Clinical efficacy of a RAF inhibitor needs broad target b

Nature 467, 596-599 DOI: 10.1038/nature09454

Citation Report

#	Article	IF	CITATIONS
2	The Genomics of Lung Adenocarcinoma: Opportunities for Targeted Therapies. Genes and Cancer, 2010, 1, 1200-1210.	0.6	88
4	BRAF Inhibitor Unveils Its Potential against Advanced Melanoma. Cancer Cell, 2010, 18, 301-302.	7.7	15
5	Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010, 18, 683-695.	7.7	1,139
6	Translating cancer research into targeted therapeutics. Nature, 2010, 467, 543-549.	13.7	310
7	Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468, 973-977.	13.7	1,944
8	Rare victory in fight against melanoma. Nature, 2010, 467, 140-141.	13.7	4
9	How melanomas bypass new therapy. Nature, 2010, 468, 902-903.	13.7	52
10	Genomics drugs in clinical trials. Nature Reviews Drug Discovery, 2010, 9, 988-988.	21.5	12
11	Targeting mutant BRAF in metastatic melanoma. Nature Reviews Drug Discovery, 2010, 9, 841-841.	21.5	7
12	The Quest for Medicines, a Grand Challenge in the Twenty-First Century. Frontiers in Pharmacology, 2010, 1, 134.	1.6	0
13	The Oncogenic BRAF Kinase Inhibitor PLX4032/RG7204 Does Not Affect the Viability or Function of Human Lymphocytes across a Wide Range of Concentrations. Clinical Cancer Research, 2010, 16, 6040-6048.	3.2	142
14	Targeting Oncogenic BRAF in Human Cancer. Current Topics in Microbiology and Immunology, 2010, 355, 83-98.	0.7	42
15	Taking the Guesswork Out of Uveal Melanoma. New England Journal of Medicine, 2010, 363, 2256-2257.	13.9	8
17	Oncogenic RAF: a brief history of time. Pigment Cell and Melanoma Research, 2010, 23, 760-762.	1.5	9
18	Bad seeds, bad science, and fairly black cats?. Lancet, The, 2010, 376, 1384-1385.	6.3	3
20	Preclinical assessment of novel BRAF inhibitors: integrating pharmacokinetic-pharmacodynamic modelling in the drug discovery process. Xenobiotica, 2011, 41, 1076-1087.	0.5	6
21	PLX4032 and melanoma: resistance, expectations and uncertainty. Expert Review of Anticancer Therapy, 2011, 11, 325-328.	1.1	12
22	A β-Camera Integrated with a Microfluidic Chip for Radioassays Based on Real-Time Imaging of Glycolysis in Small Cell Populations. Journal of Nuclear Medicine, 2011, 52, 815-821.	2.8	35

# 23	ARTICLE <i>BRAF</i> Mutations in Hairy-Cell Leukemia. New England Journal of Medicine, 2011, 364, 2305-2315.	IF 13.9	Citations 949
24	Detection of KIAA1549-BRAF Fusion Transcripts in Formalin-Fixed Paraffin-Embedded Pediatric Low-Grade Gliomas. Journal of Molecular Diagnostics, 2011, 13, 669-677.	1.2	81
25	Fully Activated MEK1 Exhibits Compromised Affinity for Binding of Allosteric Inhibitors U0126 and PD0325901. Biochemistry, 2011, 50, 7964-7976.	1.2	14
26	Organometallic Pyridylnaphthalimide Complexes as Protein Kinase Inhibitors. Organometallics, 2011, 30, 4598-4606.	1.1	35
27	Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 2011, 13, 1132-IN17.	2.3	89
28	Inhibition of Ras for cancer treatment: the search continues. Future Medicinal Chemistry, 2011, 3, 1787-1808.	1.1	349
29	Biological challenges of BRAF inhibitor therapy. Molecular Oncology, 2011, 5, 116-123.	2.1	30
30	Chapter 4. The Mechanisms and Kinetics of Protein Kinase Inhibitors. RSC Drug Discovery Series, 2011, , 96-125.	0.2	0
31	Vemurafenib for Melanoma Metastases to the Brain. New England Journal of Medicine, 2011, 365, 2439-2441.	13.9	80
32	Fibroblasts Contribute to Melanoma Tumor Growth and Drug Resistance. Molecular Pharmaceutics, 2011, 8, 2039-2049.	2.3	109
33	BRAF targeted therapy changes the treatment paradigm in melanoma. Nature Reviews Clinical Oncology, 2011, 8, 426-433.	12.5	229
34	Natural polyphenols in cancer therapy. Critical Reviews in Clinical Laboratory Sciences, 2011, 48, 197-216.	2.7	136
35	Vemurafenib. Nature Reviews Drug Discovery, 2011, 10, 811-812.	21.5	135
36	Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Medicine, 2011, 17, 1094-1100.	15.2	476
37	New targeted therapies for gastric cancer. Expert Opinion on Investigational Drugs, 2011, 20, 595-604.	1.9	20
38	Staging and Prognosis of Cutaneous Melanoma. Surgical Oncology Clinics of North America, 2011, 20, 1-17.	0.6	148
39	Use of Gene Expression and Pathway Signatures to Characterize the Complexity of Human Melanoma. American Journal of Pathology, 2011, 178, 2513-2522.	1.9	17
40	The role of gene expression profiling in drug discovery. Current Opinion in Pharmacology, 2011, 11, 549-556.	1.7	24

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
41	Molecular Alternations in Uveal Melanoma. Current Problems in Cancer, 2011, 35, 211-224.	1.0	9
42	Protein kinase signaling networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 4-11.	1.5	202
43	The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug Resistance Updates, 2011, 14, 203-211.	6.5	60
44	The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochemical and Biophysical Research Communications, 2011, 404, 958-962.	1.0	47
45	Introduction to Fragment-Based Drug Discovery. Topics in Current Chemistry, 2011, 317, 1-32.	4.0	178
46	Design and Optimization of Potent and Orally Bioavailable Tetrahydronaphthalene Raf Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 1836-1846.	2.9	32
47	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	5.8	152
48	Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. New England Journal of Medicine, 2011, 364, 2507-2516.	13.9	6,976
49	Parsing out the complexity of RAF inhibitor resistance. Pigment Cell and Melanoma Research, 2011, 24, 361-365.	1.5	6
50	Effective inhibition of melanoma by Blâ€69A11 is mediated by dual targeting of the AKT and NFâ€₽B pathways. Pigment Cell and Melanoma Research, 2011, 24, 703-713.	1.5	13
51	The role of mitogen―and stressâ€activated protein kinase pathways in melanoma. Pigment Cell and Melanoma Research, 2011, 24, 902-921.	1.5	59
52	The three M's: melanoma, microphthalmiaâ€associated transcription factor and microRNA. Pigment Cell and Melanoma Research, 2011, 24, 1088-1106.	1.5	60
53	Resistance to MEK Inhibitors: Should We Co-Target Upstream?. Science Signaling, 2011, 4, pe16.	1.6	110
54	Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochemical Pharmacology, 2011, 82, 201-209.	2.0	162
56	Gene Therapy of Melanoma Using Inactivated Sendai Virus Envelope Vector (HVJ-E) with Intrinsic Anti-Tumor Activities. , 0, , .		2
57	Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation, 2011, 121, 4700-4711.	3.9	305
58	Chemocentric Chemoimmunotherapy: A New Concept in Melanoma Immunotherapy. , 0, , .		0
59	Melanoma Immunotherapy. , 0, , .		0

#	Article	IF	CITATIONS
60	BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications. PLoS ONE, 2011, 6, e17948.	1.1	268
61	Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway. PLoS ONE, 2011, 6, e28973.	1.1	196
63	RAF inhibition and induction of cutaneous squamous cell carcinoma. Current Opinion in Oncology, 2011, 23, 177-182.	1.1	111
64	Molecular Markers of Response to Treatment for Melanoma. Cancer Journal (Sudbury, Mass), 2011, 17, 127-133.	1.0	19
65	Genetic alterations in uveal melanoma. Expert Review of Ophthalmology, 2011, 6, 129-132.	0.3	0
66	Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy?. Experimental Dermatology, 2011, 20, 1030-1032.	1.4	20
67	Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nature Medicine, 2011, 17, 304-312.	15.2	94
68	Advances in sarcoma genomics and new therapeutic targets. Nature Reviews Cancer, 2011, 11, 541-557.	12.8	364
69	Unravelling the complexity of metastasis — molecular understanding and targeted therapies. Nature Reviews Cancer, 2011, 11, 735-748.	12.8	318
70	Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011, 10, 179-187.	21.5	131
71	Raf kinases in cancer–roles and therapeutic opportunities. Oncogene, 2011, 30, 3477-3488.	2.6	247
72	Ras and Raf pathways in epidermis development and carcinogenesis. British Journal of Cancer, 2011, 104, 229-234.	2.9	57
73	Can cancer clinical trials be fixed?. Nature Biotechnology, 2011, 29, 13-15.	9.4	4
75	Pyrazolopyridine inhibitors of B-RafV600E. Part 2: Structure–activity relationships. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5533-5537.	1.0	50
76	Identification of novel BRAF kinase inhibitors with structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5753-5756.	1.0	7
77	Hard Times for Oncogenic BRAF-Expressing Melanoma Cells. Cancer Cell, 2011, 19, 3-4.	7.7	15
78	Mutant BRAF Melanomas—Dependence and Resistance. Cancer Cell, 2011, 19, 11-15.	7.7	226
79	c-Raf, but Not B-Raf, Is Essential for Development of K-Ras Oncogene-Driven Non-Small Cell Lung Carcinoma. Cancer Cell, 2011, 19, 652-663.	7.7	260

#	Article	IF	CITATIONS
80	Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells. Cancer Biology and Therapy, 2011, 12, 47-58.	1.5	21
81	Identification of the MEK1(F129L) Activating Mutation as a Potential Mechanism of Acquired Resistance to MEK Inhibition in Human Cancers Carrying the <i>B-Raf</i> V600E Mutation. Cancer Research, 2011, 71, 5535-5545.	0.4	73
82	RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011, 480, 387-390.	13.7	1,298
83	Vemurafenib (PLX4032): An Orally Available Inhibitor of Mutated BRAF for the Treatment of Metastatic Melanoma. Annals of Pharmacotherapy, 2011, 45, 1399-1405.	0.9	44
84	Chapter 10. The Future of Kinase Drug Discovery. RSC Drug Discovery Series, 2011, , 286-302.	0.2	0
85	Pyrazolopyridine Inhibitors of B-Raf ^{V600E} . Part 1: The Development of Selective, Orally Bioavailable, and Efficacious Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 342-347.	1.3	60
87	Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1268-1284.	2.2	31
88	Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunology, Immunotherapy, 2011, 60, 1359-1371.	2.0	40
89	The CSPG4-specific monoclonal antibody enhances and prolongs the effects of the BRAF inhibitor in melanoma cells. Immunologic Research, 2011, 50, 294-302.	1.3	33
90	Overcoming metastatic melanoma with BRAF inhibitors. Archives of Pharmacal Research, 2011, 34, 699-701.	2.7	14
91	A public/private partnership in personalized cancer care. Journal of Medicine and the Person, 2011, 9, 112-115.	0.1	1
92	The "SWOT―of BRAF Inhibition in Melanoma: RAF Inhibitors, MEK Inhibitors or Both?. Current Oncology Reports, 2011, 13, 479-487.	1.8	33
93	A switch in RND3-RHOA signaling is critical for melanoma cell invasion following mutant-BRAF inhibition. Molecular Cancer, 2011, 10, 114.	7.9	24
94	A novel MCF-10A line allowing conditional oncogene expression in 3D culture. Cell Communication and Signaling, 2011, 9, 17.	2.7	34
95	The secret life of kinases: functions beyond catalysis. Cell Communication and Signaling, 2011, 9, 23.	2.7	154
96	Clinical cancer genomics: how soon is now?. Journal of Pathology, 2011, 223, 319-327.	2.1	34
97	KRAS and BRAF: drug targets and predictive biomarkers. Journal of Pathology, 2011, 223, 220-230.	2.1	133
98	The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. Journal of Pathology, 2011, 223, 296-307.	2.1	48

	Сітатіо	n Report	
#	Article	IF	CITATIONS
99	Costello and cardioâ€facioâ€cutaneous syndromes: Moving toward clinical trials in RASopathies. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2011, 157, 136-146.	0.7	41
100	Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia, 2011, 59, 1205-1212.	2.5	28
101	Development of potent B-RafV600E inhibitors containing an arylsulfonamide headgroup. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4436-4440.	1.0	24
102	A drug-resistant duo. Nature, 2011, 480, 329-330.	13.7	10
103	Cell cycle transitions and Cdk inhibition in melanoma therapy: Cyclin' through the options. Cell Cycle, 2011, 10, 1349-1349.	1.3	3
104	PTEN Loss Confers BRAF Inhibitor Resistance to Melanoma Cells through the Suppression of BIM Expression. Cancer Research, 2011, 71, 2750-2760.	0.4	488
105	Polo-Like Kinase 1 Is a Potential Therapeutic Target in Human Melanoma. Journal of Investigative Dermatology, 2011, 131, 1886-1895.	0.3	23
106	Mechanisms of Resistance to RAF Inhibitors in Melanoma. Journal of Investigative Dermatology, 2011, 131, 1817-1820.	0.3	70
107	Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opinion on Investigational Drugs, 2011, 20, 1565-1574.	1.9	32
108	Prognostic and Clinicopathologic Associations of Oncogenic <i>BRAF</i> in Metastatic Melanoma. Journal of Clinical Oncology, 2011, 29, 1239-1246.	0.8	942
109	BRAF Inhibitors and Melanoma. Cancer Journal (Sudbury, Mass), 2011, 17, 505-511.	1.0	28
110	Targeted Therapies for Lung Cancer. Cancer Journal (Sudbury, Mass), 2011, 17, 512-527.	1.0	91
111	An Uphill Battle Downstream of RAF. Journal of Clinical Oncology, 2011, 29, 2298-2300.	0.8	1
112	Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets. Pharmacological Reviews, 2011, 63, 728-749.	7.1	205
113	Targeting BRAF in Advanced Melanoma: A First Step toward Manageable Disease. Clinical Cancer Research, 2011, 17, 1658-1663.	3.2	65
114	Understanding the Enemy. Science Translational Medicine, 2011, 3, 98ps37.	5.8	4
115	Glutamatergic Pathway Targeting in Melanoma: Single-Agent and Combinatorial Therapies. Clinical Cancer Research, 2011, 17, 7080-7092.	3.2	58
116	The Akt signaling pathway. Cancer Biology and Therapy, 2011, 12, 1032-1049.	1.5	77

#	Article	IF	CITATIONS
117	Towards new therapeutic approaches for malignant melanoma. Expert Reviews in Molecular Medicine, 2011, 13, e33.	1.6	38
118	Resistance to BRAF Inhibitors: Unraveling Mechanisms and Future Treatment Options. Cancer Research, 2011, 71, 7137-7140.	0.4	148
119	BRAFV600E: Implications for Carcinogenesis and Molecular Therapy. Molecular Cancer Therapeutics, 2011, 10, 385-394.	1.9	373
120	BRAF in Melanoma: Pathogenesis, Diagnosis, Inhibition, and Resistance. Journal of Skin Cancer, 2011, 2011, 1-8.	0.5	46
121	Targeted Treatment of Differentiated and Medullary Thyroid Cancer. Journal of Thyroid Research, 2011, 2011, 1-11.	0.5	6
122	KSR Plays CRAF-ty. Science, 2011, 332, 1043-1044.	6.0	9
123	BRAFV600E and Microenvironment in Thyroid Cancer: A Functional Link to Drive Cancer Progression. Cancer Research, 2011, 71, 2417-2422.	0.4	81
124	Decreased Mdm2 levels after DNA damage: Antibody masking or protein degradation?. Cell Cycle, 2011, 10, 1347-1351.	1.3	6
125	Beyond immune surveillance: Stat1 limits tumor growth in a cell-autonomous fashion. Cell Cycle, 2011, 10, 1348-1348.	1.3	3
126	Flying to a halt. Cell Cycle, 2011, 10, 1350-1351.	1.3	1
127	p73 and p63: Estranged relatives?. Cell Cycle, 2011, 10, 1351-1351.	1.3	4
128	Targeting the DFG-in kinase conformation: a new trend emerging from a patent analysis. Future Medicinal Chemistry, 2011, 3, 309-337.	1.1	17
129	Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5015-5020.	3.3	61
130	Fibroblast Growth Factor Receptors as Therapeutic Targets in Human Melanoma: Synergism with BRAF Inhibition. Journal of Investigative Dermatology, 2011, 131, 2087-2095.	0.3	70
131	A MEK-independent role for CRAF in mitosis and tumor progression. Nature Medicine, 2011, 17, 1641-1645.	15.2	63
132	Therapeutic Strategies for Targeting Ras Proteins. Genes and Cancer, 2011, 2, 359-372.	0.6	282
133	Pharmacokinetic–Pharmacodynamic Analysis of Vismodegib in Preclinical Models of Mutational and Ligand-Dependent Hedgehog Pathway Activation. Clinical Cancer Research, 2011, 17, 4682-4692.	3.2	96
134	Occupational hazards: allosteric regulation of protein kinases through the nucleotide-binding pocket. Biochemical Society Transactions, 2011, 39, 472-476.	1.6	5

#	Article	IF	CITATIONS
135	Genetic Testing for Lung Cancer: Reflex Versus Clinical Selection. Journal of Clinical Oncology, 2011, 29, 1943-1945.	0.8	14
136	A Micro-RNA Connection in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>BRaf</mml:mi><mml:mrow><mml: Premature Senescence of Human Melanocytes. International Journal of Cell Biology, 2012, 2012, 1-9.</mml: </mml:mrow></mml:msup></mml:math 	mixV600E	<�mml:mi>
138	Molecular Dermatopathology in Malignant Melanoma. Dermatology Research and Practice, 2012, 2012, 1-6.	0.3	6
139	High-Resolution Melting Analysis as a Sensitive Prescreening Diagnostic Tool to Detect KRAS, BRAF, PIK3CA, and AKT1 Mutations in Formalin-Fixed, Paraffin-Embedded Tissues. Archives of Pathology and Laboratory Medicine, 2012, 136, 983-992.	1.2	40
140	Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO Journal, 2012, 31, 2629-2647.	3.5	110
141	Reactivation of Mitogen-activated Protein Kinase (MAPK) Pathway by FGF Receptor 3 (FGFR3)/Ras Mediates Resistance to Vemurafenib in Human B-RAF V600E Mutant Melanoma. Journal of Biological Chemistry, 2012, 287, 28087-28098.	1.6	171
142	BRAF ^{V600E} remodels the melanocyte transcriptome and induces <i>BANCR</i> to regulate melanoma cell migration. Genome Research, 2012, 22, 1006-1014.	2.4	254
143	The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 149-154.	3.3	136
144	Targeted Therapy for Brain Metastases. Advances in Pharmacology, 2012, 65, 109-142.	1.2	11
145	Molecular Pathways: Dysregulated Glutamatergic Signaling Pathways in Cancer. Clinical Cancer Research, 2012, 18, 4240-4246.	3.2	102
146	Cutaneous Drug Eruptions Associated with the Use of New Oncological Drugs. Chemical Immunology and Allergy, 2012, 97, 191-202.	1.7	23
147	Dual Suppression of the Cyclin-Dependent Kinase Inhibitors CDKN2C and CDKN1A in Human Melanoma. Journal of the National Cancer Institute, 2012, 104, 1673-1679.	3.0	35
148	BRAF Inhibitor Vemurafenib Improves the Antitumor Activity of Adoptive Cell Immunotherapy. Cancer Research, 2012, 72, 3928-3937.	0.4	210
149	A brief history of melanoma. Melanoma Research, 2012, 22, 114-122.	0.6	111
150	Targeting Mutant BRAF in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 124-131.	1.0	70
151	The Role of the PI3K-AKT Pathway in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 142-147.	1.0	197
152	Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Research, 2012, 22, 466-472.	0.6	112
153	Modulation of NOXA and MCL-1 as a Strategy for Sensitizing Melanoma Cells to the BH3-Mimetic ABT-737. Clinical Cancer Research, 2012, 18, 783-795.	3.2	98

#	Article	IF	CITATIONS
154	Preexisting <i>MEK1</i> Exon 3 Mutations in <i>V600E/K BRAF</i> Melanomas Do Not Confer Resistance to BRAF Inhibitors. Cancer Discovery, 2012, 2, 414-424.	7.7	91
155	CEP-32496: A Novel Orally Active BRAFV600E Inhibitor with Selective Cellular and <i>In Vivo</i> Antitumor Activity. Molecular Cancer Therapeutics, 2012, 11, 930-941.	1.9	42
156	The genesis of Zelboraf: Targeting mutant B-Raf in melanoma. Journal of Cell Biology, 2012, 199, 15-19.	2.3	7
157	Phase I Dose-Escalation Study of the Safety, Pharmacokinetics, and Pharmacodynamics of the MEK Inhibitor RO4987655 (CH4987655) in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2012, 18, 4794-4805.	3.2	65
158	Therapeutic Kinase Inhibitors. Current Topics in Microbiology and Immunology, 2012, , .	0.7	1
160	Role of Apollon in Human Melanoma Resistance to Antitumor Agents That Activate the Intrinsic or the Extrinsic Apoptosis Pathways. Clinical Cancer Research, 2012, 18, 3316-3327.	3.2	27
161	Resistance to Selective BRAF Inhibition Can Be Mediated by Modest Upstream Pathway Activation. Cancer Research, 2012, 72, 969-978.	0.4	159
162	The Akt Inhibitor MK2206 Synergizes, but Perifosine Antagonizes, the BRAF ^{V600E} Inhibitor PLX4032 and the MEK1/2 Inhibitor AZD6244 in the Inhibition of Thyroid Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E173-E182.	1.8	58
163	Ultraviolet A and Photosensitivity during Vemurafenib Therapy. New England Journal of Medicine, 2012, 366, 480-481.	13.9	156
164	Acquired Resistance to BRAF Inhibition Can Confer Cross-Resistance to Combined BRAF/MEK Inhibition. Journal of Investigative Dermatology, 2012, 132, 1850-1859.	0.3	76
165	Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma. Oncolmmunology, 2012, 1, 609-617.	2.1	67
166	Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nature Medicine, 2012, 18, 1503-1510.	15.2	333
167	BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death and Disease, 2012, 3, e259-e259.	2.7	74
169	EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of <i>BRAF</i> -Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib. Cancer Discovery, 2012, 2, 227-235.	7.7	852
170	Bridging the Gap between Preclinical and Clinical Studies Using Pharmacokinetic–Pharmacodynamic Modeling: An Analysis of GDC-0973, a MEK Inhibitor. Clinical Cancer Research, 2012, 18, 3090-3099.	3.2	74
171	Distinguishing Clinicopathologic Features of Patients with V600E and V600K <i>BRAF</i> -Mutant Metastatic Melanoma. Clinical Cancer Research, 2012, 18, 3242-3249.	3.2	405
172	SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor. Journal of Biological Chemistry, 2012, 287, 41797-41807.	1.6	55
173	Fragment Based Drug Design: From Experimental to Computational Approaches. Current Medicinal Chemistry, 2012, 19, 5128-5147.	1.2	130

#	Article	IF	CITATIONS
174	Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E353-9.	3.3	51
175	Inhibition of CRM1-Mediated Nucleocytoplasmic Transport: Triggering Human Melanoma Cell Apoptosis by Perturbing Multiple Cellular Pathways. Journal of Investigative Dermatology, 2012, 132, 2780-2790.	0.3	43
176	Marked, Homogeneous, and Early [¹⁸ F]Fluorodeoxyglucose–Positron Emission Tomography Responses to Vemurafenib in <i>BRAF</i> -Mutant Advanced Melanoma. Journal of Clinical Oncology, 2012, 30, 1628-1634.	0.8	172
177	Early [18F]Fluorodeoxyglucose–Positron Emission Tomography Responses in Metastatic Melanoma: What Do They Mean?. Journal of Clinical Oncology, 2012, 30, 1581-1583.	0.8	1
178	Phase I Study of the Combination of Sorafenib and Temsirolimus in Patients with Metastatic Melanoma. Clinical Cancer Research, 2012, 18, 1120-1128.	3.2	57
179	Frequent Mutation of Isocitrate Dehydrogenase <i>(IDH)1</i> and <i>IDH2</i> in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping. Oncologist, 2012, 17, 72-79.	1.9	629
180	The Prognostic Value of BRAF Mutation in Colorectal Cancer and Melanoma: A Systematic Review and Meta-Analysis. PLoS ONE, 2012, 7, e47054.	1.1	184
181	Cutaneous Toxic Effects Associated With Vemurafenib and Inhibition of the BRAF Pathway. Archives of Dermatology, 2012, 148, 628-33.	1.7	89
182	Wnt/β-Catenin and MAPK Signaling: Allies and Enemies in Different Battlefields. Science Signaling, 2012, 5, pe15.	1.6	58
183	RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy. Dermatology Research and Practice, 2012, 2012, 1-5.	0.3	113
184	Wnt/β-Catenin Signaling and AXIN1 Regulate Apoptosis Triggered by Inhibition of the Mutant Kinase BRAF ^{V600E} in Human Melanoma. Science Signaling, 2012, 5, ra3.	1.6	150
185	Selective requirement for Mediator MED23 in Ras-active lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2813-22.	3.3	46
186	Detecting BRAF Mutations in Formalin-Fixed Melanoma: Experiences with Two State-of-the-Art Techniques. Case Reports in Oncology, 2012, 5, 280-289.	0.3	8
187	MicroSCALE Screening Reveals Genetic Modifiers of Therapeutic Response in Melanoma. Science Signaling, 2012, 5, rs4.	1.6	33
188	Combinations of BRAF, MEK, and PI3K/mTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by <i>NRAS</i> or <i>MEK</i> Mutations. Molecular Cancer Therapeutics, 2012, 11, 909-920.	1.9	312
189	Targeting Cancer Using Fragment Based Drug Discovery. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 40-48.	0.9	6
190	Squamoproliferative Lesions Arising in the Setting of BRAF Inhibition. American Journal of Dermatopathology, 2012, 34, 822-826.	0.3	44
191	Conformationally Constrained Peptides as Protein Tyrosine Kinase Inhibitors. Current Pharmaceutical Design, 2012, 18, 2852-2866.	0.9	6

