutrient. PLoS Computational Biology, 2012, 8, e1002762.	1.5	2
43	UniPathway: a resource for the exploration and annotation of metabolic pathways. Nucleic Acids Research, 2012, 40, D761-D769.	6.5	83
44	Frontiers in metabolic reconstruction and modeling of plant genomes. Journal of Experimental Botany, 2012, 63, 2247-2258.	2.4	79
45	Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Briefings in Bioinformatics, 2012, 13, 696-710.	3.2	70
46	Reconstruction of <i>Arabidopsis</i> metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 339-344.	3.3	237
47	Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A. Journal of Bacteriology, 2012, 194, 855-865.	1.0	79
48	Genetic/bio design automation for (re-)engineering biological systems. , 2012, , .		3
49	Construction and completion of flux balance models from pathway databases. Bioinformatics, 2012, 28, 388-396.	1.8	86
50	Systematic Applications of Metabolomics in Metabolic Engineering. Metabolites, 2012, 2, 1090-1122.	1.3	20
51	Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Molecular Systems Biology, 2012, 8, 581.	3.2	29
52	A travel guide to Cytoscape plugins. Nature Methods, 2012, 9, 1069-1076.	9.0	1,289
53	Mathematical optimization applications in metabolic networks. Metabolic Engineering, 2012, 14, 672-686.	3.6	123
54	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
55	Genome-wide metabolic network reconstruction of the picoalga Ostreococcus. Journal of Experimental Botany, 2012, 63, 2353-2362.	2.4	41
56	Modeling microbial communities: Current, developing, and future technologies for predicting microbial community interaction. Journal of Biotechnology, 2012, 160, 17-24.	1.9	48

#	Article	IF	Citations
57	Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks. Plant Cell, 2012, 24, 3859-3875.	3.1	96
58	GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics, 2012, 28, 1752-1758.	1.8	45
59	Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 2012, 10, 291-305.	13.6	721
60	Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Antonie Van Leeuwenhoek, 2012, 102, 493-502.	0.7	35
61	Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2012, 161, 42-48.	1.9	36
62	Use of an Uncertainty Analysis for Genome-Scale Models as a Prediction Tool for Microbial Growth Processes in Subsurface Environments. Environmental Science & Environmental Science & 2790-2798.	4.6	10
63	Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Scientific Reports, 2012, 2, 580.	1.6	64
64	GENOME-BASED MODELING AND DESIGN OF METABOLIC INTERACTIONS IN MICROBIAL COMMUNITIES. Computational and Structural Biotechnology Journal, 2012, 3, e201210008.	1.9	25
65	Are we ready for genome-scale modeling in plants?. Plant Science, 2012, 191-192, 53-70.	1.7	59
66	A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends in Microbiology, 2012, 20, 113-123.	3.5	94
67	Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. Journal of Experimental Botany, 2012, 63, 2259-2274.	2.4	45
68	Global probabilistic annotation of metabolic networks enables enzyme discovery. Nature Chemical Biology, 2012, 8, 848-854.	3.9	53
69	Computational tools for the synthetic design of biochemical pathways. Nature Reviews Microbiology, 2012, 10, 191-202.	13.6	206
70	Evaluating Sphingolipid Biochemistry in the Consensus Reconstruction of Yeast Metabolism. Industrial Biotechnology, 2012, 8, 72-78.	0.5	2
71	MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics, 2012, 13, 6.	1.2	120
72	FAME, the Flux Analysis and Modeling Environment. BMC Systems Biology, 2012, 6, 8.	3.0	75
73	MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Systems Biology, 2012, 6, 94.	3.0	50
74	Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathogens, 2012, 4, 16.	1.6	127

#	ARTICLE	IF	CITATIONS
75	Development of Constraint-Based System-Level Models of Microbial Metabolism. Methods in Molecular Biology, 2012, 881, 531-549.	0.4	O
76	Recent advances in reconstruction and applications of genome-scale metabolic models. Current Opinion in Biotechnology, 2012, 23, 617-623.	3.3	181
77	Innovation at the intersection of synthetic and systems biology. Current Opinion in Biotechnology, 2012, 23, 712-717.	3.3	29
78	Reverse Ecology: From Systems to Environments and Back. Advances in Experimental Medicine and Biology, 2012, 751, 329-345.	0.8	54
79	Microbial Systems Biology. Methods in Molecular Biology, 2012, , .	0.4	3
80	Genomics and Systems Biology of Mammalian Cell Culture. , 2012, , .		5
81	Systems Metabolic Engineering. , 2012, , .		11
82	FOCAL: an experimental design tool for systematizing metabolic discoveries and model development. Genome Biology, 2012, 13, R116.	13.9	17
83	MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biology, 2012, 13, R111.	13.9	69
84	Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models. PLoS ONE, 2012, 7, e34670.	1.1	41
85	Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS ONE, 2012, 7, e45635.	1.1	100
86	SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models. PLoS ONE, 2012, 7, e48053.	1.1	169
87	Reconstruction of Danio rerio Metabolic Model Accounting for Subcellular Compartmentalisation. PLoS ONE, 2012, 7, e49903.	1.1	15
88	Gap Detection for Genome-Scale Constraint-Based Models. Advances in Bioinformatics, 2012, 2012, 1-10.	5 . 7	17
89	Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 594-599.	3.3	699
90	A road map for the development of community systems (CoSy) biology. Nature Reviews Microbiology, 2012, 10, 366-372.	13.6	135
91	Genome-Scale Network Modeling. , 2012, , 1-23.		2
92	Superessential reactions in metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1121-30.	3.3	47

#	ARTICLE	IF	CITATIONS
93	Metabolic network modeling and simulation for drug targeting and discovery. Biotechnology Journal, 2012, 7, 330-342.	1.8	49
94	Genomeâ€scale metabolic representation of <i>Amycolatopsis balhimycina</i> Bioengineering, 2012, 109, 1798-1807.	1.7	19
95	Using Flux Balance Analysis to Guide Microbial Metabolic Engineering. Methods in Molecular Biology, 2012, 834, 197-216.	0.4	25
96	Grounding annotations in published literature with an emphasis on the functional roles used in metabolic models. 3 Biotech, 2012, 2, 135-140.	1.1	0
97	From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Research, 2012, 12, 129-143.	1.1	70
98	Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Letters, 2012, 586, 2177-2183.	1.3	63
99	Modeling microbial community structure and functional diversity across time and space. FEMS Microbiology Letters, 2012, 332, 91-98.	0.7	38
100	Computational tools for metabolic engineering. Metabolic Engineering, 2012, 14, 270-280.	3.6	93
101	Metabolically re-modeling the drug pipeline. Current Opinion in Pharmacology, 2013, 13, 778-785.	1.7	33
102	A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature, 2013, 500, 203-206.	13.7	149
103	Model-based design of synthetic, biological systems. Chemical Engineering Science, 2013, 103, 2-11.	1.9	18
104	MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinformatics, 2013, 14, 202.	1.2	100
105	Deciphering the response of Mycobacterium smegmatis to nitrogen stress using bipartite active modules. BMC Genomics, 2013, 14, 436.	1.2	14
106	Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics, 2013, 14, 365.	1.2	45
107	AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response. BMC Systems Biology, 2013, 7, 26.	3.0	9
108	Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC Systems Biology, 2013, 7, 19.	3.0	32
109	Beyond the genome: community-level analysis of the microbial world. Biology and Philosophy, 2013, 28, 261-282.	0.7	72
110	Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants. Applied Microbiology and Biotechnology, 2013, 97, 3569-3577.	1.7	8

#	Article	IF	CITATIONS
111	Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Applied Microbiology and Biotechnology, 2013, 97, 519-539.	1.7	50
112	An analysis of a â€~community-driven' reconstruction of the human metabolic network. Metabolomics, 2013, 9, 757-764.	1.4	30
113	Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Current Opinion in Biotechnology, 2013, 24, 810-820.	3.3	58
114	Computational Models of Algae Metabolism for Industrial Applications. Industrial Biotechnology, 2013, 9, 185-195.	0.5	7
115	Robust Automated Mass Spectra Interpretation and Chemical Formula Calculation Using Mixed Integer Linear Programming. Analytical Chemistry, 2013, 85, 9777-9784.	3.2	8
116	Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model. Journal of Biotechnology, 2013, 164, 503-509.	1.9	25
117	The Genotypic View of Social Interactions in Microbial Communities. Annual Review of Genetics, 2013, 47, 247-273.	3.2	257
118	Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	4
119	Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nature Communications, 2013, 4, 2809.	5.8	103
120	Towards metagenome-scale models for industrial applicationsâ€"the case of Lactic Acid Bacteria. Current Opinion in Biotechnology, 2013, 24, 200-206.	3.3	43
121	Understanding the interactions between bacteria in the human gut through metabolic modeling. Scientific Reports, 2013, 3, 2532.	1.6	224
122	COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 2013, 7, 74.	3.0	973
123	Rapid construction of metabolic models for a family of Cyanobacteria using a multiple source annotation workflow. BMC Systems Biology, 2013, 7, 142.	3.0	28
124	A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics, 2013, 14, 112.	1.2	123
125	Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Systems Biology, 2013, 7, 116.	3.0	145
126	Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti. BMC Systems Biology, 2013, 7, 114.	3.0	20
127	Analysis of Metabolic Evolution in Bacteria Using Whole-Genome Metabolic Models. Journal of Computational Biology, 2013, 20, 755-764.	0.8	3
128	Algorithms to infer metabolic flux ratios from fluxomics data. , 2013, , .		0

