Mesenchymal and haematopoietic stem cells form a uni

Nature

466, 829-834

DOI: 10.1038/nature09262

Citation Report

#	Article	IF	CITATIONS
1	Radiation-Induced Bystander Effects in Cultured Human Stem Cells. PLoS ONE, 2010, 5, e14195.	1,1	39
2	Role for vitamin D receptor in the neuronal control of the hematopoietic stem cell niche. Blood, 2010, 116, 5528-5535.	0.6	63
3	Understanding of stem cells in bone biology and translation into clinical applications. Frontiers in Biology, 2010, 5, 396-406.	0.7	4
4	Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 243-256.	3.6	138
5	Why should mesenchymal stem cells (MSCs) cure autoimmune diseases?. Current Opinion in Immunology, 2010, 22, 768-774.	2.4	124
6	Plasticity of Supporting Cells in a Stem Cell Factory. Immunity, 2010, 33, 291-293.	6.6	9
7	TRAF3: Uncovering the Real but Restricted Role in Human. Immunity, 2010, 33, 293-295.	6.6	6
8	HIF hits Wnt in the stem cell niche. Nature Cell Biology, 2010, 12, 926-927.	4.6	27
10	Building bone from blood vessels. Nature Medicine, 2010, 16, 1373-1374.	15.2	8
11	Crippling SWI-SNF makes tumors GLI-ful. Nature Medicine, 2010, 16, 1374-1376.	15.2	3
12	Response to Letter by Deng. Circulation Research, 2010, 107, .	2.0	0
13	Clinical and basic research papers – October 2010. IBMS BoneKEy, 2010, 7, 333-339.	0.1	0
14	The endosteal â€~osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 2010, 24, 1979-1992.	3.3	243
15	On Bone-Forming Cells and Blood Vessels in Bone Development. Cell Metabolism, 2010, 12, 314-316.	7.2	17
16	Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Research and Therapy, 2011, 2, 13.	2.4	58
17	Nonmyogenic Cells in Skeletal Muscle Regeneration. Current Topics in Developmental Biology, 2011, 96, 139-165.	1.0	44
18	The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. Journal of Experimental Medicine, 2011, 208, 421-428.	4.2	488
19	The peripheral nervous system supports blood cell homing and survival in the <i>Drosophila </i> larva. Development (Cambridge), 2011, 138, 5379-5391.	1.2	188

#	ARTICLE	IF	Citations
20	Minireview: The Stem Cell Next Door: Skeletal and Hematopoietic Stem Cell "Niches―in Bone. Endocrinology, 2011, 152, 2957-2962.	1.4	57
21	Regulatory interactions in the bone marrow microenvironment. IBMS BoneKEy, 2011, 8, 96-111.	0.1	6
22	In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 2011, 474, 216-219.	13.7	502
23	Tissue Engineering of Normal and Abnormal Bone Marrow. , 2011, , 331-340.		1
24	Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regenerative Medicine, 2011, 6, 95-109.	0.8	83
25	MicroRNA signatures characterize multiple myeloma patients. Leukemia, 2011, 25, 1784-1789.	3.3	57
26	Niche Crosstalk: Intercellular Signals at the Hair Follicle. Cell, 2011, 146, 678-681.	13.5	53
27	Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 2011, 147, 1146-1158.	13.5	654
28	Interaction between Differentiating Cell- and Niche-Derived Signals in Hematopoietic Progenitor Maintenance. Cell, 2011, 147, 1589-1600.	13.5	178
29	Inflammation and mesenchymal stem cell aging. Current Opinion in Immunology, 2011, 23, 518-524.	2.4	123
30	Neuroprotective features of mesenchymal stem cells. Best Practice and Research in Clinical Haematology, 2011, 24, 59-64.	0.7	195
31	Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone, 2011, 49, 693-700.	1.4	69
32	Mesenchymal Stem Cells. Circulation Research, 2011, 109, 923-940.	2.0	769
33	Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends in Immunology, 2011, 32, 315-320.	2.9	138
34	Hematopoietic stem and progenitor cell trafficking. Trends in Immunology, 2011, 32, 493-503.	2.9	132
35	The relationship between bone, hemopoietic stem cells, and vasculature. Blood, 2011, 118, 1516-1524.	0.6	135
36	Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells. Cell Stem Cell, 2011, 8, 177-187.	5.2	241
37	Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin. Cell Stem Cell, 2011, 9, 527-540.	5.2	358

#	Article	IF	Citations
38	Blood Cells Need Glia, Too: A New Role for the Nervous System in the Bone Marrow Niche. Cell Stem Cell, 2011, 9, 493-495.	5.2	17
39	Osteopontin deficiency enhances parathyroid hormone/ parathyroid hormone related peptide receptor (PPR) signaling-induced alteration in tooth formation and odontoblastic morphology. Tissue and Cell, 2011, 43, 196-200.	1.0	4
40	Integrating Physiological Regulation with Stem Cell and Tissue Homeostasis. Neuron, 2011, 70, 703-718.	3.8	67
41	CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood, 2011, 117, 5067-5077.	0.6	390
42	Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. PLoS ONE, 2011, 6, e24807.	1.1	125
43	Blood Vessels and the Satellite Cell Niche. Current Topics in Developmental Biology, 2011, 96, 121-138.	1.0	63
44	Mesenchymal Stem Cell Therapy for Apoptosis After Spinal Cord Injury. , 0, , .		1
45	Involvement of Mesenchymal Stem Cells in Breast Cancer Progression. , 0, , .		3
46	High-Throughput Transcriptome Profiling Of Human Mesenchymal Stem Cells Reveals A Role For Wnt/GSK-3 Signaling In Their Hypoimmunomodulation. Nature Precedings, 2011, , .	0.1	2
47	Neural regulation of bone marrow and the microenvironment. Frontiers in Bioscience - Scholar, 2011, S3, 1021-1031.	0.8	1
48	Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells. Stem Cells International, 2011, 2011, 1-9.	1.2	30
49	Nestin-GFP Transgene Reveals Neural Precursor Cells in Adult Skeletal Muscle. PLoS ONE, 2011, 6, e16816.	1.1	71
50	Serum after Autologous Transplantation Stimulates Proliferation and Expansion of Human Hematopoietic Progenitor Cells. PLoS ONE, 2011, 6, e18012.	1.1	11
51	Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway. PLoS ONE, 2011, 6, e19279.	1.1	53
52	Hierarchy of immature hematopoietic cells related to blood flow and niche. Current Opinion in Hematology, 2011, 18, 220-225.	1.2	41
53	Many mechanisms mediating mobilization: an alliterative review. Current Opinion in Hematology, 2011, 18, 231-238.	1.2	59
54	Upregulation of Adipogenesis and Chondrogenesis in MSC Serum-Free Culture. Cell Medicine, 2011, 2, 27-42.	5.0	16
55	Mesenchymal stem cell therapy of intestinal disease: are their effects systemic or localized?. Current Opinion in Gastroenterology, 2011, 27, 119-124.	1.0	18

#	ARTICLE	IF	CITATIONS
56	Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system. Haematologica, 2011, 96, 1041-1048.	1.7	64
57	Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood, 2011, 117, 1540-1549.	0.6	119
58	JAM-B regulates maintenance of hematopoietic stem cells in the bone marrow. Blood, 2011, 118, 4609-4619.	0.6	47
59	Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood, 2011, 117, 470-479.	0.6	80
60	SDF-1 keeps HSC quiescent at home. Blood, 2011, 117, 373-374.	0.6	23
61	Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood, 2011, 118, 69-79.	0.6	40
62	Galectin-1–expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow. Blood, 2011, 117, 6552-6561.	0.6	77
63	Bone and the hematopoietic niche: a tale of two stem cells. Blood, 2011, 117, 5281-5288.	0.6	216
64	The critical role of agrin in the hematopoietic stem cell niche. Blood, 2011, 118, 2733-2742.	0.6	47
65	IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood, 2011, 118, 3236-3243.	0.6	79
66	Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood, 2011, 117, 5350-5361.	0.6	78
67	Next-generation leukemia immunotherapy. Blood, 2011, 118, 2951-2959.	0.6	65
68	Gimme shelter: the immune system during pregnancy. Immunological Reviews, 2011, 241, 20-38.	2.8	206
69	CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 2011, 12, 391-398.	7.0	142
70	Bridging the information gap. Nature Immunology, 2011, 12, 377-379.	7.0	5
71	Cancer to bone: a fatal attraction. Nature Reviews Cancer, 2011, 11, 411-425.	12.8	1,047
72	Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 2011, 11, 762-774.	10.6	2,272
73	The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 2011, 12, 126-131.	16.1	544

#	Article	IF	CITATIONS
74	Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nature Reviews Molecular Cell Biology, 2011, 12, 643-655.	16.1	268
75	Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia, 2011, 25, 211-217.	3.3	205
76	Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia, 2011, 25, 1095-1102.	3.3	26
77	The New York Stem Cell Foundation: Fifth Annual Translational Stem Cell Research Conference. Annals of the New York Academy of Sciences, 2011, 1226, 1-13.	1.8	1
79	Irradiated mesenchymal stem cells improve the ex vivo expansion of hematopoietic progenitors by partly mimicking the bone marrow endosteal environment. Journal of Immunological Methods, 2011, 370, 93-103.	0.6	29
80	The Use of Platelet-Rich Plasma in the Management of Foot and Ankle Conditions. Operative Techniques in Sports Medicine, 2011, 19, 177-184.	0.2	12
81	Biomaterials meet microfluidics: building the next generation of artificial niches. Current Opinion in Biotechnology, 2011, 22, 690-697.	3.3	75
82	Functional characterization of hematopoietic stem cells in the spleen. Experimental Hematology, 2011, 39, 351-359.e3.	0.2	84
83	Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Experimental Hematology, 2011, 39, 617-628.	0.2	74
84	Bidirectional interactions between bone metabolism and hematopoiesis. Experimental Hematology, 2011, 39, 809-816.	0.2	11
85	Bone Marrow-Derived Myofibroblasts Contribute to the Mesenchymal Stem Cell Niche and Promote Tumor Growth. Cancer Cell, 2011, 19, 257-272.	7.7	867
86	The bone marrow microenvironment and leukemia: biology and therapeutic targeting. Expert Review of Hematology, 2011, 4, 271-283.	1.0	98
87	Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. Journal of Neuro-Oncology, 2011, 105, 57-65.	1.4	44
88	The immunomodulatory properties of mesenchymal stem cells. Seminars in Immunopathology, 2011, 33, 593-602.	2.8	158
89	Abrogation of Cbl–PI3K Interaction Increases Bone Formation and Osteoblast Proliferation. Calcified Tissue International, 2011, 89, 396-410.	1.5	37
90	Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials, 2011, 32, 321-329.	5.7	149
91	The Ins and Outs of Hematopoietic Stem Cells: Studies to Improve Transplantation Outcomes. Stem Cell Reviews and Reports, 2011, 7, 590-607.	5.6	59
92	Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation. Stem Cell Reviews and Reports, 2011, 7, 569-589.	5.6	160

#	Article	IF	CITATIONS
93	Breast cancer at bone metastatic sites: recent discoveries and treatment targets. Journal of Cell Communication and Signaling, 2011, 5, 85-99.	1.8	29
94	Mesenchymal niches of bone marrow in cancer. Clinical and Translational Oncology, 2011, 13, 611-616.	1.2	14
95	A Central Role for Hypoxic Signaling in Cartilage, Bone, and Hematopoiesis. Current Osteoporosis Reports, 2011, 9, 46-52.	1.5	76
96	Stem Cell Interactions in a Bone Marrow Niche. Current Osteoporosis Reports, 2011, 9, 210-218.	1.5	49
97	A new chapter: hematopoietic stem cells are direct players in immunity. Cell and Bioscience, 2011, 1, 33.	2.1	10
98	Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biology, 2011, 12, 12.	3.0	205
99	Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. Journal of Orthopaedic Research, 2011, 29, 1544-1553.	1.2	25
100	Haematopoietic stem cell differentiation promotes the release of promininâ€1/CD133â€containing membrane vesicles—a role of the endocytic–exocytic pathway. EMBO Molecular Medicine, 2011, 3, 398-409.	3.3	102
101	Migration of dorsal aorta mesenchymal stem cells induced by mouse embryonic circulation. Developmental Dynamics, 2011, 240, 65-74.	0.8	5
102	Defining the hematopoietic stem cell niche: The chicken and the egg conundrum. Journal of Cellular Biochemistry, 2011, 112, 1486-1490.	1.2	8
103	Back to the future: Moving beyond "mesenchymal stem cells― Journal of Cellular Biochemistry, 2011, 112, 1713-1721.	1.2	58
104	Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. Journal of Cellular Biochemistry, 2011, 112, 3073-3078.	1.2	83
105	Bone Marrow Mesenchymal Stem and Progenitor Cells Induce Monocyte Emigration in Response to Circulating Toll-like Receptor Ligands. Immunity, 2011, 34, 590-601.	6.6	425
106	Emergency Evacuation! Hematopoietic Niches Induce Cell Exit in Infection. Immunity, 2011, 34, 463-465.	6.6	2
107	Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 2011, 32, 3189-3209.	5.7	327
108	An Irradiation-Altered Bone Marrow Microenvironment Impacts Anabolic Actions of PTH. Endocrinology, 2011, 152, 4525-4536.	1.4	34
109	The hematopoietic stem cell polarization and migration. Communicative and Integrative Biology, 2011, 4, 201-204.	0.6	16
110	Parathyroid hormone stimulates stem cell to circulation in mice. , 2011, , .		0

#	Article	IF	CITATIONS
111	Harnessing the therapeutic potential of mesenchymal stem cells in multiple sclerosis. Expert Review of Neurotherapeutics, 2011, 11, 1295-1303.	1.4	45
112	The bone marrow stroma in hematological neoplasms—a guilty bystander. Nature Reviews Clinical Oncology, 2011, 8, 456-466.	12.5	42
113	Reduced Reactivation from Dormancy but Maintained Lineage Choice of Human Mesenchymal Stem Cells with Donor Age. PLoS ONE, 2011, 6, e22980.	1.1	92
114	Introduction to Statistical Methods to Analyze Large Data Sets: Principal Components Analysis. Science Signaling, 2011, 4, tr3.	1.6	40
115	Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche. Bone Marrow Research, 2011, 2011, 1-8.	1.7	69
116	Potential therapeutic applications of mesenchymal stromal cells. Pathology, 2011, 43, 592-604.	0.3	29
117	Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1609-1614.	3.3	226
118	Guanine nucleotide exchange factor Vav1 regulates perivascular homing and bone marrow retention of hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9607-9612.	3.3	38
119	Diabetes Impairs Hematopoietic Stem Cell Mobilization by Altering Niche Function. Science Translational Medicine, 2011, 3, 104ra101.	5.8	254
120	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	4.2	732
121	Critical features of FAK-expressing AML bone marrow microenvironment through leukemia stem cell hijacking of mesenchymal stromal cells. Leukemia, 2011, 25, 1789-1793.	3.3	23
122	The Niche as a Target for Hematopoietic Manipulation and Regeneration. Tissue Engineering - Part B: Reviews, 2011, 17, 415-422.	2.5	13
123	The haematopoietic stem cell niche at a glance. Journal of Cell Science, 2011, 124, 3529-3535.	1.2	127
124	Diabetic Stem-Cell "Mobilopathy― New England Journal of Medicine, 2011, 365, 2536-2538.	13.9	81
125	Double Allogenic Mesenchymal Stem Cells Transplantations Could Not Enhance Therapeutic Effect Compared with Single Transplantation in Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	40
126	To be or not to be a stem cell: dissection of cellular and molecular components of haematopoietic stem cell niches. EMBO Journal, 2012, 31, 1060-1061.	3.5	4
127	SDF-1 activates papillary label-retaining cells during kidney repair from injury. American Journal of Physiology - Renal Physiology, 2012, 302, F1362-F1373.	1.3	20
128	The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS). International Journal of Molecular Sciences, 2012, 13, 9298-9331.	1.8	73

#	Article	IF	CITATIONS
129	Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Cell Death and Differentiation, 2012, 19, 1268-1276.	5.0	20
130	Cytoneme-Mediated Delivery of Hedgehog Regulates the Expression of Bone Morphogenetic Proteins to Maintain Germline Stem Cells in Drosophila. PLoS Biology, 2012, 10, e1001298.	2.6	151
131	The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia, 2012, 26, 54-62.	3.3	119
132	Concise Review: Hematopoietic Stem Cell Aging, Life Span, and Transplantation. Stem Cells Translational Medicine, 2012, 1, 651-657.	1.6	52
133	Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia, 2012, 26, 34-53.	3.3	156
134	Myeloid-Specific IκB Kinase β Deficiency Decreases Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2869-2876.	1.1	46
136	Bone marrow mesenchymal progenitor and stem cell biology and therapy., 2012,, 345-390.		0
137	Mesenchymal Stromal Cell Mutations and Wound Healing Contribute to the Etiology of Desmoid Tumors. Cancer Research, 2012, 72, 346-355.	0.4	56
138	The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy, 2012, 4, 529-547.	1.0	49
139	Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations. Cell Cycle, 2012, 11, 675-682.	1.3	23
140	Of blood cells and the nervous system. Fly, 2012, 6, 254-260.	0.9	56
141	Twenty Years of G-CSF. , 2012, , .		8
142	Dissecting Paracrine Effectors for Mesenchymal Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 137-152.	0.6	17
143	Injuryâ€Activated Transforming Growth Factor β Controls Mobilization of Mesenchymal Stem Cells for Tissue Remodeling. Stem Cells, 2012, 30, 2498-2511.	1.4	129
144	Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood, 2012, 119, 3962-3965.	0.6	86
145	Bone Marrow Mesenchymal Stem Cells in Myelodysplastic Syndromes: Cytogenetic Characterization. Acta Haematologica, 2012, 128, 170-177.	0.7	7
146	Waking up HSCs: a new role for E-selectin. Nature Medicine, 2012, 18, 1613-1614.	15.2	9
147	Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia, 2012, 26, 2375-2383.	3.3	57

#	Article	IF	Citations
148	Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche?. Blood Cancer Journal, 2012, 2, e91-e91.	2.8	51
149	Homing and Adhesion Patterns Determine the Cellular Composition of the Bone Marrow Plasma Cell Niche. Journal of Immunology, 2012, 188, 1283-1291.	0.4	95
150	Extramedullary Hematopoiesis: A New Look at the Underlying Stem Cell Niche, Theories of Development, and Occurrence in Animals. Veterinary Pathology, 2012, 49, 508-523.	0.8	169
151	Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 2012, 49, R89-R111.	1.1	69
152	Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches. PLoS ONE, 2012, 7, e39885.	1.1	92
153	Impaired Therapeutic Capacity of Autologous Stem Cells in a Model of Type 2 Diabetes. Stem Cells Translational Medicine, 2012, 1, 125-135.	1.6	95
155	Potential Use of CXCR4 Antagonists to Mobilize Endothelial and Mesenchymal Stem Cells. , 2012, , 423-437.		0
156	Nestin Protein Is Phosphorylated in Adult Neural Stem/Progenitor Cells and Not Endothelial Progenitor Cells. Stem Cells International, 2012, 2012, 1-5.	1.2	30
157	Cotransplantation of Allogeneic Mesenchymal and Hematopoietic Stem Cells in Children With Aplastic Anemia. Pediatrics, 2012, 129, e1612-e1615.	1.0	31
158	Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Laboratory Investigation, 2012, 92, 1330-1341.	1.7	74
159	Bone, microenvironment and hematopoiesis. Current Opinion in Hematology, 2012, 19, 250-255.	1.2	65
160	Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica, 2012, 97, 651-660.	1.7	104
162	A fly's view of the hematopoietic niche. Haematologica, 2012, 97, 155-155.	1.7	0
164	An Ectopic Stromal Implant Model for Hematopoietic Reconstitution and in Vivo Evaluation of Bone Marrow Niches. Cell Transplantation, 2012, 21, 2677-2688.	1.2	6
165	Gene Therapy to Mitigate Radiation-Induced Bone Marrow Aplasia. Health Physics, 2012, 103, 138-142.	0.3	4
166	The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica, 2012, 97, 179-183.	1.7	89
167	Bad to the bone. Blood, 2012, 119, 323-325.	0.6	13
168	S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 2012, 119, 2478-2488.	0.6	175

#	Article	IF	CITATIONS
169	Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119, 2489-2499.	0.6	60
170	Ionizing radiation–induced expression of INK4a/ARF in murine bone marrow–derived stromal cell populations interferes with bone marrow homeostasis. Blood, 2012, 119, 717-726.	0.6	53
171	Role of bone marrow transplantation for correcting hemophilia A in mice. Blood, 2012, 119, 5532-5542.	0.6	55
172	Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood, 2012, 119, 5144-5154.	0.6	82
173	N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood, 2012, 120, 295-302.	0.6	80
174	Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood, 2012, 120, 303-313.	0.6	81
175	MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood, 2012, 119, 5405-5416.	0.6	51
176	Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood, 2012, 119, 5429-5437.	0.6	122
177	FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood, 2012, 120, 1831-1842.	0.6	69
178	FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood, 2012, 120, 1843-1855.	0.6	99
179	Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood, 2012, 120, 3425-3435.	0.6	68
180	N(o)-cadherin role for HSCs. Blood, 2012, 120, 237-238.	0.6	4
181	PTH expands short-term murine hemopoietic stem cells through T cells. Blood, 2012, 120, 4352-4362.	0.6	42
182	Advances in stem cell mobilization. Blood Reviews, 2012, 26, 267-278.	2.8	98
183	Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood, 2012, 119, 540-550.	0.6	185
184	Stem cells in dentistry – Part II: Clinical applications. Journal of Prosthodontic Research, 2012, 56, 229-248.	1.1	148
185	Regeneration of Cardiac Muscle and Hematopoietic Tissues. , 2012, , 161-182.		0
186	Role of Nâ€cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Annals of the New York Academy of Sciences, 2012, 1266, 72-77.	1.8	55

#	Article	IF	Citations
187	Differential requirements for Wnt and Notch signaling in hematopoietic versus thymic niches. Annals of the New York Academy of Sciences, 2012, 1266, 78-93.	1.8	15
188	Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature Medicine, 2012, 18, 1651-1657.	15.2	364
189	CCR2-Dependent Recruitment of Macrophages by Tumor-Educated Mesenchymal Stromal Cells Promotes Tumor Development and Is Mimicked by TNFα. Cell Stem Cell, 2012, 11, 812-824.	5.2	284
190	Embryonic development of hematopoietic stem cells: implications for clinical use. Regenerative Medicine, 2012, 7, 349-368.	0.8	6
191	Engraftment defect of cytokineâ€cultured adult human mobilized <scp>CD</scp> 34 ⁺ cells is related to reduced adhesion to bone marrow niche elements. British Journal of Haematology, 2012, 158, 778-787.	1.2	27
192	Mesenchymal stromal cells: a key player in â€~innate tolerance'?. Immunology, 2012, 137, 206-213.	2.0	71
193	Myocardial infarction accelerates atherosclerosis. Nature, 2012, 487, 325-329.	13.7	874
194	Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors. Blood, 2012, 119, e86-e95.	0.6	44
195	The mesenchyme in malignancy: A partner in the initiation, progression and dissemination of cancer. , 2012, 136, 131-141.		18
196	Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO Journal, 2012, 32, 219-230.	3.5	70
197	Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2547-2552.	1.1	63
198	Quantifying Hematopoietic Stem and Progenitor Cell Mobilization. Methods in Molecular Biology, 2012, 904, 15-35.	0.4	1
199	Stem cell niche: from concept to reality. Pigment Cell and Melanoma Research, 2012, 25, 122-123.	1.5	1
200	The hematopoietic stem cell niche. Frontiers in Bioscience - Landmark, 2012, 17, 30.	3.0	66
201	In Vivo Imaging of Hematopoietic Stem Cells in the Bone Marrow Niche. Methods in Molecular Biology, 2012, 916, 231-242.	0.4	4
202	Osteoinduction. Journal of Dental Research, 2012, 91, 736-744.	2.5	269
203	Loss of wnt/ \hat{l}^2 -catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. Journal of Bone and Mineral Research, 2012, 27, 2344-2358.	3.1	201
204	Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche. Cell Reports, 2012, 2, 964-975.	2.9	129

#	Article	IF	Citations
205	Getting blood from bone: An emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Experimental Hematology, 2012, 40, 685-694.	0.2	35
206	Differential effects of mixed lymphocyte reaction supernatant on human mesenchymal stromal cells. Experimental Hematology, 2012, 40, 934-944.	0.2	19
207	Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues. Immunity, 2012, 37, 290-301.	6.6	406
208	Progenitor Cells. Methods in Molecular Biology, 2012, , .	0.4	2
209	Mesenchymal stem cells in tumor development. Cell Adhesion and Migration, 2012, 6, 220-230.	1.1	172
210	The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem Cell Research and Therapy, 2012, 3, 3.	2.4	68
211	Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism. Stem Cells and Development, 2012, 21, 3162-3172.	1.1	35
212	Aerodynamically assisted bio-jetting of hematopoietic stem cells. Analyst, The, 2012, 137, 1329.	1.7	10
213	Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 2012, 20, 14-20.	3.7	702
214	Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during <i>Toxoplasma gondii</i> infection. Journal of Leukocyte Biology, 2012, 92, 123-131.	1.5	64
215	MicroRNAs are shaping the hematopoietic landscape. Haematologica, 2012, 97, 160-167.	1.7	109
216	The right neighbour. Nature, 2012, 481, 453-454.	13.7	16
217	Bioadhesive Control of Plasma Proteins and Blood Cells from Umbilical Cord Blood onto the Interface Grafted with Zwitterionic Polymer Brushes. Langmuir, 2012, 28, 4309-4317.	1.6	50
219	Endogenous Bone Marrow MSCs Are Dynamic, Fate-Restricted Participants in Bone Maintenance and Regeneration. Cell Stem Cell, 2012, 10, 259-272.	5.2	551
220	Special Stem Cells for Bone. Cell Stem Cell, 2012, 10, 233-234.	5.2	11
221	The Stem Cell Niche in Regenerative Medicine. Cell Stem Cell, 2012, 10, 362-369.	5.2	229
222	Histone Demethylases KDM4B and KDM6B Promotes Osteogenic Differentiation of Human MSCs. Cell Stem Cell, 2012, 11, 50-61.	5.2	264
223	Mesenchymal Stromal Cells: New Directions. Cell Stem Cell, 2012, 10, 709-716.	5.2	679

#	Article	IF	CITATIONS
224	How benzene and its metabolites affect human marrow derived mesenchymal stem cells. Toxicology Letters, 2012, 214, 145-153.	0.4	17
225	Primary Mesenchymal Stem and Progenitor Cells from Bone Marrow Lack Expression of CD44 Protein. Journal of Biological Chemistry, 2012, 287, 25795-25807.	1.6	122
226	Mesenchymal Stem Cells Derived from Human Limbal Niche Cells. , 2012, 53, 5686.		102
227	Micromarrowsâ€"Three-Dimensional Coculture of Hematopoietic Stem Cells and Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2012, 18, 319-328.	1.1	53
228	Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 2012, 481, 457-462.	13.7	1,617
229	Mobilization of hematopoietic stem and leukemia cells. Journal of Leukocyte Biology, 2011, 91, 47-57.	1.5	34
230	Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. Journal of Experimental Medicine, 2012, 209, 537-549.	4.2	185
231	A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis. American Journal of Pathology, 2012, 180, 811-818.	1.9	20
232	Chemokines and adult bone marrow stem cells. Immunology Letters, 2012, 145, 47-54.	1.1	54
233	Interdependence of stromal and immune cells for lymph node function. Trends in Immunology, 2012, 33, 264-270.	2.9	62
234	My AML Cytogenetics Classification Scheme Is Better Than Yours. Biology of Blood and Marrow Transplantation, 2012, 18, 160-161.	2.0	2
235	New Hope for Mobilization Failures Again. Biology of Blood and Marrow Transplantation, 2012, 18, 159-160.	2.0	3
236	Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials, 2012, 33, 6987-6997.	5.7	155
237	The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO. Cell, 2012, 149, 63-74.	13.5	244
238	Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell, 2012, 150, 351-365.	13.5	257
239	Do microRNAs regulate bone marrow stem cell niche physiology?. Gene, 2012, 497, 1-9.	1.0	18
240	Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia, 2012, 26, 1594-1601.	3.3	136
241	Mobilization of Hematopoietic Stem/Progenitor Cells: General Principles and Molecular Mechanisms. Methods in Molecular Biology, 2012, 904, 1-14.	0.4	52

#	ARTICLE	IF	CITATIONS
242	New developments in osteoimmunology. Nature Reviews Rheumatology, 2012, 8, 684-689.	3.5	213
243	Concise Review: Mesenchymal Stem Cells and Translational Medicine: Emerging Issues. Stem Cells Translational Medicine, 2012, 1, 51-58.	1.6	281
244	Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. Journal of Bone and Mineral Research, 2012, 27, 2075-2084.	3.1	216
245	Stem cell bioengineering at the interface of systemsâ€based models and highâ€throughput platforms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 525-545.	6.6	2
246	Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Communication and Signaling, 2012, 10, 26.	2.7	111
247	Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?. Clinical and Translational Medicine, 2012, 1, 30.	1.7	41
248	Hypoxia-Mediated Regulation of Stem Cell Fate. High Altitude Medicine and Biology, 2012, 13, 162-168.	0.5	17
249	A family business: stem cell progeny join the niche to regulate homeostasis. Nature Reviews Molecular Cell Biology, 2012, 13, 103-114.	16.1	266
250	Stem Cells in the Gastrointestinal Tract. , 2012, , 359-378.		2
251	Perivascular cells for regenerative medicine. Journal of Cellular and Molecular Medicine, 2012, 16, 2851-2860.	1.6	242
252	Interplay between Mesenchymal Stem Cells and Lymphocytes. Journal of Dental Research, 2012, 91, 1003-1010.	2.5	112
253	Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements. Tissue Engineering - Part B: Reviews, 2012, 18, 101-115.	2.5	258
254	Immunosuppressive Properties of Mesenchymal Stromal Cells. , 2012, , 281-301.		2
255	Regulation of Hematopoietic Stem and Progenitor Cell Mobilization by Cholesterol Efflux Pathways. Cell Stem Cell, 2012, 11, 195-206.	5.2	217
256	Stem Cells in the Face: Tooth Regeneration and Beyond. Cell Stem Cell, 2012, 11, 291-301.	5.2	106
257	Differential Regulation of CXCL5 by FGF2 in Osteoblastic and Endothelial Niche Cells Supports Hematopoietic Stem Cell Migration. Stem Cells and Development, 2012, 21, 3391-3402.	1.1	32
258	Interactions Between Mesenchymal Stem Cells and Dendritic Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 199-208.	0.6	31
259	Stem cell therapy independent of stemness. World Journal of Stem Cells, 2012, 4, 120.	1.3	19

#	ARTICLE	IF	Citations
260	Mesenchymal Stem Cells: Complex Players in Lung Repair and Injury. Stem Cells and Cancer Stem Cells, 2012, , 145-154.	0.1	0
261	Mesenchymal Stem Cells: The Role of Endothelial Cells and the Vasculature. Stem Cells and Cancer Stem Cells, 2012, , 105-112.	0.1	0
262	Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes. Journal of Visualized Experiments, 2012, , e3986.	0.2	16
263	The Vascular Stem Cell Niche. Journal of Cardiovascular Translational Research, 2012, 5, 618-630.	1.1	62
264	The Regulation of Normal and Leukemic Hematopoietic Stem Cells by Niches. Cancer Microenvironment, 2012, 5, 295-305.	3.1	17
266	Regenerative Therapy Using Blood-Derived Stem Cells. , 2012, , .		2
268	IL-7: The global builder of the innate lymphoid network and beyond, one niche at a time. Seminars in Immunology, 2012, 24, 190-197.	2.7	34
269	Monocyte-Mediated Immune Defense Against Murine Listeria monocytogenes Infection. Advances in Immunology, 2012, 113, 119-134.	1.1	77
270	Monocytes-macrophages that express \hat{l}_{\pm} -smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.	7.0	196
271	Bone Marrow Lymphoid Infiltrates. , 2012, , .		1
272			
	Postnatal Bone Growth: Growth Plate Biology, Bone Formation, and Remodeling., 2012, , 55-82.		5
273	Postnatal Bone Growth: Growth Plate Biology, Bone Formation, and Remodeling., 2012, , 55-82. Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 2012, 14, 412-422.	0.3	23
273 274	Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a	0.3	
	Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 2012, 14, 412-422.	0.3	23
274	Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 2012, 14, 412-422. Mesenchymal Stem Cell-Natural Killer Cell Interactions., 2012, , 217-224. The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy, 2012, 14,		23
274 275	Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 2012, 14, 412-422. Mesenchymal Stem Cell-Natural Killer Cell Interactions., 2012, , 217-224. The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy, 2012, 14, 135-143. Trophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration.	0.3	23 2 24
274 275 276	Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 2012, 14, 412-422. Mesenchymal Stem Cell-Natural Killer Cell Interactions., 2012, , 217-224. The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy, 2012, 14, 135-143. Trophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration. Cells, 2012, 1, 832-850.	0.3	23 2 24 24

#	Article	IF	CITATIONS
280	From tendon to nerve: an MSC for all seasons. Canadian Journal of Physiology and Pharmacology, 2012, 90, 295-306.	0.7	16
281	Stem Cells and Cancer Stem Cells, Volume 3. , 2012, , .		2
282	Neovascular Niche for Human Myeloma Cells in Immunodeficient Mouse Bone. PLoS ONE, 2012, 7, e30557.	1.1	15
283	Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment. PLoS ONE, 2012, 7, e51221.	1.1	60
284	Prostate Cancer and Parasitism of the Bone Hematopoietic Stem Cell Niche. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 131-148.	0.4	25
285	The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	30
286	Bone Marrow Niches for Hematopoietic Stem Cells and Immune Cells. Inflammation and Allergy: Drug Targets, 2012, 11, 201-206.	1.8	86
287	Tissue Engineering of Bone: Critical Evaluation of Scaffold Selection. , 2012, , .		3
288	Regulatory Cross Talks of Bone Cells, Hematopoietic Stem Cells and the Nervous System Maintain Hematopoiesis. Inflammation and Allergy: Drug Targets, 2012, 11, 170-180.	1.8	23
290	In Vivo Fate Mapping Identifies Mesenchymal Progenitor Cells. Stem Cells, 2012, 30, 187-196.	1.4	212
291	Noncanonical NF-κB Signaling Regulates Hematopoietic Stem Cell Self-Renewal and Microenvironment Interactions. Stem Cells, 2012, 30, 709-718.	1.4	65
292	Fibroblast Growth Factor-2 Maintains a Niche-Dependent Population of Self-Renewing Highly Potent Non-adherent Mesenchymal Progenitors Through FGFR2c. Stem Cells, 2012, 30, 1455-1464.	1.4	55
293	Impaired Osteoblastogenesis in a Murine Model of Dominant Osteogenesis Imperfecta: A New Target for Osteogenesis Imperfecta Pharmacological Therapy. Stem Cells, 2012, 30, 1465-1476.	1.4	59
294	Mouse Bone Marrow Derived Mesenchymal Stem Cells. , 2012, , 231-245.		1
295	Adhesion and Osteogenic Differentiation of Human Mesenchymal Stem Cells: Supported by B-Type Carbonated Hydroxylapatite., 2012,, 247-259.		1
296	The canonical Wnt pathway shapes niches supportive of hematopoietic stem/progenitor cells. Blood, 2012, 119, 1683-1692.	0.6	85
297	Emerging roles for multipotent, bone marrow–derived stromal cells in host defense. Blood, 2012, 119, 1801-1809.	0.6	98
298	Chemical beauty contest. Nature, 2012, 481, 455-456.	13.7	240

#	Article	IF	CITATIONS
299	Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews Immunology, 2012, 12, 383-396.	10.6	811
300	Identity and ranking of colonic mesenchymal stromal cells. Journal of Cellular Physiology, 2012, 227, 3291-3300.	2.0	27
301	Artificial Niches: Biomimetic Materials for Hematopoietic Stem Cell Culture. Macromolecular Rapid Communications, 2012, 33, 1432-1438.	2.0	39
302	Premature loss of bone remodeling compartment canopies is associated with deficient bone formation: A study of healthy individuals and patients with cushing's syndrome. Journal of Bone and Mineral Research, 2012, 27, 770-780.	3.1	33
303	Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. Journal of Bone and Mineral Research, 2012, 27, 749-759.	3.1	84
304	Absence of sclerostin adversely affects B-cell survival. Journal of Bone and Mineral Research, 2012, 27, 1451-1461.	3.1	80
305	Medical therapies with adult stem/progenitor cells (MSCs): A backward journey from dramatic results in vivo to the cellular and molecular explanations. Journal of Cellular Biochemistry, 2012, 113, 1460-1469.	1.2	101
306	Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. Journal of Cellular Biochemistry, 2012, 113, 2806-2812.	1.2	344
307	Three-Dimensional <i>In Vitro</i> Tri-Culture Platform to Investigate Effects of Crosstalk Between Mesenchymal Stem Cells, Osteoblasts, and Adipocytes. Tissue Engineering - Part A, 2012, 18, 1686-1697.	1.6	16
308	Two anatomically distinct niches regulate stem cell activity. Blood, 2012, 120, 2174-2181.	0.6	65
309	The secrets of the bone marrow niche: Metabolic priming for AML. Nature Medicine, 2012, 18, 865-867.	15.2	15
310	The secrets of the bone marrow niche: Enigmatic niche brings challenge for HSC expansion. Nature Medicine, 2012, 18, 864-865.	15.2	36
311	Mesenchymal stromal cells (MSCs): science and f(r)iction. Journal of Molecular Medicine, 2012, 90, 773-782.	1.7	51
312	Chronic Myeloid Leukemia Stem Cell Biology. Current Hematologic Malignancy Reports, 2012, 7, 125-132.	1.2	40
313	An Evolving Model of Hematopoietic Stem Cell Functional Identity. Stem Cell Reviews and Reports, 2012, 8, 551-560.	5.6	7
314	Myeloproliferation and hematopoietic stem cell dysfunction due to defective Notch receptor modification by O-fucose glycans. Seminars in Immunopathology, 2012, 34, 455-469.	2.8	3
315	Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomaterialia, 2012, 8, 1749-1758.	4.1	19
316	The bone marrow at the crossroads of blood and immunity. Nature Reviews Immunology, 2012, 12, 49-60.	10.6	268

#	ARTICLE	IF	CITATIONS
317	Building strong bones: molecular regulation of the osteoblast lineage. Nature Reviews Molecular Cell Biology, 2012, 13, 27-38.	16.1	898
318	On the symmetry of siblings: automated single-cell tracking to quantify the behavior of hematopoietic stem cells in a biomimetic setup. Experimental Hematology, 2012, 40, 119-130.e9.	0.2	36
319	Homeostasis of hematopoietic stem cells regulated by the myeloproliferative disease associated-gene product Lnk/Sh2b3 via Bcl-xL. Experimental Hematology, 2012, 40, 166-174.e3.	0.2	11
320	Early Lymphoid Development and Microenvironmental Cues inÂB-cellÂAcuteÂLymphoblastic Leukemia. Archives of Medical Research, 2012, 43, 89-101.	1.5	37
321	Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology, 2012, 136, 133-138.	2.0	43
322	The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion, 2012, 52, 2706-2716.	0.8	12
323	Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects. Mechanisms of Ageing and Development, 2012, 133, 215-225.	2.2	160
324	On the origin of hematopoietic stem cells: Progress and controversy. Stem Cell Research, 2012, 8, 1-13.	0.3	43
325	Neural crest progenitors and stem cells: From early development to adulthood. Developmental Biology, 2012, 366, 83-95.	0.9	197
326	Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34+ cells. Experimental Cell Research, 2012, 318, 196-206.	1.2	31
327	A novel function for the haemopoietic supportive murine bone marrow ⟨scp⟩MS⟨/scp⟩â€5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. British Journal of Haematology, 2012, 157, 299-311.	1.2	31
328	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	1.7	155
329	Primary myelofibrosis and the "bad seeds in bad soil" concept. Fibrogenesis and Tissue Repair, 2012, 5, S20.	3.4	41
330	Myelodysplastic syndromes: revisiting the role of the bone marrow microenvironment in disease pathogenesis. International Journal of Hematology, 2012, 95, 17-25.	0.7	55
331	<i>Ex vivo</i> expansion of cord blood-CD34 ⁺ cells using IGFBP ₂ and Angptl-5 impairs short-term lymphoid repopulation <i>in vivo</i> Begenerative Medicine, 2013, 7, 944-954.	1.3	6
332	Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Research and Therapy, 2013, 4, 75.	2.4	67
333	Mesenchymal stem cell transformation and sarcoma genesis. Clinical Sarcoma Research, 2013, 3, 10.	2.3	77
334	Calorie restriction alleviates the ageâ€related decrease in neural progenitor cell division in the aging brain. European Journal of Neuroscience, 2013, 37, 1987-1993.	1.2	60

#	Article	IF	CITATIONS
335	Interactions Between B Lymphocytes and the Osteoblast Lineage in Bone Marrow. Calcified Tissue International, 2013, 93, 261-268.	1.5	39
336	Role and Regulation of Vascularization Processes in Endochondral Bones. Calcified Tissue International, 2013, 92, 307-323.	1.5	130
337	SLAM Family Markers Resolve Functionally Distinct Subpopulations of Hematopoietic Stem Cells and Multipotent Progenitors. Cell Stem Cell, 2013, 13, 102-116.	5.2	521
338	The peculiar biology of mouse mesenchymal stromal cellsâ€"oxygen is the key. Cytotherapy, 2013, 15, 536-541.	0.3	17
339	Mesenchymal stromal cells: radioâ€resistant members of the bone marrow. Immunology and Cell Biology, 2013, 91, 5-11.	1.0	59
340	Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology, 2013, 9, 584-594.	3.5	344
341	Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	1
343	The long and winding road that leads to a cure for epidermolysis bullosa. Regenerative Medicine, 2013, 8, 467-481.	0.8	21
344	Regional Localization within the Bone Marrow Influences the Functional Capacity of Human HSCs. Cell Stem Cell, 2013, 13, 175-189.	5.2	103
345	Development of the Skeleton. , 2013, , 97-126.		8
346	Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 2013, 27, 1841-1851.	3.3	192
347	Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell, 2013, 13, 285-299.	5.2	532
348	Tumour stem cells in bone. Nature, 2013, 499, 414-416.	13.7	5
349	The secretome of mesenchymal stem cells: Potential implications forÂneuroregeneration. Biochimie, 2013, 95, 2246-2256.	1.3	100
350	Mechanobiology of bone marrow stem cells: From myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation, 2013, 86, 77-86.	1.0	58
351	Bone marrow cells as precursors of the tumor stroma. Experimental Cell Research, 2013, 319, 1650-1656.	1.2	25
352	Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells, 2013, 31, 2443-2456.	1.4	159
353	Towards a †systemsâ€	4.2	38

