A phylogenetically based transcriptome age index mirro

Nature 468, 815-818 DOI: 10.1038/nature09632

Citation Report

#	Article	IF	CITATIONS
1	Genomic hourglass. Nature, 2010, 468, 768-769.	13.7	22
2	Hot entanglement. Nature, 2010, 468, 769-770.	13.7	22
3	Mapping Gene Expression in Two Xenopus Species: Evolutionary Constraints and Developmental Flexibility. Developmental Cell, 2011, 20, 483-496.	3.1	187
4	Hourglass theory gets molecular approval. Nature Reviews Genetics, 2011, 12, 76-76.	7.7	9
5	The evolutionary origin of orphan genes. Nature Reviews Genetics, 2011, 12, 692-702.	7.7	663
6	Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. Journal of Mammalogy, 2011, 92, 1038-1049.	0.6	40
7	Animal egg as evolutionary innovation: a solution to the "embryonic hourglass―puzzle. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 467-483.	0.6	35
8	Gene Duplication and the Genome Distribution of Sex-Biased Genes. International Journal of Evolutionary Biology, 2011, 2011, 1-20.	1.0	27
9	Pluripotency and lineages in the mammalian blastocyst: An evolutionary view. Cell Cycle, 2011, 10, 1731-1738.	1.3	6
10	Towards an Evolutionary Model of Transcription Networks. PLoS Computational Biology, 2011, 7, e1002064.	1.5	10
12	Accelerated Recruitment of New Brain Development Genes into the Human Genome. PLoS Biology, 2011, 9, e1001179.	2.6	139
13	Novel Function of Distal-less as a Gap Gene during Spider Segmentation. PLoS Genetics, 2011, 7, e1002342.	1.5	50
14	ProteinHistorian: Tools for the Comparative Analysis of Eukaryote Protein Origin. PLoS Computational Biology, 2012, 8, e1002567.	1.5	89
15	What are the determinants of gene expression levels and breadths in the human genome?. Human Molecular Genetics, 2012, 21, 46-56.	1.4	38
16	Functionalization of a protosynaptic gene expression network. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10612-10618.	3.3	55
17	Evolution and Emergence: A Re-Evaluation of the "New Synthesis― KronoScope, 2012, 12, 185-200.	0.1	0
18	Battle of the sexes: Conflict over dosage-sensitive genes and the origin of X chromosome inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5144-5145.	3.3	10
19	Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22, 577-591.	2.4	809

ATION RED

#	Article	IF	CITATIONS
20	The evolution of gene expression and the transcriptome–phenotype relationship. Seminars in Cell and Developmental Biology, 2012, 23, 222-229.	2.3	89
21	Plant â€~evo-devo' goes genomic: from candidate genes to regulatory networks. Trends in Plant Science, 2012, 17, 441-447.	4.3	24
22	The evolution of early animal embryos: conservation or divergence?. Trends in Ecology and Evolution, 2012, 27, 385-393.	4.2	106
23	A transcriptomic hourglass in plant embryogenesis. Nature, 2012, 490, 98-101.	13.7	184
24	Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Research, 2012, 22, 2043-2053.	2.4	219
25	Karl Ernst von Baer (1792-1876) and Evolution. International Journal of Developmental Biology, 2012, 56, 653-660.	0.3	13
26	Molecular Signatures of the Three Stem Cell Lineages in Hydra and the Emergence of Stem Cell Function at the Base of Multicellularity. Molecular Biology and Evolution, 2012, 29, 3267-3280.	3.5	140
27	Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo. Developmental Cell, 2012, 22, 1101-1108.	3.1	207
28	The phylotypic stage as a boundary of modular memory: non mechanistic perspective. Theory in Biosciences, 2012, 131, 31-42.	0.6	11
29	The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis. Journal of Molecular Evolution, 2012, 74, 1-34.	0.8	73
30	2011 William Allan Award: Development and Evolution 1. American Journal of Human Genetics, 2012, 90, 392-404.	2.6	12
31	<scp>R</scp> ussian comparative embryology takes form: a conceptual metamorphosis toward "evoâ€devo†Evolution & Development, 2012, 14, 9-19.	1.1	8
33	Disruption of gene expression in hybrids of the fire ants <i>Solenopsis invicta</i> and <i>Solenopsis richteri</i> . Molecular Ecology, 2012, 21, 2488-2501.	2.0	6
34	Transcriptome changes after genomeâ€wide admixture in invasive sculpins (<i>Cottus</i>). Molecular Ecology, 2012, 21, 4797-4810.	2.0	21
35	Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics, 2013, 14, 117.	1.2	218
36	New genes as drivers of phenotypic evolution. Nature Reviews Genetics, 2013, 14, 645-660.	7.7	313
37	How old is my gene?. Trends in Genetics, 2013, 29, 659-668.	2.9	60
38	Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes. Cell, 2013, 154, 888-903.	13.5	329