		Citation Report		
#	Article		IF	CITATIONS
192	Challenges in the codevelopment of companion diagnostics. Personalized Medicine, 20	012, 9, 485-496.	0.8	13
194	The effect of tricyclic antidepressants on cutaneous melanoma cell lines and primary co Anti-Cancer Drugs, 2012, 23, 65-69.	ell cultures.	0.7	25
195	Resistance patterns with tyrosine kinase inhibitors in melanoma. Current Opinion in O 24, 150-154.	ncology, 2012,	1.1	53
197	BRAF Mutations in Colorectal Cancer: Clinical Relevance and Role in Targeted Therapy. National Comprehensive Cancer Network: JNCCN, 2012, 10, 1456-1458.	Journal of the	2.3	9
199	Long-term Survival in Metastatic Malignant Melanoma: Ipilimumab Followed by Vemur Patient with Brain Metastasis. Internal Medicine, 2012, 51, 2819-2823.	afenib in a	0.3	13
203	Molecular-Based Decision Making for Personalized Cancer Management. , 2012, , .			0
204	BRAF mutations in papillary thyroid carcinoma and emerging targeted therapies (Revie Medicine Reports, 2012, 6, 687-694.	w). Molecular	1.1	25
205	Pharmacodynamic end points in early-phase oncology trials. Clinical Investigation, 201	2, 2, 679-687.	0.0	0
206	Metastatic melanoma: the new era of targeted therapy. Expert Opinion on Therapeutic S61-S70.	: Targets, 2012, 16,	1.5	21
207	Mechanisms of intrinsic and acquired resistance to kinaseâ€ŧargeted therapies. Pigmer Melanoma Research, 2012, 25, 819-831.	nt Cell and	1.5	43
208	ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacological Research, 20	012, 66, 105-143.	3.1	1,246
209	Preclinical Disposition of GDC-0973 and Prospective and Retrospective Analysis of Hur Efficacy Predictions. Drug Metabolism and Disposition, 2012, 40, 919-927.	nan Dose and	1.7	34
210	Prospective, high-throughput molecular profiling of human gliomas. Journal of Neuro-C 2012, 110, 89-98.)ncology,	1.4	47
211	Exploiting the Cancer Genome: Strategies for the Discovery and Clinical Development Molecular Therapeutics. Annual Review of Pharmacology and Toxicology, 2012, 52, 54	of Targeted 9-573.	4.2	96
212	Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. New Eng Medicine, 2012, 367, 1694-1703.	gland Journal of	13.9	2,445
213	Vertical Pathway Targeting in Cancer Therapy. Advances in Pharmacology, 2012, 65, 1	-26.	1.2	15
214	Simultaneous Systematic Approach to Enable Predictive, Preventive and Personalized N Women Healthcare as a Case Study. Advances in Predictive, Preventive and Personalise , 313-331.	Medicine – ed Medicine, 2012,	0.6	2
215	Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. New Medicine, 2012, 366, 707-714.	England Journal of	13.9	1,955

#	Article	IF	CITATIONS
216	Differential Sensitivity of Glioma- versus Lung Cancer–Specific EGFR Mutations to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 458-471.	7.7	304
217	Development of a novel class of B-RafV600E-selective inhibitors through virtual screening and hierarchical hit optimization. Organic and Biomolecular Chemistry, 2012, 10, 7402.	1.5	20
218	Role and therapeutic potential of PI3Kâ€mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell and Melanoma Research, 2012, 25, 248-258.	1.5	98
219	Delving into somatic variation in sporadic melanoma. Pigment Cell and Melanoma Research, 2012, 25, 155-170.	1.5	35
220	Glutamatergic signaling in cellular transformation. Pigment Cell and Melanoma Research, 2012, 25, 331-342.	1.5	47
221	Systematic classification of melanoma cells by phenotypeâ€specific gene expression mapping. Pigment Cell and Melanoma Research, 2012, 25, 343-353.	1.5	155
222	Backtranslating clinical knowledge for use in cheminformatics—What is the potential?. Bioorganic and Medicinal Chemistry, 2012, 20, 5461-5463.	1.4	2
223	Progression of RAS-Mutant Leukemia during RAF Inhibitor Treatment. New England Journal of Medicine, 2012, 367, 2316-2321.	13.9	222
224	Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell, 2012, 22, 668-682.	7.7	469
225	The Natural Anticancer Compounds Rocaglamides Inhibit the Raf-MEK-ERK Pathway by Targeting Prohibitin 1 and 2. Chemistry and Biology, 2012, 19, 1093-1104.	6.2	136
226	TPCK inhibits AGC kinases by direct activation loop adduction at phenylalanineâ€directed cysteine residues. FEBS Letters, 2012, 586, 3471-3476.	1.3	4
227	Structural modifications of a 3-methoxy-2-aminopyridine compound to reduce potential for mutagenicity and time-dependent drug–drug interaction. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7605-7609.	1.0	5
229	Identification of novel 3,5-diarylpyrazoline derivatives containing salicylamide moiety as potential anti-melanoma agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6596-6601.	1.0	14
230	<i>RAS</i> Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 207-215.	13.9	978
231	Sorafenib in melanoma. Expert Opinion on Investigational Drugs, 2012, 21, 557-568.	1.9	48
232	Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clinical and Experimental Metastasis, 2012, 29, 841-846.	1.7	14
233	A Phase I Multi-Institutional Study of Systemic Sorafenib in Conjunction with Regional Melphalan for In-Transit Melanoma of the Extremity. Annals of Surgical Oncology, 2012, 19, 3896-3905.	0.7	22
234	The BRAFV600E causes widespread alterations in gene methylation in the genome of melanoma cells. Cell Cycle, 2012, 11, 286-295.	1.3	84

	Стато	n Report	
#	Article	IF	Citations
235	Experiences in fragment-based drug discovery. Trends in Pharmacological Sciences, 2012, 33, 224-232.	4.0	227
236	Eruptive Squamous Cell Carcinomas Associated with BRAF-Inhibitor Therapy in a Patient with Metastatic Melanoma. Dermatologic Surgery, 2012, 38, 1086-1090.	0.4	2
237	RAF265 Inhibits the Growth of Advanced Human Melanoma Tumors. Clinical Cancer Research, 2012, 18, 2184-2198.	3.2	61
238	Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 2012, 44, 1006-1014.	9.4	1,052
239	Fragment screening of cyclin G-associated kinase by weak affinity chromatography. Analytical and Bioanalytical Chemistry, 2012, 404, 2417-25.	1.9	25
240	Targeting the RAS pathway in melanoma. Trends in Molecular Medicine, 2012, 18, 27-35.	3.5	70
241	Design, synthesis and biological evaluation of β-carboline derivatives as novel inhibitors targeting B-Raf kinase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4783-4786.	1.0	28
242	Combining pharmacophore, docking and substructure search approaches to identify and optimize novel B-RafV600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5428-5437.	1.0	8
243	Dual inhibition of V600EBRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Letters, 2012, 314, 244-255.	3.2	60
244	Fluorine local environment: from screening to drug design. Drug Discovery Today, 2012, 17, 890-897.	3.2	113
245	Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates, 2012, 15, 21-38.	6.5	261
246	The Response of Cancers to BRAF Inhibition Underscores the Importance of Cancer Systems Biology. Science Signaling, 2012, 5, pe46.	1.6	20
247	Identification of 1-(3-(6,7-Dimethoxyquinazolin-4-yloxy)phenyl)-3-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)urea Hydrochloride (CEP-32496), a Highly Potent and Orally Efficacious Inhibitor of V-RAF Murine Sarcoma Viral Oncogene Homologue B1 (BRAF) V600E. Journal of Medicinal Chemistry, 2012, 55, 1082-1105.	2.9	51
248	Evaluation of Drug Supersaturation by Thermodynamic and Kinetic Approaches for the Prediction of Oral Absorbability in Amorphous Pharmaceuticals. Journal of Pharmaceutical Sciences, 2012, 101, 4220-4230.	1.6	33
249	Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines. Molecular Cancer, 2012, 11, 22.	7.9	65
250	Spontaneous splenic rupture in patient with metastatic melanoma treated with vemurafenib. World Journal of Surgical Oncology, 2012, 10, 155.	0.8	8
251	The role of BRAF V600 mutation in melanoma. Journal of Translational Medicine, 2012, 10, 85.	1.8	563
252	Imaging the Laboratory Mouse in vivo. , 2012, , 761-780.		1

#	Article	IF	CITATIONS
253	How cutaneous eruptions help to understand the mode of action of kinase inhibitors. British Journal of Dermatology, 2012, 167, 965-967.	1.4	10
254	To Market, To Market—2011. Annual Reports in Medicinal Chemistry, 2012, 47, 499-569.	0.5	23
255	Vemurafenib. Drugs, 2012, 72, 2207-2222.	4.9	89
256	Vemurafenib and BRAF Inhibition: A New Class of Treatment for Metastatic Melanoma. Clinical Cancer Research, 2012, 18, 9-14.	3.2	59
257	Targeted inhibition of BRAF kinase: opportunities and challenges for therapeutics in melanoma. Bioscience Reports, 2012, 32, 25-33.	1.1	17
258	MEK and RAF inhibitors for BRAF-mutated cancers. Expert Reviews in Molecular Medicine, 2012, 14, e17.	1.6	26
259	Regulating the response to targeted MEK inhibition in melanoma. Cell Cycle, 2012, 11, 3724-3730.	1.3	40
260	Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncology, The, 2012, 13, 773-781.	5.1	487
261	Diverse cutaneous side effects associated with BRAF inhibitor therapy: A clinicopathologic study. Journal of the American Academy of Dermatology, 2012, 67, 1265-1272.	0.6	166
262	Therapeutic approaches to preventing cell death in Huntington disease. Progress in Neurobiology, 2012, 99, 262-280.	2.8	24
263	Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Molecular Oncology, 2012, 6, 155-176.	2.1	447
264	Co-development of a companion diagnostic for targeted cancer therapy. New Biotechnology, 2012, 29, 682-688.	2.4	40
265	Vemurafenib for the treatment of melanoma . Expert Opinion on Pharmacotherapy, 2012, 13, 2533-2543.	0.9	28
266	Targeted therapies: how personal should we go?. Nature Reviews Clinical Oncology, 2012, 9, 87-97.	12.5	94
267	Pyrazolopyridine inhibitors of B-RafV600E. Part 4: Rational design and kinase selectivity profile of cell potent type II inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6237-6241.	1.0	26
268	Targeting BRAF in an Inducible Murine Model of Melanoma. American Journal of Pathology, 2012, 181, 785-794.	1.9	58
269	Chaperone Probes and Bead-Based Enhancement To Improve the Direct Detection of mRNA Using Silicon Photonic Sensor Arrays. Analytical Chemistry, 2012, 84, 8067-8074.	3.2	24
270	Pathogenesis of NUT Midline Carcinoma. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 247-265.	9.6	215

#	Article	IF	CITATIONS
271	Tumors of the Central Nervous System, Volume 5. , 2012, , .		0
272	RAF Fusion Genes and MAPK Activation in Pilocytic Astrocytomas. , 2012, , 99-105.		0
273	Potent and Selective Aminopyrimidine-Based B-Raf Inhibitors with Favorable Physicochemical and Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2012, 55, 2869-2881.	2.9	45
275	Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF. Oncogene, 2012, 31, 446-457.	2.6	179
276	FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Research, 2012, 2, 22.	1.1	52
277	Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Reviews Drug Discovery, 2012, 11, 873-886.	21.5	667
278	Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene, 2012, 31, 2471-2479.	2.6	52
279	BH3-only protein silencing contributes to acquired resistance to PLX4720 in human melanoma. Cell Death and Differentiation, 2012, 19, 2029-2039.	5.0	61
281	Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Design, Development and Therapy, 2012, 6, 391.	2.0	102
282	Novel Binding Mode of a Potent and Selective Tankyrase Inhibitor. PLoS ONE, 2012, 7, e33740.	1.1	55
283	Cell Cycle Gene Networks Are Associated with Melanoma Prognosis. PLoS ONE, 2012, 7, e34247.	1.1	32
284	High-Throughput Genotyping in Metastatic Esophageal Squamous Cell Carcinoma Identifies Phosphoinositide-3-Kinase and BRAF Mutations. PLoS ONE, 2012, 7, e41655.	1.1	35
285	Novel Somatic Mutations to PI3K Pathway Genes in Metastatic Melanoma. PLoS ONE, 2012, 7, e43369.	1.1	87
286	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	0.8	279
287	Defective Cell Cycle Checkpoints as Targets for Anti-Cancer Therapies. Frontiers in Pharmacology, 2012, 3, 9.	1.6	58
288	Mouse Models of Follicular and Papillary Thyroid Cancer Progression. Frontiers in Endocrinology, 2011, 2, 119.	1.5	7
289	Clinical Outcome, Role of BRAFV600E, and Molecular Pathways in Papillary Thyroid Microcarcinoma: Is It an Indolent Cancer or an Early Stage of Papillary Thyroid Cancer?. Frontiers in Endocrinology, 2012, 3, 33.	1.5	15
290	Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer. Frontiers in Oncology, 2012, 2, 15.	1.3	49

ARTICLE IF CITATIONS BRAF V600E Mutation Detection Using High Resolution Probe Melting Analysis., 0,,. 291 0 Three Dimensional Tissue Models for Research in Oncology., 0, , . Aberrant B-Raf Signaling in Human Cancer â[^] 10 Years from Bench to Bedside. Critical Reviews in 293 0.2 56 Oncogenesis, 2012, 17, 97-121. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates. 294 Open Biology, 2012, 2, 120103. Drug treatment for melanoma: progress, but who pays?. Medical Journal of Australia, 2012, 197, 198-199. 295 0.8 13 Polymerase Chain Reaction: Types, Utilities and Limitations., 2012, , . Vemurafenib: a new treatment for BRAF-V600 mutated advanced melanoma. Cancer Management and 297 0.9 50 Research, 2012, 4, 243. Current management and novel agents for malignant melanoma. Journal of Hematology and 298 Oncology, 2012, 5, 3. Fragment library design considerations. Wiley Interdisciplinary Reviews: Computational Molecular 299 6.2 16 Science, 2012, 2, 868-885. Finding a Panacea among Combination Cancer Therapies. Cancer Research, 2012, 72, 18-23. 0.4 Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic 301 1.5 740 Targets, 2012, 16, 103-119. Antitumor Activity of BRAF Inhibitor Vemurafenib in Preclinical Models of BRAF-Mutant Colorectal 0.4 199 Cancer. Cancer Résearch, 2012, 72, 779-789. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF 303 5.8 567 inhibitor resistance. Nature Communications, 2012, 3, 724. Understanding Polymer Properties Important for Crystal Growth Inhibitionâ€"Impact of Chemically Diverse Polymers on Solution Crystal Growth of Ritonavir. Crystal Growth and Design, 2012, 12, 304 1.4 3133-3143. PI3Kâ€independent AKT activation in cancers: A treasure trove for novel therapeutics. Journal of 305 2.0 185 Cellular Physiology, 2012, 227, 3178-3184. Effects of cold ischemia and inflammatory tumor microenvironment on detection of PI3K/AKT and 306 MAPK pathway activation patterns in clinical cancer samples. International Journal of Cancer, 2012, 131, 1621-1632 Conformation-Specific Effects of Raf Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 307 2.9 46 7332-7341. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. 1.5 143 Expert Review of Molecular Diagnostics, 2012, 12, 621-628.

#	Article	IF	CITATIONS
309	A Decade of the Human Genome Sequence—How Does the Medicinal Chemist Benefit?. ChemMedChem, 2012, 7, 194-203.	1.6	19
310	Targeting ALK in neuroblastoma—preclinical and clinical advancements. Nature Reviews Clinical Oncology, 2012, 9, 391-399.	12.5	148
311	Fragment-Based Approaches in Drug Discovery and Chemical Biology. Biochemistry, 2012, 51, 4990-5003.	1.2	370
312	KRAS mutant colorectal tumors. Small GTPases, 2012, 3, 34-39.	0.7	31
313	Design and Synthesis of Novel DFG-Out RAF/Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Inhibitors. 1. Exploration of [5,6]-Fused Bicyclic Scaffolds. Journal of Medicinal Chemistry, 2012, 55, 3452-3478.	2.9	58
314	Vemurafenib (RG67204, PLX4032): a potent, selective BRAF kinase inhibitor. Future Oncology, 2012, 8, 509-523.	1.1	22
315	Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487, 500-504.	13.7	1,561
316	Targeting Metastatic Melanoma. Annual Review of Medicine, 2012, 63, 171-183.	5.0	57
317	Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. Journal of Computer-Aided Molecular Design, 2012, 26, 603-616.	1.3	15
318	Novel small molecule Raf kinase inhibitors for targeted cancer therapeutics. Archives of Pharmacal Research, 2012, 35, 605-615.	2.7	30
319	Vemurafenib in Patients With BRAF V600E Mutation–Positive Advanced Melanoma. Clinical Therapeutics, 2012, 34, 1474-1486.	1.1	80
320	Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. European Journal of Medicinal Chemistry, 2012, 50, 288-295.	2.6	34
321	Small molecule inhibitors of BRAF in clinical trials. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 789-792.	1.0	58
322	Structure-based de novo design and biochemical evaluation of novel BRAF kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1027-1030.	1.0	14
323	Pyrazolopyridine inhibitors of B-RafV600E. Part 3: An increase in aqueous solubility via the disruption of crystal packing. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 912-915.	1.0	41
324	The Current State of Targeted Therapy in Melanoma: This Time It's Personal. Seminars in Oncology, 2012, 39, 204-214.	0.8	27
325	Progress against cancer (1971–2011): how far have we come?. Journal of Internal Medicine, 2012, 271, 392-399.	2.7	16
326	The Value Proposition of Molecular Medicine. Clinical and Translational Science, 2012, 5, 108-110.	1.5	8

#	Article	IF	CITATIONS
327	Rapid, microwave-assisted organic synthesis of selective V600EBRAF inhibitors for preclinical cancer research. Tetrahedron Letters, 2012, 53, 4161-4165.	0.7	18
328	Specifically targeting ERK1 or ERK2 kills Melanoma cells. Journal of Translational Medicine, 2012, 10, 15.	1.8	36
329	Supersaturation–Nucleation Behavior of Poorly Soluble Drugs and its Impact on the Oral Absorption of Drugs in Thermodynamically High-Energy Forms. Journal of Pharmaceutical Sciences, 2012, 101, 214-222.	1.6	73
330	Sinonasal mucosal melanoma: Molecular profile and therapeutic implications from a series of 32 cases. Head and Neck, 2013, 35, 1066-1077.	0.9	114
331	A multi-site feasibility study for personalized medicine in canines with Osteosarcoma. Journal of Translational Medicine, 2013, 11, 158.	1.8	14
332	CNS drug targeting: have we travelled in right path?. Journal of Drug Targeting, 2013, 21, 787-800.	2.1	5
333	Vemurafenib and radiation therapy in melanoma brain metastases. Journal of Neuro-Oncology, 2013, 113, 411-416.	1.4	105
334	Fragment-based Drug Discovery: the Shape of Things to Come. Australian Journal of Chemistry, 2013, 66, 1544.	0.5	3
335	Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB Life, 2013, 65, 748-758.	1.5	53
336	Protein crystallography and fragment-based drug design. Future Medicinal Chemistry, 2013, 5, 1121-1140.	1.1	27
337	Discovery of a Selective Kinase Inhibitor (TAK-632) Targeting Pan-RAF Inhibition: Design, Synthesis, and Biological Evaluation of <i>C</i> -7-Substituted 1,3-Benzothiazole Derivatives. Journal of Medicinal Chemistry, 2013, 56, 6478-6494.	2.9	95
338	Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 893-899.	1.5	64
339	Maintaining Supersaturation in Aqueous Drug Solutions: Impact of Different Polymers on Induction Times. Crystal Growth and Design, 2013, 13, 740-751.	1.4	203
340	Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncology, The, 2013, 14, 472-480.	5.1	614
341	Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, 2013, 779, v-vi.	0.8	1
342	Is combination therapy the next step to overcome resistance and reduce toxicities in melanoma?. Cancer Treatment Reviews, 2013, 39, 305-312.	3.4	13
343	Synthesis, biological evaluation and molecular docking of novel 5-phenyl-1H-pyrazol derivatives as potential BRAFV600E inhibitors. Organic and Biomolecular Chemistry, 2013, 11, 6328.	1.5	25
344	Selective <scp>RAF</scp> inhibitor impairs <scp>ERK</scp> 1/2 phosphorylation and growth in mutant <scp>NRAS</scp> , vemurafenibâ€resistant melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 509-517.	1.5	65

#	Article	IF	CITATIONS
345	Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma. Oncogene, 2013, 32, 713-723.	2.6	34
346	The use of virtual screening and differential scanning fluorimetry for the rapid identification of fragments active against MEK1. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3620-3626.	1.0	22
347	Identification of Aurora Kinase B and Wee1-Like Protein Kinase as Downstream Targets of V600EB-RAF in Melanoma. American Journal of Pathology, 2013, 182, 1151-1162.	1.9	33
348	Construction of the CSIRO Fragment Library. Australian Journal of Chemistry, 2013, 66, 1473.	0.5	12
349	Epigenetics and Cancer. , 2013, , .		5
350	Profiles of Basal and Stimulated Receptor Signaling Networks Predict Drug Response in Breast Cancer Lines. Science Signaling, 2013, 6, ra84.	1.6	90
351	Tumor adaptation and resistance to RAF inhibitors. Nature Medicine, 2013, 19, 1401-1409.	15.2	512
354	The Novel SMAC Mimetic Birinapant Exhibits Potent Activity against Human Melanoma Cells. Clinical Cancer Research, 2013, 19, 1784-1794.	3.2	98
355	The sulfamide moiety affords higher inhibitory activity and oral bioavailability to a series of coumarin dual selective RAF/MEK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6223-6227.	1.0	18
356	Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay. Science, 2013, 341, 84-87.	6.0	1,444
357	Tumor biology as a basis for molecular targeting in cancer. Clinical and Translational Imaging, 2013, 1, 397-406.	1.1	2
358	Targeting MAPK pathway in melanoma therapy. Cancer and Metastasis Reviews, 2013, 32, 567-584.	2.7	72
359	Current management of melanoma. Current Problems in Surgery, 2013, 50, 351-382.	0.6	36
360	Biomarkers in Oncology. , 2013, , .		1
361	Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond. European Journal of Cancer, 2013, 49, 3229-3241.	1.3	40
362	Melanoma resistance to photodynamic therapy: new insights. Biological Chemistry, 2013, 394, 239-250.	1.2	104
363	The Ras Superfamily G-Proteins. The Enzymes, 2013, 33 Pt A, 1-14.	0.7	13
364	Pathological Consequence of Misguided Dendritic Cell Differentiation in Histiocytic Diseases. Advances in Immunology, 2013, 120, 127-161.	1.1	61

# 365	ARTICLE Case History. Annual Reports in Medicinal Chemistry, 2013, 48, 435-449.	IF 0.5	Citations 3
366	Towards personalized therapy for patients with malignant melanoma: molecular insights into the biology of BRAFmutations. Future Oncology, 2013, 9, 245-253.	1.1	12
367	Drug safety evaluation of vemurafenib in the treatment of melanoma. Expert Opinion on Drug Safety, 2013, 12, 767-775.	1.0	4
368	Stat3-Targeted Therapies Overcome the Acquired Resistance to Vemurafenib in Melanomas. Journal of Investigative Dermatology, 2013, 133, 2041-2049.	0.3	95
369	Mutation profiling of adenoid cystic carcinomas from multiple anatomical sites identifies mutations in the <scp>RAS</scp> pathway, but no <i><scp>KIT</scp></i> mutations. Histopathology, 2013, 62, 543-550.	1.6	39
370	Isolation of a Novel Thioflavin S–Derived Compound That Inhibits BAG-1–Mediated Protein Interactions and Targets BRAF Inhibitor–Resistant Cell Lines. Molecular Cancer Therapeutics, 2013, 12, 2400-2414.	1.9	23
371	Targeting the Kâ€Ras/PDE <i>δ</i> Protein–Protein Interaction: The Solution for Rasâ€Đriven Cancers or Just Another Therapeutic Mirage?. ChemMedChem, 2013, 8, 1620-1622.	1.6	2
372	Frequency-Modulated Pulses of ERK Activity Transmit Quantitative Proliferation Signals. Molecular Cell, 2013, 49, 249-261.	4.5	421
373	Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma. Oncogene, 2013, 32, 4836-4844.	2.6	20
374	The Cancer Biology of Molecular Imaging. , 2013, , 3-19.		0
375	Targeting Oncogenic Drivers and the Immune System in Melanoma. Journal of Clinical Oncology, 2013, 31, 499-506.	0.8	98
376	Focus on Personalized Molecular Based Medicine. , 2013, , 319-352.		0
377	New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways. , 2013, , 331-372.		1
378	Development of PI3K inhibitors: lessons learned from early clinical trials. Nature Reviews Clinical Oncology, 2013, 10, 143-153.	12.5	694
379	Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochemical Pharmacology, 2013, 85, 325-334.	2.0	70
380	Targeted Therapy for Cancer. Surgical Oncology Clinics of North America, 2013, 22, 805-821.	0.6	12
381	ARAF acts as a scaffold to stabilize BRAF:CRAF heterodimers. Oncogene, 2013, 32, 3207-3212.	2.6	66
384	Ipilimumab, Vemurafenib, Dabrafenib, and Trametinib: Synergistic Competitors in the Clinical Management of BRAF Mutant Malignant Melanoma. Oncologist, 2013, 18, 717-725.	1.9	72

#	Article	IF	Citations
385	Therapy Response Assessment in Metastatic Melanoma Patients Treated with a BRAF Inhibitor. Academic Radiology, 2013, 20, 423-429.	1.3	6
387	Targeted therapy in melanoma. Clinics in Dermatology, 2013, 31, 200-208.	0.8	23
388	Lung adenocarcinoma with BRAF G469L mutation refractory to vemurafenib. Lung Cancer, 2013, 82, 365-367.	0.9	32
389	Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development. Developmental Biology, 2013, 373, 373-382.	0.9	44
390	Melanocytes, melanocyte stem cells, and melanoma stem cells. Clinics in Dermatology, 2013, 31, 166-178.	0.8	60
391	Targeted therapy in melanoma – the role of BRAF, RAS and KIT mutations. European Journal of Cancer, Supplement, 2013, 11, 92-96.	2.2	41
392	Advances in targeting cell surface signalling molecules for immune modulation. Nature Reviews Drug Discovery, 2013, 12, 130-146.	21.5	229
393	Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell, 2013, 23, 302-315.	7.7	689
394	Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer. Cancer Cell, 2013, 23, 390-405.	7.7	130
395	Discovery and Optimization of a Novel Series of Potent Mutant B-RafV600E Selective Kinase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 1996-2015.	2.9	29
396	The dynamic nature of the kinome. Biochemical Journal, 2013, 450, 1-8.	1.7	90
397	Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 2013, 494, 251-255.	13.7	665
398	Pyrazolo[3,4- <i>b</i>]pyridine kinase inhibitors: a patent review (2008 – present). Expert Opinion on Therapeutic Patents, 2013, 23, 281-298.	2.4	21
399	The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews Drug Discovery, 2013, 12, 217-228.	21.5	394
400	<i>BCL2A1</i> is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4321-4326.	3.3	200
401	Resistance to BRAF-targeted therapy in melanoma. European Journal of Cancer, 2013, 49, 1297-1304.	1.3	311
402	Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance?. Nature Reviews Cancer, 2013, 13, 365-376.	12.8	242
403	Recent advances in the synthesis and properties of 4-, 5-, 6-ÂorÂ7-azaindoles. Tetrahedron, 2013, 69, 4767-4834.	1.0	101

