High-speed graphene transistors with a self-aligned nar

Nature

467, 305-308

DOI: 10.1038/nature09405

Citation Report

#	Article	IF	CITATIONS
2	60ÂGHz current gain cut-off frequency graphene nanoribbon FET. International Journal of Microwave and Wireless Technologies, 2010, 2, 441-444.	1.9	3
3	Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides. Nano Letters, 2010, 10, 4559-4565.	9.1	190
4	Aspects of the theory of graphene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5525-5556.	3.4	27
5	Self-consistent simulation of array-based CNFETs: Impact of tube pitch on RF performance., 2010,,.		7
6	Electronic properties of nanosize GNRs: The role of the anchoring groups. , 2010, , .		0
7	Tunable transmission Gap in graphene p-n junction. , 2011, , .		O
8	Synthesis and electric properties of dicobalt silicide nanobelts. Chemical Communications, 2011, 47, 1255-1257.	4.1	15
9	Even-odd symmetry and the conversion efficiency of ideal and practical graphene transistor frequency multipliers. Applied Physics Letters, 2011, 99, .	3.3	18
10	Coplanar waveguide on graphene in the range 40 MHz–110 GHz. Applied Physics Letters, 2011, 99, .	3.3	48
11	Electronic properties of nanosize GNRs: The role of the anchoring groups. , 2011, , .		O
12	$110\mathrm{GHz}$ measurement of large-area graphene integrated in low-loss microwave structures. Applied Physics Letters, $2011, 99, .$	3.3	96
13	Top-Gated Chemical Vapor Deposition Grown Graphene Transistors with Current Saturation. Nano Letters, 2011, 11, 2555-2559.	9.1	88
14	Epitaxial Graphene Transistors: Enhancing Performance via Hydrogen Intercalation. Nano Letters, 2011, 11, 3875-3880.	9.1	150
15	Ultralow Secondary Electron Emission of Graphene. ACS Nano, 2011, 5, 1047-1055.	14.6	72
16	Aligned Circular-Type Nanowire Transistors Grown on Multilayer Graphene Film. Journal of Physical Chemistry C, 2011, 115, 22163-22167.	3.1	4
17	The 2010 Nobel Prize in physics—ground-breaking experiments on graphene. Journal Physics D: Applied Physics, 2011, 44, 473001.	2.8	50
18	Graphene: Its Fundamentals to Future Applications. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2702-2708.	4.6	81

#	Article	IF	Citations
20	Negative Differential Resistance in Mono and Bilayer Graphene p-n Junctions. IEEE Electron Device Letters, 2011, 32, 1334-1336.	3.9	37
21	Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules. Physical Review B, 2011, 83, .	3.2	67
22	Graphene microwave transistors on sapphire substrates. Applied Physics Letters, 2011, 99, 113502.	3.3	42
23	Top-Gated Graphene Field-Effect Transistors with High Normalized Transconductance and Designable Dirac Point Voltage. ACS Nano, 2011, 5, 5031-5037.	14.6	96
24	Effects of Nanoscale Contacts to Graphene. IEEE Electron Device Letters, 2011, 32, 1035-1037.	3.9	30
25	BN/Graphene/BN Transistors for RF Applications. IEEE Electron Device Letters, 2011, 32, 1209-1211.	3.9	179
26	Hierarchical graphene nanocones over 3D platform of carbon fabrics: A route towards fully foldable graphene based electron source. Nanoscale, 2011, 3, 4135.	5.6	35
27	Epitaxially Integrating Ferromagnetic Fe $<$ sub $>$ 1.3 $<$ /sub $>$ Ge Nanowire Arrays on Few-Layer Graphene. Journal of Physical Chemistry Letters, 2011, 2, 956-960.	4.6	17
28	Impact of contact resistance on the transconductance and linearity of graphene transistors. Applied Physics Letters, 2011, 98, .	3.3	64
29	Large peak-to-valley ratio of negative-differential-conductance in graphene p-n junctions. Journal of Applied Physics, 2011, 109, 093706.	2.5	22
30	Ultimate RF Performance Potential of Carbon Electronics. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2739-2750.	4.6	107
31	<i>Ab initio</i> calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics, 2011, 135, 064707.	3.0	78
32	Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping. Nano Letters, 2011, 11, 4759-4763.	9.1	142
33	In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Applied Physics Letters, 2011, 99, .	3.3	74
34	Synthesis and Characterization of Manganese-Rich Silicide (\hat{l}_{\pm} -Mn ₅ Si ₃ ,) Tj ETQq0 0 0 rg 3848-3853.	gBT /Overl 6.7	lock 10 Tf 50 30
35	Self-Aligned Coupled Nanowire Transistor. ACS Nano, 2011, 5, 6910-6915.	14.6	12
36	Field-Emission Mechanism of Island-Shaped Graphene–BN Nanocomposite. Journal of Physical Chemistry C, 2011, 115, 9471-9476.	3.1	15
37	On the physisorption of water on graphene: a CCSD(T) study. Physical Chemistry Chemical Physics, 2011, 13, 12041.	2.8	172

#	ARTICLE	IF	CITATIONS
38	Nanometer-Scale Oxide Thin Film Transistor with Potential for High-Density Image Sensor Applications. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1-6.	8.0	70
39	Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires. ACS Nano, 2011, 5, 5006-5014.	14.6	29
40	Band structure and optical absorption in multilayer armchair graphene nanoribbons: A Pariser-Parr-Pople model study. Physical Review B, 2011, 84, .	3.2	16
41	A role for graphene in silicon-based semiconductor devices. Nature, 2011, 479, 338-344.	27.8	667
42	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	12.6	812
43	Graphene Flash Memory. ACS Nano, 2011, 5, 7812-7817.	14.6	232
44	Enhanced Transport and Transistor Performance with Oxide Seeded High- \hat{l}^2 Gate Dielectrics on Wafer-Scale Epitaxial Graphene. Nano Letters, 2011, 11, 3601-3607.	9.1	104
45	Simulation of graphene nanoscale RF transistors including scattering and generation/recombination mechanisms. , $2011, , .$		7
46	Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology. IEEE Electron Device Letters, 2011, 32, 1343-1345.	3.9	80
47	Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Currentâ°'Voltage Measurements. Nano Letters, 2011, 11, 1093-1097.	9.1	135
48	A 4″ wafer photostepper-based carbon nanotube FET technology for RF applications. , 2011, , .		10
49	High efficiency switching using graphene based electron "optics― Applied Physics Letters, 2011, 99, 123101.	3.3	42
50	Toward Local Growth of Individual Nanowires on Three-Dimensional Microstructures by Using a Minimally Invasive Catalyst Templating Method. Nano Letters, 2011, 11, 4213-4217.	9.1	23
51	Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photonics, 2011, 5, 748-752.	31.4	145
52	Graphene: Status and prospects as a microwave material. , 2011, , .		1
53	Aspectos quirales del grafeno. Ingeniare, 2011, 19, 67-75.	0.3	3
54	It's still all about graphene. Nature Materials, 2011, 10, 1-1.	27.5	51
55	Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6, 147-150.	31.5	12,612

#	Article	IF	CITATIONS
56	Flat transistors get off the ground. Nature Nanotechnology, 2011, 6, 135-136.	31.5	58
57	High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472, 74-78.	27.8	813
58	A graphene-based broadband optical modulator. Nature, 2011, 474, 64-67.	27.8	2,956
59	Industry-compatible graphene transistors. Nature, 2011, 472, 41-42.	27.8	87
60	DIY eye. Nature, 2011, 472, 42-43.	27.8	22
61	RF Performance Potential of Array-Based Carbon-Nanotube Transistors—Part I: Intrinsic Results. IEEE Transactions on Electron Devices, 2011, 58, 1928-1940.	3.0	14
62	RF Performance Potential of Array-Based Carbon-Nanotube Transistorsâ€"Part II: Extrinsic Results. IEEE Transactions on Electron Devices, 2011, 58, 1941-1951.	3.0	14
63	Mechanistic Investigation of the Growth of Fe _{1â^'<i>x</i>} Co _{<i>x</i>} Si (0 â%ÞTj ETQq1	. 1 0.7843 14.6	314 rgBT /0 28
64	Mobility Improvement and Microwave Characterization of a Graphene Field Effect Transistor With Silicon Nitride Gate Dielectrics. IEEE Electron Device Letters, 2011, 32, 871-873.	3.9	12
65	Epitaxial graphene three-terminal junctions. Applied Physics Letters, 2011, 99, .	3.3	19
66	Thinking outside the silicon box. Nature Nanotechnology, 2011, 6, 464-465.	31.5	83
67	Modeling of the steady state characteristics of large-area graphene field-effect transistors. Journal of Applied Physics, 2011, 110, .	2.5	38
68	Explicit Drain-Current Model of Graphene Field-Effect Transistors Targeting Analog and Radio-Frequency Applications. IEEE Transactions on Electron Devices, 2011, 58, 4049-4052.	3.0	97
69	Explicit Drain Current, Charge and Capacitance Model of Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2011, 58, 4377-4383.	3.0	55
70	Integrated Circuits and Logic Operations Based on Single-Layer MoS ₂ . ACS Nano, 2011, 5, 9934-9938.	14.6	1,196
71	Optical Control of Edge Chirality in Graphene. Nano Letters, 2011, 11, 4874-4878.	9.1	45
72	Plasmon resonance enhanced multicolour photodetection by graphene. Nature Communications, 2011, 2, 579.	12.8	639
73	New directions in science and technology: two-dimensional crystals. Reports on Progress in Physics, 2011, 74, 082501.	20.1	206

#	Article	IF	Citations
74	Contact resistance in top-gated graphene field-effect transistors. Applied Physics Letters, 2011, 99, .	3.3	72
75	Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Research, 2011, 4, 571-579.	10.4	51
76	Surface potentials of few-layer graphene films in high vacuum and ambient conditions. Solid State Communications, 2011, 151, 818-821.	1.9	15
77	The influence of high dielectric constant aluminum oxide sputter deposition on the structure and properties of multilayer epitaxial graphene. Nanotechnology, 2011, 22, 205703.	2.6	14
78	Edge shape effect on vibrational modes in graphene nanoribbons: A numerical study. Journal of Applied Physics, $2011,109,$.	2.5	33
79	Graphene nanogap for gate-tunable quantum-coherent single-molecule electronics. Physical Review B, 2011, 84, .	3.2	25
80	Molecular beam epitaxy approach to the graphitization of GaAs(100) surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 03C103.	1.2	1
81	Highâ€Resolution Tipâ€Enhanced Raman Mapping. Macromolecular Symposia, 2011, 305, 26-42.	0.7	7
82	Local electrical stress-induced doping and formation of monolayer graphene P-N junction. Applied Physics Letters, 2011, 98, 243105.	3.3	19
83	Gate-controlled conductance through bilayer graphene ribbons. Physical Review B, 2011, 83, .	3.2	31
84	Model of Nonuniform Channel for the Charge Carrier Transport in Nanoscale FETs. Advanced Materials Research, 0, 276, 59-65.	0.3	0
85	DNA computes a square root. Nature Nanotechnology, 2011, 6, 465-467.	31.5	23
86	Reviews of Science for Science Librarians: Graphene. Science and Technology Libraries, 2011, 30, 132-142.	1.8	3
87	InMnAs magnetoresistive spin-diode logic. , 2012, , .		5
88	Monte Carlo Simulations of High-Carrier-Velocity Acceleration in Graphene Field-Effect Transistors by Local Channel Width Modulation. Applied Physics Express, 2012, 5, 045102.	2.4	2
89	Collision Energy Dependence of Defect Formation in Graphene. Chinese Physics Letters, 2012, 29, 076101.	3.3	8
90	Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors. Chinese Physics Letters, 2012, 29, 057302.	3.3	4
91	Synthesis, electromechanical characterization, and applications of graphene nanostructures. Journal of Nanophotonics, 2012, 6, 064501.	1.0	10

#	Article	IF	Citations
92	Resonantly pumped 1645 \hat{l} 4m high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber. Optics Letters, 2012, 37, 632.	3.3	52
93	Graphene-based polymer waveguide polarizer. Optics Express, 2012, 20, 3556.	3.4	124
94	Graphene on SiC as a Q-switcher for a 2Âνm laser. Optics Letters, 2012, 37, 395.	3.3	104
95	Epitaxial Graphene on Si(111) Substrate Grown by Annealing 3C-SiC/Carbonized Silicon. Japanese Journal of Applied Physics, 2012, 51, 01AH05.	1.5	6
96	Electric-field-induced band gap of bilayer graphene in ionic liquid. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	16
97	Scalable fabrication of high performance graphene FETs with self-aligned buried gates. , 2012, , .		1
98	A Low-Output-Noise Multistage Shift Register Using Tin Dioxide Nanowire Transistors. IEEE Electron Device Letters, 2012, 33, 1411-1413.	3.9	0
99	Mechanism of near-field Raman enhancement in two-dimensional systems. Physical Review B, 2012, 85, .	3.2	52
100	Electrical Characterization of Bilayer Graphene Formed by Hydrogen Intercalation of Monolayer Graphene on SiC(0001). Japanese Journal of Applied Physics, 2012, 51, 02BN02.	1.5	17
101	Local charge transfer doping in suspended graphene nanojunctions. Applied Physics Letters, 2012, 100, 023306.	3.3	3
102	Near-edge x-ray absorption fine structure spectroscopy studies of charge redistribution at graphene/dielectric interfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 041205.	1.2	13
103	Exploiting carbon flatland. Nature Materials, 2012, 11, 2-5.	27.5	24
104	Exploring carrier transport phenomena in a CVD-assembled graphene FET on hexagonal boron nitride. Nanotechnology, 2012, 23, 125706.	2.6	28
105	Experimental Review of Graphene. , 2012, 2012, 1-56.		404
106	Synthesis of diamond-like carbon films on Si substrates by photoemission-assisted plasma-enhanced chemical vapor deposition. Thin Solid Films, 2012, 523, 25-28.	1.8	10
107	A dual-amplification aptasensor for highly sensitive detection of thrombin based on the functionalized graphene-Pd nanoparticles composites and the hemin/G-quadruplex. Analytica Chimica Acta, 2012, 755, 46-53.	5.4	34
108	Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 2012, 3, 763.	12.8	806
109	Science and Engineering Beyond Moore's Law. Proceedings of the IEEE, 2012, 100, 1720-1749.	21.3	220

#	Article	IF	CITATIONS
110	Selective Gas Sensing with a Single Pristine Graphene Transistor. Nano Letters, 2012, 12, 2294-2298.	9.1	361
111	Current Saturation and Voltage Gain in Bilayer Graphene Field Effect Transistors. Nano Letters, 2012, 12, 1324-1328.	9.1	111
112	Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Physical Review B, 2012 , 86 , .	3.2	87
113	Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Applied Physics Letters, 2012, 101, .	3.3	28
114	Graphene-Based Frequency Tripler. Nano Letters, 2012, 12, 2067-2070.	9.1	38
115	Quantum Capacitance in Topological Insulators. Scientific Reports, 2012, 2, 669.	3.3	25
116	Graphene applications in electronics and photonics. MRS Bulletin, 2012, 37, 1225-1234.	3. 5	186
117	Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Communications, 2012, 3, 1280.	12.8	97
118	Subcell dispersive finite-difference time-domain schemes for infinite graphene-based structures. IET Microwaves, Antennas and Propagation, 2012, 6, 377.	1.4	10
119	Structured epitaxial graphene: growth and properties. Journal Physics D: Applied Physics, 2012, 45, 154010.	2.8	36
120	Lithographically Defined Three-Dimensional Graphene Structures. ACS Nano, 2012, 6, 3573-3579.	14.6	152
121	Direct Synthesis of Graphene on SiO ₂ Substrates by Transfer-Free Processes. Japanese Journal of Applied Physics, 2012, 51, 06FD12.	1.5	22
122	Carbonaceous field effect transistor with graphene and diamondlike carbon. Diamond and Related Materials, 2012, 22, 118-123.	3.9	21
123	Growth and electronic transport properties of epitaxial graphene on SiC. Journal Physics D: Applied Physics, 2012, 45, 154008.	2.8	38
124	Temperature-dependent electron transport in ZnO micro/nanowires. Journal of Applied Physics, 2012, 112, .	2.5	13
125	Simulation study of channel mobility and device performance dependence on gate stack in graphene field-effect transistors. Applied Physics Letters, 2012, 100, 112104.	3.3	10
126	Unipolar to ambipolar conversion in graphene field-effect transistors. Applied Physics Letters, 2012, 101, .	3.3	17
127	Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy. Nano Letters, 2012, 12, 551-555.	9.1	161

#	Article	IF	Citations
128	Self-Assembly of Cobalt-Phthalocyanine Molecules on Epitaxial Graphene on Ir(111). Journal of Physical Chemistry C, 2012, 116, 20433-20437.	3.1	74
129	A Subharmonic Graphene FET Mixer. IEEE Electron Device Letters, 2012, 33, 71-73.	3.9	87
130	Insights on radio frequency bilayer graphene FETs., 2012,,.		15
131	An overview on the state-of-the-art of Carbon-based radio-frequency electronics. , 2012, , .		6
132	Robust Electronic Properties of Sealed Graphene for Electronic Applications. Journal of Physical Chemistry C, 2012, 116, 8027-8033.	3.1	6
133	Graphene-diamond interface: Gap opening and electronic spin injection. Physical Review B, 2012, 85, .	3.2	95
134	Device concepts using two-dimensional electronic materials: Graphene, MoS <inf>2</inf> , etc., 2012,,.		1
135	High Performance RF FETs Using High-k Dielectrics on Wafer-Scale Quasi-Free-Standing Epitaxial Graphene. Materials Science Forum, 2012, 717-720, 669-674.	0.3	0
136	Horizontally aligned ZnO nanowire transistors using patterned graphene thin films. Applied Physics Letters, 2012, 100, 063112.	3.3	18
137	Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co. Physical Review X, 2012, 2, .	8.9	57
138	Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Letters, 2012, 12, 678-682.	9.1	131
139	Three-Gigahertz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency. IEEE Nanotechnology Magazine, 2012, 11, 877-883.	2.0	61
140	Molecular dynamics modeling and simulations to understand gate-tunable graphene-nanoribbon-resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 45, 194-200.	2.7	23
141	Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology, 2012, 23, 285705.	2.6	34
142	Graphene review: An emerging RF technology. , 2012, , .		4
143	Self-Aligned, Extremely High Frequency III–V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates. Nano Letters, 2012, 12, 4140-4145.	9.1	73
144	Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Letters, 2012, 33, 17-19.	3.9	76
145	Graphene field-effect transistors with self-aligned spin-on-doping of source/drain access regions. , 2012, , .		0

