An amorphous solid state of biogenic secondary organic

Nature

467, 824-827

DOI: 10.1038/nature09455

Citation Report

#	Article	IF	CITATIONS
1	Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmospheric Chemistry and Physics, 2010, 10, 11737-11752.	1.9	60
2	Physical properties of iodate solutions and the deliquescence of crystalline I ₂ 0 ₅ and HIO ₃ . Atmospheric Chemistry and Physics, 2010, 10, 12251-12260.	1.9	33
3	Phase matters for aerosols. Nature, 2010, 467, 797-798.	13.7	12
4	Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics. Physical Chemistry Chemical Physics, 2011, 13, 6628.	1.3	22
5	Potentially important nighttime heterogeneous chemistry: NO3 with aldehydes and N2O5 with alcohols. Physical Chemistry Chemical Physics, 2011, 13, 10214.	1.3	5
6	Secondary Organic Aerosol: A Comparison between Foggy and Nonfoggy Days. Environmental Science & Envir	4.6	147
7	Aerosol Impacts on Climate and Biogeochemistry. Annual Review of Environment and Resources, 2011, 36, 45-74.	5.6	207
8	Gas–particle interactions of tropospheric aerosols: Kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei. Atmospheric Research, 2011, 101, 562-573.	1.8	48
9	Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes. International Reviews in Physical Chemistry, 2011, 30, 161-195.	0.9	52
10	Ultra-slow water diffusion in aqueous sucrose glasses. Physical Chemistry Chemical Physics, 2011, 13, 3514.	1.3	249
11	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	1.9	520
12	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 2011, 11, 12109-12136.	1.9	421
13	Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature. Atmospheric Chemistry and Physics, 2011, 11, 4739-4754.	1.9	149
14	Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles. Atmospheric Chemistry and Physics, 2011, 11, 7343-7354.	1.9	98
15	Volatility of secondary organic aerosol during OH radical induced ageing. Atmospheric Chemistry and Physics, 2011, 11, 11055-11067.	1.9	66
16	Mass yields of secondary organic aerosols from the oxidation of \hat{l}_{\pm} -pinene and real plant emissions. Atmospheric Chemistry and Physics, 2011, 11, 1367-1378.	1.9	68
17	Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmospheric Chemistry and Physics, 2011, 11, 1895-1911.	1.9	210
18	Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmospheric Chemistry and Physics, 2011, 11, 257-273.	1.9	119

#	Article	IF	CITATIONS
19	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
20	Model HULIS compounds in nanoaerosol clusters $\hat{a}\in$ investigations of surface tension and aggregate formation using molecular dynamics simulations. Atmospheric Chemistry and Physics, 2011, 11, 6549-6557.	1.9	29
21	Explicit modelling of SOA formation from \hat{l}_{\pm} -pinene photooxidation: sensitivity to vapour pressure estimation. Atmospheric Chemistry and Physics, 2011, 11, 6895-6910.	1.9	116
22	Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6931-6944.	1.9	167
23	Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2011, 11, 8759-8766.	1.9	92
24	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmospheric Chemistry and Physics, 2011, 11, 3303-3318.	1.9	596
25	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	1.9	160
26	New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmospheric Chemistry and Physics, 2011, 11, 9155-9206.	1.9	317
27	The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nature Chemistry, 2011, 3, 291-295.	6.6	172
28	Feeding of large pine weevil on Scots pine stem triggers localised bark and systemic shoot emission of volatile organic compounds. Environmental and Experimental Botany, 2011, 71, 390-390.	2.0	50
29	Volatility of secondary organic aerosol from the ozonolysis of monoterpenes. Atmospheric Environment, 2011, 45, 2443-2452.	1.9	73
30	Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Physical Chemistry Chemical Physics, 2011, 13, 19238.	1.3	585
31	A novel particle sampling system for physico-chemical and toxicological characterization of emissions. Analytical and Bioanalytical Chemistry, 2011, 401, 3183-3195.	1.9	29
32	Secondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate. Aerosol Science and Technology, 2011, 45, 244-261.	1.5	69
34	Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2190-2195.	3.3	354
35	Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 2011, 11, 11069-11102.	1.9	1,085
36	Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11003-11008.	3.3	555
37	Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?. Tree Physiology, 2011, 31, 1356-1377.	1.4	71

#	ARTICLE	IF	CITATIONS
38	A method to resolve the phase state of aerosol particles. Atmospheric Measurement Techniques, 2012, 5, 259-265.	1.2	45
39	Diffusion-Limited Versus Quasi-Equilibrium Aerosol Growth. Aerosol Science and Technology, 2012, 46, 874-885.	1.5	61
40	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
41	A Method to Study Agglomerate Breakup and Bounce During Impaction. Aerosol Science and Technology, 2012, 46, 990-1001.	1.5	20
42	Hydrolysis of Organonitrate Functional Groups in Aerosol Particles. Aerosol Science and Technology, 2012, 46, 1359-1369.	1.5	153
43	Volatility and Aging of Atmospheric Organic Aerosol. Topics in Current Chemistry, 2012, 339, 97-143.	4.0	70
44	Comparing the mechanism of water condensation and evaporation in glassy aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11613-11618.	3.3	167
45	Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Science and Technology, 2012, 46, 258-271.	1.5	699
46	Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2836-2841.	3.3	261
47	The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 2012, 5, 453-458.	5.4	350
49	Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. Atmospheric Chemistry and Physics, 2012, 12, 2691-2712.	1.9	161
50	Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17354-17359.	3.3	182
51	Probing the bulk viscosity of particles using aerosol optical tweezers. Proceedings of SPIE, 2012, , .	0.8	2
52	Determination of Evaporation Coefficients of Ambient and Laboratory-Generated Semivolatile Organic Aerosols from Phase Equilibration Kinetics in a Thermodenuder. Aerosol Science and Technology, 2012, 46, 22-30.	1.5	38
53	A coupled observation – modeling approach for studying activation kinetics from measurements of CCN activity. Atmospheric Chemistry and Physics, 2012, 12, 4227-4243.	1.9	32
54	Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation. Atmospheric Chemistry and Physics, 2012, 12, 3857-3882.	1.9	213
55	AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NO _x : effects of chemical structure on SOA aging. Atmospheric Chemistry and Physics, 2012, 12, 4667-4682.	1.9	113
56	A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics, 2012, 12, 615-634.	1.9	491

#	ARTICLE	IF	CITATIONS
57	Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmospheric Chemistry and Physics, 2012, 12, 7517-7529.	1.9	219
58	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
59	Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer. Atmospheric Chemistry and Physics, 2012, 12, 8575-8587.	1.9	64
60	Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 9505-9528.	1.9	124
61	Chemical aging of & amp; lt; i& amp; gt; m& amp; lt; li& amp; gt; -xylene secondary organic aerosol: laboratory chamber study. Atmospheric Chemistry and Physics, 2012, 12, 151-167.	1.9	83
62	Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures. Atmospheric Chemistry and Physics, 2012, 12, 8611-8632.	1.9	94
63	Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmospheric Chemistry and Physics, 2012, 12, 3253-3260.	1.9	78
64	A comment to "Largeâ€scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral― Important insights beyond greenhouse gas accounting. GCB Bioenergy, 2012, 4, 617-619.	2.5	22
65	The influence of nozzle throat length on the resolution of a low pressure impactorâ€"An experimental and numerical study. Journal of Aerosol Science, 2012, 53, 76-84.	1.8	10
66	Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophysical Research Letters, 2012, 39, .	1.5	202
67	Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons. Environmental Science & Environmental Science	4.6	110
68	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012, 117, .	3.3	53
69	Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chemical Society Reviews, 2012, 41, 6555.	18.7	201
70	The chemical evolution & physical properties of organic aerosol: A molecular structure based approach. Atmospheric Environment, 2012, 62, 199-207.	1.9	23
71	Ice nucleation by particles immersed in supercooled cloud droplets. Chemical Society Reviews, 2012, 41, 6519.	18.7	927
72	Secondary Organic Aerosol Formation from Low-NO _{<i>x</i>} Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition. Journal of Physical Chemistry A, 2012, 116, 6211-6230.	1.1	79
73	Comparison of Approaches for Measuring the Mass Accommodation Coefficient for the Condensation of Water and Sensitivities to Uncertainties in Thermophysical Properties. Journal of Physical Chemistry A, 2012, 116, 10810-10825.	1.1	57
74	Influence of Ozone and Radical Chemistry on Limonene Organic Aerosol Production and Thermal Characteristics. Environmental Science & Environmental Sci	4.6	30

#	ARTICLE	IF	Citations
75	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	1.1	41
76	Dry Deposition of Biogenic Terpenes via Cationic Oligomerization on Environmental Aqueous Surfaces. Journal of Physical Chemistry Letters, 2012, 3, 3102-3108.	2.1	75
77	Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps. Atmospheric Environment, 2012, 60, 477-485.	1.9	32
78	Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environmental and Experimental Botany, 2012, 84, 33-43.	2.0	70
79	OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. Journal of Physical Chemistry A, 2012, 116, 6358-6365.	1.1	61
80	Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach. Journal of Geophysical Research, 2012, 117, .	3.3	93
81	Heterogeneous ice nucleation and water uptake by fieldâ€collected atmospheric particles below 273 K. Journal of Geophysical Research, 2012, 117, .	3.3	52
82	The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixedâ€phase cloud formation. Journal of Geophysical Research, 2012, 117,	3.3	139
83	Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 2012, 12, 2777-2794.	1.9	170
84	Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chemical Society Reviews, 2012, 41, 6631.	18.7	294
85	Burial Effects of Organic Coatings on the Heterogeneous Reactivity of Particle-Borne Benzo[<i>a</i>)pyrene (BaP) toward Ozone. Journal of Physical Chemistry A, 2012, 116, 7050-7056.	1.1	75
86	Cloud condensation nuclei droplet growth kinetics of ultrafine particles during anthropogenic nucleation events. Atmospheric Environment, 2012, 47, 389-398.	1.9	14
87	Comparison of nanoparticle measurement instruments for occupational health applications. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	66
88	Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, 2013, , .	0.9	38
89	Influence of Humidity, Temperature, and Radicals on the Formation and Thermal Properties of Secondary Organic Aerosol (SOA) from Ozonolysis of \hat{l}^2 -Pinene. Journal of Physical Chemistry A, 2013, 117, 10346-10358.	1.1	27
90	Autoxidation of Organic Compounds in the Atmosphere. Journal of Physical Chemistry Letters, 2013, 4, 3513-3520.	2.1	444
91	Formation of Nitro-PAHs from the Heterogeneous Reaction of Ambient Particle-Bound PAHs with N ₂ O ₅ /NO ₃ /NO ₂ . Environmental Science &	4.6	30
92	A Two-Dimensional Laminar Flow Model for Thermodenuders Applied to Vapor Pressure Measurements. Aerosol Science and Technology, 2013, 47, 283-293.	1.5	7