#	Article	IF	CITATIONS
354	It takes nerves to recover from chemotherapy. Nature Medicine, 2013, 19, 669-671.	15.2	18
355	Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell, 2013, 154, 1060-1073.	13.5	359
356	Nmp4/CIZ Suppresses the Parathyroid Hormone Anabolic Window by Restricting Mesenchymal Stem Cell and Osteoprogenitor Frequency. Stem Cells and Development, 2013, 22, 492-500.	1.1	17
357	Isolation, Characterization, and Transplantation of Bone Marrow-Derived Cell Components with Hematopoietic Stem Cell Niche Properties. Stem Cells and Development, 2013, 22, 3052-3061.	1.1	24
358	Identification of non–cell-autonomous networks from engineered feeder cells that enhance murine hematopoietic stem cell activity. Experimental Hematology, 2013, 41, 470-478.e4.	0.2	7
359	Ectopic bone formation in severely combat-injured orthopedic patients — A hematopoietic niche. Bone, 2013, 56, 119-126.	1.4	29
360	Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence?. Stem Cell Research, 2013, 11, 1348-1364.	0.3	138
361	Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone, 2013, 55, 258-267.	1.4	47
362	Viewing Transplantation Immunology Through Today's Lens: New Models, New Imaging, and New Insights. Biology of Blood and Marrow Transplantation, 2013, 19, S44-S51.	2.0	2
363	Multiple Facets of the DNA Damage Response Contribute to the Radioresistance of Mouse Mesenchymal Stromal Cell Lines. Stem Cells, 2013, 31, 137-145.	1.4	65
364	Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone, 2013, 53, 575-586.	1.4	92
365	Quiescent Very Small Embryonic-like Stem Cells Resist Oncotherapy and can Restore Spermatogenesis in Germ Cell Depleted Mammalian Testis. Stem Cells and Development, 2013, , 131001102536007.	1.1	10
366	Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells. Experimental Hematology, 2013, 41, 479-490.e4.	0.2	29
367	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	13.7	1,002
368	Rho <scp>GTP</scp> ases control specific cytoskeletonâ€dependent functions of hematopoietic stem cells. Immunological Reviews, 2013, 256, 255-268.	2.8	61
369	Multiple Sclerosis Immunology. , 2013, , .		7
370	Concise review: Adult mesenchymal stromal cell therapy for inflammatory diseases: How well are we joining the dots?. Stem Cells, 2013, 31, 2033-2041.	1.4	124
371	Osteolineage cells and regulation of the hematopoietic stem cell. Best Practice and Research in Clinical Haematology, 2013, 26, 249-252.	0.7	11

#	Article	IF	CITATIONS
372	Postischemic Revascularization: From Cellular and Molecular Mechanisms to Clinical Applications. Physiological Reviews, 2013, 93, 1743-1802.	13.1	214
373	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	5.2	148
374	Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials, 2013, 34, 8860-8868.	5.7	63
375	Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12643-12648.	3.3	116
376	Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	2
377	Osteoimmunology and Its Implications for Transplantation. American Journal of Transplantation, 2013, 13, 2245-2254.	2.6	37
378	NF- \hat{P} B inhibits osteogenic differentiation of mesenchymal stem cells by promoting \hat{I}^2 -catenin degradation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9469-9474.	3.3	263
379	Leukemia cells induce changes in human bone marrow stromal cells. Journal of Translational Medicine, 2013, 11, 298.	1.8	50
380	In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential. Stem Cell Reviews and Reports, 2013, 9, 833-846.	5.6	10
381	Haematopoietic stem cell niches: new insights inspire new questions. EMBO Journal, 2013, 32, 2535-2547.	3.5	59
382	Novel aspects of parenchymal–mesenchymal interactions: from cell types to molecules and beyond. Cell Biochemistry and Function, 2013, 31, 271-280.	1.4	27
383	Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 170-191.	3.6	154
384	Deficiency of GRP94 in the Hematopoietic System Alters Proliferation Regulators in Hematopoietic Stem Cells. Stem Cells and Development, 2013, 22, 3062-3073.	1.1	11
385	Mesenchymal stem cells and the lung. Respirology, 2013, 18, 397-411.	1.3	93
386	Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models. Stem Cells and Development, 2013, 22, 2581-2595.	1.1	7
387	Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging. Stem Cell Research and Therapy, 2013, 4, 47.	2.4	43
388	The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood, 2013, 121, 2474-2482.	0.6	31
389	The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. British Medical Bulletin, 2013, 108, 25-53.	2.7	227

#	Article	IF	CITATIONS
390	Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology, 2013, 218, 90-95.	0.8	34
391	Mesenspheres of neural crest-derived cells enriched from bone marrow stromal cell subpopulation. Neuroscience Letters, 2013, 532, 70-75.	1.0	6
392	Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Experimental Cell Research, 2013, 319, 45-63.	1.2	74
393	New Insights into Mechanisms ofÂStem Cell Daughter Fate Determination in Regenerative Tissues. International Review of Cell and Molecular Biology, 2013, 300, 1-50.	1.6	16
394	Molecular Characterization of Prospectively Isolated Multipotent Mesenchymal Progenitors Provides New Insight into the Cellular Identity of Mesenchymal Stem Cells in Mouse Bone Marrow. Molecular and Cellular Biology, 2013, 33, 661-677.	1.1	31
395	The hematopoietic stem cell niche—home for friend and foe?. Cytometry Part B - Clinical Cytometry, 2013, 84B, 7-20.	0.7	75
396	The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 2013, 19, 35-42.	15.2	1,032
397	Bone marrow mesenchymal stem cells: Fat on and blast off by FGF21. International Journal of Biochemistry and Cell Biology, 2013, 45, 546-549.	1.2	25
398	Cellular and molecular mechanisms of accelerated fracture healing by COX2 gene therapy. Bone, 2013, 53, 369-381.	1.4	29
399	Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy, 2013, 15, 292-306.	0.3	93
400	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	9.5	381
401	Mesenchymal stem cells as treatment for MS – progress to date. Multiple Sclerosis Journal, 2013, 19, 515-519.	1.4	62
402	Enhanced Effect of Combining Human Cardiac Stem Cells and Bone Marrow Mesenchymal Stem Cells to Reduce Infarct Size and to Restore Cardiac Function After Myocardial Infarction. Circulation, 2013, 127, 213-223.	1.6	375
403	Mesenchymal Stem Cells and Haematopoietic Stem Cell Culture. , 2013, , 161-172.		1
404	Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2335-2344.	1.1	35
405	Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion. Cellular and Molecular Biology Letters, 2013, 18, 11-33.	2.7	27
406	Perivascular support of human hematopoietic stem/progenitor cells. Blood, 2013, 121, 2891-2901.	0.6	167
407	Murine and human very small embryonicâ€ike cells: A perspective. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 72-75.	1.1	12

#	Article	IF	CITATIONS
408	LIGHT regulates the adipogenic differentiation of mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 346-353.	1.2	9
409	SOX2 Regulates YAP1 to Maintain Stemness and Determine Cell Fate in the Osteo-Adipo Lineage. Cell Reports, 2013, 3, 2075-2087.	2.9	180
410	Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Research, 2013, 11, 1074-1090.	0.3	25
411	Modeling Clear Cell Sarcomagenesis in the Mouse: Cell of Origin Differentiation State Impacts Tumor Characteristics. Cancer Cell, 2013, 23, 215-227.	7.7	51
412	Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis. Cell Reports, 2013, 4, 1022-1034.	2.9	224
413	Deficiency of Lipid Phosphatase SHIP Enables Long-Term Reconstitution of Hematopoietic Inductive Bone Marrow Microenvironment. Developmental Cell, 2013, 25, 333-349.	3.1	9
414	Effects of PTH on osteocyte function. Bone, 2013, 54, 250-257.	1.4	159
415	The combined influence of substrate elasticity and surface-grafted molecules on the exÂvivo expansion of hematopoietic stem and progenitor cells. Biomaterials, 2013, 34, 7632-7644.	5.7	43
416	Modeling Human Hematopoietic Stem Cell Biology in the Mouse. Seminars in Hematology, 2013, 50, 92-100.	1.8	27
417	PTH prevents the adverse effects of focal radiation on bone architecture in young rats. Bone, 2013, 55, 449-457.	1.4	49
418	Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature, 2013, 495, 231-235.	13.7	1,017
419	The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials, 2013, 34, 3962-3969.	5.7	102
420	Mesenchymal stem cells and their use in therapy: What has been achieved?. Differentiation, 2013, 85, 1-10.	1.0	90
421	Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy, 2013, 15, 140-145.	0.3	106
422	Developmental programs are kept alive during adulthood by stem cells: The aging aspect. Experimental Gerontology, 2013, 48, 644-646.	1.2	6
423	Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature, 2013, 495, 365-369.	13.7	132
424	CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature, 2013, 495, 227-230.	13.7	1,119
425	MSC Niche for Hematopoiesis. , 2013, , 91-106.		O

#	Article	IF	Citations
426	Human MSCs from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue: All the Same?. , 2013, , 193-208.		0
427	Safety Issues in MSC Therapy. , 2013, , 377-387.		1
428	Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes. Biotechnology Advances, 2013, 31, 312-317.	6.0	37
429	Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia, 2013, 27, 24-31.	3.3	96
430	Distinct Immunomodulatory and Migratory Mechanisms Underpin the Therapeutic Potential of Human Mesenchymal Stem Cells in Autoimmune Demyelination. Cell Transplantation, 2013, 22, 1409-1425.	1.2	81
431	Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell and Tissue Research, 2013, 352, 537-549.	1.5	20
432	Isolation of Mesenchymal Stem Cells from Human Bone and Long-Term Cultivation Under Physiologic Oxygen Conditions. Methods in Molecular Biology, 2013, 976, 99-109.	0.4	8
433	Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System. Journal of Neurolmmune Pharmacology, 2013, 8, 1062-1076.	2.1	45
434	Cell-based approaches to joint surface repair: a research perspective. Osteoarthritis and Cartilage, 2013, 21, 892-900.	0.6	78
435	The ageing haematopoietic stem cell compartment. Nature Reviews Immunology, 2013, 13, 376-389.	10.6	489
436	Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature Cell Biology, 2013, 15, 533-543.	4.6	461
437	Prostaglandin E2 acts via bone marrow macrophages to block PTH-stimulated osteoblast differentiation in vitro. Bone, 2013, 56, 31-41.	1.4	21
438	This Niche Is a Maze; An Amazing Niche. Cell Stem Cell, 2013, 12, 391-392.	5.2	47
439	Biophysical Regulation of Stem Cell Differentiation. Current Osteoporosis Reports, 2013, 11, 83-91.	1.5	31
440	Trafficking to the Thymus. Current Topics in Microbiology and Immunology, 2013, 373, 87-111.	0.7	26
441	MT1-MMP-Dependent Control of Skeletal Stem Cell Commitment via a \hat{l}^2 1-Integrin/YAP/TAZ Signaling Axis. Developmental Cell, 2013, 25, 402-416.	3.1	219
442	Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine, 2013, 44, 576-582.	1.1	35
443	Nichotherapy for stem cells: There goes the neighborhood. BioEssays, 2013, 35, 183-190.	1.2	14

#	Article	IF	CITATIONS
444	Tie2+ Bone Marrow Endothelial Cells Regulate Hematopoietic Stem Cell Regeneration Following Radiation Injury. Stem Cells, 2013, 31, 327-337.	1.4	66
445	Immunological characterization of multipotent mesenchymal stromal cellsâ€"The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy, 2013, 15, 1054-1061.	0.3	364
446	Self-Renewing Human Bone Marrow Mesenspheres Promote Hematopoietic Stem Cell Expansion. Cell Reports, 2013, 3, 1714-1724.	2.9	128
447	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	13.5	555
448	Inhibition of TGF- \hat{l}^2 signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nature Medicine, 2013, 19, 704-712.	15.2	780
449	EphB and Ephrin-B Interactions Mediate Human Mesenchymal Stem Cell Suppression of Activated T-Cells. Stem Cells and Development, 2013, 22, 2751-2764.	1.1	58
450	Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods, 2013, 10, 788-794.	9.0	195
451	Effects of Zinc Transporter on Differentiation of Bone Marrow Mesenchymal Stem Cells to Osteoblasts. Biological Trace Element Research, 2013, 154, 234-243.	1.9	20
454	The Skeletal Stem Cell. , 2013, , 127-147.		3
455	Redox regulation of stem/progenitor cells and bone marrow niche. Free Radical Biology and Medicine, 2013, 54, 26-39.	1.3	141
456	Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nature Medicine, 2013, 19, 695-703.	15.2	232
457	Matrix-Embedded Osteocytes Regulate Mobilization of Hematopoietic Stem/Progenitor Cells. Cell Stem Cell, 2013, 12, 737-747.	5.2	135
458	Concise Review: Current Concepts in Bone Marrow Microenvironmental Regulation of Hematopoietic Stem and Progenitor Cells. Stem Cells, 2013, 31, 1044-1050.	1.4	78
459	Mesenchymal stem cell signaling in cancer progression. Cancer Treatment Reviews, 2013, 39, 180-188.	3.4	89
460	Formaldehyde induces toxic effects and regulates the expression of damage response genes in BM-MSCs. Acta Biochimica Et Biophysica Sinica, 2013, 45, 1011-1020.	0.9	12
461	Immunology and bone. Journal of Biochemistry, 2013, 154, 29-39.	0.9	93
462	PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. Journal of Experimental Medicine, 2013, 210, 1351-1367.	4.2	425
463	A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood, 2013, 122, 2562-2571.	0.6	38

#	Article	IF	CITATIONS
464	Human Maxillary Sinus Floor Elevation as a Model for Bone Regeneration Enabling the Application of One-Step Surgical Procedures. Tissue Engineering - Part B: Reviews, 2013, 19, 69-82.	2.5	34
465	Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Critical Reviews in Oncology/Hematology, 2013, 85, 1-8.	2.0	20
466	Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Experimental Hematology, 2013, 41, 3-16.	0.2	38
467	Hematopoietic stem cell niche: An interplay among a repertoire of multiple functional niches. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2404-2409.	1.1	40
468	Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 2013, 31, 290-304.	1.1	76
469	Further Proof for an Unpopular Concept: A Single Cell From Bone Marrow Can Serve as a Stem Cell for Both Hematopoiesis and Osteogenesis. Molecular Therapy, 2013, 21, 1116-1117.	3.7	6
470	'Selectin' endothelium to protect blood stem cells. Haematologica, 2013, 98, 1-1.	1.7	28
473	Diabetes impairs the interactions between long-term hematopoietic stem cells and osteopontin-positive cells in the endosteal niche of mouse bone marrow. American Journal of Physiology - Cell Physiology, 2013, 305, C693-C703.	2.1	15
474	Regulation of Bone Marrow Angiogenesis by Osteoblasts during Bone Development and Homeostasis. Frontiers in Endocrinology, 2013, 4, 85.	1.5	25
475	Salient features of mesenchymal stem cellsâ€"implications for Ewing sarcoma modeling. Frontiers in Oncology, 2013, 3, 24.	1.3	9
476	Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation, 2013, 3, 31-49.	0.8	67
477	Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling. Pharmaceuticals, 2013, 6, 1145-1169.	1.7	37
478	Regulation of Hematopoietic Stem Cell Activity by Inflammation. Frontiers in Immunology, 2013, 4, 204.	2.2	124
479	Adipose Derived Stem Cells Characterization from Human Lipoaspirate: A Comparative Study. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 18, 73-83.	0.7	2
480	Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. BioMed Research International, 2013, 2013, 1-15.	0.9	240
481	Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013, 497, 490-493.	13.7	329
482	Cited2 in hematopoietic stem cell function. Current Opinion in Hematology, 2013, 20, 301-307.	1.2	16
483	Fibroblast growth factor signaling promotes physiological bone remodeling and stem cell self-renewal. Current Opinion in Hematology, 2013, 20, 1.	1.2	24

#	Article	IF	CITATIONS
484	CD166 and regulation of hematopoiesis. Current Opinion in Hematology, 2013, 20, 273-280.	1.2	17
485	From seeing to believing: labelling strategies for <i>in vivo</i> cell-tracking experiments. Interface Focus, 2013, 3, 20130001.	1.5	207
486	Up-regulated expression of CXCL12 in human spleens with extramedullary haematopoiesis. Pathology, 2013, 45, 408-416.	0.3	25
487	Lateral Transport in the Ocean Interior. International Geophysics, 2013, , 185-209.	0.6	17
488	Fibrosis and Subsequent Cytopenias Are Associated with Basic Fibroblast Growth Factor–Deficient Pluripotent Mesenchymal Stromal Cells in Large Granular Lymphocyte Leukemia. Journal of Immunology, 2013, 191, 3578-3593.	0.4	18
489	Characterization of the Hematopoietic Stem Cell Niche: Cellular and Molecular Analysis. , 2013, , 211-221.		O
490	Dynamic Chemotherapy-Induced Upregulation of CXCR4 Expression: A Mechanism of Therapeutic Resistance in Pediatric AML. Molecular Cancer Research, 2013, 11, 1004-1016.	1.5	89
491	How to catch a galactic wind. Nature, 2013, 499, 416-417.	13.7	1
492	Vascular Repair and Regeneration as a Therapeutic Target for Pulmonary Arterial Hypertension. Respiration, 2013, 85, 355-364.	1.2	16
493	Engineering of a functional bone organ through endochondral ossification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3997-4002.	3.3	289
494	<i><scp>MLL</scp></i> â€rearranged acute lymphoblastic leukaemia stem cell interactions with bone marrow stroma promote survival and therapeutic resistance that can be overcome with <scp>CXCR</scp> 4 antagonism. British Journal of Haematology, 2013, 160, 785-797.	1.2	39
495	Mast Cell-Activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor Cells. Frontiers in Immunology, 2013, 4, 461.	2.2	19
496	Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers. Stem Cells International, 2013, 2013, 1-7.	1.2	58
497	Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells International, 2013, 2013, 1-6.	1.2	50
498	The Bone Marrow Microenvironment as Niche Retreats for Hematopoietic and Leukemic Stem Cells. Advances in Hematology, 2013, 2013, 1-8.	0.6	74
499	Human Mesenchymal Stem Cell Grafts Enhance Normal and Impaired Wound Healing by Recruiting Existing Endogenous Tissue Stem/Progenitor Cells. Stem Cells Translational Medicine, 2013, 2, 33-42.	1.6	117
500	Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. Journal of Bone and Mineral Research, 2013, 28, 2094-2108.	3.1	66
501	Bone marrow osteoblast vulnerability to chemotherapy. European Journal of Haematology, 2013, 90, 469-478.	1.1	10

#	Article	IF	CITATIONS
502	Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery After Radiation Injury. Stem Cells, 2013, 31, 372-383.	1.4	95
503	Role of SHIP1 in bone biology. Annals of the New York Academy of Sciences, 2013, 1280, 11-14.	1.8	20
504	Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. Journal of Experimental Medicine, 2013, 210, 1125-1135.	4.2	321
505	Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation. Chimerism, 2013, 4, 78-83.	0.7	21
506	Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death and Disease, 2013, 4, e594-e594.	2.7	23
507	Effect of intravenous coadministration of human stroma cell lines on engraftment of long-term repopulating clonal myelodysplastic syndrome cells in immunodeficient mice. Blood Cancer Journal, 2013, 3, e113-e113.	2.8	28
508	Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death and Disease, 2013, 4, e950-e950.	2.7	135
509	Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia, 2013, 27, 2006-2015.	3.3	49
510	Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death and Disease, 2013, 4, e600-e600.	2.7	118
511	p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment. Leukemia, 2013, 27, 2209-2219.	3.3	5
512	Adult human nasal mesenchymal stem cells have an unexpected broad anatomic distribution. International Forum of Allergy and Rhinology, 2013, 3, 550-555.	1.5	22
513	Utilization of transgenic models in the evaluation of osteogenic differentiation of embryonic stem cells. Connective Tissue Research, 2013, 54, 297-305.	1.1	9
514	IGF-1 Signaling is Essential for Differentiation of Mesenchymal Stem Cells for Peak Bone Mass. Bone Research, 2013, 1, 186-194.	5.4	62
515	Cell-material Interactions. , 2013, , 165-192.		0
516	Concise Review: Two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells, 2013, 31, 2042-2046.	1.4	179
517	Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood, 2013, 122, 1730-1740.	0.6	91
518	Immunobiotics and Infl ammation-Coagulation. , 2013, , 259-290.		1
519	A niche in a dish: pericytes support HSC. Blood, 2013, 121, 2816-2818.	0.6	14

#	Article	IF	Citations
520	B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica, 2013, 98, 325-333.	1.7	38
522	Bone-marrow stroma: A source of mesenchymal stem cells for cell therapy., 0,, 140-151.		0
523	Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice. Haematologica, 2013, 98, 1848-1855.	1.7	10
524	Mesenchymal stem cells in tissue repairing and regeneration: Progress and future. Burns and Trauma, 2013, 1, 13.	0.7	28
525	Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide. Haematologica, 2013, 98, 1677-1685.	1.7	67
526	Effects of MSC Coadministration and Route of Delivery on Cord Blood Hematopoietic Stem Cell Engraftment. Cell Transplantation, 2013, 22, 1171-1183.	1.2	47
527	Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells. Haematologica, 2013, 98, 505-513.	1.7	32
528	Autonomic regulation of hematopoiesis and cancer. Haematologica, 2013, 98, 1663-1666.	1.7	22
529	Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche. Journal of Tissue Engineering, 2013, 4, 204173141350866.	2.3	28
530	Mesenchymal Stem Cell Insights: Prospects in Hematological Transplantation. Cell Transplantation, 2013, 22, 711-721.	1.2	17
531	Dlk1 is a negative regulator of emerging hematopoietic stem and progenitor cells. Haematologica, 2013, 98, 163-171.	1.7	47
532	Engraftment Outcomes after HPC Co-Culture with Mesenchymal Stromal Cells and Osteoblasts. Journal of Clinical Medicine, 2013, 2, 115-135.	1.0	3
533	Age-old wisdom concerning cell-based therapies with added knowledge in the stem cell era: our perspectives. Stem Cells and Cloning: Advances and Applications, 2013, 6, 13.	2.3	3
534	Mitochondria underlie different metabolism of hematopoietic stem and progenitor cells. Haematologica, 2013, 98, 993-995.	1.7	16
535	Expansion on Stromal Cells Preserves the Undifferentiated State of Human Hematopoietic Stem Cells Despite Compromised Reconstitution Ability. PLoS ONE, 2013, 8, e53912.	1.1	28
536	Chronic TLR Signaling Impairs the Long-Term Repopulating Potential of Hematopoietic Stem Cells of Wild Type but Not Id1 Deficient Mice. PLoS ONE, 2013, 8, e55552.	1.1	39
537	Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure. PLoS ONE, 2013, 8, e58872.	1.1	44
538	E- and P-Selectins Are Essential for Repopulation of Chronic Myelogenous and Chronic Eosinophilic Leukemias in a Scid Mouse Xenograft Model. PLoS ONE, 2013, 8, e70139.	1.1	16

#	ARTICLE	IF	CITATIONS
539	Osterix-Cre Labeled Progenitor Cells Contribute to the Formation and Maintenance of the Bone Marrow Stroma. PLoS ONE, 2013, 8, e71318.	1.1	118
540	CD105 (Endoglin)-Negative Murine Mesenchymal Stromal Cells Define a New Multipotent Subpopulation with Distinct Differentiation and Immunomodulatory Capacities. PLoS ONE, 2013, 8, e76979.	1.1	126
541	Stem cells supporting other stem cells. Frontiers in Genetics, 2013, 4, 257.	1.1	41
542	Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Frontiers in Immunology, 2013, 4, 49.	2.2	29
543	Mesenchymal Stromal Cells: Updates and Therapeutic Outlook in Rheumatic Diseases. Journal of Clinical Medicine, 2013, 2, 201-213.	1.0	3
544	Innate Immunity Derived Factors as External Modulators of the CXCL12 - CXCR4 Axis and Their Role in Stem Cell Homing and Mobilization. Theranostics, 2013, 3, 3-10.	4.6	31
545	Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes. Clinical and Developmental Immunology, 2013, 2013, 1-10.	3.3	22
547	Hematopoietic stem cells and their niches. , 0, , 44-63.		1
548	The hematopoietic stem cell niche., 0,, 80-88.		0
549	Regulators of the Proliferation of Hematopoietic Stem and Progenitor Cells During Hematopoietic Regeneration. , 0, , .		1
550	CXCR4 in Central and Peripheral Lymphoid Niches $\hat{a}\in$ "Physiology, Pathology and Therapeutic Perspectives in Immune Deficiencies and Malignancies. , 2014, , .		1
551	Therapeutic Effect of TSG-6 Engineered iPSC-Derived MSCs on Experimental Periodontitis in Rats: A Pilot Study. PLoS ONE, 2014, 9, e100285.	1.1	61
552	Both Canonical and Non-Canonical Wnt Signaling Independently Promote Stem Cell Growth in Mammospheres. PLoS ONE, 2014, 9, e101800.	1.1	37
553	Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion. PLoS ONE, 2014, 9, e102359.	1.1	81
554	Sympathetic Denervation-Induced MSC Mobilization in Distraction Osteogenesis Associates with Inhibition of MSC Migration and Osteogenesis by Norepinephrine/adrb3. PLoS ONE, 2014, 9, e105976.	1.1	27
555	Interleukin 7 Plays a Role in T Lymphocyte Apoptosis Inhibition Driven by Mesenchymal Stem Cell without Favoring Proliferation and Cytokines Secretion. PLoS ONE, 2014, 9, e106673.	1.1	12
556	Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells. PLoS ONE, 2014, 9, e107127.	1.1	8
557	Differentiation of Human Umbilical Cord Matrix Mesenchymal Stem Cells into Neural-Like Progenitor Cells and Maturation into an Oligodendroglial-Like Lineage. PLoS ONE, 2014, 9, e111059.	1.1	57

#	ARTICLE	IF	CITATIONS
558	The Molecular Signature of the Stroma Response in Prostate Cancer-Induced Osteoblastic Bone Metastasis Highlights Expansion of Hematopoietic and Prostate Epithelial Stem Cell Niches. PLoS ONE, 2014, 9, e114530.	1.1	42
559	The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. ELife, 2014, 3, e03696.	2.8	240
560	Cytokine Network Involvement in Subjects Exposed to Benzene. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	24
561	Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Frontiers in Cell and Developmental Biology, 2014, 2, 20.	1.8	51
562	Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 2014, 6, 245.	1.7	105
563	Mesenchymal Stem Cells: Pivotal Players in Hematopoietic Stem Cell Microenvironment. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	5
564	Very Small Embryonic-Like Stem Cells Survive and Restore Spermatogenesis after Busulphan Treatment in Mouse Testis. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	9
565	Administration of Olfactory Ensheathing Cells to Relieve the Symptoms of Spinal Cord Injury. Journal of Cell Science & Therapy, 2014, 06, .	0.3	0
566	Expression and Characterization of Genes by Expressed Sequence Tag Analysis in the Rat Thymus during Regeneration following Acute Thymic Involution Induced by Cyclophosphamide. Korean Journal of Physical Anthropology, 2014, 27, 197.	0.2	1
567	Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World Journal of Stem Cells, 2014, 6, 637.	1.3	30
568	Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget, 2014, 5, 11501-11512.	0.8	37
569	Bone marrow mesenchymal stem cells and TGF- \hat{l}^2 signaling in bone remodeling. Journal of Clinical Investigation, 2014, 124, 466-472.	3.9	338
570	The Adult Hematopoietic Niches $\hat{a} \in ``Cellular Composition, Histological Organization and Physiological Regulation. , 0, , .$		2
571	Delineation of Niches which Support Hematopoiesis. , 2014, , .		1
573	Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respiratory Research, 2014, 1, e000027.	1.2	41
574	Biology of BM failure syndromes: role of microenvironment and niches. Hematology American Society of Hematology Education Program, 2014, 2014, 71-76.	0.9	29
575	Clinical Grade Production of Mesenchymal Stromal Cells. , 2014, , 427-469.		3
576	Quantification and Modeling of Stem Cell–Niche Interaction. Advances in Experimental Medicine and Biology, 2014, 844, 11-36.	0.8	8

#	Article	IF	CITATIONS
577	Mesenchymal Stem Cells in Grafts Failed to Engraft in the Bone Marrow Microenvironment of a Leukemia Patient Post HLA-match and Haplo-Identical Allogeneic Hematopoietic Stem cell Transplantations. Pediatric Hematology and Oncology, 2014, 31, 389-391.	0.3	1
578	Blood loses it when nerves go bad. Cell Research, 2014, 24, 1151-1152.	5.7	2
579	Multipotential stromal cell abundance in cellular bone allograft: comparison with fresh age-matched iliac crest bone and bone marrow aspirate. Regenerative Medicine, 2014, 9, 593-607.	0.8	35
580	Short-term sonic-hedgehog gene therapy to mitigate myelosuppression in highly irradiated monkeys: hype or reality?. Bone Marrow Transplantation, 2014, 49, 304-309.	1.3	9
581	Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Research, 2014, 24, 1466-1485.	5.7	134
582	Roles of osteoclasts in the control of medullary hematopoietic niches. Archives of Biochemistry and Biophysics, 2014, 561, 29-37.	1.4	22
583	The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhesion and Migration, 2014, 8, 563-577.	1.1	72
584	The first IBMS Herbert Fleisch Workshop. IBMS BoneKEy, 2014, 11, .	0.1	0
585	Intermittently Administered Parathyroid Hormone [1–34] Promotes Tendon-Bone Healing in a Rat Model. International Journal of Molecular Sciences, 2014, 15, 17366-17379.	1.8	29
586	Low/Negative Expression of PDGFR-α Identifies the Candidate Primary Mesenchymal Stromal Cells in Adult Human Bone Marrow. Stem Cell Reports, 2014, 3, 965-974.	2.3	97
587	Nestin(+) Tissue-Resident Multipotent Stem Cells Contribute to Tumor Progression by Differentiating into Pericytes and Smooth Muscle Cells Resulting in Blood Vessel Remodeling. Frontiers in Oncology, 2014, 4, 169.	1.3	52
588	Effects of Parathyroid Hormone on Calcium Ions in Rat Bone Marrow Mesenchymal Stem Cells. BioMed Research International, 2014, 2014, 1-6.	0.9	6
589	Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. Materials, 2014, 7, 1342-1359.	1.3	68
590	The Role of T _H 17-Associated Cytokines in Health and Disease. Journal of Immunology Research, 2014, 2014, 1-1.	0.9	4
591	Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives. BioMed Research International, 2014, 2014, 1-6.	0.9	32
592	Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Frontiers in Physiology, 2014, 5, 68.	1.3	114
593	Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture. Experimental and Therapeutic Medicine, 2014, 8, 1508-1512.	0.8	11
594	Are Clinical Trials With Mesenchymal Stem/Progenitor Cells too Far Ahead of the Science? Lessons From Experimental Hematology. Stem Cells, 2014, 32, 3055-3061.	1.4	53

#	Article	IF	CITATIONS
595	The science behind the hypoxic niche of hematopoietic stem and progenitors. Hematology American Society of Hematology Education Program, 2014, 2014, 542-547.	0.9	37
596	NF- \hat{I}^2 B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. International Immunology, 2014, 26, 607-618.	1.8	17
597	Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle, 2014, 13, 2827-2835.	1.3	24
598	Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5262-71.	3 . 3	54
599	Hematopoietic Stem Cells., 2014,, 989-1040.		2
600	Genetically Engineered Mesenchymal Stem Cells. , 2014, , 1-36.		2
601	Hypoxia Enhances the Radioresistance of Mouse Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 2188-2200.	1.4	61
602	The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development (Cambridge), 2014, 141, 4656-4666.	1.2	169
603	N-Cadherin/Wnt Interaction Controls Bone Marrow Mesenchymal Cell Fate and Bone Mass During Aging. Journal of Cellular Physiology, 2014, 229, 1765-1775.	2.0	27
604	Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, 2014, , .	0.4	2
605	SHIP1 Regulates MSC Numbers and Their Osteolineage Commitment by Limiting Induction of the PI3K/Akt/I²-Catenin/Id2 Axis. Stem Cells and Development, 2014, 23, 2336-2351.	1.1	21
606	Centre for Human Development, Stem Cells & Degeneration. Regenerative Medicine, 2014, 9, 563-567.	0.8	1
607	Mesenchymal Stromal Cells: Inhibiting PDGF Receptors or Depleting Fibronectin Induces Mesodermal Progenitors with Endothelial Potential. Stem Cells, 2014, 32, 694-705.	1.4	23
608	Osteoactivin Induces Transdifferentiation of C2C12 Myoblasts Into Osteoblasts. Journal of Cellular Physiology, 2014, 229, 955-966.	2.0	42
609	Reactive Oxygen Species Adversely Impacts Bone Marrow Microenvironment in Diabetes. Antioxidants and Redox Signaling, 2014, 21, 1620-1633.	2.5	24
610	Perivascular Stromal Cells as a Potential Reservoir of Human Cytomegalovirus. American Journal of Transplantation, 2014, 14, 820-830.	2.6	24
611	SP/drug efflux functionality of hematopoietic progenitors is controlled by mesenchymal niche through VLA-4/CD44 axis. Leukemia, 2014, 28, 853-864.	3.3	28
612	Estrogen Signaling Selectively Induces Apoptosis of Hematopoietic Progenitors and Myeloid Neoplasms without Harming Steady-State Hematopoiesis. Cell Stem Cell, 2014, 15, 791-804.	5.2	96

#	Article	IF	CITATIONS
613	Development of the Fetal Bone Marrow Niche and Regulation of HSC Quiescence and Homing Ability by Emerging Osteolineage Cells. Cell Reports, 2014, 9, 581-590.	2.9	100
614	Advances in Intravital Microscopy. , 2014, , .		4
615	Fetal Liver Stromal Cells Support Blast Growth in Transient Abnormal Myelopoiesis in Down Syndrome Through GM SF. Journal of Cellular Biochemistry, 2014, 115, 1176-1186.	1.2	10
616	PRL2/PTP4A2 Phosphatase Is Important for Hematopoietic Stem Cell Self-Renewal. Stem Cells, 2014, 32, 1956-1967.	1.4	41
617	A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nature Cell Biology, 2014, 16, 1157-1167.	4.6	346
618	Transcriptomic portrait of human Mesenchymal Stromal/Stem cells isolated from bone marrow and placenta. BMC Genomics, 2014, 15, 910.	1.2	59
619	Biophysical regulation of hematopoietic stem cells. Biomaterials Science, 2014, 2, 1548-1561.	2.6	37
620	Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5884-5889.	3.3	112
621	Bone marrow localization and functional properties of human hematopoietic stem cells. Current Opinion in Hematology, 2014, 21, 249-255.	1.2	8
622	Microfluidic platform generates oxygen landscapes for localized hypoxic activation. Lab on A Chip, 2014, 14, 4688-4695.	3.1	29
623	Functional mesenchymal stem cells remain present in bone marrow microenvironment of patients with leukemia post-allogeneic hematopoietic stem cell transplant. Leukemia and Lymphoma, 2014, 55, 1635-1644.	0.6	12
624	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	2.9	56
626	Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 2014, 7, ra63.	1.6	558
627	In Vivo Imaging of Bone Marrow Stem Cells. , 2014, , 143-162.		1
628	The Adult Stem Cell Niche. Pancreatic Islet Biology, 2014, , 15-30.	0.1	0
629	Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells. Bone Marrow Research, 2014, 2014, 1-8.	1.7	58
630	Programming of the Development of Tumor-Promoting Neutrophils by Mesenchymal Stromal Cells. Cellular Physiology and Biochemistry, 2014, 33, 1802-1814.	1.1	29
631	Human mesenchymal stem cells possess different biological characteristics but do not change their therapeutic potential when cultured in serum free medium. Stem Cell Research and Therapy, 2014, 5, 132.	2.4	25

#	Article	IF	CITATIONS
632	Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells. Breast Cancer Research, 2014, 16, R60.	2.2	18
633	Plasma Elevation of Vascular Endothelial Growth Factor Leads to the Reduction of Mouse Hematopoietic and Mesenchymal Stem/Progenitor Cells in the Bone Marrow. Stem Cells and Development, 2014, 23, 2202-2210.	1.1	8
634	Genome-Wide Analysis of miRNA-mRNA Interactions in Marrow Stromal Cells. Stem Cells, 2014, 32, 662-673.	1.4	67
635	Priming with Ligands Secreted by Human Stromal Progenitor Cells Promotes Grafts of Cardiac Stem/Progenitor Cells After Myocardial Infarction. Stem Cells, 2014, 32, 674-683.	1.4	27
636	Measuring stem cell dimensionality in tissue scaffolds. Biomaterials, 2014, 35, 2558-2567.	5.7	55
637	Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy. FEBS Letters, 2014, 588, 1080-1086.	1.3	22
638	Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy, 2014, 16, 111-121.	0.3	19
639	Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde?. Clinical and Experimental Medicine, 2014, 14, 235-248.	1.9	10
640	From proliferation to proliferation: monocyte lineage comes full circle. Seminars in Immunopathology, 2014, 36, 137-148.	2.8	48
641	Soliciting Strategies for Developing Cell-Based Reference Materials to Advance Mesenchymal Stromal Cell Research and Clinical Translation. Stem Cells and Development, 2014, 23, 1157-1167.	1.1	112
642	Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 43-77.	1.1	147
643	Therapeutic potential of transgenic mesenchymal stem cells engineered to mediate anti–high mobility group box 1 activity: targeting of colon cancer. Journal of Surgical Research, 2014, 190, 134-143.	0.8	25
644	Regulation of hematopoiesis by activators and inhibitors of Wnt signaling from the niche. Annals of the New York Academy of Sciences, 2014, 1310, 32-43.	1.8	25
645	Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature, 2014, 508, 269-273.	13.7	933
646	Outsmart tumor exosomes to steal the cancer initiating cell its niche. Seminars in Cancer Biology, 2014, 28, 39-50.	4.3	55
647	Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends in Endocrinology and Metabolism, 2014, 25, 178-187.	3.1	47
648	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	1.8	64
649	Mesenchymal Progenitors and the Osteoblast Lineage in Bone Marrow Hematopoietic Niches. Current Osteoporosis Reports, 2014, 12, 22-32.	1.5	49

#	Article	IF	CITATIONS
650	Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell and Tissue Research, 2014, 355, 315-326.	1.5	14
651	Targeting the Molecular and Cellular Interactions of the Bone Marrow Niche in Immunologic Disease. Current Allergy and Asthma Reports, 2014, 14, 402.	2.4	7
652	Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences, 2014, 71, 1353-1374.	2.4	231
653	Detection of cytokines in supernatant from hematopoietic stem/progenitor cells co-cultured with mesenchymal stem cells and endothelial progenitor cells. Cell and Tissue Banking, 2014, 15, 397-402.	0.5	7
654	Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells, 2014, 32, 1713-1723.	1.4	262
655	Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Reviews, 2014, 28, 49-66.	2.8	70
656	The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life, 2014, 66, 147-155.	1.5	66
657	Nice Neighborhood: Emerging Concepts of the Stem Cell Niche. Cell, 2014, 157, 41-50.	13.5	307
658	Stromal cells–are they really useful for GVHD?. Bone Marrow Transplantation, 2014, 49, 737-743.	1.3	32
659	Regulation of hematopoiesis in endosteal microenvironments. International Journal of Hematology, 2014, 99, 679-684.	0.7	35
660	Influences of vascular niches on hematopoietic stem cell fate. International Journal of Hematology, 2014, 99, 699-705.	0.7	32
661	Targeting tumor–stromal interactions in bone metastasis. , 2014, 141, 222-233.		115
662	Advances in stem cell mobilization. Blood Reviews, 2014, 28, 31-40.	2.8	122
663	Mesenchymal progenitor cells in mouse foetal liver regulate differentiation and proliferation of hepatoblasts. Liver International, 2014, 34, 1378-1390.	1.9	19
664	Adult Stem Cells. Pancreatic Islet Biology, 2014, , .	0.1	2
665	TGF- \hat{I}^2 Promotes Immune Responses in the Presence of Mesenchymal Stem Cells. Journal of Immunology, 2014, 192, 103-109.	0.4	104
666	Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature Methods, 2014, 11, 663-669.	9.0	369
667	CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. Journal of Molecular Medicine, 2014, 92, 433-439.	1.7	136

#	Article	IF	CITATIONS
668	Improved Human Mesenchymal Stem Cell Isolation. Cell Transplantation, 2014, 23, 399-406.	1.2	19
669	Combining insoluble and soluble factors to steer stem cell fate. Nature Materials, 2014, 13, 532-537.	13.3	76
670	Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1074-1082.	1.4	123
671	Concise Review: The Bone Marrow Niche as a Target of Graft Versus Host Disease. Stem Cells, 2014, 32, 1420-1428.	1.4	22
672	Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment. Antioxidants and Redox Signaling, 2014, 21, 1605-1619.	2.5	241
673	Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell, 2014, 157, 935-949.	13.5	306
674	From Mathematical Models to Clinical Reality. , 2014, , 25-39.		0
675	Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors. Journal of Bone and Mineral Research, 2014, 29, 2414-2426.	3.1	33
676	Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell, 2014, 14, 160-173.	5.2	350
677	Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology, 2014, 35, 32-37.	2.9	231
678	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tissue International, 2014, 94, 112-124.	1.5	42
679	ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circulation Research, 2014, 114, 157-170.	2.0	206
680	Circadian rhythms in leukocyte trafficking. Seminars in Immunopathology, 2014, 36, 149-62.	2.8	30
681	Infection-Induced Changes in Hematopoiesis. Journal of Immunology, 2014, 192, 27-33.	0.4	96
682	The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505, 327-334.	13.7	1,910
683	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
684	Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2506-2519.	1.1	1,017
685	Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials, 2014, 35, 929-940.	5.7	159