#	Article	IF	CITATIONS
40	von Baer's law for the ages: lost and found principles of developmental evolution. Trends in Genetics, 2013, 29, 712-722.	2.9	74
41	Deep conservation of <i>cis</i> -regulatory elements in metazoans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130020.	1.8	26
42	Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4858-66.	3.3	183
43	Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development. Cell, 2013, 155, 1521-1531.	13.5	342
44	Phylostratigraphic profiles reveal a deep evolutionary history of the vertebrate head sensory systems. Frontiers in Zoology, 2013, 10, 18.	0.9	32
45	The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics, 2013, 14, 923.	1.2	43
46	The influence of parental effects on transcriptomic landscape during early development in brook charr (Salvelinus fontinalis, Mitchill). Heredity, 2013, 110, 484-491.	1.2	21
47	Developmental sequences of squamate reptiles are taxon specific. Evolution & Development, 2013, 15, 326-343.	1.1	22
48	Insights into bilaterian evolution from three spiralian genomes. Nature, 2013, 493, 526-531.	13.7	564
49	Gene family evolution in green plants with emphasis on the origination and evolution of <i><scp>A</scp>rabidopsis thaliana</i> genes. Plant Journal, 2013, 73, 941-951.	2.8	117
50	Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. Journal of Anatomy, 2013, 222, 56-66.	0.9	5
51	Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Developmental Biology, 2013, 380, 351-362.	0.9	54
52	Morris Goodman's hominoid rate slowdown: The importance of being neutral. Molecular Phylogenetics and Evolution, 2013, 66, 569-574.	1.2	15
53	Genome-wide identification and divergent transcriptional expression of StAR-related lipid transfer (START) genes in teleosts. Gene, 2013, 519, 18-25.	1.0	4
54	Conserved non-coding elements and <i>cis</i> regulation: actions speak louder than words. Development (Cambridge), 2013, 140, 1385-1395.	1.2	53
55	Ontogeny repeats the phylogenetic recruitment of the cargo exporter cornichon into AMPA receptor signaling complexes. Molecular and Cellular Neurosciences, 2013, 56, 10-17.	1.0	15
56	The Hourglass and the Early Conservation Models—Co-Existing Patterns of Developmental Constraints in Vertebrates. PLoS Genetics, 2013, 9, e1003476.	1.5	73
57	The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45, 701-706.	9.4	409

#	Article	IF	CITATIONS
58	The genomic determinants of genotype × environment interactions in gene expression. Trends in Genetics, 2013, 29, 479-487.	2.9	82
61	Late-replicating CNVs as a source of new genes. Biology Open, 2013, 2, 1402-1411.	0.6	9
62	Specialization of Gene Expression during Mouse Brain Development. PLoS Computational Biology, 2013, 9, e1003185.	1.5	29
63	Transcriptional Dynamics of Two Seed Compartments with Opposing Roles in Arabidopsis Seed Germination Â. Plant Physiology, 2013, 163, 205-215.	2.3	175
64	Dictyostelium Development Shows a Novel Pattern of Evolutionary Conservation. Molecular Biology and Evolution, 2013, 30, 977-984.	3.5	17
65	Systems biomedical science. , 2013, , 107-127.		Ο
66	Variation in Vertebrate Cis-Regulatory Elements in Evolution and Disease. Transcription, 2014, 5, e28848.	1.7	16
67	Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nature Communications, 2014, 5, 4071.	5.8	71
68	Conserved Temporal Patterns of MicroRNA Expression in Drosophila Support a Developmental Hourglass Model. Genome Biology and Evolution, 2014, 6, 2459-2467.	1.1	22
69	Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations. PLoS Genetics, 2014, 10, e1004408.	1.5	28
70	Differential Responses to Wnt and PCP Disruption Predict Expression and Developmental Function of Conserved and Novel Genes in a Cnidarian. PLoS Genetics, 2014, 10, e1004590.	1.5	44
71	"Out of Pollen―Hypothesis for Origin of New Genes in Flowering Plants: Study from Arabidopsis thaliana. Genome Biology and Evolution, 2014, 6, 2822-2829.	1.1	28
72	Leveraging additional knowledge to support coherent bicluster discovery in gene expression data. Intelligent Data Analysis, 2014, 18, 837-855.	0.4	8
75	Fast-evolving microRNAs are highly expressed in the early embryo of <i>Drosophila virilis</i> . Rna, 2014, 20, 360-372.	1.6	40
76	The developmental hourglass model: a predictor of the basic body plan?. Development (Cambridge), 2014, 141, 4649-4655.	1.2	116
77	Gene Age Predicts the Strength of Purifying Selection Acting on Gene Expression Variation in Humans. American Journal of Human Genetics, 2014, 95, 660-674.	2.6	35
78	Global Gene Expression and Focused Knockout Analysis Reveals Genes Associated with Fungal Fruiting Body Development in Neurospora crassa. Eukaryotic Cell, 2014, 13, 154-169.	3.4	66
79	Comparison of <i>D. melanogaster</i> and <i>C. elegans</i> developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Research, 2014, 24, 1086-1101.	2.4	88