#	ARTICLE	IF	CITATIONS
129	Directed Multistep Biocatalysis Using Tailored Permeabilized Cells. Advances in Biochemical Engineering/Biotechnology, 2013, 137, 185-234.	0.6	15
130	Human Analysts at Superhuman Scales: What Has Friendly Software To Do?. Big Data, 2013, 1, 227-236.	2.1	1
131	An integrated framework for strain optimization. , 2013, , .		3
132	Basic and applied uses of genomeâ€scale metabolic network reconstructions of <i>Escherichia coli</i> Molecular Systems Biology, 2013, 9, 661.	3.2	290
133	Comparative genomics approaches to understanding and manipulating plant metabolism. Current Opinion in Biotechnology, 2013, 24, 278-284.	3.3	24
134	Advanced Methods for Detection of Foodborne Pathogens. , 2013, , 605-618.		0
135	Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature Biotechnology, 2013, 31, 160-165.	9.4	375
136	A systems biology approach to studying the role of microbes in human health. Current Opinion in Biotechnology, 2013, 24, 4-12.	3.3	100
137	Reconstruction of Genome-Scale Metabolic Networks. , 2013, , 229-250.		1
138	From measurement to implementation of metabolic fluxes. Current Opinion in Biotechnology, 2013, 24, 13-21.	3.3	13
139	Genomically and biochemically accurate metabolic reconstruction of <i>Methanosarcina barkeri</i> Fusaro, iMG746. Biotechnology Journal, 2013, 8, 1070-1079.	1.8	41
140	Deriving metabolic engineering strategies from genomeâ€scale modeling with flux ratio constraints. Biotechnology Journal, 2013, 8, 581-594.	1.8	16
141	Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes, 2013, 4, 28-40.	4.3	210
142	Structure and dynamics of molecular networks: A novel paradigm of drug discovery. , 2013, 138, 333-408.		779
143	Genome-Scale Model Management and Comparison. Methods in Molecular Biology, 2013, 985, 3-16.	0.4	1
144	Linking Genome-Scale Metabolic Modeling and Genome Annotation. Methods in Molecular Biology, 2013, 985, 61-83.	0.4	8
145	Resolving Cell Composition Through Simple Measurements, Genome-Scale Modeling, and a Genetic Algorithm. Methods in Molecular Biology, 2013, 985, 85-101.	0.4	2
146	Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene, 2013, 521, 1-14.	1.0	47

#	Article	IF	CITATIONS
147	Multiâ€scale modeling for sustainable chemical production. Biotechnology Journal, 2013, 8, 973-984.	1.8	14
148	Modeling Challenges in the Synthetic Biology of Secondary Metabolism. ACS Synthetic Biology, 2013, 2, 373-378.	1.9	30
149	Modeling Mycobacterium tuberculosis H37Rv In Silico. , 2013, , 1-19.		0
150	Analysis of Metabolic Evolution in Bacteria Using Whole-Genome Metabolic Models. Lecture Notes in Computer Science, 2013, , 45-57.	1.0	0
151	Informatics-Driven Infectious Disease Research. Communications in Computer and Information Science, 2013, , 3-11.	0.4	0
152	Plant genome-scale metabolic reconstruction and modelling. Current Opinion in Biotechnology, 2013, 24, 271-277.	3.3	71
153	Systems Metabolic Engineering. Methods in Molecular Biology, 2013, , .	0.4	3
154	Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microbial Cell Factories, 2013, 12, 118.	1.9	145
155	MC3: a steady-state model and constraint consistency checker for biochemical networks. BMC Systems Biology, 2013, 7, 129.	3.0	11
156	MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 2013, 29, 815-816.	1.8	120
157	Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism \hat{A} \hat{A} . Plant Physiology, 2013, 162, 1060-1072.	2.3	117
158	The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum. PLoS Computational Biology, 2013, 9, e1002980.	1.5	364
159	Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks. PLoS Computational Biology, 2013, 9, e1003370.	1.5	31
160	Semi-automated Curation of Metabolic Models via Flux Balance Analysis: A Case Study with Mycoplasma gallisepticum. PLoS Computational Biology, 2013, 9, e1003208.	1.5	15
161	Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM. PLoS Computational Biology, 2013, 9, e1003126.	1.5	70
162	Predicting Network Activity from High Throughput Metabolomics. PLoS Computational Biology, 2013, 9, e1003123.	1.5	697
163	Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Research, 2013, 41, 687-699.	6.5	76
164	Computational evaluation of cellular metabolic costs successfully predicts genes whose expression is deleterious. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19166-19171.	3.3	21

#	ARTICLE	IF	CITATIONS
165	Metingear: a development environment for annotating genome-scale metabolic models. Bioinformatics, 2013, 29, 2213-2215.	1.8	7
166	Dissecting the energy metabolism in <i>Mycoplasma pneumoniae</i> through genomeâ€scale metabolic modeling. Molecular Systems Biology, 2013, 9, 653.	3.2	69
167	Use of a global metabolic network to curate organismal metabolic networks. Scientific Reports, 2013, 3, 1695.	1.6	11
169	Maximal Sum of Metabolic Exchange Fluxes Outperforms Biomass Yield as a Predictor of Growth Rate of Microorganisms. PLoS ONE, 2014, 9, e98372.	1.1	9
170	MediaDB: A Database of Microbial Growth Conditions in Defined Media. PLoS ONE, 2014, 9, e103548.	1.1	28
171	Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A. PLoS ONE, 2014, 9, e110785.	1.1	32
172	Systems biology solutions to challenges in marine biotechnology. Frontiers in Marine Science, 2014, 1 ,	1.2	4
173	Computational Strategies for a System-Level Understanding of Metabolism. Metabolites, 2014, 4, 1034-1087.	1.3	54
174	Predicting Phenotype from Genotype Through Reconstruction and Integrative Modeling of Metabolic and Regulatory Networks., 2014,, 307-325.		2
175	Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut Microbiota Abundance and Host Diet-Specific Adaptations. MBio, 2014, 5, .	1.8	35
176	CBFA: phenotype prediction integrating metabolic models with constraints derived from experimental data. BMC Systems Biology, 2014, 8, 123.	3.0	7
177	Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam. BMC Evolutionary Biology, 2014, 14, 207.	3.2	22
178	Capturing the response of Clostridium acetobutylicumto chemical stressors using a regulated genome-scale metabolic model. Biotechnology for Biofuels, 2014, 7, 144.	6.2	56
179	Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, 2014, , .	0.4	22
180	Assimilating genome-scale metabolic reconstructions with modelBorgifier. Bioinformatics, 2014, 30, 1036-1038.	1.8	14
181	Integrated network analysis and effective tools in plant systems biology. Frontiers in Plant Science, 2014, 5, 598.	1.7	55
182	Emergent Biosynthetic Capacity in Simple Microbial Communities. PLoS Computational Biology, 2014, 10, e1003695.	1. 5	86
183	Comparative nutritional and chemical phenome of Clostridium difficile isolates determined using phenotype microarrays. International Journal of Infectious Diseases, 2014, 27, 20-25.	1.5	24

#	Article	IF	CITATIONS
184	Genome-Scale Models of Plant Metabolism. Methods in Molecular Biology, 2014, 1083, 213-230.	0.4	10
185	Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models. PLoS Computational Biology, 2014, 10, e1003882.	1.5	66
186	A Novel Nutritional Predictor Links Microbial Fastidiousness with Lowered Ubiquity, Growth Rate, and Cooperativeness. PLoS Computational Biology, 2014, 10, e1003726.	1.5	31
187	MEMOSys 2.0: an update of the bioinformatics database for genome-scale models and genomic data. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau004.	1.4	16
188	Computational Approaches for Microalgal Biofuel Optimization: A Review. BioMed Research International, 2014, 2014, 1-12.	0.9	21
189	Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model \hat{A} \hat{A} \hat{A} . Plant Physiology, 2014, 166, 1659-1674.	2.3	80
190	Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis. PLoS Computational Biology, 2014, 10, e1003848.	1.5	25
191	Computational approaches to metabolic engineering utilizing systems biology and synthetic biology. Computational and Structural Biotechnology Journal, 2014, 11, 28-34.	1.9	22
192	A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Computational and Structural Biotechnology Journal, 2014, 11, 91-99.	1.9	56
193	A Practical Protocol for Genome-Scale Metabolic Reconstructions. Springer Protocols, 2014, , 197-221.	0.1	8
194	Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens. PLoS Computational Biology, 2014, 10, e1003575.	1.5	38
195	Predicting the functional repertoire of an organism from unassembled RNA–seq data. BMC Genomics, 2014, 15, 1003.	1.2	4
196	Cancer cell metabolism as new targets for novel designed therapies. Future Medicinal Chemistry, 2014, 6, 1791-1810.	1.1	22
197	The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 2014, 78, 3-10.	1.2	105
198	Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Frontiers in Microbiology, 2014, 5, 125.	1.5	46
199	Reconciliation of metabolites and biochemical reactions for metabolic networks. Briefings in Bioinformatics, 2014, 15, 123-135.	3.2	64
200	Interspecies Systems Biology Uncovers Metabolites Affecting C.Âelegans Gene Expression and Life History Traits. Cell, 2014, 156, 759-770.	13.5	209
201	Refining metabolic models and accounting for regulatory effects. Current Opinion in Biotechnology, 2014, 29, 34-38.	3.3	23

#	ARTICLE	IF	Citations
202	In search of genome annotation consistency: solid gene clusters and how to use them. 3 Biotech, 2014, 4, 331-335.	1.1	5
203	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
204	ITEP: An integrated toolkit for exploration of microbial pan-genomes. BMC Genomics, 2014, 15, 8.	1.2	123
205	Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 2014, 32, 255-268.	6.0	199
206	From the <i>selfish gene</i> to <i>selfish metabolism</i> : Revisiting the central dogma. BioEssays, 2014, 36, 226-235.	1.2	60
207	Computational tools for modeling xenometabolism of the human gut microbiota. Trends in Biotechnology, 2014, 32, 157-165.	4.9	22
208	Comparative evaluation of open source software for mapping between metabolite identifiers in metabolic network reconstructions: application to Recon 2. Journal of Cheminformatics, 2014, 6, 2.	2.8	23
209	Software platforms to facilitate reconstructing genomeâ€scale metabolic networks. Environmental Microbiology, 2014, 16, 49-59.	1.8	69
210	Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. Chemical Reviews, 2014, 114, 4149-4174.	23.0	470
211	Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME Journal, 2014, 8, 757-767.	4.4	133
212	Network types and their application in natural variation studies in plants. Current Opinion in Plant Biology, 2014, 18, 80-86.	3.5	9
213	Optimizing genome-scale network reconstructions. Nature Biotechnology, 2014, 32, 447-452.	9.4	185
214	Plant Metabolism. Methods in Molecular Biology, 2014, , .	0.4	3
216	Comparative Metabolic Systems Analysis of Pathogenic Burkholderia. Journal of Bacteriology, 2014, 196, 210-226.	1.0	43
217	Plant Genome-Scale Modeling and Implementation. Methods in Molecular Biology, 2014, 1090, 317-332.	0.4	8
218	Software applications for flux balance analysis. Briefings in Bioinformatics, 2014, 15, 108-122.	3.2	94
219	Predicting network functions with nested patterns. Nature Communications, 2014, 5, 3006.	5.8	11
220	The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 2014, 42, D206-D214.	6.5	3,832

