Atomically precise bottom-up fabrication of graphene r

Nature 466, 470-473 DOI: 10.1038/nature09211

Citation Report

#	Article	IF	CITATIONS
5	Graphene: Electronic and Photonic Properties and Devices. Nano Letters, 2010, 10, 4285-4294.	4.5	1,312
6	Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 2010, 11, 054504.	2.8	336
8	Graphene—How a Laboratory Curiosity Suddenly Became Extremely Interesting. Angewandte Chemie - International Edition, 2010, 49, 9332-9335.	7.2	97
9	Ramanâ€active modes in graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2010, 247, 2941-2944.	0.7	27
10	Plastic antibodies. Nature Materials, 2010, 9, 612-614.	13.3	119
11	Ribbons piece-by-piece. Nature Materials, 2010, 9, 611-612.	13.3	14
12	Nanoribbons on the edge. Nature Nanotechnology, 2010, 5, 698-699.	15.6	8
13	Graphene rests easy. Nature Nanotechnology, 2010, 5, 699-700.	15.6	46
14	Quantum-Interference-Controlled Three-Terminal Molecular Transistors Based on a Single Ring-Shaped Molecule Connected to Graphene Nanoribbon Electrodes. Physical Review Letters, 2010, 105, 236803.	2.9	63
15	Thermoelectric properties of graphene nanoribbons, junctions and superlattices. Journal of Physics Condensed Matter, 2010, 22, 372202.	0.7	72
16	Quantum pumping in graphene nanoribbons at resonant transmission. Europhysics Letters, 2010, 92, 47010.	0.7	38
17	Catalytic Action of a Cu(111) Surface on Tetraazaperopyrene Polymerization. Journal of Physical Chemistry Letters, 2010, 1, 3266-3270.	2.1	15
18	Graphene Oxide Nanocolloids. Journal of the American Chemical Society, 2010, 132, 17667-17669.	6.6	352
19	Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes. ACS Nano, 2010, 4, 5405-5413.	7.3	130
20	A Review on Fabrication Methods of High-Quality Graphene Nanoribbons. Advanced Materials Research, 0, 148-149, 1737-1740.	0.3	2
21	Spin and electronic correlations in gated graphene quantum rings. Physical Review B, 2010, 82, .	1.1	49
22	Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 2010, 12, 13137.	1.3	50
23	Effects of edge magnetism and external electric field on energy gaps in multilayer graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	31

ATION REDO

	CIATION		
#	Article	IF	Citations
24	Tip- or electron beam-induced surface polymerization. Chemical Communications, 2011, 47, 8028.	2.2	51
25	Hybrid W-shaped graphene nanoribbons: Distinct electronic and transport properties. Journal of Applied Physics, 2011, 110, 124312.	1.1	14
26	Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone–Wales defects. Physical Chemistry Chemical Physics, 2011, 13, 11939.	1.3	53
27	Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chemical Communications, 2011, 47, 12768.	2.2	21
28	Made-to-order nanocarbons through deterministic plasma nanotechnology. Nanoscale, 2011, 3, 731-740.	2.8	8
29	Thermally induced currents in graphene-based heterostructure. Applied Physics Letters, 2011, 99, .	1.5	15
30	Edge States and Half-Metallicity in TiO ₂ Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 18047-18050.	1.5	3
31	Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions. Journal of Physical Chemistry Letters, 2011, 2, 1315-1319.	2.1	44
32	On-Surface Covalent Linking of Organic Building Blocks on a Bulk Insulator. ACS Nano, 2011, 5, 8420-8425.	7.3	85
33	Single Layer of Polymeric Fe-Phthalocyanine: An Organometallic Sheet on Metal and Thin Insulating Film. Journal of the American Chemical Society, 2011, 133, 1203-1205.	6.6	364
34	Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Physical Review B, 2011, 84, .	1.1	69
35	Versatile Electronic and Magnetic Properties of Corrugated V ₂ O ₅ Two-Dimensional Crystal and Its Derived One-Dimensional Nanoribbons: A Computational Exploration. Journal of Physical Chemistry C, 2011, 115, 11983-11990.	1.5	33
36	How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons?. Journal of Physical Chemistry C, 2011, 115, 1724-1731.	1.5	41
37	Electrostatics of Ultimately Thin-Body Tunneling FET Using Graphene Nanoribbon. IEEE Electron Device Letters, 2011, 32, 431-433.	2.2	11
38	High-Mobility Graphene Nanoribbons Prepared Using Polystyrene Dip-Pen Nanolithography. Journal of the American Chemical Society, 2011, 133, 5623-5625.	6.6	64
39	Interchain Interactions Mediated by Br Adsorbates in Arrays of Metal–Organic Hybrid Chains on Ag(111). Journal of Physical Chemistry C, 2011, 115, 14834-14838.	1.5	67
40	Heat-to-Connect: Surface Commensurability Directs Organometallic One-Dimensional Self-Assembly. ACS Nano, 2011, 5, 9093-9103.	7.3	64
41	Synthesis of BN-Fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation. Journal of the American Chemical Society, 2011, 133, 18614-18617.	6.6	284