	Charlow R		
#	Article	IF	CITATIONS
404	microRNAs as pharmacological targets in cancer. Pharmacological Research, 2013, 75, 3-14.	3.1	56
405	Polymer Nanofiberâ€Embedded Microchips for Detection, Isolation, and Molecular Analysis of Single Circulating Melanoma Cells. Angewandte Chemie - International Edition, 2013, 52, 3379-3383.	7.2	194
406	<i>BRAF</i> mutation testing algorithm for vemurafenib treatment in melanoma: recommendations from an expert panel. British Journal of Dermatology, 2013, 168, 700-707.	1.4	36
407	Innovative Therapeutic Strategies in the Treatment of Brain Metastases. International Journal of Molecular Sciences, 2013, 14, 2135-2174.	1.8	41
408	Potent BRAF kinase inhibitors based on 2,4,5-trisubstituted imidazole with naphthyl and benzothiophene 4-substituents. Bioorganic and Medicinal Chemistry, 2013, 21, 1284-1304.	1.4	34
409	Clinical Responses to Vemurafenib in Patients with Metastatic Papillary Thyroid Cancer Harboring BRAF ^{V600E} Mutation. Thyroid, 2013, 23, 1277-1283.	2.4	184
411	αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discovery Today, 2013, 18, 407-414.	3.2	91
412	Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chemical Biology, 2013, 9, 428-436.	3.9	140
413	Structural Basis of RIP1 Inhibition by Necrostatins. Structure, 2013, 21, 493-499.	1.6	195
414	Fragment-based drug discovery using NMR spectroscopy. Journal of Biomolecular NMR, 2013, 56, 65-75.	1.6	179
415	Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nature Reviews Clinical Oncology, 2013, 10, 390-399.	12.5	171
416	Vemurafenib in melanoma. Expert Review of Anticancer Therapy, 2013, 13, 513-522.	1.1	9
417	Therapeutic Destruction of Insulin Receptor Substrates for Cancer Treatment. Cancer Research, 2013, 73, 4383-4394.	0.4	108
418	Identification and synthesis of N-(thiophen-2-yl) benzamide derivatives as BRAFV600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2306-2312.	1.0	4
419	BRAF as a therapeutic target: a patent review (2006 – 2012). Expert Opinion on Therapeutic Patents, 2013, 23, 155-164.	2.4	12
420	Oncogenic B-RafV600E abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Letters, 2013, 337, 125-132.	3.2	15
421	Detection of the BRAF V600E mutation in serous ovarian tumors: a comparative analysis of immunohistochemistry with a mutation-specific monoclonal antibody and allele-specific PCR. Human Pathology, 2013, 44, 329-335.	1.1	77
424	ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nature Chemical Biology, 2013, 9, 307-312.	3.9	132

ARTICLE IF CITATIONS # Molecular Biology and Prostate Cancer., 2013, , 19-34. 425 0 Current and Future Trials of Targeted Therapies in Cutaneous Melanoma. Advances in Experimental Medicine and Biology, 2013, 779, 223-255. 0.8 ACK1 tyrosine kinase: Targeted inhibition to block cancer cell proliferation. Cancer Letters, 2013, 338, 427 3.2 53 185-192. Skin Tumorigenesis Stimulated by Raf Inhibitors Relies Upon Raf Functions That Are Dependent and 428 Independent of ERK. Cancer Research, 2013, 73, 6926-6937. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiological 430 13.1 104 Reviews, 2013, 93, 1659-1720. MEK Inhibition in the Treatment of Advanced Melanoma. Current Oncology Reports, 2013, 15, 473-482. 1.8 The Intersection of Immune-Directed and Molecularly Targeted Therapy in Advanced Melanoma: Where 432 3.2 54 We Have Been, Are, and Will Be. Clinical Cancer Research, 2013, 19, 5283-5291. Navigating the Therapeutic Complexity of PI3K Pathway Inhibition in Melanoma. Clinical Cancer 3.2 78 Research, 2013, 19, 5310-5319. 434 Emerging BRAF inhibitors for melanoma. Expert Opinion on Emerging Drugs, 2013, 18, 431-443. 1.0 5 Evolving Approaches to Patients with Advanced Differentiated Thyroid Cancer. Endocrine Reviews, 2013, 34, 439-455. Imaging the Function of Gene Products., 2013,, 433-514. 436 0 Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene, 2013, 32, 1207-1215. 2.6 MAP kinase signaling and inhibition in melanoma. Oncogene, 2013, 32, 2373-2379. 438 2.6 127 Influence of human immune cells on cancer: studies at the University of Colorado. Immunologic 1.3 Research, 2013, 55, 22-33. Essential, non-redundant roles of B-Raf and Raf-1 in Ras-driven skin tumorigenesis. Oncogene, 2013, 32, 440 2.6 27 2483-2492. BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Antitumor Activity of 441 336 Adoptive Immunotherapy in Mice. Clinical Cancer Research, 2013, 19, 393-403. Hypoxia Contributes to Melanoma Heterogeneity by Triggering HIF11±-Dependent Phenotype Switching. 442 0.3 127 Journal of Investigative Dermatology, 2013, 133, 2436-2443. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene, 443 2013, 32, 86-96.

#	Article	IF	CITATIONS
444	Genetic Profiling of BRAF Inhibitor–Induced Keratoacanthomas Reveals No Induction of MAP Kinase Pathway Expression. Journal of Investigative Dermatology, 2013, 133, 830-833.	0.3	8
445	Concomitant BRAF and PI3K/mTOR Blockade Is Required for Effective Treatment of <i>BRAFV600E</i> Colorectal Cancer. Clinical Cancer Research, 2013, 19, 2688-2698.	3.2	76
446	EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers. International Journal of Molecular Sciences, 2013, 14, 19361-19384.	1.8	38
447	Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. ISRN Oncology, 2013, 2013, 1-14.	2.1	21
448	Perturbation Biology: Inferring Signaling Networks in Cellular Systems. PLoS Computational Biology, 2013, 9, e1003290.	1.5	128
449	3′-Deoxy-3′- ¹⁸ F-Fluorothymidine PET Predicts Response to ^{V600E} BRAF-Targeted Therapy in Preclinical Models of Colorectal Cancer. Journal of Nuclear Medicine, 2013, 54, 424-430.	2.8	25
450	Pathology and genetics of uveal melanoma. Pathology, 2013, 45, 18-27.	0.3	31
451	New developments in biomarkers for melanoma. Current Opinion in Oncology, 2013, 25, 145-151.	1.1	20
452	Pharmacodynamic Effects and Mechanisms of Resistance to Vemurafenib in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2013, 31, 1767-1774.	0.8	335
453	High-Throughput Fragment Screening by Affinity LC-MS. Journal of Biomolecular Screening, 2013, 18, 160-171.	2.6	36
454	Multicenter Phase I Trial of the Mitogen-Activated Protein Kinase 1/2 Inhibitor BAY 86-9766 in Patients with Advanced Cancer. Clinical Cancer Research, 2013, 19, 1232-1243.	3.2	60
455	Inhibition of Wee1, AKT, and CDK4 Underlies the Efficacy of the HSP90 Inhibitor XL888 in an <i>In Vivo</i> Model of <i>NRAS</i> -Mutant Melanoma. Molecular Cancer Therapeutics, 2013, 12, 901-912.	1.9	52
456	Enhanced Inhibition of ERK Signaling by a Novel Allosteric MEK Inhibitor, CH5126766, That Suppresses Feedback Reactivation of RAF Activity. Cancer Research, 2013, 73, 4050-4060.	0.4	116
457	Handâ€Schüllerâ€Christian Disease and Erdheimâ€Chester Disease: Coexistence and Discrepancy. Oncologist, 2013, 18, 19-24.	1.9	17
458	P21-Activated Kinase 1 (PAK1) as a Therapeutic Target in BRAF Wild-Type Melanoma. Journal of the National Cancer Institute, 2013, 105, 606-607.	3.0	73
459	Identification of a Novel Complex <i>BRAF</i> Mutation Associated With Major Clinical Response to Vemurafenib in a Patient With Metastatic Melanoma. JAMA Dermatology, 2013, 149, 1403.	2.0	20
460	Taming the Wild-Types: Targeting PAK1 in Melanomas That Lack BRAF Mutations. Journal of the National Cancer Institute, 2013, 105, 591-592.	3.0	4
461	Antitumor Activity of the Selective Pan-RAF Inhibitor TAK-632 in BRAF Inhibitor-Resistant Melanoma. Cancer Research, 2013, 73, 7043-7055.	0.4	102

#	Article	IF	CITATIONS
462	Molecular Profiling for Druggable Genetic Abnormalities in Carcinoma of Unknown Primary. Journal of Clinical Oncology, 2013, 31, e237-e239.	0.8	31
463	Elucidating Distinct Roles for <i>NF1</i> in Melanomagenesis. Cancer Discovery, 2013, 3, 338-349.	7.7	213
464	PLC-γ and PI3K Link Cytokines to ERK Activation in Hematopoietic Cells with Normal and Oncogenic <i>Kras</i> . Science Signaling, 2013, 6, ra105.	1.6	12
465	Perspective on the Discovery and Scientific Impact of p38 MAP Kinase. Journal of Biomolecular Screening, 2013, 18, 1156-1163.	2.6	30
466	<i>In Vivo</i> MAPK Reporting Reveals the Heterogeneity in Tumoral Selection of Resistance to RAF Inhibitors. Cancer Research, 2013, 73, 7101-7110.	0.4	30
467	BRAF in Melanoma: Current Strategies and Future Directions. Clinical Cancer Research, 2013, 19, 4326-4334.	3.2	76
468	C-RAF Mutations Confer Resistance to RAF Inhibitors. Cancer Research, 2013, 73, 4840-4851.	0.4	30
469	Detection of Novel Actionable Genetic Changes in Salivary Duct Carcinoma Helps Direct Patient Treatment. Clinical Cancer Research, 2013, 19, 480-490.	3.2	105
470	Clinicopathological relevance of BRAF mutations in human cancer. Pathology, 2013, 45, 346-356.	0.3	131
471	Melanoma patients in a phase I clinic: molecular aberrations, targeted therapy and outcomes. Annals of Oncology, 2013, 24, 2158-2165.	0.6	14
472	Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5689-5694.	3.3	82
473	Evolving Pharmacotherapies for the Treatment of Metastatic Melanoma. Clinical Medicine Insights: Oncology, 2013, 7, CMO.S9565.	0.6	8
474	Mechanisms Limiting Distribution of the Threonine-Protein Kinase B-RaF ^{V600E} Inhibitor Dabrafenib to the Brain: Implications for the Treatment of Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 655-664.	1.3	158
475	TORC1 Suppression Predicts Responsiveness to RAF and MEK Inhibition in <i>BRAF-</i> Mutant Melanoma. Science Translational Medicine, 2013, 5, 196ra98.	5.8	124
476	Treatment of BRAF-Mutant Melanoma: The Role of Vemurafenib and Other Therapies. Clinical Pharmacology and Therapeutics, 2013, 95, 24-31.	2.3	75
477	Acute kidney injury in patients with severe rash on vemurafenib treatment for metastatic melanomas. British Journal of Dermatology, 2013, 169, 934-938.	1.4	32
478	Paradoxical oncogenesis: are all <scp>BRAF</scp> inhibitors equal?. Pigment Cell and Melanoma Research, 2013, 26, 611-615.	1.5	44
479	Impact of <scp>MET</scp> expression on outcome in <scp>BRAF</scp> ^{V600E/K} advanced melanoma. Histopathology, 2013, 63, 351-361.	1.6	14

#	Article	IF	CITATIONS
480	Vemurafenib: an unusual <scp>UVA</scp> â€induced photosensitivity. Experimental Dermatology, 2013, 22, 297-298.	1.4	76
481	<i><scp>TSC1</scp></i> involvement in bladder cancer: diverse effects andÂtherapeutic implications. Journal of Pathology, 2013, 230, 17-27.	2.1	48
482	Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18519-18524.	3.3	153
483	Inhibition of Melanoma Growth by Small Molecules That Promote the Mitochondrial Localization of ATF2. Clinical Cancer Research, 2013, 19, 2710-2722.	3.2	18
484	SC-535, a Novel Oral Multikinase Inhibitor, Showed Potent Antitumor Activity in Human Melanoma Models. Cellular Physiology and Biochemistry, 2013, 32, 138-153.	1.1	6
485	Lessons from next-generation sequencing analysis in hematological malignancies. Blood Cancer Journal, 2013, 3, e127-e127.	2.8	50
486	High-throughput screening and structure-based approaches to hit discovery: is there a clear winner?. Expert Opinion on Drug Discovery, 2013, 8, 1449-1453.	2.5	11
487	Recent Progress in Developing Small Molecule Inhibitors Designed to Interfere with Ras Membrane Association. The Enzymes, 2013, 34 Pt. B, 181-200.	0.7	12
488	Inhibitors of the ERK Mitogen-Activated Protein Kinase Cascade for Targeting RAS Mutant Cancers. The Enzymes, 2013, 34 Pt. B, 67-106.	0.7	8
489	Conformation-Specific Inhibitors of Raf Kinases. The Enzymes, 2013, 34 Pt. B, 41-66.	0.7	3
490	Gossypin as a Novel Selective Dual Inhibitor of v-raf Murine Sarcoma Viral Oncogene Homolog B1 and Cyclin-Dependent Kinase 4 for Melanoma. Molecular Cancer Therapeutics, 2013, 12, 361-372.	1.9	20
491	Skin toxicity of targeted cancer agents: mechanisms and intervention. Future Oncology, 2013, 9, 1161-1170.	1.1	24
492	Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current Pharmaceutical Design, 2013, 19, 883-894.	0.9	47
493	The real informatics challenges of personalized medicine: not just about the number of central processing units. Personalized Medicine, 2013, 10, 639-645.	0.8	3
496	Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging, 2013, 13, 306-313.	1.2	35
497	Exploiting MEK Inhibitor-Mediated Activation of ERα for Therapeutic Intervention in ER-Positive Ovarian Carcinoma. PLoS ONE, 2013, 8, e54103.	1.1	23
498	RASopathic Skin Eruptions during Vemurafenib Therapy. PLoS ONE, 2013, 8, e58721.	1.1	72
499	Differential Inhibition of Ex-Vivo Tumor Kinase Activity by Vemurafenib in BRAF(V600E) and BRAF Wild-Type Metastatic Malignant Melanoma. PLoS ONE, 2013, 8, e72692.	1.1	28

		Citation Report		
#	Article	I	IF	CITATIONS
500	Genetics of melanoma. Frontiers in Genetics, 2012, 3, 330.	:	1.1	27
501	Advances in Personalized Targeted Treatment of Metastatic Melanoma and Non-Invasive Tumor Monitoring. Frontiers in Oncology, 2013, 3, 54.		1.3	27
502	Ras., 0,, 258-271.			0
503	BRAF mutations in human cancer: biologic and therapeutic implications. , 0, , 272-277.			Ο
504	Anti-Neoplastic Activity of 1,3-Diaza-2-Functionalized-Adamantan-6-One Compounds Against Mela Cells. Medicinal Chemistry, 2013, 10, 27-37.	noma	0.7	5
506	Multikinase inhibitors use in differentiated thyroid carcinoma. Biologics: Targets and Therapy, 2014 281.	4, 8,	3.0	21
507	3′-Deoxy-3′-[18F]-Fluorothymidine PET Imaging Reflects PI3K-mTOR-Mediated Pro-Survival Re Targeted Therapy in Colorectal Cancer. PLoS ONE, 2014, 9, e108193.	esponse to	1.1	12
508	Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy. ELife, 2014, 3, .		2.8	38
509	miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. ELif 2014, 3, e01460.	2,	2.8	101
510	BRAF Mutation in Melanoma and Dietary Polyphenols as Adjunctive Treatment Strategy. , 2014, , 1353-1365.			3
511	Vemurafenib: an evidence-based review of its clinical utility in the treatment of metastatic melanor Drug Design, Development and Therapy, 2014, 8, 775.	na.	2.0	32
512	Differential Effects of the Oncogenic BRAF Inhibitor PLX4032 (Vemurafenib) and its Progenitor PLX4720 on ABCB1 Function. Journal of Pharmacy and Pharmaceutical Sciences, 2014, 17, 154.		0.9	13
513	In Vitro and In Vivo Models for Analysis of Resistance to Anticancer Molecular Therapies. Current Medicinal Chemistry, 2014, 21, 1595-1606.	:	1.2	52
514	4. Der virtuelle Patient – Systembiologie als Chance für eine individualisierte Medizin. , 0, , .			0
515	Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E74	8-57.	3.3	90
516	NMR approaches in structure-based lead discovery: Recent developments and new frontiers for targeting multi-protein complexes. Progress in Biophysics and Molecular Biology, 2014, 116, 101-	12.	1.4	54
517	A Structural Atlas of Kinases Inhibited by Clinically Approved Drugs. Methods in Enzymology, 2014 548, 23-67.	,	0.4	44
518	Proteinâ€ [©] protein interaction modulator drug discovery: past efforts and future opportunities usir rich source of low- and high-throughput screening assays. Expert Opinion on Drug Discovery, 2014 1393-1404.	g a , 9,	2.5	36

#	Article	IF	CITATIONS
519	The clinical response to vemurafenib in a patient with a rare BRAF V600DK601del mutation-positive melanoma. BMC Cancer, 2014, 14, 727.	1.1	19
520	Targeting molecular addictions in cancer. British Journal of Cancer, 2014, 111, 2033-2038.	2.9	35
521	The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death and Disease, 2014, 5, e1278-e1278.	2.7	211
522	In Vitro Treatment of Melanoma Brain Metastasis by Simultaneously Targeting the MAPK and PI3K Signaling Pathways. International Journal of Molecular Sciences, 2014, 15, 8773-8794.	1.8	25
523	Localized insulin-dependent amyloidosis with scar-tissue formation. Journal of the American Academy of Dermatology, 2014, 71, e160-e162.	0.6	6
524	Vemurafenib. Recent Results in Cancer Research, 2014, 201, 215-225.	1.8	30
525	Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in ovarian serous borderline tumors. Oncology Reports, 2014, 32, 1815-1819.	1.2	5
527	Lupus erythematosus–like skin eruption after vemurafenib therapy. Journal of the American Academy of Dermatology, 2014, 71, e159-e160.	0.6	7
528	The effects of a high-fat meal on single-dose vemurafenib pharmacokinetics. Journal of Clinical Pharmacology, 2014, 54, 368-374.	1.0	41
529	Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014, 5, 5712.	5.8	503
530	Targeting RAS–ERK signalling in cancer: promises and challenges. Nature Reviews Drug Discovery, 2014, 13, 928-942.	21.5	887
531	The CDK4/6 Inhibitor LY2835219 Overcomes Vemurafenib Resistance Resulting from MAPK Reactivation and Cyclin D1 Upregulation. Molecular Cancer Therapeutics, 2014, 13, 2253-2263.	1.9	126
532	Nano-Oncologicals. Advances in Delivery Science and Technology, 2014, , .	0.4	7
533	Identification of <scp>PLX</scp> 4032â€resistance mechanisms and implications for novel <scp>RAF</scp> inhibitors. Pigment Cell and Melanoma Research, 2014, 27, 253-262.	1.5	44
534	Fragment-Based Approaches to the Discovery of Kinase Inhibitors. Methods in Enzymology, 2014, 548, 69-92.	0.4	13
535	Resistance to vemurafenib resulting from a novel mutation in the <scp>BRAFV</scp> 600 <scp>E</scp> kinase domain. Pigment Cell and Melanoma Research, 2014, 27, 124-133.	1.5	51
536	Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAFV600E or wild-type BRAF. Oncogene, 2014, 33, 5397-5404.	2.6	27
537	Repositioning the Substrate Activity Screening (SAS) Approach as a Fragmentâ€Based Method for Identification of Weak Binders. ChemBioChem, 2014, 15, 2238-2247.	1.3	7

#	Article	IF	CITATIONS
538	The use of vemurafenib in <scp>A</scp> ustralian patients with unresectable or metastatic melanoma containing the <scp>V</scp> 600 <scp><i>BRAF</i></scp> gene mutation. Asia-Pacific Journal of Clinical Oncology, 2014, 10, 1-15.	0.7	4
539	Major therapeutic developments and current challenges in advanced melanoma. British Journal of Dermatology, 2014, 170, 36-44.	1.4	20
540	Molecular mechanisms of asymmetric RAF dimer activation. Biochemical Society Transactions, 2014, 42, 784-790.	1.6	28
541	Do We Need Small Molecule Inhibitors for the Immune Checkpoints?. Journal of Pharmaceutical Care & Health Systems, 2014, 01, .	0.1	5
542	Novel Approaches in Melanoma Prevention and Therapy. Cancer Treatment and Research, 2014, 159, 443-455.	0.2	36
543	Localized Epidermal Cysts as a Radiation Recall Phenomenon in a Melanoma Patient Treated with Radiotherapy and the BRAF Inhibitor Vemurafenib. Case Reports in Dermatology, 2014, 6, 213-217.	0.3	8
544	MAPK Pathway Inhibition Enhances the Efficacy of an Anti-Endothelin B Receptor Drug Conjugate by Inducing Target Expression in Melanoma. Molecular Cancer Therapeutics, 2014, 13, 1599-1610.	1.9	21
545	Case series: indoor-photosensitivity caused by fluorescent lamps in patients treated with vemurafenib for metastatic melanoma. BMC Cancer, 2014, 14, 967.	1.1	6
546	Phase I Safety and Pharmacokinetic Study of the PI3K/mTOR Inhibitor SAR245409 (XL765) in Combination with Erlotinib in Patients with Advanced Solid Tumors. Journal of Thoracic Oncology, 2014, 9, 316-323.	0.5	44
547	Function-Blocking ERBB3 Antibody Inhibits the Adaptive Response to RAF Inhibitor. Cancer Research, 2014, 74, 4122-4132.	0.4	45
548	Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics. PLoS ONE, 2014, 9, e101286.	1.1	42
549	A Peptide-Based Positron Emission Tomography Probe for <i>In Vivo</i> Detection of Caspase Activity in Apoptotic Cells. Clinical Cancer Research, 2014, 20, 2126-2135.	3.2	29
550	Finding the Right Balance of BRAF Inhibition in Melanoma. Cancer Discovery, 2014, 4, 510-512.	7.7	3
551	Paradoxical Activation of T Cells via Augmented ERK Signaling Mediated by a RAF Inhibitor. Cancer Immunology Research, 2014, 2, 70-79.	1.6	100
552	Modeling Melanoma In Vitro and In Vivo. Healthcare (Switzerland), 2014, 2, 27-46.	1.0	90
553	MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene, 2014, 33, 1850-1861.	2.6	92
554	KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry, 2014, 57, 249-277.	2.9	243
555	Prominent role of cyclic adenosine monophosphate signalling pathway in the sensitivity of WTBRAF/WTNRAS melanoma cells to vemurafenib. European Journal of Cancer, 2014, 50, 1310-1320.	1.3	19

		CITATION REPORT		
#	Article		IF	CITATIONS
556	Resistance to Raf inhibition in cancer. Drug Discovery Today: Technologies, 2014, 11, 2	?7-32.	4.0	31
557	Immunological Basis of Melanoma-Associated Vitiligo-Like Depigmentation. Actas Dermo-sifiliogrÃ _i ficas, 2014, 105, 122-127.		0.2	2
558	Targeted Therapies for Cutaneous Melanoma. Hematology/Oncology Clinics of North A 28, 491-505.	vmerica, 2014,	0.9	11
559	Animal models of disease: Pre-clinical animal models of cancer and their applications ar drug discovery. Biochemical Pharmacology, 2014, 87, 150-161.	nd utility in	2.0	271
560	Somatic Mutations in MAP3K5 Attenuate Its Proapoptotic Function in Melanoma throu Binding to Thioredoxin. Journal of Investigative Dermatology, 2014, 134, 452-460.	ıgh Increased	0.3	20
561	Imaging of molecular target modulation in oncology: challenges of early clinical trials. (Translational Imaging, 2014, 2, 5-12.	Clinical and	1.1	2
562	BRAF and MEK Gene Rearrangements in Melanoma: Implications for Targeted Therapy. Diagnosis and Therapy, 2014, 18, 285-91.	Molecular	1.6	8
563	A phase I, randomized, open-label study of the multiple-dose pharmacokinetics of vemi patients with BRAF V600E mutation-positive metastatic melanoma. Cancer Chemother Pharmacology, 2014, 73, 103-111.	urafenib in apy and	1.1	45
564	Overexpression of miR-145 increases the sensitivity of vemurafenib in drug-resistant co Tumor Biology, 2014, 35, 2983-2988.	olo205 cell line.	0.8	16
565	Genetic Alterations and Personalized Medicine in Melanoma: Progress and Future Pros of the National Cancer Institute, 2014, 106, djt435-djt435.	pects. Journal	3.0	64
566	Emerging insights into resistance to BRAF inhibitors in melanoma. Biochemical Pharma 381-389.	cology, 2014, 87,	2.0	70
567	Tumor Cellularity as a Quality Assurance Measure for Accurate Clinical Detection of BR in Melanoma. Molecular Diagnosis and Therapy, 2014, 18, 409-418.	AF Mutations	1.6	34
568	Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Europear Medicinal Chemistry, 2014, 72, 170-205.	ו Journal of	2.6	55
569	BRAF — A new player in hematological neoplasms. Blood Cells, Molecules, and Diseas	es, 2014, 53, 77-83.	0.6	26
570	Profiling proteoforms: promising follow-up of proteomics for biomarker discovery. Expe Proteomics, 2014, 11, 121-129.	ert Review of	1.3	44
571	New biological perspectives for the improvement of the efficacy of sorafenib in hepato carcinoma. Cancer Letters, 2014, 346, 159-162.	cellular	3.2	72
572	Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Drug Discovery, 2014, 13, 179-196.	ure Reviews	21.5	202
573	The free energy landscape in translational science: how can somatic mutations result in oncogenic activation?. Physical Chemistry Chemical Physics, 2014, 16, 6332.	n constitutive	1.3	38