#	Article	IF	CITATIONS
221	Dynamic flux balance analysis for synthetic microbial communities. IET Systems Biology, 2014, 8, 214-229.	0.8	65
222	A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology. Current Opinion in Chemical Engineering, 2014, 6, 33-42.	3.8	10
223	Database and tools for metabolic network analysis. Biotechnology and Bioprocess Engineering, 2014, 19, 568-585.	1.4	19
224	Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	28
225	A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. Journal of Experimental Botany, 2014, 65, 5711-5724.	2.4	48
226	Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Metabolic Engineering, 2014, 25, 159-173.	3.6	29
227	Sigma S-Dependent Antioxidant Defense Protects Stationary-Phase Escherichia coli against the Bactericidal Antibiotic Gentamicin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5964-5975.	1.4	29
228	Efficiently gap-filling reaction networks. BMC Bioinformatics, 2014, 15, 225.	1.2	33
229	Proteomics-based metabolic modeling and characterization of the cellulolytic bacterium Thermobifida fusca. BMC Systems Biology, 2014, 8, 86.	3.0	17
230	Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe. Journal of Bacteriology, 2014, 196, 3289-3302.	1.0	173
231	Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Systems Biology, 2014, 8, 41.	3.0	88
232	The genomeâ€scale metabolic network of <i>Ectocarpus siliculosus</i> (Ecto <scp>GEM</scp>): a resource to study brown algal physiology and beyond. Plant Journal, 2014, 80, 367-381.	2.8	39
234	Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Reports, 2014, 7, 1104-1115.	2.9	428
235	DuctApe: A suite for the analysis and correlation of genomic and OmniLogâ,, Phenotype Microarray data. Genomics, 2014, 103, 1-10.	1.3	73
236	High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9645-9650.	3.3	69
237	iOD907, the first genomeâ€scale metabolic model for the milk yeast <i>Kluyveromyces lactis</i> Biotechnology Journal, 2014, 9, 776-790.	1.8	52
238	Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Briefings in Bioinformatics, 2014, 15, 592-611.	3.2	30
239	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	1.1	72

#	Article	IF	CITATIONS
240	Diet-Microbiota Interactions and their Implications for Healthy Living. , 2014, , 287-310.		1
241	Approaches and developments in studying the human microbiome network. Israel Journal of Ecology and Evolution, 2015, 61, 90-94.	0.2	1
242	Systems biology of host–microbe metabolomics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 195-219.	6.6	80
244	Genome-scale modelling of microbial metabolism with temporal and spatial resolution. Biochemical Society Transactions, 2015, 43, 1164-1171.	1.6	23
246	RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 2015, 5, 8365.	1.6	2,080
247	Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Current Opinion in Biotechnology, 2015, 36, 146-153.	3.3	38
248	Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome, 2015, 3, 55.	4.9	41
249	Designing minimal microbial strains of desired functionality using a genetic algorithm. Algorithms for Molecular Biology, 2015, 10, 29.	0.3	6
250	Constructing kinetic models of metabolism at genomeâ€scales: A review. Biotechnology Journal, 2015, 10, 1345-1359.	1.8	72
251	Designer Microorganisms for Optimized Redox Cascade Reactions – Challenges and Future Perspectives. Advanced Synthesis and Catalysis, 2015, 357, 1587-1618.	2.1	51
252	Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica. Metabolites, 2015, 5, 794-813.	1.3	30
253	Tools for visualization and analysis of molecular networks, pathways, and -omics data. Advances and Applications in Bioinformatics and Chemistry, 2015, 8, 11.	1.6	50
254	Systems Biology Approaches to Understand Natural Products Biosynthesis. Frontiers in Bioengineering and Biotechnology, 2015, 3, 199.	2.0	6
255	Systems Biology of Microbial Exopolysaccharides Production. Frontiers in Bioengineering and Biotechnology, 2015, 3, 200.	2.0	196
256	Computational Studies of the Intestinal Host-Microbiota Interactome. Computation, 2015, 3, 2-28.	1.0	5
257	Integrated in silico Analyses of Regulatory and Metabolic Networks of Synechococcus sp. PCC 7002 Reveal Relationships between Gene Centrality and Essentiality. Life, 2015, 5, 1127-1140.	1.1	15
258	Data-driven integration of genome-scale regulatory and metabolic network models. Frontiers in Microbiology, 2015, 6, 409.	1.5	49
259	Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods. Frontiers in Microbiology, 2015, 6, 1032.	1.5	12

#	Article	IF	CITATIONS
260	Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction. PLoS Computational Biology, 2015, 11, e1004530.	1.5	70
261	Big Data Analytics in Healthcare. BioMed Research International, 2015, 2015, 1-16.	0.9	332
262	Using Genome-scale Models to Predict Biological Capabilities. Cell, 2015, 161, 971-987.	13.5	590
263	The systems perspective at the crossroads between chemistry and biology. Journal of Theoretical Biology, 2015, 381, 11-22.	0.8	37
264	Fostering synergy between cell biology and systems biology. Trends in Cell Biology, 2015, 25, 440-445.	3.6	2
265	Integration of metabolomics data into metabolic networks. Frontiers in Plant Science, 2015, 6, 49.	1.7	69
266	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0, , 77.	0.8	10
267	Towards improved genome-scale metabolic network reconstructions: unification, transcript specificity and beyond. Briefings in Bioinformatics, 2015, 17, bbv100.	3.2	19
268	Revealing gene regulation and associations through biological networks. Current Plant Biology, 2015, 3-4, 30-39.	2.3	57
269	Resource constrained flux balance analysis predicts selective pressure on the global structure of metabolic networks. BMC Systems Biology, 2015, 9, 88.	3.0	5
270	Bacterial Pangenomics. Methods in Molecular Biology, 2015, 1231, v-vi.	0.4	5
271	Context-specific metabolic network reconstruction of a naphthalene-degrading bacterial community guided by metaproteomic data. Bioinformatics, 2015, 31, 1771-1779.	1.8	31
272	A Proposed Essential Gene Discovery Pipeline: A Campylobacter jejuni Case Study. Methods in Molecular Biology, 2015, 1279, 167-181.	0.4	0
274	Genome-scale modeling for metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 327-338.	1.4	82
275	Computing the functional proteome: recent progress and future prospects for genome-scale models. Current Opinion in Biotechnology, 2015, 34, 125-134.	3.3	59
276	Computational methods in metabolic engineering for strain design. Current Opinion in Biotechnology, 2015, 34, 135-141.	3.3	121
277	Current state of genome-scale modeling in filamentous fungi. Biotechnology Letters, 2015, 37, 1131-1139.	1.1	25
278	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	1.4	580

#	ARTICLE	IF	CITATIONS
279	Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Frontiers in Plant Science, 2015, 6, 142.	1.7	48
280	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	7.2	345
281	Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SpringerPlus, 2015, 4, 393.	1.2	32
282	The principles of whole-cell modeling. Current Opinion in Microbiology, 2015, 27, 18-24.	2.3	66
283	Scaling and optimal synergy: Two principles determining microbial growth in complex media. Physical Review E, 2015, 91, 062703.	0.8	1
284	The LASER database: Formalizing design rules for metabolic engineering. Metabolic Engineering Communications, 2015, 2, 30-38.	1.9	43
285	Interplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models. PLoS Computational Biology, 2015, 11, e1004166.	1.5	21
286	Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Frontiers in Microbiology, 2015, 6, 213.	1.5	60
287	Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integrative Biology (United Kingdom), 2015, 7, 869-882.	0.6	33
288	Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods. New Biotechnology, 2015, 32, 534-546.	2.4	9
289	Modern approaches to the creation of industrial microorganism strains. Russian Journal of Genetics, 2015, 51, 365-376.	0.2	5
290	PathwayBooster: a tool to support the curation of metabolic pathways. BMC Bioinformatics, 2015, 16, 86.	1.2	6
291	Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6449-6454.	3.3	588
292	Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015, 29, 135-141.	3.6	109
293	Critical assessment of genome-scale metabolic networks: the need for a unified standard. Briefings in Bioinformatics, 2015, 16, 1057-1068.	3.2	62
294	Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes, 2015, 6, 120-130.	4.3	97
295	Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference. BMC Genomics, 2015, 16, 448.	1.2	21
296	Predicting ecosystem emergent properties at multiple scales. Environmental Microbiology Reports, 2015, 7, 20-22.	1.0	17

#	Article	IF	CITATIONS
297	Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. Molecular BioSystems, 2015, 11, 3022-3032.	2.9	13
298	Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks. Journal of Biological Chemistry, 2015, 290, 19197-19207.	1.6	14
299	Genome scale engineering techniques for metabolic engineering. Metabolic Engineering, 2015, 32, 143-154.	3.6	48
300	Harnessing the landscape of microbial culture media to predict new organism–media pairings. Nature Communications, 2015, 6, 8493.	5.8	119
301	Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Van Leeuwenhoek, 2015, 108, 1075-1090.	0.7	12
302	CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants. Journal of Bacteriology, 2015, 197, 3191-3205.	1.0	17
303	From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cellular and Molecular Life Sciences, 2015, 72, 4287-4308.	2.4	114
304	The widespread role of non-enzymatic reactions in cellular metabolism. Current Opinion in Biotechnology, 2015, 34, 153-161.	3.3	105
305	Applications of genome-scale metabolic network model in metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 339-348.	1.4	77
306	Genomeâ€scale metabolic reconstruction and constraintâ€based modelling of the Antarctic bacterium <scp><i>P</i>>/i>seudoalteromonas haloplanktisàê<scp>TAC</scp>125. Environmental Microbiology, 2015, 17, 751-766.</scp>	1.8	53
307	TreeEFM: calculating elementary flux modes using linear optimization in a tree-based algorithm. Bioinformatics, 2015, 31, 897-904.	1.8	26
308	Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions. Bioinformatics, 2015, 31, 373-381.	1.8	2
309	Efficient searching and annotation of metabolic networks using chemical similarity. Bioinformatics, 2015, 31, 1016-1024.	1.8	47
310	Long-term phenotypic evolution of bacteria. Nature, 2015, 517, 369-372.	13.7	75
311	Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W. Gene, 2015, 554, 140-147.	1.0	33
312	<scp><i>S</i></scp> <i>phagnum</i> physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell and Environment, 2015, 38, 1737-1751.	2.8	60
313	An introduction to systems toxicology. Toxicology Research, 2015, 4, 9-22.	0.9	21
314	Enabling comparative modeling of closely related genomes: example genus Brucella. 3 Biotech, 2015, 5, 101-105.	1.1	5