#	Article	IF	Citations
93	Gas–particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical Chemistry Chemical Physics, 2013, 15, 11441.	1.3	222
94	Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013, 165, 391-406.	1.6	132
95	Experimental determination of chemical diffusion within secondary organic aerosol particles. Physical Chemistry Chemical Physics, 2013, 15, 2983.	1.3	167
96	A new method for characterizing the bounce and charge transfer properties of nanoparticles. Journal of Aerosol Science, 2013, 55, 104-115.	1.8	26
97	Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature. Journal of Physical Chemistry C, 2013, 117, 6678-6685.	1.5	16
98	The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chemical Science, 2013, 4, 2597.	3.7	182
99	The critical velocity for nanoparticle rebound measured in a low pressure impactor. Journal of Aerosol Science, 2013, 58, 135-147.	1.8	28
100	Needle Removal by Pine Sawfly Larvae Increases Branch-Level VOC Emissions and Reduces Below-Ground Emissions of Scots Pine. Environmental Science & En	4.6	33
101	Characterizing an Extractive Electrospray Ionization (EESI) Source for the Online Mass Spectrometry Analysis of Organic Aerosols. Environmental Science & Environmental Science & 2013, 47, 7324-7331.	4.6	58
102	Time Scales for Gas-Particle Partitioning Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis. Environmental Science & Envi	4.6	122
103	On the Mixing and Evaporation of Secondary Organic Aerosol Components. Environmental Science & Environmental &	4.6	46
104	Ecological Functions of Terpenoids in Changing Climates. , 2013, , 2913-2940.		14
105	Fluorescent lifetime imaging of atmospheric aerosols: a direct probe of aerosol viscosity. Faraday Discussions, 2013, 165, 343.	1.6	69
106	Reactive Aging of Films of Secondary Organic Material Studied by Infrared Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 108-116.	1.1	18
107	Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science. Journal of Physical Chemistry A, 2013, 117, 3428-3441.	1.1	16
108	Improvements to an Empirical Parameterization of Heterogeneous Ice Nucleation and Its Comparison with Observations. Journals of the Atmospheric Sciences, 2013, 70, 378-409.	0.6	127
109	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
110	Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols. Aerosol Science and Technology, 2013, 47, 294-309.	1.5	50

#	Article	IF	CITATIONS
111	The Role of Volatile Organic Compounds in Plant Resistance to Abiotic Stresses: Responses and Mechanisms. Tree Physiology, 2013, , 209-235.	0.9	60
112	Viscosity of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -pinene secondary organic material and implications for particle growth and reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8014-8019.	3.3	388
113	Sub-3 nm Particles Detection in a Large Photoreactor Background: Possible Implications for New Particles Formation Studies in a Smog Chamber. Aerosol Science and Technology, 2013, 47, 153-157.	1.5	7
114	A Multi-Cyclone Sampling Array for the Collection of Size-Segregated Occupational Aerosols. Journal of Occupational and Environmental Hygiene, 2013, 10, 685-693.	0.4	10
115	Analysis of the Dynamic Interaction Between SVOCs and Airborne Particles. Aerosol Science and Technology, 2013, 47, 125-136.	1.5	134
116	Reconsidering Adhesion and Bounce of Submicron Particles Upon High-Velocity Impact. Aerosol Science and Technology, 2013, 47, 472-481.	1.5	10
117	State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmospheric Chemistry and Physics, 2013, 13, 5615-5628.	1.9	82
118	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	1.9	28
119	Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models. Atmospheric Chemistry and Physics, 2013, 13, 12073-12088.	1.9	38
120	Ice nuclei in marine air: biogenic particles or dust?. Atmospheric Chemistry and Physics, 2013, 13, 245-267.	1.9	226
121	Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings. Atmospheric Chemistry and Physics, 2013, 13, 4681-4695.	1.9	73
122	Modeling organic aerosol from the oxidation of \hat{l} ±-pinene in a Potential Aerosol Mass (PAM) chamber. Atmospheric Chemistry and Physics, 2013, 13, 5017-5031.	1.9	24
123	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	1.9	105
124	Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme. Atmospheric Chemistry and Physics, 2013, 13, 6663-6686.	1.9	77
125	Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmospheric Chemistry and Physics, 2013, 13, 791-802.	1.9	44
126	Key chemical NO _x sink uncertainties and how they influence top-down emissions of nitrogen oxides. Atmospheric Chemistry and Physics, 2013, 13, 9057-9082.	1.9	125
127	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3016-3036.	1.2	79
128	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry, 2013, 10, 151.	0.7	103

#	Article	IF	CITATIONS
129	Implications of low volatility SOA and gasâ€phase fragmentation reactions on SOA loadings and their spatial and temporal evolution in the atmosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3328-3342.	1.2	66
130	Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmospheric Chemistry and Physics, 2013, 13, 2837-2855.	1.9	73
131	Science publishing: The golden club. Nature, 2013, 502, 291-293.	13.7	45
132	Where do herbivore-induced plant volatiles go?. Frontiers in Plant Science, 2013, 4, 185.	1.7	120
133	Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice. International Journal of Environmental Research and Public Health, 2014, 11, 11286-11307.	1.2	39
134	Impactor Apparatus for the Study of Particle Rebound: Relative Humidity and Capillary Forces. Aerosol Science and Technology, 2014, 48, 42-52.	1.5	91
135	Estimating the Viscosity Range of SOA Particles Based on Their Coalescence Time. Aerosol Science and Technology, 2014, 48, i-iv.	1.5	73
136	Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. Tree Physiology, 2014, 34, 241-252.	1.4	33
137	Near-Unity Mass Accommodation Coefficient of Organic Molecules of Varying Structure. Environmental Science & Environmental Sci	4.6	75
138	Water Accommodation on Ice and Organic Surfaces: Insights from Environmental Molecular Beam Experiments. Journal of Physical Chemistry B, 2014, 118, 13378-13386.	1.2	19
139	Toward the Determination of Joint Volatility-Hygroscopicity Distributions: Development and Response Characterization for Single-Component Aerosol. Aerosol Science and Technology, 2014, 48, 296-312.	1.5	8
140	Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction. Atmospheric Chemistry and Physics, 2014, 14, 5153-5181.	1.9	137
141	Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 8323-8341.	1.9	87
142	Integrating phase and composition of secondary organic aerosol from the ozonolysis of \hat{l} ±-pinene. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7552-7557.	3.3	130
143	Break-Up and Bounce of TiO ₂ Agglomerates by Impaction. Aerosol Science and Technology, 2014, 48, 31-41.	1.5	17
144	Atmospheric and Aerosol Chemistry. Topics in Current Chemistry, 2014, , .	4.0	25
145	Quantum Tunneling Hydrogenation of Solid Benzene and Its Control via Surface Structure. Journal of Physical Chemistry Letters, 2014, 5, 3843-3848.	2.1	20
146	Timescales of water transport in viscous aerosol: measurements on sub-micron particles and dependence on conditioning history. Physical Chemistry Chemical Physics, 2014, 16, 9819-9830.	1.3	67

#	Article	IF	CITATIONS
147	Raman Characterization of Ambient Airborne Soot and Associated Mineral Phases. Aerosol Science and Technology, 2014, 48, 13-21.	1.5	38
148	Retrieving the translational diffusion coefficient of water from experiments on single levitated aerosol droplets. Physical Chemistry Chemical Physics, 2014, 16, 16677.	1.3	64
149	An assessment of vapour pressure estimation methods. Physical Chemistry Chemical Physics, 2014, 16, 19453-19469.	1.3	63
150	New insights into secondary organic aerosol from the ozonolysis of α-pinene from combined infrared spectroscopy and mass spectrometry measurements. Physical Chemistry Chemical Physics, 2014, 16, 22706-22716.	1.3	24
151	Exploring matrix effects on photochemistry of organic aerosols. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13780-13785.	3.3	62
152	Probing the micro-rheological properties of aerosol particles using optical tweezers. Reports on Progress in Physics, 2014, 77, 074601.	8.1	65
153	Formation of Semisolid, Oligomerized Aqueous SOA: Lab Simulations of Cloud Processing. Environmental Science & Environmental S	4.6	42
154	Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environmental Science & Environmental Science	4.6	208
155	Vapor–Wall Deposition in Chambers: Theoretical Considerations. Environmental Science & Camp; Technology, 2014, 48, 10251-10258.	4.6	52
156	Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition. Environmental Science & Eamp; Technology, 2014, 48, 9298-9305.	4.6	50
157	OH-Initiated Heterogeneous Oxidation of Internally-Mixed Squalane and Secondary Organic Aerosol. Environmental Science & Envir	4.6	23
158	Hydrolysis of Glyoxal in Water-Restricted Environments: Formation of Organic Aerosol Precursors through Formic Acid Catalysis. Journal of Physical Chemistry A, 2014, 118, 4095-4105.	1.1	63
159	Optical growth of highly viscous organic/sulfate particles. Journal of Atmospheric Chemistry, 2014, 71, 145-156.	1.4	25
160	Calibration of the new electrical low pressure impactor (ELPI+). Journal of Aerosol Science, 2014, 69, 150-159.	1.8	124
161	Cryo-Transmission Electron Microscopy Imaging of the Morphology of Submicrometer Aerosol Containing Organic Acids and Ammonium Sulfate. Analytical Chemistry, 2014, 86, 2436-2442.	3.2	53
162	Liquid–liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts. International Reviews in Physical Chemistry, 2014, 33, 43-77.	0.9	160
163	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 259-273.	1.2	16
164	Glass-Forming Properties of 3-Methylbutane-1,2,3-tricarboxylic Acid and Its Mixtures with Water and Pinonic Acid. Journal of Physical Chemistry A, 2014, 118, 7024-7033.	1,1	54