#	Article	IF	CITATIONS
146	The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75, 062501.	20.1	475
147	Flexible and transparent all-graphene circuits for quaternary digital modulations. Nature Communications, 2012, 3, 1018.	12.8	87
148	On the Voltage Gain of Complementary Graphene Voltage Amplifiers With Optimized Doping. IEEE Electron Device Letters, 2012, 33, 1462-1464.	3.9	9
149	Emerging photoluminescence in azo-pyridine intercalated graphene oxide layers. Nanoscale, 2012, 4, 6562.	5.6	47
150	All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters, 2012, 12, 3472-3476.	9.1	225
151	A roadmap for graphene. Nature, 2012, 490, 192-200.	27.8	8,011
152	Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties. Applied Surface Science, 2012, 258, 5299-5303.	6.1	45
153	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	21.0	718
154	Metal oxide nanowire transistors. Journal of Materials Chemistry, 2012, 22, 13428.	6.7	45
155	Characteristic Variations of Graphene Field-Effect Transistors Induced by CF\$_{4}\$ Gas. Japanese Journal of Applied Physics, 2012, 51, 081301.	1.5	0
156	Biomimetic graphene films and their properties. Nanoscale, 2012, 4, 4858.	5.6	84
157	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	12.6	2,268
158	Domain Wall Motion in Synthetic Co ₂ Si Nanowires. Nano Letters, 2012, 12, 1972-1976.	9.1	17
159	Fabrication and ab initio study of downscaled graphene nanoelectronic devices. , 2012, , .		0
160	Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. ACS Nano, 2012, 6, 6984-6989.	14.6	199
161	Side-gate graphene field-effect transistors with high transconductance. Applied Physics Letters, 2012, 101, 093504.	3.3	29
162	HALF-METALLIC SILICENE AND GERMANENE NANORIBBONS: TOWARDS HIGH-PERFORMANCE SPINTRONICS DEVICE. Nano, 2012, 07, 1250037.	1.0	105
163	Alternative State Variables for Graphene Transistors. , 2012, , 93-111.		0

#	Article	lF	Citations
164	Graphene and Carbon Nanotube Applications in Mobile Devices. IEEE Transactions on Electron Devices, 2012, 59, 2876-2887.	3.0	14
165	Theory of graphene-field effect transistors. , 2012, , .		4
166	A computational study of high-frequency behavior of graphene field-effect transistors. Journal of Applied Physics, 2012, 111, 094313.	2.5	15
167	Contact length scaling in graphene field-effect transistors. Applied Physics Letters, 2012, 100, 103501.	3.3	32
168	Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions. Applied Physics Letters, 2012, 101, .	3.3	25
169	Graphene-based FETs., 2012, , .		4
170	Hot Phonon Dynamics in Graphene. Nano Letters, 2012, 12, 5495-5499.	9.1	66
171	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	5.6	135
172	The enhanced optical conductivity for zigzag-edge graphene nanoribbons with applied gate voltage. Applied Physics Letters, 2012, 100, 103101.	3.3	11
173	Graphene for radio frequency electronics. Materials Today, 2012, 15, 328-338.	14.2	112
174	Molecular dynamics study on vibrational properties of graphene nanoribbon resonator under tensile loading. Computational Materials Science, 2012, 65, 216-220.	3.0	19
175	Optimizing the fabrication process for high performance graphene field effect transistors. Microelectronics Reliability, 2012, 52, 1602-1605.	1.7	15
176	Graphene Electronics for RF Applications. IEEE Microwave Magazine, 2012, 13, 114-125.	0.8	39
177	<i>Ab initio</i> characterization of graphene nanoribbons and their polymer precursors. Journal of Physics Condensed Matter, 2012, 24, 104023.	1.8	3
178	Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical Society, 2012, 134, 4393-4397.	13.7	565
179	A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. Journal of Materials Chemistry, 2012, 22, 1498-1503.	6.7	76
180	A Communication Theoretical Modeling of Single-Layer Graphene Photodetectors and Efficient Multireceiver Diversity Combining. IEEE Nanotechnology Magazine, 2012, 11, 601-610.	2.0	14
181	Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 2012, 111, .	2.5	13

#	Article	IF	CITATIONS
182	Biomimetic Peptide Nanosensors. Accounts of Chemical Research, 2012, 45, 696-704.	15.6	96
183	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22
184	Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, T146, 014006.	2.5	258
185	A Spin-Diode Logic Family. IEEE Nanotechnology Magazine, 2012, 11, 1026-1032.	2.0	28
186	Microwave measurements and systematic circuit-model extraction of nanowire metal semiconductor field-effect transistors. Measurement Science and Technology, 2012, 23, 105602.	2.6	1
187	Self-Aligned Fabrication of Graphene RF Transistors with T-Shaped Gate. ACS Nano, 2012, 6, 3371-3376.	14.6	66
188	Stacked Graphene-Al ₂ O ₃ Nanopore Sensors for Sensitive Detection of DNA and DNA–Protein Complexes. ACS Nano, 2012, 6, 441-450.	14.6	189
189	Graphene on different substrates for sensing applications. , 2012, , .		2
190	Folded graphene nanoribbons with single and double closed edges. Physical Review B, 2012, 85, .	3.2	15
191	The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. Journal of Research of the National Institute of Standards and Technology, 2012, 117, 1.	1.2	63
192	Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 2012, 336, 1140-1143.	12.6	862
193	Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano, 2012, 6, 3677-3694.	14.6	1,749
194	Vertical Graphene Base Transistor. IEEE Electron Device Letters, 2012, 33, 691-693.	3.9	141
195	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	9.1	371
196	Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale, High-Performance Devices. ACS Nano, 2012, 6, 5234-5241.	14.6	124
197	Graphene Field-Effect Transistors on Undoped Semiconductor Substrates for Radiation Detection. IEEE Nanotechnology Magazine, 2012, 11, 581-587.	2.0	34
198	Quantum Behavior of Graphene Transistors near the Scaling Limit. Nano Letters, 2012, 12, 1417-1423.	9.1	77
199	Structure and Electronic Transport in Graphene Wrinkles. Nano Letters, 2012, 12, 3431-3436.	9.1	540

#	Article	IF	CITATIONS
200	Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Letters, 2012, 12, 1184-1188.	9.1	133
201	An exactly solvable model for the graphene transistor in the quantum capacitance limit. Applied Physics Letters, 2012, 101, 053501.	3.3	27
202	Graphene-based photonic devices for soft hybrid optoelectronic systems. Nanotechnology, 2012, 23, 344005.	2.6	15
203	Engineering the Electronic Structure of Graphene. Advanced Materials, 2012, 24, 4055-4069.	21.0	141
205	Grapheneâ€Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3822-3825.	13.8	309
206	Three-Terminal Graphene Negative Differential Resistance Devices. ACS Nano, 2012, 6, 2610-2616.	14.6	153
207	A Large-Signal Graphene FET Model. IEEE Transactions on Electron Devices, 2012, 59, 968-975.	3.0	115
208	Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities. Chemical Reviews, 2012, 112, 4770-4799.	47.7	266
209	Scalable Fabrication of Self-Aligned Graphene Transistors and Circuits on Glass. Nano Letters, 2012, 12, 2653-2657.	9.1	74
210	Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Applied Physics Letters, 2012, 100, .	3.3	515
211	High-frequency self-aligned graphene transistors with transferred gate stacks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11588-11592.	7.1	312
212	Top-gated graphene field-effect transistors on SiC substrates. Science Bulletin, 2012, 57, 2401-2403.	1.7	5
213	Graphene: synthesis and applications. Materials Today, 2012, 15, 86-97.	14.2	798
214	Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 2012, 78, 209-218.	2.6	196
215	A physics-based, small-signal model for graphene field effect transistors. Solid-State Electronics, 2012, 67, 53-62.	1.4	18
216	Scanning probe microscopy of graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 743-759.	2.7	30
217	Delay Analysis of Graphene Field-Effect Transistors. IEEE Electron Device Letters, 2012, 33, 324-326.	3.9	26
218	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	21.0	228

#	Article	IF	CITATIONS
219	Probing into the metal-graphene interface by electron transport measurements. Applied Physics Letters, $2013,102,$	3.3	12
220	Coupled Electro–Thermal Simulation for Self-Heating Effects in Graphene Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2598-2603.	3.0	5
221	Large Current Modulation and Spin-Dependent Tunneling of Vertical Graphene/MoS ₂ Heterostructures. ACS Nano, 2013, 7, 7021-7027.	14.6	88
222	Self-Induced Gate Dielectric for Graphene Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6443-6446.	8.0	8
223	Graphene nanoelectromechanical systems. Proceedings of the IEEE, 2013, 101, 1766-1779.	21.3	119
225	Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications. Proceedings of the IEEE, 2013, 101, 1670-1688.	21.3	29
226	Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceramics International, 2013, 39, 6215-6221.	4.8	307
227	25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano, 2013, 7, 7744-7750.	14.6	127
228	Graphene Base Transistors: A Simulation Study of DC and Small-Signal Operation. IEEE Transactions on Electron Devices, 2013, 60, 3584-3591.	3.0	23
229	Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films. Carbon, 2013, 65, 349-358.	10.3	59
230	Graphene nano-ribbon field-effect transistors as future low-power devices. , 2013, , .		19
231	Contact-Induced Negative Differential Resistance in Short-Channel Graphene FETs. IEEE Transactions on Electron Devices, 2013, 60, 140-146.	3.0	23
234	High performance thin film electronics based on inorganic nanostructures and composites. Nano Today, 2013, 8, 514-530.	11.9	33
235	Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 2013, 7, 8350-8357.	14.6	49
236	Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnology, 2013, 8, 952-958.	31.5	1,017
237	Atomic-layer triangular WSe ₂ sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013, 24, 465705.	2.6	120
238	Graphene applications in electronic and optoelectronic devices and circuits. Chinese Physics B, 2013, 22, 098106.	1.4	58
239	Stability analysis of a back-gate graphene transistor in air environment. Journal of Semiconductors, 2013, 34, 084004.	3.7	6

#	Article	IF	CITATIONS
240	Benchmarking of GFET devices for amplifier application using multiscale simulation approach. Journal of Computational Electronics, 2013, 12, 692-700.	2.5	7
241	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	1.4	32
242	Region-Selective Self-Assembly of Functionalized Carbon Allotropes from Solution. ACS Nano, 2013, 7, 11427-11434.	14.6	21
243	Subâ€10 nm Graphene Nanoribbon Array Fieldâ€Effect Transistors Fabricated by Block Copolymer Lithography. Advanced Materials, 2013, 25, 4723-4728.	21.0	150
244	A floating gate graphene FET complementary inverter with symmetrical transfer characteristics. , 2013, , .		2
245	Effect of dual gate control on the alternating current performance of graphene radio frequency device. Journal of Applied Physics, 2013, 114, 044307.	2.5	5
246	Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy and Environmental Science, 2013, 6, 3483.	30.8	480
247	High Throughput Ultralong (20 cm) Nanowire Fabrication Using a Wafer-Scale Nanograting Template. Nano Letters, 2013, 13, 3978-3984.	9.1	38
248	Resorcinol-functionalized carbon nanoparticles with a stick-out nanostructure for stable hydrogen bonding with polyester microfibers. RSC Advances, 2013, 3, 19440.	3.6	1
249	Flexible electrostatic nanogenerator using graphene oxide film. Nanoscale, 2013, 5, 8951.	5.6	80
250	A quantum statistical model for graphene FETs on SiC. Physica Status Solidi (B): Basic Research, 2013, 250, 1857-1863.	1.5	0
251	Graphene based field effect transistors: Efforts made towards flexible electronics. Solid-State Electronics, 2013, 89, 177-188.	1.4	85
252	Atomically thin two-dimensional materials for functional electrodes of electrochemical devices. lonics, 2013, 19, 825-865.	2.4	33
253	Thin dielectric films grown by atomic layer deposition: Properties and applications. , 2013, , .		0
254	Defect assessment and leakage control in atomic layer deposited Al <inf>2</inf> O <inf>3</inf> and HfO <inf>2</inf> dielectrics., 2013,,.		0
255	Chemically Tuning Mechanics of Graphene by BN. Advanced Engineering Materials, 2013, 15, 718-727.	3.5	32
256	Heavily p-type doped chemical vapor deposition graphene field-effect transistor with current saturation. Applied Physics Letters, 2013, 103, .	3.3	13
257	Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene. , $2013, \ldots$		0

#	ARTICLE	IF	CITATIONS
258	Zigzag graphene nanoribbons with curved edges. RSC Advances, 2013, 3, 10014.	3.6	6
259	On the growth mode of two-lobed curvilinear graphene domains at atmospheric pressure. Scientific Reports, 2013, 3, 2571.	3.3	8
260	A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Physical Chemistry Chemical Physics, 2013, 15, 2003-2011.	2.8	105
261	Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. Journal of the American Chemical Society, 2013, 135, 1524-1530.	13.7	591
262	Applications of Graphene. , 2013, , 333-437.		9
263	Going active. Nature Materials, 2013, 12, 93-94.	27.5	23
264	Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sensors and Actuators B: Chemical, 2013, 187, 45-49.	7.8	76
265	Flexible graphene bio-nanosensor for lactate. Biosensors and Bioelectronics, 2013, 41, 852-856.	10.1	88
266	A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale, 2013, 5, 890-894.	5.6	38
267	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	38.1	1,105
268	Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Materials, 2013, 12, 246-252.	27.5	812
269	Tunable transport gap in narrow bilayer graphene nanoribbons. Scientific Reports, 2013, 3, 1248.	3.3	49
271	Molecular dynamics simulation study on graphene-nanoribbon-resonators tuned by adjusting axial strain. Current Applied Physics, 2013, 13, 360-365.	2.4	23
272	Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 118-124.	2.7	18
273	Charge trapping and electrical degradation in atomic layer deposited Al2O3 films. Microelectronic Engineering, 2013, 109, 57-59.	2.4	10
274	Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors. Nano Letters, 2013, 13, 942-947.	9.1	145
275	Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano, 2013, 7, 3661-3667.	14.6	185
276	Properties of Graphene Side Gate Transistors. Materials Science Forum, 0, 740-742, 1028-1031.	0.3	5

#	Article	IF	CITATIONS
277	Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 2013, 42, 3088.	38.1	795
278	A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 2013, 4, 1539.	12.8	436
279	Strain-induced band-gap engineering of graphene monoxide and its effect on graphene. Physical Review B, 2013, 87, .	3.2	27
280	Microscopic theory of resistance anomalous temperature behavior in graphene. Europhysics Letters, 2013, 101, 47006.	2.0	3
281	Controlled functionalization of graphene oxide through surface modification with acetone. Journal of Materials Science, 2013, 48, 3436-3442.	3.7	20
282	Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosensors and Bioelectronics, 2013, 47, 45-49.	10.1	77
283	Grapheneâ€Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Advanced Functional Materials, 2013, 23, 1984-1997.	14.9	257
284	Defect induced distortion of armchair and zigzag graphene and boron nitride nanoribbons. Chemical Physics Letters, 2013, 570, 42-45.	2.6	14
285	Carbon clusters near the step of Rh surface: implication for the initial stage of graphene nucleation. European Physical Journal D, 2013, 67, 1.	1.3	6
286	Controlled Synthesis of Largeâ€Scale, Uniform, Vertically Standing Graphene for Highâ€Performance Field Emitters. Advanced Materials, 2013, 25, 250-255.	21.0	172
287	Observation of a Transient Decrease in Terahertz Conductivity of Single-Layer Graphene Induced by Ultrafast Optical Excitation. Nano Letters, 2013, 13, 524-530.	9.1	241
288	Direct-write n- and p-type graphene channel FETs. , 2013, , .		2
289	A Dual-Gate Graphene FET Model for Circuit Simulation—SPICE Implementation. IEEE Nanotechnology Magazine, 2013, 12, 427-435.	2.0	28
290	Scalable Electrical Compact Modeling for Graphene FET Transistors. IEEE Nanotechnology Magazine, 2013, 12, 539-546.	2.0	92
291	Highly conductive reduced graphene oxide produced via pressure-assisted reduction at mild temperature for flexible and transparent electrodes. Chemical Communications, 2013, 49, 4887.	4.1	26
292	Carrier sheet density constrained anomalous current saturation of graphene field effect transistors: kinks and negative differential resistances. Nanoscale, 2013, 5, 2811.	5.6	11
293	Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the IEEE, 2013, 101, 1638-1652.	21.3	46
294	Small-Signal Capacitance and Current Parameter Modeling in Large-Scale High-Frequency Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 1799-1806.	3.0	30

#	Article	IF	Citations
295	Quantitatively Enhanced Reliability and Uniformity of High- \hat{l}^2 Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers. Nano Letters, 2013, 13, 1162-1167.	9.1	67
296	Vertical Graphene-Base Hot-Electron Transistor. Nano Letters, 2013, 13, 2370-2375.	9.1	112
297	Quantum Hall effect in graphene with twisted bilayer stripe defects. Physical Review B, 2013, 87, .	3.2	21
298	Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology, 2013, 24, 205304.	2.6	59
299	Thermal transport in bent graphenenanoribbons. Nanoscale, 2013, 5, 734-743.	5.6	41
300	A General Method To Measure the Hall Effect in Nanowires: Examples of FeS ₂ and MnSi. Nano Letters, 2013, 13, 2704-2709.	9.1	37
301	Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches. Physical Review B, 2013, 87, .	3.2	37
302	Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 2013, 101, 1567-1584.	21.3	392
303	Bioinspired prospects of graphene: from biosensing to energy. Journal of Materials Chemistry B, 2013, 1, 3521.	5.8	26
304	Carbon-Based Nanomaterials From a Historical Perspective. Proceedings of the IEEE, 2013, 101, 1522-1535.	21.3	56
305	Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation. Scientific Reports, 2013, 3, 1314.	3.3	98
306	Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol. Journal of Physical Chemistry C, 2013, 117, 10755-10763.	3.1	92
307	Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High-k Dielectrics on Graphene. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11515-11519.	8.0	31
308	Combining Axial and Radial Nanowire Heterostructures: Radial Esaki Diodes and Tunnel Field-Effect Transistors. Nano Letters, 2013, 13, 5919-5924.	9.1	69
309	Graphene-Base Heterojunction Transistor: An Attractive Device for Terahertz Operation. IEEE Transactions on Electron Devices, 2013, 60, 4263-4268.	3.0	39
310	THERMOELECTRIC AND THERMOMAGNETIC PROPERTIES OF GRAPHENE IN THE PRESENCE OF DIFFERENT SCATTERING PROCESSES. Modern Physics Letters B, 2013, 27, 1350060.	1.9	4
311	Schottky-barrier-type Graphene Nano-Ribbon Field-Effect Transistors: A study on compact modeling, process variation, and circuit performance., 2013,,.		17
312	Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview. IEEE Journal of the Electron Devices Society, 2013, 1, 9-20.	2.1	82