#	Article	IF	Citations
316	Efficient Synergistic Single-Cell Genome Assembly. Frontiers in Bioengineering and Biotechnology, 2016, 4, 42.	2.0	3
317	PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Frontiers in Microbiology, 2016, 7, 118.	1.5	153
318	A Bayesian Framework for the Classification of Microbial Gene Activity States. Frontiers in Microbiology, $2016, 7, 1191$.	1.5	3
319	MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics, 2016, 17, 343.	1.2	67
320	What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Neglected Tropical Diseases, 2016, 10, e0004403.	1.3	253
321	Stoichiometric Representation of Gene–Protein–Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction. PLoS Computational Biology, 2016, 12, e1005140.	1.5	48
322	Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0. PLoS Computational Biology, 2016, 12, e1004875.	1.5	26
323	Efficient Reconstruction of Predictive Consensus Metabolic Network Models. PLoS Computational Biology, 2016, 12, e1005085.	1.5	19
324	Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS ONE, 2016, 11, e0148031.	1.1	56
325	Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome. PLoS ONE, 2016, 11, e0150974.	1.1	5
326	Applications of Constraint-Based Models for Biochemical Production. , 2016, , 201-226.		1
328	How mutualisms arise in phytoplankton communities: building ecoâ€evolutionary principles for aquatic microbes. Ecology Letters, 2016, 19, 810-822.	3.0	75
329	Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. BioSystems, 2016, 147, 1-10.	0.9	40
331	Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nature Communications, 2016, 7, 11607.	5.8	60
332	Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites. Standards in Genomic Sciences, 2016, 11, 75.	1.5	49
333	Metabolic processes of Methanococcus maripaludis and potential applications. Microbial Cell Factories, 2016, 15, 107.	1.9	55
334	DYNAMIC INTEGRATION: DYNAMICS Metabolism. , 2016, , 24-35.		1
335	Constraint-based stoichiometric modelling from single organisms to microbial communities. Journal of the Royal Society Interface, 2016, 13, 20160627.	1.5	96

#	Article	IF	CITATIONS
336	Whole-genome metabolic model of Trichoderma reesei built by comparative reconstruction. Biotechnology for Biofuels, 2016, 9, 252.	6.2	21
337	Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. Journal of Bacteriology, 2016, 198, 3379-3390.	1.0	48
338	Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation. Scientific Reports, 2016, 6, 38248.	1.6	39
339	Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports, 2016, 33, 925-932.	5.2	58
340	Network-based metabolic analysis and microbial community modeling. Current Opinion in Microbiology, 2016, 31, 124-131.	2.3	79
341	In silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 via M. maripaludis. Springer Theses, 2016, , .	0.0	1
344	Microbial Community Metabolic Modeling: A Community Dataâ€Driven Network Reconstruction. Journal of Cellular Physiology, 2016, 231, 2339-2345.	2.0	107
345	Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Scientific Reports, 2016, 6, 18977.	1.6	21
346	Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genomics, 2016, 17, 473.	1.2	13
347	â€~Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites. Biochemical Society Transactions, 2016, 44, 961-971.	1.6	76
350	Modeling central metabolism and energy biosynthesis across microbial life. BMC Genomics, 2016, 17, 568.	1.2	28
351	Simultaneous prediction of enzyme orthologs from chemical transformation patterns for <i>de novo</i> metabolic pathway reconstruction. Bioinformatics, 2016, 32, i278-i287.	1.8	15
352	Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 117-146.	0.6	26
353	Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis. Biophysics and Physicobiology, 2016, 13, 195-205.	0.5	16
354	Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 2016, 113, 944-952.	1.7	37
355	Constructing and Analyzing Metabolic Flux Models of Microbial Communities. Springer Protocols, 2016, , 247-273.	0.1	8
356	A Caenorhabditis elegans Genome-Scale Metabolic Network Model. Cell Systems, 2016, 2, 297-311.	2.9	96
357	Comparative genome-scale modelling of <i>Staphylococcus aureus</i> strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3801-9.	3.3	229

#	ARTICLE	IF	CITATIONS
358	iSCHRUNK – In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks. Metabolic Engineering, 2016, 33, 158-168.	3.6	72
359	MetaNetX/MNXref – reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Research, 2016, 44, D523-D526.	6.5	160
360	Algae Genome-Scale Reconstruction, Modelling and Applications. , 2016, , 591-598.		1
361	The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 2016, 1, 69-79.	1.8	153
362	Metabolic modeling of clostridia: current developments and applications. FEMS Microbiology Letters, 2016, 363, fnw004.	0.7	46
363	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
364	Low carbon fuels and commodity chemicals from waste gases $\hat{a}\in$ "systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18, 3020-3028.	4.6	143
365	Synthetic Ecology of Microbes: Mathematical Models and Applications. Journal of Molecular Biology, 2016, 428, 837-861.	2.0	198
366	<i>In Silico</i> Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories. Microbiology and Molecular Biology Reviews, 2016, 80, 45-67.	2.9	103
367	Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene, 2016, 575, 615-622.	1.0	27
368	BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 2016, 44, D515-D522.	6.5	746
369	Genome-Wide Semi-Automated Annotation of Transporter Systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 443-456.	1.9	14
370	Advances and perspectives in computational prediction of microbial gene essentiality. Briefings in Functional Genomics, 2017, 16, 70-79.	1.3	29
371	Genome-scale metabolic models as platforms for strain design and biological discovery. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1863-1873.	2.0	19
372	Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Research, 2017, 45, D535-D542.	6.5	1,445
373	Metabolic pathway and flux analysis of H2 production by an anaerobic mixed culture. International Journal of Hydrogen Energy, 2017, 42, 4069-4082.	3.8	18
374	Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nature Communications, 2017, 8, 14631.	5.8	116
375	Current state and applications of microbial genome-scale metabolic models. Current Opinion in Systems Biology, 2017, 2, 10-18.	1.3	87

#	Article	IF	Citations
376	Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 2017, 7, 41569.	1.6	56
377	A novel signal transduction protein: Combination of solute binding and tandem PASâ€like sensor domains in one polypeptide chain. Protein Science, 2017, 26, 857-869.	3.1	1
378	Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metabolic Engineering, 2017, 41, 202-211.	3.6	96
379	An analytic approximation of the feasible space of metabolic networks. Nature Communications, 2017, 8, 14915.	5.8	27
380	MOST-visualization: software for producing automated textbook-style maps of genome-scale metabolic networks. Bioinformatics, 2017, 33, 2596-2597.	1.8	3
381	In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria. BMC Genomics, 2017, 18, 33.	1.2	11
382	Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. Journal of Biological Chemistry, 2017, 292, 10250-10261.	1.6	7
383	Metagenomics. Methods in Molecular Biology, 2017, , .	0.4	4
384	Degradation Network Reconstruction Guided by Metagenomic Data. Methods in Molecular Biology, 2017, 1539, 145-157.	0.4	1
385	Constraint-based modeling identifies new putative targets to fight colistin-resistant A. baumannii infections. Scientific Reports, 2017, 7, 3706.	1.6	47
386	A Diverse Community To Study Communities: Integration of Experiments and Mathematical Models To Study Microbial Consortia. Journal of Bacteriology, 2017, 199, .	1.0	33
387	Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol. BMC Systems Biology, 2017, 11, 58.	3.0	22
388	Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in Bioinformatics, 2017, 19, 1218-1235.	3.2	32
389	A Genome Scale Model of Geobacillus thermoglucosidasius (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate. Journal of Biotechnology, 2017, 251, 30-37.	1.9	25
391	Mackinac: a bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models. Bioinformatics, 2017, 33, 2416-2418.	1.8	15
392	A Genome-Scale Model of <i>Shewanella piezotolerans</i> Simulates Mechanisms of Metabolic Diversity and Energy Conservation. MSystems, 2017, 2, .	1.7	14
394	Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 276-287.	0.5	35
395	Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 2017, 39, 200-208.	3.6	101

#	Article	IF	CITATIONS
396	Community metabolic modeling approaches to understanding the gut microbiome: Bridging biochemistry and ecology. Free Radical Biology and Medicine, 2017, 105, 102-109.	1.3	21
397	Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Systems, 2017, 5, 345-357.e6.	2.9	247
398	Metabolic Networks and Modern Research Problems in Operations Research. , 2017, , 114-129.		0
399	Identification of robust strain designs via tandem pFBA/LMOMA phenotype prediction., 2017,,.		3
400	Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acl. MSystems, 2017, 2, .	1.7	21
401	Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity. Cell Reports, 2017, 20, 2666-2677.	2.9	70
402	Elucidation of complexity and prediction of interactions in microbial communities. Microbial Biotechnology, 2017, 10, 1500-1522.	2.0	117
403	Metabolic Reconstruction and Modeling Microbial Electrosynthesis. Scientific Reports, 2017, 7, 8391.	1.6	117
404	Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics, 2017, 33, 3603-3609.	1.8	86
405	More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome, 2017, 5, 78.	4.9	54
406	Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. Algal Research, 2017, 26, 354-364.	2.4	32
407	Thermodynamic Constraints Improve Metabolic Networks. Biophysical Journal, 2017, 113, 679-689.	0.2	10
408	A review of computational tools for design and reconstruction of metabolic pathways. Synthetic and Systems Biotechnology, 2017, 2, 243-252.	1.8	98
409	Genomeâ€scale metabolic models applied to human health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1393.	6.6	36
410	Resource allocation in living organisms. Biochemical Society Transactions, 2017, 45, 945-952.	1.6	34
411	Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Research, 2017, 17, .	1.1	54
412	SSER: Species specific essential reactions database. BMC Systems Biology, 2017, 11, 50.	3.0	3
413	Genome-scale metabolic reconstruction for the insidious bacterium in aquaculture Piscirickettsia salmonis. Bioresource Technology, 2017, 223, 105-114.	4.8	17