ARTICLE

BO Differences in Growth Generate the Diverse Palate Shapes of New World Leaf-Nosed Bats (Order) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 2

81	Comparative epigenomics in distantly related teleost species identifies conserved <i>cis</i> -regulatory nodes active during the vertebrate phylotypic period. Genome Research, 2014, 24, 1075-1085.	2.4	47
82	Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression. Neuron, 2014, 81, 321-332.	3.8	213
83	Gene transcription in the zebrafish embryo: regulators and networks. Briefings in Functional Genomics, 2014, 13, 131-143.	1.3	14
84	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	13.7	289
85	The Evolutionary Origin of the Vertebrate Body Plan: The Problem of Head Segmentation. Annual Review of Genomics and Human Genetics, 2014, 15, 443-459.	2.5	21
86	Conservation of mRNA and Protein Expression during Development of C.Âelegans. Cell Reports, 2014, 6, 565-577.	2.9	98
87	Embryonic bauplans and the developmental origins of facial diversity and constraint. Development (Cambridge), 2014, 141, 1059-1063.	1.2	112
88	New genes important for development. EMBO Reports, 2014, 15, 460-461.	2.0	7
89	Regulation of Zygotic Genome and Cellular Pluripotency. Biochemistry (Moscow), 2015, 80, 1723-1733.	0.7	4
90	De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes. BMC Genomics, 2015, 16, 1086.	1.2	43
91	Ancient gene duplications have shaped developmental stage-specific expression in Pristionchus pacificus. BMC Evolutionary Biology, 2015, 15, 185.	3.2	36
92	Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-10.	0.7	5
93	Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos. BioMed Research International, 2015, 2015, 1-11.	0.9	5
94	Reinforcing the Egg-Timer: Recruitment of Novel Lophotrochozoa Homeobox Genes to Early and Late Development in the Pacific Oyster. Genome Biology and Evolution, 2015, 7, 677-688.	1.1	42
95	A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration. Molecular Biology and Evolution, 2015, 32, 1928-1947.	3.5	106
96	Fossil and Transcriptomic Perspectives on the Origins and Success of Metazoan Multicellularity. Advances in Marine Genomics, 2015, , 31-46.	1.2	7
97	Taking the Middle Road. , 2015, , 203-236.		2

	Сітатіої	CITATION REPORT	
#	Article	IF	CITATIONS
98	Genomic Perspectives of Transcriptional Regulation in Forebrain Development. Neuron, 2015, 85, 27-47.	3.8	136
99	Phylostratigraphic Profiles in Zebrafish Uncover Chordate Origins of the Vertebrate Brain. Molecular Biology and Evolution, 2015, 32, 299-312.	3.5	32
100	A "Developmental Hourglass―in Fungi. Molecular Biology and Evolution, 2015, 32, 1556-1566.	3.5	61
101	A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths. Molecular Biology and Evolution, 2015, 32, 1161-1174.	3.5	30
102	An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Scientific Reports, 2015, 5, 8465.	1.6	41
103	The "Life Histories―of Genes. Journal of Molecular Evolution, 2015, 80, 186-188.	0.8	11
104	Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome. Molecular Plant, 2015, 8, 935-945.	3.9	64
105	Evidence for Active Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis. Molecular Biology and Evolution, 2015, 32, 1221-1231.	3.5	102
106	A decade of pollen transcriptomics. Plant Reproduction, 2015, 28, 73-89.	1.3	149
107	Massive expansion and functional divergence of innate immune genes in a protostome. Scientific Reports, 2015, 5, 8693.	1.6	226
108	Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, 2015, , .	1.2	18
109	Growing an Embryo from a Single Cell: A Hurdle in Animal Life: Figure 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a019042.	2.3	45
110	"Crustacea― Comparative Aspects of Early Development. , 2015, , 39-61.		14
111	Echinodermata. , 2015, , 1-58.		22
112	Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature, 2015, 519, 219-222.	13.7	160
113	Pluripotency in the light of the developmental hourglass. Biological Reviews, 2015, 90, 428-443.	4.7	6
114	Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 342-352.	0.6	38
115	Transcriptomics of developing embryos and organs: A raising tool for evo–devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 363-371.	0.6	41

