Origin of Saturnâ€[™] fings and inner moons by mass rem

Nature 468, 943-946 DOI: 10.1038/nature09661

Citation Report

#	Article	IF	CITATIONS
1	Recipe for making Saturn's rings. Nature, 2010, 468, 903-905.	27.8	11
2	The prospects for polar bears. Nature, 2010, 468, 905-906.	27.8	16
3	Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 2011, 216, 535-550.	2.5	123
4	PHOTOEVAPORATION AS A TRUNCATION MECHANISM FOR CIRCUMPLANETARY DISKS. Astronomical Journal, 2011, 142, 168.	4.7	34
5	VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES. Astronomical Journal, 2012, 143, 110.	4.7	14
6	A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM. Astrophysical Journal, 2012, 761, 45.	4.5	77
7	Formation of Regular Satellites from Ancient Massive Rings in the Solar System. Science, 2012, 338, 1196-1199.	12.6	138
8	Regolith grain sizes of Saturn's rings inferred from Cassini–CIRS far-infrared spectra. Icarus, 2012, 221, 888-899.	2.5	12
9	A predator–prey model for moon-triggered clumping in Saturn's rings. Icarus, 2012, 217, 103-114.	2.5	31
10	The fate of sub-micron circumplanetary dust grains I: Aligned dipolar magnetic fields. Icarus, 2012, 218, 420-432.	2.5	41
11	Impact-driven ice loss in outer Solar System satellites: Consequences for the Late Heavy Bombardment. Icarus, 2012, 219, 508-510.	2.5	44
12	Giant impacts in the Saturnian system: A possible origin of diversity in the inner mid-sized satellites. Planetary and Space Science, 2012, 63-64, 133-138.	1.7	34
13	Tidal disruption of satellites and formation of narrow rings. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1419-1431.	4.4	23
14	The Early Evolution of the Atmospheres of Terrestrial Planets. Thirty Years of Astronomical Discovery With UKIRT, 2013, , .	0.3	4
15	The shape of Enceladus as explained by an irregular core: Implications for gravity, libration, and survival of its subsurface ocean. Journal of Geophysical Research E: Planets, 2013, 118, 1775-1788.	3.6	19
16	The influence of imperfect accretion and radial mixing on ice:rock ratios in the Galilean satellites. Icarus, 2013, 225, 390-402.	2.5	18
17	Impact basin relaxation on Rhea and Iapetus and relation to past heat flow. Icarus, 2013, 223, 699-709.	2.5	46
18	Saturn's ring rain. Nature, 2013, 496, 178-179.	27.8	13

ATION RED

#	Article	IF	Citations
19	Formation of a Nitrogen-Rich Atmosphere on Titan: A Review of Pre- and Post-Cassini-Huygens Knowledge. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 107-122.	0.3	1
20	ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS. Astronomical Journal, 2013, 146, 25.	4.7	28
21	土æ~Ÿã®ç'°ã∢ã,‰å§æ°—ã≪é≻ïã€é™ã£ã∮ã,ã,<. Nature Digest, 2013, 10, 32-33.	0.0	0
22	The origin and evolution of Titan. , 0, , 29-62.		4
26	10. Spectroscopy from Space. , 2014, , 399-446.		1
27	GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS. Astrophysical Journal, 2014, 797, 93.	4.5	8
28	Spectroscopy from Space. Reviews in Mineralogy and Geochemistry, 2014, 78, 399-446.	4.8	17
29	Stability of ice/rock mixtures with application to a partially differentiated Titan. Icarus, 2014, 227, 67-77.	2.5	22
30	Complex satellite systems: a general model of formation from rings. Proceedings of the International Astronomical Union, 2014, 9, 182-189.	0.0	5
31	Shepherds of Saturn's ring. Nature Geoscience, 2015, 8, 666-667.	12.9	1
32	FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS. Astrophysical Journal, 2015, 799, 40.	4.5	28
33	Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus, 2015, 250, 570-586.	2.5	41
34	Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment. Geophysical Research Letters, 2015, 42, 256-263.	4.0	24
35	A next step in exoplanetology: exo-moons. International Journal of Astrobiology, 2015, 14, 191-199.	1.6	34
36	The Origin of the Natural Satellites. , 2015, , 559-604.		20
37	Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geoscience, 2015, 8, 686-689.	12.9	20
38	The demise of Phobos and development of a Martian ring system. Nature Geoscience, 2015, 8, 913-917.	12.9	24
39	Saturn ring rain: Model estimates of water influx into Saturn's atmosphere. Icarus, 2015, 245, 355-366.	2.5	35