#	Article	IF	CITATIONS
415	Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 2017, 35, 81-89.	9.4	629
416	BioSIMP: Using Software Testing Techniques for Sampling and Inference in Biological Organisms. , 2017, , .		3
417	The Role of Soil Microorganisms in Plant Mineral Nutritionâ€"Current Knowledge and Future Directions. Frontiers in Plant Science, 2017, 8, 1617.	1.7	820
418	In Silico Approaches to Metabolic Engineering. , 2017, , 161-200.		3
419	Applications of genome-scale metabolic models of microalgae and cyanobacteria in biotechnology. , 2017, , 93-111.		9
420	Time-Resolved Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic Features and Overexpression Targets to Increase Spiramycin Production in Streptomyces ambofaciens. Frontiers in Microbiology, 2017, 8, 835.	1.5	14
421	Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Frontiers in Microbiology, 2017, 8, 1106.	1.5	108
422	Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium. Frontiers in Microbiology, 2017, 8, 2290.	1.5	5
423	In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host. Frontiers in Microbiology, 2017, 8, 2440.	1.5	42
424	redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models. PLoS Computational Biology, 2017, 13, e1005444.	1.5	61
425	High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 2018, 10, .	5.8	102
426	Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model. , 2018, , 281-302.		7
427	A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. , 2018, , .		8
428	Genome-scale biological models for industrial microbial systems. Applied Microbiology and Biotechnology, 2018, 102, 3439-3451.	1.7	14
429	Systems biology in hepatology: approaches and applications. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 365-377.	8.2	117
430	Computational Systems Biology of Metabolism in Infection. Experientia Supplementum (2012), 2018, 109, 235-282.	0.5	6
431	Clostridium botulinum type A-virulome-gut interactions: A systems biology insight. Human Microbiome Journal, 2018, 7-8, 15-22.	3.8	10
432	Advances in analytical tools for high throughput strain engineering. Current Opinion in Biotechnology, 2018, 54, 33-40.	3.3	29

#	Article	IF	CITATIONS
433	The spatial and metabolic basis of colony size variation. ISME Journal, 2018, 12, 669-680.	4.4	47
434	Constraintâ€based modelling captures the metabolic versatility of <i>Desulfovibrio vulgaris</i> . Environmental Microbiology Reports, 2018, 10, 190-201.	1.0	11
436	A graph-based approach to analyze flux-balanced pathways in metabolic networks. BioSystems, 2018, 165, 40-51.	0.9	8
437	Genome-scale metabolic networks in time and space. Current Opinion in Systems Biology, 2018, 8, 51-58.	1.3	27
438	Rapidly moving new bacteria to model-organism status. Current Opinion in Biotechnology, 2018, 51, 116-122.	3.3	28
440	Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition, 2018, 13, 5.	1.2	31
441	Review and perspective on mathematical modeling of microbial ecosystems. Biochemical Society Transactions, 2018, 46, 403-412.	1.6	43
442	MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Research, 2018, 46, W495-W502.	6.5	101
443	Constraint-based modeling in microbial food biotechnology. Biochemical Society Transactions, 2018, 46, 249-260.	1.6	25
444	Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nature Microbiology, 2018, 3, 456-460.	5.9	79
445	Genome-scale metabolic modeling of responses to polymyxins in <i>Pseudomonas aeruginosa</i> GigaScience, 2018, 7, .	3.3	44
446	The multi-omics promise in context: from sequence to microbial isolate. Critical Reviews in Microbiology, 2018, 44, 212-229.	2.7	158
447	The Molecular Basis of Noncanonical Bacterial Morphology. Trends in Microbiology, 2018, 26, 191-208.	3.5	53
448	Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	4
449	Predicting Dynamic Metabolic Demands in the Photosynthetic Eukaryote <i>Chlorella vulgaris</i> Plant Physiology, 2018, 176, 450-462.	2.3	49
450	Reconstructing High-Quality Large-Scale Metabolic Models with merlin. Methods in Molecular Biology, 2018, 1716, 1-36.	0.4	13
451	Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL. Methods in Molecular Biology, 2018, 1716, 315-336.	0.4	4
452	Analyzing and Designing Cell Factories with OptFlux. Methods in Molecular Biology, 2018, 1716, 37-76.	0.4	4

#	Article	IF	Citations
453	Reconstruction and Analysis of Central Metabolism in Microbes. Methods in Molecular Biology, 2018, 1716, 111-129.	0.4	1
454	Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models. Methods in Molecular Biology, 2018, 1716, 177-196.	0.4	2
455	Biomedical applications of genome-scale metabolic network reconstructions of human pathogens. Current Opinion in Biotechnology, 2018, 51, 70-79.	3.3	30
456	Formate hydrogenlyase and formate secretion ameliorate H ₂ inhibition in the hyperthermophilic archaeon <i>Thermococcus paralvinellae</i> Environmental Microbiology, 2018, 20, 949-957.	1.8	9
458	Modeling metabolism of the human gut microbiome. Current Opinion in Biotechnology, 2018, 51, 90-96.	3.3	122
459	Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences, 2018, 15, 2219-2229.	1.3	7
460	Combining multiple functional annotation tools increases coverage of metabolic annotation. BMC Genomics, 2018, 19, 948.	1.2	35
461	Navigating the maze: the impact of configurability in bioinformatics software. , 2018, , .		12
462	Complete Genome Sequencing of the Mouse Intestinal Isolate Escherichia coli Mt1B1. Genome Announcements, 2018, 6, .	0.8	4
463	Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics, 2018, 19, 467.	1.2	65
464	Reconstruction and analysis of carbon metabolic pathway of Ketogulonicigenium vulgare SPU B805 by genome and transcriptome. Scientific Reports, 2018, 8, 17838.	1.6	8
465	CiliateGEM: an open-project and a tool for predictions of ciliate metabolic variations and experimental condition design. BMC Bioinformatics, 2018, 19, 442.	1.2	1
466	Review: The application of omics to rumen microbiota function. Animal, 2018, 12, s233-s245.	1.3	31
467	A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space. Microbiome, 2018, 6, 171.	4.9	21
468	Metabolic network reconstruction and phenome analysis of the industrial microbe, Escherichia coli BL21(DE3). PLoS ONE, 2018, 13, e0204375.	1.1	22
469	Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, 2018, , .	0.8	12
470	Integrative Multi-Omics Through Bioinformatics. Advances in Experimental Medicine and Biology, 2018, 1102, 69-80.	0.8	15
471	Metabolic adaptations underlying genome flexibility in prokaryotes. PLoS Genetics, 2018, 14, e1007763.	1.5	31

#	Article	IF	Citations
472	Mind the Gap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas. Metabolites, 2018, 8, 51.	1.3	51
473	Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota. Cell Systems, 2018, 7, 245-257.e7.	2.9	89
474	Understanding the evolution of functional redundancy in metabolic networks. Bioinformatics, 2018, 34, i981-i987.	1.8	27
475	A bioinformatics pipeline integrating predictive metagenomics profiling for the analysis of 16S rDNA/rRNA sequencing data originated from foods. Food Microbiology, 2018, 76, 279-286.	2.1	7
476	Integration of Plant Metabolomics Data with Metabolic Networks: Progresses and Challenges. Methods in Molecular Biology, 2018, 1778, 297-310.	0.4	10
477	Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Research, 2018, 46, 7542-7553.	6.5	410
478	Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metabolic Engineering, 2018, 49, 128-142.	3.6	65
479	Methods for automated genome-scale metabolic model reconstruction. Biochemical Society Transactions, 2018, 46, 931-936.	1.6	51
480	From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiology Reviews, 2018, 42, 761-780.	3.9	374
481	How accurate is automated gap filling of metabolic models?. BMC Systems Biology, 2018, 12, 73.	3.0	33
482	Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Frontiers in Physiology, 2018, 9, 775.	1.3	58
483	Traceability, reproducibility and wiki-exploration for "Ã-la-carte―reconstructions of genome-scale metabolic models. PLoS Computational Biology, 2018, 14, e1006146.	1.5	89
484	Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics, 2018, 19, 519.	1.2	20
485	iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE. Frontiers in Genetics, 2018, 9, 121.	1.1	40
486	Measuring Cellular Biomass Composition for Computational Biology Applications. Processes, 2018, 6, 38.	1.3	39
487	Evaluation of reaction gap-filling accuracy by randomization. BMC Bioinformatics, 2018, 19, 53.	1.2	14
488	From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota. MSystems, 2018, 3, .	1.7	77
489	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	1.5	255

#	Article	IF	CITATIONS
490	Microbiology of the built environment. Nature Reviews Microbiology, 2018, 16, 661-670.	13.6	184
491	Reconstruction and analysis of a genome-scale metabolic model of Methylovorus sp. MP688, a high-level pyrroloquinolone quinone producer. BioSystems, 2018, 172, 37-42.	0.9	4
492	Reconstruction of 24 <i>Penicillium </i> genomeâ€scale metabolic models shows diversity based on their secondary metabolism. Biotechnology and Bioengineering, 2018, 115, 2604-2612.	1.7	20
493	Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes. PLoS ONE, 2018, 13, e0198584.	1.1	8
494	Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS ONE, 2018, 13, e0192618.	1.1	28
495	Dissecting metabolic flux in C4 plants: experimental and theoretical approaches. Phytochemistry Reviews, 2018, 17, 1253-1274.	3.1	6
496	Genome-scale metabolic reconstruction and analysis for <i>Clostridium kluyveri </i> . Genome, 2018, 61, 605-613.	0.9	19
497	Microbial carbon use efficiency predicted from genome-scale metabolic models. Nature Communications, 2019, 10, 3568.	5.8	87
498	A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biology, 2019, 20, 158.	3.8	150
499	Microbial Growth Dynamics. , 2019, , 231-273.		0
500	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	5.9	114
501	<i>110th Anniversary: </i> High-Order Interactions Can Eclipse Pairwise Interactions in Shaping the Structure of Microbial Communities. Industrial & Engineering Chemistry Research, 2019, 58, 23508-23518.	1.8	5
502	Modelling microbial communities using biochemical resource allocation analysis. Journal of the Royal Society Interface, 2019, 16, 20190474.	1.5	14
503	Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more effectively than species–species modelling. Journal of the Royal Society Interface, 2019, 16, 20190423.	1.5	17
504	A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007678.	1.3	23
505	Analysis of modularity in proteome-wide protein interaction networks of Methanothermobacter thermautotrophicus strain \hat{l} "H and metal-loving bacteria. Journal of Proteins and Proteomics, 2019, 10, 179-190.	1.0	18
506	Modeling the Interplay between Photosynthesis, CO2 Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium. Scientific Reports, 2019, 9, 12638.	1.6	29
507	ePath: an online database towards comprehensive essential gene annotation for prokaryotes. Scientific Reports, 2019, 9, 12949.	1.6	12