TION P

#	Article	IF	CITATIONS
42	Dimerization of Tri(4-bromophenyl)benzene by Arylâ^'Aryl Coupling from Solution on a Gold Surface. Journal of the American Chemical Society, 2011, 133, 4220-4223.	6.6	63
43	Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Physical Review B, 2011, 83, .	1.1	69
44	Graphene Nanoribbons from Unzipped Carbon Nanotubes: Atomic Structures, Raman Spectroscopy, and Electrical Properties. Journal of the American Chemical Society, 2011, 133, 10394-10397.	6.6	170
45	Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology, 2011, 22, 435702.	1.3	12
46	Synthesis of Well-Ordered COF Monolayers: Surface Growth of Nanocrystalline Precursors <i>versus</i> Direct On-Surface Polycondensation. ACS Nano, 2011, 5, 9737-9745.	7.3	211
47	Clean Coupling of Unfunctionalized Porphyrins at Surfaces To Give Highly Oriented Organometallic Oligomers. Journal of the American Chemical Society, 2011, 133, 12031-12039.	6.6	133
48	Wrinkle Engineering: A New Approach to Massive Graphene Nanoribbon Arrays. Journal of the American Chemical Society, 2011, 133, 17578-17581.	6.6	142
49	Charge and spin transport in graphene-based heterostructure. Applied Physics Letters, 2011, 98, 053101.	1.5	62
50	First-Principles Study of Heat Transport Properties of Graphene Nanoribbons. Nano Letters, 2011, 11, 214-219.	4.5	123
51	Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons. ACS Nano, 2011, 5, 3779-3787.	7.3	320
52	Scanning Probe Based Nanolithography and Nanomanipulation on Graphene. , 2011, , 357-386.		4
53	Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano, 2011, 5, 3896-3904.	7.3	97
54	Accurate Prediction of the Electronic Properties of Low-Dimensional Graphene Derivatives Using a Screened Hybrid Density Functional. Accounts of Chemical Research, 2011, 44, 269-279.	7.6	115
55	Electron transport through the p-n junction of zigzag graphene nanoribbon with external transverse electric fields. Journal of Applied Physics, 2011, 110, 113710.	1.1	5
56	Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477, 45-53.	13.7	615
57	On-surface synthesis of cyclic organic molecules. Chemical Society Reviews, 2011, 40, 4578.	18.7	154
58	Makromolekulare Chemie 2010. Nachrichten Aus Der Chemie, 2011, 59, 324-334.	0.0	0
59	Surface-supported 2D heterotriangulene polymers. Chemical Communications, 2011, 47, 10239.	2.2	147