#	Article	IF	CITATIONS
686	A Niche-Like Culture System Allowing the Maintenance of Primary Human Acute Myeloid Leukemia-Initiating Cells: A New Tool to Decipher Their Chemoresistance and Self-Renewal Mechanisms. Stem Cells Translational Medicine, 2014, 3, 520-529.	1.6	95
687	Concise Review: Different Mesenchymal Stromal/Stem Cell Populations Reside in the Adult Kidney. Stem Cells Translational Medicine, 2014, 3, 1451-1455.	1.6	23
688	Endothelial cells translate pathogen signals into G-CSF–driven emergency granulopoiesis. Blood, 2014, 124, 1393-1403.	0.6	221
689	Function of Jam-B/Jam-C Interaction in Homing and Mobilization of Human and Mouse Hematopoietic Stem and Progenitor Cells. Stem Cells, 2014, 32, 1043-1054.	1.4	34
690	Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment. Experimental Hematology, 2014, 42, 966-975.	0.2	8
691	Fabrication of Biofunctionalized, Cell-Laden Macroporous 3D PEG Hydrogels as Bone Marrow Analogs for the Cultivation of Human Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2014, 1202, 121-130.	0.4	10
692	Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells. Molecular and Cellular Biochemistry, 2014, 397, 235-243.	1.4	12
693	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine, the, 2014, 2, 1016-1026.	5.2	222
694	Hematopoietic Stem Cell Injury Induced by Ionizing Radiation. Antioxidants and Redox Signaling, 2014, 20, 1447-1462.	2.5	231
695	Concise Review: Diabetes, the Bone Marrow Niche, and Impaired Vascular Regeneration. Stem Cells Translational Medicine, 2014, 3, 949-957.	1.6	94
696	Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine, 2014, 20, 1321-1326.	15.2	470
697	Nanotopography – potential relevance in the stem cell niche. Biomaterials Science, 2014, 2, 1574-1594.	2.6	47
698	Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature Immunology, 2014, 15, 1009-1016.	7.0	1,098
700	From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Research and Therapy, 2014, 5, 51.	2.4	68
701	Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells, 2014, 32, 2998-3011.	1.4	16
702	Acellular biomaterials in mesenchymal stem cell-mediated endogenous tissue regeneration. Journal of Materials Chemistry B, 2014, 2, 31-35.	2.9	8
703	Concise Review: Bridging the Gap: Bone Regeneration Using Skeletal Stem Cell-Based Strategies—Where Are We Now?. Stem Cells, 2014, 32, 35-44.	1.4	109
704	CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Laboratory Investigation, 2014, 94, 1212-1223.	1.7	37

#	Article	IF	CITATIONS
705	Activation of the vascular niche supports leukemic progression and resistance to chemotherapy. Experimental Hematology, 2014, 42, 976-986.e3.	0.2	47
706	The CXCR 4 and adhesion molecule expression of CD 34+ hematopoietic cells mobilized by "onâ€demand― addition of plerixafor to granulocyte–colonyâ€stimulating factor. Transfusion, 2014, 54, 2325-2335.	0.8	20
707	The Gap Between the Physiological and Therapeutic Roles of Mesenchymal Stem Cells. Medicinal Research Reviews, 2014, 34, 1100-1126.	5.0	121
708	Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 2014, 512, 78-81.	13.7	375
709	Functional Effects of TGF-β1 on Mesenchymal Stem Cell Mobilization in Cockroach Allergen–Induced Asthma. Journal of Immunology, 2014, 192, 4560-4570.	0.4	61
710	Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nature Reviews Endocrinology, 2014, 10, 737-748.	4.3	104
711	Nitric Oxide-Induced Murine Hematopoietic Stem Cell Fate Involves Multiple Signaling Proteins, Gene Expression, and Redox Modulation. Stem Cells, 2014, 32, 2949-2960.	1.4	35
712	Parathyroid Hormone Enhances Hematopoietic Expansion Via Upregulation of Cadherin-11 in Bone Marrow Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 2245-2255.	1.4	29
713	Expansion of Murine Periosteal Progenitor Cells with Fibroblast Growth Factor 2 Reveals an Intrinsic Endochondral Ossification Program Mediated by Bone Morphogenetic Protein 2. Stem Cells, 2014, 32, 2407-2418.	1.4	63
714	Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 365-375.	5.2	308
715	Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimental Hematology, 2014, 42, 717-727.	0.2	68
716	Minireview: Complexity of Hematopoietic Stem Cell Regulation in the Bone Marrow Microenvironment. Molecular Endocrinology, 2014, 28, 1592-1601.	3.7	17
717	The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines. Immunology and Cell Biology, 2014, 92, 612-623.	1.0	24
718	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	5.2	63
719	Leptin Receptor Makes Its Mark on MSCs. Cell Stem Cell, 2014, 15, 112-114.	5.2	30
720	Long-term tumor necrosis factor treatment induces NFκB activation and proliferation, but not osteoblastic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. International Journal of Biochemistry and Cell Biology, 2014, 54, 149-162.	1.2	7
721	The Tailless Root of Glioma: Cancer Stem Cells. Cell Stem Cell, 2014, 15, 114-116.	5.2	12
722	Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 2014, 20, 833-846.	15.2	628

#	Article	IF	CITATIONS
723	Aging of the hematopoietic stem cells niche. International Journal of Hematology, 2014, 100, 317-325.	0.7	28
724	Platelet factor 4 protects bone marrow mesenchymal stem cells from acute radiation injury. British Journal of Radiology, 2014, 87, 20140184.	1.0	15
725	Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clinical Rheumatology, 2014, 33, 1611-1619.	1.0	91
726	Cellular Reporter Systems for High-Throughput Screening of Interactions Between Bioactive Matrices and Human Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2014, 20, 828-837.	1.1	3
727	Biomaterial–stem cell interactions and their impact on stem cell response. RSC Advances, 2014, 4, 53307-53320.	1.7	45
728	IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neuroscience, 2014, 15, 91.	0.8	104
729	Nestin expression in mesenchymal stromal cells: regulation by hypoxia and osteogenesis. BMC Veterinary Research, 2014, 10, 173.	0.7	24
730	The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature, 2014, 514, 98-101.	13.7	91
731	"Mesenchymal―Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 677-704.	4.0	345
732	Functional integration of acute myeloid leukemia into the vascular niche. Leukemia, 2014, 28, 1978-1987.	3.3	75
733	The role of mesenchymal stem cells in bone repair and regeneration. European Journal of Orthopaedic Surgery and Traumatology, 2014, 24, 257-262.	0.6	20
734	Reactive Oxygen Species in Normal and Tumor Stem Cells. Advances in Cancer Research, 2014, 122, 1-67.	1.9	291
735	Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature, 2014, 508, 536-540.	13.7	192
736	Leptin-Receptor-Expressing Mesenchymal Stromal Cells Represent the Main Source of Bone Formed by Adult Bone Marrow. Cell Stem Cell, 2014, 15, 154-168.	5.2	1,034
737	Klotho Deficiency Disrupts Hematopoietic Stem Cell Development and Erythropoiesis. American Journal of Pathology, 2014, 184, 827-841.	1.9	49
738	Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 2014, 20, 754-758.	15.2	565
740	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	5.8	102
741	Fat and Bone Interactions. Current Osteoporosis Reports, 2014, 12, 235-242.	1.5	69

#	Article	IF	Citations
742	Innate immune cells as homeostatic regulators of the hematopoietic niche. International Journal of Hematology, 2014, 99, 685-694.	0.7	18
743	Substance P modulates properties of bone marrow-derived mesenchymal stem cells. Tissue Engineering and Regenerative Medicine, 2014, 11, 217-223.	1.6	6
744	The peculiarities of age-related changes in the cellular composition of bone marrow, pineal melatonin-forming function, and thymus endocrine function in mice of different strains. Advances in Gerontology, 2014, 4, 134-139.	0.1	0
746	Advances in understanding the leukaemia microenvironment. British Journal of Haematology, 2014, 164, 767-778.	1.2	120
747	Mesenchymal Stem Cells Recruited by Active $TGF\hat{l}^2$ Contribute to Osteogenic Vascular Calcification. Stem Cells and Development, 2014, 23, 1392-1404.	1.1	38
748	Hematopoietic stem cells, infection, and the niche. Annals of the New York Academy of Sciences, 2014, 1310, 51-57.	1.8	12
749	Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends in Biotechnology, 2014, 32, 483-492.	4.9	124
7 50	Adipocytic Cells Augment the Support of Primitive Hematopoietic Cells In Vitro But Have No Effect in the Bone Marrow Niche Under Homeostatic Conditions. Stem Cells and Development, 2014, 23, 434-441.	1.1	41
751	Dopamine Mobilizes Mesenchymal Progenitor Cells Through D2-Class Receptors and Their PI3K/AKT Pathway. Stem Cells, 2014, 32, 2529-2538.	1.4	8
752	Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy. Expert Opinion on Therapeutic Targets, 2014, 18, 1315-1328.	1.5	53
753	Delta-Like Homologue 1 and Its Role in the Bone Marrow Niche and Hematologic Malignancies. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 451-455.	0.2	5
7 54	Analysis of αSMA-Labeled Progenitor Cell Commitment Identifies Notch Signaling as an Important Pathway in Fracture Healing. Journal of Bone and Mineral Research, 2014, 29, 1283-1294.	3.1	133
755	A Mouse Bone Marrow Stromal Cell Line with Skeletal Stem Cell Characteristics to Study Osteogenesis In Vitro and In Vivo. Stem Cells and Development, 2014, 23, 1097-1108.	1.1	9
756	Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. European Journal of Haematology, 2014, 93, 476-486.	1.1	41
757	Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone, 2014, 63, 87-94.	1.4	100
758	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	3.1	365
759	Murine xenogeneic models of myelodysplastic syndrome: An essential roleÂforÂstroma cells. Experimental Hematology, 2014, 42, 4-10.	0.2	20
760	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	3.1	160

#	Article	IF	CITATIONS
761	Tight relationships between B lymphocytes and the skeletal system. Trends in Molecular Medicine, 2014, 20, 405-412.	3.5	49
762	Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Research, 2014, 12, 659-672.	0.3	78
763	Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respiratory Medicine, the, 2014, 2, 108-122.	5.2	115
764	Leukemia Propagating Cells Rebuild an Evolving Niche in Response to Therapy. Cancer Cell, 2014, 25, 778-793.	7.7	169
765	A Safe and Efficient Method to Retrieve Mesenchymal Stem Cells from Three-Dimensional Fibrin Gels. Tissue Engineering - Part C: Methods, 2014, 20, 252-263.	1.1	50
766	Hypoxia and Metabolic Properties of Hematopoietic Stem Cells. Antioxidants and Redox Signaling, 2014, 20, 1891-1901.	2.5	120
768	Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells, 2014, 6, 526.	1.3	335
769	Early B lymphocyte development: Similarities and differences in human and mouse. World Journal of Stem Cells, 2014, 6, 421.	1.3	34
770	LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling. Bone Research, 2014, 2, 14006.	5.4	23
771	Sequential In vivo Imaging of Osteogenic Stem/Progenitor Cells During Fracture Repair. Journal of Visualized Experiments, 2014, , .	0.2	12
772	Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood, 2014, 124, 2834-2846.	0.6	112
773	SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood, 2014, 124, 277-286.	0.6	64
774	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	0.6	39
776	In Vivo Bioluminescence Imaging of Transplanted Mesenchymal Stem Cells as a Potential Source for Pancreatic Regeneration. Molecular Imaging, 2014, 13, 7290.2014.00023.	0.7	4
777	Optimizing Stem Cell Mobilization: Lessons Learned. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 1443-1449.	2.3	0
778	Brain stem cell division and maintenance studied using multiâ€isotope imaging mass spectrometry (MIMS). Surface and Interface Analysis, 2014, 46, 140-143.	0.8	7
779	Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. Molecular Medicine Reports, 2014, 9, 293-298.	1.1	21
780	Feasibility of allogeneic stem cells for heart regeneration. , 2014, , 207-235.		O

#	Article	IF	CITATIONS
781	Bone marrow cells and their role in cardiac repair after myocardial infarction., 2014, , 236-252.		0
782	MicroRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow stromal cells. Haematologica, 2014, 99, 997-1005.	1.7	28
783	Are there any new insights for G-CSF and/or AMD3100 in chemotherapy of haematological malignants?. Medical Oncology, 2015, 32, 262.	1.2	5
784	Beyond fibrosis: stellate cells as liver stem cells. Zeitschrift Fur Gastroenterologie, 2015, 53, 1425-1431.	0.2	8
785	Hematopoietic microenvironment and the role of mesenchymal stromal cells in its organization. Biology Bulletin Reviews, 2015, 5, 383-393.	0.3	1
786	Mesenchymal stromal cell therapy in liver disease: opportunities and lessons to be learnt?. American Journal of Physiology - Renal Physiology, 2015, 309, G791-G800.	1.6	32
787	Biohybrid hematopoietic niche for expansion of hematopoietic stem/progenitor cells by using geometrically controlled fibrous layers. RSC Advances, 2015, 5, 80357-80364.	1.7	17
789	\hat{l}^2 2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Scientific Reports, 2015, 5, 12593.	1.6	49
790	Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood, 2015, 125, 793-802.	0.6	31
791	The hematopoietic stem cell niche in homeostasis and disease. Blood, 2015, 126, 2443-2451.	0.6	182
792	Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells. Scientific Reports, 2015, 5, 15680.	1.6	14
793	Gene-expression and in vitro function of mesenchymal stromal cells are affected in juvenile myelomonocytic leukemia. Haematologica, 2015, 100, 1434-1441.	1.7	5
794	The <scp>tRNA</scp> methyltransferase Dnmt2 is required forÂaccurate polypeptide synthesis duringÂhaematopoiesis. EMBO Journal, 2015, 34, 2350-2362.	3.5	154
7 95	The lysophosphatidic acid receptor LPA4 regulates hematopoiesis-supporting activity of bone marrow stromal cells. Scientific Reports, 2015, 5, 11410.	1.6	20
796	Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche. Stem Cell Reports, 2015, 5, 690-701.	2.3	21
797	Q&A: Mesenchymal stem cells â€" where do they come from and is it important?. BMC Biology, 2015, 13, 99.	1.7	81
798	On the representation of cells in bone marrow pathology by a scalar field: propagation through serial sections, co-localization and spatial interaction analysis. Diagnostic Pathology, 2015, 10, 151.	0.9	3
799	Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair. Journal of Bone and Mineral Research, 2015, 30, 1217-1230.	3.1	66

#	Article	IF	Citations
800	The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Annals of the New York Academy of Sciences, 2015, 1351, 114-126.	1.8	164
801	Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnology Journal, 2015, 10, 1529-1545.	1.8	81
802	Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling. Stem Cells, 2015, 33, 3382-3396.	1.4	16
803	Mouse Dental Pulp Stem Cells Support Human Umbilical Cord Blood-Derived Hematopoietic Stem/Progenitor Cells in Vitro. Cell Transplantation, 2015, 24, 97-113.	1.2	4
804	Cardiosphere Conditioned Media Influence the Plasticity of Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells. Cell Transplantation, 2015, 24, 2307-2322.	1.2	25
805	Aging Effects on Cardiac Progenitor Cell Physiology. , 2015, 5, 1775-1814.		16
806	Ablation of <i>Wntless</i> in endosteal niches impairs lymphopoiesis rather than HSCs maintenance. European Journal of Immunology, 2015, 45, 2650-2660.	1.6	17
807	Characterization of the Cellular Output of a Point-of-Care Device and the Implications for Addressing Critical Limb Ischemia. BioResearch Open Access, 2015, 4, 417-424.	2.6	12
808	Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation. Journal of Tissue Engineering, 2015, 6, 204173141559235.	2.3	41
809	BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression Is Essential During Fracture Repair. Journal of Bone and Mineral Research, 2015, 30, 2014-2027.	3.1	34
810	Ability of Circulating Human Hematopoietic Lineage Negative Cells to Support Hematopoiesis. Journal of Cellular Biochemistry, 2015, 116, 58-66.	1.2	2
811	Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators of Inflammation, 2015, 2015, 1-16.	1.4	54
812	Concise Review: Asymmetric Cell Divisions in Stem Cell Biology. Symmetry, 2015, 7, 2025-2037.	1.1	15
813	Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells. International Journal of Molecular Sciences, 2015, 16, 12345-12359.	1.8	4
814	Adult Stem Cell Responses to Nanostimuli. Journal of Functional Biomaterials, 2015, 6, 598-622.	1.8	37
815	Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?. Frontiers in Cellular Neuroscience, 2015, 9, 218.	1.8	11
816	Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Frontiers in Cellular Neuroscience, 2015, 9, 455.	1.8	15
817	Exosomes for Bone Diseases. , 2015, , 207-221.		3

#	Article	IF	CITATIONS
818	Radiation-Induced Alterations of Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0119334.	1.1	14
819	Expression of the Stem Cell Factor Nestin in Malignant Pleural Mesothelioma Is Associated with Poor Prognosis. PLoS ONE, 2015, 10, e0139312.	1.1	10
820	Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing. PLoS ONE, 2015, 10, e0143368.	1.1	5
821	Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration. Frontiers in Physiology, 2015, 6, 118.	1.3	30
822	The Perivascular Niche and Self-Renewal of Stem Cells. Frontiers in Physiology, 2015, 6, 367.	1.3	60
823	Interleukin-17 and Its Implication in the Regulation of Differentiation and Function of Hematopoietic and Mesenchymal Stem Cells. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	26
824	Making Blood: The Haematopoietic Niche throughout Ontogeny. Stem Cells International, 2015, 2015, 1-14.	1.2	20
825	Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-17.	1.4	40
826	Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells International, 2015, 2015, 1-9.	1.2	76
827	Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. ELife, 2015, 4, e05521.	2.8	140
828	The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	21
829	Stem Cells - biological update and cell therapy progress. Medicine and Pharmacy Reports, 2015, 88, 265-271.	0.2	31
830	The Effect of Hypoxia on Mesenchymal Stem Cell Biology. Advanced Pharmaceutical Bulletin, 2015, 5, 141-149.	0.6	149
831	Current Concepts of Bone Regeneration in Implant Dentistry. Jurnalul De Chirurgie, 2015, 10, .	0.0	1
833	Vascular Wall-Resident Multipotent Stem Cells within the Process of Vascular Remodelling. , 2015, , .		0
834	Mesenchymal Stem Cells: How Can we Realize their Therapeutic Potential in Cancer Therapy?. , 2015, 05,		1
835	Paracrine effects of haematopoietic cells on human mesenchymal stem cells. Scientific Reports, 2015, 5, 10573.	1.6	12
836	Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo. Blood, 2015, 125, 3105-3113.	0.6	7

#	Article	IF	CITATIONS
837	Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. BoneKEy Reports, 2015, 4, 689.	2.7	104
838	Mesenchymal Stromal Cell Therapy in Hematology: From Laboratory to Clinic and Back Again. Stem Cells and Development, 2015, 24, 1713-1729.	1.1	15
839	CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. Cancer Cell, 2015, 27, 755-768.	7.7	216
840	CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 27, 769-779.	7.7	147
841	The Science of Reconstructive Transplantation. Pancreatic Islet Biology, 2015, , .	0.1	3
842	Mesenchymal Stem Cells as Immune Modulators in VCA. Pancreatic Islet Biology, 2015, , 255-275.	0.1	0
843	Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 2015, 16, 254-267.	5.2	358
844	Skeletal stem cells. Development (Cambridge), 2015, 142, 1023-1027.	1.2	302
845	Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs). Immunology Letters, 2015, 168, 228-239.	1.1	23
846	Influence of Bone Marrow Microenvironment on Leukemic Stem Cells. Advances in Cancer Research, 2015, 127, 227-252.	1.9	37
847	PDGFRÎ \pm signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes and Development, 2015, 29, 1106-1119.	2.7	131
848	Waking Up the Stem Cell Niche. Circulation Research, 2015, 116, 389-392.	2.0	9
849	Genetic analysis of Runx2 function during intramembranous ossification. Development (Cambridge), 2015, 143, 211-8.	1.2	74
850	Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells. BMC Complementary and Alternative Medicine, 2015, 15, 215.	3.7	16
851	Aryl Hydrocarbon Receptor Protects Lungs from Cockroach Allergen–Induced Inflammation by Modulating Mesenchymal Stem Cells. Journal of Immunology, 2015, 195, 5539-5550.	0.4	52
852	The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Developmental Biology, 2015, 15, 44.	2.1	84
853	Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Research and Therapy, 2015, 6, 221.	2.4	114
854	Skeletal stem cells for bone development, homeostasis and repair: one or many?. BoneKEy Reports, 2015, 4, 769.	2.7	5

#	Article	IF	Citations
855	Bacterial c-di-GMP Affects Hematopoietic Stem/Progenitors and Their Niches through STING. Cell Reports, 2015, 11, 71-84.	2.9	41
856	Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data. Stem Cell Reports, 2015, 5, 139-153.	2.3	27
857	The importance of the tissue microenvironment in hairy cell leukemia. Best Practice and Research in Clinical Haematology, 2015, 28, 208-216.	0.7	8
858	Osteoprogenitor Cells from Bone Marrow and Cortical Bone: Understanding How the Environment Affects Their Fate. Stem Cells and Development, 2015, 24, 1112-1123.	1.1	31
859	ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking. Stem Cell Reports, 2015, 4, 255-268.	2.3	49
860	Matrix metalloproteinases in stem cell mobilization. Matrix Biology, 2015, 44-46, 175-183.	1.5	51
861	Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death. Neuroendocrinology, 2015, 101, 175-192.	1.2	37
862	Downregulated CXCL12 expression in mesenchymal stem cells associated with severe aplastic anemia in children. Annals of Hematology, 2015, 94, 13-22.	0.8	17
863	Nestin+ kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials, 2015, 50, 56-66.	5.7	53
864	Photo-crosslinkable biopolymers targeting stem cell adhesion and proliferation: the case study of gelatin and starch-based IPNs. Journal of Materials Science: Materials in Medicine, 2015, 26, 104.	1.7	12
865	Notch signaling in the malignant bone marrow microenvironment: implications for a nicheâ€based model of oncogenesis. Annals of the New York Academy of Sciences, 2015, 1335, 63-77.	1.8	24
866	Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro. Stem Cell Research, 2015, 14, 198-210.	0.3	16
867	Contribution of the Interleukinâ€6/STATâ€3 Signaling Pathway to Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Arthritis and Rheumatology, 2015, 67, 1250-1260.	2.9	82
868	The unbearable lightness of bone marrow homeostasis. Cytokine and Growth Factor Reviews, 2015, 26, 347-359.	3.2	26
869	Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis. International Journal of Cancer, 2015, 137, 797-809.	2.3	12
870	Intimacy of the Niche: Perivascular Remodeling Cuddles Incoming HSCs. Cell Stem Cell, 2015, 16, 109-110.	5.2	1
871	Hematopoiesis in Regenerative Medicine. , 2015, , 375-401.		0
872	Mesenchymal stromal cells for sphincter regeneration. Advanced Drug Delivery Reviews, 2015, 82-83, 123-136.	6.6	21

#	Article	IF	CITATIONS
873	Skeletal Stem Cells in Space and Time. Cell, 2015, 160, 17-19.	13.5	56
874	Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. International Journal of Biochemistry and Cell Biology, 2015, 60, 60-72.	1.2	23
875	Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomaterialia, 2015, 13, 266-276.	4.1	21
876	Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche. Cell, 2015, 160, 241-252.	13.5	291
877	Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells. Stem Cells, 2015, 33, 1554-1565.	1.4	38
878	Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnology Progress, 2015, 31, 468-481.	1.3	46
879	Adiponectin Regulates Bone Marrow Mesenchymal Stem Cell Niche Through a Unique Signal Transduction Pathway: An Approach for Treating Bone Disease in Diabetes. Stem Cells, 2015, 33, 240-252.	1.4	65
880	Identification and Specification of the Mouse Skeletal Stem Cell. Cell, 2015, 160, 285-298.	13.5	571
881	The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cellular and Molecular Life Sciences, 2015, 72, 1517-1536.	2.4	70
882	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	13.5	535
883	Characterization and Angiogenic Potential of Human Neonatal and Infant Thymus Mesenchymal Stromal Cells. Stem Cells Translational Medicine, 2015, 4, 339-350.	1.6	10
884	Post-myocardial Infarct Inflammation and the Potential Role of Cell Therapy. Cardiovascular Drugs and Therapy, 2015, 29, 59-73.	1.3	22
885	Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development (Cambridge), 2015, 142, 1242-53.	1.2	83
886	Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leukemia Research, 2015, 39, 486-493.	0.4	56
887	A new in vivo stem cell model for regenerative rheumatology. Nature Reviews Rheumatology, 2015, 11, 200-201.	3.5	1
888	Bone marrow stem cells adapt to low-magnitude vibrations by altering theircytoskeleton during quiescence and osteogenesis. Turkish Journal of Biology, 2015, 39, 88-97.	2.1	28
889	Searching for additional endocrine functions of the skeleton: genetic approaches and implications for therapeutics. Expert Review of Endocrinology and Metabolism, 2015, 10, 413-424.	1.2	3
890	Multicellular cuddling in a stem cell niche. Cell Adhesion and Migration, 2015, 9, 280-282.	1.1	0

#	Article	IF	CITATIONS
891	Viral and Transgenic Reporters and Genetic Analysis of Adult Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018804.	2.3	44
892	PLGA-Based Nanoparticles: a Safe and Suitable Delivery Platform for Osteoarticular Pathologies. Pharmaceutical Research, 2015, 32, 3886-3898.	1.7	15
893	Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Research, 2015, 14, 356-368.	0.3	45
894	Bile Acids and Stellate Cells. Digestive Diseases, 2015, 33, 332-337.	0.8	3
896	Classification and biology of tumour associated stromal cells. Immunology Letters, 2015, 168, 175-182.	1.1	34
897	Mesenchymal Stromal Cells Protect Against Caspase 3-Mediated Apoptosis of CD19 ⁺ Peripheral B Cells Through Contact-Dependent Upregulation of VEGF. Stem Cells and Development, 2015, 24, 2391-2402.	1.1	38
898	Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Human Gene Therapy, 2015, 26, 506-517.	1.4	148
899	Frizzled-6 Regulates Hematopoietic Stem/Progenitor Cell Survival and Self-Renewal. Journal of Immunology, 2015, 195, 2168-2176.	0.4	22
900	BMSCs and hematopoiesis. Immunology Letters, 2015, 168, 129-135.	1.1	46
901	Fish Oil–Rich Diet Promotes Hematopoiesis and Alters Hematopoietic Niche. Endocrinology, 2015, 156, 2821-2830.	1.4	30
902	Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Experimental Biology and Medicine, 2015, 240, 1099-1106.	1.1	66
903	Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nature Medicine, 2015, 21, 869-879.	15.2	93
904	Progenitor Cell Dysfunctions Underlie Some Diabetic Complications. American Journal of Pathology, 2015, 185, 2607-2618.	1.9	36
905	Capturing Cell–Cell Interactions via SNAP-tag and CLIP-tag Technology. Bioconjugate Chemistry, 2015, 26, 1678-1686.	1.8	13
906	Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO Journal, 2015, 34, 1648-1660.	3.5	53
907	Absence of Bone Sialoprotein (BSP) Alters Profoundly Hematopoiesis and Upregulates Osteopontin. Journal of Cellular Physiology, 2015, 230, 1342-1351.	2.0	8
908	Pericytes at the intersection between tissue regeneration and pathology: Figure 1. Clinical Science, 2015, 128, 81-93.	1.8	209
909	Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662.	2.7	98

#	ARTICLE	IF	CITATIONS
910	PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are involved in vasculogenesis during rat embryonic pituitary development. Cell and Tissue Research, 2015, 361, 557-565.	1.5	30
911	Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage. Journal of Neuroscience, 2015, 35, 4528-4539.	1.7	70
912	Neural Regulation of Hematopoiesis, Inflammation, and Cancer. Neuron, 2015, 86, 360-373.	3.8	184
913	Regulation of Hematopoiesis by CXCL12/CXCR4 Signaling. , 2015, , 593-605.		1
914	Role of Microenvironment in Resistance to Therapy in AML. Current Hematologic Malignancy Reports, 2015, 10, 96-103.	1.2	83
915	A matter of identity â€" Phenotype and differentiation potential of human somatic stem cells. Stem Cell Research, 2015, 15, 1-13.	0.3	30
916	Stem cell niches in the bone–bone marrow organ and their significance for hematopoietic and non-hematopoietic cancer. , 2015, , 29-37.		0
917	The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nature Cell Biology, 2015, 17, 386-396.	4.6	313
918	Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes, 2015, 64, 2957-2968.	0.3	85
919	Mesenchymal Cell Contributions to the Stem Cell Niche. Cell Stem Cell, 2015, 16, 239-253.	5.2	444
920	Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia. Cancer Research, 2015, 75, 2222-2231.	0.4	124
921	Making sense of hematopoietic stem cell niches. Blood, 2015, 125, 2621-2629.	0.6	342
922	Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies. Stem Cell Research, 2015, 14, 297-306.	0.3	30
923	Cellular therapy in Tuberculosis. International Journal of Infectious Diseases, 2015, 32, 32-38.	1.5	26
924	Reduced Expression of Osteonectin and Increased Natural Killer Cells May Contribute to the Pathophysiology of Aplastic Anemia. Applied Immunohistochemistry and Molecular Morphology, 2015, 23, 139-145.	0.6	19
925	Organ-On-A-Chip: Development and Clinical Prospects Toward Toxicity Assessment with an Emphasis on Bone Marrow. Drug Safety, 2015, 38, 409-418.	1.4	26
926	\tilde{CA} ©lulas madre de la hip \tilde{A}^3 fisis. Implicaciones patog \tilde{A} ©nicas. , 2015, , 17-36.		0
927	Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Reviews and Reports, 2015, 11, 586-597.	5. 6	40

#	ARTICLE	IF	CITATIONS
928	CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells. Journal of Investigative Dermatology, 2015, 135, 130-141.	0.3	10
929	Vascular Wall Progenitor Cells in Health and Disease. Circulation Research, 2015, 116, 1392-1412.	2.0	161
930	Osteocytes and Homeostasis of Remote Organs. Current Osteoporosis Reports, 2015, 13, 193-197.	1.5	6
931	Systemic impact molds mesenchymal stromal/stem cell aging. Transfusion and Apheresis Science, 2015, 52, 285-289.	0.5	13
932	Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells, 2015, 33, 2280-2293.	1.4	34
933	Ex vivo expansion of hematopoietic stem cells. Science China Life Sciences, 2015, 58, 839-853.	2.3	18
934	Simvastatin improves hematopoietic stem cell engraftment by preventing irradiation-induced marrow adipogenesis and radio-protecting the niche cells. Haematologica, 2015, 100, e323-7.	1.7	5
935	Differential properties of human stromal cells from bone marrow, adipose, liver and cardiac tissues. Cytotherapy, 2015, 17, 1514-1523.	0.3	15
936	NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation. Nature Communications, 2015, 6, 8375.	5.8	43
937	Microbiota from Obese Mice Regulate Hematopoietic Stem Cell Differentiation by Altering the Bone Niche. Cell Metabolism, 2015, 22, 886-894.	7.2	148
938	T Cells Are Required for Orthodontic Tooth Movement. Journal of Dental Research, 2015, 94, 1463-1470.	2.5	53
939	Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials, 2015, 73, 60-69.	5.7	69
940	Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature, 2015, 526, 126-130.	13.7	564
941	A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica, 2015, 100, 1376-1387.	1.7	90
942	Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis and Cartilage, 2015, 23, 2027-2035.	0.6	152
943	Ex vivo identification and characterization of a population of CD13high CD105+ CD45â ⁻ mesenchymal stem cells in human bone marrow. Stem Cell Research and Therapy, 2015, 6, 169.	2.4	21
944	Genome-Wide Mapping and Interrogation of the Nmp4 Antianabolic Bone Axis. Molecular Endocrinology, 2015, 29, 1269-1285.	3.7	12
945	Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 2015, 10, 1860-1896.	5.5	234

#	Article	IF	Citations
946	Bone marrow stem cells: current and emerging concepts. Annals of the New York Academy of Sciences, 2015, 1335, 32-44.	1.8	75
948	Tissue-Specific Stem Cell Niche. Pancreatic Islet Biology, 2015, , .	0.1	4
949	Communication of bone cells with hematopoiesis, immunity and energy metabolism. BoneKEy Reports, 2015, 4, 748.	2.7	15
950	Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports, 2015, 5, 881-894.	2.3	43
951	Skeletal Stem Cell Niche of the Bone Marrow. Pancreatic Islet Biology, 2015, , 245-279.	0.1	1
952	Vascular Niche in HSC Development, Maintenance and Regulation. Pancreatic Islet Biology, 2015, , 191-219.	0.1	1
953	The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends in Immunology, 2015, 36, 578-604.	2.9	140
954	Mesenchymal Progenitor Cells for the Osteogenic Lineage. Current Molecular Biology Reports, 2015, 1, 95-100.	0.8	14
955	Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 2015, 6, 8472.	5.8	693
956	Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. Journal of Experimental Medicine, 2015, 212, 1931-1946.	4.2	51
957	PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nature Medicine, 2015, 21, 1307-1317.	15.2	125
958	PTPN13 and \hat{I}^2 -Catenin Regulate the Quiescence of Hematopoietic Stem Cells and Their Interaction with the Bone Marrow Niche. Stem Cell Reports, 2015, 5, 516-531.	2.3	15
959	The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials, 2015, 67, 297-307.	5.7	94
960	Bone metastasis and the metastatic niche. Journal of Molecular Medicine, 2015, 93, 1203-1212.	1.7	124
961	Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change. Osteoarthritis and Cartilage, 2015, 23, 1728-1735.	0.6	46
962	Three dimensional <i>de novo</i> micro bone marrow and its versatile application in drug screening and regenerative medicine. Experimental Biology and Medicine, 2015, 240, 1029-1038.	1.1	5
963	Stem Cells in Teeth and Craniofacial Bones. Journal of Dental Research, 2015, 94, 1495-1501.	2.5	52
964	Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cellular and Molecular Life Sciences, 2015, 72, 4759-4770.	2.4	55

#	Article	IF	Citations
965	OP9 Stromal Cells Proteins Involved in Hematoendothelial Differentiation from Human Embryonic Stem Cells. Cellular Reprogramming, 2015, 17, 338-346.	0.5	11
966	Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Research and Therapy, 2015, 6, 127.	2.4	599
967	Regulation of the Cytoskeleton by the Rho Family of GTPases in Hematopoietic Stem Cells in Health and Disease., 2015,, 63-85.		0
968	Aging of Human Mesenchymal Stem Cells. , 2015, , 227-244.		1
969	The Cytoskeleton in Health and Disease. , 2015, , .		7
970	Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone, 2015, 81, 380-391.	1.4	67
971	Quantitative analysis of glycans, related genes, and proteins in two human bone marrow stromal cell lines using an integrated strategy. Experimental Hematology, 2015, 43, 760-769.e7.	0.2	7
972	Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports, 2015, 4, 1004-1015.	2.3	111
973	Connexins. International Review of Cell and Molecular Biology, 2015, 318, 27-62.	1.6	7
974	Regulation of macrophage development and function in peripheral tissues. Nature Reviews Immunology, 2015, 15, 731-744.	10.6	489
975	CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica, 2015, 100, 1396-1406.	1.7	52
976	Regulation of hematopoietic stem cells in the niche. Science China Life Sciences, 2015, 58, 1209-1215.	2.3	25
977	CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. Journal of Experimental Medicine, 2015, 212, 2133-2146.	4.2	101
978	Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential. Archives of Medical Research, 2015, 46, 589-596.	1.5	59
979	Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death and Differentiation, 2015, 22, 187-198.	5.0	195
980	PTH Receptor Signaling in Osteoblasts Regulates Endochondral Vascularization in Maintenance of Postnatal Growth Plate. Journal of Bone and Mineral Research, 2015, 30, 309-317.	3.1	33
981	Macrophages Promote Osteoblastic Differentiation In Vivo: Implications in Fracture Repair and Bone Homeostasis. Journal of Bone and Mineral Research, 2015, 30, 1090-1102.	3.1	245
982	Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia, 2015, 29, 259-268.	3.3	70

#	Article	IF	CITATIONS
983	Biological Differences Between Native and Cultured Mesenchymal Stem Cells: Implications for Therapies. Methods in Molecular Biology, 2015, 1235, 105-120.	0.4	21
984	Human Mesenchymal Stromal Cells Attenuate Graft-Versus-Host Disease and Maintain Graft-Versus-Leukemia Activity Following Experimental Allogeneic Bone Marrow Transplantation. Stem Cells, 2015, 33, 601-614.	1.4	76
985	Roles of SATB2 in Siteâ€Specific Stemness, Autophagy and Senescence of Bone Marrow Mesenchymal Stem Cells. Journal of Cellular Physiology, 2015, 230, 680-690.	2.0	38
986	Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone, 2015, 70, 19-27.	1.4	337
987	Endogenous Mesenchymal Stromal Cells in Bone Marrow Are Required to Preserve Muscle Function in mdx Mice. Stem Cells, 2015, 33, 962-975.	1.4	22
988	p38 MAPK inhibits breast cancer metastasis through regulation of stromal expansion. International Journal of Cancer, 2015, 136, 34-43.	2.3	45
989	Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 2015, 17, 128-139.	0.3	118
990	Expression and Significance of DLL4-–Notch Signaling Pathway in the Differentiation of Human Umbilical Cord Derived Mesenchymal Stem Cells into Cardiomyocytes Induced by 5-Azacytidine. Cell Biochemistry and Biophysics, 2015, 71, 249-253.	0.9	7
991	Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone, 2015, 70, 10-18.	1.4	207
992	Mesenchymal Stem Cells Support Neuronal Fiber Growth in an Organotypic Brain Slice Co-Culture Model. Stem Cells and Development, 2015, 24, 824-835.	1.1	6
993	Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone, 2015, 71, 76-88.	1.4	14
994	PTH and T-cell Biology. , 2015, , 223-232.		0
995	Stem cells and bone: A historical perspective. Bone, 2015, 70, 2-9.	1.4	41
996	Stem cells and bone diseases: New tools, new perspective. Bone, 2015, 70, 55-61.	1.4	17
997	Structure and Function of the Bone Marrow Hematopoietic Niche., 2016,, 400-406.		1
998	Automated Identification and Measurement of Haematopoietic Stem Cells in 3D Intravital Microscopy Data. , 2016 , , .		0
999	Immune Tolerance in Hemopoietic Stem Cell Transplantation. , 2016, , 241-247.		0
1000	The Sca-1+ mesenchymal stromal cells modulate macrophage commitment and function. Turkish Journal of Biology, 2016, 40, 473-483.	2.1	4

#	Article	IF	CITATIONS
1001	Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget, 2016, 7, 50086-50098.	0.8	124
1002	Characterization of Mesenchymal Stem Cells from Human Cortical Bone. International Journal of Translational Science, 2016, 2016, 71-86.	0.2	0
1003	Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biology and Medicine, 2016 , 13 , $248-259$.	1.4	101
1004	Mesenchymal Stem Cells and Regenerative Medicine. , 2016, , 275-280.		1
1005	Quantifiable Metrics for Predicting MSC Therapeutic Efficacy. Journal of Stem Cell Research & Therapy, 2016, 6, .	0.3	14
1006	Trafficking of Osteoclast Precursors. , 2016, , 25-40.		1
1007	Stem Cells for Bone Regeneration: Role of Trophic Factors. , 0, , .		1
1008	Osteoimmunology and the Osteoblast. , 2016, , 71-81.		4
1009	Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis. Endocrinology and Metabolism, 2016, 31, 206.	1.3	37
1010	Ruxolitinib in the treatment of polycythemia vera: patient selection and special considerations. Journal of Blood Medicine, 2016, Volume 7, 205-215.	0.7	6
1011	Maintenance of hematopoietic stem cell dormancy: yet another role for the macrophage. Stem Cell Investigation, 2016, 3, 46-46.	1.3	1
1012	Lectins bring benefits to bones. ELife, 2016, 5, .	2.8	3
1013	Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction. Asian Journal of Andrology, 2016, 18, 10.	0.8	24
1014	Stem Cell-Based Therapies, Remyelination, and Repair Promotion in the Treatment of Multiple Sclerosis. , 2016, , 415-439.		0
1015	Mesenchymal stem cells and their relationship to pericytes. Frontiers in Bioscience - Landmark, 2016, 21, 130-156.	3.0	35
1016	Proteome Changes of Human Bone Marrow Mesenchymal Stem Cells Induced by 1,4-Benzoquinone. BioMed Research International, 2016, 2016, 1-15.	0.9	23
1017	Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	39
1018	Hematopoietic Stem and Progenitor Cell Expansion in Contact with Mesenchymal Stromal Cells in a Hanging Drop Model Uncovers Disadvantages of 3D Culture. Stem Cells International, 2016, 2016, 1-13.	1.2	27

#	Article	IF	CITATIONS
1019	Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns. Stem Cells International, 2016, 2016, 1-9.	1.2	134
1020	Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy. Stem Cells International, 2016, 2016, 1-10.	1.2	33
1021	Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells International, 2016, 2016, 1-16.	1.2	32
1022	Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells International, 2016, 2016, 1-15.	1.2	30
1023	Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy. Stem Cells International, 2016, 2016, 1-11.	1.2	129
1024	Hematopoietic and Mesenchymal Stem Cells in Biomedical and Clinical Applications. Stem Cells International, 2016, 2016, 1-3.	1.2	6
1025	Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia. Stem Cells International, 2016, 2016, 1-10.	1.2	7
1026	A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget, 2016, 7, 77326-77341.	0.8	45
1027	Targeting P38 Pathway Regulates Bony Formation <i>via</i> MSC Recruitment during Mandibular Distraction Osteogenesis in Rats. International Journal of Medical Sciences, 2016, 13, 783-789.	1.1	10
1028	Mesenchymal stromal cells in myeloid malignancies. Blood Research, 2016, 51, 225.	0.5	24
1029	The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis. Frontiers in Endocrinology, 2016, 7, 127.	1.5	98
1030	Qualitative Aspects of Bone Marrow Adiposity in Osteoporosis. Frontiers in Endocrinology, 2016, 7, 139.	1.5	34
1031	Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2016, 7, 118.	2.2	51
1032	Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia. Frontiers in Immunology, 2016, 7, 330.	2.2	48
1033	The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Frontiers in Immunology, 2016, 7, 333.	2.2	44
1034	Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. International Journal of Molecular Sciences, 2016, 17, 553.	1.8	12
1035	Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?. International Journal of Molecular Sciences, 2016, 17, 1009.	1.8	39
1036	Bone marrow contribution to synovial hyperplasia following joint surface injury. Arthritis Research and Therapy, 2016, 18, 166.	1.6	24