#	Article	IF	Citations
116	Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, 2015, , .	0.4	15
117	Phylostratigraphic Bias Creates Spurious Patterns of Genome Evolution. Molecular Biology and Evolution, 2015, 32, 258-267.	3.5	107
118	OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics, 2016, 17, 678.	1.2	35
119	Computational Detection of Stage-Specific Transcription Factor Clusters during Heart Development. Frontiers in Genetics, 2016, 7, 33.	1.1	11
120	Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain. Scientific Reports, 2016, 6, 19274.	1.6	22
121	Perspective: Systematics in the age of genomics. , 0, , 219-228.		0
122	Next generation apomorphy: the ubiquity of taxonomically restricted genes. , 0, , 237-263.		0
124	Tet proteins enhance the developmental hourglass. Nature Genetics, 2016, 48, 345-347.	9.4	3
125	Recurrent mutation at the classical haptoglobin structural polymorphism. Nature Genetics, 2016, 48, 347-348.	9.4	4
126	Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50.	2.3	11
127	Animal Evolution: Are Phyla Real?. Current Biology, 2016, 26, R424-R426.	1.8	23
128	Chromatin Control of Developmental Dynamics and Plasticity. Developmental Cell, 2016, 38, 610-620.	3.1	127
129	High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation. Developmental Cell, 2016, 39, 186-197.	3.1	51
130	High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans. Scientific Reports, 2016, 6, 34664.	1.6	32
131	The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Research, 2016, 26, 1676-1686.	2.4	51
133	Integrated analysis of the Plasmodium species transcriptome. EBioMedicine, 2016, 7, 255-266.	2.7	55
134	Convergent occurrence of the developmental hourglass in plant and animal embryogenesis?. Annals of Botany, 2016, 117, 833-843.	1.4	14
135	Robust views on plasticity and biodiversity. Annals of Botany, 2016, 117, 693-697.	1.4	10

ARTICLE IF CITATIONS # Transcriptomes of Plant Gametophytes Have a Higher Proportion of Rapidly Evolving and Young Genes 136 3.5 37 than Sporophytes. Molecular Biology and Evolution, 2016, 33, 1669-1678. The mysterious orphans of Mycoplasmataceae. Biology Direct, 2016, 11, 2. 137 Gap Gene Regulatory Dynamics Evolve along a Genotype Network. Molecular Biology and Evolution, 138 3.5 55 2016, 33, 1293-1307. Evolutionâ€development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 61-84. The mid-developmental transition and the evolution of animal body plans. Nature, 2016, 531, 637-641. 140 13.7 231 (Why) Does Evolution Favour Embryogenesis?. Trends in Plant Science, 2016, 21, 562-573. 4.3 37 Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development. Molecular 142 3.5 22 Biology and Evolution, 2016, 33, 1158-1163. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nature Genetics, 2016, 143 9.4 210 48, 417-426. MicroRNA evolution, expression, and function during short germband development in <i>Tribolium 144 2.4 42 castaneum </i>. Genome Research, 2016, 26, 85-96. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics 145 1.3 and epigenomic approaches. Briefings in Functional Genomics, 2016, 15, 315-321 No evidence for phylostratigraphic bias impacting inferences on patterns of gene emergence and 146 3.5 74 evolution. Molecular Biology and Evolution, 2017, 34, msw284. Tet proteins: master regulators of vertebrate body plan formation?. Epigenomics, 2017, 9, 93-96. 1.0 Topologically associated domains: a successful scaffold for the evolution of gene regulation in 148 5.9 75 animals. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e265. The "Biogenetic Law―in zoology: from Ernst Haeckel's formulation to current approaches. Theory in Biosciences, 2017, 136, 19-29. 34 Remaining questions related to the hourglass model in vertebrate evolution. Current Opinion in 150 1.5 20 Genetics and Development, 2017, 45, 103-107. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proceedings of the National Academy of Sciences of the United 159 States of America, 2017, 114, 6406-6411. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by 152 1.2 12 taxonomy and homology principles. BMC Bioinformatics, 2017, 18, 1-9. TROM: A Testing-Based Method for Finding Transcriptomic Similarity of Biological Samples. Statistics in Biosciences, 2017, 9, 105-136.