#	Article	IF	CITATIONS
313	Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013, 101, 1620-1637.	21.3	104
314	Carbon Nanotube Based Multifunctional Ambipolar Transistors for AC Applications. Advanced Functional Materials, 2013, 23, 446-450.	14.9	11
315	Integration of graphene into thin film transistors. Materials Technology, 2013, 28, 175-180.	3.0	6
316	Graphene-Si heterogeneous nanotechnology. , 2013, , .		0
317	Inkjet Printing of Radio Frequency Electronics: Design Methodologies and Application of Novel Nanotechnologies. Journal of Electronic Packaging, Transactions of the ASME, 2013, 135, .	1.8	6
318	Transfer-free fabrication of graphene field effect transistor arrays using solid-phase growth of graphene on a SiO2/Si substrate. Applied Physics Letters, 2013, 103, .	3.3	18
319	(Invited) Novel Graphene Devices. ECS Transactions, 2013, 58, 73-77.	0.5	0
320	Josephson Coupling Realized in Graphite-Based Vertical Junction. Applied Physics Express, 2013, 6, 025102.	2.4	4
321	Contact resistance in graphene channel transistors. Carbon Letters, 2013, 14, 162-170.	5.9	37
322	Multifinger Embedded T-Shaped Gate Graphene RF Transistors With High $f_{max}/f_{T}\$ Ratio. IEEE Electron Device Letters, 2013, 34, 1340-1342.	3.9	19
323	Coulomb blockade effect of molecularly suspended graphene nanoribbons investigated with scanning tunneling microscopy. Physical Review B, 2013, 88, .	3.2	2
324	Blistering of atomic layer deposition Al2O3 layers grown on silicon and its effect on metal–insulator–semiconductor structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	23
325	Graphene on boron nitride microwave transistors driven by graphene nanoribbon back-gates. Applied Physics Letters, 2013, 102, .	3.3	9
326	Gate modulation on angle-resolved photoabsorption spectra of zigzag-edge graphene nanoribbons. Journal of Applied Physics, 2013, 113, 103510.	2.5	3
327	Theory of carrier density in multigated doped graphene sheets with quantum correction. Physical Review B, 2013, 87, .	3.2	21
328	Self-aligned, direct-write graphene channel FETs. , 2013, , .		1
329	Fabrication of Highly Transparent Nanowire Transistors with One-Step-Processed Graphene Gateâ€"Sourceâ€"Drain Electrodes. Applied Physics Express, 2013, 6, 055103.	2.4	2
330	Position-Controlled Direct Graphene Synthesis on Silicon Oxide Surfaces Using Laser Irradiation. Applied Physics Express, 2013, 6, 105101.	2.4	13

#	Article	IF	CITATIONS
331	Control of Highly Organized Nanostructures in Microchannels Using Nanoliter Droplets. , 2013, , .		0
332	Diffusion coefficient, correlation function, and power spectral density of velocity fluctuations in monolayer graphene. Journal of Applied Physics, 2013, 114, .	2.5	36
333	Integrated Ring Oscillators based on high-performance Graphene Inverters. Scientific Reports, 2013, 3, 2592.	3.3	32
334	Carbon Nanowall Field Effect Transistors Using a Self-Aligned Growth Process. E-Journal of Surface Science and Nanotechnology, 2014, 12, 225-229.	0.4	5
335	Dynamical processes of low-energy carbon ion collision with the graphene supported by diamond. EPJ Applied Physics, 2014, 67, 30402.	0.7	1
336	Quantum simulation study of double gate hetero gate dielectric and LDD doping graphene nanoribbon p–i–n tunneling FETs. Journal of Semiconductors, 2014, 35, 064006.	3.7	3
337	Radio-frequency transistors from millimeter-scale graphene domains. Chinese Physics B, 2014, 23, 117201.	1.4	7
338	Structural features of epitaxial graphene on SiC {0 0 0 1} surfaces. Journal Physics D: Applied Physics 2014, 47, 094017.	^S 2.8	34
339	Scalability of the Channel Capacity in Graphene-enabled Wireless Communications to the Nanoscale. IEEE Transactions on Communications, 2014, , $1-1$.	7.8	13
340	Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons. Chinese Physics B, 2014, 23, 067305.	1.4	7
341	Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Research, 2014, 7, 1691-1698.	10.4	20
342	Raman spectral mapping of self-aligned carbon nanowalls. Japanese Journal of Applied Physics, 2014, 53, 05FD10.	1.5	4
343	Effect of surface oxidation on transport properties in graphene–metal junctions. Japanese Journal of Applied Physics, 2014, 53, 05FD07.	1.5	1
344	Stability and electronic properties of hexagonal boron nitride monolayer with irregular graphene domains embedded. Modern Physics Letters B, 2014, 28, 1450144.	1.9	4
345	The Problem of Scale in Electric Metrology of Nanostructures in the Context of the New SI Redefinition of the Base Electric Unit. Acta Physica Polonica A, 2014, 125, 3-12.	0.5	0
346	Graphene-Based Nanoresonator with Applications in Optical Transistor and Mass Sensing. Sensors, 2014, 14, 16740-16753.	3.8	15
347	The investigation of field emission properties of defective graphene-carbon nanotube composite. International Journal of Materials and Structural Integrity, 2014, 8, 243.	0.1	4
348	Qualitative assessment of epitaxial graphene FETs on SiC substrates via pulsed measurements and temperature variation. , 2014 , , .		1

#	Article	IF	CITATIONS
349	Improvement of graphene field-effect transistors by hexamethyldisilazane surface treatment. Applied Physics Letters, 2014, 105, 033117.	3.3	18
350	Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications. Applied Physics Letters, 2014, 104, .	3.3	4
351	Two-dimensional semiconductors with possible high room temperature mobility. Nano Research, 2014, 7, 1731-1737.	10.4	634
352	Local and Nonlocal Optically Induced Transparency Effects in Graphene–Silicon Hybrid Nanophotonic Integrated Circuits. ACS Nano, 2014, 8, 11386-11393.	14.6	55
353	Scalable Fabrication of Ambipolar Transistors and Radioâ€Frequency Circuits Using Aligned Carbon Nanotube Arrays. Advanced Materials, 2014, 26, 645-652.	21.0	30
354	Graphene-based photonic waveguide devices. Proceedings of SPIE, 2014, , .	0.8	2
355	New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnology, Science and Applications, 2014, 7, 1.	4.6	241
356	Graphene inductors for high-frequency applications - design, fabrication, characterization, and study of skin effect. , 2014, , .		11
357	Novel graphene FETs with field-controlling electrodes to improve RF performance. , 2014, , .		0
358	Transport properties of rippled graphene. Journal of Physics Condensed Matter, 2014, 26, 135303.	1.8	13
359	Wettability of graphene-laminated micropillar structures. Journal of Applied Physics, 2014, 116, .	2.5	7
360	Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric. Journal of Semiconductors, 2014, 35, 074006.	3.7	2
361	Transition from Tubes to Sheetsâ€"A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene., 2014,, 519-568.		2
362	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	19.5	398
363	Carbon Nanomaterials: A Review., 2014,, 709-769.		40
364	The Anistropy of Field Effect Mobility of CVD Graphene Grown on Copper Foil. Small, 2014, 10, 1761-1764.	10.0	27
365	Directâ€Write Complementary Graphene Field Effect Transistors and Junctions via Nearâ€Field Electrospinning. Small, 2014, 10, 1920-1925.	10.0	23
366	A graphene-based transparent electrode for use in flexible optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 2646-2656.	5.5	145

#	Article	IF	Citations
367	Simulation of the Performance of Graphene FETs With a Semiclassical Model, Including Band-to-Band Tunneling. IEEE Transactions on Electron Devices, 2014, 61, 1567-1574.	3.0	15
368	Two-dimensional semiconductor nanocrystals: new direction in science and technology. , 2014, , 139-212.		1
369	Exploiting Negative Differential Resistance in Monolayer Graphene FETs for High Voltage Gains. IEEE Transactions on Electron Devices, 2014, 61, 617-624.	3.0	13
370	Bilayer Graphene Transistors for Analog Electronics. IEEE Transactions on Electron Devices, 2014, 61, 729-733.	3.0	38
371	Impact of the Substrate Material on the RF Performance of Carbon-Nanotube Transistors. IEEE Nanotechnology Magazine, 2014, 13, 123-135.	2.0	1
372	Field controlled RF Graphene FETs with improved high frequency performance. Solid-State Electronics, 2014, 95, 36-41.	1.4	8
373	Morphology and structure of epitaxial graphene grown on 6Hâ€"SiC (0001) substrates by modified argon-assisted epitaxial method. Materials Letters, 2014, 115, 144-146.	2.6	4
374	Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications. Applied Physics Letters, 2014, 104, 013102.	3.3	18
375	Graphene radio frequency receiver integrated circuit. Nature Communications, 2014, 5, 3086.	12.8	194
376	Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations. RSC Advances, 2014, 4, 7396.	3.6	91
377	Black Phosphorus Radio-Frequency Transistors. Nano Letters, 2014, 14, 6424-6429.	9.1	307
378	Analytical Model for Inverter Design Using Floating Gate Graphene Field Effect Transistors. , 2014, , .		4
379	25th Anniversary Article: Metal Oxide Particles in Materials Science: Addressing All Length Scales. Advanced Materials, 2014, 26, 235-257.	21.0	112
380	Current induced doping in graphene-based transistor with asymmetrical contact barriers. Applied Physics Letters, 2014, 104, 083115.	3.3	6
381	Semianalytical quantum model for graphene field-effect transistors. Journal of Applied Physics, 2014, 116, .	2.5	3
382	Theoretical Prediction of Carrier Mobility in Few-Layer BC ₂ N. Journal of Physical Chemistry Letters, 2014, 5, 4073-4077.	4.6	88
383	Static Nonlinearity in Graphene Field Effect Transistors. IEEE Transactions on Electron Devices, 2014, 61, 3001-3003.	3.0	14
384	Crystal engineering of zeolites with graphene. Nanoscale, 2014, 6, 7319-7324.	5.6	16

#	Article	IF	CITATIONS
385	Temperature dependence of the field emission from monolayer graphene. , 2014, , .		0
386	Solution-processed anchoring zinc oxide quantum dots on covalently modified graphene oxide. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	3
387	Nanoelectronic circuits based on two-dimensional atomic layer crystals. Nanoscale, 2014, 6, 13283-13300.	5.6	49
388	Multilayer Graphene FET Compact Circuit-Level Model With Temperature Effects. IEEE Nanotechnology Magazine, 2014, 13, 805-813.	2.0	17
389	Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography. ACS Nano, 2014, 8, 1538-1546.	14.6	212
390	Highly Flexible Electronics from Scalable Vertical Thin Film Transistors. Nano Letters, 2014, 14, 1413-1418.	9.1	131
391	High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5, 4475.	12.8	3,568
392	Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes. Japanese Journal of Applied Physics, 2014, 53, 036506.	1.5	1
393	Enhancement of Electron–Phonon Interaction by Band-Gap Opening in Bilayer Graphene. Journal of the Physical Society of Japan, 2014, 83, 034703.	1.6	2
394	Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6, 8978-8983.	5.6	308
395	Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1289-1293.	4.6	762
396	Crack-Free Growth and Transfer of Continuous Monolayer Graphene Grown on Melted Copper. Chemistry of Materials, 2014, 26, 4984-4991.	6.7	54
397	Transport in disordered monolayer MoS ₂ nanoflakesâ€"evidence for inhomogeneous charge transport. Nanotechnology, 2014, 25, 375201.	2.6	29
398	Interface Engineering for CVD Graphene: Current Status and Progress. Small, 2014, 10, 4443-4454.	10.0	29
399	Boosting the voltage gain of graphene FETs through a differential amplifier scheme with positive feedback. Solid-State Electronics, 2014, 100, 54-60.	1.4	7
400	Low Voltage Operating Field Effect Transistors with Composite In ₂ O ₃ –ZnO–ZnGa ₂ O ₄ Nanofiber Network as Active Channel Layer. ACS Nano, 2014, 8, 2318-2327.	14.6	44
401	Current self-amplification effect of graphene-based transistor in high-field transport. Carbon, 2014, 77, 1090-1094.	10.3	10
402	Chemistry Makes Graphene beyond Graphene. Journal of the American Chemical Society, 2014, 136, 12194-12200.	13.7	235

#	Article	IF	CITATIONS
403	On Transport in Vertical Graphene Heterostructures. IEEE Electron Device Letters, 2014, 35, 966-968.	3.9	13
404	Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials, 2014, 1, 025004.	4.4	107
405	Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Communications, 2014, 5, 5143.	12.8	408
406	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	12.1	112
407	Fabrication of high-performance graphene field-effect transistor with solution-processed Al2O3 sensing membrane. Applied Physics Letters, 2014, 104, .	3.3	19
408	Gigahertz Flexible Graphene Transistors for Microwave Integrated Circuits. ACS Nano, 2014, 8, 7663-7670.	14.6	92
409	Transport Properties of Carbon Nanotubes and Graphene. , 2014, , 151-164.		3
410	A decade of graphene research: production, applications and outlook. Materials Today, 2014, 17, 426-432.	14.2	519
411	A Comprehensive Graphene FET Model for Circuit Design. IEEE Transactions on Electron Devices, 2014, 61, 1199-1206.	3.0	122
412	Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 186, 33-40.	3.5	101
413	Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles. Carbon, 2014, 68, 73-79.	10.3	16
414	Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 2014, 8, 4033-4041.	14.6	5,474
415	Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society, 2014, 2, 77-104.	2.1	25
416	Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Letters, 2014, 14, 3702-3708.	9.1	201
417	Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Current Applied Physics, 2014, 14, 1057-1062.	2.4	10
418	Optical absorption characteristics and polarization dependence of single-layer graphene on silicon waveguide. IEICE Transactions on Electronics, 2014, E97.C, 736-743.	0.6	0
420	A New Type of Self-Aligned Technology for RF and Microwave Graphene Field-Effect Transistors. Materials Science Forum, 0, 815, 36-43.	0.3	1
421	Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers. Physical Review B, 2015, 91, .	3.2	18

#	Article	IF	CITATIONS
422	Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B, 2015, 92, .	3.2	152
423	Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement. Scientific Reports, 2015, 5, 13927.	3.3	64
424	Graphene/Conjugated Polymer Nanocomposites for Optoelectronic and Biological Applications. , 2015, , 229-279.		1
425	Suppression of $1/\langle i \rangle f \langle j \rangle$ noise in near-ballistic $\langle i \rangle h \langle j \rangle BN$ -graphene- $\langle i \rangle h \langle j \rangle BN$ heterostructure field-effect transistors. Applied Physics Letters, 2015, 107, .	3.3	85
426	Short channel field-effect transistors from ultrathin GaTe nanosheets. Applied Physics Letters, 2015, 107, .	3.3	11
427	Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors. Scientific Reports, 2015, 5, 17649.	3.3	10
428	Orientation and strain modulated electronic structures in puckered arsenene nanoribbons. AIP Advances, 2015, 5, .	1.3	19
429	HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima. Journal of Applied Physics, 2015, 118, 144301.	2.5	10
430	Effect of spin-orbit coupling on spin transport at graphene/transition metal interface. Physica Status Solidi - Rapid Research Letters, 2015, 9, 544-549.	2.4	2
432	Titanium Trisulfide Monolayer: Theoretical Prediction of a New Directâ€Gap Semiconductor with High and Anisotropic Carrier Mobility. Angewandte Chemie - International Edition, 2015, 54, 7572-7576.	13.8	239
433	Synthesis and Characterization of Zinc Oxide (ZnO) Nanowire. Journal of Nanomedicine $\&$ Nanotechnology, 2015, 06, .	1.1	6
434	Electrical Compact Modeling of Graphene Base Transistors. Electronics (Switzerland), 2015, 4, 969-978.	3.1	6
435	Epitaxial growth of graphene thin film by pulsed laser deposition. Micro and Nano Letters, 2015, 10, 649-652.	1.3	5
436	Utilizing research into electrical double layers as a basis for the development of label-free biosensors based on nanomaterial transistors. Nanobiosensors in Disease Diagnosis, 2015, , 1.	0.0	8
437	First-Principles Study on Electronic and Optical Properties of Graphene-Like Boron Phosphide Sheets. Chinese Journal of Chemical Physics, 2015, 28, 588-594.	1.3	66
439	Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy, 2015, 15, 642-653.	16.0	172
440	High carrier mobility of few-layer PbX (X = S, Se, Te). Journal of Materials Chemistry C, 2015, 3, 6284-6290.	5.5	41
441	A biosensing platform for sensitive detection of concanavalin A based on fluorescence resonance energy transfer from CdTe quantum dots to graphene oxide. New Journal of Chemistry, 2015, 39, 6092-6098.	2.8	22

#	Article	IF	CITATIONS
442	Relevance of the physics of off-plane transport through 2D materials on the design of vertical transistors. , 2015, , .		2
443	Characterization and modeling of low-frequency noise in CVD-grown graphene FETs., 2015, , .		1
444	Radioâ€frequency transport Electromagnetic Properties of chemical vapour deposition graphene from direct current to 110 MHz. IET Circuits, Devices and Systems, 2015, 9, 46-51.	1.4	2
445	RF Linearity Performance Potential of Short-Channel Graphene Field-Effect Transistors. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3874-3887.	4.6	12
446	Improved device performance of solution-processed zinc–tin–oxide thin film transistor effects using graphene/Al electrode. Journal Physics D: Applied Physics, 2015, 48, 035101.	2.8	4
447	Quantum Unfolding: A program for unfolding electronic energy bands of materials. Computer Physics Communications, 2015, 189, 213-219.	7. 5	16
448	Magnetotransport across the metal–graphene hybrid interface and its modulation by gate voltage. Nanoscale, 2015, 7, 5516-5524.	5.6	5
449	Native point defects in few-layer phosphorene. Physical Review B, 2015, 91, .	3.2	104
450	Modulation of the Dirac Point Voltage of Graphene by Ion-Gel Dielectrics and Its Application to Soft Electronic Devices. ACS Nano, 2015, 9, 602-611.	14.6	28
451	Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics, 2015, 26, 4347-4379.	2.2	135
452	Ultrabroad Band Rainbow Capture and Releasing in Graded Chemical Potential Distributed Graphene Monolayer. Plasmonics, 2015, 10, 1023-1028.	3.4	6
453	Thickness Controlled Water Vapors Assisted Growth of Multilayer Graphene by Ambient Pressure Chemical Vapor Deposition. Journal of Physical Chemistry C, 2015, 119, 3079-3089.	3.1	37
454	Adhesion improvement of graphene/copper interface using UV/ozone treatments. Thin Solid Films, 2015, 584, 170-175.	1.8	28
455	Gas Adsorption and Separation in Realistic and Idealized Frameworks of Organic Pillared Graphene: A Comparative Study. Journal of Physical Chemistry C, 2015, 119, 1980-1987.	3.1	29
456	Highly air stable passivation of graphene based field effect devices. Nanoscale, 2015, 7, 3558-3564.	5.6	120
457	Multilayer Graphitic Coatings for Thermal Stabilization of Metallic Nanostructures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2987-2992.	8.0	12
458	Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 2015, 7, 6007-6013.	5.6	18
459	Atomic layer deposition of MoS ₂ thin films. Materials Research Express, 2015, 2, 035006.	1.6	67