	CITATION REF	PORT	
#	Article	IF	Citations
41	Formation of exomoons: a solar system perspective. The Astronomical Review, 2016, 12, 24-52.	4.0	16
42	Genesis of volatile components at Saturn's regular satellites. Origin of Titan's atmosphere. Geochemistry International, 2016, 54, 7-26.	0.7	8
43	RESONANT REMOVAL OF EXOMOONS DURING PLANETARY MIGRATION. Astrophysical Journal, 2016, 817, 18.	4.5	66
44	DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN'S MOONS. Astrophysical Journal, 2016, 820, 97.	4.5	117
45	Incomplete cooling down of Saturn's A ring at solar equinox: Implication for seasonal thermal inertia and internal structure of ring particles. Icarus, 2016, 279, 2-19.	2.5	10
46	Seasonal variation of the radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS. Astronomy and Astrophysics, 2017, 599, A29.	5.1	1
47	Exposure age of Saturn's A and B rings, and the Cassini Division as suggested by their non-icy material content. Icarus, 2017, 294, 14-42.	2.5	33
48	A whiff of nebular gas in Titan's atmosphere – Potential implications for the conditions and timing of Titan's formation. Icarus, 2017, 293, 231-242.	2.5	8
49	Ring detected around a dwarf planet. Nature, 2017, 550, 197-198.	27.8	0
50	Accretion of Saturn's Inner Mid-sized Moons from a Massive Primordial Ice Ring. Astrophysical Journal, 2017, 836, 109.	4.5	48
51	Dynamical Evolution of the Debris Disk after a Satellite Catastrophic Disruption around Saturn. Astronomical Journal, 2017, 154, 34.	4.7	43
53	Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1008-1022.	4.4	77
54	Cassini microwave observations provide clues to the origin of Saturn's C ring. Icarus, 2017, 281, 297-321.	2.5	31
55	Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 2017, 282, 195-213.	2.5	61
56	Space Age Studies of Planetary Rings. , 0, , 3-29.		1
57	The Rings of Saturn. , 0, , 51-92.		10
58	Moonlets in Dense Planetary Rings. , 0, , 157-197.		2
59	Meteoroid Bombardment and Ballistic Transport in Planetary Rings. , 0, , 198-224.		3

#	Article	IF	CITATIONS
60	Computer Simulations of Planetary Rings. , 0, , 434-493.		7
61	The Origin of Planetary Ring Systems. , 0, , 517-538.		12
62	Planetary Rings and Other Astrophysical Disks. , 0, , 549-576.		3
63	A pilot investigation to constrain the presence of ring systems around transiting exoplanets. New Astronomy, 2018, 60, 88-94.	1.8	26
64	The Origin and Evolution of Saturn, with Exoplanet Perspective. , 2018, , 5-43.		23
65	Rings in the Solar System: A Short Review. , 2018, , 375-394.		1
66	Rings in the Solar System: A Short Review. , 2018, , 1-20.		2
67	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	4.5	11
68	A Pluto–Charon Sonata: Dynamical Limits on the Masses of the Small Satellites. Astronomical Journal, 2019, 158, 69.	4.7	12
69	Cratering and age of the small Saturnian satellites. Astronomy and Astrophysics, 2019, 627, A12.	5.1	3
70	The origin of Saturn's rings and moons. Science, 2019, 364, 1028-1030.	12.6	13
71	Primordial migration of co-orbital satellites as a mechanism for the horseshoe orbit of Janus –Epimetheus. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1973-1979.	4.4	3
72	Mean motion resonances with nearby moons: an unlikely origin for the gaps observed in the ring around the exoplanet J1407b. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1681-1689.	4.4	3
73	Three Dynamical Evolution Regimes for Coupled Ring-satellite Systems and Implications for the Formation of the Uranian Satellite Miranda. Astronomical Journal, 2019, 157, 30.	4.7	12
74	Evolution of Saturn's mid-sized moons. Nature Astronomy, 2019, 3, 543-552.	10.1	58
75	HydroSyMBA: A 1D Hydrocode Coupled with an N-body Symplectic Integrator. Astrophysical Journal, 2019, 881, 129.	4.5	1
76	Are Saturn's rings actually young?. Nature Astronomy, 2019, 3, 967-970.	10.1	25
77	A recent origin for Saturn's rings from the collisional disruption of an icy moon. Icarus, 2019, 321, 291-306.	2.5	12