#	Article	IF	CITATIONS
154	Evidence of an evolutionary hourglass pattern in herbivoryâ€induced transcriptomic responses. New Phytologist, 2017, 215, 1264-1273.	3.5	6
155	Further Simulations and Analyses Demonstrate Open Problems of Phylostratigraphy. Genome Biology and Evolution, 2017, 9, 1519-1527.	1.1	47
156	Genomic Signature of Kin Selection in an Ant with Obligately Sterile Workers. Molecular Biology and Evolution, 2017, 34, 1780-1787.	3.5	47
157	Cross-kingdom comparison of the developmental hourglass. Current Opinion in Genetics and Development, 2017, 45, 69-75.	1.5	44
158	Transcriptomic insights into the genetic basis of mammalian limb diversity. BMC Evolutionary Biology, 2017, 17, 86.	3.2	19
159	Developmental constraints shape the evolution of the nematode mid-developmental transition. Nature Ecology and Evolution, 2017, 1, 113.	3.4	67
160	Establishment of the Vertebrate Germ Layers. Advances in Experimental Medicine and Biology, 2017, 953, 307-381.	0.8	20
161	Constrained vertebrate evolution by pleiotropic genes. Nature Ecology and Evolution, 2017, 1, 1722-1730.	3.4	72
162	New genes often acquire male-specific functions but rarely become essential in <i>Drosophila</i> . Genes and Development, 2017, 31, 1841-1846.	2.7	71
163	Plant organ evolution revealed by phylotranscriptomics in Arabidopsis thaliana. Scientific Reports, 2017, 7, 7567.	1.6	11
164	The hourglass effect in hierarchical dependency networks. Network Science, 2017, 5, 490-528.	0.8	16
165	Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2017, 7, 3337-3347.	0.8	10
166	High GC content causes orphan proteins to be intrinsically disordered. PLoS Computational Biology, 2017, 13, e1005375.	1.5	50
167	Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution. Cell, 2018, 173, 248-259.e15.	13.5	159
168	The gene regulatory program of <i>Acrobeloides nanus</i> reveals conservation of phylum-specific expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4459-4464.	3.3	20
169	myTAI: evolutionary transcriptomics with R. Bioinformatics, 2018, 34, 1589-1590.	1.8	37
170	Origin of new genes after zygotic genome activation in vertebrate. Journal of Molecular Cell Biology, 2018, 10, 139-146.	1.5	1
171	Pairwise comparisons across species are problematic when analyzing functional genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E409-E417.	3.3	77

#	Article	IF	CITATIONS
172	Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos. EvoDevo, 2018, 9, 7.	1.3	24
173	A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing. Genome Research, 2018, 28, 921-932.	2.4	76
174	Genomics and transcriptomics to study fruiting body development: An update. Fungal Biology Reviews, 2018, 32, 231-235.	1.9	21
175	Development and Evolution through the Lens of Global Gene Regulation. Trends in Genetics, 2018, 34, 11-20.	2.9	20
176	Timing the developmental origins of mammalian limb diversity. Genesis, 2018, 56, e23079.	0.8	15
177	Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. Journal of Molecular Biology, 2018, 430, 27-32.	2.0	78
178	Evolutionary dynamics of the Wnt gene family: implications for lophotrochozoans. Journal of Oceanology and Limnology, 2018, 36, 1720-1730.	0.6	4
179	In-depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Scientific Reports, 2018, 8, 17246.	1.6	22
180	Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nature Communications, 2018, 9, 4977.	5.8	42
181	Rooting Phylogenies and the Tree of Life While Minimizing Ad Hoc and Auxiliary Assumptions. Evolutionary Bioinformatics, 2018, 14, 117693431880510.	0.6	40
182	The phylum Vertebrata: a case for zoological recognition. Zoological Letters, 2018, 4, 32.	0.7	32
183	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
184	Spatiotemporal transcriptomic divergence across human and macaque brain development. Science, 2018, 362, .	6.0	279
185	A two-level model for the role of complex and young genes in the formation of organism complexity and new insights into the relationship between evolution and development. EvoDevo, 2018, 9, 22.	1.3	12
186	Adaptive Evolution of Animal Proteins over Development: Support for the Darwin Selection Opportunity Hypothesis of Evo-Devo. Molecular Biology and Evolution, 2018, 35, 2862-2872.	3.5	15
187	Development and Evolutionary Constraints in Animals. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 499-522.	3.8	26
188	Toward Reducing Phylostratigraphic Errors and Biases. Genome Biology and Evolution, 2018, 10, 2037-2048.	1.1	20
189	Developmental Constraints on Genome Evolution in Four Bilaterian Model Species. Genome Biology and Evolution, 2018, 10, 2266-2277.	1.1	23