		Citation Report		
#	Article		IF	CITATIONS
574	Epistatic interactions and drug response. Journal of Pathology, 2014, 232, 255-263.		2.1	24
575	BRAF Inhibitor Resistance Mechanisms in Metastatic Melanoma: Spectrum and Clinica Cancer Research, 2014, 20, 1965-1977.	Impact. Clinical	3.2	447
576	Activating Mutations Cluster in the "Molecular Brake―Regions of Protein Kinases Associate with Conserved or Catalytic Residues. Human Mutation, 2014, 35, 318-328.	and Do Not	1.1	20
577	Deregulation of cell signaling in cancer. FEBS Letters, 2014, 588, 2558-2570.		1.3	103
578	Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiv Biomaterials, 2014, 35, 4310-4318.	eness.	5.7	57
580	Targeting B-RAF. , 2014, , 529-563.			1
581	Small Molecules in Oncology. Recent Results in Cancer Research, 2014, , .		1.8	4
582	Disruption of CRAF-Mediated MEK Activation Is Required for Effective MEK Inhibition in Tumors. Cancer Cell, 2014, 25, 697-710.	n KRAS Mutant	7.7	238
583	Identification of Type <scp>II</scp> Inhibitors Targeting <scp>BRAF</scp> Using Privil Pharmacophores. Chemical Biology and Drug Design, 2014, 83, 27-36.	eged	1.5	9
584	The clinical development of MEK inhibitors. Nature Reviews Clinical Oncology, 2014, 1	1, 385-400.	12.5	342
585	Insight into the Structural Features of Pyrazolopyrimidine―and Pyrazolopyridineâ€ba Bâ€Raf ^{V600E} Kinase Inhibitors by Computational Explorations. Chemical Design, 2014, 83, 643-655.	sed Biology and Drug	1.5	4
586	Small GTPase RBJ Mediates Nuclear Entrapment of MEK1/MEK2 in Tumor Progression. 25, 682-696.	Cancer Cell, 2014,	7.7	36
587	Biologically Driven Synthesis of Pyrazolo[3,4- <i>d</i>]pyrimidines As Protein Kinase In Scaffold As a New Tool for Medicinal Chemistry and Chemical Biology Studies. Chemic 114, 7189-7238.	hibitors: An Old al Reviews, 2014,	23.0	116
588	BRAF inhibitors in cancer therapy. , 2014, 142, 176-182.			87
589	Detecting Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma. Methods i Biology, 2014, 1102, 163-174.	n Molecular	0.4	14
590	Advances in Nutrition and Cancer. Cancer Treatment and Research, 2014, , .		0.2	11
591	Targeting Protein-Protein Interaction by Small Molecules. Annual Review of Pharmacol Toxicology, 2014, 54, 435-456.	ogy and	4.2	170
592	Towards a Unified Model of RAF Inhibitor Resistance. Cancer Discovery, 2014, 4, 27-30).	7.7	39

ARTICLE IF CITATIONS Microwave-assisted, one-pot reaction of 7-azaindoles and aldehydes: a facile route to novel 593 0.7 9 di-7-azaindolylmethanes. Tetrahedron Letters, 2014, 55, 169-173. Resistance to RAF Inhibitors Revisited. Journal of Investigative Dermatology, 2014, 134, 319-325. 594 0.3 Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer 595 7.7 836 Discovery, 2014, 4, 80-93. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last 3,798 Decade (2001–2011). Chemical Reviews, 2014, 114, 2432-2506. Targeting melanocyte and melanoma stem cells by 8-hydroxy-2-dipropylaminotetralin. Archives of 597 1.4 6 Biochemistry and Biophysics, 2014, 563, 71-78. Exome-Driven Characterization of the Cancer Cell Lines at the Proteome Level: The NCI-60 Case Study. 598 1.8 Journal of Proteome Research, 2014, 13, 5551-5560. Role of BRAFV600E in the First Preclinical Model of Multifocal Infiltrating Myopericytoma 599 3.0 31 Development and Microenvironment. Journal of the National Cancer Institute, 2014, 106, . Recent developments in the medical and surgical treatment of melanoma. Ca-A Cancer Journal for 157.7 56 Clinicians, 2014, 64, 171-185. Mutant <i> <scp>BRAF</scp> </i> in lowâ€grade epilepsyâ€associated tumors and focal cortical dysplasia. 601 1.7 33 Annals of Clinical and Translational Neurology, 2014, 1, 130-134. Catalytic Mechanisms and Regulation of Protein Kinases. Methods in Enzymology, 2014, 548, 1-21. 0.4 Design, synthesis and biological evaluation of novel 5-phenyl-1H-pyrazole derivatives as potential 603 1.4 27 BRAFV600E inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 6201-6208. Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic 604 2.6 28 Imaging. Journal of Biomolecular Screening, 2014, 19, 526-537. Dabrafenib Therapy for Advanced Melanoma. Annals of Pharmacotherapy, 2014, 48, 519-529. 605 0.9 31 Ars Moriendi; the art of dying well – new insights into the molecular pathways of necroptotic cell death. EMBO Reports, 2014, 15, 155-164. 606 Characterization of Vemurafenib Phototoxicity in a Mouse Model. Toxicological Sciences, 2014, 137, 607 19 1.4 259-267. Molecular Diagnostics for Dermatology., 2014,,. Combination of RAF and MEK Inhibition for the Treatment of BRAF-Mutated Melanoma: Feedback Is Not 609 7.7 49 Encouraged. Cancer Cell, 2014, 26, 603-604. A microfluidic device for multiplex single-nucleotide polymorphism genotyping. RSC Advances, 2014, 4, 4269-4277.

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	NDT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
611	Covalent Small Molecule Inhibitors of Ca ²⁺ -Bound S100B. Biochemistry, 2014, 53, 6628-6640.	1.2	35
612	Feasibility Study on Measuring Selected Proteins in Malignant Melanoma Tissue by SRM Quantification. Journal of Proteome Research, 2014, 13, 1315-1326.	1.8	9
613	MEK Inhibition, Alone or in Combination with BRAF Inhibition, Affects Multiple Functions of Isolated Normal Human Lymphocytes and Dendritic Cells. Cancer Immunology Research, 2014, 2, 351-360.	1.6	122
614	Substrate Deconstruction and the Nonadditivity of Enzyme Recognition. Journal of the American Chemical Society, 2014, 136, 7374-7382.	6.6	20
615	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	7.7	242
616	Factors Influencing Crystal Growth Rates from Undercooled Liquids of Pharmaceutical Compounds. Journal of Physical Chemistry B, 2014, 118, 9974-9982.	1.2	50
617	Drugging the undruggable RAS: Mission Possible?. Nature Reviews Drug Discovery, 2014, 13, 828-851.	21.5	1,484
618	No longer an untreatable disease: How targeted and immunotherapies have changed the management of melanoma patients. Molecular Oncology, 2014, 8, 1140-1158.	2.1	47
619	A new look at drugs targeting malignant melanoma—An application for mass spectrometry imaging. Proteomics, 2014, 14, 1963-1970.	1.3	28
620	The Antiproliferative Response of Indole-3-Carbinol in Human Melanoma Cells Is Triggered by an Interaction with NEDD4-1 and Disruption of Wild-Type PTEN Degradation. Molecular Cancer Research, 2014, 12, 1621-1634.	1.5	62
621	Structural Basis for the Inhibition of HSP70 and DnaK Chaperones by Small-Molecule Targeting of a C-Terminal Allosteric Pocket. ACS Chemical Biology, 2014, 9, 2508-2516.	1.6	62
622	"RAF―neighborhood: Protein–protein interaction in the Raf/Mek/Erk pathway. FEBS Letters, 2014, 588, 2398-2406.	1.3	89
623	Structure of the BRAF-MEK Complex Reveals a Kinase Activity Independent Role for BRAF in MAPK Signaling. Cancer Cell, 2014, 26, 402-413.	7.7	173
624	Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine, 2014, 211, 1503-1523.	4.2	683
625	ERKs in Cancer: Friends or Foes?. Cancer Research, 2014, 74, 412-419.	0.4	190
626	Synergistic Combination of Novel Tubulin Inhibitor ABI-274 and Vemurafenib Overcomes Vemurafenib Acquired Resistance in BRAFV600E Melanoma. Molecular Cancer Therapeutics, 2014, 13, 16-26.	1.9	26
627	Identification of 33 candidate oncogenes by screening for base-specific mutations. British Journal of Cancer, 2014, 111, 1657-1662.	2.9	30
628	Is target validation all we need?. Current Opinion in Pharmacology, 2014, 17, 81-86.	1.7	5

#	Article	IF	CITATIONS
629	Treatment of unresectable stage IV metastatic melanoma with aviscumine after anti-neoplastic treatment failure: a phase II, multi-centre study. , 2014, 2, 27.		7
630	A method for the second-site screening of K-Ras in the presence of a covalently attached first-site ligand. Journal of Biomolecular NMR, 2014, 60, 11-14.	1.6	32
631	Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. Journal of Molecular Medicine, 2014, 92, 723-733.	1.7	4
632	Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines. Human Molecular Genetics, 2014, 23, 1527-1537.	1.4	19
633	Development and validation of a high-performance liquid chromatography–tandem mass spectrometry assay quantifying vemurafenib in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 630-635.	1.4	16
634	Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma. Molecular Cancer, 2014, 13, 83.	7.9	65
635	Increasing Chemical Space Coverage by Combining Empirical and Computational Fragment Screens. ACS Chemical Biology, 2014, 9, 1528-1535.	1.6	58
636	Molecular Pathways: Response and Resistance to BRAF and MEK Inhibitors in BRAFV600E Tumors. Clinical Cancer Research, 2014, 20, 1074-1080.	3.2	47
637	Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition. Genome Research, 2014, 24, 751-760.	2.4	67
638	Annexin A1 in primary tumors promotes melanoma dissemination. Clinical and Experimental Metastasis, 2014, 31, 749-760.	1.7	45
639	Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2. Cancer Research, 2014, 74, 1067-1078.	0.4	86
640	Cyclinâ€dependent kinases as therapeutic targets in melanoma. Pigment Cell and Melanoma Research, 2014, 27, 351-365.	1.5	21
641	Change or die: Targeting adaptive signaling to kinase inhibition in cancer cells. Biochemical Pharmacology, 2014, 91, 417-425.	2.0	8
642	Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 2014, 346, 1255784.	6.0	812
643	Pathology in drug discovery and development. Journal of Pathology, 2014, 232, 99-102.	2.1	12
644	Bases inmunológicas de la hipopigmentación vitiligoide asociada a melanoma. Actas Dermo-sifiliográficas, 2014, 105, 122-127.	0.2	3
645	Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nuclear Medicine and Biology, 2014, 41, 148-154.	0.3	10
646	Biased and unbiased strategies to identify biologically active small molecules. Bioorganic and Medicinal Chemistry, 2014, 22, 4474-4489.	1.4	13

#	Article	IF	CITATIONS
647	Guanidinium-based derivatives: Searching for new kinase inhibitors. European Journal of Medicinal Chemistry, 2014, 81, 427-441.	2.6	22
648	BRAF inhibitors: From the laboratory to clinical trials. Critical Reviews in Oncology/Hematology, 2014, 90, 220-232.	2.0	35
649	Vemurafenib in patients with BRAFV600 mutation-positive melanoma with symptomatic brain metastases: Final results of an open-label pilot study. European Journal of Cancer, 2014, 50, 611-621.	1.3	254
650	Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery. Future Medicinal Chemistry, 2014, 6, 617-639.	1.1	38
651	Effects of MAPK and PI3K Pathways on PD-L1 Expression in Melanoma. Clinical Cancer Research, 2014, 20, 3446-3457.	3.2	294
652	Programmed Deathâ€1: Therapeutic Success after More than 100â€Years of Cancer Immunotherapy. Angewandte Chemie - International Edition, 2014, 53, 2286-2288.	7.2	62
653	The <scp>MAPK</scp> pathway across different malignancies: A new perspective. Cancer, 2014, 120, 3446-3456.	2.0	752
654	Targeted Therapy Resistance Mechanisms and Therapeutic Implications in Melanoma. Hematology/Oncology Clinics of North America, 2014, 28, 523-536.	0.9	23
655	Drug resistance to targeted therapies: Déjà vu all over again. Molecular Oncology, 2014, 8, 1067-1083.	2.1	187
656	Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncology, 2014, 50, 683-690.	0.8	102
657	Latest Advances in Chemotherapeutic, Targeted, and Immune Approaches in the Treatment of Metastatic Melanoma. Mayo Clinic Proceedings, 2014, 89, 504-519.	1.4	77
658	The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharmaceutica Sinica B, 2014, 4, 105-111.	5.7	48
659	Targeted therapy for melanoma: rational combinatorial approaches. Oncogene, 2014, 33, 1-9.	2.6	85
660	In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Frontiers in Molecular Neuroscience, 2014, 7, 51.	1.4	51
661	Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Biochemical Society Transactions, 2014, 42, 776-783.	1.6	28
662	Platelet αIlbβ3 activation: filling in the pieces. Blood, 2014, 123, 3065-3067.	0.6	1
663	A(nother) RAF mutation in LCH. Blood, 2014, 123, 3063-3065.	0.6	5
664	A General Network Pharmacodynamic Model–Based Design Pipeline for Customized Cancer Therapy Applied to the VEGFR Pathway. CPT: Pharmacometrics and Systems Pharmacology, 2014, 3, 1-9.	1.3	37
#	Article	IF	CITATIONS
-----	---	-----	-----------
665	Emerging targeted therapies for melanoma treatment (Review). International Journal of Oncology, 2014, 45, 516-524.	1.4	39
667	Chemotherapy reduces PARP1 in cancers of the ovary: implications for future clinical trials involving PARP inhibitors. BMC Medicine, 2015, 13, 217.	2.3	17
668	MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Therapeutic Advances in Medical Oncology, 2015, 7, 170-180.	1.4	105
669	Treatment patterns and outcomes in BRAF V600Eâ€mutant melanoma patients with brain metastases receiving vemurafenib in the realâ€world setting. Cancer Medicine, 2015, 4, 1205-1213.	1.3	22
670	Phase I/ <scp>II</scp> study of vemurafenib in patients with unresectable or recurrent melanoma with <scp><i>BRAF</i>^{<i>V</i>}</scp> <i>600</i> mutations. Journal of Dermatology, 2015, 42, 661-666.	0.6	14
671	New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201.	2.0	35
672	Adaptive enrichment designs: applications and challenges. Clinical Investigation, 2015, 5, 383-391.	0.0	12
676	Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth and Metastasis, 2015, 8s1, CGM.S21214.	3.5	74
677	Inducing Oncoprotein Degradation to Improve Targeted Cancer Therapy. Neoplasia, 2015, 17, 697-703.	2.3	16
678	In Situ Microscopic Observation of the Crystallization Process of Molecular Microparticles by Fluorescence Switching. Angewandte Chemie - International Edition, 2015, 54, 7976-7980.	7.2	42
679	Reply. Dermatologic Surgery, 2015, 41, 865.	0.4	0
680	Brain Tumor Clinical Trials. Neurosurgery, 2015, 62, 141-145.	0.6	0
681	Towards pathway entric cancer therapies via pharmacogenomic profiling analysis of ERK signalling pathway. Clinical and Translational Medicine, 2015, 4, 66.	1.7	2
682	Converting biology into clinical benefit: lessons learned from BRAF inhibitors. Melanoma Management, 2015, 2, 241-254.	0.1	10
683	Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Veterinary and Comparative Oncology, 2015, 13, 288-304.	0.8	58
684	Utility of MRI in the Diagnosis and Post-Treatment Evaluation of Anogenital Hidradenitis Suppurativa. Dermatologic Surgery, 2015, 41, 865-866.	0.4	9
685	Vemurafenib Resistance Signature by Proteome Analysis Offers New Strategies and Rational Therapeutic Concepts. Molecular Cancer Therapeutics, 2015, 14, 757-768.	1.9	27
686	Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatric Blood and Cancer, 2015, 62, 1709-1716.	0.8	59

#	Article	IF	CITATIONS
687	In Situ Microscopic Observation of the Crystallization Process of Molecular Microparticles by Fluorescence Switching. Angewandte Chemie, 2015, 127, 8087-8091.	1.6	14
688	Lowâ€concentration vemurafenib induces the proliferation and invasion of human HaCaT keratinocytes through mitogenâ€activated protein kinase pathway activation. Journal of Dermatology, 2015, 42, 881-888.	0.6	9
689	Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma. International Journal of Nanomedicine, 2015, 10, 3131.	3.3	14
690	Cutaneous side-effects during therapy of melanoma by vemurafenib. Przeglad Dermatologiczny, 2015, 3, 221-226.	0.0	1
691	Inhibitors of pan-PI3K Signaling Synergize with BRAF or MEK Inhibitors to Prevent BRAF-Mutant Melanoma Cell Growth. Frontiers in Oncology, 2015, 5, 135.	1.3	52
692	Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer. Frontiers in Oncology, 2015, 5, 149.	1.3	52
693	Combination Therapies to Inhibit the RAF/MEK/ERK Pathway in Melanoma: We are not Done Yet. Frontiers in Oncology, 2015, 5, 161.	1.3	25
694	A Protein Deep Sequencing Evaluation of Metastatic Melanoma Tissues. PLoS ONE, 2015, 10, e0123661.	1.1	19
695	Context Sensitive Modeling of Cancer Drug Sensitivity. PLoS ONE, 2015, 10, e0133850.	1.1	13
696	Analysis of BRAF and NRAS Mutation Status in Advanced Melanoma Patients Treated with Anti-CTLA-4 Antibodies: Association with Overall Survival?. PLoS ONE, 2015, 10, e0139438.	1.1	27
697	Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget, 2015, 6, 16488-16506.	0.8	30
698	The role of BRAF in the pathogenesis of thyroid carcinoma. Frontiers in Bioscience - Landmark, 2015, 20, 1068-1078.	3.0	22
699	What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget, 2015, 6, 35589-35601.	0.8	57
701	Current Therapeutic Leads for the Treatment of Melanoma: Targeted Immunotherapy in the Post-genomic Era. Current Molecular Pharmacology, 2015, 7, 33-43.	0.7	3
702	BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E536-45.	3.3	121
703	Long-term outcome in BRAFV600E melanoma patients treated with vemurafenib: Patterns of disease progression and clinical management of limited progression. European Journal of Cancer, 2015, 51, 1435-1443.	1.3	61
704	BRAF and MEK inhibition for the treatment of advanced BRAF mutant melanoma. Expert Opinion on Pharmacotherapy, 2015, 16, 1285-1297.	0.9	24
705	Activation of the Mitochondrial Fragmentation Protein DRP1 Correlates with BRAF V600E Melanoma. Journal of Investigative Dermatology, 2015, 135, 2544-2547.	0.3	48

ARTICLE IF CITATIONS Discovery of hydroxyaniline amides as selective Extracellular Regulated Kinase (Erk) inhibitors. 706 1.0 11 Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1627-1629. Histogram analysis of iodine maps from dual energy computed tomography for monitoring targeted therapy of melanoma patients. Future Oncology, 2015, 11, 591-606. 1.1 The relationship between hand hygiene and health care-associated infection: it's 708 1.1 39 complicated. Infection and Drug Resistance, 2015, 8, 7. Adolescent and young adult patients with cancer: a milieu of unique features. Nature Reviews Clinical 99 Oncology, 2015, 12, 465-480. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurgical Focus, 710 1.0 20 2015, 38, E6. Raf/MEK/ERK Signaling., 2015, , 275-305. New Strategies in Melanoma: Entering the Era of Combinatorial Therapy. Clinical Cancer Research, 712 3.2 29 2015, 21, 2424-2435. <i>CCR</i> 20th Anniversary Commentary: Determining a Pharmacokinetic/Pharmacodynamic Relationship for Sunitinibâ€"A Look Back. Clinical Cancer Research, 2015, 21, 2415-2417. 3.2 A singleâ€dose mass balance and metaboliteâ€profiling study of vemurafenib in patients with metastatic 714 1.1 24 melanoma. Pharmacology Research and Perspectives, 2015, 3, e00113. BRAF Alterations as Therapeutic Targets in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1396-1403. EGFR and HER2 signals play a salvage role in MEK1-mutated gastric cancer after MEK inhibition. 716 1.4 14 International Journal of Oncology, 2015, 47, 499-505. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. Journal of Enzyme Inhibition 2.5 36 and Medicinal Chemistry, 2015, 30, 679-687. Concurrent MEK and autophagy inhibition is required to restore cell death associated 718 danger-signalling in Vemurafenib-resistant melanoma cells. Biochemical Pharmacology, 2015, 93, 2.0 49 290-304. Mitochondrial Division Is Requisite to RAS-Induced Transformation and Targeted by Oncogenic MAPK Pathway Inhibitors. Molecular Cell, 2015, 57, 521-536. 719 4.5 720 Recent Advances in Cancer Therapeutics. Progress in Medicinal Chemistry, 2015, 54, 1-63. 32 4.1 Structural Investigation of B-Raf Paradox Breaker and Inducer Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 1818-1831. Discovery and Pharmacophore Studies of Novel Pyrazoleâ€Based Antiâ€Melanoma Agents. Chemistry and 722 1.0 7 Biodiversity, 2015, 12, 116-132. The role of the PI3K pathway in colorectal cancer. Critical Reviews in Oncology/Hematology, 2015, 94, 18-30.

#	Article	IF	CITATIONS
724	Pilot Trial of Combined BRAF and EGFR Inhibition in <i>BRAF</i> -Mutant Metastatic Colorectal Cancer Patients. Clinical Cancer Research, 2015, 21, 1313-1320.	3.2	240
725	A Virtual Screen Discovers Novel, Fragment-Sized Inhibitors of <i>Mycobacterium tuberculosis</i> InhA. Journal of Chemical Information and Modeling, 2015, 55, 645-659.	2.5	35
726	Melanoma Resistance to Photodynamic Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 229-246.	0.1	5
727	Promiscuous 2-Aminothiazoles (PrATs): A Frequent Hitting Scaffold. Journal of Medicinal Chemistry, 2015, 58, 1205-1214.	2.9	75
728	Large Scale Meta-Analysis of Fragment-Based Screening Campaigns: Privileged Fragments and Complementary Technologies. Journal of Biomolecular Screening, 2015, 20, 588-596.	2.6	25
729	Novel Scaffold Fingerprint (SFP): Applications in Scaffold Hopping and Scaffold-Based Selection of Diverse Compounds. Journal of Chemical Information and Modeling, 2015, 55, 1-18.	2.5	26
730	Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction. Cancer Cell, 2015, 27, 240-256.	7.7	299
731	Extensive analysis of signaling pathway molecules in breast cancer: association with clinicopathological characteristics. International Journal of Clinical Oncology, 2015, 20, 490-498.	1.0	7
732	Structure based approaches for targeting non-coding RNAs with small molecules. Current Opinion in Structural Biology, 2015, 30, 79-88.	2.6	73
733	Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, 2015, , .	0.4	6
735	Combination of pan-RAF and MEK inhibitors in NRAS mutant melanoma. Molecular Cancer, 2015, 14, 27.	7.9	49
736	Ligand-Independent EPHA2 Signaling Drives the Adoption of a Targeted Therapy–Mediated Metastatic Melanoma Phenotype. Cancer Discovery, 2015, 5, 264-273.	7.7	82
737	BRAF V600E mutation in neocortical posterior temporal epileptogenic gangliogliomas. Journal of Clinical Neuroscience, 2015, 22, 1250-1253.	0.8	16
738	Addicted to AA (Acetoacetate): A Point of Convergence between Metabolism and BRAF Signaling. Molecular Cell, 2015, 59, 333-334.	4.5	4
739	Fate and Plasticity of the Epidermis in Response to Congenital Activation of BRAF. Journal of Investigative Dermatology, 2015, 135, 481-489.	0.3	1
740	Somatic V600E BRAF Mutation in Linear and Sporadic Syringocystadenoma Papilliferum. Journal of Investigative Dermatology, 2015, 135, 2536-2538.	0.3	31
741	Fragment-Based Drug Discovery. , 2015, , 161-180.		9
742	A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells*. Molecular and Cellular Proteomics, 2015, 14, 1599-1615.	2.5	94

#	Article	IF	CITATIONS
743	Titration of signalling output: insights into clinical combinations of MEK and AKT inhibitors. Annals of Oncology, 2015, 26, 1504-1510.	0.6	19
744	The distinctive molecular, pathological and clinical characteristics of <i>BRAF</i> -mutant colorectal tumors. Expert Review of Molecular Diagnostics, 2015, 15, 979-987.	1.5	14
745	Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas. Frontiers in Oncology, 2015, 5, 54.	1.3	87
746	Photoactivatable Prodrugs of Antimelanoma Agent Vemurafenib. ACS Chemical Biology, 2015, 10, 2099-2107.	1.6	52
747	KSR1 is coordinately regulated with Notch signaling and oxidative phosphorylation in thyroid cancer. Journal of Molecular Endocrinology, 2015, 54, 115-124.	1.1	9
748	How I treat Langerhans cell histiocytosis. Blood, 2015, 126, 26-35.	0.6	160
749	LINAC-based stereotactic radiosurgery to the brain with concurrent vemurafenib for melanoma metastases. Journal of Neuro-Oncology, 2015, 122, 121-126.	1.4	62
750	Regulation of RAF protein kinases in ERK signalling. Nature Reviews Molecular Cell Biology, 2015, 16, 281-298.	16.1	506
751	Performance and Characterization of Amorphous Solid Dispersions: An Overview. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 287-343.	0.2	2
752	FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences, 2015, 36, 422-439.	4.0	794
754	<i>N</i> -(3-Ethynyl-2,4-difluorophenyl)sulfonamide Derivatives as Selective Raf Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 543-547.	1.3	32
755	Phase I study of XL281 (BMS-908662), a potent oral RAF kinase inhibitor, in patients with advanced solid tumors. Investigational New Drugs, 2015, 33, 349-356.	1.2	27
756	Genotype-based clinical trials in cardiovascular disease. Nature Reviews Cardiology, 2015, 12, 475-487.	6.1	37
757	Differentiated Thyroid Cancer: Focus on Emerging Treatments for Radioactive Iodineâ€Refractory Patients. Oncologist, 2015, 20, 113-126.	1.9	57
758	Evaluation of ⁶⁸ Ga- and ¹⁷⁷ Lu-DOTA-PEG ₄ -LLP2A for VLA-4-Targeted PET Imaging and Treatment of Metastatic Melanoma. Molecular Pharmaceutics, 2015, 12, 1929-1938.	2.3	39
759	Mitigating risk in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 279-294.	21.5	131
760	Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer. Medicine (United) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

761	In silico identification of novel kinase inhibitors by targeting B-Rafv660e from natural products database. Journal of Molecular Modeling, 2015, 21, 102.	0.8	6
-----	---	-----	---