#	Article	IF	CITATIONS
1037	Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery. PLoS ONE, 2016, 11, e0168036.	1.1	13
1038	Bone Marrow Hematopoietic Niches. , 2016, , 103-119.		1
1039	Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis. Current Opinion in Hematology, 2016, 23, 339-345.	1.2	21
1040	Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology, 2016, 40, 193-207.	3.3	41
1041	Histone deacetylases differentially regulate the proliferative phenotype of mouse bone marrow stromal and hematopoietic stem/progenitor cells. Stem Cell Research, 2016, 17, 170-180.	0.3	22
1042	AKT Signaling Prevailing in Mesenchymal Stromal Cells Modulates the Functionality of Hematopoietic Stem Cells via Intercellular Communication. Stem Cells, 2016, 34, 2354-2367.	1.4	26
1043	Regulation of longâ€term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Annals of the New York Academy of Sciences, 2016, 1370, 65-81.	1.8	36
1044	Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts. Stem Cells, 2016, 34, 2145-2156.	1.4	33
1045	Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures. Prostate, 2016, 76, 552-564.	1.2	21
1046	CXCR4 signaling in health and disease. Immunology Letters, 2016, 177, 6-15.	1.1	197
1047	Scaâ€1 ⁺ mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspaseâ€3. Cell Biology International, 2016, 40, 549-559.	1.4	5
1048	Histone Acetyltransferase GCN5 Regulates Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting NF-ΰB. Journal of Bone and Mineral Research, 2016, 31, 391-402.	3.1	48
1049	Stem Cell Niche. , 2016, , 57-85.		3
1050	Thrombopoietin/TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1$ Loop Regulates Megakaryocyte Extracellular Matrix Component Synthesis. Stem Cells, 2016, 34, 1123-1133.	1.4	49
1051	Dental mesenchymal stem cells. Development (Cambridge), 2016, 143, 2273-2280.	1.2	252
1052	Targeting of Mesenchymal Stromal Cells by <i>Cre</i> -Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. Journal of Bone and Mineral Research, 2016, 31, 2001-2007.	3.1	88
1053	Sensing and translation of pathogen signals into demand-adapted myelopoiesis. Current Opinion in Hematology, 2016, 23, 5-10.	1.2	50
1054	Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplantation, 2016, 25, 811-827.	1.2	12

#	Article	IF	CITATIONS
1055	High plasma osteocalcin is associated with low blood haemoglobin in elderly men: the Mr <scp>OS</scp> Sweden Study. Journal of Internal Medicine, 2016, 280, 398-406.	2.7	3
1056	Mesangiogenic Progenitor Cells Derived from One Novel CD64 ^{bright} CD14 ^{hright} CD31 ^{bright} CD14 ^{neg} Population in Human Adult Bone Marrow. Stem Cells and Development, 2016, 25, 661-673.	1.1	14
1057	Normal and Neoplastic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 1-9.	2.0	11
1058	Activation of \hat{l}^2 -adrenergic receptors is required for elevated $\hat{l}\pm 1A$ -adrenoreceptors expression and signaling in mesenchymal stromal cells. Scientific Reports, 2016, 6, 32835.	1.6	39
1059	Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Research and Therapy, 2016, 7, 92.	2.4	21
1070	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	6.6	199
1071	Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review). Molecular Medicine Reports, 2016, 13, 587-591.	1.1	75
1072	Effect of TGF-Î ² 1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Scientific Reports, 2016, 6, 21176.	1.6	28
1073	Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor. Scientific Reports, 2016, 6, 22373.	1.6	21
1074	CXCL12/SDF-1 and Hematopoiesis., 2016,, 624-631.		4
1076	The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood, 2016, 128, 2285-2296.	0.6	91
1077	Identification of a CD133â^'CD55â^' population functions as a fetal common skeletal progenitor. Scientific Reports, 2016, 6, 38632.	1.6	3
1078	Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches. Blood, 2016, 128, 2949-2959.	0.6	65
1079	Rapid and efficient generation of neural progenitors from adult bone marrow stromal cells by hypoxic preconditioning. Stem Cell Research and Therapy, 2016, 7, 146.	2.4	22
1080	Genetic engineering of mesenchymal stromal cells for cancer therapy: turning partners in crime into Trojan horses. Innovative Surgical Sciences, 2016, 1, 19-32.	0.4	10
1081	Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Scientific Reports, 2016, 6, 22288.	1.6	7 5
1082	Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. International Journal of Molecular Medicine, 2016, 38, 1141-1151.	1.8	47
1083	Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry. Integrative Biology (United Kingdom), 2016, 8, 616-623.	0.6	42

#	Article	IF	CITATIONS
1084	Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells. Methods in Molecular Biology, 2016, 1416, 171-203.	0.4	9
1085	Mesenchymal Stem Cells in Cardiology. Methods in Molecular Biology, 2016, 1416, 55-87.	0.4	50
1086	Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, , .	0.4	15
1087	High Levels of Canonical Wnt Signaling Lead to Loss of Stemness and Increased Differentiation in Hematopoietic Stem Cells. Stem Cell Reports, 2016, 6, 652-659.	2.3	53
1088	Brain-derived Neurotrophic Factor in Megakaryocytes. Journal of Biological Chemistry, 2016, 291, 9872-9881.	1.6	149
1089	LNGFR+THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells. Differentiation, 2016, 92, 270-280.	1.0	20
1090	Hematopoietic Stem Cell Niche in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 555-581.	9.6	129
1092	Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. Journal of Materials Chemistry B, 2016, 4, 3490-3503.	2.9	31
1093	Bone and Mineral Metabolism: Where Are We, Where Are We Going, and How Will We Get There?. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 795-798.	1.8	2
1094	Localization and functions of mesenchymal stromal cells in vivo. Biology Bulletin Reviews, 2016, 6, 1-10.	0.3	5
1095	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	13.7	553
1096	Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature, 2016, 532, 380-384.	13.7	355
1097	Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update. Journal of Biomedical Science, 2016, 23, 41.	2.6	60
1098	Anatomical Features and Cell-Cell Interactions inÂthe Human Limbal Epithelial Stem Cell Niche. Ocular Surface, 2016, 14, 322-330.	2.2	79
1099	Expansion and Hepatic Differentiation of Adult Bloodâ€Derived CD34 + Progenitor Cells and Promotion of Liver Regeneration After Acute Injury. Stem Cells Translational Medicine, 2016, 5, 723-732.	1.6	11
1100	Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. Journal of Immunology, 2016, 196, 4760-4770.	0.4	19
1101	Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cellular and Molecular Life Sciences, 2016, 73, 3311-3321.	2.4	100
1102	Hematopoietic Stem Cell and Its Bone Marrow Niche. Current Topics in Developmental Biology, 2016, 118, 21-44.	1.0	109

#	Article	IF	CITATIONS
1103	Neuro-Immune Interactions at Barrier Surfaces. Cell, 2016, 165, 801-811.	13.5	201
1104	Estrogen receptors alpha and beta in bone. Bone, 2016, 87, 130-135.	1.4	180
1105	Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia. Leukemia, 2016, 30, 1691-1700.	3.3	44
1106	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
1107	Blood and Bone. New England Journal of Medicine, 2016, 374, 1891-1893.	13.9	3
1108	Heterogeneity of the bone marrow niche. Current Opinion in Hematology, 2016, 23, 331-338.	1.2	83
1109	Clonal Evolution of Stem Cells in the Gastrointestinal Tract. Advances in Experimental Medicine and Biology, 2016, 908, 11-25.	0.8	3
1110	Synthetic Lethality in PTEN-Mutant Prostate Cancer Is Induced by Combinatorial PI3K/Akt and BCL-XL Inhibition. Molecular Cancer Research, 2016, 14, 1176-1181.	1.5	19
1111	A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges. International Journal of Hematology, 2016, 104, 647-660.	0.7	3
1112	The functional interplay between systemic cancer and the hematopoietic stem cell niche., 2016, 168, 53-60.		16
1113	A Quiescent, Regeneration-Responsive Tissue Engineered Mesenchymal Stem Cell Bone Marrow Niche Model <i>via</i> Magnetic Levitation. ACS Nano, 2016, 10, 8346-8354.	7.3	49
1114	Fibrinolytic crosstalk with endothelial cells expands murine mesenchymal stromal cells. Blood, 2016, 128, 1063-1075.	0.6	16
1115	Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow. Stem Cell Reports, 2016, 7, 220-235.	2.3	43
1116	Recent Advances in Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	1
1117	Mesenchymal Stem Cells and Pericytes: To What Extent Are They Related?. Stem Cells and Development, 2016, 25, 1843-1852.	1.1	100
1118	Angiopoietin-2 promotes ER+ breast cancer cell survival in bone marrow niche. Endocrine-Related Cancer, 2016, 23, 609-623.	1.6	23
1119	Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Experimental Hematology, 2016, 44, 1092-1112.e2.	0.2	36
1120	CD29/CD184 expression analysis provides a signature for identification of neuronal like cells differentiated from PBMSCs. Neuroscience Letters, 2016, 630, 189-193.	1.0	8

#	Article	IF	CITATIONS
1121	Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells and Development, 2016, 25, 1321-1341.	1.1	9
1122	Blood vessel formation and function in bone. Development (Cambridge), 2016, 143, 2706-2715.	1.2	324
1127	Isolation and characterization of primary bone marrow mesenchymal stromal cells. Annals of the New York Academy of Sciences, 2016, 1370, 109-118.	1.8	119
1128	Encapsulated feeder cells within alginate beads for ex vivo expansion of cord blood-derived CD34 ⁺ cells. Biomaterials Science, 2016, 4, 1441-1453.	2.6	18
1129	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	5 . 2	136
1130	Mesenchymal Stem Cell Alterations in Bone Marrow Lesions in Patients With Hip Osteoarthritis. Arthritis and Rheumatology, 2016, 68, 1648-1659.	2.9	94
1131	The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging. Developmental Dynamics, 2016, 245, 739-750.	0.8	8
1132	Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells, 2016, 34, 1437-1444.	1.4	49
1133	Inflammation and Metastasis., 2016,,.		4
1134	Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cells, Leading to Bohring-Opitz-like Syndrome in Mice. Stem Cell Reports, 2016, 6, 914-925.	2.3	18
1135	Efficacy of CD34+ Stem Cell Therapy in Nonischemic Dilated Cardiomyopathy Is Absent in Patients With Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638.	1.6	33
1135 1136	Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5,	1.6	33
	Diabetés but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of		
1136	Diabetés but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone, 2016, 92, 132-144. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node	1.4	25
1136 1137	Diabetés but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone, 2016, 92, 132-144. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells. Journal of Immunology, 2016, 197, 2686-2694. Human Non-Hematopoietic CD271 ^{pos} CD140a ^{low/neg} Bone Marrow Stroma Cells Fulfill Stringent Stem Cell Criteria in Serial Transplantations. Stem Cells and Development, 2016,	0.4	25
1136 1137 1138	Diabetés but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone, 2016, 92, 132-144. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells. Journal of Immunology, 2016, 197, 2686-2694. Human Non-Hematopoietic CD271 ^{pos} CD140a ^{low/neg} Bone Marrow Stroma Cells Fulfill Stringent Stem Cell Criteria in Serial Transplantations. Stem Cells and Development, 2016, 25, 1652-1658.	1.4 0.4 1.1	25 29 47
1136 1137 1138 1139	Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone, 2016, 92, 132-144. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells. Journal of Immunology, 2016, 197, 2686-2694. Human Non-Hematopoietic CD271 ^{pos} CD140a ^{low/neg} Bone Marrow Stroma Cells Fulfill Stringent Stem Cell Criteria in Serial Transplantations. Stem Cells and Development, 2016, 25, 1652-1658. Granulopoiesis and granules of human neutrophils. Immunological Reviews, 2016, 273, 11-28. Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood. Stem Cells, 2016,	1.4 0.4 1.1 2.8	25 29 47 285

#	Article	IF	CITATIONS
1143	The non-canonical Wnt receptor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis. Cell Death and Disease, 2016, 7, e2479-e2479.	2.7	22
1144	Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genomics, 2016, 17, 944.	1.2	55
1146	Single-cell analysis reveals a nestin ⁺ tendon stem/progenitor cell population with strong tenogenic potentiality. Science Advances, 2016, 2, e1600874.	4.7	100
1147	Human Multipotent Mesenchymal Stromal Cells in the Treatment of Postoperative Temporal Bone Defect: An Animal Model. Cell Transplantation, 2016, 25, 1405-1414.	1.2	6
1148	Bone Marrow Stromal Stem Cells for Bone Repair: Basic and Translational Aspects. Pancreatic Islet Biology, 2016, , 213-232.	0.1	4
1149	Visual reporters for study of the osteoblast lineage. Bone, 2016, 92, 189-195.	1.4	31
1150	Metastasis: new functional implications of platelets and megakaryocytes. Blood, 2016, 128, 24-31.	0.6	167
1151	Bone repair and stem cells. Current Opinion in Genetics and Development, 2016, 40, 103-107.	1.5	33
1152	Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans. Stem Cells, 2016, 34, 2548-2558.	1.4	25
1153	Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Research and Therapy, 2016, 7, 91.	2.4	94
1154	Nestin-Based Reporter Transgenic Mouse Lines. Methods in Molecular Biology, 2016, 1453, 7-14.	0.4	12
1156	Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb3+,Er3+ upconversion nanoparticles. Acta Biomaterialia, 2016, 42, 199-208.	4.1	46
1157	Norepinephrine inhibits mesenchymal stem cell chemotaxis migration by increasing stromal cell-derived factor-1 secretion by vascular endothelial cells via NE/abrd3/JNK pathway. Experimental Cell Research, 2016, 349, 214-220.	1.2	13
1158	T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 2016, 538, 518-522.	13.7	159
1159	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.	1.6	62
1160	Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Scientific Reports, 2016, 6, 23886.	1.6	21
1161	Mediator MED23 cooperates with RUNX2 to drive osteoblast differentiation and bone development. Nature Communications, 2016, 7, 11149.	5.8	71
1162	Nestin+ cells direct inflammatory cell migration in atherosclerosis. Nature Communications, 2016, 7, 12706.	5.8	23

#	Article	IF	CITATIONS
1163	Immunosuppressive Properties of Mesenchymal Stem Cells. Current Transplantation Reports, 2016, 3, 348-357.	0.9	3
1164	Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature, 2016, 539, 304-308.	13.7	210
1165	The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue. Experimental Cell Research, 2016, 349, 239-254.	1.2	19
1166	Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes and Development, 2016, 30, 2325-2338.	2.7	7 5
1167	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	5.8	61
1168	Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nature Communications, 2016, 7, 13095.	5.8	60
1169	A Bone–Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction. Tissue Engineering - Part C: Methods, 2016, 22, 1018-1027.	1.1	7
1170	Olfactory basal stem cells: contribution of Polycomb group proteins to renewal in a novel c-Kit+culture model and <i>in vivo</i>). Development (Cambridge), 2016, 143, 4394-4404.	1.2	25
1171	Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Scientific Reports, 2016, 6, 24264.	1.6	39
1172	Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations. Scientific Reports, 2016, 6, 27878.	1.6	38
1173	Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncology Letters, 2016, 12, 3278-3284.	0.8	11
1174	Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells, 2016, 34, 418-430.	1.4	15
1175	Down-regulation of nestin in mesenchymal stem cells derived from peripheral blood through blocking bone morphogenesis pathway. Journal of Cell Communication and Signaling, 2016, 10, 273-282.	1.8	5
1176	Neuronal commitment of human circulating multipotent cells by carbon nanotube-polymer scaffolds and biomimetic peptides. Nanomedicine, 2016, 11, 1929-1946.	1.7	20
1177	Isolation of Mouse Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 205-223.	0.4	33
1178	AMD3100 and G-CSF disrupt the cross-talk between leukemia cells and the endosteal niche and enhance their sensitivity to chemotherapeutic drugs in biomimetic polystyrene scaffolds. Blood Cells, Molecules, and Diseases, 2016, 59, 16-24.	0.6	12
1179	Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis. Matrix Biology, 2016, 52-54, 88-94.	1.5	10
1180	Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports, 2016, 6, 692-703.	2.3	20

#	Article	IF	CITATIONS
1181	Histological analysis of in vitro co-culture and in vivo mice co-transplantation of stem cell-derived adipocyte and osteoblast. Tissue Engineering and Regenerative Medicine, 2016, 13, 227-234.	1.6	2
1182	Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche. Current Stem Cell Reports, 2016, 2, 85-94.	0.7	19
1183	Dissecting the bone marrow HSC niches. Cell Research, 2016, 26, 975-976.	5.7	22
1184	The human and murine hematopoietic stem cell niches: are they comparable?. Annals of the New York Academy of Sciences, 2016, 1370, 55-64.	1.8	15
1185	Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016, 1370, 82-96.	1.8	235
1186	Human mesenchymal stem cells promote survival and prevent intestinal damage in a mouse model of radiation injury. RSC Advances, 2016, 6, 65105-65111.	1.7	2
1187	Granulocyte colony-stimulating factor inhibits CXCR4/SDF- $1\hat{l}\pm$ signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line. Experimental and Therapeutic Medicine, 2016, 12, 396-404.	0.8	10
1188	Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells. Hypertension, 2016, 67, 574-584.	1.3	50
1189	Pathobiology of Osteolytic and Osteoblastic Bone Metastases. , 2016, , 15-35.		4
1190	P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death and Disease, 2016, 7, e2015-e2015.	2.7	71
1191	Prospective isolation of resident adult human mesenchymal stem cell population from multiple organs. International Journal of Hematology, 2016, 103, 138-144.	0.7	31
1192	Activation of the polycomb repressive complex pathway in the bone marrow resident cells of diffuse large B-cell lymphoma patients. Leukemia and Lymphoma, 2016, 57, 1921-1932.	0.6	4
1193	Polycythemia is associated with bone loss and reduced osteoblast activity in mice. Osteoporosis International, 2016, 27, 1559-1568.	1.3	22
1194	Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia. Stem Cell Reviews and Reports, 2016, 12, 235-244.	5.6	34
1195	How hematopoietic stem/progenitors and their niche sense and respond toÂinfectious stress. Experimental Hematology, 2016, 44, 92-100.	0.2	18
1196	Mechanisms of self-renewal in hematopoietic stem cells. International Journal of Hematology, 2016, 103, 498-509.	0.7	27
1197	Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 2016, 351, 176-180.	6.0	193
1198	Biomaterial strategies for controlling stem cell fate via morphogen sequestration. Journal of Materials Chemistry B, 2016, 4, 3464-3481.	2.9	20

#	Article	IF	CITATIONS
1199	Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis. Stem Cells Translational Medicine, 2016, 5, 683-693.	1.6	67
1200	Systemic neutralization of TGF $\hat{a}\in\hat{I}^2$ attenuates osteoarthritis. Annals of the New York Academy of Sciences, 2016, 1376, 53-64.	1.8	62
1201	SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells, Molecules, and Diseases, 2016, 58, 13-18.	0.6	15
1202	Cell intrinsic and extrinsic regulation of leukemia cell metabolism. International Journal of Hematology, 2016, 103, 607-616.	0.7	23
1203	Hematopoietic stem cells: multiparameter regulation. Human Cell, 2016, 29, 53-57.	1.2	9
1204	Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nature Reviews Nephrology, 2016, 12, 241-253.	4.1	132
1205	NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 49-59.	1.1	17
1206	Normal hematopoiesis and lack of \hat{l}^2 -catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 490-498.	1.9	4
1207	Overexpressing NKx2.5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells. Biomedicine and Pharmacotherapy, 2016, 78, 110-115.	2.5	19
1208	Retinoic Acid Receptor \hat{I}^3 Regulates B and T Lymphopoiesis via Nestin-Expressing Cells in the Bone Marrow and Thymic Microenvironments. Journal of Immunology, 2016, 196, 2132-2144.	0.4	16
1209	Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell and Tissue Research, 2016, 364, 573-584.	1.5	30
1210	Isolation and characterization of hematopoietic stem cells in teleost fish. Developmental and Comparative Immunology, 2016, 58, 86-94.	1.0	28
1211	Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nature Communications, 2016, 7, 10526.	5.8	179
1212	Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interactive Cardiovascular and Thoracic Surgery, 2016, 22, 571-579.	0.5	78
1213	Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annual Review of Immunology, 2016, 34, 203-242.	9.5	167
1214	Characteristics of resistin in rheumatoid arthritis angiogenesis. Biomarkers in Medicine, 2016, 10, 651-660.	0.6	24
1215	Iron overload enhances human mesenchymal stromal cell growth and hampers matrix calcification. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1211-1223.	1.1	24
1216	Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials, 2016, 89, 25-37.	5.7	27

#	Article	IF	CITATIONS
1217	Targeting the leukemia–stroma interaction in acute myeloid leukemia: rationale and latest evidence. Therapeutic Advances in Hematology, 2016, 7, 40-51.	1.1	52
1218	Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles. Biochemical and Biophysical Research Communications, 2016, 469, 823-829.	1.0	14
1219	Tissue Engineering and Regenerative Medicine 2015: A Year in Review. Tissue Engineering - Part B: Reviews, 2016, 22, 101-113.	2.5	64
1220	Tumor lymphangiogenesis and new drug development. Advanced Drug Delivery Reviews, 2016, 99, 148-160.	6.6	117
1221	Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting $TGF\hat{l}^2$ availability. Nature Communications, 2016, 7, 10222.	5.8	16
1222	Hematopoietic niches, erythropoiesis and anemia of chronic infection. Experimental Hematology, 2016, 44, 85-91.	0.2	32
1223	LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Annals of Hematology, 2016, 95, 173-178.	0.8	33
1224	Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Translational Medicine, 2016, 5, 117-128.	1.6	28
1225	CD4+ T cells from patients with acute myeloid leukemia inhibit the proliferation of bone marrow-derived mesenchymal stem cells by secretion of miR-10a. Journal of Cancer Research and Clinical Oncology, 2016, 142, 733-740.	1.2	3
1226	Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 2016, 30, 683-691.	3.3	119
1227	Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nature Reviews Rheumatology, 2016, 12, 154-168.	3.5	108
1228	Exosome-mediated microenvironment dysregulation in leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 464-470.	1.9	63
1229	Inflammatory Cell Migration in Rheumatoid Arthritis: A Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 59-78.	2.9	70
1230	Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Advanced Drug Delivery Reviews, 2016, 99, 212-220.	6.6	19
1231	Hypoxia regulates the hematopoietic stem cell niche. Pflugers Archiv European Journal of Physiology, 2016, 468, 13-22.	1.3	42
1232	Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cellular and Molecular Life Sciences, 2016, 73, 687-703.	2.4	20
1233	Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 449-463.	1.9	104
1234	The hematopoietic system in the context of regenerative medicine. Methods, 2016, 99, 44-61.	1.9	46

#	Article	IF	CITATIONS
1235	The bone marrow microenvironment is similarly impaired in allogeneic hematopoietic stem cell transplantation patients with early and late poor graft function. Bone Marrow Transplantation, 2016, 51, 249-255.	1.3	38
1236	Inhibitor of p53–p21 pathway induces the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyogenic cells. Cytotechnology, 2016, 68, 1257-1265.	0.7	3
1237	Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Experimental Biology and Medicine, 2016, 241, 559-568.	1.1	23
1238	Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b+ myeloid cells to the lungs and facilitates B16-F10 melanoma colonization. Experimental Cell Research, 2016, 345, 141-149.	1.2	6
1239	FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia, 2016, 30, 1-13.	3.3	72
1240	Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia, 2016, 30, 154-162.	3.3	42
1241	Bone Development and Remodeling. , 2016, , 1038-1062.e8.		6
1242	Adipose, Bone, and Myeloma: Contributions from the Microenvironment. Calcified Tissue International, 2017, 100, 433-448.	1.5	45
1243	Recruitment of osteogenic cells to bone formation sites during development and fracture repair. Zeitschrift Fur Rheumatologie, 2017, 76, 5-9.	0.5	1
1244	Alterations of the bone marrow stromal microenvironment in adult patients with acute myeloid and lymphoblastic leukemias before and after allogeneic hematopoietic stem cell transplantation. Leukemia and Lymphoma, 2017, 58, 408-417.	0.6	11
1245	Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals. Developmental and Comparative Immunology, 2017, 66, 92-97.	1.0	27
1246	Identifying nicheâ€mediated regulatory factors of stem cell phenotypic state: a systems biology approach. FEBS Letters, 2017, 591, 560-569.	1.3	8
1247	Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Reviews and Reports, 2017, 13, 170-191.	5 . 6	30
1248	Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydrate Polymers, 2017, 161, 295-305.	5.1	42
1249	Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling. Osteoarthritis and Cartilage, 2017, 25, 986-994.	0.6	27
1250	TGF-Î ² Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
1251	Bone Marrow–Derived Mesenchymal Stromal Cells from Patients with Sickle Cell Disease Display Intact Functionality. Biology of Blood and Marrow Transplantation, 2017, 23, 736-745.	2.0	15
1252	Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration. Stem Cell Reports, 2017, 8, 387-400.	2.3	38

#	Article	IF	CITATIONS
1253	Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Experimental Hematology and Oncology, 2017, 6, 2.	2.0	19
1254	Neuroimmune regulation during intestinal development and homeostasis. Nature Immunology, 2017, 18, 116-122.	7.0	102
1255	The mechanically activated p38/MMP-2 signaling pathway promotes bone marrow mesenchymal stem cell migration in rats. Archives of Oral Biology, 2017, 76, 55-60.	0.8	15
1256	Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 2017, 19, 214-223.	4.6	332
1257	The Notch Ligand Jagged 1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 2017, 32, 1320-1331.	3.1	44
1258	Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves in Vitro in Vitro in Hematopoietic Stem/Progenitor Cell Expansion. Tissue Engineering - Part C: Methods, 2017, 23, 200-218.	1.1	43
1259	An All-Recombinant Protein-Based Culture System Specifically Identifies Hematopoietic Stem Cell Maintenance Factors. Stem Cell Reports, 2017, 8, 500-508.	2.3	32
1260	The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood, 2017, 129, 1617-1626.	0.6	99
1261	DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences. Scientific Reports, 2017, 7, 41580.	1.6	15
1262	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.	4.1	29
1263	Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Developmental Cell, 2017, 40, 221-233.	3.1	79
1264	Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay. Cell Stem Cell, 2017, 20, 648-658.e4.	5.2	68
1265	Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells. Stem Cells, 2017, 35, 1259-1272.	1.4	51
1266	Osteopontin attenuates agingâ€associated phenotypes of hematopoietic stem cells. EMBO Journal, 2017, 36, 840-853.	3.5	109
1267	Physiology of Stem Cells. , 2017, , 711-725.		0
1268	The S(c)ensory Immune System Theory. Trends in Immunology, 2017, 38, 777-788.	2.9	21
1269	Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation. Scientific Reports, 2017, 7, 43849.	1.6	12
1270	The evolving view of the hematopoietic stem cell niche. Experimental Hematology, 2017, 50, 22-26.	0.2	60

#	Article	IF	CITATIONS
1271	Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b + cells that expedite hematopoietic recovery. Haematologica, 2017, 102, 818-825.	1.7	16
1272	Neuronal Activity in Ontogeny and Oncology. Trends in Cancer, 2017, 3, 89-112.	3.8	80
1273	Neoplasms in the bone marrow niches: disturbance of the microecosystem. International Journal of Hematology, 2017, 105, 558-565.	0.7	1
1274	Pdgf signalling guides neural crest contribution to the haematopoietic stem cell specification niche. Nature Cell Biology, 2017, 19, 457-467.	4.6	31
1275	Human mesenchymal stem cells promote CD34 ⁺ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity. Cell Biology International, 2017, 41, 697-704.	1.4	9
1276	Creating artificial lymphoid tissues to study immunity and hematological malignancies. Current Opinion in Hematology, 2017, 24, 377-383.	1.2	13
1277	Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Current Opinion in Hematology, 2017, 24, 289-299.	1.2	33
1278	A phase 1 study of the CXCR4 antagonist plerixafor in combination with highâ€dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators' Consortium study (POE 10â€03). Pediatric Blood and Cancer. 2017. 64. e26414.	0.8	57
1279	Paracrine regulation of normal and malignant hematopoiesis. Current Opinion in Hematology, 2017, 24, 329-335.	1,2	2
1280	Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Expanded In Vitro for Treatment of Aplastic Anemia: A Multicenter Phase II Trial. Stem Cells Translational Medicine, 2017, 6, 1569-1575.	1.6	21
1281	miR-301b~miR-130bâ€"PPARγ axis underlies the adipogenic capacity of mesenchymal stem cells with different tissue origins. Scientific Reports, 2017, 7, 1160.	1.6	25
1282	Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation. Stem Cell Research and Therapy, 2017, 8, 106.	2.4	11
1283	In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5419-5424.	3.3	36
1284	CHD1 regulates cell fate determination by activation of differentiation-induced genes. Nucleic Acids Research, 2017, 45, 7722-7735.	6.5	28
1285	Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nature Cell Biology, 2017, 19, 677-688.	4.6	125
1286	Preventing Early-Stage Graft Bone Resorption by Simultaneous Innervation: Innervated Iliac Bone Flap for Mandibular Reconstruction. Plastic and Reconstructive Surgery, 2017, 139, 1152e-1161e.	0.7	20
1287	A Chemoattractant-Guided Walk Through Lymphopoiesis. Advances in Immunology, 2017, 134, 47-88.	1.1	32
1288	Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both?. Current Opinion in Rheumatology, 2017, 29, 201-207.	2.0	88

#	Article	IF	CITATIONS
1289	The Osteoblastic Niche in Hematopoiesis and Hematological Myeloid Malignancies. Current Molecular Biology Reports, 2017, 3, 53-62.	0.8	36
1290	PGE2 Receptor Subtype 1 (EP1) Regulates Mesenchymal Stromal Cell Osteogenic Differentiation by Modulating Cellular Energy Metabolism. Journal of Cellular Biochemistry, 2017, 118, 4383-4393.	1.2	22
1291	Gli1 + Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell, 2017, 20, 785-800.e8.	5.2	195
1292	Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1022-1028.	1.1	46
1293	Loss of Cbl-PI3K interaction modulates the periosteal response to fracture by enhancing osteogenic commitment and differentiation. Bone, 2017, 95, 124-135.	1.4	20
1294	Pericytes, integral components of adult hematopoietic stem cell niches., 2017, 171, 104-113.		44
1295	Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nature Medicine, 2017, 23, 91-99.	15.2	61
1296	Effects of Functional Groups of Materials on Nonspecific Adhesion and Chondrogenic Induction of Mesenchymal Stem Cells on Free and Micropatterned Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23574-23585.	4.0	75
1297	Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence. Journal of Tissue Engineering, 2017, 8, 204173141770442.	2.3	55
1298	CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Scientific Reports, 2017, 7, 3305.	1.6	47
1299	Joint morphogenetic cells in the adult mammalian synovium. Nature Communications, 2017, 8, 15040.	5.8	147
1300	Three-dimensional spheroid culture promotes the stemness maintenance of cranial stem cells by activating PI3K/AKT and suppressing NF- \hat{I}^{g} B pathways. Biochemical and Biophysical Research Communications, 2017, 488, 528-533.	1.0	5
1301	Complexity of bone marrow hematopoietic stem cell niche. International Journal of Hematology, 2017, 106, 45-54.	0.7	109
1302	Ephrin ligands and Eph receptors contribution to hematopoiesis. Cellular and Molecular Life Sciences, 2017, 74, 3377-3394.	2.4	14
1303	Using Zebrafish to Study Pathways that Regulate Hematopoietic Stem Cell Self-Renewal and Migration. Stem Cell Reports, 2017, 8, 1465-1471.	2.3	15
1304	Biomimetic Macroporous PCL Scaffolds for Ex Vivo Expansion of Cord Bloodâ€Derived CD34 ⁺ Cells with Feeder Cells Support. Macromolecular Bioscience, 2017, 17, 1700054.	2.1	11
1305	Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts. Cell Reports, 2017, 19, 1902-1916.	2.9	187
1306	FLT3 ligand regulates thymic precursor cells and hematopoietic stem cells through interactions with CXCR4 and the marrow niche. Experimental Hematology, 2017, 52, 40-49.	0.2	13

#	Article	IF	CITATIONS
1307	Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e279.	5.9	14
1308	Gli -fully Halting the Progression of Fibrosis. Cell Stem Cell, 2017, 20, 735-736.	5.2	7
1309	IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution. Stem Cells, 2017, 35, 1973-1983.	1.4	21
1310	Adult haematopoietic stem cell niches. Nature Reviews Immunology, 2017, 17, 573-590.	10.6	528
1311	2. Role of small molecules in the cardiac differentiation of mesenchymal stem cells., 2017,, 35-62.		1
1312	Toward Advanced Therapy Medicinal Products (ATMPs) Combining Bone Morphogenetic Proteins (BMP) and Cells for Bone Regeneration. , 2017, , 127-169.		2
1313	Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS Journal, 2017, 19, 1017-1028.	2.2	13
1314	Cordycepin disrupts leukemia association with mesenchymal stromal cells and eliminates leukemia stem cell activity. Scientific Reports, 2017, 7, 43930.	1.6	19
1315	Crosstalk between catecholamines and erythropoiesis. Frontiers in Biology, 2017, 12, 103-115.	0.7	4
1316	Concise Review: Stem Cells in Osteoimmunology. Stem Cells, 2017, 35, 1461-1467.	1.4	43
1317	Restore the brake on tumor progression. Biochemical Pharmacology, 2017, 138, 1-6.	2.0	2
1318	Stem cell homing-based tissue engineering using bioactive materials. Frontiers of Materials Science, 2017, 11, 93-105.	1.1	21
1319	An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia. Haematologica, 2017, 102, 1017-1027.	1.7	24
1320	TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death and Disease, 2017, 8, e2715-e2715.	2.7	124
1321	New MSC: MSCs as pericytes are Sentinels and gatekeepers. Journal of Orthopaedic Research, 2017, 35, 1151-1159.	1.2	119
1322	Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid <i>in vivo</i> . Development (Cambridge), 2017, 144, 1035-1044.	1.2	22
1323	Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Scientific Reports, 2017, 7, 44644.	1.6	15
1324	Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell, 2017, 20, 771-784.e6.	5.2	566

#	Article	IF	CITATIONS
1325	Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 2017, 102, 498-508.	1.7	34
1326	Immunodepletion and Hypoxia Preconditioning of Mouse Compact Bone Cells as a Novel Protocol to Isolate Highly Immunosuppressive Mesenchymal Stem Cells. Stem Cells and Development, 2017, 26, 512-527.	1.1	14
1327	<i>Hox</i> genes in the adult skeleton: Novel functions beyond embryonic development. Developmental Dynamics, 2017, 246, 310-317.	0.8	76
1328	Sphingosine-1-Phosphate Receptor-3 Supports Hematopoietic Stem and Progenitor Cell Residence Within the Bone Marrow Niche. Stem Cells, 2017, 35, 1040-1052.	1.4	30
1329	Accelerated Bone Regeneration by Two-Photon Photoactivated Carbon Nitride Nanosheets. ACS Nano, 2017, 11, 742-751.	7.3	78
1330	From the bedside to the bench: new discoveries on blood cell fate and function. Experimental Hematology, 2017, 47, 24-30.	0.2	0
1331	Uncovering the In Vivo Source of Adult Neural Crest Stem Cells. Stem Cells and Development, 2017, 26, 303-313.	1.1	9
1332	Ischemic Stroke Pathophysiology and Cell Therapy. , 2017, , 1-36.		0
1333	Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. International Journal of Hematology, 2017, 105, 129-140.	0.7	78
1334	Future perspectives in adult stem cell turnover: Implications for endocrine physiology and disease. Molecular and Cellular Endocrinology, 2017, 445, 1-6.	1.6	3
1335	Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow. Stem Cells and Development, 2017, 26, 431-440.	1.1	6
1336	Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell, 2017, 31, 21-34.	7.7	332
1337	Mesenchymal stem cells in the aseptic loosening of total joint replacements. Journal of Biomedical Materials Research - Part A, 2017, 105, 1195-1207.	2.1	43
1338	Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Translational Medicine, 2017, 6, 2173-2185.	1.6	502
1339	Osteogenic Programming of Human Mesenchymal Stem Cells with Highly Efficient Intracellular Delivery of RUNX2. Stem Cells Translational Medicine, 2017, 6, 2146-2159.	1.6	66
1340	Guidelines for the use of flow cytometry and cell sorting in immunological studies < sup>* < /sup>. European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
1341	miRNAs in bone metastasis. Expert Review of Endocrinology and Metabolism, 2017, 12, 451-461.	1.2	3
1342	Physiology of ageing of the musculoskeletal system. Best Practice and Research in Clinical Rheumatology, 2017, 31, 203-217.	1.4	39

#	Article	IF	CITATIONS
1343	Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 2017, 19, 1336-1347.	4.6	150
1344	Etiology and Treatment of Osteoarthritis: A Developmental Biology Perspective. , 2017, , 17-42.		2
1345	Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 538-563.	3.3	109
1346	Skeletal Stem Cells: Origins, Functions, and Uncertainties. Current Molecular Biology Reports, 2017, 3, 236-246.	0.8	7
1347	Hematological alterations in protein malnutrition. Nutrition Reviews, 2017, 75, 909-919.	2.6	37
1348	Concise Review: Musculoskeletal Stem Cells to Treat Age-Related Osteoporosis. Stem Cells Translational Medicine, 2017, 6, 1930-1939.	1.6	49
1349	Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis, 2017, 20, 443-462.	3.7	32
1350	The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression. Experimental Hematology, 2017, 55, 3-18.	0.2	47
1351	Mesenchymal stromal/stem cell separation methods: concise review. Cell and Tissue Banking, 2017, 18, 443-460.	0.5	22
1352	Single Cell Phenotyping Reveals Heterogeneity Among Hematopoietic Stem Cells Following Infection. Stem Cells, 2017, 35, 2292-2304.	1.4	15
1353	Micro-RNA Profiling of Exosomes from Marrow-Derived Mesenchymal Stromal Cells in Patients with Acute Myeloid Leukemia: Implications in Leukemogenesis. Stem Cell Reviews and Reports, 2017, 13, 817-825.	5.6	65
1354	Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in osteoarthritis. Future Science OA, 2017, 3, FSO228.	0.9	21
1355	Mechanical signals protect stem cell lineage selection, preserving the bone and muscle phenotypes in obesity. Annals of the New York Academy of Sciences, 2017, 1409, 33-50.	1.8	9
1356	Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression. Scientific Reports, 2017, 7, 11442.	1.6	12
1357	Therapeutic Potential of Hematopoietic Stem Cell-Derived Exosomes in Cardiovascular Disease. Advances in Experimental Medicine and Biology, 2017, 998, 221-235.	0.8	16
1358	Effects of in vivo deletion of GATA2 in bone marrow stromal cells. Experimental Hematology, 2017, 56, 31-45.e2.	0.2	2
1359	Current Developments in Mobilization of Hematopoietic Stem and Progenitor Cells and Their Interaction with Niches in Bone Marrow. Transfusion Medicine and Hemotherapy, 2017, 44, 151-164.	0.7	20
1360	Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nature Communications, 2017, 8, 221.	5.8	34

#	Article	IF	CITATIONS
1361	Human Primary Bone Marrow Mesenchymal Stromal Cells and Their in vitro Progenies Display Distinct Transcriptional Profile Signatures. Scientific Reports, 2017, 7, 10338.	1.6	39
1362	Combining Intravital Fluorescent Microscopy (IVFM) with Genetic Models to Study Engraftment Dynamics of Hematopoietic Cells to Bone Marrow Niches. Journal of Visualized Experiments, 2017, , .	0.2	1
1363	Role of PTH in Bone Marrow Niche and HSC Regulation. Current Stem Cell Reports, 2017, 3, 210-217.	0.7	5
1365	Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury. Brain Research, 2017, 1672, 91-105.	1.1	28
1366	Flt3 ligandâ€eGFPâ€reporter expression characterizes functionally distinct subpopulations of CD150 ⁺ longâ€term repopulating murine hematopoietic stem cells. European Journal of Immunology, 2017, 47, 1477-1487.	1.6	4
1367	Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nature Cell Biology, 2017, 19, 891-903.	4.6	359
1368	Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with Gâ€CSF in multiple myeloma: A pilot study. American Journal of Hematology, 2017, 92, 1047-1051.	2.0	11
1369	Overexpression of Dentin matrix protein 1 in Nestin+ cells causes bone loss in mouse long bone. Biochemical and Biophysical Research Communications, 2017, 490, 356-363.	1.0	6
1370	CCL3 is a key mediator for the leukemogenic effect of Ptpn11-activating mutations in the stem-cell microenvironment. Blood, 2017, 130, 1471-1474.	0.6	6
1371	Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Scientific Reports, 2017, 7, 6859.	1.6	26
1372	Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. Journal of the American College of Cardiology, 2017, 70, 728-741.	1.2	27
1373	Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell, 2017, 21, 241-255.e6.	5.2	105
1374	Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell, 2017, 21, 166-177.	5.2	309
1375	Bone marrow mesenchymal stromal cell (MSC) gene profiling in chronic myeloid leukemia (CML) patients at diagnosis and in deep molecular response induced by tyrosine kinase inhibitors (TKIs). Leukemia Research, 2017, 60, 94-102.	0.4	19
1376	Would Be Prophylactic Administrations of Low Concentration of Alendronate an Alternative for Improving the Craniofacial Bone Repair? A Preliminary Study Focused in the Period of Cellular Differentiation and Tissue Organization. Journal of Craniofacial Surgery, 2017, 28, 1869-1873.	0.3	7
1377	Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway. Cellular Physiology and Biochemistry, 2017, 42, 2242-2254.	1.1	145
1378	HSC Niche Biology and HSC Expansion Ex Vivo. Trends in Molecular Medicine, 2017, 23, 799-819.	3.5	120
1379	Endogenous Stem Cells in Homeostasis and Aging. Tissue Engineering and Regenerative Medicine, 2017, 14, 679-698.	1.6	14