#	Article	IF	CITATIONS
190	Genome-Wide Scanning of Gene Expression. , 2019, , 452-462.		0
191	Molecular evolution across developmental time reveals rapid divergence in early embryogenesis. Evolution Letters, 2019, 3, 359-373.	1.6	16
192	Transcriptomic basis and evolution of the ant nurse-larval social interactome. PLoS Genetics, 2019, 15, e1008156.	1.5	13
193	Cloudy with a Chance of Insights: Context Dependent Gene Regulation and Implications for Evolutionary Studies. Genes, 2019, 10, 492.	1.0	21
194	How Do Developmental Programs Evolve?. Fascinating Life Sciences, 2019, , 73-106.	0.5	0
195	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	3.1	57
196	New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends in Genetics, 2019, 35, 914-922.	2.9	45
197	Emergence of Hierarchical Modularity in Evolving Networks Uncovered by Phylogenomic Analysis. Evolutionary Bioinformatics, 2019, 15, 117693431987298.	0.6	11
198	Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners?. Trends in Genetics, 2019, 35, 892-902.	2.9	107
199	Coupled Genomic Evolutionary Histories as Signatures of Organismal Innovations in Cephalopods. BioEssays, 2019, 41, 1900073.	1.2	12
200	Reconstructing the Transcriptional Ontogeny of Maize and Sorghum Supports an Inverse Hourglass Model of Inflorescence Development. Current Biology, 2019, 29, 3410-3419.e3.	1.8	40
201	Gene expression across mammalian organ development. Nature, 2019, 571, 505-509.	13.7	490
202	Pluripotency and the origin of animal multicellularity. Nature, 2019, 570, 519-522.	13.7	106
203	The maternal-to-zygotic transition revisited. Development (Cambridge), 2019, 146, .	1.2	267
204	Frequent nonrandom shifts in the temporal sequence of developmental landmark events during teleost evolutionary diversification. Evolution & Development, 2019, 21, 120-134.	1.1	2
205	Gene Expression Does Not Support the Developmental Hourglass Model in Three Animals with Spiralian Development. Molecular Biology and Evolution, 2019, 36, 1373-1383.	3.5	17
206	The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Advances in Parasitology, 2019, 104, 113-164.	1.4	46
207	Reprogramming histone modification patterns to coordinate gene expression in early zebrafish embryos. BMC Genomics, 2019, 20, 248.	1.2	29

#	Article	IF	CITATIONS
208	Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. Zoological Letters, 2019, 5, 33.	0.7	24
209	Correspondence Analysis Applied to Large Scale Evo-Devo Data. , 2019, , .		0
210	Phylostratigraphic Analysis Shows the Earliest Origination of the Abiotic Stress Associated Genes in A. thaliana. Genes, 2019, 10, 963.	1.0	11
211	On the Regulatory Evolution of New Genes Throughout Their Life History. Molecular Biology and Evolution, 2019, 36, 15-27.	3.5	24
212	Evolution of DNA Methylome Diversity in Eukaryotes. Journal of Molecular Biology, 2020, 432, 1687-1705.	2.0	82
213	Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development. Nature Communications, 2020, 11, 6235.	5.8	41
214	Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genetics and Biology, 2020, 143, 103432.	0.9	14
215	Inter-embryo gene expression variability recapitulates the hourglass pattern of evo-devo. BMC Biology, 2020, 18, 129.	1.7	23
216	Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nature Ecology and Evolution, 2020, 4, 725-736.	3.4	39
217	The hourglass organization of the Caenorhabditis elegans connectome. PLoS Computational Biology, 2020, 16, e1007526.	1.5	11
218	Evolutionary Analysis of the Bacillus subtilis Genome Reveals New Genes Involved in Sporulation. Molecular Biology and Evolution, 2020, 37, 1667-1678.	3.5	16
219	Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genetics, 2020, 16, e1008518.	1.5	11
220	Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex. Cell Reports, 2020, 31, 107489.	2.9	91
221	The origin of metazoan larvae. Nature Ecology and Evolution, 2020, 4, 674-675.	3.4	2
222	Embryo-Like Features in Developing <i>Bacillus subtilis</i> Biofilms. Molecular Biology and Evolution, 2021, 38, 31-47.	3.5	25
223	The Immune System and Responses to Cancer: Coordinated Evolution. F1000Research, 2015, 4, 552.	0.8	6
224	The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD+ levels. Science China Life Sciences, 2021, 64, 1929-1948.	2.3	6
225	The Developmental Hourglass in the Evolution of Embryogenesis. , 2021, , 111-120.		0