#	Article	IF	CITATIONS
762	MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nature Reviews Cancer, 2015, 15, 577-592.	12.8	461
763	Activation Status of the Pregnane X Receptor Influences Vemurafenib Availability in Humanized Mouse Models. Cancer Research, 2015, 75, 4573-4581.	0.4	23
764	Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in <i>BRAF</i> V600–Mutant Colorectal Cancer. Journal of Clinical Oncology, 2015, 33, 4023-4031.	0.8	430
765	Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Critical Reviews in Oncology/Hematology, 2015, 96, 385-398.	2.0	51
766	Drug Resistance Resulting from Kinase Dimerization Is Rationalized by Thermodynamic Factors Describing Allosteric Inhibitor Effects. Cell Reports, 2015, 12, 1939-1949.	2.9	37
767	Targeting RAS -mutant Cancers: Is ERK the Key?. Trends in Cancer, 2015, 1, 183-198.	3.8	104
768	Microfluidic co-cultures with hydrogel-based ligand trap to study paracrine signals giving rise to cancer drug resistance. Lab on A Chip, 2015, 15, 4614-4624.	3.1	23
769	Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Trends in Pharmacological Sciences, 2015, 36, 724-736.	4.0	58
770	Synergy of molecular targeted approaches and immunotherapy in melanoma: preclinical basis and clinical perspectives. Expert Opinion on Biological Therapy, 2015, 15, 1491-1500.	1.4	6
771	Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell, 2015, 28, 170-182.	7.7	120
772	Drug compound characterization by mass spectrometry imaging in cancer tissue. Archives of Pharmacal Research, 2015, 38, 1718-1727.	2.7	22
773	BGB-283, a Novel RAF Kinase and EGFR Inhibitor, Displays Potent Antitumor Activity in <i>BRAF</i> -Mutated Colorectal Cancers. Molecular Cancer Therapeutics, 2015, 14, 2187-2197.	1.9	57
774	Systematic analysis of <scp>BRAF^V </scp> ^{600E} melanomas reveals a role for <scp>JNK</scp> /câ€Jun pathway in adaptive resistance to drugâ€induced apoptosis. Molecular Systems Biology, 2015, 11, 797.	3.2	84
775	Hitting the Target in <i>BRAF</i> -Mutant Colorectal Cancer. Journal of Clinical Oncology, 2015, 33, 3990-3992.	0.8	12
776	RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526, 583-586.	13.7	322
777	Phase II Pilot Study of Vemurafenib in Patients With Metastatic <i>BRAF</i> -Mutated Colorectal Cancer. Journal of Clinical Oncology, 2015, 33, 4032-4038.	0.8	583
779	Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. Journal of Proteome Research, 2015, 14, 4179-4193.	1.8	7
780	The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Science Signaling, 2015, 8, ra82.	1.6	114

#	Article	IF	CITATIONS
781	YAP in MAPK pathway targeted therapy resistance. Cell Cycle, 2015, 14, 1765-1766.	1.3	11
782	Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers. Cancer Cell, 2015, 28, 384-398.	7.7	243
783	Combined Pan-RAF and MEK Inhibition Overcomes Multiple Resistance Mechanisms to Selective RAF Inhibitors. Molecular Cancer Therapeutics, 2015, 14, 2700-2711.	1.9	59
784	Reengineered tricyclic anti-cancer agents. Bioorganic and Medicinal Chemistry, 2015, 23, 6528-6534.	1.4	58
785	Necrólisis epidérmica tóxica por vemurafenib. Actas Dermo-sifiliográficas, 2015, 106, 682-683.	0.2	16
786	Toxic epidermal necrolysis induced by vemurafenib. Actas Dermo-sifiliográficas, 2015, 106, 682-683.	0.2	6
787	The macrophage: Switches from a passenger to a driver during anticancer therapy. Oncolmmunology, 2015, 4, e1052929.	2.1	4
788	Integrating phenotypic small-molecule profiling and human genetics: the next phase in drug discovery. Trends in Genetics, 2015, 31, 16-23.	2.9	16
789	BRAF Targets in Melanoma. Cancer Drug Discovery and Development, 2015, , .	0.2	2
790	Resistance to Photodynamic Therapy in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, ,	0.1	8
791	Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation. Bioinformatics, 2015, 31, 84-93.	1.8	5
792	Impact of Polymer Conformation on the Crystal Growth Inhibition of a Poorly Water-Soluble Drug in Aqueous Solution. Langmuir, 2015, 31, 171-179.	1.6	59
793	PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature Reviews Cancer, 2015, 15, 7-24.	12.8	1,083
794	Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nature Structural and Molecular Biology, 2015, 22, 37-43.	3.6	121
795	Synthesis, biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as BRAFV600E inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 46-54.	1.4	53
796	Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Medicinal Chemistry Letters, 2015, 6, 47-52.	1.3	14
797	B-Raf Inhibitors Induce Epithelial Differentiation in <i>BRAF</i> -Mutant Colorectal Cancer Cells. Cancer Research, 2015, 75, 216-229.	0.4	43
798	Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , .	0.2	8

#	Article	IF	Citations
799	Personalized Therapy in Patients With Anaplastic Thyroid Cancer: Targeting Genetic and Epigenetic Alterations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 35-42.	1.8	60
800	Oncogenes and Signal Transduction. , 2015, , 19-34.e3.		2
801	Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget, 2016, 7, 81926-81968.	0.8	18
802	Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. Journal of Clinical Investigation, 2016, 126, 1834-1856.	3.9	219
803	BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget, 2016, 7, 9188-9221.	0.8	59
804	Epigenetic Control in Human Normal Follicular Thyroid Cells and in Thyroid Carcinoma. , 2016, , 473-482.		0
805	Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget, 2016, 7, 75839-75853.	0.8	27
806	The Emerging Epigenetic Landscape in Melanoma. , 0, , .		0
807	Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives. Drug Design, Development and Therapy, 2016, 10, 873.	2.0	33
808	Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. ELife, 2016, 5, .	2.8	191
809	Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. OncoTargets and Therapy, 2016, 9, 1899.	1.0	44
810	Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells. Theranostics, 2016, 6, 1425-1439.	4.6	56
811	The yin–yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. ELife, 2016, 5, e12814.	2.8	34
812	The Complexity of the ERK/MAP-Kinase Pathway and the Treatment of Melanoma Skin Cancer. Frontiers in Cell and Developmental Biology, 2016, 4, 33.	1.8	84
813	ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy?. Frontiers in Cell and Developmental Biology, 2016, 4, 53.	1.8	209
814	Integrated Genomics Identifies miR-32/MCL-1 Pathway as a Critical Driver of Melanomagenesis: Implications for miR-Replacement and Combination Therapy. PLoS ONE, 2016, 11, e0165102.	1.1	20
815	Lead Discovery of Type II BRAF V600E Inhibitors Targeting the Structurally Validated DFG-Out Conformation Based upon Selected Fragments. Molecules, 2016, 21, 879.	1.7	7
816	Comparative profiles of BRAF inhibitors: the paradox index as a predictor of clinical toxicity. Oncotarget, 2016, 7, 30453-30460.	0.8	48

#	Article	IF	CITATIONS
818	Dual c-Jun <i>N</i> -terminal kinase-cyclin D1 and extracellular signal-related kinase-c-Jun disjunction in human melanoma. British Journal of Dermatology, 2016, 175, 1221-1231.	1.4	15
819	Pin1–FOXM1 inhibitors: a potential therapeutic for metastatic melanoma?. Melanoma Management, 2016, 3, 161-164.	0.1	2
820	Current treatments for advanced melanoma and introduction of a promising novel gene therapy for melanoma (Review). Oncology Reports, 2016, 36, 1779-1786.	1.2	14
821	Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system. Scientific Reports, 2016, 6, 20209.	1.6	14
822	The cutting edge of metastatic melanoma therapy. Melanoma Management, 2016, 3, 217-229.	0.1	1
823	Kinetic Models of Biochemical Signaling Networks. AAPS Advances in the Pharmaceutical Sciences Series, 2016, , 105-135.	0.2	1
825	Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations. Expert Opinion on Pharmacotherapy, 2016, 17, 1031-1038.	0.9	28
826	AMPK promotes tolerance to Ras pathway inhibition by activating autophagy. Oncogene, 2016, 35, 5295-5303.	2.6	48
827	Design and synthesis of N -(4-aminopyridin-2-yl)amides as B-Raf V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2760-2763.	1.0	7
828	Metastatic melanoma: Pathologic characterization, current treatment, and complications of therapy. Seminars in Diagnostic Pathology, 2016, 33, 204-218.	1.0	8
829	Dynamic BH3 profiling-poking cancer cells with a stick. Molecular and Cellular Oncology, 2016, 3, e1040144.	0.3	24
830	Genomically Driven Tumors and Actionability across Histologies: <i>BRAF</i> -Mutant Cancers as a Paradigm. Molecular Cancer Therapeutics, 2016, 15, 533-547.	1.9	63
831	Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting. Cell Systems, 2016, 2, 112-121.	2.9	21
832	Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines. Toxicology in Vitro, 2016, 34, 237-245.	1.1	7
833	Purinylpyridinylamino-based DFG-in/αC-helix-out B-Raf inhibitors: Applying mutant versus wild-type B-Raf selectivity indices for compound profiling. Bioorganic and Medicinal Chemistry, 2016, 24, 2215-2234.	1.4	13
834	Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib Combination Treatment for BRAF Inhibitor–Refractory Metastatic Melanoma. JAMA Oncology, 2016, 2, 1056.	3.4	41
835	A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine, 2016, 22, 472-478.	15.2	145
836	Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. Journal of Medicinal Chemistry, 2016, 59, 8189-8206.	2.9	182

#	Article	IF	CITATIONS
837	Advanced molecular dynamics simulation methods for kinase drug discovery. Future Medicinal Chemistry, 2016, 8, 545-566.	1.1	21
838	Genetics of Melanoma. , 2016, , .		3
839	Critical parameters in targeted drug development: the pharmacological audit trail. Seminars in Oncology, 2016, 43, 436-445.	0.8	64
840	Design of Potent and Druglike Nonphenolic Inhibitors for Catechol <i>O</i> -Methyltransferase Derived from a Fragment Screening Approach Targeting the <i>S</i> -Adenosyl- <scp>l</scp> -methionine Pocket. Journal of Medicinal Chemistry, 2016, 59, 10163-10175.	2.9	20
841	Discovery of a Highly Specific and Potent Panâ€ <scp>RAF</scp> Inhibitor. Bulletin of the Korean Chemical Society, 2016, 37, 1632-1637.	1.0	4
842	Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation. Molecular BioSystems, 2016, 12, 3146-3165.	2.9	25
843	Discovery of N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorganic and Medicinal Chemistry, 2016, 24, 4652-4659.	1.4	23
844	Molecular diagnostics and anaplastic thyroid carcinoma: the time has come to harvest the high hanging fruit. International Journal of Endocrine Oncology, 2016, 3, 221-233.	0.4	15
845	Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nature Chemical Biology, 2016, 12, 795-801.	3.9	15
846	Protein Tyrosine Phosphatases in Cancer. , 2016, , .		4
847	Dual-Specificity Map Kinase (MAPK) Phosphatases (MKPs) and Their Involvement in Cancer. , 2016, , 201-231.		1
848	An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell, 2016, 30, 485-498.	7.7	130
849	Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. International Journal of Cancer, 2016, 139, 1195-1201.	2.3	41
850	Translating cancer genomes and transcriptomes for precision oncology. Ca-A Cancer Journal for Clinicians, 2016, 66, 75-88.	157.7	133
852	A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature, 2016, 537, 422-426.	13.7	161
853	Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth. Journal of Biological Chemistry, 2016, 291, 21869-21879.	1.6	50
854	BRAF and MEK inhibitors in pediatric glioma: new therapeutic strategies, new toxicities. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 1397-1405.	1.5	17
855	Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. Nature Communications, 2016, 7, 12336.	5.8	43

#	Article	IF	CITATIONS
856	The BRAF Inhibitor Vemurafenib Activates Mitochondrial Metabolism and Inhibits Hyperpolarized Pyruvate–Lactate Exchange in BRAF-Mutant Human Melanoma Cells. Molecular Cancer Therapeutics, 2016, 15, 2987-2999.	1.9	43
857	Development of a Method for Converting a TAK1 Type I Inhibitor into a Type II or c-Helix-Out Inhibitor by Structure-Based Drug Design (SBDD). Chemical and Pharmaceutical Bulletin, 2016, 64, 1622-1629.	0.6	5
858	Biologic and Clinical Perspectives on Thyroid Cancer. New England Journal of Medicine, 2016, 375, 1054-1067.	13.9	660
859	Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 627-642.	1.5	102
860	ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Molecular Cancer Research, 2016, 14, 1009-1018.	1.5	36
861	Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with <i>BRAF</i> V600E Mutation. Cancer Discovery, 2016, 6, 1352-1365.	7.7	192
862	Design and synthesis of a new series of highly potent RAF kinase-inhibiting triarylpyrazole derivatives possessing antiproliferative activity against melanoma cells. Future Medicinal Chemistry, 2016, 8, 2197-2211.	1.1	6
863	Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase <i>BRAF</i> -mutant lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13456-13461.	3.3	65
864	Cancer Drug Discovery. , 2016, , .		6
865	The combination of vemurafenib and cobimetinib in advanced melanoma. Expert Opinion on Orphan Drugs, 2016, 4, 1105-1111.	0.5	3
866	Drug Combinations as the New Standard for Melanoma Treatment. Current Treatment Options in Oncology, 2016, 17, 61.	1.3	16
867	Novel rapid liquid chromatography tandem masspectrometry method for vemurafenib and metabolites in human plasma, including metabolite concentrations at steady state. Biomedical Chromatography, 2016, 30, 1234-1239.	0.8	6
868	Regioselective routes to orthogonally-substituted aromatic MIDA boronates. Organic and Biomolecular Chemistry, 2016, 14, 6751-6756.	1.5	18
869	The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opinion on Drug Discovery, 2016, 11, 907-916.	2.5	111
870	Negative feedback regulation of the ERK1/2 MAPK pathway. Cellular and Molecular Life Sciences, 2016, 73, 4397-4413.	2.4	400
871	Proteomics approaches to understanding mitogen-activated protein kinase inhibitor resistance in melanoma. Current Opinion in Oncology, 2016, 28, 172-179.	1.1	10
872	The Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitors. Molecular and Cellular Oncology, 2016, 3, e1021441.	0.3	29
873	Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer, 2016, 16, 99-109.	12.8	596

#	Article	IF	CITATIONS
874	The kinome 'at large' in cancer. Nature Reviews Cancer, 2016, 16, 83-98.	12.8	226
875	Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnology Advances, 2016, 34, 565-577.	6.0	39
876	B-Raf Inhibition in the Clinic: Present and Future. Annual Review of Medicine, 2016, 67, 29-43.	5.0	65
877	Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34, 184-191.	9.4	3,168
878	Drug–diagnostic co-development: challenges and issues. Expert Review of Molecular Diagnostics, 2016, 16, 187-204.	1.5	4
879	The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annual Review of Pharmacology and Toxicology, 2016, 56, 141-161.	4.2	213
880	Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib. ACS Chemical Biology, 2016, 11, 1595-1602.	1.6	19
881	Pharmacogenetics and pharmacogenomics as tools in cancer therapy. Drug Metabolism and Personalized Therapy, 2016, 31, 25-34.	0.3	23
882	RanBP3 Regulates Melanoma Cell Proliferation via Selective Control of Nuclear Export. Journal of Investigative Dermatology, 2016, 136, 264-274.	0.3	6
883	Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir–Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation. Molecular Pharmaceutics, 2016, 13, 1123-1136.	2.3	73
884	Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors. ACS Chemical Biology, 2016, 11, 1245-1254.	1.6	82
885	Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biology and Therapy, 2016, 17, 526-542.	1.5	9
886	Surgical Management of Melanoma. Cancer Treatment and Research, 2016, 167, 149-179.	0.2	14
887	Braf V600E mutation in melanoma: translational current scenario. Clinical and Translational Oncology, 2016, 18, 863-871.	1.2	13
888	MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity, 2016, 44, 609-621.	6.6	566
889	Relationship of Focally Amplified Long Noncoding on Chromosome 1 (FAL1) lncRNA with E2F Transcription Factors in Thyroid Cancer. Medicine (United States), 2016, 95, e2592.	0.4	49
890	Design and synthesis of new imidazo[1,2- a]pyridine and imidazo[1,2- a]pyrazine derivatives with antiproliferative activity against melanoma cells. European Journal of Medicinal Chemistry, 2016, 108, 623-643.	2.6	30
891	Discovery of EBI-907: A highly potent and orally active B-Raf V600E inhibitor for the treatment of melanoma and associated cancers. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 819-823.	1.0	10

ARTICLE IF CITATIONS Oncogenic <i>BRAF</i> Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF 892 7.7 134 Dimer Inhibitor LY3009120. Cancer Discovery, 2016, 6, 300-315. Targeted Therapy for Melanoma. Cancer Treatment and Research, 2016, 167, 251-262. 0.2 Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in 894 3.2 79 BRAFV600E melanoma cells. Cancer Letters, 2016, 370, 332-344. Classification of small molecule protein kinase inhibitors based upon the structures of their 3.1 570 drug-enzyme complexes. Pharmacological Research, 2016, 103, 26-48. Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patientsâ€"Report of a Phase I/IIa Clinical Trial. Clinical Cancer Research, 2016, 22, 896 3.2 74 1330-1340. Feedback regulation in cell signalling: Lessons for cancer therapeutics. Seminars in Cell and Developmental Biology, 2016, 50, 85-94. 2.3 Synthesis, antitumor activity and molecular docking study of some novel 3-benzyl-4(3H)quinazolinone 898 2.5 58 analogues. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 78-89. Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib. 2.6 Oncogene, 2017, 36, 423-428. 900 Principles of Kinase Inhibitor Therapy for Solid Tumors. Annals of Surgery, 2017, 265, 311-319. 2.1 10 Concurrent <i>TERT</i> promoter and <i>BRAF</i> V600E mutation in epithelioid glioblastoma and 38 concomitant lowâ€grade astrocytoma. Neuropathology, 2017, 37, 58-63. Micro<scp>RNA</scp>â€125a promotes resistance to <scp>BRAF</scp> inhibitors through suppression of 902 1.5 34 the intrinsic apoptotic pathway. Pigment Cell and Melanoma Research, 2017, 30, 328-338. BRAF inhibitor-associated cutaneous squamous cell carcinoma: new mechanistic insight, emerging evidence for viral involvement and perspectives on clinical management. British Journal of 1.4 29 Dermatology, 2017, 177, 914-923. Endogenous repair and development inspired therapy of neurodegeneration in progressive multiple 904 1.4 5 sclerosis. Expert Review of Neurotherapeutics, 2017, 17, 611-629. Tumor Microenvironment for Melanoma Cells., 2017, , 357-368. Context-Dependent Effects of Amplified MAPK Signaling during Lung Adenocarcinoma Initiation and 906 2.9 33 Progression. Cell Reports, 2017, 18, 1958-1969. Next-Generation Sequencing to Guide Treatment of Advanced Melanoma. American Journal of Clinical Dermatology, 2017, 18, 303-310. 908 Precision medicine driven by cancer systems biology. Cancer and Metastasis Reviews, 2017, 36, 91-108. 2.7 38 BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of 909 2.1 Kidney Diseases, 2017, 70, 145-150.

#	Article	IF	CITATIONS
910	Implementing Genome-Driven Oncology. Cell, 2017, 168, 584-599.	13.5	405
911	In vitro long-term treatment with MAPK inhibitors induces melanoma cells with resistance plasticity to inhibitors while retaining sensitivity to CD8 T cells. Oncology Reports, 2017, 37, 1367-1378.	1.2	5
912	Clinical Pharmacokinetics of Vemurafenib. Clinical Pharmacokinetics, 2017, 56, 1033-1043.	1.6	41
913	<i>>O</i> ² -(6-Oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolates: a new class of nitric oxide donors activatable by GSH/GSTÏ€ with both anti-proliferative and anti-metastatic activities against melanoma. Chemical Communications, 2017, 53, 5059-5062.	2.2	13
914	Precision medicine and pharmacogenetics: what does oncology have that addiction medicine does not?. Addiction, 2017, 112, 2086-2094.	1.7	36
915	Docking-based structural splicing and reassembly strategy to develop novel deazapurine derivatives as potent B-RafV600E inhibitors. Acta Pharmacologica Sinica, 2017, 38, 1059-1068.	2.8	4
916	The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 307-318.	2.2	26
917	RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell, 2017, 31, 685-696.e6.	7.7	113
919	MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Current Topics in Microbiology and Immunology, 2017, 407, 117-151.	0.7	25
920	Design, synthesis, and identification of a novel napthalamide-isoselenocyanate compound NISC-6 as a dual Topoisomerase-IIα and Akt pathway inhibitor, and evaluation of its anti-melanoma activity. European Journal of Medicinal Chemistry, 2017, 135, 282-295.	2.6	17
921	Bumps in the Road: Panniculitis in Children and Adolescents Treated with Vemurafenib. Pediatric Dermatology, 2017, 34, 337-341.	0.5	11
922	B-Raf. , 2017, , 673-681.		0
923	Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications Using the NanoString nCounter System. Journal of Neuropathology and Experimental Neurology, 2017, 76, 562-570.	0.9	39
924	Modulation of Plasma Metabolite Biomarkers of the MAPK Pathway with MEK Inhibitor RO4987655: Pharmacodynamic and Predictive Potential in Metastatic Melanoma. Molecular Cancer Therapeutics, 2017, 16, 2315-2323.	1.9	8
925	N-Ras. , 2017, , 795-803.		0
926	Targeting of super-enhancers and mutant BRAF can suppress growth of BRAF -mutant colon cancer cells via repression of MAPK signaling pathway. Cancer Letters, 2017, 402, 100-109.	3.2	28
927	Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations. Molecular Carcinogenesis, 2017, 56, 1965-1976.	1.3	33
928	Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nature Reviews Clinical Oncology, 2017, 14, 463-482.	12.5	945

#	ARTICLE Computational investigation on inhibition mechanism of BRAFV600E by Vemurafenib (PLX4032) and its	IF	Citations
929 930	analogue PLX4720. Medicinal Chemistry Research, 2017, 26, 390-396. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nature	5.8	65
931	Intercellular Resistance to BRAF Inhibition Can Be Mediated by Extracellular Vesicle–Associated PDGFRβ. Neoplasia, 2017, 19, 932-940.	2.3	50
932	A precision therapy against cancers driven by <i>KIT/PDGFRA</i> mutations. Science Translational Medicine, 2017, 9, .	5.8	157
933	New perspectives for targeting RAF kinase in human cancer. Nature Reviews Cancer, 2017, 17, 676-691.	12.8	285
934	Bayesian, Utility-Based, Adaptive Enrichment Designs with Frequentist Error Control. , 2017, , 105-123.		0
935	Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH. Cancer Letters, 2017, 408, 43-54.	3.2	36
936	Functional precision cancer medicine—moving beyond pure genomics. Nature Medicine, 2017, 23, 1028-1035.	15.2	252
937	Discriminatory analysis based molecular docking study for in silico identification of epigallocatechin-3-gallate (EGCG) derivatives as B-Raf ^{V600E} inhibitors. RSC Advances, 2017, 7, 44820-44826.	1.7	8
938	BRAF Inhibitors Amplify the Proapoptotic Activity of MEK Inhibitors by Inducing ER Stress in NRAS-Mutant Melanoma. Clinical Cancer Research, 2017, 23, 6203-6214.	3.2	36
939	Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nature Reviews Endocrinology, 2017, 13, 644-660.	4.3	324
941	A firstâ€inâ€human phase I, multicenter, openâ€label, doseâ€escalation study of the oral RAF/VEGFRâ€2 inhibitor (RAF265) in locally advanced or metastatic melanoma independent from <scp>BRAF</scp> mutation status. Cancer Medicine, 2017, 6, 1904-1914.	1.3	24
942	Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells. Clinical and Translational Oncology, 2017, 19, 1358-1374.	1.2	11
943	An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nature Medicine, 2017, 23, 929-937.	15.2	146
944	Liquid Biopsy in Cancer Patients. Current Clinical Pathology, 2017, , .	0.0	6
945	TTK Inhibitors as a Targeted Therapy for <i>CTNNB1</i> (β -catenin) Mutant Cancers. Molecular Cancer Therapeutics, 2017, 16, 2609-2617.	1.9	38
946	Integrating docking scores and key interaction profiles to improve the accuracy of molecular docking: towards novel B-Raf ^{V600E} inhibitors. MedChemComm, 2017, 8, 1835-1844.	3.5	7
947	Integrating Models to Quantify Environment-Mediated Drug Resistance. Cancer Research, 2017, 77, 5409-5418.	0.4	27

ARTICLE IF CITATIONS # Target and Agent Prioritization for the Children's Oncology Groupâ€"National Cancer Institute 948 3.0 85 Pediatric MATCH Trial. Journal of the National Cancer Institute, 2017, 109, . Liquid Biopsies in Malignant Melanoma: From Bench to Bedside. Current Clinical Pathology, 2017, , 949 161-193. Live and let die: insights into pseudoenzyme mechanisms from structure. Current Opinion in 951 2.6 91 Structural Biology, 2017, 47, 95-104. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene, 2017, 36, 6348-6358. Screening of pharmacogenetic variants associated with drug sensitivity in patients with papillary thyroid carcinoma using next generation sequencing. Biotechnology and Biotechnological 953 0.5 1 Equipment, 2017, , 1-5. Cancer Biology of Molecular Imaging., 2017, , 3-34. <scp>VEGF</scp> blockade enhances the antitumor effect of <scp> BRAF ^V </scp> 956 3.3 36 ^{600E} inhibition. EMBO Molecular Medicine, 2017, 9, 219-237. The new paradigm of systemic therapies for metastatic melanoma. Journal of the American Academy of 0.6 34 Dermatology, 2017, 77, 356-368. Discovery of a novel pan-RAF inhibitor with potent anti-tumor activity in preclinical models of BRAF 958 2.0 10 V600E mutant cancer. Life Sciences, 2017, 183, 37-44. Clinical responses to ERK inhibition in BRAF V600E-mutant colorectal cancer predicted using a 1.4 computational model. Npj Systems Biology and Applications, 2017, 3, 14. Combined BRAFV600E and MEK blockade for BRAFV600E-mutant gliomas. Journal of Neuro-Oncology, 960 29 1.4 2017, 131, 495-505. Targeting Oncoproteins for Molecular Cancer Therapy., 2017, , 727-756. 961 Developments in targeted therapy in melanoma. European Journal of Surgical Oncology, 2017, 43, 962 0.5 45 581-593. Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib. Journal of Pharmaceutical Sciences, 2017, 106, 100-110. 1.6 58 Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Medicinal 964 5.092 Research Reviews, 2017, 37, 98-148. Metastasis: an early event in cancer progression. Journal of Cancer Research and Clinical Oncology, 1.2 2017, 143, 745-757. A computationally engineered RAS rheostat reveals RASâ€"ERK signaling dynamics. Nature Chemical 966 3.9 21 Biology, 2017, 13, 119-126. Pharmacological Inhibition of Myocardin-related Transcription Factor Pathway Blocks Lung Metastases of RhoC-Overexpressing Melanoma. Molecular Cancer Therapeutics, 2017, 16, 193-204.