#	Article	IF	CITATIONS
165	Introduction of a New Technique to Measure the Coefficient of Restitution for Nanoparticles. Chemie-Ingenieur-Technik, 2014, 86, 365-374.	0.4	11
166	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
167	Comparison of instruments for particle number size distribution measurements in air quality monitoring. Journal of Aerosol Science, 2014, 76, 48-55.	1.8	38
168	Physical properties of ambient and laboratoryâ€generated secondary organic aerosol. Geophysical Research Letters, 2014, 41, 4347-4353.	1.5	53
169	Factors controlling the ice nucleating abilities of <i>α</i> â€pinene SOA particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9041-9051.	1.2	49
170	Analysis of Organic Aerosols Using a Micro-Orifice Volatilization Impactor Coupled to an Atmospheric-Pressure Chemical Ionization Mass Spectrometer. European Journal of Mass Spectrometry, 2014, 20, 31-41.	0.5	7
171	Suppression in droplet growth kinetics by the addition of organics to sulfate particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,222.	1.2	6
172	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	1.9	46
173	Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmospheric Chemistry and Physics, 2014, 14, 12513-12531.	1.9	151
174	Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions. Atmospheric Chemistry and Physics, 2014, 14, 4013-4027.	1.9	40
175	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	1.9	62
176	The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy. Atmospheric Chemistry and Physics, 2014, 14, 10761-10772.	1.9	41
177	Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles. Atmospheric Chemistry and Physics, 2014, 14, 2303-2314.	1.9	29
178	Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method. Atmospheric Chemistry and Physics, 2014, 14, 3817-3830.	1.9	97
179	Reactive uptake of N _{O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations. Atmospheric Chemistry and Physics, 2014, 14, 5693-5707.}	1.9	84
180	Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM. Atmospheric Chemistry and Physics, 2014, 14, 7953-7993.	1.9	100
181	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. Atmospheric Chemistry and Physics, 2014, 14, 12781-12801.	1.9	27
182	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	1.9	89

#	Article	IF	CITATIONS
183	The role of low volatile organics on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2014, 14, 1689-1700.	1.9	64
184	Experimental study on bounce of submicron agglomerates upon inertial impaction. Powder Technology, 2014, 268, 203-209.	2.1	8
185	Global transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.	1.2	123
186	The role of shear in crystallization kinetics: From suppression to enhancement. Scientific Reports, 2015, 5, 14610.	1.6	45
187	Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types. Environmental Science &	4.6	44
188	Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests. Atmospheric Chemistry and Physics, 2015, 15, 5145-5159.	1.9	100
189	Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2015, 15, 3395-3412.	1.9	32
190	Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5027-5045.	1.9	86
191	Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships. Atmospheric Chemistry and Physics, 2015, 15, 6745-6765.	1.9	162
192	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	1.9	641
193	Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign. Atmospheric Chemistry and Physics, 2015, 15, 8847-8869.	1.9	44
194	The influences of mass loading and rapid dilution of secondary organic aerosol on particle volatility. Atmospheric Chemistry and Physics, 2015, 15, 9327-9343.	1.9	25
195	Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmospheric Chemistry and Physics, 2015, 15, 991-1012.	1.9	67
196	Adsorptive uptake of water by semisolid secondary organic aerosols. Geophysical Research Letters, 2015, 42, 3063-3068.	1.5	139
197	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	1.9	18
198	Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?. Atmospheric Chemistry and Physics, 2015, 15, 13599-13613.	1.9	103
199	Viscosity controls humidity dependence of N ₅ uptake to citric acid aerosol. Atmospheric Chemistry and Physics, 2015, 15, 13615-13625.	1.9	46
200	Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures. Atmospheric Chemistry and Physics, 2015, 15, 447-493.	1.9	37

#	ARTICLE	IF	CITATIONS
201	Changing shapes and implied viscosities of suspended submicron particles. Atmospheric Chemistry and Physics, 2015, 15, 7819-7829.	1.9	106
202	Electrodynamic balance measurements of thermodynamic, kinetic, and optical aerosol properties inaccessible to bulk methods. Atmospheric Measurement Techniques, 2015, 8, 2397-2408.	1.2	39
203	Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice. Nanomaterials, 2015, 5, 1147-1162.	1.9	10
204	Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115, 4199-4217.	23.0	185
205	Heterogeneous Photochemistry in the Atmosphere. Chemical Reviews, 2015, 115, 4218-4258.	23.0	497
206	AEROSOLS Aerosol Physics and Chemistry. , 2015, , 23-31.		O
208	The Secondary Organic Aerosol Processor (SOAP $v1.0$) model: a unified model with different ranges of complexity based on the molecular surrogate approach. Geoscientific Model Development, 2015, 8, 1111-1138.	1.3	53
209	Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Physical Chemistry Chemical Physics, 2015, 17, 31101-31109.	1.3	41
210	Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis. Journal of Physical Chemistry A, 2015, 119, 4347-4357.	1,1	48
211	Hygroscopic Influence on the Semisolid-to-Liquid Transition of Secondary Organic Materials. Journal of Physical Chemistry A, 2015, 119, 4386-4395.	1.1	112
212	Reactivity of Liquid and Semisolid Secondary Organic Carbon with Chloride and Nitrate in Atmospheric Aerosols. Journal of Physical Chemistry A, 2015, 119, 4498-4508.	1.1	73
213	Evaporation Kinetics of Laboratory-Generated Secondary Organic Aerosols at Elevated Relative Humidity. Environmental Science & Evaporation (2015), 49, 243-249.	4.6	63
214	Changes in Secondary Organic Aerosol Composition and Mass due to Photolysis: Relative Humidity Dependence. Journal of Physical Chemistry A, 2015, 119, 4309-4316.	1.1	68
215	Secondary Organic Aerosol Composition from C ₁₂ Alkanes. Journal of Physical Chemistry A, 2015, 119, 4281-4297.	1.1	53
216	Size dependence of phase transitions in aerosol nanoparticles. Nature Communications, 2015, 6, 5923.	5. 8	131
218	Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level. Analytical Chemistry, 2015, 87, 7510-7514.	3.2	77
219	Vacuum FTIR Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity. Environmental Science & Envi	4.6	29
220	Evaluation of Particle Bounce in Various Collection Substrates to be Used as Vaporizer in Aerosol Mass Spectrometer. Aerosol Science and Technology, 2015, 49, 332-339.	1.5	7

#	Article	IF	CITATIONS
221	Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake. Physical Chemistry Chemical Physics, 2015, 17, 4412-4423.	1.3	74
222	A New Method to Measure Aerosol Particle Bounce Using a Cascade Electrical Low Pressure Impactor. Aerosol Science and Technology, 2015, 49, 390-399.	1.5	25
223	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	23.0	196
224	Activation of defence pathways in Scots pine bark after feeding by pine weevil (Hylobius abietis). BMC Genomics, 2015, 16, 352.	1.2	31
225	Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 2015, 115, 4440-4475.	23.0	468
226	Liquid–Liquid Phase Separation in Mixed Organic/Inorganic Single Aqueous Aerosol Droplets. Journal of Physical Chemistry A, 2015, 119, 4177-4190.	1.1	67
227	The critical velocity of rebound determined for sub-micron silver particles with a variable nozzle area impactor. Journal of Aerosol Science, 2015, 86, 32-43.	1.8	13
228	Images and properties of individual nucleated particles. Atmospheric Environment, 2015, 123, 166-170.	1.9	5
229	Phase State and Deliquescence Hysteresis of Ammonium-Sulfate-Seeded Secondary Organic Aerosol. Aerosol Science and Technology, 2015, 49, 531-537.	1.5	15
230	Under What Conditions Can Equilibrium Gas–Particle Partitioning Be Expected to Hold in the Atmosphere?. Environmental Science & Environmental Scien	4.6	46
231	Slow water transport in MgSO ₄ aerosol droplets at gel-forming relative humidities. Physical Chemistry Chemical Physics, 2015, 17, 29753-29763.	1.3	22
232	Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. Chemical Science, 2015, 6, 7020-7027.	3.7	95
233	Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol. Physical Chemistry Chemical Physics, 2015, 17, 10059-10073.	1.3	37
234	Glass Formation Processes in Mixed Inorganic/Organic Aerosol Particles. Journal of Physical Chemistry A, 2015, 119, 4552-4561.	1.1	42
235	Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmospheric Environment, 2015, 102, 52-61.	1.9	70
236	Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere. Atmospheric Environment, 2015, 100, 1-9.	1.9	52
246	Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males. Frontiers in Neuroscience, 2015, 9, 524.	1.4	23
247	The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water. Physical Chemistry Chemical Physics, 2016, 18, 19847-19858.	1.3	19