#	Article	IF	CITATIONS
508	A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metabolic Engineering Communications, 2019, 9, e00101.	1.9	55
509	DORMAN: Database of Reconstructed MetAbolic Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1474-1480.	1.9	1
510	Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview. Metabolites, 2019, 9, 22.	1.3	66
511	A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Computational Biology, 2019, 15, e1006692.	1.5	27
512	A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Applied Microbiology and Biotechnology, 2019, 103, 3153-3165.	1.7	26
513	Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13996-14001.	3.3	151
514	Expanding Metabolic Capabilities Using Novel Pathway Designs: Computational Tools and Case Studies. Biotechnology Journal, 2019, 14, 1800734.	1.8	7
515	Metaâ€Omics―and Metabolic Modelingâ€Assisted Deciphering of Human Microbiota Metabolism. Biotechnology Journal, 2019, 14, 1800445.	1.8	7
516	Current status and applications of genome-scale metabolic models. Genome Biology, 2019, 20, 121.	3.8	463
517	Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome, 2019, 7, 75.	4.9	215
518	A genome-scale metabolic network reconstruction of extremely halophilic bacterium Salinibacter ruber. PLoS ONE, 2019, 14, e0216336.	1.1	7
519	System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. BMC Bioinformatics, 2019, 20, 233.	1.2	18
520	Metabolic modelling of mixed culture anaerobic microbial processes. Current Opinion in Biotechnology, 2019, 57, 137-144.	3.3	21
521	Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochemical Engineering Journal, 2019, 148, 46-56.	1.8	27
522	Saccharibacteria (TM7) in the Human Oral Microbiome. Journal of Dental Research, 2019, 98, 500-509.	2.5	123
523	Data-Driven Systems Level Approaches for Drug Repurposing: Combating Drug Resistance in Priority Pathogens., 2019,, 229-253.		3
524	OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling. PLoS Computational Biology, 2019, 15, e1006835.	1.5	41
525	A Comparison of Microbial Genome Web Portals. Frontiers in Microbiology, 2019, 10, 208.	1.5	22

#	Article	IF	CITATIONS
526	Approaches to Computational Strain Design in the Multiomics Era. Frontiers in Microbiology, 2019, 10, 597.	1.5	17
527	Adaptation of the Human Gut Microbiota Metabolic Network During the First Year After Birth. Frontiers in Microbiology, 2019, 10, 848.	1.5	11
528	Genome-Scale Metabolic Model of a Microbial Cell Factory (<i>Brevibacillus thermoruber</i> 423) with Multi-Industry Potentials for Exopolysaccharide Production. OMICS A Journal of Integrative Biology, 2019, 23, 237-246.	1.0	7
529	Systems biology based metabolic engineering for non-natural chemicals. Biotechnology Advances, 2019, 37, 107379.	6.0	38
530	Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends in Biotechnology, 2019, 37, 805-816.	4.9	8
531	Metabolic In Silico Network Expansions to Predict and Exploit Enzyme Promiscuity. Methods in Molecular Biology, 2019, 1927, 11-21.	0.4	5
532	Linking â€~omics' to function unlocks the biotech potential of non-model fungi. Current Opinion in Systems Biology, 2019, 14, 9-17.	1.3	18
533	Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 2019, 35, 3397-3403.	1.8	2
534	Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis. Catalysts, 2019, 9, 868.	1.6	29
535	Genome-Scale Metabolic Reconstruction of Acetobacter pasteurianus 386B, a Candidate Functional Starter Culture for Cocoa Bean Fermentation. Frontiers in Microbiology, 2019, 10, 2801.	1.5	15
536	Advances in Plant Transgenics: Methods and Applications. , 2019, , .		2
537	Metabolic Modeling Elucidates the Transactions in the Rumen Microbiome and the Shifts Upon Virome Interactions. Frontiers in Microbiology, 2019, 10, 2412.	1.5	26
538	Comparative analysis of differential proteome-wide protein-protein interaction network of Methanobrevibacter ruminantium M1. Biochemistry and Biophysics Reports, 2019, 20, 100698.	0.7	3
539	Mathematical Framework Behind the Reconstruction and Analysis of Genome Scale Metabolic Models. Archives of Computational Methods in Engineering, 2019, 26, 1593-1606.	6.0	3
540	Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology, 2019, 39, 79-98.	5.1	206
541	Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnology and Bioengineering, 2019, 116, 388-404.	1.7	21
542	Modeling Lipid Metabolism in Yeast. , 2019, , 375-388.		2
543	Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum. PLoS ONE, 2019, 14, e0210008.	1.1	10

#	Article	IF	CITATIONS
544	Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World Journal of Microbiology and Biotechnology, 2019, 35, 16.	1.7	33
545	Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nature Communications, 2019, 10, 103.	5.8	214
546	Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME Journal, 2019, 13, 494-508.	4.4	119
547	Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics, 2019, 20, 1032-1056.	3.2	10
548	The functional repertoire contained within the native microbiota of the model nematode <i>Caenorhabditis elegans</i>	4.4	68
549	Taxonomic weighting improves the accuracy of a gap-filling algorithm for metabolic models. Bioinformatics, 2020, 36, 1823-1830.	1.8	3
550	Highâ€quality genomeâ€scale metabolic modelling of <i>Pseudomonas putida</i> highlights its broad metabolic capabilities. Environmental Microbiology, 2020, 22, 255-269.	1.8	127
551	OptFill: A Tool for Infeasible Cycle-Free Gapfilling of Stoichiometric Metabolic Models. IScience, 2020, 23, 100783.	1.9	19
552	Modeling population heterogeneity from microbial communities to immune response in cells. Cellular and Molecular Life Sciences, 2020, 77, 415-432.	2.4	5
553	Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri. Scientific Reports, 2020, 10, 16314.	1.6	12
554	Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidationâ€induced damage. EMBO Journal, 2020, 39, e104523.	3.5	34
555	A system architecture for parallel analysis of flux-balanced metabolic pathways. Computational Biology and Chemistry, 2020, 88, 107309.	1.1	0
556	Impact of Facultative Bacteria on the Metabolic Function of an Obligate Insect-Bacterial Symbiosis. MBio, 2020, 11, .	1.8	7
557	Genomeâ€scale modeling for <i>Bacillus coagulans</i> to understand the metabolic characteristics. Biotechnology and Bioengineering, 2020, 117, 3545-3558.	1.7	15
558	ReCodLiver0.9: Overcoming Challenges in Genome-Scale Metabolic Reconstruction of a Non-model Species. Frontiers in Molecular Biosciences, 2020, 7, 591406.	1.6	11
559	Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Frontiers in Cell and Developmental Biology, 2020, 8, 566702.	1.8	26
560	High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies. Frontiers in Microbiology, 2020, 11, 596626.	1.5	3
561	Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. Astrobiology, 2020, 20, 1251-1261.	1.5	16

#	Article	IF	CITATIONS
562	Metabolic Pathway Engineering. Methods in Molecular Biology, 2020, , .	0.4	2
563	Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation. Scientific Reports, 2020, 10, 13019.	1.6	17
564	Industrial biotechnology of Pseudomonas putida: advances and prospects. Applied Microbiology and Biotechnology, 2020, 104, 7745-7766.	1.7	128
565	Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron. MSystems, 2020, 5, .	1.7	13
566	Reconstructing organisms in silico: genome-scale models and their emerging applications. Nature Reviews Microbiology, 2020, 18, 731-743.	13.6	158
567	Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design. Frontiers in Bioengineering and Biotechnology, 2020, 8, 772.	2.0	20
568	Inferring composition and function of the human gut microbiome in time and space: A review of genome-scale metabolic modelling tools. Computational and Structural Biotechnology Journal, 2020, 18, 3897-3904.	1.9	15
569	A fine-scale map of genome-wide recombination in divergentEscherichia colipopulation. Briefings in Bioinformatics, 2020, 22, .	3.2	3
570	Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020, 11, e00148.	1.9	20
571	Nitrogen Substrate Utilization in Three Rhizosphere Bacterial Strains Investigated Using Proteomics. Frontiers in Microbiology, 2020, 11, 784.	1.5	6
572	Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Scientific Reports, 2020, 10, 9449.	1.6	25
573	Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metabolic Engineering Communications, 2020, 11, e00132.	1.9	17
574	Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks. Nucleic Acids Research, 2020, 48, W427-W435.	6.5	27
575	Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a Human Commensal and Opportunistic Pathogen. Frontiers in Genetics, 2020, 11, 116.	1.1	11
576	Model-based integration of genomics and metabolomics reveals SNP functionality in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8494-8502.	3.3	24
577	Towards model-driven characterization and manipulation of plant lipid metabolism. Progress in Lipid Research, 2020, 80, 101051.	5.3	28
578	An integrated computational and experimental study to investigate Staphylococcus aureus metabolism. Npj Systems Biology and Applications, 2020, 6, 3.	1.4	12
579	Metabolomics for crop improvement: Quality and productivity. , 2020, , 1-42.		1

#	Article	IF	CITATIONS
580	Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering. 3 Biotech, 2020, 10, 126.	1.1	6
581	Metabolic models predict bacterial passengers in colorectal cancer. Cancer & Metabolism, 2020, 8, 3.	2.4	28
582	Guiding the Refinement of Biochemical Knowledgebases with Ensembles of Metabolic Networks and Machine Learning. Cell Systems, 2020, 10, 109-119.e3.	2.9	46
583	The Pangenome., 2020,,.		32
584	Current Status and Future Prospects of Genome-Scale Metabolic Modeling to Optimize the Use of Mesenchymal Stem Cells in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 239.	2.0	12
585	Towards Predicting Gut Microbial Metabolism: Integration of Flux Balance Analysis and Untargeted Metabolomics. Metabolites, 2020, 10, 156.	1.3	8
586	The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Research, 2021, 49, D575-D588.	6.5	119
588	New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere, 2021, 268, 128827.	4.2	146
589	Publishing reproducible dynamic kinetic models. Briefings in Bioinformatics, 2021, 22, .	3.2	3
590	Novel antimicrobial development using genome-scale metabolic model of Gram-negative pathogens: a review. Journal of Antibiotics, 2021, 74, 95-104.	1.0	9
593	Untargeted Metabolomics Analysis of Serum Metabolites in Zucker Diabetic Fatty Rats. E3S Web of Conferences, 2021, 233, 02017.	0.2	1
594	Mechanistic models of microbial community metabolism. Molecular Omics, 2021, 17, 365-375.	1.4	18
595	Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. MBio, 2021, 12, .	1.8	23
597	Understanding the host-microbe interactions using metabolic modeling. Microbiome, 2021, 9, 16.	4.9	41
598	Clinical Applications of Metabolic Models in SBML Format., 2021,, 362-371.		8
599	The ethylmalonyl-CoA pathway for methane-based biorefineries: a case study of using <i>Methylosinus trichosporium</i> OB3b, an alpha-proteobacterial methanotroph, for producing 2-hydroxyisobutyric acid and 1,3-butanediol from methane. Green Chemistry, 2021, 23, 7712-7723.	4.6	10
600	Antibiotic resistance: Time of synthesis in a post-genomic age. Computational and Structural Biotechnology Journal, 2021, 19, 3110-3124.	1.9	28
601	Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes, 2021, 13, 1965698.	4.3	2