5

#	Article	IF	CITATIONS
78	The ominous fate of exomoons around hot Jupiters in the high-eccentricity migration scenario. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4195-4205.	4.4	6
79	Small Impact Crater Populations on Saturn's Moon Tethys and Implications for Source Impactors in the System. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006400.	3.6	14
80	Formation of Complex Organic Molecules (COMs) from Polycyclic Aromatic Hydrocarbons (PAHs): Implications for ISM IR Emission Plateaus and Solar System Organics. ACS Earth and Space Chemistry, 2020, 4, 2227-2245.	2.7	8
81	Formation of Giant Planet Satellites. Astrophysical Journal, 2020, 894, 143.	4.5	45
82	Contribution of Magnetism to the Origin of Saturn's Rings. Astrophysical Journal, 2020, 894, 62.	4.5	4
83	Tidal disruption of planetary bodies by white dwarfs I: a hybrid sph-analytical approach. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5561-5581.	4.4	45
84	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	8.1	11
85	Formation Conditions of Titan's and Enceladus's Building Blocks in Saturn's Circumplanetary Disk. Planetary Science Journal, 2021, 2, 50.	3.6	2
86	How Sublimation Delays the Onset of Dusty Debris Disk Formation around White Dwarf Stars. Astrophysical Journal Letters, 2021, 913, L31.	8.3	14
87	Icy Exomoons Evidenced by Spallogenic Nuclides in Polluted White Dwarfs. Astrophysical Journal Letters, 2021, 907, L35.	8.3	18
88	Planetary Rings. , 2013, , 309-375.		39
91	Detecting ring systems around exoplanets using high resolution spectroscopy: the case of 51 Pegasi b. Astronomy and Astrophysics, 2015, 583, A50.	5.1	20
92	Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT. Astronomy and Astrophysics, 2020, 638, A120.	5.1	11
93	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	3.1	29
94	From Scattered-light to Millimeter Emission: A Comprehensive View of the Gigayear-old System of HD 202628 and its Eccentric Debris Ring. Astronomical Journal, 2019, 158, 162.	4.7	27
95	Necroplanetology: Simulating the Tidal Disruption of Differentiated Planetary Material Orbiting WD 1145+017. Astrophysical Journal, 2020, 893, 166.	4.5	5
96	Delivery of Pebbles from the Protoplanetary Disk into Circumplanetary Disks. Astrophysical Journal, 2020, 903, 98.	4.5	6
97	Quantum Locking and the Meissner Effect Lead to the Origin and Stability of the Saturn Rings System. International Journal of Astronomy and Astrophysics, 2018, 08, 104-120.	0.5	4