#	ARTICLE	IF	CITATIONS
248	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
249	Particulate mass sensing with piezoelectric bulk acoustic mode resonators. , 2016, , .		11
250	Probing the Heterogeneous Ozonolysis of Squalene Nanoparticles by Photoemission. Journal of Physical Chemistry A, 2016, 120, 8645-8656.	1.1	26
251	Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 30385-30393.	1.3	37
252	Role of Organic Hydrocarbons in Atmospheric Ice Formation via Contact Freezing. Journal of Physical Chemistry A, 2016, 120, 10169-10180.	1.1	16
253	Dialkylsulfate formation in sulfuric acid-seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight. Environmental Chemistry, 2016, 13, 590.	0.7	18
254	Simplifying analysis of sorption of SVOCs to particles: Lumped parameter method and application condition. International Journal of Heat and Mass Transfer, 2016, 99, 402-408.	2.5	12
255	Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from α-Pinene Ozonolysis. Environmental Science & Technology, 2016, 50, 5740-5749.	4.6	49
256	Organic aerosol molecular composition and gas–particle partitioning coefficients at a Mediterranean site (Corsica). Journal of Environmental Sciences, 2016, 40, 92-104.	3.2	6
257	Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers. Analytical Chemistry, 2016, 88, 2361-2366.	3.2	89
258	Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol Nanoparticles. Analytical Chemistry, 2016, 88, 9766-9772.	3.2	33
259	Measurements and Predictions of Binary Component Aerosol Particle Viscosity. Journal of Physical Chemistry A, 2016, 120, 8123-8137.	1.1	92
260	An Approach to the Estimation of Adsorption Enthalpies of Polycyclic Aromatic Hydrocarbons on Particle Surfaces. Journal of Physical Chemistry A, 2016, 120, 6029-6038.	1.1	7
261	Phase State and Saturation Vapor Pressure of Submicron Particles of <i>meso</i> -Erythritol at Ambient Conditions. Journal of Physical Chemistry A, 2016, 120, 7183-7191.	1.1	8
262	Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Physical Chemistry Chemical Physics, 2016, 18, 12662-12674.	1.3	117
263	Sensitivity analysis of simulated SOA loadings using a varianceâ€based statistical approach. Journal of Advances in Modeling Earth Systems, 2016, 8, 499-519.	1.3	10
264	Models of Isotopic Water Diffusion in Spherical Aerosol Particles. Journal of Physical Chemistry A, 2016, 120, 9759-9766.	1.1	12
265	Mixing states of lightâ€absorbing particles measured using a transmission electron microscope and a singleâ€particle soot photometer in Tokyo, Japan. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9153-9164.	1.2	42

#	Article	IF	CITATIONS
266	Sucrose diffusion in aqueous solution. Physical Chemistry Chemical Physics, 2016, 18, 19207-19216.	1.3	77
267	Role of nucleation mechanism on the size dependent morphology of organic aerosol. Chemical Communications, 2016, 52, 9220-9223.	2.2	40
269	Lability of secondary organic particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12643-12648.	3. 3	93
270	Mixing of secondary organic aerosols versus relative humidity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12649-12654.	3.3	93
271	Hydroxyl radicals from secondary organic aerosol decomposition in water. Atmospheric Chemistry and Physics, 2016, 16, 1761-1771.	1.9	138
272	Effect of varying experimental conditions on the viscosity of & amp;lt;i& amp;gt;α& amp;lt;/i& amp;gt;-pinene derived secondary organic material. Atmospheric Chemistry and Physics, 2016, 16, 6027-6040.	1.9	79
273	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of & mp;lt;i>α-pinene. Atmospheric Chemistry and Physics, 2016, 16, 6495-6509.	1.9	71
274	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 2016, 16, 9321-9348.	1.9	35
275	Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with & amp; lt; l& amp; lt; l& amp; lt; l& amp; gt; -pinene ozonolysis. Atmospheric Chemistry and Physics, 2016, 16, 9361-9379.	1.9	75
276	SOA formation from the photooxidation ofÂ <i>α</i> -pinene: systematic exploration ofÂthe simulation ofÂchamber data. Atmospheric Chemistry and Physics, 2016, 16, 2785-2802.	1.9	60
277	Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of & mp;lt;i>l±-cedrene. Atmospheric Chemistry and Physics, 2016, 16, 3245-3264.	1.9	33
278	Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA). Atmospheric Chemistry and Physics, 2016, 16, 1105-1121.	1.9	43
279	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	1.9	64
280	Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols. Atmospheric Chemistry and Physics, 2016, 16, 12767-12792.	1.9	34
281	The effect of particle acidity on secondary organic aerosol formation from & amp;lt;l& amp;gt;l±& amp;lt;/l& amp;gt;-pinene photooxidation under atmospherically relevant conditions. Atmospheric Chemistry and Physics, 2016, 16, 13929-13944.	1.9	30
282	Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO ₂ emission controls. Atmospheric Chemistry and Physics, 2016, 16, 1603-1618.	1.9	257
283	Observation of viscosity transition in & amp; lt; l& amp; gt; l±& amp; lt; l& amp; gt; -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	1.9	55
284	The rate of equilibration of viscous aerosol particles. Atmospheric Chemistry and Physics, 2016, 16, 5299-5313.	1.9	35

#	Article	IF	Citations
285	Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics. Atmospheric Chemistry and Physics, 2016, 16, 5993-6009.	1.9	34
286	Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities. Atmospheric Chemistry and Physics, 2016, 16, 8817-8830.	1.9	95
287	Coalescence-based assessment of aerosol phase state using dimers prepared through a dual-differential mobility analyzer technique. Aerosol Science and Technology, 2016, 50, 1294-1305.	1.5	32
288	Observation of Organic Molecules at the Aerosol Surface. Journal of Physical Chemistry Letters, 2016, 7, 2294-2297.	2.1	21
289	Water Uptake and Hygroscopic Growth of Organosulfate Aerosol. Environmental Science & Emp; Technology, 2016, 50, 4259-4268.	4.6	54
290	Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chemical Science, 2016, 7, 274-285.	3.7	93
291	Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O ₃ , NO ₃ , and OH, on organic surfaces. Chemical Society Reviews, 2016, 45, 3731-3746.	18.7	90
292	Nature's plasticized aerosols. Nature Geoscience, 2016, 9, 7-8.	5.4	7
293	Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. Nature Geoscience, 2016, 9, 34-37.	5.4	99
294	Enhancement in Secondary Organic Aerosol Formation in the Presence of Preexisting Organic Particle. Environmental Science & En	4.6	38
295	Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Physical Chemistry Chemical Physics, 2016, 18, 8785-8793.	1.3	76
296	Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity. Journal of Physical Chemistry A, 2016, 120, 911-917.	1.1	95
297	Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry. Environmental Science & Env	4.6	154
298	SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation. Atmospheric Environment, 2016, 131, 424-433.	1.9	38
299	Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity. Chemical Science, 2016, 7, 1298-1308.	3.7	95
300	Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies) Tj ETQq1	1 0.7843 1	14 ₃₂ BT /0ve
301	The importance of herbivores. Nature Geoscience, 2016, 9, 8-8.	5.4	0
302	Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chemical Science, 2016, 7, 1357-1367.	3.7	101

#	Article	IF	CITATIONS
303	Dimethylamine Addition to Formaldehyde Catalyzed by a Single Water Molecule: A Facile Route for Atmospheric Carbinolamine Formation and Potential Promoter of Aerosol Growth. Journal of Physical Chemistry A, 2016, 120, 1358-1368.	1.1	41
304	Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1246-1251.	3.3	185
305	The effect of materials and obliquity of the impact on the critical velocity of rebound. Aerosol Science and Technology, 2017, 51, 301-310.	1.5	7
306	Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation. Faraday Discussions, 2017, 200, 165-194.	1.6	40
307	The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients. Physical Chemistry Chemical Physics, 2017, 19, 3922-3931.	1.3	19
308	Kinetics, mechanisms and ionic liquids in the uptake of n-butylamine onto low molecular weight dicarboxylic acids. Physical Chemistry Chemical Physics, 2017, 19, 4827-4839.	1.3	12
309	Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value?. Faraday Discussions, 2017, 200, 639-661.	1.6	23
310	Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning. Environmental Science & Environmental Science & 2017, 51, 3327-3335.	4.6	55
311	Factors controlling the evaporation of secondary organic aerosol from αâ€pinene ozonolysis. Geophysical Research Letters, 2017, 44, 2562-2570.	1.5	95
312	The Role of Water in Organic Aerosol Multiphase Chemistry: Focus on Partitioning and Reactivity. , 2017, , 95-184.		9
313	Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols. Physical Chemistry Chemical Physics, 2017, 19, 6814-6830.	1.3	38
314	The properties and behavior of $\hat{l}\pm$ -pinene secondary organic aerosol particles exposed to ammonia under dry conditions. Physical Chemistry Chemical Physics, 2017, 19, 6497-6507.	1.3	28
315	Global distribution of particle phase state in atmospheric secondary organic aerosols. Nature Communications, 2017, 8, 15002.	5.8	295
316	Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 427-444.	3.3	76
317	Investigations on the correlations of fragmentation, penetration and charge transfer of Pt and SiO 2 particles due to inertial impaction on TEM grids, Cu and Si wafer targets. Journal of Aerosol Science, 2017, 110, 1-10.	1.8	5
318	Heterogeneous ice nucleation of <i>α</i> êpinene SOA particles before and after ice cloud processing. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4924-4943.	1.2	30
319	Herbivore-induced BVOC emissions of Scots pine under warming, elevated ozone and increased nitrogen availability in an open-field exposure. Agricultural and Forest Meteorology, 2017, 242, 21-32.	1.9	33
320	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74