#	Article	IF	CITATIONS
968	Extracellular Signal-Regulated Kinase (ERK1 and ERK2) Inhibitors. , 2017, , 233-249.		2
969	Carnosic acid, an inducer of NAD(P)H quinone oxidoreductase 1, enhances the cytotoxicity of β‑lapachone in melanoma cell lines. Oncology Letters, 2017, 15, 2393-2400.	0.8	10
970	Tissue-Agnostic Drug Development. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 222-230.	1.8	25
971	Overcoming resistance to BRAF inhibitors. Annals of Translational Medicine, 2017, 5, 387-387.	0.7	109
972	Design and Development of Fluorescent Vemurafenib Analogs for <i>In Vivo</i> Imaging. Theranostics, 2017, 7, 1257-1265.	4.6	16
973	Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Medical Sciences (Basel, Switzerland), 2017, 5, 28.	1.3	22
974	EDITORIAL: Advances in Developing Versatile Tools for the Discovery of Novel Therapeutics. Current Topics in Medicinal Chemistry, 2017, 17, 2233-2234.	1.0	1
975	Bisarylureas Based on 1H-Pyrazolo[3,4-d]pyrimidine Scaffold as Novel Pan-RAF Inhibitors with Potent Anti-Proliferative Activities: Structure-Based Design, Synthesis, Biological Evaluation and Molecular Modelling Studies. Molecules, 2017, 22, 542.	1.7	7
976	MTLD, a Database of Multiple Target Ligands, the Updated Version. Molecules, 2017, 22, 1375.	1.7	7
978	Vemurafenib Limits Influenza A Virus Propagation by Targeting Multiple Signaling Pathways. Frontiers in Microbiology, 2017, 8, 2426.	1.5	23
979	The Cancer Stem Cell Niche. , 2017, , 167-184.		2
980	Therapeutic Inhibitors against Mutated BRAF and MEK for the Treatment of Metastatic Melanoma. Chonnam Medical Journal, 2017, 53, 173.	0.5	15
981	Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics, 2017, 7, 2111-2133.	4.6	12
982	Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLoS ONE, 2017, 12, e0185862.	1.1	67
983	Sarcoidosis is not associated with <i>BRAF</i> V600E mutation. Cogent Medicine, 2017, 4, 1372036.	0.7	1
984	The combination of checkpoint immunotherapy and targeted therapy in cancer. Annals of Translational Medicine, 2017, 5, 388-388.	0.7	54
985	Metastatic Hepatic Angiosarcoma and BRAF Inhibitor Therapy. Journal of Clinical Epigenetics, 2017, 03, .	0.3	0
986	Non-V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combination of Trametinib and Dabrafenib. Oncotarget, 2017, 8, 60094-60108.	0.8	85

#	Article	IF	CITATIONS
987	Fragment-Based Drug Design: Strategic Advances and Lessons Learned. , 2017, , 212-232.		9
988	ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. , 2018, 187, 45-60.		123
989	Current Insights of BRAF Inhibitors in Cancer. Journal of Medicinal Chemistry, 2018, 61, 5775-5793.	2.9	76
990	PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death and Disease, 2018, 9, 307.	2.7	37
991	Vogt–Koyanagi–Harada diseaseâ€like uveitis induced by vemurafenib for metastatic cutaneous malignant melanoma. Journal of Dermatology, 2018, 45, e159-e160.	0.6	16
992	A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2315-2328.	1.8	18
993	Complete Metabolic Response of Advanced Melanoma to Vemurafenib Assessed with FDG-PET-CT at 85 Hours. Clinical Nuclear Medicine, 2018, 43, 333-334.	0.7	1
994	The Role of Autophagy in the Resistance to BRAF Inhibition in BRAF-Mutated Melanoma. Targeted Oncology, 2018, 13, 437-446.	1.7	27
995	Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 31² and F-box and WD repeat domain-containing 7. Oncogene, 2018, 37, 3715-3728.	2.6	33
996	Trailblazing Precision Oncology for Rare Tumor Subtypes. Oncologist, 2018, 23, 143-144.	1.9	0
997	Effects of rigidity on the selectivity of protein kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 519-528.	2.6	11
998	Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nature Communications, 2018, 9, 433.	5.8	23
999	Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infectious Diseases, 2018, 4, 431-444.	1.8	50
1000	Challenging Standard-of-Care Paradigms in the Precision Oncology Era. Trends in Cancer, 2018, 4, 101-109.	3.8	56
1001	Potential Molecular Targets in the Treatment of Lung Cancer Using siRNA Technology. Cancer Investigation, 2018, 36, 37-58.	0.6	15
1002	Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2018, 19, 181-193.	5.1	233
1003	Binding-Site Compatible Fragment Growing Applied to the Design of β ₂ -Adrenergic Receptor Ligands. Journal of Medicinal Chemistry, 2018, 61, 1118-1129.	2.9	39
1004	Targeting the Raf kinases in human cancer: the Raf dimer dilemma. British Journal of Cancer, 2018, 118, 3-8.	2.9	98

#	Article	IF	Citations
1005	BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene, 2018, 37, 1576-1593.	2.6	37
1006	Epidermal growth factor receptor and ECFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene, 2018, 37, 1561-1575.	2.6	383
1007	A modified gene trap approach for improved high-throughput cancer drug discovery. Oncogene, 2018, 37, 4226-4238.	2.6	5
1008	<i>N</i> -(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cycloprop (TAK632) Promotes Inhibition of BRAF through the Induction of Inhibited Dimers. Journal of Medicinal Chemistry, 2018, 61, 5034-5046.	anecarbox 2.9	amide 7
1009	BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer Treatment Reviews, 2018, 66, 82-94.	3.4	112
1010	Tyrosine kinase inhibition effects of novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorganic Chemistry, 2018, 78, 312-323.	2.0	41
1011	Petri Net Siphon Analysis and Graph Theoretic Measures for Identifying Combination Therapies in Cancer. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 231-243.	1.9	9
1012	The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. Journal of Cellular Physiology, 2018, 233, 2162-2169.	2.0	49
1013	Genetic study of the <i><scp>BRAF</scp></i> gene reveals new variants and high frequency of the V600E mutation among Iranian ameloblastoma patients. Journal of Oral Pathology and Medicine, 2018, 47, 86-90.	1.4	23
1014	The safety and efficacy of dabrafenib and trametinib for the treatment of melanoma. Expert Opinion on Drug Safety, 2018, 17, 73-87.	1.0	32
1015	RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene, 2018, 37, 821-832.	2.6	55
1016	Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. Advances in Protein Chemistry and Structural Biology, 2018, 111, 1-59.	1.0	14
1017	A guanine derivative as a new MEK inhibitor produced by Streptomyces sp. MK63-43F2. Journal of Antibiotics, 2018, 71, 135-138.	1.0	5
1018	Safety, tolerability, and pharmacokinetic profile of dabrafenib in Japanese patients with BRAF V600 mutation-positive solid tumors: a phase 1 study. Investigational New Drugs, 2018, 36, 259-268.	1.2	8
1019	Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): An update of recent medicinal chemistry efforts. European Journal of Medicinal Chemistry, 2018, 143, 449-463.	2.6	46
1020	What is the potential of nanolock– and nanocross–nanopore technology in cancer diagnosis?. Expert Review of Molecular Diagnostics, 2018, 18, 113-117.	1.5	4
1021	In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MedChemComm, 2018, 9, 44-66.	3.5	17
1022	miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Research, 2018, 78, 1017-1030.	0.4	140

#	Article	IF	CITATIONS
1023	Model based analysis of the heterogeneity in the tumour size dynamics differentiates vemurafenib, dabrafenib and trametinib in metastatic melanoma. Cancer Chemotherapy and Pharmacology, 2018, 81, 325-332.	1.1	11
1024	Design and synthesis of novel thiobarbituric acid derivatives targeting both wild-type and BRAF-mutated melanoma cells. European Journal of Medicinal Chemistry, 2018, 143, 1919-1930.	2.6	21
1025	Dabrafenib inhibits the growth of <i>BRAFâ€WT</i> cancers through CDK16 and NEK9 inhibition. Molecular Oncology, 2018, 12, 74-88.	2.1	30
1026	A patient with malignant pleural mesothelioma carrying BRAF V600E mutation responding to vemurafenib. Lung Cancer, 2018, 116, 96-98.	0.9	1
1027	Ceritinib Enhances the Efficacy of Trametinib in <i>BRAF/NRAS</i> -Wild-Type Melanoma Cell Lines. Molecular Cancer Therapeutics, 2018, 17, 73-83.	1.9	18
1028	Response and Resistance to Paradox-Breaking BRAF Inhibitor in Melanomas <i>In Vivo</i> and <i>Ex Vivo</i> . Molecular Cancer Therapeutics, 2018, 17, 84-95.	1.9	22
1029	Molecular insight into mutation-induced conformational change in metastasic bowel cancer BRAF kinase domain and its implications for selective inhibitor design. Journal of Molecular Graphics and Modelling, 2018, 79, 59-64.	1.3	1
1030	Balancing RAF, MEK, and EGFR Inhibitor Doses to Achieve Clinical Responses and Modulate Toxicity in <i>BRAF</i> V600E Colorectal Cancer. JCO Precision Oncology, 2018, 2018, 1-4.	1.5	5
1031	Emerging Strategies in Systemic Therapy for the Treatment of Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 751-758.	1.8	30
1032	Single-cell analysis of tumors: Creating new value for molecular biomarker discovery of cancer stem cells and tumor-infiltrating immune cells. World Journal of Stem Cells, 2018, 10, 160-171.	1.3	12
1033	Elevated Levels of <i>BRAF^{V600}</i> Mutant Circulating Tumor DNA and Circulating Hepatocyte Growth Factor Are Associated With Poor Prognosis in Patients With Metastatic Melanoma. JCO Precision Oncology, 2018, 2, 1-17.	1.5	3
1034	Targeting oncogenic Ras by the <i>Clostridium perfringens</i> toxin TpeL. Oncotarget, 2018, 9, 16489-16500.	0.8	9
1035	Tumour-targeting bacteria engineered to fight cancer. Nature Reviews Cancer, 2018, 18, 727-743.	12.8	439
1036	Anorectal mucosal melanoma. Oncotarget, 2018, 9, 8785-8800.	0.8	68
1037	Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: design, development, and potential place in therapy. OncoTargets and Therapy, 2018, Volume 11, 9081-9089.	1.0	41
1038	Shankâ€ʿassociated RH domainâ€ʿinteracting protein expression is upregulated in entodermal and mesodermal cancer or downregulated in ectodermal malignancy. Oncology Letters, 2018, 16, 7180-7188.	0.8	2
1039	Preparation, optimisation, and in vitro–in vivo evaluation of febuxostat ternary solid dispersion. Journal of Microencapsulation, 2018, 35, 454-466.	1.2	19
1040	Therapeutic strategies to target RAS-mutant cancers. Nature Reviews Clinical Oncology, 2018, 15, 709-720.	12.5	274

#	άρτις ι ε	IF	CITATIONS
" 1041	Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. OncoTargets and Therapy, 2018, Volume 11, 7095-7107.	1.0	187
1042	Ubiquitination and adaptive responses to BRAF inhibitors in Melanoma. Molecular and Cellular Oncology, 2018, 5, e1497862.	0.3	9
1043	Targeted Therapy in Advanced Melanoma. , 2018, , 1-20.		0
1044	8 Surgical Implications of Systemic Therapy for Skin Cancer. , 2018, , .		Ο
1045	Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncology, The, 2018, 19, 1315-1327.	5.1	469
1046	S100A4 Knockout Sensitizes Anaplastic Thyroid Carcinoma Cells Harboring BRAFV600E/Mt to Vemurafenib. Cellular Physiology and Biochemistry, 2018, 49, 1184-1203.	1.1	18
1047	Combination therapy of tumor-targeting Salmonella typhimurium A1-R and oral recombinant methioninase regresses a BRAF-V600E-negative melanoma. Biochemical and Biophysical Research Communications, 2018, 503, 3086-3092.	1.0	27
1048	Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science, 2018, 361, .	6.0	118
1049	Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR-2 dual inhibitors. European Journal of Medicinal Chemistry, 2018, 155, 210-228.	2.6	32
1050	Systems Pharmacology-Based Approach of Connecting Disease Genes in Genome-Wide Association Studies with Traditional Chinese Medicine. International Journal of Genomics, 2018, 2018, 1-11.	0.8	7
1051	Generalizability of clinical trials of advanced melanoma in the real-world, population-based setting. Medical Oncology, 2018, 35, 110.	1.2	6
1052	Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacological Research, 2018, 134, 166-178.	3.1	8
1053	The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Oncogene, 2018, 37, 5719-5734.	2.6	39
1054	Modelling signalling networks from perturbation data. Bioinformatics, 2018, 34, 4079-4086.	1.8	25
1055	Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways. Frontiers in Physiology, 2018, 9, 550.	1.3	3
1056	Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAFV600E-Specific Inhibitor). Cancers, 2018, 10, 157.	1.7	39
1057	Integrative omics analyses broaden treatment targets in human cancer. Genome Medicine, 2018, 10, 60.	3.6	17
1058	Unusually long-term responses to vemurafenib in BRAF V600E mutated colon and thyroid cancers followed by the development of rare RAS activating mutations. Cancer Biology and Therapy, 2018, 19, 871-874.	1.5	18

#	Article	IF	CITATIONS
1059	Vemurafenib. Recent Results in Cancer Research, 2018, 211, 77-89.	1.8	52
1060	BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy. International Journal of Molecular Sciences, 2018, 19, 289.	1.8	16
1061	Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. International Journal of Molecular Sciences, 2018, 19, 799.	1.8	33
1062	Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer. Molecules, 2018, 23, 39.	1.7	0
1063	Mechanism of BRAF Activation through Biochemical Characterization of the Recombinant Full‣ength Protein. ChemBioChem, 2018, 19, 1988-1997.	1.3	32
1064	SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nature Communications, 2018, 9, 3440.	5.8	80
1065	Protein–Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends in Cancer, 2018, 4, 616-633.	3.8	44
1066	Development of small-molecule therapeutics and strategies for targeting RAF kinase in BRAF-mutant colorectal cancer. Cancer Management and Research, 2018, Volume 10, 2289-2301.	0.9	24
1067	Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. Journal of Experimental Medicine, 2018, 215, 1913-1928.	4.2	41
1068	Characterization and Molecular Docking Study of New 4-Acetamidoalkyl Pyrazoles As B-Raf /Cox-2 Inhibitors. Journal of Structural Chemistry, 2018, 59, 335-343.	0.3	0
1069	Overcoming Resistance to Targeted Anticancer Therapies through Small-Molecule-Mediated MEK Degradation. Cell Chemical Biology, 2018, 25, 996-1005.e4.	2.5	18
1070	Molecular modeling, dynamics simulations, and binding efficiency of berberine derivatives: A new group of RAF inhibitors for cancer treatment. PLoS ONE, 2018, 13, e0193941.	1.1	21
1071	Enhancement of in vitro dissolution and in vivo performance/oral absorption of FEB-poloxamer-TPCS solid dispersion. Journal of Drug Delivery Science and Technology, 2018, 46, 408-415.	1.4	4
1072	A Secondary Mutation in <i>BRAF</i> Confers Resistance to RAF Inhibition in a <i>BRAF</i> V600E-Mutant Brain Tumor. Cancer Discovery, 2018, 8, 1130-1141.	7.7	56
1073	Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature, 2018, 558, 605-609.	13.7	177
1074	Small Molecule Drug Design. , 2019, , 741-760.		10
1075	Identifying "Many-to-Many―Relationships Between Gene-Expression Data and Drug-Response Data Via Sparse Binary Matching. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	1.9	3
1076	Synthesis and In Vitro Biological Evaluation of New Pyrido[2,3―b]pyrazinoneâ€Based Cytotoxic Agents and Molecular Docking as BRAF Inhibitors. ChemistrySelect, 2019, 4, 8882-8885.	0.7	3

#	Article	IF	CITATIONS
1077	How Size Matters: Diversity for Fragment Library Design. Molecules, 2019, 24, 2838.	1.7	21
1078	Targeted Therapy in Advanced Melanoma. , 2019, , 667-686.		0
1079	Melanoma Brain Metastasis: Insights, Progress, Challenges, and Opportunities. , 2019, , 535-555.		0
1080	Upregulation of S100A9 contributes to the acquired resistance to BRAF inhibitors. Genes and Genomics, 2019, 41, 1273-1280.	0.5	5
1081	Adaptive Responses as Mechanisms of Resistance to BRAF Inhibitors in Melanoma. Cancers, 2019, 11, 1176.	1.7	20
1082	Adverse events associated with encorafenib plus binimetinib in the COLUMBUS study: incidence, courseÂand management. European Journal of Cancer, 2019, 119, 97-106.	1.3	75
1083	Progress towards molecular-based management of childhood Langerhans cell histiocytosis. Archives De Pediatrie, 2019, 26, 301-307.	0.4	24
1084	1D NMR WaterLOCSY as an efficient method for fragment-based lead discovery. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1218-1225.	2.5	31
1085	5-FU preferably induces apoptosis in BRAF V600E colorectal cancer cells via downregulation of Bcl-xL. Molecular and Cellular Biochemistry, 2019, 461, 151-158.	1.4	4
1086	Computer-aided design and synthesis of 3-carbonyl-5-phenyl-1H-pyrazole as highly selective and potent BRAFV600E and CRAF inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1314-1320.	2.5	11
1087	KSRP modulates melanoma growth and efficacy of vemurafenib. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 759-770.	0.9	8
1088	Clonal Reconstruction of Thyroid Cancer: An Essential Strategy for Preventing Resistance to Ultra-Precision Therapy. Frontiers in Endocrinology, 2019, 10, 468.	1.5	5
1089	Precision medicine and companion diagnostics in drug development. , 2019, , 75-96.		0
1090	Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. EBioMedicine, 2019, 48, 178-190.	2.7	66
1091	A novel anti-melanoma SRC-family kinase inhibitor. Oncotarget, 2019, 10, 2237-2251.	0.8	13
1092	Development of combination therapies to maximize the impact of KRAS-G12C inhibitors in lung cancer. Science Translational Medicine, 2019, 11, .	5.8	150
1093	Pharmacogenetics in the clinical analysis laboratory: clinical practice, research, and drug development pipeline. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 751-765.	1.5	0
1094	Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers, 2019, 11, 1480.	1.7	31

#	Article	IF	CITATIONS
1095	Spatio-Genetic and phenotypic modelling elucidates resistance and re-sensitisation to treatment in heterogeneous melanoma. Journal of Theoretical Biology, 2019, 466, 84-105.	0.8	12
1096	Mitochondrial complex I inhibitor deguelin induces metabolic reprogramming and sensitizes vemurafenibâ€resistant <i>BRAF</i> ^{<i>V600E</i>} mutation bearing metastatic melanoma cells. Molecular Carcinogenesis, 2019, 58, 1680-1690.	1.3	16
1097	SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13330-13339.	3.3	33
1098	Spirocycles as Rigidified sp ³ -Rich Scaffolds for a Fragment Collection. Organic Letters, 2019, 21, 4600-4604.	2.4	35
1099	Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. International Journal of Molecular Sciences, 2019, 20, 2530.	1.8	47
1100	Rare BRAF mutations in pancreatic neuroendocrine tumors may predict response to RAF and MEK inhibition. PLoS ONE, 2019, 14, e0217399.	1.1	12
1101	Biochemical Characterization of Full‣ength Oncogenic BRAF ^{V600E} together with Molecular Dynamics Simulations Provide Insight into the Activation and Inhibition Mechanisms of RAF Kinases. ChemBioChem, 2019, 20, 2850-2861.	1.3	7
1102	Development of Allosteric BRAF Peptide Inhibitors Targeting the Dimer Interface of BRAF. ACS Chemical Biology, 2019, 14, 1471-1480.	1.6	34
1103	Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Medicinal Chemistry Letters, 2019, 10, 1074-1080.	1.3	10
1104	SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nature Communications, 2019, 10, 2532.	5.8	53
1105	Targeting ERK beyond the boundaries of the kinase active site in melanoma. Molecular Carcinogenesis, 2019, 58, 1551-1570.	1.3	26
1106	Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorganic and Medicinal Chemistry, 2019, 27, 2893-2904.	1.4	16
1107	Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biological Psychiatry, 2019, 86, 523-535.	0.7	32
1108	Ranking Hits From Saturation Transfer Difference Nuclear Magnetic Resonance–Based Fragment Screening. Frontiers in Chemistry, 2019, 7, 215.	1.8	11
1109	Systematic Profiling and Evaluation of Structure-based Kinase–Inhibitor Interactome in Cervical Cancer by Integrating In Silico Analyses and In Vitro Assays at Molecular and Cellular Levels. Computational Biology and Chemistry, 2019, 80, 324-332.	1.1	5
1110	DPS-2: A Novel Dual MEK/ERK and PI3K/AKT Pathway Inhibitor with Powerful Ex Vivo and In Vivo Anticancer Properties. Translational Oncology, 2019, 12, 932-950.	1.7	13
1111	Identifying the ErbB/MAPK Signaling Cascade as a Therapeutic Target in Canine Bladder Cancer. Molecular Pharmacology, 2019, 96, 36-46.	1.0	22
1112	HDAC8 Regulates a Stress Response Pathway in Melanoma to Mediate Escape from BRAF Inhibitor Therapy. Cancer Research, 2019, 79, 2947-2961.	0.4	59

ARTICLE IF CITATIONS Leptomeningeal Disease in Solid Cancers., 2019, , 1-19. 0 1113 Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R–MEK5–Erk5 Pathway. 1114 0.4 Cancer Research, 2019, 79, 2244-2256. Microstructure Formation for Improved Dissolution Performance of Lopinavir Amorphous Solid 2.3 1115 18 Dispersions. Molecular Pharmaceutics, 2019, 16, 1751-1765. Systemic Therapy in BRAF V600E-Mutant Metastatic Colorectal Cancer: Recent Advances and Future Strategies. Current Colorectal Cancer Reports, 2019, 15, 53-60. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the (Modern) Treatment of 1117 1.6 6 Melanoma. Clinical Pharmacokinetics, 2019, 58, 1029-1043. Melanoma Brain Metastasis: Insights, Progress, Challenges, and Opportunities., 2019, , 1-21. Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Scientific Reports, 2019, 9, 5154. 1119 1.6 12 Clinical development of targeted and immune based anti-cancer therapies. Journal of Experimental and 1120 3.5 Clinical Cancer Research, 2019, 38, 156. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers, 1121 1.7 19 2019, 11, 414. Vemurafenib Inhibits Active PTK6 in <i>PTEN</i>-null Prostate Tumor Cells. Molecular Cancer 1.9 Therapeutics, 2019, 18, 937-946. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole 1123 1.4 32 scaffold. Bioorganic and Medicinal Chemistry, 2019, 27, 2041-2051. Targeting the ERK Signaling Pathway in Melanoma. International Journal of Molecular Sciences, 2019, 1124 1.8 116 20. 1483 Aberrant expression and highâ€frequency mutations of SHARPIN in nonmelanoma skin cancer. 1125 0.8 3 Experimental and Therapeutic Medicine, 2019, 17, 2746-2756. Clinical candidates modulating protein-protein interactions: The fragment-based experience. European 2.6 24 Journal of Medicinal Chemistry, 2019, 167, 76-95. 2020 vision or myopia? A personal perspective on the future of cancer imaging and an introduction to 1127 1.2 0 the sequels to the "How I Read Seriesâ€. Cancer Imaging, 2019, 19, 7. Targeting Alterations in the RAF–MEK Pathway. Cancer Discovery, 2019, 9, 329-341. 282 Hybrid Capture-Based Genomic Profiling Identifies BRAF V600 and Non-V600 Alterations in Melanoma 1129 1.9 5 Samples Negative by Prior Testing. Oncologist, 2019, 24, 657-663. Single-Cell Omics: Strategies Towards Theranostic Biomarker Discovery Along the Continuum of Premalignant to Invasive Disease in Oncology., 2019, 105-128.

#	Article	IF	CITATIONS
1131	Novel small molecule decreases cell proliferation, migration, clone formation, and gene expression through ERK inhibition in MCF-7 and MDA-MB-231 breast cancer cell lines. Anti-Cancer Drugs, 2019, 30, 618-627.	0.7	5
1132	Innovation in Oncology Drug Development. Journal of Oncology, 2019, 2019, 1-16.	0.6	10
1133	Electrostatic mechanism of V600E mutation-induced B-Raf constitutive activation in colorectal cancer: molecular implications for the selectivity difference between type-I and type-II inhibitors. European Biophysics Journal, 2019, 48, 73-82.	1.2	11
1134	KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Molecular Cancer Therapeutics, 2019, 18, 706-717.	1.9	45
1135	Oxidative stress generated by irradiation of a zinc(II) phthalocyanine induces a dual apoptotic and necrotic response in melanoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 119-134.	2.2	16
1136	SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors. Cell Reports, 2019, 26, 65-78.e5.	2.9	146
1137	How Structural Biologists and the Protein Data Bank Contributed to Recent FDA New Drug Approvals. Structure, 2019, 27, 211-217.	1.6	65
1138	BRAF-Mutant Melanoma. , 2019, , 655-668.		0
1139	Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Letters, 2019, 446, 25-37.	3.2	28
1140	Design, synthesis, and in vitro evaluation of N-(3-(3-alkyl-1H-pyrazol-5-yl) phenyl)-aryl amide for selective RAF inhibition. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 534-538.	1.0	8
1141	Recurrent somatic BRAF insertion (p.V504_R506dup): a tumor marker and a potential therapeutic target in pilocytic astrocytoma. Oncogene, 2019, 38, 2994-3002.	2.6	13
1142	EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine, 2019, 39, 194-206.	2.7	31
1143	NMR screening and studies of target – ligand interactions. Russian Chemical Reviews, 2019, 88, 59-98.	2.5	7
1144	Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Bioorganic Chemistry, 2019, 82, 290-305.	2.0	35
1145	RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 2019, 47, D464-D474.	6.5	918
1146	Signal transducer and activator of transcription 3 inhibition enhances vemurafenib sensitivity in colon cancers harboring the BRAF ^{V600E} mutation. Journal of Cellular Biochemistry, 2019, 120, 5315-5325.	1.2	8
1147	A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semiâ€Saturated Heterobicyclic Fragments. European Journal of Organic Chemistry, 2019, 2019, 1341-1349.	1.2	6
1148	Phase Ib Study of Combination Therapy with MEK Inhibitor Binimetinib and Phosphatidylinositol 3-Kinase Inhibitor Buparlisib in Patients with Advanced Solid Tumors with <i>RAS/RAF</i> Alterations. Oncologist, 2020, 25, e160-e169.	1.9	55

ARTICLE IF CITATIONS How oncogenic mutations activate human MAP kinase 1 (MEK1): a molecular dynamics simulation study. 2.0 7 1149 Journal of Biomolecular Structure and Dynamics, 2020, 38, 3942-3958. Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 21.5 295 <u>2020, 19, 23-38.</u> RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Science, 2020, 29, 1151 3.1223 52-65. A First-in-Human Phase I Study to Evaluate the ERK1/2 Inhibitor GDC-0994 in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2020, 26, 1229-1236. Genetic Interactions and Tissue Specificity Modulate the Association of Mutations with Drug 1153 1.9 5 Response. Molecular Cancer Therapeutics, 2020, 19, 927-936. The "ART―of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies― 1154 4.6 44 Theranostics, 2020, 10, 1777-1797. PRAS40 hyperexpression promotes hepatocarcinogenesis. EBioMedicine, 2020, 51, 102604. 1155 2.7 14 Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based 1156 3.7 93 drug discovery. Chemical Science, 2020, 11, 1216-1225. Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. Journal of 1158 0.6 14 Oncology, 2020, 2020, 1-14. Targeting KRAS(G12C): From Inhibitory Mechanism to Modulation of Antitumor Effects in Patients. 13.5 128 Cell, 2020, 183, 850-859. 1160 A two-pronged attack. Nature Chemical Biology, 2020, 16, 1154-1155. 3.9 3 Imidazothiazole-based potent inhibitors of V600E-B-RAF kinase with promising anti-melanoma activity: biological and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 2.5 1712-1726. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 1163 1.7 8 in NPM-ALK Positive Lymphoma Cells. Cancers, 2020, 12, 2951. New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Molecular Biology Reports, 2020, 47, 9021-9032. 1164 1.0 QSAR and Docking Studies on Some Potential Anti-Cancer Agents to Predict their Effect on M14 1165 1.2 1 Melanoma Cell Line. Chemistry Africa, 2020, 3, 1009-1022. Phosphoprotein-based biomarkers as predictors for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18401-18411. Epithelioid glioblastoma with microglia features: potential for novel therapy. Brain Pathology, 2020, 1167 2.1 9 30, 1119-1133. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nature Communications, 2020, 11, 5.8 3457.