#	Article	IF	CITATIONS
460	Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and sintering. Materials Research Bulletin, 2015, 64, 245-251.	5.2	19
461	White-light photoconductivity of N-doped graphene oxide thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 1853-1857.	2.2	1
462	The Study on the Medium-Sized Carbon Islands on Ru(0001) Surface. Journal of Cluster Science, 2015, 26, 347-360.	3.3	10
463	Versatile Compact Model for Graphene FET Targeting Reliability-Aware Circuit Design. IEEE Transactions on Electron Devices, 2015, 62, 757-763.	3.0	19
464	Frontiers of Graphene and Carbon Nanotubes. , 2015, , .		34
465	Unexpected band structure and half-metal in non-metal-doped arsenene sheet. Applied Physics Express, 2015, 8, 065202.	2.4	33
466	Observation of Ground- and Excited-State Charge Transfer at the C ₆₀ /Graphene Interface. ACS Nano, 2015, 9, 7175-7185.	14.6	69
467	Optical properties of chiral graphene nanoribbons: a first principle study. Optical and Quantum Electronics, 2015, 47, 3289-3300.	3.3	14
468	The influence of edge defects on the electrical and thermal transport of graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 363-370.	2.7	7
469	Graphene base heterojunction transistor: An explorative study on device potential, optimization, and base parasitics. Solid-State Electronics, 2015, 114, 23-29.	1.4	7
470	Multifunctional nanocomposites reinforced with carbon nanopapers. , 2015, , 371-399.		0
471	Effects of stacking order, layer number and external electric field on electronic structures of few-layer C ₂ N-h2D. Nanoscale, 2015, 7, 14062-14070.	5.6	177
472	Tunable Fermi level and hedgehog spin texture in gapped graphene. Nature Communications, 2015, 6, 7610.	12.8	48
473	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Research, 2015, 8, 2850-2858.	10.4	34
474	Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons. Composite Structures, 2015, 133, 522-528.	5.8	28
475	Unusual spin correlations in a nanomagnet. Applied Physics Letters, 2015, 106, .	3.3	24
476	Multi-positively charged dendrimeric nanoparticles induced fluorescence quenching of graphene quantum dots for heparin and chondroitin sulfate detection. Biosensors and Bioelectronics, 2015, 74, 284-290.	10.1	45
477	Realization of Vertically Aligned, Ultrahigh Aspect Ratio InAsSb Nanowires on Graphite. Nano Letters, 2015, 15, 4348-4355.	9.1	37

#	Article	IF	CITATIONS
478	Chemical doping of MoS ₂ multilayer by p-toluene sulfonic acid. Science and Technology of Advanced Materials, 2015, 16, 035009.	6.1	46
479	Graphene heals thy cracks. Computational Materials Science, 2015, 109, 84-89.	3.0	12
480	Graphene mobility mapping. Scientific Reports, 2015, 5, 12305.	3.3	89
481	First-principle study on the optical response of phosphorene. Frontiers of Physics, 2015, 10, 1-9.	5.0	28
482	Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7, 8261-8283.	5.6	552
483	Up-Scaling Graphene Electronics by Reproducible Metal–Graphene Contacts. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 9429-9435.	8.0	35
484	Encapsulated graphene field-effect transistors for air stable operation. Applied Physics Letters, 2015, 106, .	3.3	35
485	Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. Journal of Materials Science, 2015, 50, 5348-5361.	3.7	36
486	All-Graphene Three-Terminal-Junction Field-Effect Devices as Rectifiers and Inverters. ACS Nano, 2015, 9, 5666-5674.	14.6	14
487	Nanostructured two-dimensional materials. , 2015, , 477-524.		0
488	Experimental analysis of the high-order harmonic components generation in few-layer graphene. Applied Physics A: Materials Science and Processing, 2015, 118, 83-89.	2.3	13
489	An organic photovoltaic featuring graphene nanoribbons. Chemical Communications, 2015, 51, 9185-9188.	4.1	17
490	Transient dynamics of magnetic Co–graphene systems. Nanoscale, 2015, 7, 10030-10038.	5.6	12
491	Terahertz conductivity characterization of nanostructured graphene-like films for optoelectronic applications. Journal of Nanophotonics, 2015, 9, 093598.	1.0	9
492	Grapheneâ€Skeleton Heatâ€Coordinated and Nanoamorphousâ€Surfaceâ€State Controlled Pseudoâ€Negativeâ€Photoconductivity of Tiny SnO ₂ Nanoparticles. Advanced Materials, 2015, 27, 3525-3532.	21.0	35
493	Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics. IEEE Journal of the Electron Devices Society, 2015, 3, 44-48.	2.1	69
494	Towards amplifier design with a SiC graphene field-effect transistor. , 2015, , .		9
495	Strain filter with gate control in a gapped graphene junction. Superlattices and Microstructures, 2015, 85, 716-721.	3.1	9

#	Article	IF	Citations
496	Generation of fully spin-polarized currents in three-terminal graphene-based transistors. RSC Advances, 2015, 5, 87411-87415.	3.6	12
497	A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7, 20249-20255.	5.6	99
498	Effect of source-gate spacing on direct current and radio frequency characteristic of graphene field effect transistor. Applied Physics Letters, 2015, 106, .	3.3	11
499	Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory. Applied Physics Letters, 2015, 106, .	3.3	13
500	Two-Dimensional Atomic Crystals: Paving New Ways for Nanoelectronics. Journal of Electronic Materials, 2015, 44, 4080-4097.	2.2	6
501	Overview of carbon-based circuits and systems. , 2015, , .		1
502	A high energy output nanogenerator based on reduced graphene oxide. Nanoscale, 2015, 7, 18147-18151.	5.6	23
503	Properties of Self-Aligned Short-Channel Graphene Field-Effect Transistors Based on Boron-Nitride-Dielectric Encapsulation and Edge Contacts. IEEE Transactions on Electron Devices, 2015, 62, 4322-4326.	3.0	19
504	ZnO quantum dots and graphene based heterostructure for excellent photoelastic and highly sensitive ultraviolet photodetector. RSC Advances, 2015, 5, 90838-90846.	3.6	23
505	Photochemical doping of graphene oxide thin film with nitrogen for photoconductivity enhancement. Carbon, 2015, 94, 1037-1043.	10.3	10
506	3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Science Bulletin, 2015, 60, 1426-1433.	9.0	47
507	First-principles study of the alkali earth metal atoms adsorption on graphene. Applied Surface Science, 2015, 356, 668-673.	6.1	90
508	Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. ACS Nano, 2015, 9, 9034-9042.	14.6	56
509	Negative differential resistance in graphene nanoribbon superlattice fieldâ€effect transistors. Micro and Nano Letters, 2015, 10, 400-403.	1.3	9
510	Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. ACS Nano, 2015, 9, 9236-9243.	14.6	138
511	Electrochemical Potential Stabilization of Reconstructed Au(111) Structure by Monolayer Coverage with Graphene. Journal of Physical Chemistry Letters, 2015, 6, 3403-3409.	4.6	21
512	Unique electron transport in ultrathin black phosphorene: Ab-initio study. Applied Surface Science, 2015, 356, 881-887.	6.1	33
513	Efficient manipulation of graphene absorption by a simple dielectric cylinder. Optics Express, 2015, 23, 18975.	3.4	13

#	Article	IF	CITATIONS
514	Two-Dimensional van der Waals Epitaxy Kinetics in a Three-Dimensional Perovskite Halide. Crystal Growth and Design, 2015, 15, 4741-4749.	3.0	128
515	Position-dependent mechanical responses of nanoindented graphene nanoribbons: Molecular dynamics study. Journal of the Korean Physical Society, 2015, 67, 625-633.	0.7	2
516	An Accurate Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs. IEEE Transactions on Electron Devices, 2015, 62, 4333-4339.	3.0	20
517	Graphene modulation channel-width field effect transistors enabling high carrier velocity acceleration and bandgap introduction. Applied Physics Express, 2015, 8, 115102.	2.4	2
518	Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures. Journal of Physical Chemistry C, 2015, 119, 27749-27758.	3.1	33
519	The study of interaction and charge transfer at black phosphorus–metal interfaces. Journal Physics D: Applied Physics, 2015, 48, 445101.	2.8	12
520	Modeling Radiation-Induced Scattering in Graphene. IEEE Transactions on Nuclear Science, 2015, 62, 2906-2911.	2.0	6
521	Performance improvement of multilayer InSe transistors with optimized metal contacts. Physical Chemistry Chemical Physics, 2015, 17, 3653-3658.	2.8	110
522	Large Area Growth and Electrical Properties of p-Type WSe ₂ Atomic Layers. Nano Letters, 2015, 15, 709-713.	9.1	372
523	The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon, 2015, 82, 500-505.	10.3	57
524	High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios. Small, 2015, 11, 936-942.	10.0	166
525	Cathodoluminescence and Photoconductive Characteristics of Singleâ€Crystal Ternary CdS/CdSe/CdS Biaxial Nanobelts. Small, 2015, 11, 1531-1536.	10.0	14
526	Edge contacts of graphene formed by using a controlled plasma treatment. Nanoscale, 2015, 7, 825-831.	5.6	52
527	Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Scientific Reports, 2015, 4, 6607.	3.3	29
528	Floating Gate Memory-based Monolayer MoS ₂ Transistor with Metal Nanocrystals Embedded in the Gate Dielectrics. Small, 2015, 11, 208-213.	10.0	102
529	Twoâ€Dimensional Soft Nanomaterials: A Fascinating World of Materials. Advanced Materials, 2015, 27, 403-427.	21.0	437
530	All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes. Scientific Reports, 2014, 4, 3983.	3.3	42
531	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452

#	Article	IF	CITATIONS
532	Photonic Structure-Integrated Two-Dimensional Material Optoelectronics. Electronics (Switzerland), 2016, 5, 93.	3.1	19
533	Top-gated graphene field-effect transistors by low-temperature synthesized SiN _x insulator on SiC substrates. Japanese Journal of Applied Physics, 2016, 55, 06GF09.	1.5	3
534	Development of Nano-Carbon Biosensors Using Glycan for Host Range Detection of Influenza Virus. Condensed Matter, 2016, $1, 7$.	1.8	6
535	Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature. Materials, 2016, 9, 716.	2.9	133
537	Effect of Siâ€"Si Bonds in Silicon-Doped α-Phosphorene Bilayers: Two-Dimensional Layers and One-Dimensional Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 17106-17114.	3.1	5
538	Noise temperature in graphene at high frequencies. Semiconductor Science and Technology, 2016, 31, 075001.	2.0	5
539	Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles. Chinese Physics B, 2016, 25, 057803.	1.4	10
540	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for Highâ€Performance 2D Field Effect Transistors. Advanced Materials, 2016, 28, 2062-2069.	21.0	65
541	Large-scale synthesis of WSe2 atomic layers on SiO2/Si. Modern Physics Letters B, 2016, 30, 1650267.	1.9	3
542	In Situ Synthesis and Characterization of Poly(aryleneethynylene)â€Grafted Reduced Graphene Oxide. Chemistry - A European Journal, 2016, 22, 2247-2252.	3.3	14
543	Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device. Scientific Reports, 2016, 6, 22379.	3.3	7
544	Theoretical impurity-limited carrier mobility of monolayer black phosphorus. Applied Physics Letters, 2016, 108, .	3.3	14
545	An analytical approach for modelling of a top gated graphene based MOSFET., 2016,,.		2
546	Theoretical Study of Carrier Mobility in Two-Dimensional Tetragonal Carbon Allotrope from Porous Graphene. Chinese Physics Letters, 2016, 33, 083101.	3.3	6
547	The study of ambipolar behavior in phosphorene field-effect transistors. Journal of Applied Physics, 2016, 120, .	2.5	8
548	Transport Phenomenon in Boron–GroupV Linear Atomic Chains Under Tensile Stress for Nanoscale Devices and Interconnects: First Principles Analysis. IEEE Transactions on Electron Devices, 2016, 63, 4899-4906.	3.0	8
549	Effect of vacuum thermal annealing to encapsulated graphene field effect transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041805.	1.2	7
550	Design, analysis and performance comparison of GNRFET based 8-bit ALUs. , 2016, , .		2

#	ARTICLE	IF	Citations
551	Compact model for switching characteristics of graphene field effect transistor. AIP Conference Proceedings, 2016 , , .	0.4	4
552	Coexistence of negative photoconductivity and hysteresis in semiconducting graphene. AIP Advances, 2016, 6, .	1.3	14
553	Planar cold cathode based on a multilayer-graphene/SiO2/Si heterodevice. Applied Physics Express, 2016, 9, 105101.	2.4	5
554	Graphene grown out of diamond. Applied Physics Letters, 2016, 109, 162105.	3.3	16
555	An electrically tunable plasmonic optical modulator with high modulation depth based on graphene-wrapped silver nanowire. Journal of Optics (United Kingdom), 2016, 18, 125007.	2.2	8
556	High-performance self-aligned graphene transistors fabricated using contamination- and defect-free process. Japanese Journal of Applied Physics, 2016, 55, 06GF11.	1.5	1
557	Scanning microwave microscope imaging of micro-patterned monolayer graphene grown by chemical vapor deposition. Applied Physics Letters, 2016, 108, 053101.	3.3	6
558	Design, analysis and performance comparison of GNRFET based adiabatic 8-bit ALU., 2016, , .		3
559	Self-healing phenomena of graphene: potential and applications. Open Physics, 2016, 14, 364-370.	1.7	17
560	Fluorometric detection of tyrosine and cysteine using graphene quantum dots. RSC Advances, 2016, 6, 33197-33204.	3.6	25
561	Large Work Function Modulation of Monolayer MoS ₂ by Ambient Gases. ACS Nano, 2016, 10, 6100-6107.	14.6	188
562	Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology, 2016, 27, 274001.	2.6	85
563	Time-dependent simulation of particle and displacement currents in THz graphene transistors. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 054019.	2.3	5
564	Transport conductivity of graphene at RF and microwave frequencies. 2D Materials, 2016, 3, 015010.	4.4	39
565	Versatile Fabrication of Self-Aligned Nanoscale Hall Devices Using Nanowire Masks. Nano Letters, 2016, 16, 3109-3115.	9.1	4
566	Electron channeling in TiO ₂ coated Cu layers. Semiconductor Science and Technology, 2016, 31, 055005.	2.0	38
567	GRAPHENE DEVICES FOR HIGH-FREQUENCY ELECTRONICS AND THz TECHNOLOGY., 2016,, 167-188.		1
568	Improved performance of a MnO ₂ @PANI nanocomposite synthesized on 3D graphene as a binder free electrode for supercapacitors. RSC Advances, 2016, 6, 46100-46107.	3.6	24

#	Article	IF	CITATIONS
569	Effect of alkyl functionalization on thermal conductivity of graphene oxide nanosheets: a molecular dynamics study. Journal of Materials Science, 2016, 51, 6824-6835.	3.7	17
570	Tunable Color in 2,6-Diaminopyridine-Functionalized Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 11085-11091.	3.1	16
571	Analysis of graphene field effect transistor based current mirrors. , 2016, , .		1
572	Direct growth of multilayer graphene by precipitation using W capping layer. Japanese Journal of Applied Physics, 2016, 55, 100302.	1.5	18
573	A graphene-like Mg ₃ N ₂ monolayer: high stability, desirable direct band gap and promising carrier mobility. Physical Chemistry Chemical Physics, 2016, 18, 30379-30384.	2.8	29
574	An Ultra-Short Channel Monolayer MoS ₂ FET Defined By the Curvature of a Thin Nanowire. IEEE Electron Device Letters, 2016, 37, 1497-1500.	3.9	31
575	2D Boron Nitride. Semiconductors and Semimetals, 2016, 95, 101-147.	0.7	74
576	Vertical MoS 2 / h BN/MoS 2 interlayer tunneling field effect transistor. Solid-State Electronics, 2016, 126, 96-103.	1.4	21
577	Magneto-optical transport properties of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>:ma.2<td>nl:81&ub></td></td></mml:mn></mml:msub></mml:math>	:m a.2 <td>nl:81&ub></td>	nl:81&ub>
579	A theoretical study on monoatomic BN nanochains and nanorings. Journal of Molecular Modeling, 2016, 22, 205.	1.8	3
580	Theory of the Structural, Electronic and Transport Properties of Graphene., 2016,, 19-52.		5
581	Polymer Devices with Graphene: Solar Cells and Ultracapacitors. , 2016, , 209-226.		1
582	Strain Effect on the Electronic Spectrum of Graphene. , 2016, , 41-54.		0
583	Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe ₂ Nanosheets. ACS Nano, 2016, 10, 8067-8077.	14.6	276
584	Epitaxial Graphene: Progress on Synthesis and Device Integration. Series in Materials Science and Engineering, 2016, , 37-52.	0.1	0
585	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. Nano Letters, 2016, 16, 6337-6342.	9.1	117
586	Synthesis of a highly efficient 3D graphene–CNT–MnO ₂ –PANI nanocomposite as a binder free electrode material for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 26854-26864.	2.8	25
587	Seed/Catalyst Free Growth and Self-Powered Photoresponse of Vertically Aligned ZnO Nanorods on Reduced Graphene Oxide Nanosheets. Crystal Growth and Design, 2016, 16, 4831-4838.	3.0	29