#	Article	IF	CITATIONS
321	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.	1.5	39
322	Rebounding hygroscopic inorganic aerosol particles: Liquids, gels, and hydrates. Aerosol Science and Technology, 2017, 51, 388-396.	1.5	36
323	Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions. Physical Chemistry Chemical Physics, 2017, 19, 16681-16692.	1.3	18
324	DFT study on abstraction reaction mechanism of oh radical with 2-methoxyphenol. Journal of Physical Organic Chemistry, 2017, 30, e3713.	0.9	15
325	Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discussions, 2017, 200, 11-58.	1.6	17
326	Reactive Uptake of Gaseous Sesquiterpenes on Aqueous Surfaces. Journal of Physical Chemistry A, 2017, 121, 810-818.	1.1	47
327	Criegee Chemistry on Aqueous Organic Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 1615-1623.	2.1	73
328	Multiphase Photochemistry of Pyruvic Acid under Atmospheric Conditions. Journal of Physical Chemistry A, 2017, 121, 3327-3339.	1.1	57
330	Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. Journal of Physical Chemistry A, 2017, 121, 206-215.	1.1	23
331	Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography. Environmental Science & Environmental Scien	4.6	32
332	Influence of Functional Groups on the Viscosity of Organic Aerosol. Environmental Science & Emp; Technology, 2017, 51, 271-279.	4.6	87
333	Crystal Nucleation and Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO ₃ Particles. Journal of Physical Chemistry A, 2017, 121, 7968-7975.	1.1	17
334	Tracking Water Sorption in Glassy Aerosol Particles using Morphology-Dependent Resonances. Journal of Physical Chemistry A, 2017, 121, 8176-8184.	1.1	16
335	A Model for the Spectral Dependence of Aerosol Sunlight Absorption. ACS Earth and Space Chemistry, 2017, 1, 533-539.	1.2	9
336	The Effects of Third Substances at the Particle/Surface Interface in Compressor Fouling. , 2017, , .		3
337	Submicrometer Particles Are in the Liquid State during Heavy Haze Episodes in the Urban Atmosphere of Beijing, China. Environmental Science and Technology Letters, 2017, 4, 427-432.	3.9	139
338	Kinetically Determined Hygroscopicity and Efflorescence of Sucrose–Ammonium Sulfate Aerosol Droplets under Lower Relative Humidity. Journal of Physical Chemistry B, 2017, 121, 8551-8557.	1.2	14
339	Hygroscopicity of internally mixed particles composed of (NH4)2SO4 and citric acid under pulsed RH change. Chemosphere, 2017, 188, 532-540.	4.2	12

#	Article	IF	CITATIONS
340	Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3–C7 solid dicarboxylic acids. Physical Chemistry Chemical Physics, 2017, 19, 26296-26309.	1.3	8
341	Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers. Environmental Science & Environmental	4.6	44
342	Spectroscopic Determination of Aerosol pH from Acid–Base Equilibria in Inorganic, Organic, and Mixed Systems. Journal of Physical Chemistry A, 2017, 121, 5690-5699.	1.1	79
343	Effect of Drying Rate on Aerosol Particle Morphology. Journal of Physical Chemistry Letters, 2017, 8, 3613-3618.	2.1	45
344	Herbivore-Induced Plant Volatiles. , 2017, , 285-298.		1
345	Characterising the evaporation kinetics of water and semi-volatile organic compounds from viscous multicomponent organic aerosol particles. Physical Chemistry Chemical Physics, 2017, 19, 31634-31646.	1.3	21
346	Solid, Semisolid, and Liquid Phase States of Individual Submicrometer Particles Directly Probed Using Atomic Force Microscopy. Analytical Chemistry, 2017, 89, 12720-12726.	3.2	38
347	Complex three-dimensional self-assembly in proxies for atmospheric aerosols. Nature Communications, 2017, 8, 1724.	5.8	38
348	Role of TLR4 in olfactory-based spatial learning activity of neonatal mice after developmental exposure to diesel exhaust origin secondary organic aerosol. NeuroToxicology, 2017, 63, 155-165.	1.4	17
349	Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. Physical Chemistry Chemical Physics, 2017, 19, 21101-21111.	1.3	65
350	Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances. Analytical Chemistry, 2017, 89, 430-452.	3.2	135
351	Volatiles and Food Security. , 2017, , .		12
352	Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols. Journal of Chemical Physics, 2017, 147, 220901.	1.2	42
353	Kinetic modeling studies of SOA formation from & amp;lt;i& amp;gt;α& amp;lt;/i& amp;gt;-pinene ozonolysis. Atmospheric Chemistry and Physics, 2017, 17, 13187-13211.	1.9	8
354	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14
355	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	1.9	52
356	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
357	A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA. Atmospheric Chemistry and Physics, 2017, 17, 3929-3943.	1.9	9

#	Article	IF	Citations
358	An efficient approach for treating composition-dependent diffusion within organic particles. Atmospheric Chemistry and Physics, 2017, 17, 10477-10494.	1.9	6
359	Assessing the influence of NO concentrations and relative humidity on secondary organic aerosol yields from <i>α</i> -pinene photo-oxidation through smog chamber experiments and modelling calculations. Atmospheric	1.9	37
360	Diffusivity measurements of volatile organics in levitated viscous aerosol particles. Atmospheric Chemistry and Physics, 2017, 17, 8453-8471.	1.9	40
361	The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles. Atmospheric Chemistry and Physics, 2017, 17, 8509-8524.	1.9	35
362	Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmospheric Chemistry and Physics, 2017, 17, 8739-8755.	1.9	20
363	Modeling the role of highly oxidized multifunctional organicÂmolecules for the growth of new particles overÂtheÂborealÂforestÂregion. Atmospheric Chemistry and Physics, 2017, 17, 8887-8901.	1.9	29
364	Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC). Atmospheric Chemistry and Physics, 2017, 17, 9853-9868.	1.9	34
365	Improving organic aerosol treatments in CESM / CAM 5: Development, application, and evaluation. Journal of Advances in Modeling Earth Systems, 2017, 9, 1506-1539.	1.3	17
371	Collection efficiency of & amp;lt;i& amp;gt;α& amp;lt;/i& amp;gt;-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry. Atmospheric Measurement Techniques, 2017, 10, 1139-1154.	1.2	16
375	Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling. Environmental Science & Exposed to 4061-4071.	4.6	59
376	The viscosity of atmospherically relevant organic particles. Nature Communications, 2018, 9, 956.	5.8	252
377	Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol. Atmospheric Chemistry and Physics, 2018, 18, 1629-1642.	1.9	16
378	Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice. Quaternary Science Reviews, 2018, 183, 1-22.	1.4	25
379	Computational simulation of the dynamics of secondary organic aerosol formation in an environmental chamber. Aerosol Science and Technology, 2018, 52, 470-482.	1.5	13
380	Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter. ACS Central Science, 2018, 4, 207-215.	5.3	60
381	Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental Science and Technology Letters, 2018, 5, 167-174.	3.9	131
382	The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry, 2018, 2, 168-202.	1.2	212
383	<i>α</i> -Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity. Atmospheric Chemistry and Physics, 2018, 18, 2883-2898.	1.9	71

#	Article	IF	CITATIONS
384	Nighttime oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation. Atmospheric Chemistry and Physics, 2018, 18, 3249-3268.	1.9	19
385	Readily Mixed Atmospheric Organic Particles. CheM, 2018, 4, 399-401.	5.8	4
386	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Environmental Sci	4.6	85
387	A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Science and Technology, 2018, 52, 310-329.	1.5	43
389	A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements. Atmospheric Chemistry and Physics, 2018, 18, 14757-14785.	1.9	42
390	The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2018, 18, 9393-9409.	1.9	5
392	Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids. Atmospheric Chemistry and Physics, 2018, 18, 5115-5127.	1.9	52
393	Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. Environmental Sciences: Processes and Impacts, 2018, 20, 1593-1610.	1.7	12
397	Physical state of 2-methylbutane-1,2,3,4-tetraol in pure and internally mixed aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15841-15857.	1.9	12
398	Directly Probing the Phase States and Surface Tension of Individual Submicrometer Particles Using Atomic Force Microscopy. ACS Symposium Series, 2018, , 245-259.	0.5	4
399	Influence of relative humidity on the heterogeneous oxidation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2018, 18, 14585-14608.	1.9	36
401	Aerosol Acidity: Direct Measurement from a Spectroscopic Method. ACS Symposium Series, 2018, , 171-191.	0.5	7
402	Molecular Corridors, Volatility and Particle Phase State in Secondary Organic Aerosols. ACS Symposium Series, 2018, , 209-244.	0.5	2
403	Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. Nature Communications, 2018, 9, 4076.	5.8	84
404	Physical Properties of Aerosol Internally Mixed With Soot Particles in a Biogenically Dominated Environment in California. Geophysical Research Letters, 2018, 45, 11,473.	1.5	15
405	Viscosity of erythritol and erythritol–water particles as a function of water activity: new results and an intercomparison of techniques for measuring the viscosity of particles. Atmospheric Measurement Techniques, 2018, 11, 4809-4822.	1.2	4
406	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	1.9	12
407	Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging. Atmospheric Chemistry and Physics, 2018, 18, 14017-14036.	1.9	39