#	Article	IF	CITATIONS
1380	The emerging role of bone marrow adipose tissue in bone health and dysfunction. Journal of Molecular Medicine, 2017, 95, 1291-1301.	1.7	32
1381	Programmed cell senescence in skeleton during late puberty. Nature Communications, 2017, 8, 1312.	5.8	70
1382	From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cellular Signalling, 2017, 38, 10-25.	1.7	25
1383	Bone marrow hematons: An access point to the human hematopoietic niche. American Journal of Hematology, 2017, 92, 1020-1031.	2.0	5
1384	Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition. Autonomic Neuroscience: Basic and Clinical, 2017, 206, 19-27.	1.4	3
1385	Prospectively isolated mesenchymal stem/stromal cells are enriched in the CD73+ population and exhibit efficacy after transplantation. Scientific Reports, 2017, 7, 4838.	1.6	36
1386	Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Scientific Reports, 2017, 7, 4928.	1.6	38
1387	Identity of Gli1+ cells in the bone marrow. Experimental Hematology, 2017, 54, 12-16.	0.2	30
1388	3D models of the hematopoietic stem cell niche under steady-state and active conditions. Scientific Reports, 2017, 7, 4625.	1.6	66
1389	Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 2017, 155, 273-280.	0.4	22
1390	Comparing adult renal stem cell identification, characterization and applications. Journal of Biomedical Science, 2017, 24, 32.	2.6	18
1391	Zoledronic acid alters hematopoiesis and generates breast tumor-suppressive bone marrow cells. Breast Cancer Research, 2017, 19, 23.	2.2	38
1392	Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconjugate Journal, 2017, 34, 377-391.	1.4	39
1393	Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nature Reviews Drug Discovery, 2017, 16, 35-52.	21.5	344
1394	Extracellular molecules in hematopoietic stem cell mobilisation. International Journal of Hematology, 2017, 105, 118-128.	0.7	14
1395	Mysm1 expression in the bone marrow niche is not essential for hematopoietic maintenance. Experimental Hematology, 2017, 47, 76-82.e3.	0.2	6
1396	Tâ€ALL: several homes rather than homeless?. Immunology and Cell Biology, 2017, 95, 1-2.	1.0	2
1397	Metabolism and phospholipid assembly of polyunsaturated fatty acids in human bone marrow mesenchymal stromal cells. Journal of Lipid Research, 2017, 58, 92-110.	2.0	20

#	Article	IF	CITATIONS
1398	The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Seminars in Hematology, 2017, 54, 25-32.	1.8	50
1399	ILâ€7 and immobilized Kitâ€ligand stimulate serum†and stromal cellâ€free cultures of precursor Bâ€cell lines and clones. European Journal of Immunology, 2017, 47, 206-212.	1.6	6
1400	It takes nerve to fight back: The significance of neural innervation of the bone marrow and spleen for immune function. Seminars in Cell and Developmental Biology, 2017, 61, 60-70.	2.3	74
1401	Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?. Neurochemistry International, 2017, 106, 101-107.	1.9	25
1402	Enhanced Hematopoietic Stem Cell Self-Renewal-Promoting Ability of Clonal Primary Mesenchymal Stromal/Stem cells Versus Their Osteogenic Progeny. Stem Cells, 2017, 35, 473-484.	1.4	20
1403	An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 765-774.	1.9	31
1404	Aberrant Transforming Growth Factor- $\langle i \rangle$ (i) Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia. Stem Cells Translational Medicine, 2017, 6, 394-404.	1.6	27
1405	Bone Density Loss Is Associated With Blood Cell Counts. Journal of Bone and Mineral Research, 2017, 32, 212-220.	3.1	43
1406	Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis. Stem Cells, 2017, 35, 80-88.	1.4	23
1407	Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the $\hat{l}\pm 5\hat{l}^21$ integrin. Cell Adhesion and Migration, 2017, 11, 305-315.	1.1	22
1408	Alterations in the bone marrow microenvironment may elicit defective hematopoiesis: a comparison of aplastic anemia, chronic myeloid leukemia, and normal bone marrow. Experimental Hematology, 2017, 45, 56-63.	0.2	22
1409	The hematopoietic stem-cell niche in health and leukemia. Cellular and Molecular Life Sciences, 2017, 74, 579-590.	2.4	81
1410	Remestemcel-L for the treatment of graft versus host disease. Expert Review of Clinical Immunology, 2017, 13, 43-56.	1.3	33
1411	Depletion of Neural Crest–Derived Cells Leads to Reduction in Plasma Noradrenaline and Alters B Lymphopoiesis. Journal of Immunology, 2017, 198, 156-169.	0.4	17
1412	Concise Review: The Malignant Hematopoietic Stem Cell Niche. Stem Cells, 2017, 35, 3-8.	1.4	20
1413	Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Translational Medicine, 2017, 6, 482-489.	1.6	23
1414	Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.	3.7	139
1415	Bone intramedullary reaming grafts the fracture site with CD146 + skeletal progenitors and downmodulates the inflammatory environment. Injury, 2017, 48, S41-S49.	0.7	11

#	Article	IF	CITATIONS
1416	Regenerative medicine: The future?., 0,, 657-673.		0
1417	Mesenchymal Stem Cells as Regulators of the Bone Marrow and Bone Components. , 2017, , 369-400.		O
1418	Identification of a murine CD45 \hat{a} °F4/80lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment. Blood Advances, 2017, 1, 2667-2678.	2.5	1
1419	Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair. Frontiers in Physiology, 2017, 8, 956.	1.3	58
1420	The Sca1+ mesenchymal stromal subpopulation promotesdendritic cell commitment in the niche. Turkish Journal of Biology, 2017, 41, 58-65.	2.1	3
1421	The Origin and Identification of Mesenchymal Stem Cells in Teeth: from Odontogenic to Non-odontogenic. Current Stem Cell Research and Therapy, 2017, 13, 39-45.	0.6	20
1422	Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. International Journal of Molecular Sciences, 2017, 18, 2265.	1.8	38
1423	Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function. Stem Cells International, 2017, 2017, 1-15.	1.2	42
1424	Regulation of Hematopoietic Stem Cell Dynamics by Molecular Niche Signaling., 2017,, 51-61.		0
1425	Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Frontiers in Bioengineering and Biotechnology, 2017, 5, 32.	2.0	53
1426	Pro-inflammatory-Related Loss of CXCL12 Niche Promotes Acute Lymphoblastic Leukemic Progression at the Expense of Normal Lymphopoiesis. Frontiers in Immunology, 2016, 7, 666.	2.2	34
1427	Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells International, 2017, 2017, 1-13.	1.2	15
1428	Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain. Pain Research and Management, 2017, 2017, 1-11.	0.7	9
1429	Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells International, 2017, 2017, 1-18.	1.2	55
1430	Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget, 2017, 8, 38008-38021.	0.8	69
1431	5.11 Engineering the Haematopoietic Stem Cell Niche In Vitro. , 2017, , 187-199.		1
1432	What Are Mesenchymal Stromal Cells? Origin and Discovery of Mesenchymal Stromal Cells. , 2017, , 1-37.		2
1433	Comparative Analyses of Signature Genes in Acute Rejection and Operational Tolerance. Immune Network, 2017, 17, 237.	1.6	22

#	Article	IF	CITATIONS
1434	Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0169119.	1.1	52
1435	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.	0.1	2
1436	The Role of the CNS in the Regulation of HSCs. Advances in Stem Cells and Their Niches, 2017, 1, 35-57.	0.1	1
1437	Targeting the Bone Marrow Niche in Hematological Malignancies. Advances in Stem Cells and Their Niches, 2017, , 155-175.	0.1	2
1438	The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, , $17-34$.	0.1	0
1439	Imaging the Hematopoietic Stem Cell Niche. Advances in Stem Cells and Their Niches, 2017, , 59-83.	0.1	O
1440	Alterations of HSC Niche in Myeloid Malignancies. Advances in Stem Cells and Their Niches, 2017, , $123-153$.	0.1	0
1441	Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Research and Therapy, 2017, 8, 213.	2.4	33
1442	Effect of local bone marrow stromal cell administration on ligature-induced periodontitis in mice. Journal of Oral Science, 2017, 59, 629-637.	0.7	9
1443	Crosstalk between Stem and Progenitor Cellular Mediators with Special Emphasis on Vasculogenesis. Transfusion Medicine and Hemotherapy, 2017, 44, 174-182.	0.7	7
1444	Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Network, 2017, 17, 89.	1.6	100
1446	Evaluation of expression of cancer stem cell markers and fusion gene in synovial sarcoma: Insights into histogenesis and pathogenesis. Oncology Reports, 2017, 37, 3351-3360.	1.2	16
1447	Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.		4
1448	Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization. BMB Reports, 2017, 50, 138-143.	1.1	9
1450	The bone marrow microenvironmentâ€"driver of leukemia evolution?. Stem Cell Investigation, 2017, 4, 11-11.	1.3	5
1451	Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochemistry and Cell Biology, 2018, 149, 383-391.	0.8	26
1452	Quiescent Tissue Stem Cells Evade Immune Surveillance. Immunity, 2018, 48, 271-285.e5.	6.6	170
1453	The bone marrow microenvironment in health and disease at a glance. Journal of Cell Science, 2018, 131, .	1.2	51

#	Article	IF	Citations
1454	Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nature Reviews Genetics, 2018, 19, 311-325.	7.7	129
1455	Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 2018, 9, 773.	5.8	366
1456	TGF-Î ² Signaling Accelerates Senescence of Human Bone-Derived CD271 and SSEA-4 Double-Positive Mesenchymal Stromal Cells. Stem Cell Reports, 2018, 10, 920-932.	2.3	32
1457	Neural Regulation of Bone and Bone Marrow. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031344.	2.9	63
1458	Recurrent Spindle Cell Carcinoma Shows Features of Mesenchymal Stem Cells. Journal of Dental Research, 2018, 97, 779-786.	2.5	3
1459	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
1460	Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 2018, 48, 632-648.	6.6	290
1461	Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science, 2018, 360, 106-110.	6.0	83
1462	Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Current Opinion in Pharmacology, 2018, 40, 74-80.	1.7	129
1463	Expression profile of long non-coding RNAs during the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyocyte-like cells. Cytotechnology, 2018, 70, 1247-1260.	0.7	4
1464	Effects of <scp>JAK</scp> 1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (<scp>MPN</scp>) patients and healthy individuals. European Journal of Haematology, 2018, 101, 57-67.	1.1	7
1465	Dynamic cellular phenotyping defines specific mobilization mechanisms of human hematopoietic stem and progenitor cells induced by SDF1 \hat{l}_{\pm} versus synthetic agents. Scientific Reports, 2018, 8, 1841.	1.6	7
1466	Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Developmental Cell, 2018, 44, 634-641.e4.	3.1	154
1467	Mesenchymal-myeloid interaction in the regulation of immunity. Seminars in Immunology, 2018, 35, 59-68.	2.7	39
1468	InÂVivo Labeling by CD73 Marks Multipotent Stromal Cells and Highlights Endothelial Heterogeneity in the Bone Marrow Niche. Cell Stem Cell, 2018, 22, 262-276.e7.	5.2	47
1469	Targeting the bone marrow microenvironment in acute leukemia. Leukemia and Lymphoma, 2018, 59, 2535-2545.	0.6	25
1470	Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflammation Research, 2018, 67, 467-477.	1.6	66
1471	A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nature Communications, 2018, 9, 378.	5.8	73

#	Article	IF	CITATIONS
1472	Reduced Cell Division Control Protein 42 Activity Compromises Hematopoiesis-Supportive Function of Fanconi Anemia Mesenchymal Stromal Cells. Stem Cells, 2018, 36, 785-795.	1.4	8
1473	Megakaryocytes harbour the del(5q) abnormality despite complete clinical and cytogenetic remission induced by lenalidomide treatment. British Journal of Haematology, 2018, 180, 526-533.	1.2	3
1474	Bone Marrow Microâ€Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. BioEssays, 2018, 40, 1700190.	1.2	17
1475	Transforming growth factor- \hat{I}^2 in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	5.4	262
1476	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	2.9	118
1477	Specific Modulation of Vertebral Marrow Adipose Tissue by Physical Activity. Journal of Bone and Mineral Research, 2018, 33, 651-657.	3.1	33
1478	Inhibition of overactive TGF- \hat{l}^2 attenuates progression of heterotopic ossification in mice. Nature Communications, 2018, 9, 551.	5.8	125
1479	The hematopoietic stem cell niche: from embryo to adult. Development (Cambridge), 2018, 145, .	1.2	155
1480	Stromalized microreactor supports murine hematopoietic progenitor enrichment. Biomedical Microdevices, 2018, 20, 13.	1.4	4
1481	Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031237.	2.9	148
1482	The spleen of patients with myelofibrosis harbors defective mesenchymal stromal cells. American Journal of Hematology, 2018, 93, 615-622.	2.0	8
1483	Immunohematology Mesenchymal Stromal Cell-based Therapy: From Research to Clinic. Applied Immunohistochemistry and Molecular Morphology, 2018, 26, e26-e43.	0.6	4
1484	The good and bad faces of the CXCR4 chemokine receptor. International Journal of Biochemistry and Cell Biology, 2018, 95, 121-131.	1.2	62
1485	A Nestin–Cyclin-Dependent Kinase 5–Dynamin-Related Protein 1 Axis Regulates Neural Stem/Progenitor Cell Stemness via a Metabolic Shift. Stem Cells, 2018, 36, 589-601.	1.4	27
1486	Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. Journal of Bone and Mineral Research, 2018, 33, 930-944.	3.1	29
1487	Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 436-446.	2.3	19
1488	TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2-Driven Myeloid Malignancy Progression. Stem Cell Reports, 2018, 10, 166-179.	2.3	34
1489	Unhealthy Stem Cells: When Health Conditions Upset Stem Cell Properties. Cellular Physiology and Biochemistry, 2018, 46, 1999-2016.	1.1	32

#	ARTICLE	IF	CITATIONS
1490	Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1259-1270.	0.4	54
1491	Extracellular vesicles from bone marrowâ€derived mesenchymal stromal cells support <i>ex vivo</i> survival of human antibody secreting cells. Journal of Extracellular Vesicles, 2018, 7, 1463778.	5.5	27
1492	The crosstalk between hematopoietic stem cells and their niches. Current Opinion in Hematology, 2018, 25, 285-289.	1.2	15
1493	Subchondral bone derived mesenchymal stem cells display enhanced osteo-chondrogenic differentiation, self-renewal and proliferation potentials. Experimental Animals, 2018, 67, 349-359.	0.7	4
1494	Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cellular and Molecular Life Sciences, 2018, 75, 2177-2195.	2.4	251
1495	Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. Journal of Pathology, 2018, 245, 138-146.	2.1	16
1496	Microglia's heretical self-renewal. Nature Neuroscience, 2018, 21, 455-456.	7.1	9
1497	A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes and Development, 2018, 32, 324-326.	2.7	11
1498	Overview of Osteoimmunology. Calcified Tissue International, 2018, 102, 503-511.	1.5	52
1499	Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration?. Stem Cell Reviews and Reports, 2018, 14, 346-369.	5.6	53
1500	Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes and Development, 2018, 32, 359-372.	2.7	110
1501	Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomaterialia, 2018, 72, 1-15.	4.1	48
1502	Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. European Respiratory Journal, 2018, 51, 1702021.	3.1	53
1503	Bone marrow PDGFRα+Sca-1+-enriched mesenchymal stem cells support survival of and antibody production by plasma cells <i>in vitro</i> through IL-6. International Immunology, 2018, 30, 241-253.	1.8	11
1504	Measuring Marrow Density and Area Using Peripheral Quantitative Computed Tomography at the Tibia: Precision in Young and Older Adults and Individuals With Spinal Cord Injury. Journal of Clinical Densitometry, 2018, 21, 269-280.	0.5	6
1505	Bone marrowâ€onâ€aâ€chip: Longâ€term culture of human haematopoietic stem cells in a threeâ€dimensional microfluidic environment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 479-489.	1.3	141
1506	NSAID treatment with meloxicam enhances peripheral stem cell mobilization in myeloma. Bone Marrow Transplantation, 2018, 53, 175-179.	1.3	7
1507	Murine Bone Marrow Mesenchymal Stromal Cells Respond Efficiently to Oxidative Stress Despite the Low Level of Heme Oxygenases 1 and 2. Antioxidants and Redox Signaling, 2018, 29, 111-127.	2.5	17

#	ARTICLE	IF	CITATIONS
1508	The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031328.	2.9	32
1509	Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma. Oncogene, 2018, 37, 616-626.	2.6	8
1510	Concise Review: Conceptualizing Paralogous Stem-Cell Niches and Unfolding Bone Marrow Progenitor Cell Identities. Stem Cells, 2018, 36, 11-21.	1.4	23
1511	Mesenchymal Stem Cells: The Moniker Fits the Science. Stem Cells, 2018, 36, 7-10.	1.4	31
1512	Critical View on Mesenchymal Stromal Cells in Regenerative Medicine. Antioxidants and Redox Signaling, 2018, 29, 169-190.	2.5	31
1513	Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031559.	2.9	87
1514	Survivin Is Required for Mouse and Human Bone Marrow Mesenchymal Stromal Cell Function. Stem Cells, 2018, 36, 123-129.	1.4	15
1515	Epidermal Growth Factor and Granulocyte Colony Stimulating Factor Signaling Are Synergistic for Hematopoietic Regeneration. Stem Cells, 2018, 36, 252-264.	1.4	10
1516	Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis. Calcified Tissue International, 2018, 102, 152-162.	1.5	29
1517	Alternatively spliced fibronectin extra domain A is required for hemangiogenic recovery upon bone marrow chemotherapy. Haematologica, 2018, 103, e42-e45.	1.7	4
1518	Hematopoietic Niche $\hat{a} \in \text{``Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnology Journal, 2018, 13, 1700088.}$	1.8	23
1519	Cardiac Cell Culture Technologies. , 2018, , .		2
1520	Pluripotent and Mesenchymal Stem Cellsâ€"Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
1521	Role of the microenvironment in myeloid malignancies. Cellular and Molecular Life Sciences, 2018, 75, 1377-1391.	2.4	32
1522	Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cellular Immunology, 2018, 326, 86-93.	1.4	79
1523	Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cellular and Molecular Life Sciences, 2018, 75, 1363-1376.	2.4	68
1524	Concise Review: Adaptation of the Bone Marrow Stroma in Hematopoietic Malignancies: Current Concepts and Models. Stem Cells, 2018, 36, 304-312.	1.4	15
1525	A short field guide to fibroblast function in immunity. Seminars in Immunology, 2018, 35, 48-58.	2.7	87

#	Article	IF	CITATIONS
1526	Loss of p53 compensates osteopenia in murine Mysml deficiency. FASEB Journal, 2018, 32, 1957-1968.	0.2	18
1527	The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. Journal of Bone and Mineral Research, 2018, 33, 199-210.	3.1	9
1528	The Biology of Bone Metastasis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031252.	2.9	123
1529	Diabetes mellitus as a poor mobilizer condition. Blood Reviews, 2018, 32, 184-191.	2.8	22
1530	Where Hematopoietic Stem Cells Live: The Bone Marrow Niche. Antioxidants and Redox Signaling, 2018, 29, 191-204.	2.5	92
1531	TGF- \hat{l}^21 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology, 2018, 23, 337-345.	0.7	26
1532	Obestatin can potentially differentiate Wharton's jelly mesenchymal stem cells into insulin-producing cells. Cell and Tissue Research, 2018, 372, 91-98.	1.5	9
1533	Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. Journal of Bone and Mineral Research, 2018, 33, 679-690.	3.1	30
1534	Multicolor quantitative confocal imaging cytometry. Nature Methods, 2018, 15, 39-46.	9.0	86
1535	Orthogonal potency analysis of mesenchymal stromal cell function during ex vivo expansion. Experimental Cell Research, 2018, 362, 102-110.	1.2	9
1536	Exploring the Histogenesis and Diagnostic Strategy Using Immunoassay and RT-PCR in Alveolar Soft Part Sarcoma. Pathology and Oncology Research, 2018, 24, 593-600.	0.9	6
1537	Acute myeloid leukemia remodels endosteal vascular niche into a leukemic niche. Stem Cell Investigation, 2018, 5, 34-34.	1.3	6
1538	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	2.3	41
1539	Concept of Hematopoietic and Stromal Niches for Cell-Based Diagnostics and Regenerative Medicine (a) Tj ETQq1	1.9.7843	14 rgBT /0
1540	Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Molecular Medicine Reports, 2019, 19, 549-554.	1.1	4
1541	Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. HemaSphere, 2018, 2, e151.	1.2	53
1542	Flow cytometry analysis of adrenoceptors expression in human adipose-derived mesenchymal stem/stromal cells. Scientific Data, 2018, 5, 180196.	2.4	9
1543	"Cell-Free Therapeutics―from Components Secreted by Mesenchymal Stromal Cells as a Novel Class of Biopharmaceuticals. , 2018, , .		11

#	Article	IF	CITATIONS
1544	Molecular Adjuvants Based on Plasmids Encoding Protein Aggregation Domains Affect Bone Marrow Niche Homeostasis. Current Gene Therapy, 2018, 17, 391-397.	0.9	1
1545	Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	0
1546	Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1100, 97-110.	0.8	20
1547	Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine and Growth Factor Reviews, 2018, 44, 69-79.	3.2	40
1548	Identity Noise and Adipogenic Traits Characterize Dermal Fibroblast Aging. Cell, 2018, 175, 1575-1590.e22.	13.5	168
1549	Cortical bone is an extraneuronal site of norepinephrine uptake in adult mice. Bone Reports, 2018, 9, 188-198.	0.2	28
1550	Possible Role of PHD Inhibitors as Hypoxia-Mimicking Agents in the Maintenance of Neural Stem Cells' Self-Renewal Properties. Frontiers in Cell and Developmental Biology, 2018, 6, 169.	1.8	20
1551	Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12997-13002.	3.3	35
1552	Noradrenaline Sensitivity Is Severely Impaired in Immortalized Adipose-Derived Mesenchymal Stem Cell Line. International Journal of Molecular Sciences, 2018, 19, 3712.	1.8	7
1553	Molecular Programming of Perivascular Stem Cell Precursors. Stem Cells, 2018, 36, 1890-1904.	1.4	25
1554	Notch Ligands in Hematopoietic Stem Cell Production. , 2018, , 313-332.		0
1555	The Chemokine CCL3 Regulates Myeloid Differentiation and Hematopoietic Stem Cell Numbers. Scientific Reports, 2018, 8, 14691.	1.6	33
1556	Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. Current Stem Cell Reports, 2018, 4, 282-290.	0.7	1
1557	The Majority of CD45–ÂTer119–ÂCD31– Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors. Immunity, 2018, 49, 627-639.e6.	6.6	36
1558	Mechanisms of Hematopoietic Stem Cell Ageing and Targets for Hematopoietic Tumour Prevention. Advances in Experimental Medicine and Biology, 2018, 1086, 117-140.	0.8	2
1559	Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nature Communications, 2018, 9, 3839.	5.8	51
1560	Induction of bone marrow-derived cells myogenic identity by theirÂinteractions with the satellite cell niche. Stem Cell Research and Therapy, 2018, 9, 258.	2.4	21
1561	Engineering molecular imaging strategies for regenerative medicine. Bioengineering and Translational Medicine, 2018, 3, 232-255.	3.9	16

#	Article	IF	CITATIONS
1562	Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004.	5.8	71
1563	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	4.2	200
1564	Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature, 2018, 562, 133-139.	13.7	426
1565	Regulation of Skeletal Homeostasis. Endocrine Reviews, 2018, 39, 701-718.	8.9	59
1566	Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Research and Therapy, 2018, 9, 271.	2.4	63
1567	Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. Methods in Molecular Biology, 2018, 2002, 101-119.	0.4	4
1568	Peripheral Blood Stem Cell Mobilization: a Look Ahead. Current Stem Cell Reports, 2018, 4, 273-281.	0.7	25
1569	Chronic kidney failure mineral bone disorder leads to a permanent loss of hematopoietic stem cells through dysfunction of the stem cell niche. Scientific Reports, 2018, 8, 15385.	1.6	6
1570	Role of Autophagy in Aging of Hematopoietic Stem Cells and Their Niche: Relevance in Clinical Transplantations and Regenerative Medicine. Pancreatic Islet Biology, 2018, , 31-45.	0.1	0
1571	The Instructive Role of the Bone Marrow Niche in Aging and Leukemia. Current Stem Cell Reports, 2018, 4, 291-298.	0.7	18
1574	A perivascular niche for multipotent progenitors in the fetal testis. Nature Communications, 2018, 9, 4519.	5.8	59
1575	Acute Myeloid Leukemia and the Bone Marrow Nicheâ€"Take a Closer Look. Frontiers in Oncology, 2018, 8, 444.	1.3	66
1576	Analysis of the Intrinsic Self-Organising Properties of Mesenchymal Stromal Cells in Three-Dimensional Co-Culture Models with Endothelial Cells. Bioengineering, 2018, 5, 92.	1.6	7
1577	Abnormal changes in the quantity and function of osteoblasts cultured in 1/2 vitro in patients with myelodysplastic syndrome. Oncology Letters, 2018, 16, 4384-4390.	0.8	2
1578	Stem Cell Culture on Polymer Hydrogels. Gels Horizons: From Science To Smart Materials, 2018, , 357-408.	0.3	0
1579	Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nature Communications, 2018, 9, 3613.	5.8	45
1581	Hydrogels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	36
1582	Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 2018, , .	0.8	15

#	ARTICLE	IF	CITATIONS
1583	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21.	13.5	425
1584	Minimal residual disease in prostate cancer patients after primary treatment: theoretical considerations, evidence and possible use in clinical management. Biological Research, 2018, 51, 32.	1.5	11
1585	Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 916-928.	1.1	6
1586	Isolation and Analysis of Mesenchymal Progenitors of the Adult Hematopoietic Niche. Methods in Molecular Biology, 2018, 1842, 43-54.	0.4	0
1587	Murine Bone Marrow Niches from Hematopoietic Stem Cells to B Cells. International Journal of Molecular Sciences, 2018, 19, 2353.	1.8	31
1588	Characteristics of live parameters of the HSâ€5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia–stroma crossâ€talk. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 929-940.	1.1	6
1589	Ubiquitinâ€specific protease <scp>USP</scp> 34 controls osteogenic differentiation and bone formation by regulating <scp>BMP</scp> 2 signaling. EMBO Journal, 2018, 37, .	3.5	61
1591	Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. Advances in Experimental Medicine and Biology, 2018, 1060, 73-98.	0.8	24
1592	Sipal deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	2.5	32
1593	NK cell development in a human stem cell niche: KIR expression occurs independently of the presence of HLA class I ligands. Blood Advances, 2018, 2, 2452-2461.	2.5	16
1594	Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Advances, 2018, 2, 3063-3069.	2.5	37
1595	Developmental Biology of Musculoskeletal Tissues for Tissue Engineers. , 2018, , 1-24.		2
1596	Clinical Translation of Cartilage Tissue Engineering, From Embryonic Development to a Promising Long-Term Solution., 2018,, 225-246.		1
1597	Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nature Communications, 2018, 9, 2067.	5.8	66
1598	Neural Crossroads in the Hematopoietic Stem Cell Niche. Trends in Cell Biology, 2018, 28, 987-998.	3.6	32
1599	Neighboring cells override 3D hydrogel matrix cues to drive human MSC quiescence. Biomaterials, 2018, 176, 13-23.	5.7	38
1600	Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 2018, 501, 968-973.	1.0	14
1601	Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells International, 2018, 2018, 1-14.	1.2	26

#	Article	IF	CITATIONS
1602	$TGF^{-\hat{1}^2}$ and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine and Growth Factor Reviews, 2018, 43, 25-37.	3.2	87
1603	Induction and Detection of Autophagy in Aged Hematopoietic Stem Cells by Exposing Them to Microvesicles Secreted by HSC-Supportive Mesenchymal Stromal Cells. Methods in Molecular Biology, 2018, 1854, 21-34.	0.4	9
1604	Skeletal Stem Cells/Bone Marrow Stromal Cells. , 2018, , 241-260.		0
1605	The Cross Talk Between the Central Nervous System, Bone, and Energy Metabolism. , 2018, , 317-328.		1
1606	Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nature Communications, 2018, 9, 2449.	5.8	145
1607	Local exchange of metabolites shapes immunity. Immunology, 2018, 155, 309-319.	2.0	13
1608	The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells International, 2018, 2018, 1-13.	1.2	44
1609	Synergistic Integration of Mesenchymal Stem Cells and Hydrostatic Pressure in the Expansion and Maintenance of Human Hematopoietic/Progenitor Cells. Stem Cells International, 2018, 2018, 1-12.	1.2	9
1610	The current understanding of mesenchymal stem cells as potential attenuators of chemotherapyâ€induced toxicity. International Journal of Cancer, 2018, 143, 2628-2639.	2.3	31
1611	Dysfunctional Bone Marrow Mesenchymal Stem Cells in Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 1981-1989.	2.0	26
1612	Recovery of Donor Hematopoiesis after Graft Failure and Second Hematopoietic Stem Cell Transplantation with Intraosseous Administration of Mesenchymal Stromal Cells. Stem Cells International, 2018, 2018, 1-7.	1.2	9
1613	Comparative Study on <i>In Vitro</i> Culture of Mouse Bone Marrow Mesenchymal Stem Cells. Stem Cells International, 2018, 2018, 1-14.	1.2	30
1614	Hematopoietic Microenvironment. , 2018, , 119-126.		1
1615	Biology of Erythropoiesis, Erythroid Differentiation, and Maturation. , 2018, , 297-320.e14.		3
1616	Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology, 2018, 33, 16-25.	1.6	191
1617	Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches. Current Stem Cell Reports, 2018, 4, 201-208.	0.7	17
1618	Transplanted interleukin-4-secreting mesenchymal stromal cells show extended survival and increased bone mineral density in the murine femur. Cytotherapy, 2018, 20, 1028-1036.	0.3	27
1619	Can a Conversation Between Mesenchymal Stromal Cells and Macrophages Solve the Crisis in the Inflamed Intestine?. Frontiers in Pharmacology, 2018, 9, 179.	1.6	42

#	Article	IF	CITATIONS
1620	Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Frontiers in Physiology, 2018, 9, 547.	1.3	49
1621	Impact of the Autonomic Nervous System on the Skeleton. Physiological Reviews, 2018, 98, 1083-1112.	13.1	132
1622	Mesenchymal stromal cells induce a permissive state in the bone marrow that enhances G-CSF-induced hematopoietic stem cell mobilization in mice. Experimental Hematology, 2018, 64, 59-70.e2.	0.2	10
1623	Simple Physical Model Unravels Influences of Chemokine on Shape Deformation and Migration of Human Hematopoietic Stem Cells. Scientific Reports, 2018, 8, 10630.	1.6	5
1624	Interactions Between Hematopoietic Stem and Progenitor Cells and the Bone Marrow., 2018,, 145-151.		0
1625	Germline mutations in the bone marrow microenvironment and dysregulated hematopoiesis. Experimental Hematology, 2018, 66, 17-26.	0.2	18
1626	Chemotactic Cues for NOTCH1-Dependent Leukemia. Frontiers in Immunology, 2018, 9, 633.	2.2	13
1627	Regulation of Malignant Hematopoiesis by Bone Marrow Microenvironment. Frontiers in Oncology, 2018, 8, 119.	1.3	10
1628	Therapeutic Antibodies for Myeloid Neoplasmsâ€"Current Developments and Future Directions. Frontiers in Oncology, 2018, 8, 152.	1.3	30
1629	Journey into Bone Models: A Review. Genes, 2018, 9, 247.	1.0	80
1630	Mesenchymal Stromal Cells Stimulate the Proliferation and IL-22 Production of Group 3 Innate Lymphoid Cells. Journal of Immunology, 2018, 201, 1165-1173.	0.4	30
1631	Aging Donor-Derived Human Mesenchymal Stem Cells Exhibit Reduced Reactive Oxygen Species Loads and Increased Differentiation Potential Following Serial Expansion on a PEG-PCL Copolymer Substrate. International Journal of Molecular Sciences, 2018, 19, 359.	1.8	7
1632	Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. International Journal of Molecular Sciences, 2018, 19, 1121.	1.8	36
1633	Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers, 2018, 10, 184.	2.0	28
1634	Bone marrow cell therapy and cardiac reparability: better cell characterization will enhance clinical success. Regenerative Medicine, 2018, 13, 457-475.	0.8	48
1635	Levamisole suppresses adipogenesis of aplastic anaemiaâ€derived bone marrow mesenchymal stem cells through ZFP36L1â€PPARGC1B axis. Journal of Cellular and Molecular Medicine, 2018, 22, 4496-4506.	1.6	12
1636	Niche TWIST1 is critical for maintaining normal hematopoiesis and impeding leukemia progression. Haematologica, 2018, 103, 1969-1979.	1.7	8
1637	Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell Research and Therapy, 2018, 9, 77.	2.4	35

#	Article	IF	Citations
1638	Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nature Medicine, 2018, 24, 782-791.	15.2	253
1639	Isolation and functional assessment of mouse skeletal stem cell lineage. Nature Protocols, 2018, 13, 1294-1309.	5.5	60
1640	A Study of the Regenerative Potential of Bone Marrow Cells of Donor Mice that Carry the egfp Gene in Irradiated Mice. Biophysics (Russian Federation), 2018, 63, 84-92.	0.2	1
1641	Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood, 2018, 132, 501-509.	0.6	52
1642	Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. Cell Communication and Signaling, 2018, 16, 48.	2.7	50
1643	Bone marrow-derived stem/stromal cells (BMSC) 3D microtissues cultured in BMP-2 supplemented osteogenic induction medium are prone to adipogenesis. Cell and Tissue Research, 2018, 374, 541-553.	1.5	31
1644	The Adaptive Remodeling of Stem Cell Niche in Stimulated Bone Marrow Counteracts the Leukemic Niche. Stem Cells, 2018, 36, 1617-1629.	1.4	16
1645	Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 876-888.	1.1	32
1646	BMP14 induces tenogenic differentiation of bone marrow mesenchymal stem cells ini¿½vitro. Experimental and Therapeutic Medicine, 2018, 16, 1165-1174.	0.8	19
1647	The Transplantation of hBM-MSCs Increases Bone Neo-Formation and Preserves Hearing Function in the Treatment of Temporal Bone Defects – on the Experience of Two Month Follow Up. Stem Cell Reviews and Reports, 2018, 14, 860-870.	5.6	10
1648	Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 2018, 155, 92-103.	1.3	28
1649	In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5688-E5695.	3.3	99
1650	Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. Advances in Experimental Medicine and Biology, 2018, 1107, 15-40.	0.8	8
1651	Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews Nephrology, 2018, 14, 493-507.	4.1	725
1652	Application of Bone Marrow Stem Cell Based Therapy in Bone Loss Diseases. Current Pharmaceutical Design, 2018, 23, 6288-6297.	0.9	2
1653	Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nature Cell Biology, 2018, 20, 836-846.	4.6	267
1654	Bone marrow cell response after injury and during early stage of regeneration is independent of the tissueâ€ofâ€injury in 2 injury models. FASEB Journal, 2019, 33, 857-872.	0.2	9
1655	Withdrawal of parathyroid hormone after prolonged administration leads to adipogenic differentiation of mesenchymal precursors in vivo. Bone, 2019, 118, 16-19.	1.4	10

#	Article	IF	CITATIONS
1656	The hematopoietic stem cell niche: What's so special about bone?. Bone, 2019, 119, 8-12.	1.4	20
1657	Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, 203, 96-110.	5.7	234
1658	Endothelinâ€1 differentially directs lineage specification of adipose―and bone marrow–derived mesenchymal stem cells. FASEB Journal, 2019, 33, 996-1007.	0.2	25
1659	PPAR Gamma-Regulated MicroRNA 199a-5p Underlies Bone Marrow Adiposity in Aplastic Anemia. Molecular Therapy - Nucleic Acids, 2019, 17, 678-687.	2.3	12
1660	Role of Muscarinic Acetylcholine Signaling in Gastrointestinal Cancers. Biomedicines, 2019, 7, 58.	1.4	17
1662	Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs. Blood, 2019, 134, 1214-1226.	0.6	27
1663	Phc2 controls hematopoietic stem and progenitor cell mobilization from bone marrow by repressing Vcam1 expression. Nature Communications, 2019, 10, 3496.	5.8	10
1664	Chimeric feeders of mesenchymal stromal cells and stromal cells modified with constitutively active AKT expand hematopoietic stem cells. Regenerative Medicine, 2019, 14, 535-553.	0.8	4
1665	Space of Disse: a stem cell niche in the liver. Biological Chemistry, 2019, 401, 81-95.	1.2	20
1666	AMLâ€'derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562â€'ADM fusiform transformation and chemoresistance. Oncology Reports, 2019, 42, 1035-1046.	1.2	4
1667	New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells International, 2019, 2019, 1-11.	1.2	5
1669	A population of nonneuronal GFR $\hat{l}\pm 3$ -expressing cells in the bone marrow resembles nonmyelinating Schwann cells. Cell and Tissue Research, 2019, 378, 441-456.	1.5	6
1670	Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Reports, 2019, 28, 302-311.e5.	2.9	167
1671	Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell, 2019, 25, 407-418.e6.	5 . 2	202
1672	Melatonin prevents cadmiumâ€induced bone damage: First evidence on an improved osteogenic/adipogenic differentiation balance of mesenchymal stem cells as underlying mechanism. Journal of Pineal Research, 2019, 67, e12597.	3.4	36
1673	Phenotypic Characterization of Bone Marrow Mononuclear Cells and Derived Stromal Cell Populations from Human Iliac Crest, Vertebral Body and Femoral Head. International Journal of Molecular Sciences, 2019, 20, 3454.	1.8	34
1674	Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90Â+Âsubset. Aging Cell, 2019, 18, e13015.	3.0	31
1675	Nestin+NG2+ Cells Form a Reserve Stem Cell Population in the Mouse Prostate. Stem Cell Reports, 2019, 12, 1201-1211.	2.3	7

#	Article	IF	Citations
1676	Bmil Suppresses Adipogenesis in the Hematopoietic Stem Cell Niche. Stem Cell Reports, 2019, 13, 545-558.	2.3	28
1677	Progenitor Cells. Methods in Molecular Biology, 2019, , .	0.4	2
1678	Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 2019, 25, 570-583.e7.	5 . 2	96
1679	Kupffer Cells Promote the Differentiation of Adult Liver Hematopoietic Stem and Progenitor Cells into Lymphocytes via ICAM-1 and LFA-1 Interaction. Stem Cells International, 2019, 2019, 1-15.	1.2	9
1680	Bone Marrow-Derived Progenitor Cells Mediate Immune Cell Regulation. Methods in Molecular Biology, 2019, 2029, 215-234.	0.4	2
1681	Toll-like receptor 4 protects against irradiation-induced hematopoietic injury by promoting granulopoiesis and alleviatingAmarrow adipogenesis. Biochemical and Biophysical Research Communications, 2019, 520, 420-427.	1.0	4
1682	BCR-ABL Independent Mechanisms of Resistance in Chronic Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 939.	1.3	83
1683	Soluble Signals and Remodeling in a Synthetic Gelatinâ€Based Hematopoietic Stem Cell Niche. Advanced Healthcare Materials, 2019, 8, e1900751.	3.9	40
1684	Nestin regulates cellular redox homeostasis in lung cancer through the Keap1–Nrf2 feedback loop. Nature Communications, 2019, 10, 5043.	5.8	74
1685	Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nature Medicine, 2019, 25, 1761-1771.	15.2	157
1686	Native-Osteoarthritic Joint Resident Stem and Progenitor Cells for Cartilage Cell-Based Therapies: A Quantitative Comparison With Respect to Concentration and Biological Performance. American Journal of Sports Medicine, 2019, 47, 3521-3530.	1.9	15
1688	Siteâ€Specific Loadâ€Induced Expansion of Scaâ€1 < sup>+ < /sup>Prrx1 < sup>+ < /sup> and Scaâ€1 < sup>â^3 < /sup>Prrx1 < sup>+ < /sup> Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus, 2019, 3, e10199.	1.3	15
1689	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	4.6	88
1690	The Yin and Yang of the Bone Marrow Microenvironment: Pros and Cons of Mesenchymal Stromal Cells in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 1135.	1.3	30
1691	Anorexia Nervosa and the Immune Systemâ€"A Narrative Review. Journal of Clinical Medicine, 2019, 8, 1915.	1.0	67
1692	Beta-Adrenergic Signaling in Tumor Immunology and Immunotherapy. Critical Reviews in Immunology, 2019, 39, 93-103.	1.0	16
1693	CD10 expression identifies a subset of human perivascular progenitor cells with high proliferation and calcification potentials. Stem Cells, 2020, 38, 261-275.	1.4	29
1694	Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. , 2019, 9, 1431-1441.		2

#	Article	IF	CITATIONS
1695	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
1696	Threeâ€dimensional intravital imaging in bone research. Journal of Biophotonics, 2019, 12, e201960075.	1.1	1
1697	A Revised Perspective of Skeletal Stem Cell Biology. Frontiers in Cell and Developmental Biology, 2019, 7, 189.	1.8	143
1698	A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Frontiers in Immunology, 2019, 10, 1952.	2.2	37
1699	Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid. FASEB Journal, 2019, 33, 12768-12779.	0.2	6
1700	Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. IScience, 2019, 19, 504-513.	1.9	13
1701	Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood, 2019, 134, 1415-1429.	0.6	148
1702	Activation of Skeletal Stem and Progenitor Cells for Bone Regeneration Is Driven by PDGFRÎ ² Signaling. Developmental Cell, 2019, 51, 236-254.e12.	3.1	64
1703	Improvement of Mesenchymal Stem Cell Immunomodulatory Properties by Heat-Killed Propionibacterium acnes via TLR2. Frontiers in Molecular Neuroscience, 2018, 11, 489.	1.4	9
1704	Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104.	11.6	245
1705	Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Advances in Cancer Research, 2019, 141, 213-253.	1.9	11
1706	Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends in Molecular Medicine, 2019, 25, 149-163.	3.5	288
1707	Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Reviews and Reports, 2019, 15, 194-217.	5 . 6	35
1708	Oxytocin facilitates the proliferation, migration and osteogenic differentiation of human periodontal stem cells in vitro. Archives of Oral Biology, 2019, 99, 126-133.	0.8	29
1709	Tsc1 ablation in Prx1 and Osterix lineages causes renal cystogenesis in mouse. Scientific Reports, 2019, 9, 837.	1.6	5
1710	Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clinical Epigenetics, 2019, 11, 19.	1.8	11
1711	Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell International, 2019, 19, 139.	1.8	12
1712	7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells, 2019, 8, 482.	1.8	20