#	Article	IF	CITATIONS
226	The developmental hourglass model and recapitulation: An attempt to integrate the two models. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 76-86.	0.6	10
227	Searching for an Identity: Functional Characterization of Taxonomically Restricted Genes in Grain Amaranth. Compendium of Plant Genomes, 2021, , 97-124.	0.3	5
228	Dynamical systems approach to evolution–development congruence: Revisiting Haeckel's recapitulation theory. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 62-75.	0.6	4
229	The biogenetic law and the Gastraea theory: From Ernst Haeckel's discoveries to contemporary views. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, , .	0.6	12
232	Heart Enhancers: Development and Disease Control at a Distance. Frontiers in Genetics, 2021, 12, 642975.	1.1	4
233	Measuring potential effects of the developmental burden associated with the vertebrate notochord. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 129-136.	0.6	4
234	Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19, 1624-1643.	4.1	23
235	Enhancer grammar in development, evolution, and disease: dependencies and interplay. Developmental Cell, 2021, 56, 575-587.	3.1	81
236	Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Scientific Reports, 2021, 11, 11378.	1.6	1
237	Cancer progression as a sequence of atavistic reversions. BioEssays, 2021, 43, e2000305.	1.2	37
239	Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nature Plants, 2021, 7, 1143-1159.	4.7	61
241	Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biology and Evolution, 2021, 13, .	1.1	2
242	Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. Bmc Ecology and Evolution, 2021, 21, 160.	0.7	6
244	Convergent Usage of Amino Acids in Human Cancers as A Reversed Process of Tissue Development. Genomics, Proteomics and Bioinformatics, 2022, 20, 147-162.	3.0	1
246	New Genes Interacted With Recent Whole-Genome Duplicates in the Fast Stem Growth of Bamboos. Molecular Biology and Evolution, 2021, 38, 5752-5768.	3.5	28
247	Therapeutic modulation of fish gut microbiota, a feasible strategy for aquaculture?. Aquaculture, 2021, 544, 737050.	1.7	54
248	Generation and Molecular Characterization of Transient tet1/2/3 Zebrafish Knockouts. Methods in Molecular Biology, 2021, 2272, 281-318.	0.4	2
249	Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Current Topics in Developmental Biology, 2021, 141, 39-73.	1.0	10

	CITATION R	CITATION REPORT		
#	Article	IF	CITATIONS	
260	An explanatory evo-devo model for the developmental hourglass. F1000Research, 2014, 3, 156.	0.8	7	
261	An explanatory evo-devo model for the developmental hourglass. F1000Research, 2014, 3, 156.	0.8	16	
262	The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Research, 2015, 4, 136.	0.8	17	
263	The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Research, 2015, 4, 136.	0.8	15	
264	The Immune System and Responses to Cancer: Coordinated Evolution. F1000Research, 2015, 4, 552.	0.8	5	
265	A Comparative Analysis of Transcription Factor Expression during Metazoan Embryonic Development. PLoS ONE, 2013, 8, e66826.	1.1	31	
266	Identification of Conserved and Novel MicroRNAs in the Pacific Oyster Crassostrea gigas by Deep Sequencing. PLoS ONE, 2014, 9, e104371.	1.1	33	
267	Expression of CAP2 during early Xenopus embryogenesis. International Journal of Developmental Biology, 2009, 53, 1063-1067.	0.3	6	
268	SIRT1 and SIRT3 Deacetylate Homologous Substrates: AceCS1,2 and HMGCS1,2. Aging, 2011, 3, 635-642.	1.4	85	
269	A Unicellular Relative of Animals Generates an Epithelium-Like Cell Layer by Actomyosin-dependent Cellularization. SSRN Electronic Journal, 0, , .	0.4	3	
270	Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. ELife, 2015, 4, .	2.8	68	
271	Constraint and divergence of global gene expression in the mammalian embryo. ELife, 2015, 4, e05538.	2.8	3	
272	Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. ELife, 2019, 8, .	2.8	19	
273	A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. ELife, 2019, 8, .	2.8	41	
274	OUP accepted manuscript. Bioinformatics, 2021, , .	1.8	0	
275	Pathogenâ€driven coevolution across the CBP60 plant immune regulator subfamilies confers resilience on the regulator module. New Phytologist, 2022, 233, 479-495.	3.5	14	
276	Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease Genome, 2021, , 1-18.	0.9	0	
277	Evolutionary divergence in embryo and seed coat development of U's Triangle <i>Brassica</i> species illustrated by a spatiotemporal transcriptome atlas. New Phytologist, 2022, 233, 30-51.	3.5	16	