#	Article	IF	CITATIONS
588	Ab initio study of carrier mobility of few-layer InSe. Applied Physics Express, 2016, 9, 035203.	2.4	79
589	Spin- and valley-polarized transport in a monolayer ofMoS2. Physical Review B, 2016, 94, .	3.2	22
590	Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax. Scientific Reports, 2016, 6, 35717.	3.3	26
591	Impact of Contact Resistance on the fT and fmax of Graphene vs. MoS2 Transistors. IEEE Nanotechnology Magazine, 2016, , 1-1.	2.0	9
592	Enhancing Photoresponsivity of Self-Aligned MoS ₂ Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. ACS Nano, 2016, 10, 7451-7457.	14.6	86
593	A review of 2D-based counter electrodes applied in solar-assisted devices. Coordination Chemistry Reviews, 2016, 324, 54-81.	18.8	28
594	Thickness and Stacking Dependent Polarizability and Dielectric Constant of Graphene–Hexagonal Boron Nitride Composite Stacks. Journal of Physical Chemistry C, 2016, 120, 17620-17626.	3.1	37
595	Effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons. Physical Review B, 2016, 94, .	3.2	34
596	Van der Waals heterostructures and devices. Nature Reviews Materials, 2016, 1, .	48.7	1,897
597	Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016, 1, .	48.7	1,020
598			
	Valley-engineered ultra-thin silicon for high-performance junctionless transistors. Scientific Reports, 2016, 6, 29354.	3.3	2
599	7 0044 4 000 0	3.3	0
599 600	Reports, 2016, 6, 29354. Graphane/fully hydrogenated h-BN bilayer: Marvellous dihydrogen bonding and effective band	3.3	
	Reports, 2016, 6, 29354. Graphane/fully hydrogenated h-BN bilayer: Marvellous dihydrogen bonding and effective band structure engineering., 2016, , .		0
600	Reports, 2016, 6, 29354. Graphane/fully hydrogenated h-BN bilayer: Marvellous dihydrogen bonding and effective band structure engineering., 2016, , . Coalescence of Immiscible Liquid Metal Drop on Graphene. Scientific Reports, 2016, 6, 34074. Electronic properties of mutually embedded h-BN and graphene: A first principles study. Chemical	3.3	34
600	Reports, 2016, 6, 29354. Graphane/fully hydrogenated h-BN bilayer: Marvellous dihydrogen bonding and effective band structure engineering., 2016, ,. Coalescence of Immiscible Liquid Metal Drop on Graphene. Scientific Reports, 2016, 6, 34074. Electronic properties of mutually embedded h-BN and graphene: A first principles study. Chemical Physics Letters, 2016, 666, 33-37. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors.	3.3	0 34 11
600 601 602	Reports, 2016, 6, 29354. Graphane/fully hydrogenated h-BN bilayer: Marvellous dihydrogen bonding and effective band structure engineering., 2016, ,. Coalescence of Immiscible Liquid Metal Drop on Graphene. Scientific Reports, 2016, 6, 34074. Electronic properties of mutually embedded h-BN and graphene: A first principles study. Chemical Physics Letters, 2016, 666, 33-37. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors. Scientific Reports, 2016, 6, 25392.	3.3 2.6 3.3	0 34 11 12

#	Article	IF	Citations
606	Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale. Nature Communications, 2016, 7, 12099.	12.8	70
608	Lowâ€Voltage Complementary Electronics from Ionâ€Gelâ€Gated Vertical Van der Waals Heterostructures. Advanced Materials, 2016, 28, 3742-3748.	21.0	91
609	Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control. Physical Chemistry Chemical Physics, 2016, 18, 16386-16395.	2.8	41
610	Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials, 2016, 3, 025036.	4.4	30
611	A Honeycomb BeN ₂ Sheet with a Desirable Direct Band Gap and High Carrier Mobility. Journal of Physical Chemistry Letters, 2016, 7, 2664-2670.	4.6	100
612	Vacancy-induced spin polarization in graphene and B–N nanoribbon heterojunctions. RSC Advances, 2016, 6, 56429-56434.	3.6	5
613	Advances in graphene-based optoelectronics, plasmonics and photonics. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 013002.	1.5	22
614	Preparation of Cellulose/Graphene Nanocomposites. , 2016, , 179-192.		0
615	Mechanical Stabilities and Properties of Graphene and Its Modification by BN Predicted from First-Principles Calculations., 2016,, 79-92.		0
616	Engineering of the electronic structure of graphene monoxide by out of plane and in-plane strains investigated by DFT. Computational and Theoretical Chemistry, 2016, 1090, 34-40.	2.5	2
617	Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core–Shells on Nanosheets: Co@CoO _{<i>x</i>} @Carbon-rGO Composites for Enhanced Hydrogen Generation Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15430-15438.	8.0	53
618	Ultra-thin Graphitic Film: Synthesis and Physical Properties. Nanoscale Research Letters, 2016, 11, 54.	5.7	15
619	Two-dimensional BX ($X = P$, As, Sb) semiconductors with mobilities approaching graphene. Nanoscale, 2016, 8, 13407-13413.	5.6	122
620	Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electronic Materials Letters, 2016, 12, 1-16.	2.2	67
621	Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 614-620.	2.1	26
622	Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12.	3.1	12
623	Transparent megahertz circuits from solution-processed composite thin films. Nanoscale, 2016, 8, 7978-7983.	5.6	3
624	Polystyrene nanoparticles enhance photo responsivity of graphene photodetector. Optical Materials Express, 2016, 6, 296.	3.0	3

#	Article	IF	Citations
625	Symmetric complementary logic inverter using integrated black phosphorus and MoS ₂ transistors. 2D Materials, 2016, 3, 011006.	4.4	49
626	A circuit model for defective bilayer graphene transistors. Solid-State Electronics, 2016, 119, 33-38.	1.4	1
627	Theoretical and Experimental Investigation of Graphene/High-k/p-Si Junctions. IEEE Electron Device Letters, 2016, 37, 4-7.	3.9	5
628	Al ₂ C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity. Journal of Physical Chemistry Letters, 2016, 7, 302-307.	4.6	30
629	Detecting Electric Dipoles Interaction at the Interface of Ferroelectric and Electrolyte Using Graphene Field Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4244-4252.	8.0	16
630	Monoatomic aluminum nitride nanochains and nanorings: DFT studies. Vacuum, 2017, 136, 40-45.	3.5	1
631	First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS ₂ . Journal of Physics Condensed Matter, 2017, 29, 095702.	1.8	14
632	Graphene: Nanostructure engineering and applications. Frontiers of Physics, 2017, 12, 1.	5.0	26
633	Finding Stable Graphene Conformations from Pull and Release Experiments with Molecular Dynamics. Scientific Reports, 2017, 7, 42356.	3.3	12
634	Thermally Evaporated SiO Serving as Gate Dielectric in Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 1846-1850.	3.0	9
635	Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 2017, 27, 1605271.	14.9	247
636	Loading the Antenna Gap with Two-Dimensional Electron Gas Transistors: A Versatile Approach for the Rectification of Free-Space Radiation. ACS Photonics, 2017, 4, 837-845.	6.6	2
637	Light–matter interaction of 2D materials: Physics and device applications. Chinese Physics B, 2017, 26, 036802.	1.4	21
638	Electronic and transport behavior of doped armchair silicene nanoribbons exhibiting negative differential resistance and its FET performance. RSC Advances, 2017, 7, 12783-12792.	3.6	29
639	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 4554-4559.	13.8	38
640	Charge injection in large area multilayer graphene by ambient Kelvin probe force microscopy. Applied Materials Today, 2017, 8, 18-25.	4.3	11
641	Ambipolar Barristors for Reconfigurable Logic Circuits. Nano Letters, 2017, 17, 1448-1454.	9.1	29
642	Theoretical perspective on structural, electronic and magnetic properties of 3d metal tetraoxide clusters embedded into single and di-vacancy graphene. Applied Surface Science, 2017, 408, 21-33.	6.1	37

#	Article	IF	CITATIONS
643	Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots. Physical Review B, 2017, 95, .	3.2	7
644	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie, 2017, 129, 4625-4630.	2.0	4
645	Negative differential resistance and bias-modulated metal-to-insulator transition in zigzag C2N-h2D nanoribbon. Scientific Reports, 2017, 7, 43922.	3.3	6
646	Identification of strained black phosphorous by Raman spectroscopy. Journal of Semiconductors, 2017, 38, 042003.	3.7	1
647	Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe. Scientific Reports, 2017, 7, 45869.	3.3	17
648	A balance equations approach for the study of the dynamic response and electronic noise in graphene. Journal of Applied Physics, 2017, 121, .	2.5	2
649	Tunable gap opening and spin polarization of two dimensional graphene/hafnene van der Waals heterostructures. Carbon, 2017, 120, 121-127.	10.3	32
650	A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25.	4.4	55
651	Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi―and Multilayer Graphene. Advanced Materials, 2017, 29, 1606741.	21.0	43
652	Surface chemical structure and doping characteristics of boron-doped Si nanowires fabricated by plasma doping. Applied Surface Science, 2017, 419, 1-8.	6.1	8
653	Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Frontiers of Physics, 2017, 12, 1.	5.0	1
654	Carbon nanotube radio-frequency electronics. Nanotechnology, 2017, 28, 212001.	2.6	20
655	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. Chemistry of Materials, 2017, 29, 4008-4013.	6.7	14
656	Ground-State Structure of YN ₂ Monolayer Identified by Global Search. Journal of Physical Chemistry C, 2017, 121, 10258-10264.	3.1	38
657	Role of interlayer spacing in electrical transport of bilayer graphene nanoribbon: Perpendicular and armchair direction. Superlattices and Microstructures, 2017, 101, 354-361.	3.1	3
658	A combined Monte Carlo-balance equations investigation of the high frequency response of graphene. , 2017, , .		1
659	The Effective Mass of Dirac Fermions and Spin-Dependent Thermodynamic Properties of Monolayer Ferromagnetic MoS2 in the Presence of Rashba Spin-Orbit Coupling. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3137-3141.	1.8	3
660	Short-Channel Graphene Mixer With High Linearity. IEEE Electron Device Letters, 2017, 38, 1168-1171.	3.9	21

#	Article	IF	CITATIONS
661	Evidence of electric field-tunable tunneling probability in graphene and metal contact. Nanoscale, 2017, 9, 9520-9528.	5.6	18
662	Heterodyne detection at 216, 432, and 648ÂGHz based on bilayer graphene field-effect transistor with quasi-optical coupling. Carbon, 2017, 121, 235-241.	10.3	14
663	Zeeman- and electric-field control of spin- and valley-polarized transport through biased magnetic junctions on WSe ₂ . Europhysics Letters, 2017, 118, 17001.	2.0	4
664	Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface. Applied Physics Letters, 2017, 110, 203702.	3.3	18
665	Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor. Nano Research, 2017, 10, 3476-3485.	10.4	41
666	Largeâ€Area Schottky Barrier Transistors Based on Vertically Stacked Graphene–Metal Oxide Heterostructures. Advanced Functional Materials, 2017, 27, 1700651.	14.9	26
667	The normal-auxeticity mechanical phase transition in graphene. 2D Materials, 2017, 4, 021020.	4.4	49
668	Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. Journal Physics D: Applied Physics, 2017, 50, 164001.	2.8	20
669	Single layer graphene possessing anomalous dispersion with exotic microwave transmission and dielectric properties. Journal of Alloys and Compounds, 2017, 706, 250-259.	5.5	3
670	High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide. IEEE Journal of Quantum Electronics, 2017, 53, 1-8.	1.9	26
671	Poly (ethylene imine)-modulated transport behaviors of graphene field effect transistors with double Dirac points. Journal of Applied Physics, 2017, 121, .	2.5	10
672	Design and modeling of compact phase shifter based on graphene electro-refraction effects. Journal of Applied Physics, 2017, 121, .	2.5	3
673	Enhanced performance in graphene RF transistors via advanced process integration. Semiconductor Science and Technology, 2017, 32, 045009.	2.0	3
674	Ultrabroadband Compact Graphene–Silicon TM-Pass Polarizer. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	21
675	<i>P</i> â€doping decrease and mobility increase of graphene in atmosphere. Micro and Nano Letters, 2017, 12, 20-22.	1.3	1
676	Structural and Optical Properties of Single- and Few-Layer Magnetic Semiconductor CrPS ₄ . ACS Nano, 2017, 11, 10935-10944.	14.6	85
677	Transient Carrier Cooling Enhanced by Grain Boundaries in Graphene Monolayer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41026-41033.	8.0	6
679	Spectral properties and the Kondo effect of cobalt adatoms on silicene. Physical Review B, 2017, 96, .	3.2	7

#	Article	IF	CITATIONS
680	Carrier relaxation time modelling of monolayer black phosphorene. Micro and Nano Letters, 2017, 12, 758-762.	1.3	3
681	Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters. Nanoscale, 2017, 9, 15766-15772.	5.6	13
682	Metalâ€Ionâ€Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Advanced Materials, 2017, 29, 1703811.	21.0	431
683	Insights from first principles graphene/g-C2N bilayer: gap opening, enhanced visible light response and electrical field tuning band structure. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	18
684	Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 38999-39010.	8.0	22
685	Flexible small-channel thin-film transistors by electrohydrodynamic lithography. Nanoscale, 2017, 9, 19050-19057.	5.6	36
686	Layer-controlled thinning of black phosphorus by an Ar ion beam. Journal of Materials Chemistry C, 2017, 5, 10888-10893.	5.5	9
687	Photo-induced conductivity in 2, 6-diaminopyridine functionalized graphene oxide containing Eu2+ for optoelectronic applications. Optical Materials, 2017, 73, 555-562.	3.6	10
688	Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene. Journal of Physics Condensed Matter, 2017, 29, 225303.	1.8	8
689	Carbonâ€Nanotubeâ€Confined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials, 2017, 29, 1702942.	21.0	21
690	A new two-dimensional TeSe2 semiconductor: indirect to direct band-gap transitions. Science China Materials, 2017, 60, 747-754.	6.3	20
691	Single quantum dot rectifying diode with tunable threshold voltage. Journal of Materials Chemistry C, 2017, 5, 9792-9798.	5.5	10
692	Atomic-Layer-Deposition Growth of an Ultrathin HfO ₂ Film on Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34050-34056.	8.0	42
693	First-principle calculations of structural, electronic, optical and thermal properties of hydrogenated graphene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 64-71.	3.5	24
694	Mechanical Stability Analysis via Neutral Mechanical Plane for Highâ€Performance Flexible Si Nanomembrane FDSOI Device. Advanced Materials Interfaces, 2017, 4, 1700618.	3.7	9
695	Rapid Fabrication of Graphene Field-Effect Transistors with Liquid-metal Interconnects and Electrolytic Gate Dielectric Made of Honey. Scientific Reports, 2017, 7, 10171.	3.3	18
696	Band gap opening of graphene by forming a graphene/PtSe ₂ van der Waals heterojunction. RSC Advances, 2017, 7, 45393-45399.	3.6	60
697	Graphene Klein tunnel transistors for high speed analog RF applications. Scientific Reports, 2017, 7, 9714.	3.3	13

#	Article	IF	CITATIONS
698	Raman spectra of twisted CVD bilayer graphene. Carbon, 2017, 123, 302-306.	10.3	50
699	One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS ₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & Interfaces, 2017, 9, 26357-26362.	8.0	11
700	In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope. Scientific Reports, 2017, 7, 211.	3.3	26
701	Tunable SnSe ₂ /WSe ₂ Heterostructure Tunneling Field Effect Transistor. Small, 2017, 13, 1701478.	10.0	170
702	High-frequency noise characterization of graphene field effect transistors on SiC substrates. Applied Physics Letters, 2017, 111, .	3 . 3	10
703	Graphene Nanoribbons for Electronic Devices. Annalen Der Physik, 2017, 529, 1700033.	2.4	39
704	Graphene Electronics., 0,, 159-179.		0
705	Synthesis of 2D Layered Bil ₃ Nanoplates, Bil ₃ /WSe ₂ van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. Small, 2017, 13, 1701034.	10.0	59
706	Effect of molybdenum disulfide nanoribbon on quantum transport of graphene. Journal of Physics Condensed Matter, 2017, 29, 435001.	1.8	5
707	Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nature Communications, 2017, 8, 1906.	12.8	369
708	Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite. Biomacromolecules, 2017, 18, 3978-3991.	5 . 4	19
709	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	5 . 6	120
710	The influence of strain on the energy band structures of phosphorene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2827-2831.	2.1	12
711	Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon, 2017, 123, 18-25.	10.3	20
712	Magnetic and electric control of spin- and valley-polarized transport across tunnel junctions on monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>:mn><td>ıl:³¹ub></td></td></mml:mn></mml:msub></mml:math>	:mn> <td>ıl:³¹ub></td>	ıl: ³¹ ub>
713	Assessment of High-Frequency Performance Limit of Black Phosphorus Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 2984-2991.	3.0	17
714	Theoretical prediction of thermal transport in BC 2 N monolayer. Nano Energy, 2017, 38, 249-256.	16.0	44
715	Spin-resolved quantum transport in graphene-based nanojunctions. Frontiers of Physics, 2017, 12, 1.	5.0	14

#	Article	IF	CITATIONS
716	First-principles study of nanotubes within the tetragonal, hexagonal and dodecagonal cycle structures. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 129-135.	2.7	3
717	2.5GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electronics, 2017, 127, 26-31.	1.4	14
718	Performance Limits of the Selfâ€Aligned Nanowire Topâ€Gated MoS ₂ Transistors. Advanced Functional Materials, 2017, 27, 1602250.	14.9	37
719	Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Physica Status Solidi (B): Basic Research, 2017, 254, 1600379.	1.5	43
720	Phonon Unfolding: A program for unfolding phonon dispersions of materials. Computer Physics Communications, 2017, 210, 139-144.	7. 5	13
721	Sensing at the Surface of Graphene Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1603610.	21.0	230
722	Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate. International Journal of Heat and Mass Transfer, 2017, 104, 871-877.	4.8	87
723	Bias induced ferromagnetism and half-metallicity in graphene nano-ribbons. Scientific Reports, 2017, 7, 17094.	3.3	1
724	Small-Signal Model for 2D-Material Based FETs Targeting Radio-Frequency Applications: The Importance of Considering Nonreciprocal Capacitances. IEEE Transactions on Electron Devices, 2017, 64, 4715-4723.	3.0	24
725	Multilayer graphene nanoribbon based BioFET sensor design. , 2017, , .		2
726	Oil Palm Waste-Based Precursors as a Renewable and Economical Carbon Sources for the Preparation of Reduced Graphene Oxide from Graphene Oxide. Nanomaterials, 2017, 7, 182.	4.1	58
727	An Al2O3 Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials. Nanomaterials, 2017, 7, 286.	4.1	16
728	Graphene-based Field Effect Diode. Superlattices and Microstructures, 2018, 120, 828-836.	3.1	20
729	Thermal Transport in Supported Graphene Nanomesh. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9211-9215.	8.0	16
730	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	1.5	19
731	Exchange and magnetic order in bulk and nanostructured Fe5Si3. Journal of Magnetism and Magnetic Materials, 2018, 460, 438-447.	2.3	12
732	Shell Thickness-Dependent Tunable Threshold Voltage Single Quantum Dot Rectification Diode. Journal of Physical Chemistry C, 2018, 122, 3176-3181.	3.1	0
733	Graphene Terahertz Amplitude Modulation Enhanced by Square Ring Resonant Structure. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	6