#	Article	IF	Citations
408	Fouling on a Multistage Axial Compressor in the Presence of a Third Substance at the Particle/Surface Interface. , $2018, \ldots$		2
409	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	1.9	116
410	Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy. Atmospheric Measurement Techniques, 2018, 11, 3479-3490.	1.2	15
411	Gas-to-particle partitioning of major biogenic oxidation products: a study on freshly formed and aged biogenic SOA. Atmospheric Chemistry and Physics, 2018, 18, 12969-12989.	1.9	18
412	A twisted tale: measuring viscosity and temperature of microenvironments using molecular rotors. International Reviews in Physical Chemistry, 2018, 37, 259-285.	0.9	50
414	Predicting Secondary Organic Aerosol Enhancement in the Presence of Atmospherically Relevant Organic Particles. ACS Earth and Space Chemistry, 2018, 2, 1035-1046.	1.2	19
415	Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous–sucrose–maleic acid aerosol. Physical Chemistry Chemical Physics, 2018, 20, 15560-15573.	1.3	39
416	Investigation on the hygroscopicity of oxalic acid and atmospherically relevant oxalate salts under sub- and supersaturated conditions. Environmental Sciences: Processes and Impacts, 2018, 20, 1069-1080.	1.7	12
417	Amorphous phase state diagrams and viscosity of ternary aqueous organic/organic and inorganic/organic mixtures. Physical Chemistry Chemical Physics, 2018, 20, 15086-15097.	1.3	37
418	Potential role of intraparticle diffusion in dynamic partitioning of secondary organic aerosols. Atmospheric Pollution Research, 2018, 9, 1131-1136.	1.8	8
419	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 347 Td Model Development, 2018, 11, 165-194.	(2017&ar 1.3	np;lt;i& 36
420	Gas–Liquid Interfaces in the Atmosphere. , 2018, , 271-313.		6
421	New Particle Formation and Growth. , 2018, , 315-352.		12
422	Condensation Kinetics of Water on Amorphous Aerosol Particles. Journal of Physical Chemistry Letters, 2018, 9, 3708-3713.	2.1	18
423	The Influence of Absolute Mass Loading of Secondary Organic Aerosols on Their Phase State. Atmosphere, 2018, 9, 131.	1.0	13
424	Influence of Particle Physical State on the Uptake of Medium-Sized Organic Molecules. Environmental Science & Environmental Sc	4.6	11
425	Extending surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the accumulation mode (150–800 nm). Environmental Sciences: Processes and Impacts, 2018, 20, 1570-1580.	1.7	15
426	Interactions between water vapor and atmospheric aerosols have key roles in air quality and climate change. National Science Review, 2018, 5, 452-454.	4.6	33

#	ARTICLE	IF	CITATIONS
427	Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. European Journal of Forest Research, 2019, 138, 763-787.	1.1	53
428	α-Pinene-Derived organic coatings on acidic sulfate aerosol impacts secondary organic aerosol formation from isoprene in a box model. Atmospheric Environment, 2019, 213, 456-462.	1.9	21
429	Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. Journal of Chemical Physics, 2019, 151, 014503.	1.2	23
430	Interfaces of Gas–Aerosol Particles: Relative Humidity and Salt Concentration Effects. Journal of Physical Chemistry A, 2019, 123, 6304-6312.	1.1	17
431	The heterogeneous reaction of dimethylamine/ammonia with sulfuric acid to promote the growth of atmospheric nanoparticles. Environmental Science: Nano, 2019, 6, 2767-2776.	2.2	9
432	Optimization of process models for determining volatility distribution and viscosity of organic aerosols from isothermal particle evaporation data. Atmospheric Chemistry and Physics, 2019, 19, 9333-9350.	1.9	9
433	Using Nanoparticle X-ray Spectroscopy to Probe the Formation of Reactive Chemical Gradients in Diffusion-Limited Aerosols. Journal of Physical Chemistry A, 2019, 123, 6034-6044.	1.1	12
434	Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers. Chemical Reviews, 2019, 119, 11912-11944.	23.0	27
435	Waterâ€Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visibleâ€Lightâ€Driven CO ₂ Reduction in Pure Water. ChemSusChem, 2019, 12, 4769-4774.	3.6	89
436	Bulk phase water diffusion is significantly inhibited by inhomogeneity of single non-crystal particle at low relative humidity. Journal of Non-Crystalline Solids, 2019, 523, 119595.	1.5	1
437	Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients. Atmospheric Chemistry and Physics, 2019, 19, 10981-11011.	1.9	25
439	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
440	Quantifying the Role of the Relative Humidity-Dependent Physical State of Organic Particulate Matter in the Uptake of Semivolatile Organic Molecules. Environmental Science &	4.6	16
441	Compositional Evolution of Secondary Organic Aerosol as Temperature and Relative Humidity Cycle in Atmospherically Relevant Ranges. ACS Earth and Space Chemistry, 2019, 3, 2549-2558.	1.2	21
442	Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth and Space Chemistry, 2019, 3, 2646-2658.	1.2	80
443	Photochemical Aging Alters Secondary Organic Aerosol Partitioning Behavior. ACS Earth and Space Chemistry, 2019, 3, 2704-2716.	1.2	18
444	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	1.9	67
445	Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. Atmospheric Chemistry and Physics, 2019, 19, 10073-10085.	1.9	35

#	Article	IF	CITATIONS
446	Volatility measurements of 1, 2, 6-hexanetriol in levitated viscous aerosol particles. Journal of Aerosol Science, 2019, 138, 105449.	1.8	4
447	The Cooling Rate- and Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. Environmental Science & Environmental Science & 2019, 53, 12366-12378.	4.6	37
450	Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and Thermodynamic Mixing Behavior. Environmental Science & Envi	4.6	22
451	Diffusion of Organic Molecules as a Function of Temperature in a Sucrose Matrix (a Proxy for) Tj ETQq1 1 0.784	314 rgBT / 2.P	Overlock 10
452	Cu/Ag Sphere Segment Void Array as Efficient Surface Enhanced Raman Spectroscopy Substrate for Detecting Individual Atmospheric Aerosol. Analytical Chemistry, 2019, 91, 13647-13657.	3.2	22
453	Theory for Glassy Behavior of Supercooled Liquid Mixtures. Physical Review Letters, 2019, 123, 100602.	2.9	6
454	Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). Chemical Science, 2019, 10, 884-897.	3.7	14
455	Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks. Atmospheric Measurement Techniques, 2019, 12, 525-567.	1.2	17
456	Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Environmental Pollution, 2019, 247, 763-774.	3.7	89
457	Correlating 3D Morphology, Phase State, and Viscoelastic Properties of Individual Substrate-Deposited Particles. Analytical Chemistry, 2019, 91, 7621-7630.	3.2	33
458	Influence of relative humidity on cyclohexene SOA formation from OH photooxidation. Chemosphere, 2019, 231, 478-486.	4.2	20
459	Multiphase chemistry in the troposphere: It all starts $\hat{a} \in \ $ and ends $\hat{a} \in \ $ with gases. International Journal of Chemical Kinetics, 2019, 51, 736-752.	1.0	6
460	Reactive Uptake of Isoprene Epoxydiols Increases the Viscosity of the Core of Phase-Separated Aerosol Particles. ACS Earth and Space Chemistry, 2019, 3, 1402-1414.	1.2	35
461	Effects of Phase State and Phase Separation on Dimethylamine Uptake of Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. ACS Earth and Space Chemistry, 2019, 3, 1268-1278.	1.2	10
462	Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals, 2019, 9, 163.	1.0	6
463	Water diffusion measurements of single charged aerosols using H ₂ O/D ₂ O isotope exchange and Raman spectroscopy in an electrodynamic balance. Physical Chemistry Chemical Physics, 2019, 21, 15062-15071.	1.3	15
465	Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model. Atmospheric Chemistry and Physics, 2019, 19, 1241-1261.	1.9	23
466	Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmospheric Chemistry and Physics, 2019, 19, 5959-5971.	1.9	53

#	ARTICLE	IF	Citations
467	Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic ∕ inorganic particles. Atmospheric Measurement Techniques, 2019, 12, 1619-1633.	1.2	14
468	Gas to Particle Partitioning of Organic Acids in the Boreal Atmosphere. ACS Earth and Space Chemistry, 2019, 3, 1279-1287.	1.2	13
469	Study of particle deposition on the complex components of environmental control systems. International Journal of Heat and Mass Transfer, 2019, 135, 1218-1232.	2.5	1
470	Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations. Atmospheric Chemistry and Physics, 2019, 19, 5571-5587.	1.9	23
471	Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel Variations in the Aerosol Phase in a Mixed Forest. Environmental Science & En	4.6	72
473	A Review of the Representation of Aerosol Mixing State in Atmospheric Models. Atmosphere, 2019, 10, 168.	1.0	29
474	Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor. Frontiers in Plant Science, 2019, 10, 191.	1.7	29
475	Models for the bead mobility technique: A droplet-based viscometer. Aerosol Science and Technology, 2019, 53, 749-759.	1.5	4
476	Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber Experiments. Journal of Physical Chemistry A, 2019, 123, 3887-3892.	1.1	0
477	Aerosol Phase State and Its Link to Chemical Composition and Liquid Water Content in a Subtropical Coastal Megacity. Environmental Science & Environme	4.6	43
478	Numerical, wind-tunnel, and atmospheric evaluation of a turbulent ground-based inlet sampling system. Aerosol Science and Technology, 2019, 53, 712-727.	1.5	6
480	Effect of Bulk Composition on the Heterogeneous Oxidation of Semi-Solid Atmospheric Aerosols. Atmosphere, 2019, 10, 791.	1.0	3
481	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	1.9	27
483	Interfacial Dimerization by Organic Radical Reactions during Heterogeneous Oxidative Aging of Oxygenated Organic Aerosols. Journal of Physical Chemistry A, 2019, 123, 10782-10792.	1.1	26
484	Effect of Decreased Temperature on the Evaporation of \hat{l}_{\pm} -Pinene Secondary Organic Aerosol Particles. ACS Earth and Space Chemistry, 2019, 3, 2775-2785.	1.2	15
485	Atmospheric \hat{l}^2 -Caryophyllene-Derived Ozonolysis Products at Interfaces. ACS Earth and Space Chemistry, 2019, 3, 158-169.	1.2	10
486	Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmospheric Research, 2019, 218, 257-268.	1.8	53
487	Potentially Important Contribution of Gas-Phase Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol during Haze Events in Beijing. Environmental Science & Technology, 2019, 53, 1235-1244.	4.6	54