ARTICLE IF CITATIONS # Theoretical study on thermoelectric properties of kinked graphene nanoribbons. Physical Review B, 60 1.1 62 2011, 84, . Linear Alkane Polymerization on a Gold Surface. Science, 2011, 334, 213-216. 6.0 321 Microscopic Mechanism of 1/<i>f</i> Noise in Graphene: Role of Energy Band Dispersion. ACS Nano, 62 7.3 102 2011, 5, 2075-2081. Carbon nanotube field-effect transistors with molecular interface. Applied Physics Letters, 2011, 98, 123110. Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons. Journal of the American 110 64 6.6 Chemical Society, 2011, 133, 14884-14887. Electronic properties of edge-functionalized zigzag graphene nanoribbons on SiO₂substrate. Nanotechnology, 2011, 22, 265702. 1.3 A STM perspective on covalent intermolecular coupling reactions on surfaces. Journal Physics D: 66 1.3 120 Applied Physics, 2011, 44, 464011. Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency 15.6 catalytic degradation of phenols. Energy and Environmental Science, 2011, 4, 2035. An empirical pseudopotential approach to surface and line-edge roughness scattering in 68 nanostructures: Application to Si thin films and nanowires and to graphene nanoribbons. Journal of 1.1 24 Applied Physics, 2011, 110, . Band Engineering in Graphene with Superlattices of Substitutional Defects. Journal of Physical 1.5 Chemistry C, 2011, 115, 3250-3256. Zak phase and the existence of edge states in graphene. Physical Review B, 2011, 84, . 70 391 1.1 First-Principles Modeling of the Polycyclic Aromatic Hydrocarbons Reduction. Journal of Physical Chemistry C, 2011, 115, 16001-16005. 1.5 Ground and low-lying excited electronic states of graphene flakes: a density functional theory study. 72 0.6 5 Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 205105. Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Physical Review 1.1 59 B, 2011, 84, . Emergence of Atypical Properties in Assembled Graphene Nanoribbons. Physical Review Letters, 2011, 74 2.9 69 107, 135501. Quantum Transport in Graphene Nanonetworks. Nano Letters, 2011, 11, 3058-3064. Tuning the Electronic Transport Properties of Zigzag Graphene Nanoribbons via Hydrogenation Separators. Journal of Physical Chemistry C, 2011, 115, 24366-24372. 76 1.510 Direct Arylation of Polycyclic Aromatic Hydrocarbons through Palladium Catalysis. Journal of the 6.6 144 American Chemical Society, 2011, 133, 10716-10719.

#	Article	IF	Citations
78	Simulation insights into thermally conductive graphene-based nanocomposites. Molecular Physics, 2011, 109, 97-111.	0.8	58
79	Designing All-Graphene Nanojunctions by Covalent Functionalization. Journal of Physical Chemistry C, 2011, 115, 2969-2973.	1.5	36
80	Electron transport in edge-disordered graphene nanoribbons. Physical Review B, 2011, 83, .	1.1	49
81	Strain-Driven Moiré Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano, 2011, 5, 5627-5634.	7.3	155
82	Graphenes Converted from Polymers. Journal of Physical Chemistry Letters, 2011, 2, 493-497.	2.1	158
83	Substrate-mediated ordering and defect analysis of a surface covalent organic framework. Physical Review B, 2011, 84, .	1.1	81
84	Band structure and optical absorption in multilayer armchair graphene nanoribbons: A Pariser-Parr-Pople model study. Physical Review B, 2011, 84, .	1.1	16
85	Understanding the Band Gap, Magnetism, and Kinetics of Graphene Nanostripes in Graphane. Journal of Physical Chemistry C, 2011, 115, 21088-21097.	1.5	39
86	Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 15384.	1.3	488
87	Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons. ACS Nano, 2011, 5, 4123-4130.	7.3	148
88	Theory of the electro-optical properties of graphene nanoribbons. Physical Review B, 2011, 83, .	1.1	42
89	Spin-orbit interaction in curved graphene ribbons. Physical Review B, 2011, 83, .	1.1	29
90	Spectrum ofπelectrons in bilayer graphene nanoribbons and nanotubes: An analytical approach. Physical Review B, 2011, 83, .	1.1	17
91	Layer-by-Layer Assembly and UV Photoreduction of Graphene–Polyoxometalate Composite Films for Electronics. Journal of the American Chemical Society, 2011, 133, 9423-9429.	6.6	304
92	Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Physical Chemistry Chemical Physics, 2011, 13, 14283.	1.3	165
93	Epitaxial Graphene on Metals. Nanoscience and Technology, 2011, , 189-234.	1.5	4
94	Electronic Properties of Graphene Nanoribbons. Nanoscience and Technology, 2011, , 277-299.	1.5	4
95	Exploring Quantum Transport in Graphene Ribbons with Lattice Defects and Adsorbates. Nanoscience and Technology, 2011, , 395-434.	1.5	0