#	Article	IF	CITATIONS
734	Proximity effect induced spin filtering and gap opening in graphene by half-metallic monolayer Cr2C ferromagnet. Carbon, 2018, 132, 25-31.	10.3	39
735	Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Materials Today Chemistry, 2018, 7, 76-83.	3.5	48
736	Analog Circuit Applications Based on Ambipolar Graphene/MoTe ₂ Vertical Transistors. Advanced Electronic Materials, 2018, 4, 1700662.	5.1	26
737	Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39, 011007.	3.7	76
738	Valley dependent transport in graphene L junction. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 160-168.	2.7	7
739	Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. , 2018, , .		18
740	Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Advances, 2018, 8, 2971-2977.	3.6	30
741	EHD Equipment and Applications. , 2018, , 157-194.		1
742	Ion-Gel-Gated Graphene Optical Modulator with Hysteretic Behavior. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1836-1845.	8.0	29
743	Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure. Carbon, 2018, 129, 738-744.	10.3	47
744	Enhanced transconductance in a double-gate graphene field-effect transistor. Solid-State Electronics, 2018, 141, 65-68.	1.4	7
745	THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C, 2018, 6, 1291-1306.	5 . 5	124
746	Doped armchair germanene nanoribbon exhibiting negative differential resistance and analysing its nano-FET performance. Organic Electronics, 2018, 54, 261-269.	2.6	17
747	Tuning the Electronic and Optical Properties of Two-Dimensional Graphene-like \$\$hbox {C}_2hbox {N}\$\$ C 2 N Nanosheet by Strain Engineering. Journal of Electronic Materials, 2018, 47, 4594-4603.	2.2	15
748	Strain engineering on electronic structure and carrier mobility in monolayer GeP ₃ . Journal Physics D: Applied Physics, 2018, 51, 235302.	2.8	47
749	Adsorption of 3d transition-metal atom on InSe monolayer: A first-principles study. Computational Materials Science, 2018, 150, 33-41.	3.0	38
750	Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Communications Chemistry, 2018, 1 , .	4.5	58
751	Stacking sequences of black phosphorous allotropes and the corresponding few-layer phosphorenes. Physical Chemistry Chemical Physics, 2018, 20, 10185-10192.	2.8	8

#	Article	IF	Citations
752	How Low Nucleation Density of Graphene on CuNi Alloy is Achieved. Advanced Science, 2018, 5, 1700961.	11.2	25
753	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews, 2018, 47, 3129-3151.	38.1	132
754	Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications. International Materials Reviews, 2018, 63, 162-203.	19.3	39
755	Graphene Electronic Devices. , 2018, , 103-155.		10
756	Negative differential resistance and magnetoresistance in zigzag borophene nanoribbons. International Journal of Modern Physics B, 2018, 32, 1850033.	2.0	7
757	GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 149-153.	2.7	70
758	The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Materials, 2018, 5, 014002.	4.4	208
759	Electrical and optical transport properties of single layer WSe 2. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 184-190.	2.7	12
760	Investigation of NH 3 adsorption behavior on graphdiyne nanosheet and nanotubes: A first-principles study. Journal of Molecular Liquids, 2018, 249, 24-32.	4.9	65
761	Adsorption and diffusion on a phosphorene monolayer: a DFT study. Journal of Solid State Electrochemistry, 2018, 22, 11-16.	2.5	28
762	New Directions in Science Technologyâ€"Atomically-Thin Metal Dichalcogenides. , 2018, , 181-250.		1
763	Catalytic activity of pure Ni and Ni-33%Cu for dehydrogenation during graphene growth by chemical vapour deposition. Materials Today: Proceedings, 2018, 5, 17284-17292.	1.8	0
765	Extremely High Mobilities in Two-Dimensional Group-VA Binary Compounds with Large Conversion Efficiency for Solar Cells. Journal of Physical Chemistry C, 2018, 122, 27590-27596.	3.1	17
766	Low-frequency noise in irradiated graphene FETs. Applied Physics Letters, 2018, 113, .	3.3	6
767	Energy, Linear Momentum, and Angular Momentum ofÂLight: What Do We Measure?. Annalen Der Physik, 2018, 530, 1800111.	2.4	20
768	Interlayer-Decoupled Sc-Based Mxene with High Carrier Mobility and Strong Light-Harvesting Ability. Journal of Physical Chemistry Letters, 2018, 9, 6915-6920.	4.6	49
769	Extracting Smallâ€Signal Model Parameters of Grapheneâ€Based Fieldâ€Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800477.	1.8	4
770	Graphene-Incorporated Soft Capacitors for Mechanically Adjustable Electro-Optic Modulators. ACS Applied Materials & Discrete Applied & Discrete	8.0	9

#	Article	IF	CITATIONS
771	Electronic and optical properties of bilayer SnS with different stacking orders: A first principles study. Journal of Applied Physics, 2018, 124, .	2.5	7
772	A DFT study on the electronic and magnetic properties of triangular graphene antidot lattices. European Physical Journal B, 2018, 91, 1.	1.5	9
773	A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems. Energies, 2018, 11, 3122.	3.1	18
774	Multifunctional two-dimensional semiconductors SnP ₃ : universal mechanism of layer-dependent electronic phase transition. Journal of Physics Condensed Matter, 2018, 30, 475702.	1.8	12
775	Sub-kT/q switching in In ₂ O ₃ nanowire negative capacitance field-effect transistors. Nanoscale, 2018, 10, 19131-19139.	5.6	10
776	Recent Advances in Synthesis and Assembly of van der Waals Materials. Journal of the Korean Physical Society, 2018, 73, 805-816.	0.7	11
778	Stable GaSe-Like Phosphorus Carbide Monolayer with Tunable Electronic and Optical Properties from Ab Initio Calculations. Materials, 2018, 11, 1937.	2.9	13
779	Microwave imaging of etching-induced surface impedance modulation of graphene monolayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G508.	2.1	3
780	2-D Layered Materials for Next-Generation Electronics: Opportunities and Challenges. IEEE Transactions on Electron Devices, 2018, 65, 4109-4121.	3.0	74
781	Green synthesis of water dispersied graphene nanosheets using gamma radiation and natural capping agents. Radiation Physics and Chemistry, 2018, 153, 208-213.	2.8	4
782	Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device. Polymers, 2018, 10, 901.	4.5	22
783	A transport isolation by orbital hybridization transformation toward graphene nanoribbon-based nanostructure integration. Nanotechnology, 2018, 29, 455704.	2.6	1
784	Performance Degradation of Flexible Si Nanomembrane Transistors With Al ₂ O ₃ and SiO ₂ Dielectrics Under Mechanical Stress. IEEE Transactions on Electron Devices, 2018, 65, 3069-3072.	3.0	2
785	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	21.0	215
786	Gigahertz Integrated Circuits Based on Complementary Black Phosphorus Transistors. Advanced Electronic Materials, 2018, 4, 1800274.	5.1	23
787	Biological Self-Assembly and Recognition Used to Synthesize and Surface Guide Next Generation of Hybrid Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28372-28381.	8.0	10
788	Photonic spin Hall effect of reflected light in a prism-graphene waveguide. Superlattices and Microstructures, 2018, 122, 530-537.	3.1	7
789	How Do Contact and Channel Contribute to the Dirac Points in Graphene Fieldâ€Effect Transistors?. Advanced Electronic Materials, 2018, 4, 1800158.	5.1	18

#	Article	IF	CITATIONS
790	Manipulation of extinction features in frequency combs through the usage of graphene. Optics Express, 2018, 26, 15490.	3.4	6
791	Hybrid silicon nonlinear photonics [Invited]. Photonics Research, 2018, 6, B13.	7.0	30
792	Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 2018, 47, 6388-6409.	38.1	301
793	Density functional theory based prediction of a new two-dimensional TeSe2 semiconductor: A case study on the electronic properties. Chemical Physics Letters, 2018, 707, 160-164.	2.6	12
794	Enhanced spin polarization and valley polarization in monolayer MoS ₂ junctions. Journal of Physics Condensed Matter, 2018, 30, 355301.	1.8	12
795	Realizing Indirect-to-Direct Band Gap Transition in Few-Layer Two-Dimensional MX ₂ (M =) Tj ETQq1	1 9:78431	4 rgBT /Ove
796	Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 2018, 274, 201-209.	7.8	72
797	Collective resonances near zero energy induced by a point defect in bilayer graphene. Scientific Reports, 2018, 8, 10938.	3.3	1
798	Van der Waals Heterostructure Based Field Effect Transistor Application. Crystals, 2018, 8, 8.	2.2	24
799	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	12.2	139
800	Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials, 2018, 11, 295.	2.9	239
801	Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chemical Society Reviews, 2018, 47, 6013-6045.	38.1	121
802	Optical properties of graphene under different hydrostatic pressures. , 2018, , .		0
803	Electrical contacts and tunable rectifications in monolayer GeSe-metal junctions. Journal Physics D: Applied Physics, 2018, 51, 335104.	2.8	12
804	Multilayered graphene grafted copper wires. Carbon, 2018, 139, 666-671.	10.3	19
805	Ultrafast photocarrier dynamics in single-layer graphene driven by strong terahertz pulses. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1255.	2.1	9
806	Efficient and reliable surface charge transfer doping of black phosphorus <i>via</i> atomic layer deposited MgO toward high performance complementary circuits. Nanoscale, 2018, 10, 17007-17014.	5.6	34
807	Self-assembled KCu ₇ S ₄ nanowire monolayers for self-powered near-infrared photodetectors. Nanoscale, 2018, 10, 18502-18509.	5.6	15

#	ARTICLE	IF	CITATIONS
808	Flexible modulation of electronic and magnetic properties of zigzag H-MoS ₂ nanoribbons by crack defects. Journal of Physics Condensed Matter, 2018, 30, 285302.	1.8	3
809	Monolayer Graphene Field Effect Transistor-Based Operational Amplifier. Journal of Circuits, Systems and Computers, 2019, 28, 1950052.	1.5	7
810	Printing of Graphene and Related 2D Materials. , 2019, , .		25
811	Structures, Properties and Applications of 2D Materials. , 2019, , 19-51.		2
812	Van der Waals heterostructures for optoelectronics: Progress and prospects. Applied Materials Today, 2019, 16, 435-455.	4.3	117
813	Introduction of graphene-based nanotechnologies. , 2019, , 3-21.		4
814	Fault Modeling of Graphene Nanoribbon FET Logic Circuits. Electronics (Switzerland), 2019, 8, 851.	3.1	3
815	Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film*. Chinese Physics B, 2019, 28, 086103.	1.4	4
816	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	3.6	49
817	A numerical model of electrical characteristics for the monolayer graphene field effect transistors. EPJ Applied Physics, 2019, 86, 30101.	0.7	0
818	Ab-initio calculations of strain induced relaxed shape armchair graphene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113648.	2.7	7
819	Superior Photo-thermionic electron Emission from Illuminated Phosphorene Surface. Scientific Reports, 2019, 9, 10307.	3.3	9
820	GFET Asymmetric Transfer Response Analysis through Access Region Resistances. Nanomaterials, 2019, 9, 1027.	4.1	9
821	Room-Temperature Ferromagnetic Ultrathin α-MoO ₃ :Te Nanoflakes. ACS Nano, 2019, 13, 8717-8724.	14.6	24
822	Density functional theory insight towards high sensitivity for NO, NO2 and O2 over monolayer SnO. Materials Research Express, 2019, 6, 095078.	1.6	7
823	Grapheneâ€Based Mixedâ€Dimensional van der Waals Heterostructures for Advanced Optoelectronics. Advanced Materials, 2019, 31, e1806411.	21.0	115
824	Nanowire Electronics: From Nanoscale to Macroscale. Chemical Reviews, 2019, 119, 9074-9135.	47.7	210
825	The effect of pressure on the electronic and optical properties of hydrogenated graphene: a first-principles study. Journal of Computational Electronics, 2019, 18, 770-778.	2.5	7

#	Article	IF	CITATIONS
826	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10
827	Recent Developments in Graphene-Based Two-Dimensional Heterostructures for Sensing Applications. , 2019, , 407-436.		10
828	Influence of the vacancy-defect and transition-metal doping in arsenene: A first-principles study. Superlattices and Microstructures, 2019, 132, 106163.	3.1	13
829	All-Inkjet-Printed Vertical Heterostructure for Wafer-Scale Electronics. ACS Nano, 2019, 13, 8213-8221.	14.6	12
830	The evolution of surface cleanness and electronic properties of graphene field-effect transistors during mechanical cleaning with atomic force microscopy. Nanotechnology, 2019, 30, 394003.	2.6	6
831	Mechanical and Electrical Reliability Analysis of Flexible Si Complementary Metal-Oxide-Semiconductor Integrated Circuit. Journal of Nanoscience and Nanotechnology, 2019, 19, 6473-6480.	0.9	0
832	Reducing the power consumption of two-dimensional logic transistors. Journal of Semiconductors, 2019, 40, 091002.	3.7	12
833	Improved characteristics of MOS interface between In0.53Ga0.47As and insulator by H2 annealing with Pt gate electrode. Applied Physics Letters, 2019, 115, 143502.	3.3	6
834	Impedance Variation on Lattice Misoriented Few-Layer Graphene Via Layer Decoupling. IEEE Nanotechnology Magazine, 2019, 18, 55-61.	2.0	4
835	Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. Journal of Materials Chemistry C, 2019, 7, 13367-13383.	5.5	197
839	All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Science China Information Sciences, 2019, 62, 1.	4.3	6
840	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	11.9	33
841	The sp ² character of new two-dimensional AsB with tunable electronic properties predicted by theoretical studies. Physical Chemistry Chemical Physics, 2019, 21, 20981-20987.	2.8	5
842	Capture and dissociation of dichloromethane on Fe, Ni, Pd and Pt decorated phosphorene. Applied Surface Science, 2019, 495, 143533.	6.1	12
843	Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6336-6343.	8.0	20
844	Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications. Nanoscale, 2019, 11, 3229-3239.	5.6	53
845	High-performance field emission based on nanostructured tin selenide for nanoscale vacuum transistors. Nanoscale, 2019, 11, 3129-3137.	5.6	39
846	Spectrally Selective Shielding Material Based on Graphene Photonic Crystal. Plasmonics, 2019, 14, 1197-1205.	3.4	4

#	Article	IF	CITATIONS
847	Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene. Scientific Reports, 2019, 9, 257.	3.3	6
848	Excellent corrosion resistance of graphene coating on copper due to the low defect overlapping structure. Surface Topography: Metrology and Properties, 2019, 7, 015014.	1.6	7
849	Rational design of nanowire solar cells: from single nanowire to nanowire arrays. Nanotechnology, 2019, 30, 194002.	2.6	29
850	A novel hydrogenated boron–carbon monolayer with high stability and promising carrier mobility. Physical Chemistry Chemical Physics, 2019, 21, 2572-2577.	2.8	6
851	New Family of Two-Dimensional Group-(II ₃ â€"V ₂) Photoelectric Materials. Journal of Physical Chemistry C, 2019, 123, 16851-16856.	3.1	3
852	Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility. Journal of Physical Chemistry Letters, 2019, 10, 3773-3778.	4.6	34
853	Efficient Gate Modulation in a Screening-Engineered MoS ₂ /Single-Walled Carbon Nanotube Network Heterojunction Vertical Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25516-25523.	8.0	20
854	First-principle calculations of structural, electronic, optical and thermodynamical properties of fluorinated graphene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 246, 127-135.	3.5	19
855	Electronic Devices and Circuits Based on Waferâ€Scale Polycrystalline Monolayer MoS ₂ by Chemical Vapor Deposition. Advanced Electronic Materials, 2019, 5, 1900393.	5.1	57
856	A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting. Small, 2019, 15, e1901820.	10.0	72
857	Negative differential resistance in hybrid carbon-based structures. Physical Review B, 2019, 99, .	3.2	4
858	Chemical and structural stability of 2D layered materials. 2D Materials, 2019, 6, 042001.	4.4	94
859	First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene. Progress in Natural Science: Materials International, 2019, 29, 316-321.	4.4	12
860	Systematic first-principles study on the Ni and X (X = C, N, O, F, P, S, Cl, Se, and Te) codoped monolayer WS2 (W15Ni1S26X6). Journal of Magnetism and Magnetic Materials, 2019, 486, 165255.	2.3	5
861	Structural stability and electron density analysis of doped germanene: a first-principles study. Materials Research Express, 2019, 6, 1050c2.	1.6	12
862	High-Frequency Oscillator Based on Nano Graphene. Brazilian Journal of Physics, 2019, 49, 488-493.	1.4	2
863	The field effect behavior of graphene films in air and vacuum. AIP Conference Proceedings, 2019, , .	0.4	0
864	Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C 2 N- h 2D Electrodes. Chinese Physics Letters, 2019, 36, 047101.	3.3	2

#	Article	IF	CITATIONS
865	Nanoscale electronic devices based on transition metal dichalcogenides. 2D Materials, 2019, 6, 032004.	4.4	51
866	Exploring and suppressing the kink effect of black phosphorus field-effect transistors operating in the saturation regime. Nanoscale, 2019, 11, 10420-10428.	5.6	8
867	Advantages of a buried-gate structure for graphene field-effect transistor. Semiconductor Science and Technology, 2019, 34, 055010.	2.0	12
868	Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323-333.	27.8	946
869	Interface engineering for two-dimensional semiconductor transistors. Nano Today, 2019, 25, 122-134.	11.9	35
870	Flexible and transparent graphene complementary logic gates. Molecular Systems Design and Engineering, 2019, 4, 484-490.	3.4	6
871	Structural, electronic, magnetic, and optical properties of monolayer WS2 doped with Co-X6 (X = S, N,) Tj I	ETQq0 0 0	rgBT /Overlo
872	First principles research on the dynamic conductance and transient current of black phosphorus transistor. Journal Physics D: Applied Physics, 2019, 52, 165303.	2.8	5
873	A Novel Graphene Metal Semi-Insulator Semiconductor Transistor and Its New Super-Low Power Mechanism. Scientific Reports, 2019, 9, 3642.	3.3	4
874	Valley-dependent Lorentz force and Aharonov-Bohm phase in strained graphene pâ^'n junction. Physical Review B, 2019, 99, .	3.2	9
875	Highly Aligned Molybdenum Trioxide Nanobelts for Flexible Thin-Film Transistors and Supercapacitors: Macroscopic Assembly and Anisotropic Electrical Properties. ACS Applied Nano Materials, 2019, 2, 1466-1471.	5.0	14
876	Bi-layer Graphene: Structure, Properties, Preparation and Prospects. Current Graphene Science, 2019, 2, 97-105.	0.5	3
877	Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances, 2019, 9, 6793-6803.	3.6	103
878	Applications of Microwave Materials: A Review. Journal of Electronic Materials, 2019, 48, 2601-2634.	2.2	120
879	Improvement of the electrical and interfacial propertie of TiN/ZrO2 by a modulated atomic layer deposition process with controlled O3 dosing. Thin Solid Films, 2019, 675, 153-159.	1.8	4
880	Modulation of quantum transport properties in single-layer phosphorene nanoribbons using planar elastic strains. Journal of Materials Science, 2019, 54, 7728-7744.	3.7	8
881	Controlling band gap of monolayer MnCl ₂ with LDA+U. Journal of Physics: Conference Series, 2019, 1402, 044081.	0.4	1
882	Band gap control of bilayer zigzag graphene nanoribbon by direction of magnetic moment. Journal of Physics: Conference Series, 2019, 1402, 044106.	0.4	1