#	Article	IF	CITATIONS
488	Kinetic Delay in Partitioning and Parallel Particle Pathways: Underappreciated Aspects of Environmental Transport. Environmental Science & Environmental Transport. Environmental Science & Environmen	4.6	16
489	Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: Volatility of organic aerosol by using optical tweezers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117552.	2.0	8
490	Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics. Environmental Science & Environmental S	4.6	190
491	Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. Environmental Sciences: Processes and Impacts, 2020, 22, 66-83.	1.7	14
492	Potential of Polarization Lidar to Profile the Urban Aerosol Phase State during Haze Episodes. Environmental Science and Technology Letters, 2020, 7, 54-59.	3.9	13
493	Atmospheric ice nuclei concentration measurements over a high altitude-station in the Western Ghats, India. Atmospheric Research, 2020, 235, 104795.	1.8	8
494	A perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models. Journal of the Air and Waste Management Association, 2020, 70, 44-70.	0.9	18
495	Aerosol Optical Tweezers Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated Atmospheric Particles. CheM, 2020, 6, 204-220.	5.8	53
496	Predicting the influence of particle size on the glass transition temperature and viscosity of secondary organic material. Scientific Reports, 2020, 10, 15170.	1.6	21
497	lon-molecule interactions enable unexpected phase transitions in organic-inorganic aerosol. Science Advances, 2020, 6, .	4.7	36
498	Enhanced Gas Uptake during $\hat{l}\pm$ -Pinene Ozonolysis Points to a Burying Mechanism. ACS Earth and Space Chemistry, 2020, 4, 1435-1447.	1.2	4
500	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	1.7	20
501	A biogenic secondary organic aerosol source of cirrus ice nucleating particles. Nature Communications, 2020, 11, 4834.	5.8	45
502	New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene. Accounts of Chemical Research, 2020, 53, 2034-2043.	7.6	90
503	Non-exhaust particle emissions under various driving conditions: Implications for sustainable mobility. Transportation Research, Part D: Transport and Environment, 2020, 81, 102290.	3.2	33
504	A predictive group-contribution model for the viscosity of aqueous organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 2987-3008.	1.9	34
505	VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. Science of the Total Environment, 2020, 731, 139184.	3.9	26
506	Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles. Analytical Chemistry, 2020, 92, 9932-9939.	3.2	47

#	Article	IF	CITATIONS
507	Parameter Effects on Dynamic Adsorption of Trichloroethylene on Hypercrosslinked Polymeric Adsorbents. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	1
508	Synchronized Structure and Surface Tension Measurement on Individual Secondary Aerosol Particles by Low-Voltage Transmission Electron Microscopy. Environmental Science and Technology Letters, 2020, 7, 560-566.	3.9	2
509	Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy. Atmosphere, 2020, 11, 489.	1.0	7
510	Modelling the effect of condensed-phase diffusion on the homogeneous nucleation of ice in ultra-viscous particles. Atmospheric Chemistry and Physics, 2020, 20, 683-698.	1.9	14
511	Water and Pathogenic Viruses Inactivationâ€"Food Engineering Perspectives. Food Engineering Reviews, 2020, 12, 251-267.	3.1	26
512	Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review. Atmosphere, 2020, 11, 156.	1.0	12
513	Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent Core–Shell Sea Spray Aerosols during Two Phytoplankton Blooms. ACS Earth and Space Chemistry, 2020, 4, 650-660.	1.2	29
514	Heterogeneous oxidation of amorphous organic aerosol surrogates by O ₃ , and OH at typical tropospheric temperatures. Atmospheric Chemistry and Physics, 2020, 20, 6055-6080.	1.9	23
515	Modeling the formation and growth of atmospheric molecular clusters: A review. Journal of Aerosol Science, 2020, 149, 105621.	1.8	98
516	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	1.2	10
517	Impacts of Mixed Gaseous and Particulate Pollutants on Secondary Particle Formation during Ozonolysis of Butyl Vinyl Ether. Environmental Science & Environmental Science & 2020, 54, 3909-3919.	4.6	4
518	NOx enhances secondary organic aerosol formation from nighttime \hat{I}^3 -terpinene ozonolysis. Atmospheric Environment, 2020, 225, 117375.	1.9	18
520	From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 2713-2737.	1.3	34
521	Particle-Phase Diffusion Modulates Partitioning of Semivolatile Organic Compounds to Aged Secondary Organic Aerosol. Environmental Science & Environme	4.6	37
523	Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chemical Society Reviews, 2020, 49, 2570-2616.	18.7	62
524	Deposition of $\hat{l}\pm$ -pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition. Environmental Pollution, 2020, 263, 114437.	3.7	7
525	Au nanoring arrays as surface enhanced Raman spectroscopy substrate for chemical component study of individual atmospheric aerosol particle. Journal of Environmental Sciences, 2021, 100, 11-17.	3.2	8
526	The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy. Faraday Discussions, 2021, 226, 364-381.	1.6	16

#	Article	IF	CITATIONS
527	Perinatal Exposure to Diesel Exhaust-Origin Secondary Organic Aerosol Induces Autism-Like Behavior in Rats. International Journal of Molecular Sciences, 2021, 22, 538.	1.8	8
528	Direct observation and assessment of phase states of ambient and lab-generated sub-micron particles upon humidification. RSC Advances, 2021, 11, 15264-15272.	1.7	13
529	Inventory of Ozone Precursor VOCs from Organic Solvents Used in Residential Workplaces and Assessment of Ozone Formation Contribution. Journal of Korean Society for Atmospheric Environment, 2021, 37, 102-112.	0.2	4
530	Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth. Atmospheric Chemistry and Physics, 2021, 21, 1565-1580.	1.9	25
532	Atomic Force Microscopy: An Emerging Tool in Measuring the Phase State and Surface Tension of Individual Aerosol Particles. Annual Review of Physical Chemistry, 2021, 72, 235-252.	4.8	19
534	The Role of Cloud Processing for the Ice Nucleating Ability of Organic Aerosol and Coal Fly Ash Particles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033338.	1.2	10
535	Physicochemical characterization of dapagliflozin and its solid-state behavior in stress stability test. Drug Development and Industrial Pharmacy, 2021, 47, 685-693.	0.9	1
536	Molecular characterization of gaseous and particulate oxygenated compounds at a remote site in Cape Corsica in the western Mediterranean Basin. Atmospheric Chemistry and Physics, 2021, 21, 8067-8088.	1.9	5
537	Representation of Multiphase OH Oxidation of Amorphous Organic Aerosol for Tropospheric Conditions. Environmental Science & Eamp; Technology, 2021, 55, 7266-7275.	4.6	13
538	Urban aerosol size distributions: a global perspective. Atmospheric Chemistry and Physics, 2021, 21, 8883-8914.	1.9	36
541	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. Environmental Science &	4.6	12
543	Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age. Atmospheric Chemistry and Physics, 2021, 21, 11069-11078.	1.9	7
544	Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 2380-2397.	1.2	20
545	Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors. Atmospheric Chemistry and Physics, 2021, 21, 11303-11316.	1.9	7
546	Estimation of secondary organic aerosol viscosity from explicit modeling of gas-phase oxidation of isoprene and <i>α</i> -pinene. Atmospheric Chemistry and Physics, 2021, 21, 10199-10213.	1.9	10
547	Ice nucleation ability of ammonium sulfate aerosol particles internally mixed with secondary organics. Atmospheric Chemistry and Physics, 2021, 21, 10779-10798.	1.9	9
548	Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts. Atmospheric Chemistry and Physics, 2021, 21, 10215-10228.	1.9	22
550	A review of efflorescence kinetics studies on atmospherically relevant particles. Chemosphere, 2021, 277, 130320.	4.2	8