#	Article	IF	CITATIONS
278	Genômica e modularidade morfológica: como genes espectadores, sintenia genômica e arrastamento constroem e restringem opções evolutivas emergentes. Ciência E Cultura, 2013, 65, 26-31.	0.5	1
279	Evo-devo and the Evolution of Marine Larvae: From the Modern World to the Dawn of the Metazoa. Boston Studies in the Philosophy and History of Science, 2015, , 243-258.	0.4	1
280	Social Amoebae and Their Genomes: On the Brink to True Multicellularity. Advances in Marine Genomics, 2015, , 363-376.	1.2	2
288	The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Research, 0, 4, 136.	0.8	1
294	La teorÃa de sistemas en desarrollo: una vÃa para resolver la tensión entre las perspectivas "internalista―y "externalista―en la biologÃa evolutiva. Metatheoria, 2017, 8, 145-155.	0.0	1
298	The Developmental Hourglass in the Evolution of Embryogenesis. , 2019, , 1-10.		1
318	Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Frontiers in Cell and Developmental Biology, 2021, 9, 749963.	1.8	3
319	Von Baer, the intensification of uniqueness, and historical explanation. History and Philosophy of the Life Sciences, 2021, 43, 122.	0.6	3
320	Beyond recapitulation: Past, present, and future. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 9-12.	0.6	1
321	Evolutionary age of genes can assist in genome mining. Periodicum Biologorum, 2020, 121-122, 3-6.	0.1	1
322	Distal regulation, silencers, and a shared combinatorial syntax are hallmarks of animal embryogenesis. Genome Research, 2022, 32, 474-487.	2.4	7
323	The Toggle Switch Model for Gene Expression Change during the Prenatal-to-Postnatal Transition in Mammals. Molecular Biology and Evolution, 2022, 39, .	3.5	2
324	Early shape divergence of developmental trajectories in the jaw of galeomorph sharks. Frontiers in Zoology, 2022, 19, 7.	0.9	0
325	Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). ELife, 2022, 11, .	2.8	18
326	Distinguishing Evolutionary Conservation from Derivedness. Life, 2022, 12, 440.	1.1	1
327	Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology, 2022, 47, 1550-1560.	2.8	23
329	The (unusual) heuristic value of Hox gene clusters; a matter of time?. Developmental Biology, 2022, 484, 75-87.	0.9	17
330	The Phenomenon of Evolutionary "De Novo Generation―of Genes. Russian Journal of Developmental Biology, 2021, 52, 390-400.	0.1	3

#	Article	IF	CITATIONS
331	Ontogeny, Phylotypic Periods, Paedomorphosis, and Ontogenetic Systematics. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
332	From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala). F1000Research, 0, 11, 583.	0.8	4
334	The digenean complex life cycle: phylostratigraphy analysis of the molecular signatures. Biological Communications, 2022, 67, .	0.4	0
338	Real age prediction from the transcriptome with RAPToR. Nature Methods, 2022, 19, 969-975.	9.0	12
340	General Rules of Brain Morphogenesis in Vertebrates: An Hourglass Model. , 2022, , 15-28.		0
341	Multilevel Organismal Diversity in an Ontogenetic Framework as a Solution for the Species Concept. , 2022, , 78-129.		4
342	Evolution and function of developmentally dynamic pseudogenes in mammals. Genome Biology, 2022, 23, .	3.8	7
344	A novel time-lapse imaging method for studying developing bacterial biofilms. Scientific Reports, 2022, 12, .	1.6	3
346	A chromosome-scale epigenetic map of the <i>Hydra</i> genome reveals conserved regulators of cell state. Genome Research, 2023, 33, 283-298.	2.4	19
348	From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala). F1000Research, 0, 11, 583.	0.8	0
351	Evolution of homology: From archetype towards a holistic concept of cell type. Journal of Morphology, 2023, 284, .	0.6	2
352	Transcriptome age of individual cell types in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
353	Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. International Journal of Molecular Sciences, 2023, 24, 5594.	1.8	0
354	Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biology, 2023, 24, .	3.8	9