#	Article	IF	CITATIONS
883	A New Class of Scandium Carbide Nanosheet. Scientific Reports, 2019, 9, 16624.	3.3	1
884	Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. Nano, 2019, 14, 1930009.	1.0	10
885	Fiber all-optical light control with low-dimensional materials (LDMs): thermo-optic effect and saturable absorption. Nanoscale Advances, 2019, 1, 4190-4206.	4.6	5
886	Raman analysis of graphene on SiC. Journal of Physics: Conference Series, 2019, 1410, 012061.	0.4	O
887	Graphene Field-Effect Transistors With High Extrinsic <inline-formula> <tex-math notation="LaTeX">\${f}_{T}\$</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">\${f}_{mathrm{max}}\$</tex-math> </inline-formula> . IEEE Electron Device Letters, 2019, 40, 131-134.	3.9	35
888	Hybrid plasmonic graphene modulator with buried silicon waveguide. Optics Communications, 2020, 456, 124559.	2.1	23
889	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	10.0	75
890	2D Materials for Terahertz Modulation. Advanced Optical Materials, 2020, 8, 1900550.	7. 3	59
891	Prediction of staggered stacking 2D BeP semiconductor with unique anisotropic electronic properties. Journal of Physics Condensed Matter, 2020, 32, 085301.	1.8	2
892	Firstâ€Principles Study of Metal Atoms Adsorption on 2D Dumbbell C ₄ N. Physica Status Solidi (B): Basic Research, 2020, 257, 1900205.	1.5	9
893	In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chemical Society Reviews, 2020, 49, 509-553.	38.1	51
894	Type-II WS ₂ –ReSe ₂ heterostructure and its charge-transfer properties. Journal of Materials Research, 2020, 35, 1417-1423.	2.6	4
895	Semi-hydrogenated polyaniline sheet: A half-metal with exotic properties. Journal of Magnetism and Magnetic Materials, 2020, 497, 166027.	2.3	3
896	Applied electric field on zigzag graphene nanoribbons: reduction of spin stiffness and appearance of spiral spin density waves. Journal of Physics Condensed Matter, 2020, 32, 105802.	1.8	11
897	Photocatalytic reduction for graphene oxide by PbTiO3 with high polarizability and its electrocatalytic application in pyrrole detection. Journal of Colloid and Interface Science, 2020, 560, 502-509.	9.4	15
898	Selective adsorption of harmful molecules on zigzag phosphorene nanoribbon for sensing applications. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113838.	2.7	5
899	Photoluminescence and photo-induced conductivity in 2D siloxene nanosheet for optoelectronic applications. Journal of Colloid and Interface Science, 2020, 562, 453-460.	9.4	5
900	Enhanced light-matter interactions in size tunable graphene-gold nanomesh. MRS Communications, 2020, 10, 135-140.	1.8	5

#	Article	IF	CITATIONS
901	Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions. Advanced Electronic Materials, 2020, 6, 2000386.	5.1	14
902	Al2O3 blocking layer inserted ZrO2 Metal-Insulator-Metal capacitor for the improved electrical and interfacial properties. Thin Solid Films, 2020, 713, 138368.	1.8	8
903	Pentagraphyne: a new carbon allotrope with superior electronic and optical property. Journal of Materials Chemistry C, 2020, 8, 16143-16150.	5. 5	49
904	First-principles study on the electronic transport properties of M/SiC Schottky junctions (M=Ag, Au) Tj ETQq1 1	0.784314 2.1	rg&T /Overlo
905	Graphene Nanoribbon Field-Effect Transistors-Based Digital General-Purpose Input/Output Block. ECS Journal of Solid State Science and Technology, 2020, 9, 061002.	1.8	1
906	2D black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light. RSC Advances, 2020, 10, 27538-27551.	3.6	9
907	Twistronics in Graphene, from Transfer Assembly to Epitaxy. Applied Sciences (Switzerland), 2020, 10, 4690.	2.5	9
908	Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nature Nanotechnology, 2020, 15, 861-867.	31.5	79
909	Thermoelectric and optical properties of the SrS graphene by DFT. Philosophical Magazine, 2020, 100, 3108-3124.	1.6	8
910	Identifying crystal structures and chemical reactions at the interface of stanene on Bi2Te3. Journal of Applied Physics, 2020, 128, .	2.5	1
911	Strain and electric field tunable electronic transport in armchair phosphorene nanodevice with normal-metal electrodes. AIP Advances, 2020, 10, 105012.	1.3	5
912	Wide application feasibility report on graphene. Emerging Materials Research, 2020, 9, 1168-1194.	0.7	1
913	Tuning the Threshold Voltage of a SnO2 Nanowire Transistor Through Microwave-assisted Metal-oxide Reduction. Journal of the Korean Physical Society, 2020, 77, 1002-1007.	0.7	1
914	X-ray in situ observation of graphene precipitating directly on sapphire substrate with and without Ti capping layer. Journal of Crystal Growth, 2020, 549, 125861.	1.5	2
915	Spin stiffness in zigzag graphene nanoribbon under electric field. Journal of Physics: Conference Series, 2020, 1567, 022009.	0.4	1
916	Investigation of Thermal Annealing Effect on Bilayer Graphene by Isotope‣abelingâ€Assisted Raman Spectroscopy. Physica Status Solidi (B): Basic Research, 2020, 257, 2000250.	1.5	0
917	Graphene-based 2D constructs for enhanced fibroblast support. PLoS ONE, 2020, 15, e0232670.	2.5	14
918	Photomodulation of Charge Transport in Allâ€Semiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	21.0	20

#	Article	IF	CITATIONS
919	Two-dimensional 1T-PS2 as a promising anode material for sodium-ion batteries with ultra-high capacity, low average voltage and appropriate mobility. Chinese Chemical Letters, 2020, 31, 2325-2329.	9.0	42
920	Selective linear etching of monolayer black phosphorus using electron beams*. Chinese Physics B, 2020, 29, 086801.	1.4	2
921	Spin-polarized current in wide bandgap hexagonal boron nitrides containing 4 8 line defects. Computational Materials Science, 2020, 183, 109799.	3.0	4
922	High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate. Carbon, 2020, 164, 435-441.	10.3	12
923	A comparative study of graphite and silicon as suitable substrates for the self-catalysed growth of InAs nanowires by MBE. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
924	Ring oscillators based on monolayer Graphene FET. Analog Integrated Circuits and Signal Processing, 2020, 102, 637-644.	1.4	13
925	Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 2020, 8, 19.	3.6	14
926	Two-dimensional materials-based radio frequency wireless communication and sensing systems for Internet-of-things applications., 2020,, 29-57.		9
927	Two-dimensional materials for next-generation computing technologies. Nature Nanotechnology, 2020, 15, 545-557.	31.5	521
928	Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials. Materials Today Nano, 2020, 12, 100092.	4.6	28
929	Edge Functionalized Graphene Layers for (Ultra) High Exfoliation in Carbon Papers and Aerogels in the Presence of Chitosan. Materials, 2020, 13, 39.	2.9	8
930	Modulation of heat transport in two-dimensional group-III chalcogenides. Journal Physics D: Applied Physics, 2020, 53, 185102.	2.8	6
931	Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe ₂ . Nanoscale, 2020, 12, 5906-5913.	5.6	34
932	Review of Polarization Optical Devices Based on Graphene Materials. International Journal of Molecular Sciences, 2020, 21, 1608.	4.1	42
933	Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation. New Journal of Chemistry, 2020, 44, 4604-4612.	2.8	11
934	van der Waals Integrated Devices Based on Nanomembranes of 3D Materials. Nano Letters, 2020, 20, 1410-1416.	9.1	19
935	Molecular Semiconductors for Logic Operations: Deadâ€End or Bright Future?. Advanced Materials, 2020, 32, e1905909.	21.0	135
936	Effect of BN seeds on locating and promoting the initial nucleation of graphene on Cu substrate and its mechanism: A theoretical study. Applied Surface Science, 2020, 523, 146469.	6.1	4

#	Article	IF	CITATIONS
937	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	14.2	21
938	Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons. Optical and Quantum Electronics, 2020, 52, 1.	3.3	11
939	Effectively modulating vertical tunneling transport by mechanically twisting bilayer graphene within the all-metallic architecture. Nanoscale, 2020, 12, 8793-8800.	5 . 6	5
940	Magnetization effect of Mn-embedded in C2N on hydrogen adsorption and gas-sensing properties: Ab-initio analysis. Applied Surface Science, 2021, 537, 147970.	6.1	15
941	Investigation of the usability of nitric acid electrolyte in graphene production by electrochemical method. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 175-182.	2.1	1
942	Effects of H2 pre-etching on BN seed morphology and induced graphene synthesis on Cu substrate: A theoretical study. Applied Surface Science, 2021, 537, 148093.	6.1	1
943	Tunable Electronic and Optical Properties of 2D Monoelemental Materials Beyond Graphene for Promising Applications. Energy and Environmental Materials, 2021, 4, 522-543.	12.8	48
944	Boron-nitride and boron-phosphide doped twin-graphene: Applications in electronics and optoelectronics. Applied Surface Science, 2021, 541, 148657.	6.1	53
945	Photoresponse improvement of mixed-dimensional 1D–2D GaAs photodetectors by incorporating constructive interface states. Nanoscale, 2021, 13, 1086-1092.	5.6	43
946	Growth of high-quality wafer-scale graphene on dielectric substrate for high-response ultraviolet photodetector. Carbon, 2021, 175, 155-163.	10.3	10
947	Strain effect on the mechanical and electronic properties of graphene-like B4P4C4 and B2P2C8: First-principles calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114583.	2.7	3
948	Two-dimensional MgSiP2 with anisotropic electronic properties and good performances for Na-ion batteries. Chinese Chemical Letters, 2021, 32, 1081-1085.	9.0	26
949	Ultrahigh carrier mobility of penta-graphene: A first-principle study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114507.	2.7	50
950	Recent advances of monoelemental 2D materials for photocatalytic applications. Journal of Hazardous Materials, 2021, 405, 124179.	12.4	78
951	Polarization-State Modulation in Fano Resonant Graphene Metasurface Reflector. Journal of Lightwave Technology, 2021, 39, 7869-7875.	4.6	10
952	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	5.5	30
953	Thermoelectric effect and devices on <scp>IVA</scp> and <scp>VA</scp> Xenes. InformaÄnÃ-Materiály, 2021, 3, 271-292.	17.3	17
954	Fast and high photoresponsivity gallium telluride/hafnium selenide van der Waals heterostructure photodiode. Journal of Materials Chemistry C, 2021, 9, 7110-7118.	5.5	10

#	Article	IF	CITATIONS
955	Multi-scale analysis of radio-frequency performance of 2D-material based field-effect transistors. Nanoscale Advances, 2021, 3, 2377-2382.	4.6	4
956	Transient absorption measurements of interlayer charge transfer in a WS ₂ /GeS van der Waals heterostructure. Physical Chemistry Chemical Physics, 2021, 23, 17259-17264.	2.8	4
957	A mechanism for the variation in the photoelectric performance of a photodetector based on CVD-grown 2D MoS ₂ . RSC Advances, 2021, 11, 5204-5217.	3.6	7
958	Fundamentals and properties of multifunctional graphene and graphene-based nanomaterials. , 2021, , $143-158$.		0
959	A dual-gate field-effect transistor in graphene heterojunctions. Superlattices and Microstructures, 2021, 150, 106778.	3.1	4
960	Magnetic and electron transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:mnanomagnets. .<="" 2021,="" 5,="" materials,="" physical="" review="" td=""><td>nn22<td>าl:เซาก> </td></td></mml:mnanomagnets.></mml:msub></mml:mrow></mml:math>	nn 22 <td>าl:เซาก> </td>	า l:เ ซาก>
961	Ultraflat Sub-10 Nanometer Gap Electrodes for Two-Dimensional Optoelectronic Devices. ACS Nano, 2021, 15, 5276-5283.	14.6	15
962	Enhanced High-Frequency Performance of Top-Gated Graphene FETs Due to Substrate-Induced Improvements in Charge Carrier Saturation Velocity. IEEE Transactions on Electron Devices, 2021, 68, 899-902.	3.0	14
963	Van der Waals Heterostructures by Design: From 1D and 2D to 3D. Matter, 2021, 4, 552-581.	10.0	83
964	Controllable potential barrier for multiple negative-differential-transconductance and its application to multi-valued logic computing. Npj 2D Materials and Applications, 2021, 5, .	7.9	17
965	Effect of High-l [®] Dielectric Layer on 1/ <i>f</i> Noise Behavior in Graphene Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 3647-3653.	5.0	12
966	Highly Sensitive, Ultrafast, and Broadband Photoâ€Detecting Fieldâ€Effect Transistor with Transitionâ€Metal Dichalcogenide van der Waals Heterostructures of MoTe ₂ and PdSe ₂ . Advanced Science, 2021, 8, e2003713.	11.2	65
967	Memoryless nonâ€linearity in Bâ€Substitution doped and undoped graphene FETs: A comparative investigation. IET Circuits, Devices and Systems, 2021, 15, 641-648.	1.4	2
968	Strain-dependent optical properties of the novel monolayer group-IV dichalcogenides SiS ₂ semiconductor: a first-principles study. Nanotechnology, 2021, 32, 235201.	2.6	6
969	Promises and prospects of two-dimensional transistors. Nature, 2021, 591, 43-53.	27.8	548
970	An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth. Optical and Quantum Electronics, 2021, 53, 1.	3.3	9
971	Impact of contact resistance on the performances of graphene field-effect transistor through analytical study. AIP Advances, 2021, 11, 045220.	1.3	1
972	Research from ultraviolet to near-infrared band covering materials based on graphene photonic crystals. Applied Nanoscience (Switzerland), 2021, 11, 1575-1581.	3.1	1

#	Article	IF	Citations
973	Strain engineering on the electrical properties and photocatalytic activity in gold sulfide monolayer. Applied Surface Science, 2021, 546, 149066.	6.1	23
975	Impossibility of increasing Néel temperature in zigzag graphene nanoribbon by electric field and carrier doping. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 129, 114641.	2.7	4
976	Highly Efficient Fermi Level Tunning in EO Waveguide Based on Double Layer Graphene Capacitor. , 2021, , .		1
977	Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bulletin, 2021, 46, 534-546.	3.5	5
978	1D/2D van der Waals Heterojunctions Composed of Carbon Nanotubes and a GeSe Monolayer. Nanomaterials, 2021, 11, 1565.	4.1	5
979	A review on the direct electroplating of polymeric materials. Journal of Materials Science, 2021, 56, 14881-14899.	3.7	26
980	Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flexible Electronics, 2021, 5, .	10.7	54
981	Low-voltage and fast-response SnO ₂ nanotubes/perovskite heterostructure photodetector. Nanotechnology, 2021, 32, 375202.	2.6	49
982	Recent Progress in the Development of Graphene Detector for Terahertz Detection. Sensors, 2021, 21, 4987.	3.8	12
983	Electronic structures and physical properties of Mg, C, and S doped g-GaN. Superlattices and Microstructures, 2021, 156, 106930.	3.1	5
984	2D Electronics Based on Graphene Field Effect Transistors: Tutorial for Modelling and Simulation. Micromachines, 2021, 12, 979.	2.9	10
985	Plasma modification of carbon nanowalls induces transition from superhydrophobic to superhydrophilic. Nanotechnology, 2021, 32, 435706.	2.6	6
986	Magnetic single atom catalyst in C2N to induce adsorption selectivity toward oxidizing gases. Scientific Reports, 2021, 11, 15848.	3.3	10
987	Excitonic instability and electronic properties of AlSb in the two-dimensional limit. Physical Review B, 2021, 104, .	3.2	9
988	Study of BC14N-bilayer graphene: Effects of atomic spacing and interatomic interaction between B and N atoms. Superlattices and Microstructures, 2021, 156, 106981.	3.1	10
989	Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers, 2021, 13, 2869.	4.5	79
990	Fast Response GaAs Photodetector Based on Constructing Electron Transmission Channel. Crystals, 2021, 11, 1160.	2.2	1
991	2D–1D mixed-dimensional heterostructures: progress, device applications and perspectives. Journal of Physics Condensed Matter, 2021, 33, 493001.	1.8	7

#	Article	IF	CITATIONS
992	Nonlinearity and scaling trends of quasiballistic graphene field-effect transistors targeting RF applications. Journal of Computational Electronics, 0 , 1 .	2.5	1
993	Structure, Properties and Applications of Twoâ€Dimensional Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2101589.	21.0	239
994	Recent Developments in Black Phosphorous Transistors: A Review. Journal of Electronic Materials, 2021, 50, 6020-6036.	2.2	9
995	Van der Waals heterostructures with one-dimensional atomic crystals. Progress in Materials Science, 2021, 122, 100856.	32.8	29
996	Memoryless linearity in undoped and B-doped graphene FETs: A relative investigation to report improved reliability. Microelectronics Reliability, 2021, 125, 114363.	1.7	3
997	Signal processing based on two-dimensional materials. , 2021, , 207-233.		O
998	Carbon-Based Nanocomposites: Processing, Electronic Properties and Applications. Advances in Sustainability Science and Technology, 2021, , 97-122.	0.6	2
999	Two-Dimensional IV–V Monolayers with Highly Anisotropic Carrier Mobility and Electric Transport Properties. Journal of Physical Chemistry Letters, 2021, 12, 1058-1065.	4.6	23
1000	Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS Nano, 2021, 15, 2165-2181.	14.6	217
1001	Determination of Hydraulic Conductivity of Colloidal Silica Stabilized Sand to Be Used as an Impervious Liner. Lecture Notes in Civil Engineering, 2021, , 51-63.	0.4	0
1002	Recent advances in the Van der Waals epitaxy growth of IIIâ€V semiconductor nanowires on graphene. Nano Select, 2021, 2, 688-711.	3.7	8
1003	Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons. Applied Surface Science, 2017, 426, 1256-1262.	6.1	6
1004	Cascaded spintronic logic with low-dimensional carbon. Nature Communications, 2017, 8, 15635.	12.8	39
1005	Fabrication Techniques of Graphene Nanostructures. RSC Nanoscience and Nanotechnology, 2014, , 1-30.	0.2	17
1006	Impact of channel length and width for charge transportation of graphene field effect transistor. Chinese Journal of Chemical Physics, 2020, 33, 757-763.	1.3	1
1007	Electric-field-induced spin spiral state in bilayer zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2021, 33, 065805.	1.8	3
1008	Role of impurities on the optical properties of rectangular graphene flakes. Physical Review Materials, 2018, 2, .	2.4	6
1009	High-efficiency couplers for graphene surface plasmon polaritons in the mid-infrared region. Optics Letters, 2020, 45, 264.	3.3	12