#	Article	IF	CITATIONS
1713	Chronic myeloid leukemia stem cells. Leukemia, 2019, 33, 1543-1556.	3.3	127
1714	In Vitro Dynamic Phenotyping for Testing Novel Mobilizing Agents. Methods in Molecular Biology, 2019, 2017, 11-27.	0.4	1
1715	TGF- \hat{l}^2 Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow. Stem Cell Reports, 2019, 13, 48-60.	2.3	26
1716	One cell one niche: hematopoietic microenvironments constructed by bone marrow stromal cells with fibroblastic and histiocytic features. Ultrastructural Pathology, 2019, 43, 117-125.	0.4	3
1717	Dissecting the Prognostic Significance and Functional Role of Progranulin in Chronic Lymphocytic Leukemia. Cancers, 2019, 11, 822.	1.7	5
1718	Expanded skeletal stem and progenitor cells promote and participate in induced bone regeneration at subcritical BMP-2 dose. Biomaterials, 2019, 217, 119278.	5 . 7	29
1719	Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Frontiers in Immunology, 2019, 10, 1151.	2.2	52
1720	Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sciences, 2019, 232, 116598.	2.0	23
1721	Oxidized alginate beads for tunable release of osteogenically potent mesenchymal stromal cells. Materials Science and Engineering C, 2019, 104, 109911.	3.8	8
1723	Singleâ€cell transcriptomes of murine bone marrow stromal cells reveal nicheâ€associated heterogeneity. European Journal of Immunology, 2019, 49, 1372-1379.	1.6	28
1724	Beginning of a New Era: Mapping the Bone Marrow Niche. Cell, 2019, 177, 1679-1681.	13.5	3
1725	Human predecidual stromal cells are mesenchymal stromal/stem cells and have a therapeutic effect in an immune-based mouse model of recurrent spontaneous abortion. Stem Cell Research and Therapy, 2019, 10, 177.	2.4	33
1726	Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.	1.0	39
1727	Cell Biology and Translational Medicine, Volume 5. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
1728	EPO-R+ myelodysplastic cells with ring sideroblasts produce high erythroferrone levels to reduce hepcidin expression in hepatic cells. Blood Cells, Molecules, and Diseases, 2019, 78, 1-8.	0.6	6
1729	A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.	13.5	640
1730	SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone, 2019, 125, 140-150.	1.4	37
1731	Metabolic Phenotyping of Adipose-Derived Stem Cells Reveals a Unique Signature and Intrinsic Differences between Fat Pads. Stem Cells International, 2019, 2019, 1-16.	1.2	13

#	Article	IF	CITATIONS
1732	Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.	1.2	15
1733	Study on the Dynamic Biological Characteristics of Human Bone Marrow Mesenchymal Stem Cell Senescence. Stem Cells International, 2019, 2019, 1-9.	1.2	20
1734	Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. International Immunology, 2019, 31, 729-742.	1.8	33
1735	Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Reports, 2019, 27, 1073-1089.e5.	2.9	46
1736	The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health. FASEB Journal, 2019, 33, 8697-8710.	0.2	11
1737	Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. International Journal of Molecular Sciences, 2019, 20, 1922.	1.8	56
1739	Heterogeneity of Human Mesenchymal Stromal/Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1123, 165-177.	0.8	14
1740	PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Reports, 2019, 10, 100203.	0.2	11
1741	Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis. Blood, 2019, 134, 227-238.	0.6	23
1742	Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia, 2019, 62, 1275-1290.	2.9	32
1743	Niche cells rewired to maintain HSCs ex vivo. Nature Cell Biology, 2019, 21, 540-541.	4.6	1
1744	Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Research and Therapy, 2019, 10, 127.	2.4	29
1745	Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Molecular Pharmacology, 2019, 96, 809-818.	1.0	41
1746	Mesenchymal stem cells: From regeneration to cancer. , 2019, 200, 42-54.		84
1747	Uncoupling of in-vitro identity of embryonic limb derived skeletal progenitors and their in-vivo bone forming potential. Scientific Reports, 2019, 9, 5782.	1.6	6
1748	Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp. Nature Communications, 2019, 10, 1739.	5.8	73
1749	The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 2019, 28, 801-812.	1.2	281
1750	Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2019, 20, 1985.	1.8	7

#	Article	IF	CITATIONS
1751	Induction of <i>in Vivo</i> Ectopic Hematopoiesis by a Three-Dimensional Structured Extracellular Matrix Derived from Decellularized Cancellous Bone. ACS Biomaterials Science and Engineering, 2019, 5, 5669-5680.	2.6	15
1752	Neutrophils as regulators of the hematopoietic niche. Blood, 2019, 133, 2140-2148.	0.6	40
1753	DEL-1-Regulated Immune Plasticity and Inflammatory Disorders. Trends in Molecular Medicine, 2019, 25, 444-459.	3. 5	50
1754	Endothelial cells are a source of Nestin expression in Pulmonary Arterial Hypertension. PLoS ONE, 2019, 14, e0213890.	1.1	13
1755	An earlyâ€senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a proâ€inflammatory program. Aging Cell, 2019, 18, e12933.	3.0	114
1757	PIM1 inhibition effectively enhances plerixafor-induced HSC mobilization by counteracting CXCR4 upregulation and blocking CXCL12 secretion. Leukemia, 2019, 33, 1296-1301.	3.3	5
1758	Development of the hematopoietic system: Role of inflammatory factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e341.	5.9	11
1759	Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the Peri-sinusoidal Hematopoietic Stem Cell Niche. Cell Reports, 2019, 26, 3257-3271.e8.	2.9	46
1760	Maturation-associated gene expression profiles during normal human bone marrow erythropoiesis. Cell Death Discovery, 2019, 5, 69.	2.0	29
1761	Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell, 2019, 24, 608-620.e6.	5.2	35
1762	Targeting the Spleen as an Alternative Site for Hematopoiesis. BioEssays, 2019, 41, e1800234.	1.2	27
1763	Cell circuits and niches controlling B cell development. Immunological Reviews, 2019, 289, 142-157.	2.8	53
1764	Bone Marrow Endothelial Cells Influence Function and Phenotype of Hematopoietic Stem and Progenitor Cells after Mixed Neutron/Gamma Radiation. International Journal of Molecular Sciences, 2019, 20, 1795.	1.8	8
1765	Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 2019, 21, 560-567.	4.6	74
1767	Exploitation of the neural-hematopoietic stem cell niche axis to treat myeloproliferative neoplasms. Haematologica, 2019, 104, 639-641.	1.7	7
1768	Notch Signaling in Nestin-Expressing Cells in the Bone Marrow Maintains Erythropoiesis via Macrophage Integrity. Stem Cells, 2019, 37, 924-936.	1.4	2
1769	FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Research, 2019, 47, 5325-5340.	6.5	78
1770	Extracellular Matrix in the Regulation of Stem Cell Differentiation. Biochemistry (Moscow), 2019, 84, 232-240.	0.7	36

#	Article	IF	CITATIONS
1771	A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro. Advanced Healthcare Materials, 2019, 8, e1801444.	3.9	29
1772	Pericytes in Bone Marrow. Advances in Experimental Medicine and Biology, 2019, 1122, 101-114.	0.8	12
1773	Acute Leukemia Induces Senescence and Impaired Osteogenic Differentiation in Mesenchymal Stem Cells Endowing Leukemic Cells with Functional Advantages. Stem Cells International, 2019, 2019, 1-16.	1.2	20
1774	Pericytes in the Placenta: Role in Placental Development and Homeostasis. Advances in Experimental Medicine and Biology, 2019, 1122, 125-151.	0.8	16
1776	Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. Tissue Engineering - Part B: Reviews, 2019, 25, 312-329.	2.5	23
1777	The Clinical Relevance of the Bone Vascular System: Age-Related Implications. Clinical Reviews in Bone and Mineral Metabolism, 2019, 17, 48-62.	1.3	9
1778	Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica, 2019, 104, 1731-1743.	1.7	40
1779	Translating HSC Niche Biology for Clinical Applications. Current Stem Cell Reports, 2019, 5, 38-52.	0.7	1
1780	Development, repair, and regeneration of the limb musculoskeletal system. Current Topics in Developmental Biology, 2019, 132, 451-486.	1.0	4
1781	Secretome analysis of human bone marrow derived mesenchymal stromal cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 434-441.	1.1	43
1782	Stem Cells for the Oromaxillofacial Area: Could they be a promising source for regeneration in dentistry?. Advances in Experimental Medicine and Biology, 2019, 1144, 101-121.	0.8	9
1783	Haematopoietic stem cell activity andÂinteractions with the niche. Nature Reviews Molecular Cell Biology, 2019, 20, 303-320.	16.1	588
1784	Spheroid Culture of Mesenchymal Stromal Cells Results in Morphorheological Properties Appropriate for Improved Microcirculation. Advanced Science, 2019, 6, 1802104.	5.6	31
1785	Hypoxia Pathway Proteins in Normal and Malignant Hematopoiesis. Cells, 2019, 8, 155.	1.8	34
1786	Circular RNA expression profiles during the differentiation of human umbilical cord–derived mesenchymal stem cells into cardiomyocyteâ€like cells. Journal of Cellular Physiology, 2019, 234, 16412-16423.	2.0	20
1787	Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566, 383-387.	13.7	279
1788	Stem and progenitor cells in skeletal development. Current Topics in Developmental Biology, 2019, 133, 1-24.	1.0	61
1789	Hematopoietic stem cell metabolism and stemness. Blood Science, 2019, 1, 12-18.	0.4	5

#	ARTICLE	IF	CITATIONS
1790	Molecular interactome between HSCs and their niches. Blood, 2019, 134, 1197-1198.	0.6	8
1791	Dysregulated megakaryocyte distribution associated with nestin+ mesenchymal stem cells in immune thrombocytopenia. Blood Advances, 2019, 3, 1416-1428.	2.5	18
1792	Niches of Hematopoietic Stem Cells in Bone Marrow. Molecular Biology, 2019, 53, 889-895.	0.4	2
1793	Traditional and Advanced Cell Cultures in Hematopoietic Stem Cell Studies. Cells, 2019, 8, 1628.	1.8	16
1794	A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Research and Therapy, 2019, 10, 342.	2.4	22
1795	Apelin+ Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury. Cell Stem Cell, 2019, 25, 768-783.e6.	5.2	92
1797	Identification of Functionally Distinct $Mx1+\hat{l}\pm SMA+$ Periosteal Skeletal Stem Cells. Cell Stem Cell, 2019, 25, 784-796.e5.	5.2	128
1798	The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Research and Therapy, 2019, 10, 343.	2.4	13
1799	Effects of Obesity and Exercise on Bone Marrow Progenitor Cells after Radiation. Medicine and Science in Sports and Exercise, 2019, 51, 1126-1136.	0.2	11
1800	4. Bone stem cell therapy in the clinical perspective: a focus on nonrandomized and randomized trials. , 2019, , 53-101.		4
1801	Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 352.	2.0	92
1802	Toll-like receptor signaling in hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2019, 26, 207-213.	1.2	23
1803	The predictive role of monocyte-to-lymphocyte ratio in osteoporosis patient. Medicine (United States), 2019, 98, e16793.	0.4	31
1804	Normal and leukemic stem cell niche interactions. Current Opinion in Hematology, 2019, 26, 249-257.	1.2	10
1805	CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. Cells, 2019, 8, 1580.	1.8	9
1806	Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regenerative Medicine, 2019, 4, 22.	2.5	1,113
1807	Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell, 2019, 25, 797-813.e9.	5.2	145
1808	Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. Tissue Engineering - Part B: Reviews, 2019, 25, 55-77.	2.5	71

#	Article	IF	CITATIONS
1809	Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia, 2019, 33, 918-930.	3.3	39
1810	Poor graft function after allogeneic hematopoietic stem cell transplantation—an old complication with new insightsâ⁻†. Seminars in Hematology, 2019, 56, 215-220.	1.8	29
1811	The haematopoietic stem cell niche: a new player in cardiovascular disease?. Cardiovascular Research, 2019, 115, 277-291.	1.8	14
1812	The sympathomimetic agonist mirabegron did not lower <i>JAK2</i> -V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14. Haematologica, 2019, 104, 710-716.	1.7	29
1813	High throughput screening reveals no significant changes in protein synthesis, processing, and degradation machinery during passaging of mesenchymal stem cells. Canadian Journal of Physiology and Pharmacology, 2019, 97, 536-543.	0.7	5
1814	Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review. Journal of Biomedical Science, 2019, 26, 2.	2.6	19
1815	Bone Metastasis: Find Your Niche and Fit in. Trends in Cancer, 2019, 5, 95-110.	3.8	65
1816	Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q-syndrome. Leukemia, 2019, 33, 1759-1772.	3.3	35
1817	Heterogeneity of Mesenchymal Stromal Cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD). Indian Journal of Hematology and Blood Transfusion, 2019, 35, 223-232.	0.3	5
1818	Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis. International Journal of Hematology, 2019, 109, 309-318.	0.7	6
1819	Osteoarthritis year in review 2018: biology. Osteoarthritis and Cartilage, 2019, 27, 365-370.	0.6	43
1820	Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood, 2019, 133, 224-236.	0.6	69
1821	Neuro–Immune Cell Units: A New Paradigm in Physiology. Annual Review of Immunology, 2019, 37, 19-46.	9.5	162
1822	Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Experimental Hematology, 2019, 69, 43-53.	0.2	14
1823	Alteration of cellular and immuneâ€related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes. Journal of Cellular Physiology, 2019, 234, 3697-3710.	2.0	62
1824	Stem cells in the treatment of diabetes mellitus â€" Focus on mesenchymal stem cells. Metabolism: Clinical and Experimental, 2019, 90, 1-15.	1.5	88
1825	microRNAâ€31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. Journal of Cellular Biochemistry, 2019, 120, 9472-9486.	1.2	5
1826	The regulatory roles of VEGFâ€Notch signaling pathway on aplastic anemia with kidney deficiency and blood stasis. Journal of Cellular Biochemistry, 2019, 120, 2078-2089.	1.2	9

#	Article	IF	CITATIONS
1827	Features of Mesenchymal Stem Cells. , 2019, , 15-38.		2
1828	Neuropathy and inflammation in diabetic bone marrow. Diabetes/Metabolism Research and Reviews, 2019, 35, e3083.	1.7	14
1829	Niches for hematopoietic stem cells and immune cell progenitors. International Immunology, 2019, 31, 5-11.	1.8	35
1830	3D models of the bone marrow in health and disease: yesterday, today, and tomorrow. MRS Communications, 2019, 9, 37-52.	0.8	29
1831	Mesenchymal stem cells in myeloproliferative disorders – focus on primary myelofibrosis. Leukemia and Lymphoma, 2019, 60, 876-885.	0.6	6
1832	Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials, 2019, 196, 18-30.	5.7	105
1833	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-56.	1.4	13
1834	Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone, 2019, 119, 57-64.	1.4	44
1835	Osteocyte regulation of bone and blood. Bone, 2019, 119, 13-18.	1.4	44
1836	Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1–5 and Superoxide Dismutase 1–3 Signal Transduction Pathways. Antioxidants and Redox Signaling, 2019, 30, 443-486.	2.5	71
1837	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	1.4	27
1838	Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. Journal of Neuroimmunology, 2019, 331, 11-27.	1.1	22
1839	Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends in Molecular Medicine, 2020, 26, 89-104.	3.5	54
1840	<i>Ex vivo</i> HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Annals of the New York Academy of Sciences, 2020, 1466, 39-50.	1.8	38
1841	Cytokineâ€induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Annals of the New York Academy of Sciences, 2020, 1466, 24-38.	1.8	25
1842	The effect of combination therapy on critical-size bone defects using non-activated platelet-rich plasma and adipose-derived stem cells. Child's Nervous System, 2020, 36, 145-151.	0.6	10
1843	Skeletal stem cells., 2020,, 45-71.		5
1844	Transforming growth factor- \hat{l}^2 and skeletal homeostasis. , 2020, , 1153-1187.		1

#	Article	IF	CITATIONS
1845	Bone marrow and the hematopoietic stem cell niche., 2020,, 73-87.		2
1846	Imaging and spatial analysis of hematopoietic stem cell niches. Annals of the New York Academy of Sciences, 2020, 1466, 5-16.	1.8	17
1847	Protein malnutrition impairs bone marrow endothelial cells affecting hematopoiesis. Clinical Nutrition, 2020, 39, 1551-1559.	2.3	12
1848	CD49fhigh Defines a Distinct Skin Mesenchymal Stem Cell Population Capable of Hair Follicle Epithelial Cell Maintenance. Journal of Investigative Dermatology, 2020, 140, 544-555.e9.	0.3	11
1849	Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia, 2020, 34, 391-403.	3.3	61
1850	Therapeutic strategy for atherosclerosis based on bone-vascular axis hypothesis. , 2020, 206, 107436.		17
1851	A Bispecific Antibody Targeting the $\hat{l}\pm\nu$ and $\hat{l}\pm5\hat{l}^21$ Integrins Induces Integrin Degradation in Prostate Cancer Cells and Is Superior to Monospecific Antibodies. Molecular Cancer Research, 2020, 18, 27-32.	1.5	10
1852	K562 cell-derived exosomes suppress the adhesive function of bone marrow mesenchymal stem cells via delivery of miR-711. Biochemical and Biophysical Research Communications, 2020, 521, 584-589.	1.0	12
1853	Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. Tissue Engineering - Part B: Reviews, 2020, 26, 13-25.	2.5	52
1854	Fibrous Dysplasia/McCune-Albright Syndrome: A Rare, Mosaic Disease of Gα s Activation. Endocrine Reviews, 2020, 41, 345-370.	8.9	87
1855	Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Annals of the New York Academy of Sciences, 2020, 1466, 59-72.	1.8	9
1856	Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell, 2020, 180, 50-63.e12.	13.5	120
1857	Dopamine D1 receptor-mediated activation of the ERK signaling pathway is involved in the osteogenic differentiation of bone mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 12.	2.4	29
1858	Sticky bone-specific artificial extracellular matrix for stem cell-mediated rapid craniofacial bone therapy. Applied Materials Today, 2020, 18, 100531.	2.3	7
1859	Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48.	4.6	521
1860	Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nature Cell Biology, 2020, 22, 7-17.	4.6	86
1861	Role of growth factors in hematopoietic stem cell niche. Cell Biology and Toxicology, 2020, 36, 131-144.	2.4	29
1862	Single-cell and spatial transcriptomics approaches of the bone marrow microenvironment. Current Opinion in Oncology, 2020, 32, 146-153.	1.1	18

#	Article	IF	Citations
1863	Stem cell-directed therapies for osteoarthritis: The promise and the practice. Stem Cells, 2020, 38, 477-486.	1.4	19
1864	Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. Trends in Cell Biology, 2020, 30, 97-116.	3.6	62
1865	Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics, 2020, 17, 329-339.	2.1	11
1866	Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discovery Today, 2020, 25, 380-391.	3.2	7
1867	Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology, 2020, 92, 67-75.	0.3	17
1868	Albumin Modifies Responses to Hematopoietic Stem Cell Mobilizing Agents in Mice. Cells, 2020, 9, 4.	1.8	7
1869	Bone Marrow-Derived Mesenchymal Stromal Cells: A Novel Target to Optimize Hematopoietic Stem Cell Transplantation Protocols in Hematological Malignancies and Rare Genetic Disorders. Journal of Clinical Medicine, 2020, 9, 2.	1.0	50
1870	HCMV Infection in a Mesenchymal Stem Cell Niche: Differential Impact on the Development of NK Cells versus ILC3. Journal of Clinical Medicine, 2020, 9, 10.	1.0	15
1871	Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 576176.	1.8	68
1872	The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annual Review of Cell and Developmental Biology, 2020, 36, 469-509.	4.0	4
1873	Mapping human serum–induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy, 2020, 22, 424-435.	0.3	7
1874	Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 565970.	1.8	24
1875	Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metabolism, 2020, 32, 829-843.e9.	7.2	122
1876	Combined exposure to formaldehyde and PM2.5: Hematopoietic toxicity and molecular mechanism in mice. Environment International, 2020, 144, 106050.	4.8	35
1877	Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on stearoyl-CoA desaturase. Nature Cancer, 2020, 1, 998-1009.	5.7	36
1878	Cellular Origins of the Lymphatic Endothelium: Implications for Cancer Lymphangiogenesis. Frontiers in Physiology, 2020, 11, 577584.	1.3	23
1879	Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells, 2021, 39, 26-32.	1.4	13
1880	Markers for Identification of Postnatal Skeletal Stem Cells In Vivo. Current Osteoporosis Reports, 2020, 18, 655-665.	1.5	14

#	Article	IF	CITATIONS
1881	Intrinsic Type 1 Interferon (IFN1) Profile of Uncultured Human Bone Marrow CD45lowCD271+ Multipotential Stromal Cells (BM-MSCs): The Impact of Donor Age, Culture Expansion and IFNÎ $^{\pm}$ and IFNÎ 2 Stimulation. Biomedicines, 2020, 8, 214.	1.4	6
1882	Hematopoietic Stem Cells in Health and Diseaseâ€"Insights from Single-Cell Multi-omic Approaches. Current Stem Cell Reports, 2020, 6, 67-76.	0.7	8
1883	Development and function of human dendritic cells in humanized mice models. Molecular Immunology, 2020, 125, 151-161.	1.0	10
1884	Pbrm1 Steers Mesenchymal Stromal Cell Osteolineage Differentiation by Integrating PBAF-Dependent Chromatin Remodeling and BMP/TGF-β Signaling. Cell Reports, 2020, 31, 107570.	2.9	24
1885	The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. International Journal of Molecular Sciences, 2020, 21, 4967.	1.8	20
1886	Bone Marrow Microenvironment in Health and Disease. , 2020, , 1-11.		1
1887	GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF- $\hat{1}^2$. Cell Death and Disease, 2020, 11, 985.	2.7	14
1888	Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. Journal of Hematology and Oncology, 2020, 13, 157.	6.9	41
1889	Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling. Frontiers in Cell and Developmental Biology, 2020, 8, 602278.	1.8	38
1890	Mitochondrial Protein Synthesis Is Essential for Terminal Differentiation of CD45– TER119–Erythroid and Lymphoid Progenitors. IScience, 2020, 23, 101654.	1.9	7
1891	Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Experimental and Molecular Medicine, 2020, 52, 1140-1151.	3.2	3
1892	Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood, 2020, 136, 2296-2307.	0.6	63
1893	"Caught in the net― the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Experimental Hematology, 2020, 89, 13-25.	0.2	22
1894	Mouse CD146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential. Stem Cell Research and Therapy, 2020, 11, 341.	2.4	9
1895	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
1896	Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36823-36836.	4.0	42
1897	Regulation of the Bone Marrow Niche by Inflammation. Frontiers in Immunology, 2020, 11, 1540.	2.2	70
1898	Immunomodulatory properties of bone marrow mesenchymal stem cells. Journal of Biosciences, 2020, $45,1.$	0.5	16

#	Article	IF	Citations
1899	Targeting adhesion to the vascular niche to improve therapy for acute myeloid leukemia. Nature Communications, 2020, 11, 3691.	5.8	6
1900	Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia. Frontiers in Cell and Developmental Biology, 2020, 8, 607.	1.8	24
1901	Modeling Normal and Pathological Ear Cartilage in vitro Using Somatic Stem Cells in Three-Dimensional Culture. Frontiers in Cell and Developmental Biology, 2020, 8, 666.	1.8	7
1902	Gli1+ Cells Couple with Type H Vessels and Are Required for Type H Vessel Formation. Stem Cell Reports, 2020, 15, 110-124.	2.3	38
1903	Niches for Skeletal Stem Cells of Mesenchymal Origin. Frontiers in Cell and Developmental Biology, 2020, 8, 592.	1.8	50
1904	An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 5263.	1.8	8
1905	Mesenchymal Stem Cells in Aplastic Anemia and Myelodysplastic Syndromes: The "Seed and Soil― Crosstalk. International Journal of Molecular Sciences, 2020, 21, 5438.	1.8	20
1906	Transforming growth factorâ€Î² boosts the functionality of human bone marrowâ€derived mesenchymal stromal cells. Cell Biology International, 2020, 44, 2293-2306.	1.4	3
1907	Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. Npj Regenerative Medicine, 2020, 5, 14.	2.5	50
1908	The mesenchymal context in inflammation, immunity and cancer. Nature Immunology, 2020, 21, 974-982.	7.0	168
1909	Spinal cord injury causes chronic bone marrow failure. Nature Communications, 2020, 11, 3702.	5.8	34
1910	A 3D construct based on mesenchymal stromal cells, collagen microspheres and plasma clot supports the survival, proliferation and differentiation of hematopoietic cells in vivo. Cell and Tissue Research, 2020, 382, 499-507.	1.5	4
1911	Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells, 2020, 9, 1871.	1.8	58
1912	The peripheral nervous system in hematopoietic stem cell aging. Mechanisms of Ageing and Development, 2020, 191, 111329.	2.2	1
1913	Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 573282.	2.0	9
1914	MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Frontiers in Endocrinology, 2020, 11, 480.	1.5	22
1915	Acute myeloid leukemia–induced remodeling of the human bone marrow niche predicts clinical outcome. Blood Advances, 2020, 4, 5257-5268.	2.5	20
1917	The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). Advances in Experimental Medicine and Biology, 2020, 1273, 135-145.	0.8	4

#	Article	IF	CITATIONS
1918	Mapping and targeting of the leukemic microenvironment. Journal of Experimental Medicine, 2020, 217, .	4.2	29
1919	Antidepressants Promote and Prevent Cancers. Cancer Investigation, 2020, 38, 572-598.	0.6	4
1920	Advances in the understanding of poor graft function following allogeneic hematopoietic stem-cell transplantation. Therapeutic Advances in Hematology, 2020, 11, 204062072094874.	1.1	26
1921	Innovative Mind–Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells in Adults. Cell Transplantation, 2020, 29, 096368972095235.	1.2	1
1922	Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. Journal of Clinical Medicine, 2020, 9, 2913.	1.0	15
1923	Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. Journal of NeuroImmune Pharmacology, 2020, 15, 838-851.	2.1	6
1924	Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2020, 79, 1625-1634.	0.5	48
1925	Development of an inexpensive Raman-compatible substrate for the construction of a microarray screening platform. Analyst, The, 2020, 145, 7030-7039.	1.7	2
1926	Bone Marrow Microvasculature. , 2020, 10, 1009-1046.		12
1927	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration. , 2020, , 139-192.		2
1928	Sox17 Controls Emergence and Remodeling of Nestin-Expressing Coronary Vessels. Circulation Research, 2020, 127, e252-e270.	2.0	19
1929	Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications. Micromachines, 2020, 11, 849.	1.4	37
1930	Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Research and Therapy, 2020, 11, 381.	2.4	61
1931	Trends in Bone Metastasis Modeling. Cancers, 2020, 12, 2315.	1.7	8
1932	Use of MSCs and MSC-Educated Macrophages to Mitigate Hematopoietic Acute Radiation Syndrome. Current Stem Cell Reports, 2020, 6, 77-85.	0.7	7
1933	High NESTIN Expression Marks the Endosteal Capillary Network in Human Bone Marrow. Frontiers in Cell and Developmental Biology, 2020, 8, 596452.	1.8	9
1934	Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 602269.	1.8	31
1935	The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regenerative Therapy, 2020, 15, 285-294.	1.4	21

#	Article	IF	CITATIONS
1936	The bone marrow niche components are adversely affected in sepsis. Molecular Biomedicine, 2020, 1, 10.	1.7	3
1937	A Shaking-Culture Method for Generating Bone Marrow Derived Mesenchymal Stromal/Stem Cell-Spheroids With Enhanced Multipotency in vitro. Frontiers in Bioengineering and Biotechnology, 2020, 8, 590332.	2.0	14
1938	In Vivo Pre-Instructed HSCs Robustly Execute Asymmetric Cell Divisions In Vitro. International Journal of Molecular Sciences, 2020, 21, 8225.	1.8	4
1939	Progenitor Cells Activated by Platelet Lysate in Human Articular Cartilage as a Tool for Future Cartilage Engineering and Reparative Strategies. Cells, 2020, 9, 1052.	1.8	30
1940	From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Molecular Biology of the Cell, 2020, 31, 981-991.	0.9	10
1941	Aging-Related Reduced Expression of CXCR4 on Bone Marrow Mesenchymal Stromal Cells Contributes to Hematopoietic Stem and Progenitor Cell Defects. Stem Cell Reviews and Reports, 2020, 16, 684-692.	1.7	14
1942	Signature quality attributes of CD146+ mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells, 2020, 38, 1034-1049.	1.4	54
1943	Bone Morphogenetic Protein-9 Is a Potent Chondrogenic and Morphogenic Factor for Articular Cartilage Chondroprogenitors. Stem Cells and Development, 2020, 29, 882-894.	1.1	21
1944	Theoretical concept of cortical to cancellous bone transformation. Bone Reports, 2020, 12, 100260.	0.2	8
1945	Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Letters, 2020, 488, 9-17.	3.2	12
1946	The dormant cancer cell life cycle. Nature Reviews Cancer, 2020, 20, 398-411.	12.8	286
1947	Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. Journal of Clinical Medicine, 2020, 9, 1628.	1.0	9
1948	Adult Stem Cell-Derived Extracellular Vesicles in Cancer Treatment: Opportunities and Challenges. Cells, 2020, 9, 1171.	1.8	33
1949	CD73 ⁺ extracellular vesicles inhibit angiogenesis through adenosine A _{2B} receptor signalling. Journal of Extracellular Vesicles, 2020, 9, 1757900.	5.5	31
1950	How does spaceflight affect the acquired immune system?. Npj Microgravity, 2020, 6, 14.	1.9	62
1951	Snai2 Maintains Bone Marrow Niche Cells by Repressing Osteopontin Expression. Developmental Cell, 2020, 53, 503-513.e5.	3.1	14
1952	The Autonomic Nervous System Pulls the Strings to Coordinate Circadian HSC Functions. Frontiers in Immunology, 2020, 11, 956.	2.2	10
1953	When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. International Journal of Molecular Sciences, 2020, 21, 3864.	1.8	14

#	Article	IF	Citations
1954	Neuroblastomaâ€secreted exosomes carrying miRâ€375 promote osteogenic differentiation of boneâ€marrow mesenchymal stromal cells. Journal of Extracellular Vesicles, 2020, 9, 1774144.	5 . 5	31
1955	Neutrophil-derived long noncoding RNA IL-7R predicts development of multiple organ dysfunction syndrome in patients with trauma. European Journal of Trauma and Emergency Surgery, 2020, , 1.	0.8	4
1956	Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Frontiers in Cell and Developmental Biology, 2020, 8, 612.	1.8	23
1957	Interactions of Hematopoietic Stem Cells with Bone Marrow Niche. Methods in Molecular Biology, 2020, 2346, 21-34.	0.4	5
1958	Stem cell homing: From physiology to therapeutics. Stem Cells, 2020, 38, 1241-1253.	1.4	116
1959	Signaling in Osteoblast Differentiation. , 2020, , 416-426.		3
1960	Skeletal Stem Cells for Bone Development and Repair: Diversity Matters. Current Osteoporosis Reports, 2020, 18, 189-198.	1.5	45
1961	Tumor necrosis factor $\hat{l}\pm$ in aGVHD patients contributed to the impairment of recipient bone marrow MSC stemness and deficiency of their hematopoiesis-promotion capacity. Stem Cell Research and Therapy, 2020, 11, 119.	2.4	11
1962	The Endosteal Niche in Breast Cancer Bone Metastasis. Frontiers in Oncology, 2020, 10, 335.	1.3	52
1963	The bone marrow stromal niche: a therapeutic target of hematological myeloid malignancies. Expert Opinion on Therapeutic Targets, 2020, 24, 451-462.	1.5	11
1964	Bone marrow adipose cells $\hat{a} \in ``cellular interactions and changes with obesity. Journal of Cell Science, 2020, 133, .$	1.2	22
1965	Stem cells out of the bag: characterization of ex vivo expanded mesenchymal stromal cells for possible clinical use. Future Science OA, 2020, 6, FSO449.	0.9	3
1966	Five Decades Later, Are Mesenchymal Stem Cells Still Relevant?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 148.	2.0	109
1967	CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells, 2020, 38, 849-859.	1.4	39
1968	Emerging strategies for enhancing the homing of hematopoietic stem cells to the bone marrow after transplantation. Experimental Cell Research, 2020, 390, 111954.	1.2	6
1969	Myelofibrosis biology and contemporary management. British Journal of Haematology, 2020, 191, 152-170.	1.2	43
1970	Chemical-defined medium supporting the expansion of human mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 125.	2.4	15
1971	Cardiovascular autonomic effects of electronic cigarette use: a systematic review. Clinical Autonomic Research, 2020, 30, 507-519.	1.4	30

#	Article	IF	CITATIONS
1972	Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development (Cambridge), 2020, 147, .	1.2	48
1973	Proâ€inflammatory cytokines favor the emergence of ETV6â€RUNX1â€positive preâ€leukemic cells in a model of mesenchymal niche. British Journal of Haematology, 2020, 190, 262-273.	1.2	25
1974	Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2020, 11, 65.	1.5	53
1975	Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells, 2020, 9, 563.	1.8	116
1976	Mesenchymal Stem Cells Beyond Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 72.	1.8	60
1977	Native extracellular matrix, synthesized ex vivo by bone marrow or adipose stromal cells, faithfully directs mesenchymal stem cell differentiation. Matrix Biology Plus, 2020, 8, 100044.	1.9	21
1978	Recellularization of decellularized cancellous bone scaffolds using low-temperature cell seeding. Tissue and Cell, 2020, 66, 101385.	1.0	9
1979	Adrenergic Signaling in Circadian Control of Immunity. Frontiers in Immunology, 2020, 11, 1235.	2.2	35
1980	Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation?. Frontiers in Immunology, 2020, 11, 1306.	2.2	7
1981	Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 4442.	1.8	12
1982	Skeletal Stem Cellsâ€"Phenotype and Function. , 2020, , 9-20.		0
1983	Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone, 2020, 139, 115521.	1.4	27
1984	The Bone's Role in Myeloid Neoplasia. International Journal of Molecular Sciences, 2020, 21, 4712.	1.8	2
1985	Three-dimensional environment and vascularization induce osteogenic maturation of human adipose-derived stem cells comparable to that of bone-derived progenitors. Stem Cells Translational Medicine, 2020, 9, 1651-1666.	1.6	9
1986	Effects of intermittent treatment with parathyroid hormone (PTH) on osteoblastic differentiation and mineralization of mouse induced pluripotent stem cells in a 3D culture model. Journal of Periodontal Research, 2020, 55, 734-743.	1.4	2
1987	GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. International Journal of Molecular Sciences, 2020, 21, 4356.	1.8	18
1988	Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Research and Therapy, 2020, 11, 245.	2.4	55
1989	Bone marrow-derived humoral factors suppress oxidative phosphorylation, upregulate TSG-6, and improve therapeutic effects on liver injury of mesenchymal stem cells. Journal of Clinical Biochemistry and Nutrition, 2020, 66, 213-223.	0.6	7

#	ARTICLE	IF	CITATIONS
1990	How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunological Reviews, 2020, 296, 87-103.	2.8	39
1991	CCL1 blockade alleviates human mesenchymal stem cell (hMSC)-induced pulmonary fibrosis in a murine sclerodermatous graft-versus-host disease (Scl-GVHD) model. Stem Cell Research and Therapy, 2020, 11, 254.	2.4	7
1992	Inferring Gene Networks in Bone Marrow Hematopoietic Stem Cell-Supporting Stromal Niche Populations. IScience, 2020, 23, 101222.	1.9	11
1993	Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 2020, 20, 285-298.	12.8	270
1994	The Phenotype and Functional Activity of Mesenchymal Stromal Cells in Pediatric Patients with Non-Malignant Hematological Diseases. Cells, 2020, 9, 431.	1.8	3
1995	EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nature Immunology, 2020, 21, 261-273.	7.0	30
1996	Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells. Current Opinion in Oncology, 2020, 32, 154-161.	1.1	11
1997	Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone, 2020, 133, 115259.	1.4	29
1998	Editorial comment: variables affecting the presence of mesenchymal stromal cells in the peripheral blood and their relationship with apheresis product. British Journal of Haematology, 2020, 189, 593-596.	1.2	5
1999	Ginsenoside Rg1 as an Effective Regulator of Mesenchymal Stem Cells. Frontiers in Pharmacology, 2020, 10, 1565.	1.6	32
2000	Perivascular osteoprogenitors are associated with transcortical channels of long bones. Stem Cells, 2020, 38, 769-781.	1.4	19
2001	Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035725.	2.3	7
2002	Hemmule: A Novel Structure with the Properties of the Stem Cell Niche. International Journal of Molecular Sciences, 2020, 21, 539.	1.8	4
2003	Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. International Immunopharmacology, 2020, 80, 106008.	1.7	11
2004	Cardiac Nestin+ Mesenchymal Stromal Cells Enhance Healing of Ischemic Heart through Periostin-Mediated M2 Macrophage Polarization. Molecular Therapy, 2020, 28, 855-873.	3.7	27
2005	PQBP1, an intellectual disability causative gene, affects bone development and growth. Biochemical and Biophysical Research Communications, 2020, 523, 894-899.	1.0	12
2006	Conditional deletion of Adrb2 in mesenchymal stem cells attenuates osteoarthritis-like defects in temporomandibular joint. Bone, 2020, 133, 115229.	1,4	16
2007	Mesenchymal stromal cellâ€derived extracellular vesicles as cellâ€free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biology International, 2020, 44, 1078-1102.	1.4	23

#	ARTICLE	IF	CITATIONS
2008	On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nature Biomedical Engineering, 2020, 4, 394-406.	11.6	170
2009	GP130 Cytokines in Breast Cancer and Bone. Cancers, 2020, 12, 326.	1.7	29
2010	Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells. Stem Cells, 2020, 38, 1020-1033.	1.4	32
2011	<p>Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1241-1256.	2.0	25
2012	From mathematical modeling and machine learning to clinical reality., 2020,, 37-51.		4
2013	Bone tissue engineering and bone regeneration. , 2020, , 917-935.		9
2014	Skeletal tissue engineering. , 2020, , 1007-1021.		0
2015	Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation. International Immunology, 2020, 32, 727-736.	1.8	12
2016	Sensory nerveâ€deficient microenvironment impairs tooth homeostasis by inducing apoptosis of dental pulp stem cells. Cell Proliferation, 2020, 53, e12803.	2.4	14
2017	Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Science Advances, 2020, 6, eaaw0158.	4.7	73
2018	Cell Senescence and Mesenchymal Stromal Cells. Human Physiology, 2020, 46, 85-93.	0.1	2
2019	The neural system regulates bone homeostasis via mesenchymal stem cells: a translational approach. Theranostics, 2020, 10, 4839-4850.	4.6	32
2020	Metabolic Regulation of Mammalian Stem Cell Differentiation. Biochemistry (Moscow), 2020, 85, 264-278.	0.7	3
2021	Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell International, 2020, 20, 114.	1.8	38
2022	The role of bone marrow stromal cells in blood diseases and clinical significance as a crucial part of the hematopoietic microenvironment. Annals of Blood, 2020, 5, 2-2.	0.4	3
2023	C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Reports, 2020, 14, 614-630.	2.3	6
2024	Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circulation Research, 2020, 126, 1242-1259.	2.0	67
2025	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	2.0	96

#	Article	IF	CITATIONS
2026	Intralesional Injection of Bone Marrow Aspirate Concentrate for the Treatment of Osteonecrosis of the Knee Secondary to Systemic Lupus Erythematosus: A Case Report. Frontiers in Bioengineering and Biotechnology, 2020, 8, 202.	2.0	10
2027	Extracellular Vesicles After Allogeneic Hematopoietic Cell Transplantation: Emerging Role in Post-Transplant Complications. Frontiers in Immunology, 2020, 11, 422.	2.2	16
2028	Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Molecular Pharmacology, 2021, 99, 29-38.	1.0	20
2029	<i>Paracoccidioides brasiliensis</i> activates mesenchymal stem cells through TLR2, TLR4, and Dectin-1. Medical Mycology, 2021, 59, 149-157.	0.3	14
2030	The bone marrow hematopoietic niche and its adaptation to infection. Seminars in Cell and Developmental Biology, 2021, 112, 37-48.	2.3	12
2031	Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies. BioEssays, 2021, 43, e2000202.	1.2	13
2032	Therapeutic effect of allogeneic bone marrow–derived mesenchymal stromal cells on aortic aneurysms. Cell and Tissue Research, 2021, 383, 781-793.	1.5	4
2033	Intermittent PTH Administration Increases Bone-Specific Blood Vessels and Surrounding Stromal Cells in Murine Long Bones. Calcified Tissue International, 2021, 108, 391-406.	1.5	11
2034	Lessons from joint development for cartilage repair in the clinic. Developmental Dynamics, 2021, 250, 360-376.	0.8	5
2035	Lysophosphatidic acid receptors 2 and 3 regulate erythropoiesis at different hematopoietic stages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158818.	1.2	4
2036	Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Materials, 2021, 6, 666-683.	8.6	139
2037	New insights on the reparative cells in bone regeneration and repair. Biological Reviews, 2021, 96, 357-375.	4.7	11
2038	New Insights on the Role of the Mesenchymal–Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells and Development, 2021, 30, 2-16.	1.1	3
2039	Stem cell niches in bone and their roles in cancer metastasis. Advances in Stem Cells and Their Niches, 2021, 5, 35-62.	0.1	0
2040	Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression. Advances in Stem Cells and Their Niches, 2021, 5, 177-204.	0.1	0
2041	Sensory nerves in the spotlight of the stem cell niche. Stem Cells Translational Medicine, 2021, 10, 346-356.	1.6	12
2042	Targeting Nestin+ hepatic stellate cells ameliorates liver fibrosis by facilitating \hat{T}^2RI degradation. Journal of Hepatology, 2021, 74, 1176-1187.	1.8	42
2043	Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells and Development, 2021, 30, 59-78.	1.1	25

#	Article	IF	CITATIONS
2044	GATA4 regulates mesenchymal stem cells via direct transcriptional regulation of the WNT signalosome. Bone, 2021, 144, 115819.	1.4	13
2045	Hypoxia-cultured mouse mesenchymal stromal cells from bone marrow and compact bone display different phenotypic traits. Experimental Cell Research, 2021, 399, 112434.	1.2	2
2046	Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature, 2021, 589, 591-596.	13.7	99
2047	Structural organization of the bone marrow and its role in hematopoiesis. Current Opinion in Hematology, 2021, 28, 36-42.	1.2	28
2048	Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Annals of Biomedical Engineering, 2021, 49, 780-792.	1.3	16
2049	YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. Journal of Bone and Mineral Research, 2020, 36, 143-157.	3.1	32
2050	Protein-Degrading Enzymes in Osteoarthritis. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 2021, 159, 54-66.	0.4	3
2051	Decreased 18F-Fluorodeoxyglucose Uptake in Lumbar Vertebrae of Stroke Patients. Journal of Clinical		