#	Article	IF	CITATIONS
99	Satellite and Ring Systems. Astronomy and Astrophysics Library, 2014, , 521-595.	0.1	0
100	Assembly. , 2016, , 27-38.		0
101	Superconductivity of Saturn Rings: Quantum Locking, Rings Disc Thickness and Its Time Creation. Journal of Modern Physics, 2018, 09, 419-432.	0.6	4
103	Space Magnetism and Superconductivity: Diamagnetic Expulsion, Meissner Effect, Magnetic Pressure and Quantum Trapping Lead to the Origin and Stability of the Saturn Rings. Journal of Applied Mathematics and Physics, 2019, 07, 1625-1636.	0.4	0
104	To the Problem of the Properties of Saturn's Rings' Ice. Research Notes of the AAS, 2021, 5, 255.	0.7	3
105	Solar system: Recipe for making Saturn's rings. Nature, 2010, 468, 903-905.	27.8	0
106	<i>Cronomoons</i> : origin, dynamics, and light-curve features of ringed exomoons. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1032-1044.	4.4	6
107	Disruption of Saturn's ring particles by thermal stress. Icarus, 2022, 378, 114919.	2.5	1
108	The First Near-infrared Transmission Spectrum of HIP 41378 f, A Low-mass Temperate Jovian World in a Multiplanet System. Astrophysical Journal Letters, 2022, 927, L5.	8.3	16
109	A Self-Gravitating Exoring Around J1407b and Implications for In-Situ Exomoon Formation. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	1
112	Exosphere-mediated migration of volatile species on airless bodies across the solar system. Icarus, 2022, 384, 115092.	2.5	6
113	A unique Saturnian impactor population from elliptical craters. Earth and Planetary Science Letters, 2022, 593, 117652.	4.4	14
114	The Dynamical Viability of an Extended Jupiter Ring System. Planetary Science Journal, 2022, 3, 179.	3.6	1
115	Tilting Uranus via the migration of an ancient satellite. Astronomy and Astrophysics, 2022, 668, A108.	5.1	7
116	What the Upper Atmospheres of Giant Planets Reveal. Remote Sensing, 2022, 14, 6326.	4.0	0
117	Exploring the Recycling Model of Phobos Formation: Rubble-pile Satellites*. Astronomical Journal, 2023, 165, 161.	4.7	2
118	How Saturn could create dense rings after the emergence of its magnetic field. The Tchernyi-Kapranov effect: mechanism of magnetic anisotropic accretion. Physics & Astronomy International Journal, 2023, 7, 54-57.	0.3	1
119	Tethys's Heat Fluxes Varied with Time in the Ithaca Chasma and Telemus Basin Region. Planetary Science Journal, 2023, 4, 57.	3.6	1

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
120	Constraints on the initial mass, age and lifetime of Saturn's rings from viscous evolutions that include pollution and transport due to micrometeoroid bombardment. Icarus, 2023, 400, 115296.	2.5	1
121	Micrometeoroid infall onto Saturn's rings constrains their age to no more than a few hundred million years. Science Advances, 2023, 9, .	10.3	2
122	Oblique rings from migrating exomoons: A possible origin for long-period exoplanets with enlarged radii. Astronomy and Astrophysics, 2023, 675, A174.	5.1	2
123	Setting the Stage: Formation and Earliest Evolution of Io. Astrophysics and Space Science Library, 2023, , 41-93.	2.7	1
124	The role of Saturn's magnetism in the equilibrium separation of particles of dense rings. Physics & Astronomy International Journal, 2023, 7, 146-148.	0.3	0
125	A Recent Impact Origin of Saturn's Rings and Mid-sized Moons. Astrophysical Journal, 2023, 955, 137.	4.5	1
126	Stability and Detectability of Exomoons Orbiting HIP 41378 f, a Temperate Jovian Planet with an Anomalously Low Apparent Density. Astronomical Journal, 2023, 166, 208.	4.7	1
127	Planetary formation and early phases. Comptes Rendus Physique, 2023, 24, 1-16.	0.9	1
128	Dynamical Interactions and Mass Loss within the Uranian System. Planetary Science Journal, 2023, 4, 216.	3.6	0
129	Long-Term Evolution of the Saturnian System. Space Science Reviews, 2024, 220, .	8.1	0

Modeling of the Origin of Saturn's Dense (Visible) Rings Taking into Account Gravitational and Magnetic Fields. The Tchernyi‒Kapranov Effect. Optics and Spectroscopy (English Translation of Optika) Tj ETQq00060 rgBT ¢Overlock