#	Article	IF	CITATIONS
1010	First-Principles Electronic-Structure Study of Graphene Decorated with 4d-Transition Atoms. Crystals, 2021, 11, 29.	2.2	2
1011	Epitaxial Growth of Graphene and Their Applications in Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1009-1019.	1.3	16
1012	A First Principles Investigation of the Mechanical Properties of g-TIN. Modeling and Numerical Simulation of Material Science, 2012, 02, 76-84.	0.3	6
1013	Fabrication of Self-Aligned Graphene FETs with Low Fringing Capacitance and Series Resistance. ISRN Electronics, 2012, 2012, 1-7.	1.1	5
1014	Graphene field-effect transistor for radio-frequency applications: review. Carbon Letters, 2012, 13, 17-22.	5.9	9
1015	Gapped Nearly Free-Standing Graphene on an SiC(0001) Substrate Induced by Manganese Atoms. Applied Science and Convergence Technology, 2018, 27, 90-94.	0.9	2
1016	Research status and development graphene devices using silicon as the subtrate. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218102.	0.5	5
1017	Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 147801.	0.5	1
1018	Epitaxial Graphene on Si(111) Substrate Grown by Annealing 3C-SiC/Carbonized Silicon. Japanese Journal of Applied Physics, 2012, 51, 01AH05.	1.5	4
1019	Electrical Characterization of Bilayer Graphene Formed by Hydrogen Intercalation of Monolayer Graphene on SiC(0001). Japanese Journal of Applied Physics, 2012, 51, 02BN02.	1.5	29
1020	Direct Synthesis of Graphene on SiO ₂ Substrates by Transfer-Free Processes. Japanese Journal of Applied Physics, 2012, 51, 06FD12.	1.5	19
1021	Graphene Structures-Based 2D Nanotransistors (Review). Journal of Communications Technology and Electronics, 2021, 66, 1108-1122.	0.5	5
1022	The design of a graphene nanoribbon field-effect transistor with reduced internal fringe capacitance for application in the gigahertz to terahertz frequency range. Journal of Computational Electronics, 2021, 20, 2483-2491.	2.5	2
1023	Ultrafast and Highly Stable Photodetectors Based on p-GeSe/n-ReSe ₂ Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 47882-47894.	8.0	26
1024	Investigation of graphene-based Schottky junction solar cell with heavy-doped silicon. Journal of Materials Science: Materials in Electronics, 2021, 32, 28856.	2.2	1
1025	Electro-Optical Biosensor Based on Embedded Double-Monolayer of Graphene Capacitor in Polymer Technology. Polymers, 2021, 13, 3564.	4.5	3
1026	Sensing of Biomolecules. Nanoscience and Technology, 2012, , 57-105.	1.5	0
1028	Electron Optics in Graphene. The Electrical Engineering Handbook, 2012, , 573-594.	0.2	O

#	Article	IF	Citations
1029	Characteristic Variations of Graphene Field-Effect Transistors Induced by CF4Gas. Japanese Journal of Applied Physics, 2012, 51, 081301.	1.5	0
1030	Electronic Transport in Graphene. , 2012, , 59-94.		0
1031	Fernziele der Nanoelektronik. Acatech-Diskussion, 2013, , 149-223.	0.2	0
1032	Electromagnetic Analysis of Graphene Nanoparticles Operating in the TeraHertz Band. Advances in Nanoparticles, 2014, 03, 72-76.	1.0	1
1033	The pre-treatment of copper for graphene synthesis. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 176801.	0.5	7
1034	Nanotechnology in Electronics. , 2014, , 17-36.		2
1035	Graphene Laser Irradiation CVD Growth. , 2015, , 21-27.		0
1037	Bionic Graphene Nanosensors. Springer Series in Biomaterials Science and Engineering, 2016, , 269-297.	1.0	0
1038	Graphene - directions of development, application., 2015,, 979/67-979/70.	0.1	0
1039	NO2Sensing Properties of \hat{l}^2 -Bi2O3Nanowires Sensor Coated with Pd Nanoparticles. Journal of the Korean Institute of Surface Engineering, 2015, 48, 303-308.	0.1	0
1040	Influence of the dielectric properties of surface roughness after electrical discharge machining. , 2016, , 1780-1781.	0.1	0
1041	Research progress of graphene radio frequency devices. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218502.	0.5	0
1042	Magnetic Properties of Hexagonal Graphene Nanomeshes. Acta Physica Polonica A, 2017, 131, 830-832.	0.5	0
1043	Modeling and Performance Evaluation of a Top Gated Graphene MOSFET. Advances in Science, Technology and Engineering Systems, 2017, 2, 1413-1421.	0.5	0
1046	Cascaded spintronic logic gates based on graphene nanoribbon magnetoresistance: all-carbon spin logic. , 2018, , .		0
1047	Three-terminal spin/charge current router. Journal of Physics Condensed Matter, 2020, 32, 325301.	1.8	2
1048	Potential Application of Graphene-TPE Nanocomposite. Engineering Materials, 2020, , 183-221.	0.6	0
1049	RF field effect transistors based on two-dimensional materials. , 2020, , .		O

#	Article	IF	CITATIONS
1050	Corrugated graphene exposes the limits of a widely used ab initio van der Waals DFT functional. Physical Review Materials, 2019, 3, .	2.4	2
1051	Polaron Effects in Quench Dynamics. Springer Theses, 2020, , 79-98.	0.1	0
1053	The Family of Two-dimensional Transition Metal Chalcogenides Materials. RSC Smart Materials, 2020, , 226-240.	0.1	0
1054	Strain engineering and stacking pattern tune the electrical conductivity of two-dimensional SiPS. Semiconductor Science and Technology, 2020, 35, 095012.	2.0	O
1055	TaCo ₂ Te ₂ : An Airâ€Stable, High Mobility Van der Waals Material with Probable Magnetic Order. Advanced Functional Materials, 2022, 32, .	14.9	10
1056	The effect of temperature on the electrical and thermal conductivity of grapheneâ€based polymer composite films. Journal of Applied Polymer Science, 2022, 139, 51896.	2.6	8
1057	Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials, 2021, 11, 3121.	4.1	10
1058	In situ microscopy techniques for characterizing the mechanical properties and deformation behavior of two-dimensional (2D) materials. Materials Today, 2021, 51, 247-272.	14.2	22
1059	Controllable growth of two-dimensional materials on noble metal substrates. IScience, 2021, 24, 103432.	4.1	5
1060	Two-Dimensional GeC ₂ with Tunable Electronic and Carrier Transport Properties and a High Current ON/OFF Ratio. Journal of Physical Chemistry Letters, 2021, 12, 11488-11496.	4.6	6
1061	All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines, 2022, 13, 92.	2.9	20
1062	An analytical method to model the IDS of the MOSFET transistor using a graphene channel. , 2021, , .		0
1063	van der Waals graphene/MoS ₂ heterostructures: tuning the electronic properties and Schottky barrier by applying a biaxial strain. Materials Advances, 2022, 3, 624-631.	5.4	18
1064	A B ₂ N monolayer: a direct band gap semiconductor with high and highly anisotropic carrier mobility. Nanoscale, 2022, 14, 930-938.	5.6	11
1065	Carrier mobility of one-dimensional vanadium selenide (V2Se9) monolayer and nanoribbon systems: DFT study. Nanotechnology, 2022, 33, 135703.	2.6	3
1066	Monolayer NbNSe with High Fermi Velocity and Anisotropic Properties. Physica Status Solidi (B): Basic Research, O, , .	1.5	1
1067	Two-dimensional semiconductor materials with high stability and electron mobility in group-11 chalcogenide compounds: MNX (M = Cu, Ag, Au; N = Cu, Ag, Au; X = S, Se, Te; M ≠N). Nanoscale, 2022, 14, 4271-4280.	5.6	6
1068	Growth of wafer-scale graphene–hexagonal boron nitride vertical heterostructures with clear interfaces for obtaining atomically thin electrical analogs. Nanoscale, 2022, 14, 4204-4215.	5.6	6

#	Article	IF	Citations
1069	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	47.7	187
1070	Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics, 2022, 24, 9082-9117.	2.8	3
1071	Integrating Homogeneous Current-Saturation Graphene Transistors Into High-Linearity Amplifiers. IEEE Transactions on Electron Devices, 2022, 69, 2698-2704.	3.0	2
1073	Strain engineering for pseudo-magnetic fields in graphene. , 2022, , .		0
1074	First Principle Study on Electronic and Transport Properties of Finite-Length Nanoribbons and Nanodiscs for Selected Two-Dimensional Materials. Molecules, 2022, 27, 2228.	3.8	2
1075	NbCX (X=F, Cl, Br, I) with Highly Anisotropic Fermi Velocity, Optical, Mechanical and Electric Transport Properties. Chemical Physics, 2022, , 111551.	1.9	1
1076	Engineering of Chemical Vapor Deposition Graphene Layers: Growth, Characterization, and Properties. Advanced Functional Materials, 2022, 32, .	14.9	8
1077	First-principles calculations of electrical conductivities of edge-modified graphene nanoribbons: Strain effect. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115267.	2.7	0
1078	Carbon-Based Nanocomposites: Processing, Electronic Properties, and Applications. SSRN Electronic Journal, 0, , .	0.4	0
1079	High performance enhancement-mode thin-film transistor with graphene quantum dot-decorated In ₂ O ₃ channel layers. RSC Advances, 2022, 12, 14986-14997.	3.6	3
1080	Robust and Broadband Graphene Surface Plasmon Waveguide Coupler via Quantum Control. Frontiers in Physics, 0, 10, .	2.1	2
1081	Nonlinearity Analysis of Quantum Capacitance and its Effect on Nano-Graphene Field Effect Transistor Characteristics. Journal of Electronic Materials, 0, , .	2.2	0
1082	Tuning the structural, electronic, mechanical and optical properties of silicene monolayer by chemical functionalization: A first-principles study. Vacuum, 2022, 203, 111226.	3. 5	14
1083	Hexagonal Boron Nitride for Nextâ€Generation Photonics and Electronics. Advanced Materials, 2023, 35,	21.0	43
1084	Towards RF graphene devices: A review. FlatChem, 2022, 35, 100409.	5.6	11
1085	Van der Waals heterostructures. Nature Reviews Methods Primers, 2022, 2, .	21.2	80
1086	CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area. Nature Communications, 2022, 13 , .	12.8	2
1087	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	2.9	40

#	Article	IF	CITATIONS
1088	Effect OfÂPretreated Copper FoilÂOn the Growth of High Quality Graphene. SSRN Electronic Journal, 0, , .	0.4	0
1089	Monolayer TiNI with Anisotropic Optical and Mechanical Properties. Crystals, 2022, 12, 1202.	2.2	0
1090	Surface Passivation of Layered MoSe ₂ via van der Waals Stacking of Amorphous Hydrocarbon. Small, 2022, 18, 2202912.	10.0	0
1091	Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursors: Implications for Nanoelectronic Gates, Interconnects, and Spintronics. ACS Applied Nano Materials, 2022, 5, 14759-14770.	5.0	3
1093	Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials, 2022, 12, 3146.	4.1	5
1094	Two-dimensional van der Waals heterostructures (vdWHs) with band alignment transformation in multi-functional devices. RSC Advances, 2022, 12, 31456-31465.	3.6	2
1095	Van der Waals integration of artificial heterostructures and high-order superlattices. , 2023, 2, 20220034.		1
1096	A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nature Nanotechnology, 2022, 17, 1206-1213.	31.5	24
1097	Optimization of electrical performance and stability of fully solution-driven α-InGaZnO thin-film transistors by graphene quantum dots. Journal of Materials Science and Technology, 2023, 141, 100-109.	10.7	4
1098	Effects of Doped Non-Metallic Elements B, N and O on Electronic and Magnetic Properties of Monolayer PC6. Modern Physics, 2022, 12, 146-153.	0.1	0
1099	Fully Transparent, Ultrathin Flexible Organic Electrochemical Transistors with Additive Integration for Bioelectronic Applications. Advanced Science, 2023, 10, .	11.2	13
1100	Structural, electronic and optical properties of monolayer InGeX ₃ (X = S, Se, Te) by first-principles calculations. Journal of Physics Condensed Matter, 2023, 35, 064002.	1.8	0
1101	High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells. Advanced Science, 2023, 10, .	11.2	2
1102	Self-powered, ultra-fast and high photoresponsivity of MoTe2/HfSe2 heterostructure broadband photovoltaic device. Materials Science in Semiconductor Processing, 2023, 155, 107204.	4.0	4
1103	Nanometer-Thick Oxide Semiconductor Transistor with Ultra-High Drain Current. ACS Nano, 2022, 16, 21536-21545.	14.6	8
1104	Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays. ACS Nano, 2022, 16, 21482-21490.	14.6	16
1105	Atomic Hydrogen Annealing of Graphene on InAs Surfaces and Nanowires: Interface and Morphology Control for Optoelectronics and Quantum Technologies. ACS Applied Nano Materials, 2022, 5, 17919-17927.	5.0	0
1107	Graphene Frameworks for Nanodevices. Coatings, 2022, 12, 1936.	2.6	0

#	Article	IF	CITATIONS
1108	Defect Healing in Graphene via Rapid Thermal Annealing with Polymeric "Nanobandage― Small, 2023, 19,	10.0	3
1111	A semiconductor Sc ₂ S ₃ monolayer with ultrahigh carrier mobility for UV blocking filter application. Physical Chemistry Chemical Physics, 2023, 25, 5550-5558.	2.8	1
1112	Ultrafast hot-carrier cooling in quasi freestanding bilayer graphene with hydrogen intercalated atoms. Nanoscale Advances, 2023, 5, 485-492.	4.6	0
1113	SMM studies on high-frequency electrical properties of nanostructured materials. , 2023, , 513-534.		O
1114	Nanostructures/Graphene/Silicon Junctionâ€Based Highâ€Performance Photodetection Systems: Progress, Challenges, and Future Trends. Advanced Materials Interfaces, 2023, 10, .	3.7	10
1115	Low dimensional materials in nanoelectronics. , 2023, , 173-192.		0
1116	A type-II GaP/GaSe van der Waals heterostructure with high carrier mobility and promising photovoltaic properties. Applied Surface Science, 2023, 618, 156544.	6.1	8
1117	Can magnetotransport properties provide insight into the functional groups in semiconducting MXenes?. Nanoscale, 2023, 15, 10254-10263.	5 . 6	1
1118	Structural and electronic properties of hexagonal MXH ($M = C$, Si, Ge and Sn; $X = N$, P, As and Sb) monolayers: A first-principles prediction. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 151, 115710.	2.7	3
1120	Graphene and Graphene Based Nanocomposites for Bioâ€Medical and Bioâ€safety Applications. ChemistrySelect, 2023, 8, .	1.5	4
1121	Investigation of Structural, Electronic, and Optical Properties of Chalcogen-Doped ZrS2: A DFT Analysis. Advances in Materials Science and Engineering, 2023, 2023, 1-10.	1.8	3
1122	Fabrication of metal/oxide/fluorographene/oxide/silicon capacitors and their charge trapping properties. Japanese Journal of Applied Physics, 2023, 62, SG1035.	1.5	0
1123	A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Applied Physics Reviews, 2023, 10, .	11.3	11
1124	Tuning the Liquid–Vapour Interface of VLS Epitaxy for Creating Novel Semiconductor Nanostructures. Nanomaterials, 2023, 13, 894.	4.1	0
1125	Temperature dependence of carrier mobility in hydrogenated germanane field-effect transistor with various electrode materials. Japanese Journal of Applied Physics, 2023, 62, 030905.	1.5	0
1126	2D materials readiness for the transistor performance breakthrough. IScience, 2023, 26, 106673.	4.1	1
1127	The applicability and the low limit of the classical fracture theory at nanoscale: The fracture of graphene. Engineering Fracture Mechanics, 2023, 284, 109282.	4.3	1
1128	Graphene: A Promising Material for Flexible Electronic Devices. Advanced Structured Materials, 2023, , $83\text{-}118$.	0.5	0

#	Article	IF	Citations
1130	Investigation of stability, electronic, optical and mechanical properties of honeycomb BeN2 monolayer: A DFT study. Computational and Theoretical Chemistry, 2023, 1226, 114202.	2.5	2
1131	Effect of Pre-Treatment Time On Graphene Nanosheets Produced by Exfoliation Method. ECS Journal of Solid State Science and Technology, 0, , .	1.8	0
1132	Graphene quantum dots modulated solution-derived InGaO thin-film transistors and stress stability exploration. Rare Metals, 2023, 42, 2294-2306.	7.1	2
1133	Integrated Graphene Heterostructures in Optical Sensing. Micromachines, 2023, 14, 1060.	2.9	0
1134	Black-phosphorus-based materials for application in solar cells. , 2023, 42, 100109.		1
1136	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	38.1	9
1137	Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire. Nanomaterials, 2023, 13, 2270.	4.1	0
1138	Electrical Resistance Evolution of Graphite and Talc Geological Heterostructures under Progressive Metamorphism. Journal of Carbon Research, 2023, 9, 75.	2.7	O
1139	Printing flexible thin-film transistors. Applied Physics Reviews, 2023, 10, .	11.3	0
1141	Graphene Synthesis from Organic Substrates: A Review. Industrial & Engineering Chemistry Research, 2023, 62, 17314-17327.	3.7	1
1142	Twoâ€Dimensional Van Der Waals Thin Film and Device. Small, 2024, 20, .	10.0	0
1143	Terahertz bolometric detectors based on graphene field-effect transistors with the composite h-BN/black-P/h-BN gate layers using plasmonic resonances. Journal of Applied Physics, 2023, 134, .	2.5	1
1145	Properties of B- and Si-doped monolayer black phosphorus under biaxial strain. Results in Physics, 2023, 54, 107091.	4.1	0
1146	Integrated Logic Circuits Based on Wafer-Scale 2D-MoS2 FETs Using Buried-Gate Structures. Nanomaterials, 2023, 13, 2870.	4.1	0
1147	Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method. Journal Wuhan University of Technology, Materials Science Edition, 2023, 38, 1010-1016.	1.0	0
1148	First-principles study of two-dimensional half-metallic ferromagnetism in CrSiSe ₄ monolayer. Journal of Physics Condensed Matter, 2024, 36, 075701.	1.8	O
1149	Observation of Sub-10 nm Transition Metal Dichalcogenide Nanocrystals in Rapidly Heated van der Waals Heterostructures. ACS Applied Materials & Samp; Interfaces, O, , .	8.0	0
1150	Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials, 2024, 17, 333.	2.9	O

#	Article	IF	CITATIONS
1151	Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nature Communications, 2024, 15, .	12.8	0
1152	Biaxial strain and magnetic field effects on electronic and optical properties of <mml:math altimg="si62.svg" display="inline" id="d1e539" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>²</mml:mi></mml:math> -graphyne structure. Physica E: Low-Dimensional Systems and Nanostructures. 2024. 158. 115905.	2.7	O
1153	Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments., 2024, 3, 100107.		2
1154	Graphene nanoribbons: current status, challenges and opportunities. , 2024, 3, .		0
1155	Two-dimensional perovskite oxide as a photoactive high- \hat{l}^2 gate dielectric. Nature Electronics, 0, , .	26.0	0
1156	Contact evaluation of the penta-PdPSe/graphene vdW heterojunction: tuning the Schottky barrier and optical properties. Physical Chemistry Chemical Physics, 2024, 26, 11014-11022.	2.8	O