#	Article	IF	CITATIONS
602	Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels. Microbial Biotechnology, 2022, 15, 6-12.	2.0	9
603	Application of computational approaches to analyze metagenomic data. Journal of Microbiology, 2021, 59, 233-241.	1.3	9
604	Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Frontiers in Genetics, 2021, 12, 586293.	1.1	15
605	Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 2021, 22, 64.	3.8	73
606	Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiology Reviews, 2021, 45, .	3.9	32
609	The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
612	gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biology, 2021, 22, 81.	3.8	103
613	Highâ€quality genomeâ€scale metabolic model of <i>Aurantiochytrium</i> sp. T66. Biotechnology and Bioengineering, 2021, 118, 2105-2117.	1.7	9
615	A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers. Metabolites, 2021, 11, 168.	1.3	4
616	PhenoMapping: A protocol to map cellular phenotypes to metabolic bottlenecks, identify conditional essentiality, and curate metabolic models. STAR Protocols, 2021, 2, 100280.	0.5	1
617	Strategies for Enhancing in vitro Degradation of Linuron by Variovorax sp. Strain SRS 16 Under the Guidance of Metabolic Modeling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 602464.	2.0	5
619	Genes related to redox and cell curvature facilitate interactions between Caulobacter strains and Arabidopsis. PLoS ONE, 2021, 16, e0249227.	1.1	5
620	Metabolic and molecular modelling of zebrafish gut biome to unravel antimicrobial peptides through metagenomics. Microbial Pathogenesis, 2021, 154, 104862.	1.3	4
621	Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications, 2021, 12, 3105.	5.8	82
622	Visual exploration of large metabolic models. Bioinformatics, 2021, 37, 4460-4468.	1.8	4
623	Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Frontiers in Microbiology, 2021, 12, 618856.	1.5	19
625	Exploring the functional composition of the human microbiome using a hand-curated microbial trait database. BMC Bioinformatics, 2021, 22, 306.	1.2	8
626	Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. Npj Systems Biology and Applications, 2021 , 7 , 30 .	1.4	10

#	Article	IF	CITATIONS
627	Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. MSystems, 2021, 6, .	1.7	8
631	Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems. Integrative and Comparative Biology, 2021, , .	0.9	2
632	Stoichiometric Modeling of Artificial String Chemistries Reveals Constraints on Metabolic Network Structure. Journal of Molecular Evolution, 2021, 89, 472-483.	0.8	2
633	An extended reconstruction of human gut microbiota metabolism of dietary compounds. Nature Communications, 2021, 12, 4728.	5.8	19
634	Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome. ACS Synthetic Biology, 2021, 10, 2121-2137.	1.9	7
635	SiGMoiD: A super-statistical generative model for binary data. PLoS Computational Biology, 2021, 17, e1009275.	1.5	6
636	Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and ¹³ C-Tracer Analysis. MSystems, 2021, 6, e0017321.	1.7	8
637	DEMETER: efficient simultaneous curation of genome-scale reconstructions guided by experimental data and refined gene annotations. Bioinformatics, 2021, 37, 3974-3975.	1.8	13
638	Metabolic systems biology and multi-omics of cyanobacteria: Perspectives and future directions. Bioresource Technology, 2022, 343, 126007.	4.8	16
640	Genome-resolved metagenome and metatranscriptome analyses of thermophilic composting reveal key bacterial players and their metabolic interactions. BMC Genomics, 2021, 22, 652.	1.2	16
641	Advances in constraint-based modelling of microbial communities. Current Opinion in Systems Biology, 2021, 27, 100346.	1.3	28
642	Path to improving the life cycle and quality of genome-scale models of metabolism. Cell Systems, 2021, 12, 842-859.	2.9	16
643	Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers, 2021, 13, 4609.	1.7	15
644	Importance of the biomass formulation for cancer metabolic modeling and drug prediction. IScience, 2021, 24, 103110.	1.9	8
645	Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. Journal of Environmental Management, 2021, 296, 113185.	3.8	60
646	Metabolic Modeling of Fungi. , 2021, , 394-405.		0
647	Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Scientific Reports, 2021, 11, 616.	1.6	3
648	Genome-Scale Metabolic Modeling of Escherichia coli and Its Chassis Design for Synthetic Biology Applications. Methods in Molecular Biology, 2021, 2189, 217-229.	0.4	9

#	Article	IF	Citations
649	Systems Biology Meets Metabolism. , 2012, , 281-313.		1
650	Genome-Scale Metabolic Network Reconstruction. Methods in Molecular Biology, 2015, 1231, 233-256.	0.4	24
651	From Pangenome to Panphenome and Back. Methods in Molecular Biology, 2015, 1231, 257-270.	0.4	4
652	Computational Prediction of Essential Metabolic Genes Using Constraint-Based Approaches. Methods in Molecular Biology, 2015, 1279, 183-204.	0.4	15
653	Pangenome Flux Balance Analysis Toward Panphenomes. , 2020, , 219-232.		7
654	Stoichiometric and Constraint-Based Analysis of Biochemical Reaction Networks. Modeling and Simulation in Science, Engineering and Technology, 2014, , 263-316.	0.4	12
655	An Algorithm to Assemble Gene-Protein-Reaction Associations for Genome-Scale Metabolic Model Reconstruction. Lecture Notes in Computer Science, 2012, , 118-128.	1.0	2
656	Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.)., 2019, , 59-77.		3
657	A review of methods for the reconstruction and analysis of integrated genome-scale models of metabolism and regulation. Biochemical Society Transactions, 2020, 48, 1889-1903.	1.6	14
658	Towards the routine use of <i>in silico</i> screenings for drug discovery using metabolic modelling. Biochemical Society Transactions, 2020, 48, 955-969.	1.6	13
659	<i>Atlas</i> : automatic modeling of regulation of bacterial gene expression and metabolism using rule-based languages. Bioinformatics, 2021, 36, 5473-5480.	1.8	7
660	MetaNetX/MNXref: unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Research, 2021, 49, D570-D574.	6.5	91
661	Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (United Kingdom), 2017, 163, 1117-1144.	0.7	7
685	Metabolic Modeling of Streptococcus mutans Reveals Complex Nutrient Requirements of an Oral Pathogen. MSystems, 2019, 4, .	1.7	20
686	Elucidating genomic gaps using phenotypic profiles. F1000Research, 0, 3, 210.	0.8	2
687	Elucidating genomic gaps using phenotypic profiles. F1000Research, 0, 3, 210.	0.8	6
688	Shrinking the Metabolic Solution Space Using Experimental Datasets. PLoS Computational Biology, 2012, 8, e1002662.	1.5	81
689	Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli. PLoS Computational Biology, 2016, 12, e1004705.	1.5	20

#	Article	IF	CITATIONS
690	PSAMM: A Portable System for the Analysis of Metabolic Models. PLoS Computational Biology, 2016, 12, e1004732.	1.5	35
691	Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks. PLoS Computational Biology, 2017, 13, e1005276.	1.5	77
692	Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA. PLoS Computational Biology, 2017, 13, e1005413.	1.5	55
693	Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Computational Biology, 2017, 13, e1005494.	1.5	88
694	A curated genome-scale metabolic model of Bordetella pertussis metabolism. PLoS Computational Biology, 2017, 13, e1005639.	1.5	8
695	Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques. PLoS ONE, 2011, 6, e24162.	1.1	77
696	Comparative Metagenomic Analysis of Soil Microbial Communities across Three Hexachlorocyclohexane Contamination Levels. PLoS ONE, 2012, 7, e46219.	1.1	97
697	MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models. PLoS ONE, 2012, 7, e51511.	1.1	31
698	Metabolic Evolution of a Deep-Branching Hyperthermophilic Chemoautotrophic Bacterium. PLoS ONE, 2014, 9, e87950.	1.1	30
699	Integer Programming-Based Method for Designing Synthetic Metabolic Networks by Minimum Reaction Insertion in a Boolean Model. PLoS ONE, 2014, 9, e92637.	1.1	7
700	Evolutionary Conservation of Bacterial Essential Metabolic Genes across All Bacterial Culture Media. PLoS ONE, 2015, 10, e0123785.	1.1	15
701	Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks. PLoS ONE, 2015, 10, e0130825.	1.1	11
702	Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach. PLoS ONE, 2015, 10, e0143626.	1.1	7
703	Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PLoS ONE, 2017, 12, e0169437.	1.1	29
704	Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS ONE, 2020, 15, e0227977.	1.1	15
706	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	3.2	178
709	Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Current Genomics, 2018, 19, 712-722.	0.7	28
710	A Comprehensive View on Metabolic Pathway Analysis Methodologies. Current Bioinformatics, 2014, 9, 295-305.	0.7	5

#	ARTICLE	IF	CITATIONS
711	ToMI-FBA: A genome-scale metabolic flux based algorithm to select optimum hosts and media formulations for expressing pathways of interest. AIMS Bioengineering, 2015, 2, 335-374.	0.6	6
713	Calibration and analysis of genome-based models for microbial ecology. ELife, 2015, 4, e08208.	2.8	54
714	Evolution of substrate specificity in a retained enzyme driven by gene loss. ELife, 2017, 6, .	2.8	23
715	Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. ELife, 2019, 8 , .	2.8	24
716	Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species. ELife, 2020, 9, .	2.8	44
717	Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks. Peerl, 2017, 5, e3860.	0.9	10
718	Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition. PeerJ, 2014, 2, e520.	0.9	19
719	Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph <i>Methylococcus capsulatus</i> str. Bath. PeerJ, 2019, 7, e6685.	0.9	13
720	Investigation of microbial community interactions between Lake Washington methanotrophs using ÂÂÂÂÂÂÂÂÂÂGenome-scale metabolic modeling. PeerJ, 2020, 8, e9464.	0.9	3
721	eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Research, 2022, 50, D603-D609.	6.5	70
723	Possibilities of using information resources In bioremediation. Izvesti \tilde{A}^{φ} Vuzov: Prikladna \tilde{A}^{φ} Himi \tilde{A}^{φ} I Biotehnologi \tilde{A}^{φ} , 2021, 11, 372-383.	0.1	0
724	Novel Symbiotic Genome-Scale Model Reveals <i>Wolbachia</i> 's Arboviral Pathogen Blocking Mechanism in Aedes aegypti. MBio, 2021, 12, e0156321.	1.8	4
725	An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism. Npj Systems Biology and Applications, 2021, 7, 37.	1.4	12
726	Modeling Drosophila gut microbe interactions reveals metabolic interconnectivity. IScience, 2021, 24, 103216.	1.9	1
727	Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design. Metabolic Engineering, 2021, 68, 174-186.	3.6	13
728	Toward the Educated Design of Bacterial Communities. , 2012, , 177-188.		0
729	MULTI-LEVEL DYNAMIC MODELING IN BIOLOGICAL SYSTEMS - Application of Hybrid Petri Nets to Network Simulation. , 2012, , .		1
730	Reconstruction of Erwinia carotovora subsp. atroseptica SCRI1043 Metabolic Network and Its Application in Screening Potential Targets. Hans Journal of Computational Biology, 2012, 02, 1-9.	0.0	0