#	Article	IF	CITATIONS
1169	A Phase Ib/II Study of the BRAF Inhibitor Encorafenib Plus the MEK Inhibitor Binimetinib in Patients with <i>BRAFV600E/K</i> -mutant Solid Tumors. Clinical Cancer Research, 2020, 26, 5102-5112.	3.2	23
1171	Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorganic Chemistry, 2020, 104, 104260.	2.0	50
1172	FragRep: A Web Server for Structure-Based Drug Design by Fragment Replacement. Journal of Chemical Information and Modeling, 2020, 60, 5900-5906.	2.5	16
1173	Overview of New Treatments with Immunotherapy for Breast Cancer and a Proposal of a Combination Therapy. Molecules, 2020, 25, 5686.	1.7	19
1174	Hotspots of Human Mutation. Trends in Genetics, 2021, 37, 717-729.	2.9	62
1175	Cytotoxic Effect of Vanicosides A and B from Reynoutria sachalinensis against Melanotic and Amelanotic Melanoma Cell Lines and in silico Evaluation for Inhibition of BRAFV600E and MEK1. International Journal of Molecular Sciences, 2020, 21, 4611.	1.8	11
1176	Small-molecule active pharmaceutical ingredients of approved cancer therapeutics inhibit human aspartate/asparagine-1²-hydroxylase. Bioorganic and Medicinal Chemistry, 2020, 28, 115675.	1.4	8
1177	<p>Conjunctival Melanoma: Update on Genetics, Epigenetics and Targeted Molecular and Immune-Based Therapies</p> . Clinical Ophthalmology, 2020, Volume 14, 3137-3152.	0.9	12
1178	Survivin modulation in the antimelanoma activity of prodiginines. European Journal of Pharmacology, 2020, 888, 173465.	1.7	13
1179	Application of Fragment-Based Drug Discovery to Versatile Targets. Frontiers in Molecular Biosciences, 2020, 7, 180.	1.6	95
1180	Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. Crystals, 2020, 10, 725.	1.0	4
1181	B-Raf-Mutated Melanoma. , 2020, , .		0
1182	Epigenetically regulated gene expression profiles reveal four molecular subtypes with prognostic and therapeutic implications in colorectal cancer. Briefings in Bioinformatics, 2021, 22, .	3.2	20
1183	Antitumor Drugs and Their Targets. Molecules, 2020, 25, 5776.	1.7	39
1184	BRAF Mutation in Colorectal Cancers: From Prognostic Marker to Targetable Mutation. Cancers, 2020, 12, 3236.	1.7	23
1185	Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization. Scientific Reports, 2020, 10, 19214.	1.6	13
1186	Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Applied Sciences, 2020, 2, 1.	1.5	22
1187	CRISPR Screens Identify Essential Cell Growth Mediators in BRAF Inhibitor-resistant Melanoma. Genomics, Proteomics and Bioinformatics, 2020, 18, 26-40.	3.0	14

#	Article	IF	CITATIONS
1188	BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons. Journal of Neurophysiology, 2020, 123, 2449-2464.	0.9	21
1189	Receptor-interacting protein kinase 2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold. European Journal of Medicinal Chemistry, 2020, 200, 112417.	2.6	14
1190	Strategic Combinations to Prevent and Overcome Resistance to Targeted Therapies in Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e292-e308.	1.8	3
1191	Rational Cancer Treatment Combinations: An Urgent Clinical Need. Molecular Cell, 2020, 78, 1002-1018.	4.5	95
1192	Fragment Linking Strategies for Structure-Based Drug Design. Journal of Medicinal Chemistry, 2020, 63, 11420-11435.	2.9	53
1193	Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant BrafV600E Melanoma. Cancers, 2020, 12, 1500.	1.7	9
1194	Current status and perspectives of patient-derived rare cancer models. Human Cell, 2020, 33, 919-929.	1.2	15
1195	Fertility Outcomes and Sperm-DNA Parameters in Metastatic Melanoma Survivors Receiving Vemurafenib or Dabrafenib Therapy: Case Report. Frontiers in Oncology, 2020, 10, 232.	1.3	5
1196	Discovery of Selective Small Molecule Degraders of BRAF-V600E. Journal of Medicinal Chemistry, 2020, 63, 4069-4080.	2.9	43
1197	Discovery of a novel kinase hinge binder fragment by dynamic undocking. RSC Medicinal Chemistry, 2020, 11, 552-558.	1.7	10
1199	Overall Survival Improved for Contemporary Patients with Melanoma: A 2004–2015 National Cancer Database Analysis. Oncology and Therapy, 2020, 8, 261-275.	1.0	9
1200	Impact of the Protein Data Bank on antineoplastic approvals. Drug Discovery Today, 2020, 25, 837-850.	3.2	24
1201	Acetylene Group, Friend or Foe in Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 5625-5663.	2.9	76
1202	In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, 2020, 8, 93.	1.8	122
1203	Protein X-ray Crystallography and Drug Discovery. Molecules, 2020, 25, 1030.	1.7	115
1204	Prognostic Biomarkers for Melanoma Immunotherapy. Current Oncology Reports, 2020, 22, 25.	1.8	13
1205	Targeting effector pathways in RAC1 ^{P29S} -driven malignant melanoma. Small GTPases, 2021, 12, 273-281.	0.7	12
1206	FOXD3 Regulates VISTA Expression in Melanoma. Cell Reports, 2020, 30, 510-524.e6.	2.9	42

# 1207	ARTICLE BRAFV600E dictates cell survival via c-Myc-dependent induction of Skp2 in human melanoma. Biochemical and Biophysical Research Communications, 2020, 524, 28-35.	IF 1.0	CITATIONS
1208	Efficacy and Determinants of Response to HER Kinase Inhibition in <i>HER2</i> -Mutant Metastatic Breast Cancer. Cancer Discovery, 2020, 10, 198-213.	7.7	83
1210	Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nature Biotechnology, 2020, 38, 303-308.	9.4	111
1211	Applied Biophysical Methods in Fragment-Based Drug Discovery. SLAS Discovery, 2020, 25, 471-490.	1.4	17
1212	QSAR modelling and molecular docking studies for anti-cancer compounds against melanoma cell line SK-MEL-2. Heliyon, 2020, 6, e03640.	1.4	19
1213	RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene, 2020, 39, 4155-4169.	2.6	44
1214	Targeting NRAS-Mutant Cancers with the Selective STK19 Kinase Inhibitor Chelidonine. Clinical Cancer Research, 2020, 26, 3408-3419.	3.2	35
1215	Applications of personalised signalling network models in precision oncology. , 2020, 212, 107555.		14
1216	Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Molecular Cancer Therapeutics, 2020, 19, 627-636.	1.9	10
1217	Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers, 2020, 12, 927.	1.7	6
1218	Design and synthesis of novel fluorescently labeled analogs of vemurafenib targeting MKK4. European Journal of Medicinal Chemistry, 2021, 209, 112901.	2.6	5
1219	Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAFV600E kinases. Bioorganic Chemistry, 2021, 106, 104510.	2.0	59
1220	Molecular Docking Strategy to Design Novel V600E-BRAF Kinase Inhibitors with Prediction of Their Drug-Likeness and Pharmacokinetics ADMET Properties. Chemistry Africa, 2021, 4, 189-205.	1.2	1
1221	Multiâ€sample measurement of hyperpolarized pyruvateâ€toâ€lactate flux in melanoma cells. NMR in Biomedicine, 2021, 34, e4447.	1.6	6
1222	Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. Annual Review of Cancer Biology, 2021, 5, 371-390.	2.3	8
1223	Model Systems for the Study of Malignant Melanoma. Methods in Molecular Biology, 2021, 2265, 1-21.	0.4	5
1224	A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1275, 357-382.	0.8	2
1225	The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Medicinal Chemistry, 2021, 12, 646-665.	1.7	6

#	Article	IF	CITATIONS
1226	Single-celled bacteria as tool for cancer therapy. , 2021, , 103-126.		1
1227	Skin immunization for effective treatment of multifocal melanoma refractory to PD1 blockade and Braf inhibitors. , 2021, 9, e001179.		2
1228	Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line. Egyptian Journal of Medical Human Genetics, 2021, 22, .	0.5	8
1229	Vemurafenib and Cobimetinib. , 2021, , 149-165.		0
1230	Advances in anti-BRAF therapies for lung cancer. Investigational New Drugs, 2021, 39, 879-890.	1.2	22
1231	Pyridines and Their Benzo Derivatives: Applications. , 2022, , 217-242.		2
1232	Simultaneously monitoring endogenous MAPK members in single living cells by multi-channel fluorescence correlation spectroscopy. Analyst, The, 2021, 146, 2581-2590.	1.7	5
1233	Drug resistance in targeted cancer therapies with RAF inhibitors. , 2021, 4, 665-683.		9
1234	PLEKHA4 Promotes Wnt/β-Catenin Signaling–Mediated G1–S Transition and Proliferation in Melanoma. Cancer Research, 2021, 81, 2029-2043.	0.4	13
1235	Exploiting Allosteric Properties of RAF and MEK Inhibitors to Target Therapy-Resistant Tumors Driven by Oncogenic BRAF Signaling. Cancer Discovery, 2021, 11, 1716-1735.	7.7	30
1236	Design, synthesis and in silico insights of new 7,8-disubstituted-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives with potent anticancer and multi-kinase inhibitory activities. Bioorganic Chemistry, 2021, 107, 104569.	2.0	18
1237	The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochemical Society Transactions, 2021, 49, 253-267.	1.6	29
1238	Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications, 2021, 12, 920.	5.8	71
1239	Involvement of mutant and wild-type CYSLTR2 in the development and progression of uveal nevi and melanoma. BMC Cancer, 2021, 21, 164.	1.1	18
1240	Activity of Crizotinib in Patients with ALK-Aberrant Relapsed/Refractory Neuroblastoma: A Children's Oncology Group Study (ADVL0912). Clinical Cancer Research, 2021, 27, 3543-3548.	3.2	59
1241	Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Frontiers in Oncology, 2020, 10, 626129.	1.3	48
1243	Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers, 2021, 13, 1205.	1.7	25
1244	LncRNA SAMMSON Mediates Adaptive Resistance to RAF Inhibition in BRAF-Mutant Melanoma Cells. Cancer Research, 2021, 81, 2918-2929.	0.4	16

#	Article	IF	CITATIONS
1245	Genetically Encoded Fragment-Based Discovery from Phage-Displayed Macrocyclic Libraries with Genetically Encoded Unnatural Pharmacophores. Journal of the American Chemical Society, 2021, 143, 5497-5507.	6.6	35
1246	Target Genetic Abnormalities for the Treatment of Colon Cancer and Its Progression to Metastasis. Current Drug Targets, 2021, 22, 722-733.	1.0	3
1248	Design and synthesis of 4-anilinoquinazolines as Raf kinase inhibitors. Part 1. Selective B-Raf/B-RafV600E and potent EGFR/VEGFR2 inhibitory 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines. Bioorganic Chemistry, 2021, 109, 104715.	2.0	8
1250	Reducing Skin Toxicities from EGFR Inhibitors with Topical BRAF Inhibitor Therapy. Cancer Discovery, 2021, 11, 2158-2167.	7.7	10
1251	Current updates on precision therapy for breast cancer associated brain metastasis: Emphasis on combination therapy. Molecular and Cellular Biochemistry, 2021, 476, 3271-3284.	1.4	4
1253	Precision oncology in metastatic colorectal cancer — from biology to medicine. Nature Reviews Clinical Oncology, 2021, 18, 506-525.	12.5	113
1254	LRIG1 is a conserved EGFR regulator involved in melanoma development, survival and treatment resistance. Oncogene, 2021, 40, 3707-3718.	2.6	8
1255	Fragment-Based Ligand Discovery Using Protein-Observed ¹⁹ F NMR: A Second Semester Organic Chemistry CURE Project. Journal of Chemical Education, 2021, 98, 1963-1973.	1.1	8
1256	Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. Cell Cycle, 2021, 20, 1041-1051.	1.3	29
1258	Discovery of New Imidazo[2,1- <i>b</i>]thiazole Derivatives as Potent Pan-RAF Inhibitors with Promising <i>In Vitro</i> and <i>In Vivo</i> Anti-melanoma Activity. Journal of Medicinal Chemistry, 2021, 64, 6877-6901.	2.9	15
1259	Deregulated FASN Expression in BRAF Inhibitor-Resistant Melanoma Cells Unveils New Targets for Drug Combinations. Cancers, 2021, 13, 2284.	1.7	13
1260	MDM2 induces EMT via the B‑Raf signaling pathway through 14‑3‑3. Oncology Reports, 2021, 46, .	1.2	5
1261	Loss of ACK1 Upregulates EGFR and Mediates Resistance to BRAF Inhibition. Journal of Investigative Dermatology, 2021, 141, 1317-1324.e1.	0.3	9
1262	RAF-MEK-ERK pathway in cancer evolution and treatment. Seminars in Cancer Biology, 2022, 85, 123-154.	4.3	113
1264	Neonatal syringocystadenoma papilliferum: A case report. World Journal of Clinical Cases, 2021, 9, 4772-4777.	0.3	2
1265	Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods, 2021, 1, 100015.	1.4	10
1266	The Impact of Assay Design on Medicinal Chemistry: Case Studies. SLAS Discovery, 2021, 26, 1243-1255.	1.4	2
1267	Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Frontiers in Oncology, 2021, 11, 702287.	1.3	31

#	Article	IF	CITATIONS
1268	Deep Learning of Histopathological Features for the Prediction of Tumour Molecular Genetics. Diagnostics, 2021, 11, 1406.	1.3	15
1269	The Evolution of Acquired Resistance to BRAFV600EÂkinase inhibitor Is Sustained by IGF1-Driven Tumor Vascular Remodeling. Journal of Investigative Dermatology, 2022, 142, 445-458.	0.3	11
1270	Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sciences, 2021, 278, 119499.	2.0	86
1271	Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals, 2021, 14, 871.	1.7	25
1272	Kidney toxicity of the BRAF-kinase inhibitor vemurafenib is driven by off-target ferrochelatase inhibition. Kidney International, 2021, 100, 1214-1226.	2.6	16
1273	Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Seminars in Cancer Biology, 2021, 74, 24-44.	4.3	34
1274	Identification of genes and pathways leading to metastasis and poor prognosis in melanoma. Aging, 2021, 13, 22474-22489.	1.4	3
1275	TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nature Cell Biology, 2021, 23, 978-991.	4.6	29
1276	Targeting the mercapturic acid pathway for the treatment of melanoma. Cancer Letters, 2021, 518, 10-22.	3.2	5
1280	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.	0.0	4
1280 1281	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.	0.0	4
1280 1281 1282	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46. The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.	0.0	4
1280 1281 1282 1283	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.Tissue Resources for Clinical Use and Marker Studies in Melanoma. Methods in Molecular Biology, 2014, 1102, 679-695.	0.0	4 1 3 7
1280 1281 1282 1283 1283	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.Tissue Resources for Clinical Use and Marker Studies in Melanoma. Methods in Molecular Biology, 2014, 1102, 679-695.Overview of Current Type I/II Kinase Inhibitors. , 2020, , 13-28.	0.0	4 1 3 7 8
1280 1281 1282 1283 1283 1284	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.Tissue Resources for Clinical Use and Marker Studies in Melanoma. Methods in Molecular Biology, 2014, 1102, 679-695.Overview of Current Type I/II Kinase Inhibitors. , 2020, , 13-28.Medikamentöse Tumortherapie in der Dermato-Onkologie. , 2014, ,.	0.0	4 1 3 7 8 2
1280 1281 1282 1283 1283 1285 1285	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.Tissue Resources for Clinical Use and Marker Studies in Melanoma. Methods in Molecular Biology, 2014, 1102, 679-695.Overview of Current Type I/II Kinase Inhibitors. , 2020, , 13-28.Medikament¶se Tumortherapie in der Dermato-Onkologie. , 2014, ,.PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nature Communications, 2020, 11, 612.	0.0	4 1 3 7 8 8 2
1280 1281 1282 1283 1284 1285 1286 1287	Targeted Therapies in Melanoma. Current Clinical Pathology, 2015, , 211-227.Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy. Methods in Molecular Biology, 2016, 1360, 35-46.The PI3K-AKT Pathway in Melanoma., 2016, , 165-180.Tissue Resources for Clinical Use and Marker Studies in Melanoma. Methods in Molecular Biology, 2014, 1102, 679-695.Overview of Current Type I/II Kinase Inhibitors., 2020, , 13-28.MedikamentŶse Tumortherapie in der Dermato-Onkologie. , 2014, , .PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nature Communications, 2020, 11, 612.Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 207-220.	0.0 0.4 0.4 5.8 8.2	4 1 3 7 8 8 2 2 38 38

#	Article	IF	CITATIONS
1289	<i>SPRED1</i> deletion confers resistance to MAPK inhibition in melanoma. Journal of Experimental Medicine, 2021, 218, .	4.2	19
1290	New perspectives on targeting RAF, MEK and ERK in melanoma. Current Opinion in Oncology, 2021, 33, 120-126.	1.1	9
1295	Exhaustive sampling of the fragment space associated to a molecule leading to the generation of conserved fragments. Chemical Biology and Drug Design, 2018, 91, 655-667.	1.5	7
1296	A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in <i>BRAF</i> -Driven Pediatric Low-Grade Glioma Cells. Molecular Cancer Therapeutics, 2020, 19, 1736-1750.	1.9	13
1297	The RUNX1/IL-34/CSF-1R axis is an autocrinally regulated modulator of resistance to BRAF-V600E inhibition in melanoma. JCI Insight, 2018, 3, .	2.3	29
1298	Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight, 2018, 3, .	2.3	107
1299	RAS signaling pathway mutations and hypertrophic cardiomyopathy: getting into and out of the thick of it. Journal of Clinical Investigation, 2011, 121, 844-847.	3.9	49
1300	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381.	3.9	256
1301	WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. Journal of Clinical Investigation, 2014, 124, 2877-2890.	3.9	144
1302	Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. Journal of Clinical Investigation, 2016, 126, 4119-4124.	3.9	102
1303	Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma. Journal of Clinical Investigation, 2017, 128, 294-308.	3.9	55
1304	Docking-based strategy to design novel flavone-based arylamides as potent V600E-BRAF inhibitors with prediction of their drug-likeness and ADMET properties. Bulletin of the National Research Centre, 2020, 44, .	0.7	13
1305	Autophagy- An emerging target for melanoma therapy. F1000Research, 2016, 5, 1888.	0.8	49
1306	Current options and future directions in the systemic treatment of metastatic melanoma. Journal of Community and Supportive Oncology, 2014, 12, 20-26.	0.1	5
1307	Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy. PLoS Biology, 2018, 16, e2002930.	2.6	47
1308	Synergistic Anticancer Effects of the 9.2.27PE Immunotoxin and ABT-737 in Melanoma. PLoS ONE, 2011, 6, e24012.	1.1	42
1309	Efficient Elimination of Cancer Cells by Deoxyglucose-ABT-263/737 Combination Therapy. PLoS ONE, 2011, 6, e24102.	1.1	65
1310	The B-Raf Status of Tumor Cells May Be a Significant Determinant of Both Antitumor and Anti-Angiogenic Effects of Pazopanib in Xenograft Tumor Models. PLoS ONE, 2011, 6, e25625.	1.1	19

#	Article	IF	CITATIONS
1311	Melanoma-Associated Cancer-Testis Antigen 16 (CT16) Regulates the Expression of Apoptotic and Antiapoptotic Genes and Promotes Cell Survival. PLoS ONE, 2012, 7, e45382.	1.1	18
1312	Mutation Scanning Using MUT-MAP, a High-Throughput, Microfluidic Chip-Based, Multi-Analyte Panel. PLoS ONE, 2012, 7, e51153.	1.1	24
1313	Functional Profiling of Live Melanoma Samples Using a Novel Automated Platform. PLoS ONE, 2012, 7, e52760.	1.1	7
1314	The Anti-Melanoma Activity of Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Is Dependent on p53 Signaling. PLoS ONE, 2013, 8, e59588.	1.1	58
1315	Dabrafenib; Preclinical Characterization, Increased Efficacy when Combined with Trametinib, while BRAF/MEK Tool Combination Reduced Skin Lesions. PLoS ONE, 2013, 8, e67583.	1.1	168
1316	Reporting Tumor Molecular Heterogeneity in Histopathological Diagnosis. PLoS ONE, 2014, 9, e104979.	1.1	35
1317	Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. PLoS ONE, 2016, 11, e0166583.	1.1	28
1318	Correlation of histopathologic characteristics to protein expression and function in malignant melanoma. PLoS ONE, 2017, 12, e0176167.	1.1	27
1319	Antitumor effects of β-elemene via targeting the phosphorylation of insulin receptor. Endocrine-Related Cancer, 2019, 26, 187-199.	1.6	6
1320	RATIONAL DRUG DESIGN OF POTENT V600E-BRAF KINASE INHIBITORS THROUGH MOLECULAR DOCKING SIMULATION. The Journal of Engineering and Exact Sciences, 2020, 5, 0469-0481.	0.0	12
1321	Recent progress in targeting cancer. Aging, 2011, 3, 1154-1162.	1.4	22
1322	MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget, 2016, 7, 55128-55140.	0.8	11
1323	mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget, 2017, 8, 69204-69218.	0.8	21
1324	The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget, 2014, 5, 5040-5053.	0.8	33
1325	Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E. Oncotarget, 2017, 8, 84743-84760.	0.8	40
1326	PIK3CAH1047R-induced paradoxical ERK activation results in resistance to BRAFV600E specific inhibitors in BRAFV600E PIK3CAH1047R double mutant thyroid tumors. Oncotarget, 2017, 8, 103207-103222.	0.8	18
1327	The anti-rheumatic drug, leflunomide, synergizes with MEK inhibition to suppress melanoma growth. Oncotarget, 2018, 9, 3815-3829.	0.8	17
1328	The structural basis for cancer treatment decisions. Oncotarget, 2014, 5, 7285-7302.	0.8	43