#	ARTICLE	IF	CITATIONS
2064	Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. Journal of Tissue Engineering, 2021, 12, 204173142110448.	2.3	9
2065	Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. Journal of Cellular Physiology, 2021, 236, 6101-6114.	2.0	5
2066	Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7, .	4.7	48
2067	The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biology International, 2021, 45, 900-912.	1.4	3
2068	Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. Hemato, 2021, 2, 43-63.	0.2	3
2069	Inhibition of $TGF\hat{l}^2$ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell Research and Therapy, 2021, 12, 65.	2.4	6
2070	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of Molecular Sciences, 2021, 22, 1404.	1.8	5
2071	The Hyaluronic Acid–CD44 Interaction in the Physio- and Pathological Stem Cell Niche. Biology of Extracellular Matrix, 2021, , 237-262.	0.3	2
2072	Obesity-induced inflammation: The impact of the hematopoietic stem cell niche. JCI Insight, 2021, 6, .	2.3	41
2074	Senescent Mesenchymal Stem Cells in Myelodysplastic Syndrome: Functional Alterations, Molecular Mechanisms, and Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2020, 8, 617466.	1.8	9
2075	Glutamine Deprivation Promotes the Generation and Mobilization of MDSCs by Enhancing Expression of G-CSF and GM-CSF. Frontiers in Immunology, 2020, 11, 616367.	2.2	19
2076	3D Plotting of Silica/Collagen Xerogel Granules in an Alginate Matrix for Tissue-Engineered Bone Implants. Materials, 2021, 14, 830.	1.3	7
2077	IL-17A and TNF Modulate Normal Human Spinal Entheseal Bone and Soft Tissue Mesenchymal Stem Cell Osteogenesis, Adipogenesis, and Stromal Function. Cells, 2021, 10, 341.	1.8	20
2078	The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery. Journal of Personalized Medicine, 2021, 11, 161.	1.1	6
2079	The vital role of Gli1 ⁺ mesenchymal stem cells in tissue development and homeostasis. Journal of Cellular Physiology, 2021, 236, 6077-6089.	2.0	17
2080	Human cytomegalovirus infection: A considerable issue following allogeneic hematopoietic stem cell transplantation (Review). Oncology Letters, 2021, 21, 318.	0.8	5
2082	Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Experimental Hematology, 2021, 95, 23-30.	0.2	13
2083	Thrombin inhibitor argatroban modulates bone marrow stromal cells behaviors and promotes osteogenesis through canonical Wnt signaling. Life Sciences, 2021, 269, 119073.	2.0	3

#	Article	IF	CITATIONS
2084	Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 654817.	1.3	11
2085	Nestin and CD34 expression in colorectal cancer predicts improved overall survival. Acta Oncol $ ilde{A}^3$ gica, 2021, 60, 727-734.	0.8	5
2086	Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Frontiers in Immunology, 2021, 12, 631279.	2.2	6
2087	The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood, 2021, 138, 304-317.	0.6	20
2088	Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Frontiers in Physiology, 2021, 12, 624928.	1.3	9
2089	G-CSF treatment of healthy pediatric donors affects their hematopoietic microenvironment through changes in bone marrow plasma cytokines and stromal cells. Cytokine, 2021, 139, 155407.	1.4	3
2090	A multi-niche microvascularized human bone marrow (hBM) on-a-chip elucidates key roles of the endosteal niche in hBM physiology. Biomaterials, 2021, 270, 120683.	5.7	30
2091	Effect of Long-Term 3D Spheroid Culture on WJ-MSC. Cells, 2021, 10, 719.	1.8	21
2092	Bone Marrow Homeostasis Is Impaired via JAK/STAT and Glucocorticoid Signaling in Cancer Cachexia Model. Cancers, 2021, 13, 1059.	1.7	5
2093	Exploiting bone niches: progression of disseminated tumor cells to metastasis. Journal of Clinical Investigation, 2021, 131, .	3.9	17
2094	The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Frontiers in Cell and Developmental Biology, 2021, 9, 635189.	1.8	13
2095	Bone marrow niches in the regulation of bone metastasis. British Journal of Cancer, 2021, 124, 1912-1920.	2.9	35
2096	Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Frontiers in Cell and Developmental Biology, 2021, 9, 630712.	1.8	11
2098	Methodological considerations for the enrichment of bone marrow endothelial and mesenchymal stromal cells. Molecular Immunology, 2021, 131, 127-136.	1.0	2
2099	Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Communications Biology, 2021, 4, 406.	2.0	9
2100	Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. Journal of Bone and Mineral Research, 2020, 36, 1145-1158.	3.1	14
2101	Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sciences, 2021, 269, 119091.	2.0	27
2102	Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells. Nature Communications, 2021, 12, 2118.	5.8	11

#	Article	IF	CITATIONS
2103	Three-Dimensional Imaging in Stem Cell-Based Researches. Frontiers in Veterinary Science, 2021, 8, 657525.	0.9	13
2104	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	5.2	31
2105	The Chromatin Remodeling Complex CHD1 Regulates the Primitive State of Mesenchymal Stromal Cells to Control Their Stem Cell Supporting Activity. Stem Cells and Development, 2021, 30, 363-373.	1.1	3
2106	CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 591386.	1.3	49
2107	Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells, 2021, 10, 901.	1.8	19
2108	Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem?. Frontiers in Immunology, 2021, 12, 658535.	2.2	13
2109	Single-Cell Atlas Reveals Fatty Acid Metabolites Regulate the Functional Heterogeneity of Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 653308.	1.8	7
2110	Nitrogen-Doped Multiwalled Carbon Nanotubes Enhance Bone Remodeling through Immunomodulatory Functions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25290-25305.	4.0	9
2111	Application of Single-Cell Approaches to Study Myeloproliferative Neoplasm Biology. Hematology/Oncology Clinics of North America, 2021, 35, 279-293.	0.9	5
2112	Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. ELife, 2021, 10, .	2.8	5
2113	From Stem Cells to Bone-Forming Cells. International Journal of Molecular Sciences, 2021, 22, 3989.	1.8	27
2114	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	2.5	4
2115	Resistance of bone marrow stroma to genotoxic preconditioning is determined by p53. Cell Death and Disease, 2021, 12, 545.	2.7	0
2116	Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Reviews, 2021, 50, 100850.	2.8	40
2117	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	3.9	66
2118	Hepatic stellate cells: current state and open questions. Biological Chemistry, 2021, 402, 1021-1032.	1.2	13
2119	Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Frontiers in Cell and Developmental Biology, 2021, 9, 663316.	1.8	15
2120	Regulation of murine B lymphopoiesis by stromal cells. Immunological Reviews, 2021, 302, 47-67.	2.8	2

#	Article	IF	CITATIONS
2121	Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis. BioMed Research International, 2021, 2021, 1-13.	0.9	14
2122	Bortezomib enhances G-CSF-induced hematopoietic stem cell mobilization by decreasing CXCL12 levels and increasing vascular permeability. Experimental Hematology, 2021, 97, 21-31.	0.2	3
2123	The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Frontiers in Oncology, 2021, 11, 673506.	1.3	9
2124	Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 104-123.	4.3	17
2126	Macrophages and Stem Cellsâ€"Two to Tango for Tissue Repair?. Biomolecules, 2021, 11, 697.	1.8	14
2127	Fibroblasts as confederates of the immune system. Immunological Reviews, 2021, 302, 147-162.	2.8	58
2128	Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. Children, 2021, 8, 371.	0.6	4
2129	Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nature Communications, 2021, 12, 2860.	5.8	53
2130	Neuroimmune interactions in peripheral tissues. European Journal of Immunology, 2021, 51, 1602-1614.	1.6	23
2131	Commercial Bone Grafts Claimed as an Alternative to Autografts: Current Trends for Clinical Applications in Orthopaedics. Materials, 2021, 14, 3290.	1.3	30
2132	3D Multicellular Spheroid for the Study of Human Hematopoietic Stem Cells: Synergistic Effect Between Oxygen Levels, Mesenchymal Stromal Cells and Endothelial Cells. Journal of Blood Medicine, 2021, Volume 12, 517-528.	0.7	6
2133	Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. Journal of Clinical Medicine, 2021, 10, 2788.	1.0	15
2134	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	1.3	9
2135	Analyzing signaling activity and function in hematopoietic cells. Journal of Experimental Medicine, 2021, 218, .	4.2	5
2136	Characterisation of mesenchymal stromal cells in clinical trial reports: analysis of published descriptors. Stem Cell Research and Therapy, 2021, 12, 360.	2.4	26
2137	Recent Trends in Multipotent Human Mesenchymal Stem/Stromal Cells: Learning from History and Advancing Clinical Applications. OMICS A Journal of Integrative Biology, 2021, 25, 342-357.	1.0	12
2138	Prostate Cancer Dormancy and Reactivation in Bone Marrow. Journal of Clinical Medicine, 2021, 10, 2648.	1.0	11
2139	NFAT signaling in human mesenchymal stromal cells affects extracellular matrix remodeling and antifungal immune responses. IScience, 2021, 24, 102683.	1.9	5

#	Article	IF	CITATIONS
2140	The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. HemaSphere, 2021, 5, e615.	1.2	5
2142	The concept of obtaining and using multipotent mesenchymal stem cells in the treatment of dental diseases: literature review. Endodontics Today, 2021, 19, 107-111.	0.1	1
2143	Hematopoietic stem cell stretches and moves in its bone marrow niche. Critical Reviews in Oncology/Hematology, 2021, 163, 103368.	2.0	7
2144	Neural regulation of bone marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101522.	2.2	12
2145	CD271+CD51+PALLADINâ^ Human Mesenchymal Stromal Cells Possess Enhanced Ossicle-Forming Potential. Stem Cells and Development, 2021, 30, 725-735.	1.1	0
2146	Accentuating the sources of mesenchymal stem cells as cellular therapy for osteoarthritis knees—a panoramic review. Stem Cell Investigation, 2021, 8, 13-13.	1.3	14
2147	Human Amniotic Mesenchymal Stromal Cells Support the ex Vivo Expansion of Cord Blood Hematopoietic Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1516-1529.	1.6	5
2148	Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioactive Materials, 2021, 6, 1957-1972.	8.6	28
2149	Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Reports, 2021, 36, 109352.	2.9	59
2150	Effects of protein malnutrition on hematopoietic regulatory activity of bone marrow mesenchymal stem cells. Journal of Nutritional Biochemistry, 2021, 93, 108626.	1.9	1
2151	Inflammation and Aging of Hematopoietic Stem Cells in Their Niche. Cells, 2021, 10, 1849.	1.8	21
2152	Stiffness Regulates the Morphology, Adhesion, Proliferation, and Osteogenic Differentiation of Maxillary Schneiderian Sinus Membrane-Derived Stem Cells. Stem Cells International, 2021, 2021, 1-12.	1.2	3
2153	Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101564.	2.2	23
2154	Cranial Suture Mesenchymal Stem Cells: Insights and Advances. Biomolecules, 2021, 11, 1129.	1.8	18
2155	Long Non-coding RNA Regulation of Mesenchymal Stem Cell Homeostasis and Differentiation: Advances, Challenges, and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 711005.	1.8	7
2156	Notch Signaling in the Bone Marrow Lymphopoietic Niche. Frontiers in Immunology, 2021, 12, 723055.	2.2	12
2157	Murine bone marrow mesenchymal stromal cells have reduced hematopoietic maintenance ability in sickle cell disease. Blood, 2021, 138, 2570-2582.	0.6	12
2158	Can neural signals override cellular decisions in the presence of DNA damage?. DNA Repair, 2021, 103, 103127.	1.3	O

#	Article	IF	CITATIONS
2159	Cellular Heterogeneity of Mesenchymal Stem/Stromal Cells in the Bone Marrow. Frontiers in Cell and Developmental Biology, 2021, 9, 689366.	1.8	31
2160	Distinct skeletal stem cell types orchestrate long bone skeletogenesis. ELife, 2021, 10, .	2.8	38
2161	Understanding the hematopoietic microenvironment in chronic myeloid leukemia: A concise review. Current Research in Translational Medicine, 2021, 69, 103295.	1.2	5
2162	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704.	2.0	42
2163	Niches that regulate stem cells and hematopoiesis in adult bone marrow. Developmental Cell, 2021, 56, 1848-1860.	3.1	116
2164	Mesenchymal stromal cells in the bone marrow niche consist of multi-populations with distinct transcriptional and epigenetic properties. Scientific Reports, 2021, 11, 15811.	1.6	11
2165	IL-6 Generated from Human Hematopoietic Stem and Progenitor Cells through TLR4 Signaling Promotes Emergency Granulopoiesis by Regulating Transcription Factor Expression. Journal of Immunology, 2021, 207, 1078-1086.	0.4	14
2167	Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Experimental Hematology, 2021, 100, 41-51.	0.2	4
2168	Hematopoiesis during Ontogenesis, Adult Life, and Aging. International Journal of Molecular Sciences, 2021, 22, 9231.	1.8	15
2169	Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. Journal of Bone and Mineral Research, 2020, 36, 1661-1679.	3.1	24
2170	Adult stem cell niches for tissue homeostasis. Journal of Cellular Physiology, 2022, 237, 239-257.	2.0	51
2171	Inflammation, a common mechanism in frailty and COVID19, and stem cells as a therapeutic approach. Stem Cells Translational Medicine, 2021, 10, 1482-1490.	1.6	8
2172	Current Understanding of Osteoimmunology in Certain Osteoimmune Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 698068.	1.8	8
2173	Niche-directed therapy in acute myeloid leukemia: optimization of stem cell competition for niche occupancy. Leukemia and Lymphoma, 2022, 63, 10-18.	0.6	5
2174	In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Experimental Hematology, 2021, , .	0.2	0
2175	Recent progress on targeting leukemia stem cells. Drug Discovery Today, 2021, 26, 1904-1913.	3.2	7
2176	Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomaterialia, 2021, 133, 126-138.	4.1	16
2177	Dopamine signaling regulates hematopoietic stem and progenitor cell function. Blood, 2021, 138, 2051-2065.	0.6	19

#	Article	IF	Citations
2178	Opposing Effects of Granulocyte Colony-Stimulating Factor on the Initiation and Progression of Breast Cancer Bone Metastases. Molecular Cancer Research, 2021, 19, 2110-2119.	1.5	4
2179	Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 714716.	1.8	20
2180	Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell, 2021, 28, 1473-1482.e7.	5.2	87
2181	Identification of a Hematopoietic Cell Population Emerging From Mouse Bone Marrow With Proliferative Potential In Vitro and Immunomodulatory Capacity. Frontiers in Immunology, 2021, 12, 698070.	2.2	1
2182	Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Experimental Hematology, 2021, 100, 12-31.e1.	0.2	8
2183	Mesenchymal stem cells from biology to therapy. Emerging Topics in Life Sciences, 2021, 5, 539-548.	1.1	9
2184	Odontoblast death drives cell-rich zone-derived dental tissue regeneration. Bone, 2021, 150, 116010.	1.4	4
2185	CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radical Biology and Medicine, 2021, 173, 70-80.	1.3	8
2186	FBW7 couples structural integrity with functional output of primary cilia. Communications Biology, 2021, 4, 1066.	2.0	3
2187	New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Current Medicinal Chemistry, 2021, 28, .	1.2	0
2188	CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Advances, 2021, 5, 5002-5015.	2.5	9
2189	Paul S. Frenette (1965–2021). FASEB BioAdvances, 2022, 4, 5-8.	1.3	0
2190	Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. Current Stem Cell Reports, 2021, 7, 194-203.	0.7	9
2191	Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers, 2021, 13, 4471.	1.7	10
2192	Osteogenesis Imperfecta: The Impact of Genotype and Clinical Phenotype on Adiposity and Resting Energy Expenditure. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 67-76.	1.8	5
2193	Clinical features, pathophysiology, and therapy of poor graft function post–allogeneic stem cell transplantation. Blood Advances, 2022, 6, 1947-1959.	2.5	21
2194	Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell, 2021, 28, 2122-2136.e3.	5.2	71
2195	JMML tumor cells disrupt normal hematopoietic stem cells by imposing inflammatory stress through overproduction of IL- $1\hat{l}^2$. Blood Advances, 2021, , .	2.5	3

#	Article	IF	CITATIONS
2196	Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
2197	Remodeling the ECM: Implications for Metastasis and Tumor Dormancy. Cancers, 2021, 13, 4916.	1.7	29
2198	Is there a place for cellular therapy in depression?. World Journal of Psychiatry, 2021, 11, 553-567.	1.3	2
2200	Hematopoietic and mesenchymal stromal cells: New immunological roles during fungal infections. Stem Cells and Development, 2021, 30, 1049-1055.	1.1	1
2201	Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Seminars in Cell and Developmental Biology, 2022, 123, 22-35.	2.3	14
2202	Pluripotent stem cells for skeletal tissue engineering. Critical Reviews in Biotechnology, 2022, 42, 774-793.	5.1	6
2203	Hematopoietic Stem Cells in Wound Healing Response. Advances in Wound Care, 2022, 11, 598-621.	2.6	5
2204	PAC1 Receptor Mediates Electroacupuncture-Induced Neuro and Immune Protection During Cisplatin Chemotherapy. Frontiers in Immunology, 2021, 12, 714244.	2.2	7
2205	The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells, 2021, 10, 2460.	1.8	9
2206	At the nuclear envelope of bone mechanobiology. Bone, 2021, 151, 116023.	1.4	14
2206	At the nuclear envelope of bone mechanobiology. Bone, 2021, 151, 116023. Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884.	3.3	4
	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped		
2207	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4-mediated cross-talk	3.3	4
2207 2208	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4-mediated cross-talk with mesenchymal stroma. Haematologica, 2022, 107, 381-392. Impact of 2ÂGy γ-irradiation on the hallmark characteristics of human bone marrow-derived MSCs.	3.3	2
2207 2208 2209	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4-mediated cross-talk with mesenchymal stroma. Haematologica, 2022, 107, 381-392. Impact of 2ÂGy î³-irradiation on the hallmark characteristics of human bone marrow-derived MSCs. International Journal of Hematology, 2021, 113, 703-711. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers,	3.3 1.7 0.7	2
2207 2208 2209 2210	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4-mediated cross-talk with mesenchymal stroma. Haematologica, 2022, 107, 381-392. Impact of 2ÂGy γ-irradiation on the hallmark characteristics of human bone marrow-derived MSCs. International Journal of Hematology, 2021, 113, 703-711. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers, 2021, 13, 217. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation.	3.3 1.7 0.7	2 2 99
2207 2208 2209 2210 2211	Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds. Materials and Design, 2021, 208, 109884. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4-mediated cross-talk with mesenchymal stroma. Haematologica, 2022, 107, 381-392. Impact of 2ÂGy γ-irradiation on the hallmark characteristics of human bone marrow-derived MSCs. International Journal of Hematology, 2021, 113, 703-711. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers, 2021, 13, 217. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Frontiers in Cell and Developmental Biology, 2021, 9, 621214. Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the	3.3 1.7 0.7 1.7	4 2 2 99 34

#	Article	IF	CITATIONS
2215	PEG/HA Hybrid Hydrogels for Biologically and Mechanically Tailorable Bone Marrow Organoids. Advanced Functional Materials, 2020, 30, 1910282.	7.8	48
2216	Thrombospondinâ€⊋ spatiotemporal expression in skeletal fractures. Journal of Orthopaedic Research, 2021, 39, 30-41.	1.2	3
2217	Overview of Skeletal Development. Methods in Molecular Biology, 2021, 2230, 3-16.	0.4	9
2218	Bone Marrow Stromal Cell Assays: In Vitro and In Vivo. Methods in Molecular Biology, 2021, 2230, 379-396.	0.4	7
2219	Adipocytes, Lipid Metabolism, and Hematopoiesis. , 2012, , 31-45.		1
2220	Mesenchymal Stem Cells for the Treatment of Multiple Sclerosis. , 2013, , 433-455.		4
2221	Intravital Imaging of Hematopoietic Stem Cells in the Mouse Skull. Methods in Molecular Biology, 2014, 1185, 247-265.	0.4	10
2222	In Vitro Differentiation of T Cells from Murine Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2048, 131-141.	0.4	1
2223	Mesenchymal Stem Cells and Tissue Repair. , 2012, , 35-51.		5
2224	Hypoxia and Visualization of the Stem Cell Niche. Methods in Molecular Biology, 2013, 1035, 199-205.	0.4	17
2225	Primary Marrow-Derived Stromal Cells: Isolation and Manipulation. Methods in Molecular Biology, 2013, 1035, 75-101.	0.4	29
2226	Overview of Skeletal Development. Methods in Molecular Biology, 2014, 1130, 3-12.	0.4	46
2227	Cell Therapy for Degenerative Retinal Disease: Special Focus on Cell Fusion-Mediated Regeneration. Pancreatic Islet Biology, 2019, , 217-244.	0.1	1
2228	Therapeutic Potential of Mesenchymal Stem Cells in Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, 2019, 1201, 93-108.	0.8	11
2229	The Bone Marrow Niche– The Tumor Microenvironment That Ensures Leukemia Progression. Advances in Experimental Medicine and Biology, 2020, 1219, 259-293.	0.8	2
2230	Mesenchymal Stromal Cell-Based Therapies for Lung Disease. Pancreatic Islet Biology, 2015, , 225-242.	0.1	1
2231	The Bone Marrow Microenvironment for Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2017, 1041, 5-18.	0.8	33
2232	Leukemia Stem Cells Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1041, 19-32.	0.8	18

#	Article	IF	CITATIONS
2233	Basics of Bone Biology. , 2012, , 1-26.		7
2234	Parathyroid Hormone Actions on Bone and Kidney. , 2015, , 99-109.		4
2236	Interaction of Bone Marrow Stem Cells with Other Cells. , 2017, , 81-105.		2
2237	Metabolic Regulations in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1143, 59-74.	0.8	5
2238	ABC Transporters, Cholesterol Efflux, and Implications for Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2020, 1276, 67-83.	0.8	35
2239	Acute Myeloid Leukaemia in Its Niche: the Bone Marrow Microenvironment in Acute Myeloid Leukaemia. Current Oncology Reports, 2020, 22, 27.	1.8	45
2240	Skeletal Stem Cells in Craniofacial Bone. , 2020, , 141-149.		1
2241	The Bone Marrow Microenvironment as a Regulator of Tumor Dormancy. , 2017, , 401-424.		1
2242	Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies. , 2014, , 175-213.		2
2243	What do we know about bone morphogenetic proteins and osteochondroprogenitors in inflammatory conditions?. Bone, 2020, 137, 115403.	1.4	23
2244	Fam3c modulates osteogenic cell differentiation and affects bone volume and cortical bone mineral density. BoneKEy Reports, 2016, 5, 787.	2.7	16
2245	Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nature Biotechnology, 2017, 35, 1202-1210.	9.4	104
2246	Quantifying Adhesion Mechanisms and Dynamics of Human Hematopoietic Stem and Progenitor Cells. Scientific Reports, 2015, 5, 9370.	1.6	29
2247	Bone marrow fat: friend or foe in people with diabetes mellitus?. Clinical Science, 2020, 134, 1031-1048.	1.8	13
2248	Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerging Topics in Life Sciences, 2019, 3, 631-643.	1.1	12
2249	Circadian immune circuits. Journal of Experimental Medicine, 2021, 218, .	4.2	32
2258	Tumor microenvironment in gastric cancers. Cancer Science, 2020, 111, 2696-2707.	1.7	160
2259	Strategies to retain properties of bone marrow–derived mesenchymal stem cells <i>ex vivo</i> Annals of the New York Academy of Sciences, 2017, 1409, 3-17.	1.8	36

#	Article	IF	CITATIONS
2260	Mesenchymal stromal cells lower platelet activation and assist in platelet formation in vitro. JCI Insight, $2019, 4, .$	2.3	6
2261	Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight, 2020, 5, .	2.3	19
2262	Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight, 2017, 2, e90932.	2.3	37
2263	Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight, 2017, 2, .	2.3	87
2264	Bone marrow stromal cells from \hat{l}^2 -thalassemia patients have impaired hematopoietic supportive capacity. Journal of Clinical Investigation, 2019, 129, 1566-1580.	3.9	46
2265	Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. Journal of Clinical Investigation, 2020, 130, 3483-3498.	3.9	65
2266	Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 3038-3050.	3.9	48
2267	Niche competition and cancer metastasis to bone. Journal of Clinical Investigation, 2011, 121, 1253-1255.	3.9	26
2268	The stem cell niche: tissue physiology at a single cell level. Journal of Clinical Investigation, 2012, 122, 3029-3034.	3.9	33
2269	Pleiotrophin mediates hematopoietic regeneration via activation of RAS. Journal of Clinical Investigation, 2014, 124, 4753-4758.	3.9	45
2270	FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. Journal of Clinical Investigation, 2017, 127, 1241-1253.	3.9	128
2271	Bone marrow drives central nervous system regeneration after radiation injury. Journal of Clinical Investigation, 2017, 128, 281-293.	3.9	36
2272	Osteoclast-secreted SLIT3 coordinates bone resorption and formation. Journal of Clinical Investigation, 2018, 128, 1429-1441.	3.9	106
2273	Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. Journal of Clinical Investigation, 2017, 127, 3327-3338.	3.9	103
2274	Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. Journal of Clinical Investigation, 2017, 127, 3624-3639.	3.9	78
2275	The perivascular origin of pathological fibroblasts. Journal of Clinical Investigation, 2018, 128, 54-63.	3.9	123
2276	Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. Journal of Clinical Investigation, 2017, 127, 4527-4540.	3.9	36
2277	Aberrant TGF- \hat{l}^2 activation in bone tendon insertion induces enthesopathy-like disease. Journal of Clinical Investigation, 2018, 128, 846-860.	3.9	36

#	Article	IF	Citations
2278	Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. Journal of Clinical Investigation, 2019, 129, 2578-2594.	3.9	102
2279	Hematopoietic stem cell function in \hat{l}^2 -thalassemia is impaired and is rescued by targeting the bone marrow niche. Blood, 2020, 136, 610-622.	0.6	23
2280	Intra-Bone Marrow Transplantation of Endosteal Bone Marrow Cells Facilitates Allogeneic Hematopoietic and Stromal Cells Engraftment Dependent on Early Expression of CXCL-12. Medical Science Monitor, 2015, 21, 2757-2766.	0.5	3
2281	Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genetics, 2017, 13, e1006571.	1.5	26
2282	Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) Regulates Hematopoiesis and Bone Formation In Vivo. PLoS ONE, 2010, 5, e13086.	1.1	47
2283	Pericyte-Like Progenitors Show High Immaturity and Engraftment Potential as Compared with Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e48648.	1.1	50
2284	Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components. PLoS ONE, 2013, 8, e54778.	1.1	38
2285	Cord Blood Linâ^'CD45â^' Embryonic-Like Stem Cells Are a Heterogeneous Population That Lack Self-Renewal Capacity. PLoS ONE, 2013, 8, e67968.	1.1	15
2286	Quantification of Mesenchymal Stem Cell (MSC) Delivery to a Target Site Using In Vivo Confocal Microscopy. PLoS ONE, 2013, 8, e78145.	1.1	15
2287	CDCP1 Identifies a CD146 Negative Subset of Marrow Fibroblasts Involved with Cytokine Production. PLoS ONE, 2014, 9, e109304.	1.1	25
2288	Oncostatin M Maintains the Hematopoietic Microenvironment in the Bone Marrow by Modulating Adipogenesis and Osteogenesis. PLoS ONE, 2014, 9, e116209.	1.1	28
2289	Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice. PLoS ONE, 2016, 11, e0167673.	1.1	9
2290	Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS ONE, 2017, 12, e0172430.	1.1	35
2291	Hyperbranched poly($l\mu$ -lysine) substrate presenting the laminin sequence YIGSR induces the formation of spheroids in adult bone marrow stem cells. PLoS ONE, 2017, 12, e0187182.	1.1	6
2292	Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal-skeletal stem/progenitor cells. PLoS ONE, 2018, 13, e0190909.	1.1	17
2293	Human Plasma and Human Platelet-rich Plasma as a Substitute for Fetal Calf Serum during Long-term Cultivation of Mesenchymal Dental Pulp Stem Cells. Acta Medica (Hradec Kralove), 2014, 57, 119-126.	0.2	15
2294	THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS. Acta Medica (Hradec Kralove), 2013, 56, 142-149.	0.2	10
2295	The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells. Advanced Pharmaceutical Bulletin, 2016, 6, 23-29.	0.6	3

#	Article	IF	CITATIONS
2296	The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate. Advanced Pharmaceutical Bulletin, 2017, 7, 531-546.	0.6	17
2297	Generation of Organotypic Multicellular Spheres by Magnetic Levitation: Model for the Study of Human Hematopoietic Stem Cells Microenvironment. International Journal of Stem Cells, 2019, 12, 51-62.	0.8	10
2298	Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells. Hematology & Medical Oncology, 2016, 1, 25-29.	0.1	8
2299	To grab the stroma by the horns: From biology to cancer therapy with mesenchymal stem cells. Oncotarget, 2013, 4, 651-664.	0.8	56
2300	A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget, 2017, 8, 12272-12289.	0.8	9
2301	Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget, 2017, 8, 46710-46727.	0.8	25
2302	CD90low MSCs modulate intratumoral immunity to confer antitumor activity in a mouse model of ovarian cancer. Oncotarget, 2019, 10, 4479-4491.	0.8	10
2303	Chronic myeloid leukemia stem cells in the era of targeted therapies: resistance, persistence and long-term dormancy. Oncotarget, 2011, 2, 713-727.	0.8	66
2304	Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget, 2015, 6, 19366-19380.	0.8	72
2305	Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget, 2016, 7, 24455-24465.	0.8	8
2306	Aberrant integrin $\hat{l}_{\pm}\nu$ and $\hat{l}_{\pm}5$ expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype. Translational Andrology and Urology, 2020, 9, 1630-1638.	0.6	10
2307	Origin and Differentiation Trajectories of Fibroblastic Reticular Cells in the Splenic White Pulp. SSRN Electronic Journal, 0, , .	0.4	1
2308	Osteoinductive Biomaterial Geometries for Bone Regenerative Engineering. Current Pharmaceutical Design, 2013, 19, 3446-3455.	0.9	43
2309	Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. Current Stem Cell Research and Therapy, 2019, 14, 320-326.	0.6	8
2310	Bone Marrow Niches for Skeletal Progenitor Cells and their Inhabitants in Health and Disease. Current Stem Cell Research and Therapy, 2019, 14, 305-319.	0.6	14
2311	Evaluating the Impact of Oxygen Concentration and Plating Density on Human Wharton's Jelly-Derived Mesenchymal Stromal Cells. The Open Tissue Engineering and Regenerative Medicine Journal, 2011, 4, 82-94.	2.6	16
2312	Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells. Iranian Journal of Basic Medical Sciences, 2018, 21, 709-716.	1.0	13
2313	Yield optimisation and molecular characterisation of uncultured CD271+ mesenchymal stem cells in the reamer irrigator aspirator waste bag., 2013, 26, 252-262.		23

#	Article	IF	CITATIONS
2314	In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum. , 2014, 27, 185-195.		7
2315	Pericyte plasticity – comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. , 2016, 31, 236-249.		37
2316	Discovering the true identity and function of mesenchymal stem cells. Inflammation and Regeneration, 2012, 32, 146-151.	1.5	5
2317	Network anatomy and in vivo physiology of mesenchymal stem and stromal cells. Inflammation and Regeneration, 2013, 33, 038-047.	1.5	2
2318	The beneficial effects of varicella zoster virus. Journal of Hematology and Clinical Research, 2019, 3, 016-049.	0.4	4
2319	Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae, 2018, 10, 19-32.	1.7	10
2320	PTH and stem cells. Journal of Endocrinological Investigation, 2011, 34, 552-6.	1.8	17
2321	Exosome-driven lipolysis and bone marrow niche remodeling support leukemia expansion. Haematologica, 2021, 106, 1484-1488.	1.7	9
2322	Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. International Journal of Molecular Sciences, 2020, 21, 796.	1.8	25
2323	Pancreatic cancer stem cell markers and exosomes - the incentive push. World Journal of Gastroenterology, 2016, 22, 5971.	1.4	71
2325	Neuromodulation of bone: Role of different peptides and their interactions (Review). Molecular Medicine Reports, 2020, 23, 1-1.	1.1	4
2326	Critical role of SDF-1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma. Neural Regeneration Research, 2018, 13, 154.	1.6	30
2327	The Use of Mesenchymal Stem Cells in the Treatment of Multiple Sclerosis: An Overview of Open Labels and Ongoing Studies. Journal of Neurology & Neurophysiology, 2014, 05, .	0.1	2
2328	Human Mesenchymal Stem Cells Migrate toward Colon Cancer Partially Regulated by HMGB1. Journal of Cell Science & Therapy, 2013, 04, .	0.3	2
2329	A Simple Method for Isolation, Propagation, Characterization, and Differentiation of Adult Mouse Bone Marrow-Derived Multipotent Mesenchymal Stem Cells. Journal of Cell Science & Therapy, 2016, 08, .	0.3	8
2330	Cell-Cell Communication Networks Propose a Modulation of the Hematopoietic Stem Cell Niche by Invading Breast Carcinoma Cells. Journal of Bone Marrow Research, 2015, 03, .	0.2	1
2331	Discovery of Novel Proteins form Injured Rat Pancreatic Extract using MALDI-TOF/MS-based Proteomics. Journal of Proteomics and Bioinformatics, 2013, 06, .	0.4	2
2332	Types of Human Stem Cells and Their Therapeutic Applications. Stem Cell Discovery, 2014, 04, 13-26.	0.5	3

#	Article	IF	CITATIONS
2333	Small molecules for mesenchymal stem cell fate determination. World Journal of Stem Cells, 2019, 11, 1084-1103.	1.3	34
2334	Umbilical cord fibroblasts: Could they be considered as mesenchymal stem cells?. World Journal of Stem Cells, 2014, 6, 367.	1.3	5
2335	Impact of T cells on hematopoietic stem and progenitor cell function: Good guys or bad guys?. World Journal of Stem Cells, 2017, 9, 37.	1.3	17
2336	Mesenchymal stem cells: myths and reality. Swiss Medical Weekly, 2015, 145, w14229.	0.8	14
2337	Post-natal "mesenchymal" stem cells: the assayable skeletal potency. Journal of Stem Cells and Regenerative Medicine, 2019, 15, 12-15.	2.2	5
2338	Skeletogenesis and the Hematopoietic Niche., 0,,.		1
2339	Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets. ELife, 2015, 4, .	2.8	11
2340	Clec $11a$ /osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. ELife, 2016, 5, .	2.8	87
2341	Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. ELife, 2020, 9, .	2.8	191
2342	Do Diets Affect Haematological Parameters of Poultry?. British Journal of Applied Science & Technology, 2014, 4, 1952-1965.	0.2	9
2343	Mitochondria and the Tumour Microenvironment in Blood Cancer. Advances in Experimental Medicine and Biology, 2021, 1329, 181-203.	0.8	1
2344	Stem Cells of the Thymus. , 2021, , 27-54.		1
2345	Dormancy in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1329, 35-49.	0.8	4
2346	Tumor Microenvironment., 2021,, 243-316.		O
2347	Inflammation and Hypoxia Negatively Impact the Survival and Immunosuppressive Properties of Mesenchymal Stromal Cells <i>In Vitro</i> . Revista Romana De Cardiologie, 2021, 31, 547-554.	0.0	0
2348	Multipotent stromal cells: One name, multiple identities. Cell Stem Cell, 2021, 28, 1690-1707.	5.2	73
2349	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	5.2	114
2350	Identification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors—bone marrow fibroblastic reticular cells with salient features. International Immunology, 2021, 33, 821-826.	1.8	4

#	Article	IF	CITATIONS
2351	Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance?. Cancers, 2021, 13, 5319.	1.7	15
2352	Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Frontiers in Cell and Developmental Biology, 2021, 9, 654715.	1.8	7
2353	Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	5.7	13
2354	Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annual Review of Physiology, 2022, 84, 183-207.	5 . 6	21
2355	Evolving cancer–niche interactions and therapeutic targets during bone metastasis. Nature Reviews Cancer, 2022, 22, 85-101.	12.8	47
2356	Mechanically-regulated bone repair. Bone, 2022, 154, 116223.	1.4	15
2357	Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells?. Biology Open, 2021, 10, .	0.6	3
2358	Macrophages as Emerging Key Players in Mitochondrial Transfers. Frontiers in Cell and Developmental Biology, 2021, 9, 747377.	1.8	17
2359	Nestin promotes pulmonary fibrosis <i>via</i> facilitating recycling of TGF-β receptor I. European Respiratory Journal, 2022, 59, 2003721.	3.1	17
2360	Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Frontiers in Immunology, 2021, 12, 775128.	2.2	36
2361	The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 729498.	1.8	5
2362	Embryonic Stem Cell-Derived Multipotent Mesenchymal Stromal Cell Therapy Following Focal Ischemia in the Rat. , 0, , .		0
2363	Regenerative Potential of Blood Stem Cell Products Used in Hematopoietic Stem Cell Transplantation. , 2012, , 125-139.		0
2364	Concepts to Facilitate Umbilical Cord Blood Transplantation. , 2012, , 141-156.		0
2365	Mesenchymal Stem Cell-Dependent Formation and Repair of Tendon-Bone Insertions., 2012,, 317-325.		0
2366	rHuG-CSF in Peripheral Blood Progenitor Cell Transplantation. , 2012, , 249-275.		0
2369	Gene Expression Profiling and Regulatory Networks in Single Cells. , 2012, , 1-13.		0
2370	Hematopoietic stem cells and niche cell populations. Inflammation and Regeneration, 2012, 32, 152-157.	1.5	O

#	Article	IF	CITATIONS
2371	The Bone Marrow Microenvironment and Its Impact in Acute and Chronic B Cell Malignancies. , 2012, , 35-45.		0
2372	Front runners linking inflammation and regenerative medicine. Inflammation and Regeneration, 2012, 32, 144-145.	1.5	0
2373	CHARACTERISATION OF NEURAL CREST-DERIVED STEM CELLS IN DIFFERENT TISSUES., 2012, , 87-107.		0
2374	Perinatal Stem Cells in Regenerative Medicine. , 2012, , 367-382.		o
2375	MSCs: Changing Hypotheses, Paradigms, and Controversies on Mechanisms of Action in Repairing Tissues., 2013,, 17-42.		0
2376	MSCs: The Need to Rethink. , 2013, , 43-57.		0
2377	Non-Hierarchically Organized Operations in Malignancies: Stromal Dysfunction Induces and Maintains Hematopoietic Malignancies. , 2013, , 69-90.		0
2378	Clinical Impact of Radiation-Resistant Mesenchymal Stem Cells in Bone Marrow Deduced from Preclinical Studies. Journal of Bone Marrow Research, 2013, 01, .	0.2	O
2379	Cardiomyopathy and Cell Therapy: Ejection Fraction Improvement and Cardiac Muscle Mass Increasing, after a Year of Bone Marrow Stem Cells Transplantation, by Magnetic Resonance Image. Journal of Stem Cell Research & Therapy, 0, , .	0.3	0
2380	Stromal Cell-derived Factor 1/CXCR4 Signaling, Stem and Fractures. , 2013, , 200-213.		0
2381	Stem Cell Niche. , 2013, , 79-106.		2
2382	Mesenchymal stem cells as an essential hematopoietic stem cell niche component. Inflammation and Regeneration, 2013, 33, 013-018.	1.5	0
2383	Adult Stem Cells in Teeth. Pancreatic Islet Biology, 2014, , 199-216.	0.1	0
2385	Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells. Recent Patents on Regenerative Medicine, 2013, 3, 182-192.	0.4	1
2386	Acknowledgments / The Authors. , 2013, , 295-295.		0
2387	Interaktion von disseminierten Tumorzellen mit Stamm- und Immunzellen im prÄ m etastatischen Knochenmarkmilieu. , 2014, , 3-12.		0
2388	Reactive Oxygen Species (ROS) and Stem/Progenitor Cells. , 2014, , 2471-2497.		0
2389	Mouse Genetic Background and Human Hematopoietic Stem Cells Biology; Tips for Humanization. , 2014, , 33-51.		0

#	Article	IF	CITATIONS
2392	Uncovering the origins of a niche. ELife, 2014, 3, .	2.8	3
2394	The Hematopoietic Stem Cell Niche: Cell-Cell Interactions and Quiescence. Pancreatic Islet Biology, 2015, , 1-22.	0.1	1
2395	Osteoimmunology., 2015,, 165-168.		1
2396	Impact of Radiation on Hematopoietic Niche. Pancreatic Islet Biology, 2015, , 147-160.	0.1	0
2397	Stem Cell Niche-Radiobiological Response. Pancreatic Islet Biology, 2015, , 129-146.	0.1	0
2398	Aging of the Hematopoietic Stem Cell Niches. , 2015, , 245-256.		0
2400	In vivohematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment. Oncotarget, 2015, 6, 21827-21839.	0.8	1
2401	Microenvironment Applications. , 0, , 4652-4670.		0
2402	Stem Cells in the Oral Cavity. Studies on Stem Cells Research and Therapy, 2015, 1, 012-016.	0.0	4
2403	Musculoskeletal Stem Cells. , 2016, , 315-343.		0
2404	Adult Hematopoietic Stem Cells: Niche Cross-Talks to Affect the Cell Fate. Niche Journal, 2016, 3, 12-23.	0.4	0
2405	Tumor Microenvironment., 2016,, 233-303.		0
2406	Tissue Engineering of Normal and Abnormal Bone Marrow., 2016,, 225-235.		0
2407	Isolation and Colony Formation of Murine Bone and Bone Marrow Cells. Methods in Molecular Biology, 2016, 1467, 73-80.	0.4	0
2408	Hematopoietic Stem Cells. , 2016, , 111-143.		0
2409	Basics of Bone Biology. , 2016, , 1-30.		0
2411	The Role of Cbx Proteins in Human Benign and Malignant Hematopoiesis. Blood, 2016, 128, 2651-2651.	0.6	0
2412	Mesenchymal Stem/Stromal Cell Recruitment by Central Nervous System Tumors., 2017,, 227-251.		0