#	Article	IF	CITATIONS
733	Tapping the Wealth of Microbial Data in High-Throughput Metabolic Model Reconstruction. Methods in Molecular Biology, 2014, 1191, 19-45.	0.4	0
735	Systems Metabolic Engineering of <i>Arabidopsis</i> for Increased Cellulose Production. FASEB Journal, 2015, 29, 887.26.	0.2	1
737	Electron Partitioning in Anoxic Phototrophic Bacteria. Advances in Photosynthesis and Respiration, 2016, , 679-700.	1.0	0
738	Modeling Lipid Metabolism in Yeast. , 2016, , 1-14.		0
745	Actual trends in water ecosystem biology development. Marine Biological Journal, 2017, 2, 3-14.	0.3	0
746	Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off Between Regulation and Enzymatic Activity. SSRN Electronic Journal, 0, , .	0.4	0
747	FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks. PLoS ONE, 2018, 13, e0192891.	1.1	0
753	Plant Metabolomics: Sustainable Approach Towards Crop Productivity. , 2019, , 51-70.		0
762	Microbial Production of Industrial Proteins and Enzymes Using Metabolic Engineering. , 2020, , 189-204.		0
765	Application of the Metabolic Modeling Pipeline in KBase to Categorize Reactions, Predict Essential Genes, and Predict Pathways in an Isolate Genome. Methods in Molecular Biology, 2022, 2349, 291-320.	0.4	4
766	A Beginner's Guide to the COBRA Toolbox. Methods in Molecular Biology, 2022, 2349, 339-365.	0.4	2
767	Curating COBRA Models of Microbial Metabolism. Methods in Molecular Biology, 2022, 2349, 321-338.	0.4	1
768	A gap-filling algorithm for prediction of metabolic interactions in microbial communities. PLoS Computational Biology, 2021, 17, e1009060.	1.5	4
769	Software and Methods for Computational Flux Balance Analysis. Methods in Molecular Biology, 2020, 2096, 165-177.	0.4	0
771	Biodegradation of micropollutants. , 2022, , 477-507.		4
776	GPRuler: Metabolic gene-protein-reaction rules automatic reconstruction. PLoS Computational Biology, 2021, 17, e1009550.	1.5	11
777	ORT: a workflow linking genome-scale metabolic models with reactive transport codes. Bioinformatics, 2022, 38, 778-784.	1.8	2
780	Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli. MSystems, 2020, 5, .	1.7	8

#	Article	IF	CITATIONS
783	A framework for integrating functional and microbial data: The case of dark fermentation H2 production. International Journal of Hydrogen Energy, 2020, 45, 31706-31718.	3.8	4
785	High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2021, 12, 750206.	1.5	13
786	Variability of root traits, seed size and tolerance to low soil phosphorus in common bean (Phaseolus) Tj ETQq0 0	0 rgBT /C	verlock 10 Tf
787	Two-species community design of lactic acid bacteria for optimal production of lactate. Computational and Structural Biotechnology Journal, 2021, 19, 6039-6049.	1.9	6
788	Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum. MSystems, 2022, 7, e0097521.	1.7	4
789	Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. Microbiome, 2022, 10, 4.	4.9	16
790	Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Computational and Structural Biotechnology Journal, 2022, 20, 79-89.	1.9	19
792	Genome-Scale Modeling Specifies the Metabolic Capabilities of <i>Rhizophagus irregularis</i> MSystems, 2022, 7, e0121621.	1.7	7
793	Pathway Driven Target Selection in Klebsiella pneumoniae: Insights Into Carbapenem Exposure. Frontiers in Cellular and Infection Microbiology, 2022, 12, 773405.	1.8	4
794	Exploring the roles of microbes in facilitating plant adaptation to climate change. Biochemical Journal, 2022, 479, 327-335.	1.7	7
796	Identifying the essential nutritional requirements of the probiotic bacteria Bifidobacterium animalis and Bifidobacterium longum through genome-scale modeling. Npj Systems Biology and Applications, 2021, 7, 47.	1.4	15
797	Diversity of Growth Patterns in the Alphaproteobacteria. , 2022, , 185-220.		1
798	A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites, 2022, 12, 314.	1.3	4
799	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906.	1.5	2
800	Reconstruction and analysis of genomeâ€scale metabolic model for thermophilic fungus <i>Myceliophthora thermophila</i> . Biotechnology and Bioengineering, 2022, 119, 1926-1937.	1.7	6
802	Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Communications Biology, 2022, 5, 293.	2.0	25
803	ARBRE: Computational resource to predict pathways towards industrially important aromatic compounds. Metabolic Engineering, 2022, 72, 259-274.	3.6	3
804	Expanding Culturomics from Gut to Extreme Environmental Settings. MSystems, 2021, 6, e0084821.	1.7	13

#	Article	IF	Citations
806	Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Frontiers in Microbiology, 2021, 12, 780469.	1.5	13
869	Microbial degradation of herbicides in contaminated soils by following computational approaches. , 2022, , 399-417.		2
871	Structural Thermokinetic Modelling. Metabolites, 2022, 12, 434.	1.3	2
872	Analysis and modeling tools of metabolic flux. , 2022, , 45-68.		O
873	Examining organic acid production potential and growthâ€coupled strategies in <i>lssatchenkia orientalis</i> using constraintâ€based modeling. Biotechnology Progress, 2022, 38, .	1.3	4
874	Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges. Biomolecules, 2022, 12, 721.	1.8	7
875	Reconstruction of the Genome-Scale Metabolic Model of Saccharopolyspora erythraea and Its Application in the Overproduction of Erythromycin. Metabolites, 2022, 12, 509.	1.3	6
876	Substrate Utilization and Competitive Interactions Among Soil Bacteria Vary With Life-History Strategies. Frontiers in Microbiology, 0, 13, .	1.5	5
877	Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microbial Cell Factories, 2022, 21, .	1.9	8
879	Computational design and engineering of an Escherichia coli strain producing the nonstandard amino acid para-aminophenylalanine. IScience, 2022, 25, 104562.	1.9	1
880	Inference and test generation using program invariants in chemical reaction networks., 2022,,.		0
882	Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods. Npj Systems Biology and Applications, 2022, 8, .	1.4	8
883	Genome-scale metabolic network models: from first-generation to next-generation. Applied Microbiology and Biotechnology, 2022, 106, 4907-4920.	1.7	19
884	Selection of <i>Anabaena</i> sp. PCC 7938 as a Cyanobacterium Model for Biological ISRU on Mars. Applied and Environmental Microbiology, 2022, 88, .	1.4	10
885	<scp><i>Rhizobium leguminosarum</i></scp> symbiovar <scp><i>viciae</i></scp> strains are natural wheat endophytes that can stimulate root development. Environmental Microbiology, 2022, 24, 5509-5523.	1.8	6
886	Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Computers in Biology and Medicine, 2022, 149, 105997.	3.9	5
887	Nutrition or nature: using elementary flux modes to disentangle the complex forces shaping prokaryote pan-genomes. Bmc Ecology and Evolution, 2022, 22, .	0.7	0
888	Architect: A tool for aiding the reconstruction of high-quality metabolic models through improved enzyme annotation. PLoS Computational Biology, 2022, 18, e1010452.	1.5	3

#	Article	IF	Citations
891	Overview of Bioinformatics Software and Databases for Metabolic Engineering. Methods in Molecular Biology, 2023, , 265-274.	0.4	0
892	Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. Microbiome, 2022, 10 , .	4.9	19
893	A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	8
894	A Pan-Draft Metabolic Model Reflects Evolutionary Diversity across 332 Yeast Species. Biomolecules, 2022, 12, 1632.	1.8	3
895	Modeling the metabolic dynamics at the genome-scale by optimized yield analysis. Metabolic Engineering, 2023, 75, 119-130.	3.6	5
896	Comparison of functional classification systems. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	1
897	ChiMera: an easy to use pipeline for bacterial genome based metabolic network reconstruction, evaluation and visualization. BMC Bioinformatics, 2022, 23, .	1.2	6
899	Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome. Microbiome, 2022, 10 , .	4.9	12
902	Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant <i>In Vitro</i> Cultures. ACS Omega, 2023, 8, 3586-3605.	1.6	7
903	Systems biology's role in leveraging microalgal biomass potential: Current status and future perspectives. Algal Research, 2023, 69, 102963.	2.4	1
905	Potential bacterial isolation by dosing metabolites in cross-feedings. Water Research, 2023, 231, 119589.	5.3	9
906	Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nature Biotechnology, 2023, 41, 1320-1331.	9.4	55
907	Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2T. AMB Express, 2023, 13, .	1.4	4
908	The media composition as a crucial element in high-throughput metabolic network reconstruction. Interface Focus, 2023, 13, .	1.5	1
909	Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Current Opinion in Microbiology, 2023, 73, 102292.	2.3	5
910	Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. Computers in Biology and Medicine, 2023, 154, 106600.	3.9	4
911	Integrated molecular approaches for fermented food microbiome research. FEMS Microbiology Reviews, 2023, 47, .	3.9	4
912	Construction and application of the genome-scale metabolic model of Streptomyces radiopugnans. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	1

#	Article	IF	CITATIONS
913	Metabolic engineering strategies for microbial utilization of methanol. Engineering Microbiology, 2023, 3, 100081.	2.2	1
916	Machine learning for metabolic pathway optimization: A review. Computational and Structural Biotechnology Journal, 2023, 21, 2381-2393.	1.9	1
939	Artificial Intelligence and Discovery of Microbial Natural Products. , 2023, , 37-78.		0
950	Microbial Metabolomics: An Overview of Applications. , 2023, , 165-208.		0
971	Development and applications of genome-scale metabolic network models. Advances in Applied Microbiology, 2024, , .	1.3	0
972	Flux Balance Analysis of Mammalian Cell Systems. Methods in Molecular Biology, 2024, , 119-134.	0.4	0