#	Article	IF	CITATIONS
551	Opinion: Papers that shaped tropospheric chemistry. Atmospheric Chemistry and Physics, 2021, 21, 12909-12948.	1.9	4
552	Phase Behavior of Hydrocarbon-like Primary Organic Aerosol and Secondary Organic Aerosol Proxies Based on Their Elemental Oxygen-to-Carbon Ratio. Environmental Science & Envi	4.6	13
553	Probing the Water Uptake and Phase State of Individual Sucrose Nanoparticles Using Atomic Force Microscopy. ACS Earth and Space Chemistry, 2021, 5, 2612-2620.	1.2	6
554	Hygroscopicity and mass transfer limit of mixed glutaric acid/MgSO4/water particles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 258, 119790.	2.0	1
555	Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires. Agricultural and Forest Meteorology, 2021, 308-309, 108584.	1.9	3
556	Formation of secondary organic aerosols from the reaction of \hat{l}^3 -terpinene with ozone: yields and morphology. Atmospheric Environment, 2021, 262, 118600.	1.9	1
558	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
559	Multitrophic Signalling in Polluted Atmospheres. Tree Physiology, 2013, , 285-314.	0.9	16
560	Response to Comment on "Measured Saturation Vapor Pressures of Phenolic and Nitro-Aromatic Compoundsâ€. Environmental Science & Environmental Scien	4.6	1
561	Role of Relative Humidity in the Secondary Organic Aerosol Formation from High-NO _{<i>x</i>} Photooxidation of Long-Chain Alkanes: <i>n</i> -Dodecane Case Study. ACS Earth and Space Chemistry, 2020, 4, 2414-2425.	1.2	5
562	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. Issues in Environmental Science and Technology, 2016, , 35-71.	0.4	5
564	Influence of the Dilution System and Electrical Low Pressure Impactor Performance on Particulate Emission Measurements from a Medium-scale Biomass Boiler. Aerosol and Air Quality Research, 2020, , .	0.9	4
565	Optical properties and composition of viscous organic particles found in the Southern Great Plains. Atmospheric Chemistry and Physics, 2020, 20, 11593-11606.	1.9	12
566	Hygroscopic behavior of aerosols generated from solutions of 3-methyl-1,2,3-butanetricarboxylic acid, its sodium salts, and its mixtures with NaCl. Atmospheric Chemistry and Physics, 2020, 20, 14103-14122.	1.9	10
567	Kinetic modeling of formation and evaporation of secondary organic aerosol from NO ₃ oxidation of pure and mixed monoterpenes. Atmospheric Chemistry and Physics, 2020, 20, 15513-15535.	1.9	14
568	Deconvolution of FIGAERO–CIMS thermal desorption profiles using positive matrix factorisation to identify chemical and physical processes during particle evaporation. Atmospheric Chemistry and Physics, 2020, 20, 7693-7716.	1.9	28
569	Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmospheric Chemistry and Physics, 2020, 20, 8103-8122.	1.9	47
570	Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. Atmospheric Chemistry and Physics, 2020, 20, 8201-8225.	1.9	42

#	Article	IF	Citations
616	Review of Recent Smog Chamber Studies for Secondary Organic Aerosol. Journal of Korean Society for Atmospheric Environment, 2016, 32, 131-157.	0.2	9
617	High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. Environmental Science & Environme	4.6	7
618	An organic crystalline state in ageing atmospheric aerosol proxies: spatially resolved structural changes in levitated fatty acid particles. Atmospheric Chemistry and Physics, 2021, 21, 15003-15021.	1.9	17
619	Evolution of Sea Spray Aerosol Particle Phase State Across a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2021, 5, 2995-3007.	1.2	10
642	Review of Viscosities and Phases of Biogenic Secondary Organic Aerosols. Journal of Korean Society for Atmospheric Environment, 2016, 32, 349-359.	0.2	0
644	Modeling the Optical Properties of Atmospheric Aerosol Particles Comprised of Amorphous Materials. , 2021, , .		0
646	Comparing secondary organic aerosol (SOA) volatility distributions derived from isothermal SOA particle evaporation data and FIGAERO–CIMS measurements. Atmospheric Chemistry and Physics, 2020, 20, 10441-10458.	1.9	7
647	Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements. ACS Earth and Space Chemistry, 2021, 5, 3458-3473.	1.2	14
648	Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest. Science Advances, 2022, 8, eabj0329.	4.7	19
649	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 2022, 22, 155-171.	1.9	4
650	Low Temperature Catalytic Oxidation of Ethanol Using Ozone over Manganese Oxide-Based Catalysts in Powdered and Monolithic Forms. Catalysts, 2022, 12, 172.	1.6	8
651	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
652	Morphology and Viscosity Changes after Reactive Uptake of Isoprene Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed from Different Volatile Organic Compounds. ACS Earth and Space Chemistry, 2022, 6, 871-882.	1.2	11
653	Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	51
655	Probing autoxidation of oleic acid at air-water interface: A neglected and significant pathway for secondary organic aerosols formation. Environmental Research, 2022, 212, 113232.	3.7	7
656	Evolution of volatility and composition in sesquiterpene-mixed and & amp; t;i>î±-pinene secondary organic aerosol particles during isothermal evaporation. Atmospheric Chemistry and Physics, 2021, 21, 18283-18302.	1.9	6
657	The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy. Atmospheric Chemistry and Physics, 2022, 22, 4895-4907.	1.9	13
658	Amplification of light within aerosol particles accelerates in-particle photochemistry. Science, 2022, 376, 293-296.	6.0	21

#	Article	IF	CITATIONS
662	Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles. Atmospheric Chemistry and Physics, 2022, 22, 5331-5364.	1.9	5
663	Source and Chemistry of Hydroxymethanesulfonate (HMS) in Fairbanks, Alaska. Environmental Science & En	4.6	14
665	Single particle measurements of mixing between mimics for biomass burning and aged secondary organic aerosols. Environmental Science Atmospheres, 0, , .	0.9	2
667	Constraints on the Role of Laplace Pressure in Multiphase Reactions and Viscosity of Organic Aerosols. Geophysical Research Letters, 2022, 49, .	1.5	7
668	Phase state of organic aerosols may limit temperature-driven thermodynamic repartitioning following outdoor-to-indoor transport. Environmental Sciences: Processes and Impacts, 2022, 24, 1678-1696.	1.7	4
669	Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources. Atmospheric Chemistry and Physics, 2022, 22, 9033-9057.	1.9	7
670	Initial pH Governs Secondary Organic Aerosol Phase State and Morphology after Uptake of Isoprene Epoxydiols (IEPOX). Environmental Science & Epoxydiols (IEPOX).	4.6	9
671	Viscosity and physical state of sucrose mixed with ammonium sulfate droplets. Atmospheric Chemistry and Physics, 2022, 22, 8805-8817.	1.9	9
672	Nanomechanics and Morphology of Simulated Respiratory Particles. Environmental Science & Emp; Technology, 2022, 56, 10879-10890.	4.6	8
673	Microscopic observation of a liquid-liquid-(semi)solid phase in polluted PM2.5. Frontiers in Environmental Science, 0, 10 , .	1.5	3
674	Impacts of Simulated Contrail Processing and Organic Content Change on the Ice Nucleation of Soot Particles. Geophysical Research Letters, 0, , .	1.5	3
675	Design and fabrication of an electrostatic precipitator for infrared spectroscopy. Atmospheric Measurement Techniques, 2022, 15, 4693-4707.	1.2	0
676	Toward a molecular understanding of the surface composition of atmospherically relevant organic particles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
677	Glass Transition Temperatures of Individual Submicrometer Atmospheric Particles: Direct Measurement via Heated Atomic Force Microscopy Probe. Analytical Chemistry, 2022, 94, 11973-11977.	3.2	3
678	Equilibration times in viscous and viscoelastic aerosol particles. Environmental Science Atmospheres, 0, , .	0.9	2
679	Particle-Gas Multiphasic Interactions. , 2022, , 185-197.		4
680	Carbonaceous aerosol variability and SOA formation during foggy days in Delhi, India. Frontiers in Sustainable Cities, 0, 4, .	1.2	0
681	A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO ₃ and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols. Atmospheric Chemistry and Physics, 2022, 22, 10955-10970.	1.9	1

#	Article	IF	CITATIONS
682	Exploring the Nanostructures Accessible to an Organic Surfactant Atmospheric Aerosol Proxy. Journal of Physical Chemistry A, 2022, 126, 7331-7341.	1.1	6
683	Gas-Particle Uptake and Hygroscopic Growth by Organosulfate Particles. ACS Earth and Space Chemistry, 2022, 6, 2481-2490.	1.2	5
684	Exploring the hygroscopicity, water diffusivity, and viscosity of organic–inorganic aerosols – a case study on internally-mixed citric acid and ammonium sulfate particles. Environmental Science Atmospheres, 2023, 3, 24-34.	0.9	3
685	Effects of Atmospheric Aging Processes on Nascent Sea Spray Aerosol Physicochemical Properties. ACS Earth and Space Chemistry, 2022, 6, 2732-2744.	1.2	7
686	Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition. Science of the Total Environment, 2023, 858, 159809.	3.9	2
687	Effects of emission sources on the particle number size distribution of ambient air in the residential area. Atmospheric Environment, 2023, 293, 119419.	1.9	3
688	Characterization of adhesivity of organic enriched sea spray aerosols by atomic force microscopy. Atmospheric Environment, 2022, , 119468.	1.9	0
689	Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system. Atmospheric Measurement Techniques, 2022, 15, 6433-6446.	1.2	0
690	Comparison of Phase States of PM _{2.5} over Megacities, Seoul and Beijing, and Their Implications on Particle Size Distribution. Environmental Science & Echnology, 2022, 56, 17581-17590.	4.6	10
691	Analysis of the glass effect and Trommsdorff effect during bulk polymerization of methyl methacrylate, ethyl methacrylate, and butyl methacrylate. Polymer Journal, 2023, 55, 229-238.	1.3	2
692	Isothermal evaporation of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -pinene secondary organic aerosol particles formed under low NO $\langle sub \rangle \langle i \rangle \langle sub \rangle$ and high NO $\langle sub \rangle \langle i \rangle \langle sub \rangle$ conditions. Atmospheric Chemistry and Physics, 2023, 23, 203-220.	1.9	1
693	Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning. Atmospheric Chemistry and Physics, 2023, 23, 221-233.	1.9	6
694	Impact of aging on the sources, volatility, and viscosity of organic aerosols in Chinese outflows. Atmospheric Chemistry and Physics, 2023, 23, 611-636.	1.9	3
695	Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature, 2023, 615, 259-264.	13.7	21
696	Accelerated Sulfur Oxidation by Ozone on Surfaces of Single Optically Trapped Aerosol Particles. Journal of Physical Chemistry C, 2023, 127, 6248-6261.	1.5	1
697	Unexpectedly Efficient Aging of Organic Aerosols Mediated by Autoxidation. Environmental Science & Env	4.6	5
701	Polymerization-induced vitrification, apparent phase separation, and reaction acceleration during bulk polymerization. Polymer Journal, 0, , .	1.3	0