#	Article	IF	Citations
2413	All Aboard., 2017,, 475-499.		1
2414	Physico-Chemical Properties of the Stem Cell Niche. , 2017, , 61-80.		0
2415	Mesenchymal Stem/Stromal Cells and the Tumor Immune System. , 2017, , 425-447.		0
2416	Artificial Hematopoietic Stem Cell Niches-Dimensionality Matters. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	1
2417	Brief Introduction to the Basic Scientific Principles of Hematopoietic Stem Cell Transplantation (HSCT). , 2018 , , $19-53$.		0
2418	BON E TISSUE ENGINEER ING BA SED ON BONE MARROW I N BLOOD CLOT LOADED ON MINER AL MATRIX CARRIER: E XPERIMENTAL STUDY IN SUBCUTANEOUS MICE MODEL. Acta Medica Medianae, 2017, 56, 5-11.	0.0	2
2420	Hematopoiesis and Bone Marrow Histology. , 2018, , 4-13.		0
2424	Comparison of the Regenerative Potential for Lung Tissue of Mesenchymal Stromal Cells from Different Sources/Locations Within the Body. , 2019, , 35-55.		0
2425	Cellular and Molecular State of Myeloid Leukemia Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1143, 41-57.	0.8	2
2426	å°é¼éë"髓与éë"å†è†œé—´åè^*干细胞å^†æž• Bio-protocol, 2019, , .	0.2	0
2432	Bone Nature and Blood Nurture. , 2020, , 1-8.		0
2434	Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Reviews and Reports, 2022, 18, 37-55.	1.7	7
2435	The vasculature niches required for hematopoiesis. Journal of Molecular Medicine, 2022, 100, 53-61.	1.7	0
2436	Stem and Progenitor Cells in Synovium. , 2020, , 96-108.		0
2437	Inflammation and Bone Destruction: Pathogenesis and Therapeutic Intervention., 2020,, 122-135.		0
2439	Stem Cell Biology in Bone Marrow Transplantation. Organ and Tissue Transplantation, 2021, , 1-14.	0.0	0
2440	Neural Crest Contributions to Mesenchymal Stem Cells. , 2020, , 62-68.		0
2441	Immunoregulation in the Hematopoietic Stem Cell Niche. , 2020, , 69-77.		0

#	Article	IF	CITATIONS
2442	B Cells in The Regulation of Bone Metabolism. , 2020, , 20-32.		0
2443	Periosteum Derived Cells in Skeletal Tissue Regeneration. , 2020, , 1-37.		O
2444	Human Primary Bone Marrow Stromal Cells—Basic Biology and Isolation Strategies. , 2020, , 26-34.		0
2445	Control of Osteoblast Transcription. , 2020, , 427-438.		0
2446	Erectile Dysfunctions., 2020,, 75-88.		0
2447	Osteoblast Lineage Stem and Progenitor Cells. , 2020, , 383-396.		0
2448	The aging hematopoietic stem cell niche. Advances in Stem Cells and Their Niches, 2020, , 1-23.	0.1	0
2449	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration. , 2020, , 1-55.		0
2450	Periosteum Derived Cells in Skeletal Tissue Regeneration. , 2020, , 101-137.		2
2451	Targeting periosteal SSCs for aged bone defects. Aging, 2020, 12, 3124-3125.	1.4	3
2452	Bone marrow niches in myelodysplastic syndromes. , 2021, 7, .		1
2454	Low-molecular weight components of cow colostrum regulate bone marrow functions by modelling the redox-system of the organism. Regulatory Mechanisms in Biosystems, 2020, 11, 272-277.	0.5	0
2455	Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell and Bioscience, 2021, 11, 187.	2.1	64
2456	Skeletal stem cell fate defects caused by <i>Pdgfrb</i> activating mutation. Development (Cambridge), 2021, 148, .	1.2	5
2458	Skeletal Stem Cellsâ \in "A Paradigm Shift in the Field of Craniofacial Bone Tissue Engineering. Frontiers in Dental Medicine, 0, 1, .	0.5	2
2459	Mesenchymal stem cells in tissue growth and repair. Acta Naturae, 2011, 3, 30-7.	1.7	47
2460	Hematopoietic stem cells: interplay with immunity. American Journal of Blood Research, 2012, 2, 219-27.	0.6	8
2461	Histological characterization of bone marrow in ectopic bone, induced by devitalized Saos-2 human osteosarcoma cells. International Journal of Clinical and Experimental Medicine, 2013, 6, 119-25.	1.3	O

#	Article	IF	CITATIONS
2463	Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. American Journal of Stem Cells, 2013, 2, 22-38.	0.4	77
2464	Mesenchymal stem cells, aging and regenerative medicine. Muscles, Ligaments and Tendons Journal, 2012, 2, 239-42.	0.1	51
2465	The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?. Muscles, Ligaments and Tendons Journal, 2012, 2, 212-21.	0.1	21
2466	Increased expression of nestin in human pterygial epithelium. International Journal of Ophthalmology, 2013, 6, 259-63.	0.5	4
2467	Advances in Single-cell Tracking of Mesenchymal Stem Cells (MSCs) During Musculoskeletal Regeneration., 2012, 14, 22-28.		3
2469	TGF-Î ² 1/Smad signaling, MMP-14, and MSC markers in arterial injury: discovery of the molecular basis of restenosis. International Journal of Clinical and Experimental Pathology, 2014, 7, 2915-24.	0.5	2
2470	Immunohistochemical evaluation of stem cell markers and signal transducer and activator of transcription 6 (STAT6) in solitary fibrous tumors. International Journal of Clinical and Experimental Pathology, 2015, 8, 10585-94.	0.5	1
2471	The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells. Advanced Pharmaceutical Bulletin, 2016, 6, 23-9.	0.6	5
2472	Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells. American Journal of Translational Research (discontinued), 2016, 8, 1447-59.	0.0	3
2473	Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterology and Hepatology From Bed To Bench, 2017, 10, 208-213.	0.6	49
2474	Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae, 2018, 10, 19-32.	1.7	1
2475	Focus on exosomes: novel pathogenic components of leukemia. American Journal of Cancer Research, 2019, 9, 1815-1829.	1.4	17
2478	Aging, Bone Marrow and Next-Generation Sequencing (NGS): Recent Advances and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 12225.	1.8	11
2480	PTHG2 Reduces Bone Loss in Ovariectomized Mice by Directing Bone Marrow Mesenchymal Stem Cell Fate. Stem Cells International, 2021, 2021, 1-13.	1.2	10
2481	Parathyroid Hormone in the Regulation of Bone Growth and Resorption in Health and Disease. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2021, 76, 506-517.	0.2	3
2482	Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 718560.	1.8	2
2483	The extracellular matrix of hematopoietic stem cell niches. Advanced Drug Delivery Reviews, 2022, 181, 114069.	6.6	26
2484	Adenomatoid odontogenic tumor: evidence for a mixed odontogenic tumor. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2022, 133, 675-683.	0.2	3

#	ARTICLE	IF	CITATIONS
2485	Caspase-3/NLRP3 signaling in the mesenchymal stromal niche regulates myeloid-biased hematopoiesis. Stem Cell Research and Therapy, 2021, 12, 579.	2.4	11
2486	Analysis of the Influence of Jaw Periosteal Cells on Macrophages Phenotype Using an Innovative Horizontal Coculture System. Biomedicines, 2021, 9, 1753.	1.4	5
2487	Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to?. Frontiers in Immunology, 2021, 12, 768439.	2.2	6
2488	Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nature Communications, 2021, 12, 6990.	5.8	11
2489	Infusion of haploidentical hematopoietic stem cells combined with mesenchymal stem cells for treatment of severe aplastic anemia in adult patients yields curative effects. Cytotherapy, 2021, , 1391.	0.3	3
2490	Bone marrow microenvironment of MPN cells. International Review of Cell and Molecular Biology, 2021, 365, 71-96.	1.6	1
2491	Adipose-Derived Stem Cells as Photodynamic Therapeutic Carriers for Treatment of Glioblastoma Exploiting Reactive Oxygen Species., 2021,, 1-21.		0
2492	Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1350, 67-89.	0.8	1
2493	Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Current Topics in Microbiology and Immunology, 2021, 434, 1-31.	0.7	3
2495	Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow During Homeostasis and Blood Cancers. Current Topics in Microbiology and Immunology, 2021, 434, 33-54.	0.7	1
2496	The effect of mesenchymal stem cell-derived microvesicles on differentiation of umbilical cord blood-derived CD34+ cells toward myeloid lineage. Gene Reports, 2022, 26, 101462.	0.4	0
2497	Relation between tumor micro-environment and epigenetic alterations in hematological malignancies. Advances in Cancer Biology Metastasis, 2022, 4, 100024.	1.1	3
2498	La matriz extracelular: una red dinámica implicada en la regulación de las células madre. Revista Ciencias BiomÉdicas (cartagena), 2020, 6, 333-339.	0.0	0
2499	IRF7 suppresses hematopoietic regeneration under stress via CXCR4. Stem Cells, 2021, 39, 183-195.	1.4	7
2500	Autophagic Mediators in Bone Marrow Niche Homeostasis. Advances in Experimental Medicine and Biology, $2021,$	0.8	3
2501	Human Multipotent Adult Progenitor Cells Effectively Reduce Graft-vs-Host Disease While Preserving Graft-Vs-Leukemia Activity. Stem Cells, 2021, 39, 1506-1519.	1.4	4
2502	Đ³Đ¾ĐĐ¼Đ¾Đ¶Đ½Đ¾ÑÑ,ÑŒĐ¸ÑĐ¿Đ¾Đ»ÑŒĐĐ¾Đ°Đ½Đ¸Ñ•ÑÑ,Đ²Đ¾Đ»Đ¾Đ²Ñ‹ÑалĐμÑ,Đ¾Đ°	Đ ⊘Ñ ŒĐ,Ñ,	Ñ€Đ°Đ½ÑĐ
2503	Prostacyclin is an Endosteal Bone Marrow Niche Component and its Clinical Analog Iloprost Protects Hematopoietic Stem Cell Potential During Stress. Stem Cells, 2021, 39, 1532-1545.	1.4	4

#	Article	IF	CITATIONS
2504	Inhibiting Hh Signaling in Gli1 $<$ sup $>+sup> Osteogenic Progenitors Alleviates TMJOA. Journal of Dental Research, 2022, 101, 664-674.$	2.5	8
2505	Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells. Stem Cell Research and Therapy, 2022, 13, 27.	2.4	6
2506	CXCL12/Stromal Cell-Derived Factor-1 and Hematopoiesis. , 2022, , .		0
2507	Closer to Nature: The Role of MSCs in Recreating the Microenvironment of the Hematopoietic Stem Cell Niche in vitro. Transfusion Medicine and Hemotherapy, 2022, 49, 258-267.	0.7	1
2508	Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell, 2022, 46, 1157-1162.	0.4	3
2509	Gli1+ Mesenchymal Stem Cells in Bone and Teeth. Current Stem Cell Research and Therapy, 2022, 17, 494-502.	0.6	5
2510	G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Research and Therapy, 2022, 13, 37.	2.4	1
2511	Piezo1-mediated mechanosensation in bone marrow macrophages promotes vascular niche regeneration after irradiation injury. Theranostics, 2022, 12, 1621-1638.	4.6	11
2512	Alkbh1â€mediated DNA N6â€methyladenine modification regulates bone marrow mesenchymal stem cell fate during skeletal aging. Cell Proliferation, 2022, 55, e13178.	2.4	21
2513	CGRP: A New Endogenous Cell Stemness Maintenance Molecule. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	6
2514	Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 1106-1127.	7.7	12
2515	Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nature Communications, 2022, 13, 543.	5.8	25
2516	Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Translational Medicine, 2022, 11, 356-371.	1.6	62
2517	In silico Cell Therapy Model Restores Failing Human Myocyte Electrophysiology and Calcium Cycling in Fibrotic Myocardium. Frontiers in Physiology, 2021, 12, 755881.	1.3	1
2518	Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Advanced Healthcare Materials, 2022, 11, e2102130.	3.9	7
2519	Hematopoiesis, Inflammation and Agingâ€"The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. Journal of Clinical Medicine, 2022, 11, 706.	1.0	10
2520	Single-cell Transcriptomic Analysis Reveals the Cellular Heterogeneity of Mesenchymal Stem Cells. Genomics, Proteomics and Bioinformatics, 2022, 20, 70-86.	3.0	27
2521	Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Frontiers in Oncology, 2022, 12, 840044.	1.3	5

#	Article	IF	CITATIONS
2522	Targeted mitochondrial delivery: A therapeutic new era for disease treatment. Journal of Controlled Release, 2022, 343, 89-106.	4.8	12
2523	Response of the Bone Marrow Stem Cells and the Microenvironment to Stress. , 2022, , 1-51.		1
2524	Precise tissue bioengineering and niches of mesenchymal stem cells: Their size and hierarchy matter. Biocell, 2022, 46, 1365-1373.	0.4	1
2525	Role of Autonomous Neuropathy in Diabetic Bone Regeneration. Cells, 2022, 11, 612.	1.8	5
2526	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
2527	Intrathecal Injection of Mesenchymal Stromal Cell Cultured on 3D Fiber Ameliorates Multiple Organ Damage in Murine Lupus. Stem Cells Translational Medicine, 2022, 11, 644-658.	1.6	2
2529	Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics, 2022, 12, 2894-2907.	4.6	2
2530	Single-Cell Transcriptomics Profiling the Compatibility Mechanism of Realgar-Indigo Naturalis Formula (RIF) Based on Steady-State Bone Marrow Stroma Cells. SSRN Electronic Journal, 0, , .	0.4	0
2531	Proteasome inhibition-enhanced fracture repair is associated with increased mesenchymal progenitor cells in mice. PLoS ONE, 2022, 17, e0263839.	1.1	6
2532	Update on preclinical and clinical efforts on ex-vivo expansion of hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2022, Publish Ahead of Print, .	1.2	2
2533	Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Frontiers in Immunology, 2022, 13, 780945.	2.2	5
2534	Tumor Microenvironment in Acute Myeloid Leukemia: Adjusting Niches. Frontiers in Immunology, 2022, 13, 811144.	2.2	17
2535	In Vitro Models of Bone Marrow Remodelling and Immune Dysfunction in Space: Present State and Future Directions. Biomedicines, 2022, 10, 766.	1.4	8
2536	Functional and Immune Modulatory Characteristics of Bone Marrow Mesenchymal Stromal Cells in Patients With Aplastic Anemia: A Systematic Review. Frontiers in Immunology, 2022, 13, 859668.	2.2	5
2537	Molecular regulation of hematopoietic stem cell quiescence. Cellular and Molecular Life Sciences, 2022, 79, 218.	2.4	16
2539	Periosteum-derived podoplanin-expressing stromal cells regulate nascent vascularization during epiphyseal marrow development. Journal of Biological Chemistry, 2022, 298, 101833.	1.6	3
2540	Clinical implications of differential functional capacity between tissueâ€specific human mesenchymal stromal/stem cells. FEBS Journal, 2023, 290, 2833-2844.	2.2	7
2541	Identification of Dental Stem Cells Similar to Skeletal Stem Cells. Journal of Dental Research, 2022, 101, 1092-1100.	2.5	5

#	Article	IF	CITATIONS
2542	The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-ÎB Signalling in the Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2022, 18, 2458-2473.	1.7	5
2543	Gli1+ Osteogenic Progenitors Contribute to Condylar Development and Fracture Repair. Frontiers in Cell and Developmental Biology, 2022, 10, 819689.	1.8	4
2544	Periosteal Skeletal Stem Cells and Their Response to Bone Injury. Frontiers in Cell and Developmental Biology, 2022, 10, 812094.	1.8	10
2545	Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers, 2022, 14, 1723.	1.7	8
2546	The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduction and Targeted Therapy, 2022, 7, 92.	7.1	155
2547	Reprogramming bone progenitor identity and potency through control of collagen density and oxygen tension. IScience, 2022, 25, 104059.	1.9	4
2548	Neuroimmune Interactions in Peripheral Organs. Annual Review of Neuroscience, 2022, 45, 339-360.	5.0	39
2549	A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell, 2022, 29, 528-544.e9.	5.2	19
2550	Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomaterialia, 2022, 142, 332-344.	4.1	4
2551	Critical role of <i>Lama4</i> for hematopoiesis regeneration and acute myeloid leukemia progression. Blood, 2022, 139, 3040-3057.	0.6	19
2552	Singleâ€cell transcriptomics of LepRâ€positive skeletal cells reveals heterogeneous stressâ€dependent stem and progenitor pools. EMBO Journal, 2022, 41, e108415.	3.5	33
2553	Understanding the mesenchymal stem cell and its application to the study of human pluripotent stem cells. Okayama Igakkai Zasshi, 2021, 133, 158-165.	0.0	0
2554	Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells. Stem Cells International, 2021, 2021, 1-11.	1.2	6
2555	Interactions of B-lymphocytes and bone cells in health and disease. Bone, 2023, 168, 116296.	1.4	6
2556	HSC engraftment in SCD: a MiSCing piece of the puzzle?. Blood, 2021, 138, 2451-2452.	0.6	0
2557	Bone Marrow Harbors a Unique Population of Dendritic Cells with the Potential to Boost Neutrophil Formation upon Exposure to Fungal Antigen. Cells, 2022, 11, 55.	1.8	3
2558	DİŞ HEKİMLİĞİNDE OROMAKSİLLOFASİYAL BOLGEDEN ALINABİLEN MEZENKİMAL KÖK HÜCRE	ELER. , O, ,	. 0
2560	Co-administration of human MSC overexpressing HIF- $1\hat{l}\pm$ increases human CD34+ cell engraftment in vivo. Stem Cell Research and Therapy, 2021, 12, 601.	2.4	6

#	Article	IF	CITATIONS
2561	Niche Regulation of Hematopoiesis: The Environment Is "Micro,―but the Influence Is Large. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 691-699.	1.1	3
2562	Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 4462.	1.8	19
2593	Infusion of haploidentical HSCs combined with allogenic MSCs for the treatment of ALL patients. Bone Marrow Transplantation, 2022, 57, 1086-1094.	1.3	2
2594	Tetrandrine overcomes drug resistance mediated by bone marrow microenvironment by regulating the expression of P-glycoprotein in acute leukemia. Hematology, 2022, 27, 274-279.	0.7	5
2595	Stem cell niche: from concept to reality. Pigment Cell and Melanoma Research, 2012, 25, 122-3.	1. 5	1
2600	Defects in energy metabolism are associated with functional exhaustion of bone marrow mesenchymal stem cells in cirrhosis American Journal of Stem Cells, 2022, 11, 12-27.	0.4	0
2601	A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication, 2022, 14, 035011.	3.7	4
2602	Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Frontiers in Endocrinology, 2022, 13, 882297.	1.5	4
2603	The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers, 2022, 14, 2089.	1.7	10
2604	Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials, 2022, 286, 121544.	5.7	14
2605	New Insights into Hematopoietic Stem Cell Expansion to Stimulate Repopulation of the Adult Blood System for Transplantation. Life, 2022, 12, 716.	1.1	0
2606	Bone marrow CD34 positive cells may be suitable for collection after death. Transfusion and Apheresis Science, 2022, 61, 103452.	0.5	4
2607	MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Reports, 2022, 39, 110805.	2.9	10
2608	Targeting the Hematopoietic Stem Cell Niche in \hat{I}^2 -Thalassemia and Sickle Cell Disease. Pharmaceuticals, 2022, 15, 592.	1.7	5
2609	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
2610	Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype?. Biological Communications, 2022, 67, .	0.4	4
2611	Role of mesenchymal stromal/stem cells in regulation of hemotoration in 3D <i>in vitro</i> culture. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2021, 24, 153-160.	0.2	0
2612	Mesenchymal Stem Cells for Cardiac Repair. , 2022, , 1-53.		20

#	Article	IF	CITATIONS
2613	Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. Japanese Dental Science Review, 2022, 58, 172-178.	2.0	13
2614	A novel non-disruptive and efficient knock-in allows fate tracing of resident osteoblast progenitors during repair of vertebral lesions in medaka. Development (Cambridge), 2022, , .	1.2	3
2615	The nervous system: innervations of the skeleton; bone homeostasis; and peripheral neuropathies (Baxter's neuropathy, tarsal tunnel syndrome, and peroneal neuropathy). , 2022, , 409-439.		0
2616	Single-cell transcriptomics profiling the compatibility mechanism of As2O3-indigo naturalis formula based on bone marrow stroma cells. Biomedicine and Pharmacotherapy, 2022, 151, 113182.	2.5	2
2617	Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Communications Biology, 2022, 5, .	2.0	13
2619	Living Biointerfaces for the Maintenance of Mesenchymal Stem Cell Phenotypes. Advanced Functional Materials, 2022, 32, .	7.8	4
2620	Mesenchymal Stromal Cell Therapy in Spinal Cord Injury: Mechanisms and Prospects. Frontiers in Cellular Neuroscience, $0,16,1$	1.8	6
2621	Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. Journal of Bone and Mineral Research, 2020, 37, 1545-1561.	3.1	17
2624	Development and Characterization of 3D Hybrid Spheroids for the Investigation of the Crosstalk Between B-Cell Non-Hodgkin Lymphomas and Mesenchymal Stromal Cells. OncoTargets and Therapy, 0, Volume 15, 683-697.	1.0	4
2625	Differences in the stemness characteristics and molecular markers of distinct human oral tissue neural crestâ€derived multilineage cells. Cell Proliferation, 2022, 55, .	2.4	2
2627	A Comparative Study of Canine Mesenchymal Stem Cells Isolated from Different Sources. Animals, 2022, 12, 1502.	1.0	9
2628	Specific Features of Regulation of Hormonal Sensitivity in Stem Cells. Russian Journal of Developmental Biology, 2022, 53, 151-158.	0.1	0
2629	Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. International Journal of Molecular Sciences, 2022, 23, 7285.	1.8	2
2630	Key Factors for Thymic Function and Development. Frontiers in Immunology, 0, 13, .	2.2	8
2631	The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2022, 57, 1357-1364.	1.3	8
2633	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	2.3	8
2634	The Mesenchymal Niche in Myelodysplastic Syndromes. Diagnostics, 2022, 12, 1639.	1.3	2
2635	Monocytic myeloid-derived suppressive cells mitigate over-adipogenesis of bone marrow microenvironment in aplastic anemia by inhibiting CD8+ T cells. Cell Death and Disease, 2022, 13, .	2.7	2

#	Article	IF	Citations
2636	A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL. Cell Research, 2022, 32, 814-830.	5.7	14
2639	Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. British Journal of Haematology, 2022, 199, 647-664.	1.2	7
2640	Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioengineering, 2022, 6, .	3.3	12
2641	Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World Journal of Stem Cells, 2022, 14, 453-472.	1.3	25
2642	Hematopoietic–Mesenchymal Signals Regulate the Properties of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 8238.	1.8	4
2643	Novel approaches for long-term lung transplant survival. Frontiers in Immunology, 0, 13, .	2.2	7
2644	PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Reports, 2022, 40, 111114.	2.9	5
2645	Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix?. Stem Cell Research and Therapy, 2022, 13, .	2.4	6
2646	Therapeutic Potential of Human Immature Dental Pulp Stem Cells Observed in Mouse Model for Acquired Aplastic Anemia. Cells, 2022, 11, 2252.	1.8	6
2647	Constructing Injectable Bone-Forming Units by Loading a Subtype of Osteoprogenitors on Decellularized Bone Matrix Powders for Bone Regeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
2648	Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nature Cell Biology, 2022, 24, 1211-1225.	4.6	6
2649	Quantitative Analysis of Sympathetic and Nociceptive Innervation Across Bone Marrow Regions in Mice. Experimental Hematology, 2022, 112-113, 44-59.e6.	0.2	6
2651	Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses?. International Journal of Molecular Sciences, 2022, 23, 8038.	1.8	9
2652	Behavior and Functional Roles of CD34+ Mesenchymal Cells in Mammalian Testes. International Journal of Molecular Sciences, 2022, 23, 9585.	1.8	3
2653	Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Molecular Neurobiology, 0, , .	1.9	2
2654	GPCRs in the regulation of the functional activity of multipotent mesenchymal stromal cells. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	0
2655	Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Molecular Therapy, 2023, 31, 230-248.	3.7	2
2656	Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Delivery and Translational Research, 2023, 13, 2110-2141.	3.0	7

#	Article	IF	CITATIONS
2657	Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). International Journal of Molecular Sciences, 2022, 23, 9274.	1.8	11
2658	Stromal cells of the endometrium and decidua: in search of a name and an identity. Biology of Reproduction, 0, , .	1.2	3
2659	A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers, 2022, 14, 3796.	1.7	3
2660	Osteoblast Lineage Support of Hematopoiesis in Health and Disease. Journal of Bone and Mineral Research, 2020, 37, 1823-1842.	3.1	6
2661	Ammonia promotes the proliferation of bone marrow-derived mesenchymal stem cells by regulating the Akt/mTOR/S6k pathway. Bone Research, 2022, 10, .	5.4	5
2662	The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Frontiers in Endocrinology, 0, 13 , .	1.5	16
2663	Mechanisms involved in hematopoietic stem cell aging. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
2664	A new mouse model of post-traumatic joint injury allows to identify the contribution of $Gli1+$ mesenchymal progenitors in arthrofibrosis and acquired heterotopic endochondral ossification. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
2665	Extracellular vesicles from bone marrow mesenchymal stromal cells of severe aplastic anemia patients attenuate hematopoietic functions of CD34 $<$ sup $>+sup>Âhematopoietic stem and progenitor cells. Cell Biology International, 0, , .$	1.4	1
2666	Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nature Communications, 2022, 13, .	5 . 8	9
2667	YBX1 Promotes MSC Osteogenic Differentiation by Activating the PI3K/AKT Pathway. Current Stem Cell Research and Therapy, 2023, 18, 513-521.	0.6	1
2668	Nestin-GFP transgene labels immunoprivileged bone marrow mesenchymal stem cells in the model of ectopic foci formation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
2669	Optimized immunofluorescence staining protocol for identifying resident mesenchymal stem cells in bone using LacZ transgenic mice. STAR Protocols, 2022, 3, 101674.	0.5	2
2670	The biology of E-selectin ligands in leukemogenesis. Advances in Cancer Research, 2023, , 229-250.	1.9	5
2671	Adipose-Derived Stem Cells as Photodynamic Therapeutic Carriers for Treatment of Glioblastoma Exploiting Reactive Oxygen Species., 2022,, 2335-2355.		0
2672	TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities. Stem Cell Research and Therapy, 2022, 13, .	2.4	8
2673	Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nature Communications, 2022, 13 , .	5.8	13
2674	Telomeres and Telomerase in the Control of Stem Cells. Biomedicines, 2022, 10, 2335.	1.4	10

#	Article	IF	CITATIONS
2675	Engineered cord blood megakaryocytes evade killing by allogeneic T-cells for refractory thrombocytopenia. Frontiers in Immunology, 0, 13 , .	2.2	0
2676	A comparative study of mouse bone marrow mesenchymal stem cells isolated using three easyâ€toâ€perform approaches. FEBS Open Bio, 0, , .	1.0	0
2677	Skeletal Stem Cells: A Game Changer of Skeletal Biology and Regenerative Medicine?., 0,,.		2
2679	Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nature Communications, 2022, 13, .	5.8	28
2680	Identification of the Factor That Leads Human Mesenchymal Stem Cell Lines into Decellularized Bone. Bioengineering, 2022, 9, 490.	1.6	1
2681	Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis and Cartilage, 2022, 30, 1547-1560.	0.6	17
2682	Comparative analysis of extracellular vesicle isolation methods from human AML bone marrow cells and AML cell lines. Frontiers in Oncology, 0, 12 , .	1.3	8
2684	Hematologic cytopenia post CAR T cell therapy: Etiology, potential mechanisms and perspective. Cancer Letters, 2022, 550, 215920.	3.2	11
2685	Effect of Hypoxia Preconditioning on the Regenerative Capacity of Adipose Tissue Derived Mesenchymal Stem Cells in a Model of Renal Artery Stenosis. Stem Cells, 2023, 41, 50-63.	1.4	1
2686	Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis. Science Translational Medicine, 2022, 14, .	5.8	7
2687	Lessons from early life: understanding development to expand stem cells and treat cancers. Development (Cambridge), 2022, 149, .	1.2	2
2688	Skeletal interoception in bone homeostasis and pain. Cell Metabolism, 2022, 34, 1914-1931.	7.2	17
2689	Osteocytes regulate senescence of bone and bone marrow. ELife, 0, 11, .	2.8	21
2690	Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. International Journal of Molecular Sciences, 2022, 23, 11928.	1.8	9
2691	MSC and HSPC Coculture: Mimicking Ex Vivo Bone Marrow Niche. Methods in Molecular Biology, 2023, , 181-189.	0.4	1
2692	Intravital Microscopy for Hematopoietic Studies. Methods in Molecular Biology, 2023, , 143-162.	0.4	1
2693	<i>Plap-1</i> lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development (Cambridge), 2022, 149, .	1.2	9
2694	Insights into skeletal stem cells. Bone Research, 2022, 10, .	5.4	17

#	ARTICLE	IF	CITATIONS
2695	The monoculture of cord-blood-derived CD34+ cells by an automated, membrane-based dynamic perfusion system with a novel cytokine cocktail. Stem Cell Reports, 2022, , .	2.3	0
2696	Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell, 2022, 29, 1547-1561.e6.	5.2	43
2697	Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury. Cell Discovery, 2022, 8 , .	3.1	3
2698	Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Frontiers in Genome Editing, 0, 4, .	2.7	3
2699	Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell, 2022, 29, 1515-1530.	5.2	58
2700	Mesenchymal Stem Cells for Cardiac Repair. , 2022, , 269-321.		1
2701	Mesenchymal Stem Cell-Probiotic Communication: Beneficial Bacteria in Preconditioning. , 2022, , 545-564.		0
2702	Response of the Bone Marrow Stem Cells and the Microenvironment to Stress. , 2022, , 1179-1228.		0
2703	CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. Bone, 2023, 166, 116600.	1.4	4
2704	The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Research and Therapy, 2022, 13, .	2.4	9
2705	Chronic inflammation decreases <scp>HSC</scp> fitness by activating the druggable Jak/Stat3 signaling pathway. EMBO Reports, 2023, 24, .	2.0	4
2707	Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1 \hat{i} ±., 2022, 1, 359-371.		3
2708	Simulated microgravity affects stroma-dependent ex vivo myelopoiesis. Tissue and Cell, 2023, 80, 101987.	1.0	2
2709	CD4 ⁺ CTLs Act as a Key Effector Population for Allograft Rejection of MSCs in a Donor MHC-II Dependent Manner in Injured Liver., 2022, 13, 1919.		3
2710	Astaxanthin Protects against Hyperglycemia-Induced Oxidative and Inflammatory Damage to Bone Marrow and to Bone Marrow-Retained Stem Cells and Restores Normal Hematopoiesis in Streptozotocin-Induced Diabetic Mice. Antioxidants, 2022, 11, 2321.	2.2	0
2711	Nestin+ Peyer's patch resident <scp>MSCs</scp> enhance healing of inflammatory bowel disease through <scp>IL</scp> â€22â€mediated intestinal epithelial repair. Cell Proliferation, 2023, 56, .	2.4	5
2712	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	1
2713	Treatment response in acute myeloid leukaemiaâ€"Clues in the biopsy core. British Journal of Haematology, 0, , .	1.2	O

#	Article	IF	CITATIONS
2714	Detection of De Novo Dividing Stem Cells In Situ through Double Nucleotide Analogue Labeling. Cells, 2022, 11, 4001.	1.8	2
2716	c-Kit M541L variant is related to ineffective hemopoiesis predisposing to clonal evolution in 3D in vitro biomimetic co-culture model of bone marrow niche. Heliyon, 2022, 8, e11998.	1.4	4
2717	Skeletal stem cells: origins, definitions, and functions in bone development and disease. , 2022, 1, 276-293.		4
2718	Emerging advancements in xerogel polymeric bionanoarchitectures and applications. Jcis Open, 2023, 9, 100073.	1.5	16
2719	GATA3 mediates nonclassical \hat{l}^2 -catenin signaling in skeletal cell fate determination and ectopic chondrogenesis. Science Advances, 2022, 8, .	4.7	2
2720	Recent Emerging Trend in Stem Cell Therapy Risk Factors. Current Stem Cell Research and Therapy, 2023, 18, 1076-1089.	0.6	2
2721	Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. International Journal of Molecular Sciences, 2022, 23, 15814.	1.8	2
2722	Combining Cryogel Architecture and Macromolecular Crowdingâ€Enhanced Extracellular Matrix Cues to Mimic the Bone Marrow Niche. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	1
2723	Mesoporous Silica Promotes Osteogenesis of Human Adipose-Derived Stem Cells Identified by a High-Throughput Microfluidic Chip Assay. Pharmaceutics, 2022, 14, 2730.	2.0	2
2724	Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nature Genetics, 2022, 54, 1946-1958.	9.4	11
2726	Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Current Oncology, 2022, 29, 9535-9549.	0.9	2
2727	Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation. Nature Communications, 2023, 14, .	5.8	9
2728	Eltrombopag increases the hematopoietic supporting ability of mesenchymal stem/stromal cells. Therapeutic Advances in Hematology, 2022, 13, 204062072211421.	1.1	0
2729	Lineage tracking to reveal the fate of hematopoietic stem cells influenced by Flk2â^' multipotent progenitors after transplantation. Experimental and Molecular Medicine, 2023, 55, 205-214.	3.2	1
2731	Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	2
2732	iPSC-Derived MSCs Are a Distinct Entity of MSCs with Higher Therapeutic Potential than Their Donor-Matched Parental MSCs. International Journal of Molecular Sciences, 2023, 24, 881.	1.8	5
2733	Mesenchymal stromal cell senescence in haematological malignancies. Cancer and Metastasis Reviews, 2023, 42, 277-296.	2.7	11
2735	Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2

#	Article	IF	CITATIONS
2736	Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Materials Today Bio, 2023, 18, 100536.	2.6	4
2737	Breast-Tumor-Derived Bone Pre-Metastatic Disease: Interplay between Immune and Bone Cells within Bone Marrow Microenvironment., 0,,.		0
2738	Bone circuitry and interorgan skeletal crosstalk. ELife, 0, 12, .	2.8	9
2739	Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
2740	Mature B cells and mesenchymal stem cells control emergency myelopoiesis. Life Science Alliance, 2023, 6, e202301924.	1.3	3
2741	In Vitro Culture and Multipotency Evaluation of Broiler Umbilical Cord Mesenchymal Stem Cells. Brazilian Archives of Biology and Technology, 0, 66, .	0.5	0
2742	Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. BioEssays, 2023, 45, .	1.2	0
2744	TRIM28 secures skeletal stem cell fate during skeletogenesis by silencing neural gene expression and repressing GREM1/AKT/mTOR signaling axis. Cell Reports, 2023, 42, 112012.	2.9	1
2745	Resource: A Cellular Developmental Taxonomy of the Bone Marrow Mesenchymal Stem Cell Population in Mice. HemaSphere, 2023, 7, e823.	1.2	1
2746	Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis. Nature Communications, 2023, 14, .	5.8	8
2748	Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation. Frontiers in Physiology, 0, 14, .	1.3	1
2750	Vascular Progenitor Cells: From Cancer to Tissue Repair. Journal of Clinical Medicine, 2023, 12, 2399.	1.0	4
2751	Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2023, 20, 563-580.	1.6	3
2752	Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Reports, 2023, 18, 101669.	0.2	5
2753	Endogenous Bone Marrow-Derived Stem Cell Mobilization and Homing for In Situ Tissue Regeneration. Stem Cells, 2023, 41, 541-551.	1.4	3
2754	Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. International Journal of Molecular Sciences, 2023, 24, 3149.	1.8	15
2755	A mysterious triangle of blood, bones, and nerves. Journal of Bone and Mineral Metabolism, 2023, 41, 404-414.	1.3	2
2756	Alpha1A- and Beta3-Adrenoceptors Interplay in Adipose Multipotent Mesenchymal Stromal Cells: A Novel Mechanism of Obesity-Driven Hypertension. Cells, 2023, 12, 585.	1.8	3

#	Article	IF	CITATIONS
2757	Mesenchymal stromal cell-associated migrasomes: a new source of chemoattractant for cells of hematopoietic origin. Cell Communication and Signaling, 2023, 21, .	2.7	10
2758	Chemoresistance in acute myeloid leukemia: An alternative singleâ€cell RNA sequencing approach. Hematological Oncology, 2023, 41, 499-509.	0.8	1
2759	Chidamide suppresses adipogenic differentiation of bone marrow derived mesenchymal stem cells via increasing REEP2 expression. IScience, 2023, 26, 106221.	1.9	2
2760	Donor derived hematopoietic stem cell niche transplantation facilitates mixed chimerism mediated donor specific tolerance. Frontiers in Immunology, 0, 14 , .	2.2	1
2761	Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. International Journal of Molecular Sciences, 2023, 24, 4156.	1.8	4
2762	Extracellular Vesicles and MicroRNA in Myelodysplastic Syndromes. Cells, 2023, 12, 658.	1.8	1
2763	Cellular niches for hematopoietic stem cells in bone marrow under normal and malignant conditions. Inflammation and Regeneration, 2023, 43, .	1.5	1
2764	Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines, 2023, 11, 689.	1.4	6
2765	Electrical Sympathetic Neuromodulation Protects Bone Marrow Niche and Drives Hematopoietic Regeneration during Chemotherapy. Small Methods, 2023, 7, .	4.6	1
2766	Impaired function of skeletal stem cells derived from growth plates in ovariectomized mice. Journal of Bone and Mineral Metabolism, 2023, 41, 163-170.	1.3	0
2767	Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Frontiers in Physiology, 0, 14, .	1.3	5
2768	Subset of the periodontal ligament expressed leptin receptor contributes to part of hard tissue-forming cells. Scientific Reports, 2023, 13, .	1.6	4
2769	Mesenchymal "stem―cells, or facilitators for the development of regenerative macrophages? Pericytes at the interface of wound healing. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	0
2770	Endothelial and Leptin Receptor+ cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Developmental Cell, 2023, 58, 348-360.e6.	3.1	11
2771	Revisiting the Mesenchymal "Stem vs. Stromal―Cell Dichotomy and Its Implications for Development of Improved Potency Metrics. Stem Cells, 2023, 41, 444-452.	1.4	7
2772	Lineage Tracing of RGS5-CreER-Labeled Cells in Long Bones During Homeostasis and Injury. Stem Cells, 0, , .	1.4	0
2773	Bone Marrow Stem Cells Derived from Nerves Have Neurogenic Properties and Potential Utility for Regenerative Therapy. International Journal of Molecular Sciences, 2023, 24, 5211.	1.8	2
2774	Bone marrow microenvironment disruption and sustained inflammation with prolonged haematologic toxicity after <scp>CAR</scp> Tâ€cell therapy. British Journal of Haematology, 2023, 202, 294-307.	1.2	7

#	Article	IF	CITATIONS
2775	Differences in the Differentiation Potential and Relative Levels of Gene Expression in the Bone Marrow-Derived Fibroblast Colony-Forming Units in Patients during the Onset of Aplastic Anemia Depending on the Disease Severity. Bulletin of Experimental Biology and Medicine, 2023, 174, 538-543.	0.3	0
2776	Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene. Ceramics International, 2023, 49, 19578-19594.	2.3	3
2778	The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Research, 2023, 11 , .	5 . 4	3
2779	Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen. Frontiers in Physiology, 0, 14, .	1.3	0
2780	Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies., 2023, 14, 1651.		5
2781	The Role of Stem Cell on Orthodontic Tooth Movement Induced-Alveolar Bone Remodeling. Research Journal of Pharmacy and Technology, 2023, , 123-128.	0.2	0
2782	Stem cell-based modeling and single-cell multiomics reveal gene-regulatory mechanisms underlying human skeletal development. Cell Reports, 2023, 42, 112276.	2.9	4
2783	\hat{l}^2 2-adrenergic receptor agonist corrects immune thrombocytopenia by reestablishing the homeostasis of T cell differentiation. Journal of Thrombosis and Haemostasis, 2023, 21, 1920-1933.	1.9	1
2784	Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Reviews and Reports, 0, , .	1.7	2
2785	The sinusoidal hematopoietic niche is formed by Jam1a via Notch signaling in the zebrafish kidney. IScience, 2023, 26, 106508.	1.9	0
2786	Linking Benzene, in Utero Carcinogenicity and Fetal Hematopoietic Stem Cell Niches: A Mechanistic Review. International Journal of Molecular Sciences, 2023, 24, 6335.	1.8	4
2787	Nestin gene expression in stromal precursor cells from the human bone marrow. Genes and Cells, 2023, 18, 53-60.	0.2	0
2788	Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. International Journal of Molecular Sciences, 2023, 24, 6499.	1.8	3
2789	Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
2791	Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell, 2023, 30, 378-395.e8.	5.2	15
2792	Matrix vesicles promote bone repair after a femoral bone defect in mice. PLoS ONE, 2023, 18, e0284258.	1.1	6
2795	WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nature Communications, 2023, 14, .	5.8	3
2796	Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports, 2023, 18, 1211-1226.	2.3	0

#	Article	IF	CITATIONS
2797	New insights into the properties, functions, and aging of skeletal stem cells. Osteoporosis International, $0, \dots$	1.3	0
2798	Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nature Communications, 2023, 14, .	5.8	1
2799	DEXâ€Induced SREBF1 Promotes BMSCs Differentiation into Adipocytes to Attract and Protect Residual Tâ€Cell Acute Lymphoblastic Leukemia Cells After Chemotherapy. Advanced Science, 0, , .	5.6	0
2800	Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. Journal of Controlled Release, 2023, 357, 444-459.	4.8	2
2801	Bone marrow microenvironment: roles and therapeutic implications in obesity-associated cancer. Trends in Cancer, 2023, , .	3.8	0
2820	The Evolving Landscape of Potency Assays. Advances in Experimental Medicine and Biology, 2023, , 165-189.	0.8	0
2844	Hematopoiesis., 2023,, 21-30.		0
2850	Mesenchymal-hÄmatopoetische Stammzellachse: Anwendungen fýr die Induktion von hÄmatopoetischem ChimÄnsmus und Therapien für bösartige Erkrankungen. , 2023, , 41-65.		0
2872	Stem Cell-Based Regenerative Medicine Therapy in Cancer. , 2023, , 1-21.		0
2873	Pericytes as a Source of MSCs. , 2024, , 105-125.		0
2876	Fueling fate: Metabolic crosstalk in the bone marrow microenvironment. Advances in Stem Cells and Their Niches, 2023, , 1-57.	0.1	0
2901	Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nature Cell Biology, 2023, 25, 1736-1745.	4.6	3
2911	Hematopoietic Stem Cells and Their Bone Marrow Niches. Advances in Experimental Medicine and Biology, 2023, , 17-28.	0.8	0
2912	Aging, Causes, and Rejuvenation of Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 201-210.	0.8	0
2916	Collection of Hematopoietic Stem Cells and Cell Therapy Products. , 2024, , .		0
2917	Recent Advancement in Stem Cell Therapies for Cancer Treatment. , 2024, , .		0
2924	The Haematopoietic System. , 2024, , 304-322.		0