#	ARTICLE	IF	CITATIONS	
1329	imaging markers of response to combined BRAF and MEK inhibition in BRAF mutated vemurafenib-sensitive and resistant melanomas. Oncotarget, 2018, 9, 16832-16846.	0.8	5	
1330	BRAF vs RAS oncogenes: are mutations of the same pathway equal? differential signalling and therapeutic implications. Oncotarget, 2014, 5, 11752-11777.	0.8	83	
1331	Chk-mate on resistance to kinase inhibitors. Oncotarget, 2018, 9, 31560-31561.	0.8	1	
1332	Potential Therapeutic Strategies to Overcome Acquired Resistance to BRAF or MEK Inhibitors in BRAF Mutant Cancers. Oncotarget, 2011, 2, 336-346.	0.8	114	
1333	Using quantitative proteomic analysis to understand genotype specific intrinsic drug resistance in melanoma. Oncotarget, 2011, 2, 329-335.	0.8	19	
1334	Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma. Oncotarget, 2015, 6, 24823-24841.	0.8	29	
1335	Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget, 2015, 6, 40535-40556.	0.8	59	
1336	Metastasis-associated <i>MCL1</i> and <i>P16</i> copy number alterations dictate resistance to vemurafenib in a <i>BRAFV600E</i> patient-derived papillary thyroid carcinoma preclinical model. Oncotarget, 2015, 6, 42445-42467.	0.8	40	
1337	Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas. Oncotarget, 2016, 7, 2734-2753.	0.8	19	
1338	Identification and Characterization of a Novel Chemotype MEK Inhibitor Able to Alter the Phosphorylation State of MEK1/2. Oncotarget, 2012, 3, 1533-1545.	0.8	48	
1339	PDZ binding kinase (PBK) is a theranostic target for nasopharyngeal carcinoma: driving tumor growth via ROS signaling and correlating with patient survival. Oncotarget, 2016, 7, 26604-26616.	0.8	23	
1340	From Small to Powerful: The Fragments Universe and its "Chem-Appeal". Current Medicinal Chemistry, 2013, 20, 1355-1381.	1.2	17	
1341	Pharmacophore and Binding Analysis of Known and Novel B-RAF Kinase Inhibitors. Current Medicinal Chemistry, 2014, 21, 1938-1955.	1.2	6	
1342	Revisiting De Novo Drug Design: Receptor Based Pharmacophore Screening. Current Topics in Medicinal Chemistry, 2014, 14, 1890-1898.	1.0	14	
1343	Relevance of Molecular Docking Studies in Drug Designing. Current Bioinformatics, 2020, 15, 270-278.	0.7	71	
1344	Promising Strategies for Overcoming BRAF Inhibitor Resistance Based on Known Resistance Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1415-1430.	0.9	3	
1345	Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 2150-2168.	0.9	120	
1346	BRAF Inhibitors and Radiation Do Not Act Synergistically to Inhibit WT and V600E BRAF Human Melanoma. Anticancer Research, 2018, 38, 1335-1341.	0.5	9	
		CITATION REPORT		
------	--	---------------------	-----	-----------
#	Article		IF	Citations
1347	New Therapies for Advanced Thyroid Cancer. Frontiers in Endocrinology, 2020, 11, 82.		1.5	117
1348	miR‑489‑3p inhibits proliferation and migration of bladder cancer cells through dc histone deacetylase 2. Oncology Letters, 2020, 20, 8.	wnregulation of	0.8	6
1349	New therapeutic strategies for BRAF mutant colorectal cancers. Journal of Gastrointes Oncology, 2015, 6, 650-9.	tinal	0.6	21
1350	BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Translatic Cancer Research, 2013, 2, 244-50.	nal Lung	1.3	45
1351	Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inb by RNA-Seq Analysis. Biomolecules and Therapeutics, 2019, 27, 302-310.	iibitor Revealed	1.1	19
1352	Different effects of the inhibition of Src activity on Akt/PKB in melanoma cells with wild mutated BRAF V600E. Advances in Biological Chemistry, 2013, 03, 6-11.	d BRAF and	0.2	1
1353	A Pilot Trial Testing the Feasibility of Using Molecular-Guided Therapy in Patients with Neuroblastoma. Journal of Cancer Therapy, 2012, 03, 602-612.	Recurrent	0.1	12
1354	Anti-Cancer Activities and Interaction of Imiquimod and Flex-Het, SHetA2, in Melanom Cancer. Journal of Cancer Therapy, 2013, 04, 7-19.	a and Ovarian	0.1	3
1355	Novel biomarkers and therapeutic targets for optimizing the therapeutic management World Journal of Clinical Oncology, 2012, 3, 32.	of melanomas.	0.9	35
1356	Treatment of Vemurafenib-Resistant SKMEL-28 Melanoma Cells with Paclitaxel. Asian F Cancer Prevention, 2015, 16, 699-705.	Pacific Journal of	0.5	11
1357	BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. ELife	2013, 2, e00969.	2.8	67
1358	Perturbation biology nominates upstream–downstream drug combinations in RAF ir melanoma cells. ELife, 2015, 4, .	hibitor resistant	2.8	95
1359	Small Molecule Kinase Inhibitor Drugs (1995–2021): Medical Indication, Pharmacolo Journal of Medicinal Chemistry, 2022, 65, 1047-1131.	ıgy, and Synthesis.	2.9	114
1360	Genomic and experimental evidence that ALKATI does not predict single agent sensitivinhibitors. IScience, 2021, 24, 103343.	ity to ALK	1.9	3
1361	Melanoma Genetics and Genomics. , 2011, , 57-77.			0
1362	BRAF Mutations and their Implications in Molecular Targeting Therapies for Gastrointe Journal of Pharmacogenomics & Pharmacoproteomics, 2011, 02, .	stinal Cancers.	0.2	4
1363	New Therapeutic Approaches in Signaling. , 2011, , 337-357.			0
1364	Tumor Microenvironment for Melanoma Cells. , 2011, , 297-307.			0

#	Article	IF	CITATIONS
1365	Understanding Melanocyte Transformation $\hat{a} \in \mathcal{C}$ A Work in Progress. , 0, , .		0
1366	Mohs Micrographic Surgery for the Treatment of Cutaneous Melanoma. , 2012, , 211-223.		0
1367	Understanding the Molecular and Functional Mechanisms that Underlie Pharamcogenomics-Based Therapy. Journal of Pharmacogenomics & Pharmacoproteomics, 2012, 03, .	0.2	1
1368	Ras/Raf and Their Influence in Glycolysis in Colon Cancer. , 2012, , 131-139.		0
1369	Melanoma and Other Skin Cancers. , 2012, , 439-468.		0
1376	B-Raf. , 2013, , 1-9.		0
1377	N-Ras. , 2013, , 1-9.		0
1378	Exploiting Epigenetic Modifiers to Circumvent Melanoma Dual Resistance to TCR-Engineered Immunotherapy- and BRAFV600E-Kinase Inhibitor. , 2013, , 203-220.		0
1379	BRAF-Targeted Therapy in Metastatic Melanoma. , 2013, , 473-490.		0
1380	Cutaneous Squamous Cell Carcinoma: Focus on Biochemical and Molecular Characteristics. , 2014, , 29-57.		0
1381	Emerging Clinical Issues in Melanoma in the Molecularly Targeted Era. Methods in Molecular Biology, 2014, 1102, 11-26.	0.4	0
1383	Melanom. , 2014, , 31-97.		0
1384	BO-110, a dsRNA-Based Anticancer Agent. Advances in Delivery Science and Technology, 2014, , 453-470.	0.4	0
1385	Melanoma. Part II. Personalized Medicine: Using Molecular Tools to Guide Targeted Therapy. , 2014, , 97-131.		1
1386	METASTAZAVUSIOS MELANOMOS GYDYMAS BRAF INHIBITORIAIS KLAIPÄ–DOS UNIVERSITETINÄ–JE LIGONINÄ–JE NEPAGEIDAUJAMI REIÅKINIAI. Health Sciences, 2014, 24, 39-42.	0.0	0
1387	"Paper Teachers:― International Journal of User-Driven Healthcare, 2014, 4, 51-56.	0.1	0
1388	Using a 980 nm, 7w/cm2 Diode Laser in Oral Surgeries. American Journal of BioMedicine, 2014, 2, 160-169.	0.0	0
1391	Moving Forward: Making BRAF-Targeted Therapy Better. Cancer Drug Discovery and Development, 2015, , 183-201.	0.2	0

#	Article	IF	CITATIONS
1392	Basis for Molecular Genetics in Cancer. , 2015, , 15-30.		0
1393	Phase I Trials Today. , 2015, , 661-676.e2.		0
1394	Design Strategies for Computational Fragment-Based Drug Design. Methods in Molecular Biology, 2015, 1289, 137-144.	0.4	0
1395	Brain Metastases: State of the Art and Innovative Targeted Therapies. Journal of Analytical Oncology, 2015, 4, 113-121.	0.1	0
1396	Molecular Targeted Anticancer Drugs. , 2016, , 175-238.		0
1397	Cancer Biology of Molecular Imaging. , 2016, , 1-31.		0
1398	Targeted Therapy in Melanoma. , 2016, , 237-265.		0
1399	MODELING OF A SUBCUTANEOUS XENOGRAFT OF HUMAN SKIN MELANOMA MEL CHER WITH V600E BRAF MUTATION IN IMMUNODEFICIENT MICE FOR PRECLINICAL STUDY THE TARGETING ANTICANCER DRUGS. , 2016, 15, 65-71.	0.3	1
1401	Stereotactic irradiation of brain metastasis from malignant melanoma during short-term vemurafenib withdrawal : a case report. Skin Cancer, 2017, 32, 76-81.	0.1	0
1407	Targeted Therapies for BRAF-Mutant Metastatic Melanoma. , 2019, , 1-19.		0
1408	Melanoma Brain Metastases: Unique Biology and Implications for Systemic Therapy. , 2019, , 1-34.		0
1409	Melanom. , 2019, , 45-134.		0
1410	Cell lines of human melanoma and their xenograft with braf or nras mutations a targets for targeted therapy. Reviews. , 2019, 17, 27-35.	0.3	0
1411	KRAS as Potential Target in Colorectal Cancer Therapy. , 2019, , 389-424.		1
1417	Tumors: Melanoma. , 2020, , 1-11.		0
1418	Molecular Analysis of Elements of Melanoma Insensitivity to TCR-Engineered Adoptive Cell Therapy. International Journal of Molecular Sciences, 2021, 22, 11726.	1.8	3
1419	Exploiting Kinase Inhibitors for Cancer Treatment: An Overview of Clinical Results and Outlook. Topics in Medicinal Chemistry, 2020, , 125-153.	0.4	0
1420	Multidimensional indicators of scholarly impact in the skin oncology literature: is there a correlation between bibliometric and altmetric profiles?. Journal of Plastic Surgery and Hand Surgery, 2021, 55, 232-241.	0.4	3

# 1421	ARTICLE Synthesis, characterization, molecular docking and anticancer studies of fluoroaniline derivatives of hydroxybenzoquinone and hydroxynaphthoquinone. Journal of Biomolecular Structure and Dynamics, 2020, , 1-11.	IF 2.0	CITATIONS
1422	Diagnostic, prognostic, predictive and therapeutic molecular biomarkers in CRC: Understanding the present and foreseeing the future. , 2022, , 207-230.		0
1423	Leptomeningeal Disease in Solid Cancers. , 2020, , 409-427.		0
1424	Plantamajoside represses the growth and metastasis of malignant melanoma. Experimental and Therapeutic Medicine, 2020, 19, 2296-2302.	0.8	10
1425	Melanoma Brain Metastases: Unique Biology and Implications for Systemic Therapy. , 2020, , 1421-1454.		0
1426	Targeted Therapies for BRAF-Mutant Metastatic Melanoma. , 2020, , 1067-1085.		0
1427	Chemical Probes for Kinases. Chemical Biology, 2020, , 182-213.	0.1	0
1428	SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and câ€JUN. Molecular Medicine Reports, 2020, 21, 1799-1808.	1.1	3
1429	Conditionally Reprogrammed Cells and Robotic High-Throughput Screening for Precision Cancer Therapy. Frontiers in Oncology, 2021, 11, 761986.	1.3	2
1430	The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer. Current Cancer Drug Targets, 2021, 21, 932-943.	0.8	21
1431	BRAF and MEK Inhibitors Affect Dendritic-Cell Maturation and T-Cell Stimulation. International Journal of Molecular Sciences, 2021, 22, 11951.	1.8	8
1432	Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. Journal of Medicinal Chemistry, 2021, 64, 16328-16348.	2.9	13
1434	In silico evaluation of some 4-(quinolin-2-yl)pyrimidin-2-amine derivatives as potent V600E-BRAF inhibitors with pharmacokinetics ADMET and drug-likeness predictions. Future Journal of Pharmaceutical Sciences, 2020, 6, .	1.1	10
1435	Computational evaluation of potent 2-(1H-imidazol-2-yl) pyridine derivatives as potential V600E-BRAF inhibitors. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	10
1438	Absence of BRAF exon 15 mutations in multiple myeloma and Waldenström's macroglobulinemia questions its validity as a therapeutic target in plasma cell neoplasias. American Journal of Blood Research, 2013, 3, 181-5.	0.6	1
1439	Aberrant apoptotic machinery confers melanoma dual resistance to BRAF(V600E) inhibitor and immune effector cells: immunosensitization by a histone deacetylase inhibitor. American Journal of Clinical and Experimental Immunology, 2014, 3, 43-56.	0.2	19
1440	Combination immunotherapy for high-risk resected and metastatic melanoma patients. Ochsner Journal, 2014, 14, 164-74.	0.5	7
1441	Implementation of biomarker-driven cancer therapy: existing tools and remaining gaps. Discovery Medicine, 2014, 17, 101-14.	0.5	41

ARTICLE IF CITATIONS Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms. American 15 1442 1.4 Journal of Cancer Research, 2015, 5, 1507-18. Comparative analysis of the human and zebrafish kinomes: focus on the development of kinase 1443 inhibitors. Trends in Cell & Molecular Biology, 2015, 10, 49-75. Computational Oncology., 2018, 2, . 0 1444 Tumors: Melanoma., 2021, , 5260-5270. 1445 Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO 1446 3.3 1 Molecular Medicine, 2021, 13, e12924. Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229. Mitochondrial Metabolism in Melanoma. Cells, 2021, 10, 3197. 1448 1.8 11 Knockdown of growth factor receptor bound protein 7 suppresses angiogenesis by inhibiting the secretion of vascular endothelial growth factor A in ovarian cancer cells. Bioengineered, 2021, 12, 1449 1.4 12179-12190. Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment 1450 2.5 6 Merging. Journal of Chemical Information and Modeling, 2021, 61, 5967-5987. Transformer-Based Generative Model Accelerating the Development of Novel BRAF Inhibitors. ACS 1451 1.6 Omega, 2021, 6, 33864-33873. Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with 1452 31 1.8 potential antiproliferative activity. Journal of Molecular Structure, 2022, 1253, 132218. Classical RAS proteins are not essential for paradoxical ERK activation induced by RAF inhibitors. 3.3 Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . B-Raf inhibitor vemurafenib counteracts sulfur mustard-induced epidermal impairment through 1454 1.2 0 MAPK/ERK signaling. Drug and Chemical Toxicology, 2022, , 1-10. Dimethyl Fumarate Combined With Vemurafenib Enhances Anti-Melanoma Efficacy via Inhibiting the Hippo/YAP, NRF2-ARE, and AKT/mTOR/ERK Pathways in A375 Melanoma Cells. Frontiers in Oncology, 2022, 1456 1.3 12, 794216. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as 1457 EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. 2.0 38 Bioorganic Chemistry, 2022, 120, 105616. Skin melanoma: from systematic biology to the personalized therapy. Vestnik Dermatologii I 1458 Venerologii, 2013, 89, 4-8. Implications of glutathione-S transferase P1 in MAPK signaling as a CRAF chaperone: In memory of Dr. 1459 Irving Listowsky. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 1.6 3 72-86. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer?. International Journal of 1460 1.8 Molecular Sciences, 2022, 23, 48.

		CITATION REPORT		
# 1461	ARTICLE Cancer gene mutation frequencies for the U.S. population. Nature Communications, 2021, 12, 59	61.	IF 5.8	Citations
1462	Even a patient with BRAF-mutated malignant melanoma has a chance for long-term survival. Onkc (Czech Republic), 2021, 15, 40-42.	logie	0.0	0
1463	Alkali-amide controlled selective synthesis of 7-azaindole and 7-azaindoline through domino reactions of 2-fluoro-3-methylpyridine and aldehydes. Organic Chemistry Frontiers, 2022, 9, 2541	2548.	2.3	11
1464	Biology and pathophysiology of central nervous system metastases. , 2022, , 55-78.			0
1466	RAS pathway regulation in melanoma. DMM Disease Models and Mechanisms, 2022, 15, .		1.2	11
1467	Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells, 2022, 11, 747.		1.8	11
1468	Inhibition of Axl Promotes the Therapeutic Effect of Targeted Inhibition of the PI3K/Akt Pathway in NRAS Mutant Melanoma Cells. Journal of Oncology, 2022, 2022, 1-9.		0.6	2
1470	Switch Pocket Kinase: An Emerging Therapeutic Target for the Design of Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 2662-2670.		0.9	0
1471	Transcriptome‑based drug repositioning identifies TPCA‑1 as a potential selective inhibitor of squamous carcinoma cell viability. International Journal of Molecular Medicine, 2022, 49, .	esophagus	1.8	7
1472	A novel photocaged B-RafV600E inhibitor toward precise melanoma treatment. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128683.		1.0	3
1473	Advances in Biomarker-Driven Targeted Therapies in Thyroid Cancer. Cancers, 2021, 13, 6194.		1.7	4
1474	Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Communication and Signaling, 2021, 19, 123.		2.7	3
1475	Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplasti thyroid carcinoma cells harboring BRAFV600E. Journal of Endocrinological Investigation, 2013, 36 1099-104.	с ,	1.8	12
1476	Chemical Reactivity and Optical and Pharmacokinetics Studies of 14 Multikinase Inhibitors and Th Docking Interactions Toward ACK1 for Precision Oncology. Frontiers in Chemistry, 2022, 10, 8436	eir 642.	1.8	3
1477	Tissue-Agnostic Activity of BRAF plus MEK Inhibitor in BRAF V600–Mutant Tumors. Molecular Ca Therapeutics, 2022, 21, 871-878.	ancer	1.9	23
1484	Treatment of BRAF-mutated advanced cutaneous melanoma. Chinese Clinical Oncology, 2014, 3,	28.	0.4	5
1485	Encoding BRAF inhibitor functions in protein degraders. RSC Medicinal Chemistry, 2022, 13, 731-	736.	1.7	4
1486	BRAF Modulates Lipid Use and Accumulation. Cancers, 2022, 14, 2110.		1.7	3

#	Article	IF	CITATIONS
1487	Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors. Science Advances, 2022, 8, eabm6638.	4.7	17
1488	Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clinical Cancer Research, 2022, 28, 4618-4628.	3.2	37
1489	Variable Mutation Expression in Human Cancers: A "Hide-and-Seek―Mechanism Linked to Differential MHC-I Presentation Dynamics. Molecular Cancer Therapeutics, 2022, 21, 1219-1226.	1.9	0
1490	Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. International Journal of Molecular Sciences, 2022, 23, 5158.	1.8	16
1491	Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives. Chemical Biology and Drug Design, 2022, 100, 185-217.	1.5	5
1492	Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances. Biomaterials, 2022, 285, 121561.	5.7	32
1493	CB-RAF600E-1 exerts efficacy in vemurafenib-resistant and non-resistant-melanoma cells via dual inhibition of RAS/RAF/MEK/ERK and PI3K/Akt signaling pathways. Saudi Journal of Biological Sciences, 2022, 29, 103285.	1.8	2
1494	Al and precision oncology in clinical cancer genomics: From prevention to targeted cancer therapies-an outcomes based patient care. Informatics in Medicine Unlocked, 2022, 31, 100965.	1.9	11
1495	PP2 protects from keratin mutation–associated liver injury and filament disruption via SRC kinase inhibition in male but not female mice. Hepatology, 2023, 77, 144-158.	3.6	4
1497	Inhibition of USP14 enhances anti-tumor effect in vemurafenib-resistant melanoma by regulation of Skp2. Cell Biology and Toxicology, 2023, 39, 2381-2399.	2.4	8
1500	PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	77
1501	Changes in the Transcriptome and Chromatin Landscape in BRAFi-Resistant Melanoma Cells. Frontiers in Oncology, 0, 12, .	1.3	3
1503	Current Insights into the Role of BRAF Inhibitors in Treatment of Melanoma. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 278-297.	0.9	5
1504	Identification of a Seven-Differentially Expressed Gene-Based Recurrence-Free Survival Model for Melanoma Patients. Disease Markers, 2022, 2022, 1-14.	0.6	1
1505	ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	9
1507	Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives as RAF-MEK-ERK pathway signaling pathway blockers: Synthesis, cytotoxic activity, mechanistic investigation and structure-activity relationships. European Journal of Medicinal Chemistry, 2022, 240, 114579.	2.6	3
1508	Discovery of BRAF/HDAC Dual Inhibitors Suppressing Proliferation of Human Colorectal Cancer Cells. Frontiers in Chemistry, 0, 10, .	1.8	3
1509	Synthesis, Biological Evaluation, Migratory Inhibition and Docking Study of Indenopyrazolones as Potential Anticancer Agents. Chemistry and Biodiversity, 2022, 19, .	1.0	4

#	Article	IF	CITATIONS
1510	Loss of MHC-I antigen presentation correlated with immune checkpoint blockade tolerance in MAPK inhibitor-resistant melanoma. Frontiers in Pharmacology, 0, 13, .	1.6	5
1511	Cancer Biology of Molecular Imaging. , 2022, , 3-39.		0
1512	Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. , 2022, , 397-533.		1
1513	Computational analysis of natural product B-Raf inhibitors. Journal of Molecular Graphics and Modelling, 2023, 118, 108340.	1.3	2
1514	Proteasomal down-regulation of the proapoptotic MST2 pathway contributes to BRAF inhibitor resistance in melanoma. Life Science Alliance, 2022, 5, e202201445.	1.3	2
1515	Small Molecules as Toll-like Receptor 4 Modulators Drug and In-House Computational Repurposing. Biomedicines, 2022, 10, 2326.	1.4	2
1516	From simplicity to complexity in current melanoma models. Experimental Dermatology, 2022, 31, 1818-1836.	1.4	3
1517	Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAF ^{V600E} inhibitors. RSC Advances, 2022, 12, 30181-30200.	1.7	14
1518	Minor structural changes, major functional impacts: posttranslational modifications and drug targets. Archives of Pharmacal Research, 0, , .	2.7	0
1519	Immune Checkpoint Inhibitors and RAS–ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules, 2022, 12, 1562.	1.8	5
1520	The <scp>AhRâ€SRC</scp> axis as a therapeutic vulnerability in <scp>BRAFi</scp> â€resistant melanoma. EMBO Molecular Medicine, 2022, 14, .	3.3	8
1521	Clinical associations and genetic interactions of oncogenic BRAF alleles. PeerJ, 0, 10, e14126.	0.9	0
1522	Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Molecules, 2022, 27, 7124.	1.7	2
1523	Inhibition of Crystal Nucleation and Growth in Aqueous Drug Solutions: Impact of Different Polymers on the Supersaturation Profiles of Amorphous Drugs—The Case of Alpha-Mangostin. Pharmaceutics, 2022, 14, 2386.	2.0	12
1524	Targeting ARF1-IQGAP1 interaction to suppress colorectal cancer metastasis and vemurafenib resistance. Journal of Advanced Research, 2023, 51, 135-147.	4.4	2
1525	Silencing FOXP2 reverses vemurafenib resistance in BRAFV600E mutant papillary thyroid cancer and melanoma cells. Endocrine, 0, , .	1.1	2
1526	Early molecular diagnosis of BRAF status drives the neurosurgical management in BRAF V600E-mutant pediatric low-grade gliomas: a case report. BMC Pediatrics, 2022, 22, .	0.7	2
1527	PI3K/AKT signaling allows for MAPK/ERK pathway independency mediating dedifferentiation-driven treatment resistance in melanoma. Cell Communication and Signaling, 2022, 20, .	2.7	8

#	Article	IF	CITATIONS
1528	Cobimetinib Plus Vemurafenib in Patients With Colorectal Cancer With <i>BRAF</i> Mutations: Results From the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. JCO Precision Oncology, 2022, , .	1.5	7
1529	A pipeline for malignancy and therapy agnostic assessment of cancer drug response using cell mass measurements. Communications Biology, 2022, 5, .	2.0	1
1530	Design and synthesis of new thiazolidinone/uracil derivatives as antiproliferative agents targeting EGFR and/or BRAFV600E. Frontiers in Chemistry, 0, 10, .	1.8	12
1531	Investigation into the Use of Encorafenib to Develop Potential PROTACs Directed against BRAFV600E Protein. Molecules, 2022, 27, 8513.	1.7	4
1532	Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. Journal of Clinical Medicine, 2022, 11, 7523.	1.0	1
1533	Discovery of Novel 1,2,4â€Oxadiazolyl Triazole Hybrids as Bâ€Raf Inhibitors for the Treatment of Melanoma. ChemistrySelect, 2022, 7, .	0.7	1
1534	Molecular modeling strategy to design novel anticancer agents against UACC-62 and UACC-257 melanoma cell lines. Egyptian Journal of Basic and Applied Sciences, 2023, 10, 157-173.	0.2	3
1535	Response and resistance to BRAFV600E inhibition in gliomas: Roadblocks ahead?. Frontiers in Oncology, 0, 12, .	1.3	3
1536	Direct structure determination of vemurafenib polymorphism from compact spherulites using 3D electron diffraction. Communications Chemistry, 2023, 6, .	2.0	6
1537	Approved Small-Molecule ATP-Competitive Kinases Drugs Containing Indole/Azaindole/Oxindole Scaffolds: R&D and Binding Patterns Profiling. Molecules, 2023, 28, 943.	1.7	3
1538	Computational assessment of chemicals from <i>Morinda citrifolia</i> as potential inhibitors of B-Raf kinase in hepatocellular carcinoma treatment. Journal of Biomolecular Structure and Dynamics, 2023, 41, 13271-13286.	2.0	1
1539	Design, synthesis, anticancer and <i>in silico</i> assessment of 8-caffeinyl-triazolylmethoxy hybrid conjugates. RSC Advances, 2023, 13, 3056-3070.	1.7	1
1540	Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4-b]indol-3-one Derivatives as Potent Inhibitors of EGFRT790M/BRAFV600E Pathways. Molecules, 2023, 28, 1269.	1.7	7
1542	Virtual screening, pharmacokinetic, and DFT studies of anticancer compounds as potential kinase inhibitors. Journal of Taibah University Medical Sciences, 2023, 18, 933-946.	0.5	3
1543	New flavone-based arylamides as potential V600E-BRAF inhibitors: Molecular docking, DFT, and pharmacokinetic properties. Journal of Taibah University Medical Sciences, 2023, 18, 1000-1010.	0.5	1
1544	Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open, 2023, 8, 100788.	2.0	22
1545	Design, synthesis, docking and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. Arabian Journal of Chemistry, 2023, 16, 104612.	2.3	8
1546	BRAF Immunohistochemical Studies of Pediatric Conjunctival Lesions. Cornea, 2022, Publish Ahead of Print, .	0.9	0

#	Article	IF	CITATIONS
1547	Establishment of a <scp>BRAF V595E</scp> â€mutant canine prostate cancer cell line and the antitumor effects of <scp>MEK</scp> inhibitors against canine prostate cancer. Veterinary and Comparative Oncology, 2023, 21, 221-230.	0.8	1
1548	In-Situ versatile characterization and manipulation toward Amorphous-to-Crystalline phase transition via nanoparticles strategy for organic luminescent materials and its applications. Chemical Engineering Journal, 2023, 460, 141828.	6.6	2
1549	SB202190 Predicts BRAF-Activating Mutations in Primary Colorectal Cancer Organoids via Erk1-2 Modulation. Cells, 2023, 12, 664.	1.8	3
1550	Design, synthesis and characterisation of a novel type II B-RAF paradox breaker inhibitor. European Journal of Medicinal Chemistry, 2023, 250, 115231.	2.6	1
1551	Differential Chemoproteomics Reveals MARK2/3 as Cell Migrationâ€Relevant Targets of the ALK Inhibitor Brigatinib. ChemBioChem, 2023, 24, .	1.3	2
1552	Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases. Journal of Chemical Information and Modeling, 2023, 63, 2483-2494.	2.5	3
1553	Target Hyperactive ERK Signaling for Cancer Therapy. , 2023, , 1-39.		0
1554	Targeted therapy. , 2023, , 205-411.		0
1562	New small molecules in dermatology: for the autoimmunity, inflammation and beyond. Inflammation Research, 2023, 72, 1257-1274.	1.6	2
1564	Integrated pharmacokinetic/pharmacodynamic/efficacy analysis in oncology: importance of pharmacodynamic/efficacy relationships. , 2023, , 305-315.		0
1592	Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
1600	BRAF — a tumour-agnostic drug target with lineage-specific dependencies. Nature Reviews Clinical Oncology, 2024, 21, 224-247.	12.5	1