#	Article	IF	CITATIONS
97	Quantum-Confined Electronic States in Atomically Well-Defined Graphene Nanostructures. Physical Review Letters, 2011, 107, 236803.	2.9	100
98	Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction. Journal of the American Chemical Society, 2011, 133, 13264-13267.	6.6	277
99	Atomic Resolution Imaging of the Edges of Catalytically Etched Suspended Few-Layer Graphene. ACS Nano, 2011, 5, 1975-1983.	7.3	44
100	Basics of Carbon Nanotube and Its Applications-High expectations of technological innovation by carbon nanotube as new carbon material, and facing challenges for its practical applications Journal of MMIJ, 2011, 127, 61-68.	0.4	0
101	Graphene Nanoribbons: Geometric, Electronic, and Magnetic Properties. , 0, , .		25
102	Method for Fabricating Arrays of Graphene Nanoribbons. Materials Research Society Symposia Proceedings, 2011, 1362, 1.	0.1	0
103	Blueprinting macromolecular electronics. Nature Chemistry, 2011, 3, 431-436.	6.6	158
104	On-surface molecular engineering. Nature Chemistry, 2011, 3, 11-12.	6.6	12
105	Breaking free of chiral symmetry. Nature Chemistry, 2011, 3, 12-14.	6.6	11
106	Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotechnology, 2011, 6, 162-165.	15.6	517
107	Transforming C60 molecules into graphene quantum dots. Nature Nanotechnology, 2011, 6, 247-252.	15.6	587
108	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	6.5	628
109	Spin polarized quantum pump effect in zigzag graphene nanoribbons. JETP Letters, 2011, 93, 372-376.	0.4	11
110	Specific heat of graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3726-3730.	0.9	17
111	Is graphene's future in the hands of the chemist?. Materials Today, 2011, 14, 454.	8.3	2
112	Influence of Band-Cap Opening on Ballistic Electron Transport in Bilayer Graphene and Graphene Nanoribbon FETs. IEEE Transactions on Electron Devices, 2011, 58, 3300-3306.	1.6	22
113	A graphene nanoribbon network and its biosensing application. Nanoscale, 2011, 3, 5156.	2.8	81
114	Graphene Sensors. IEEE Sensors Journal, 2011, 11, 3161-3170.	2.4	364

		LPORT	
#	Article	IF	CITATIONS
115	Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.	2.8	410
116	Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nature Materials, 2011, 10, 687-692.	13.3	253
117	Adaptive Supramolecular Nanomaterials Based on Strong Noncovalent Interactions. ACS Nano, 2011, 5, 6791-6818.	7.3	413
118	Synthesis of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. Nano Letters, 2011, 11, 4352-4356.	4.5	174
119	Ripple edge engineering of graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	40
120	Ultra-narrow WS ₂ nanoribbons encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 171-180.	6.7	74
121	Ab initiocalculations of edge-functionalized armchair graphene nanoribbons: Structural, electronic, and vibrational effects. Physical Review B, 2011, 84, .	1.1	26
122	Electron and spin transport in adiabatic quantum pumps based on graphene nanoribbons. Journal of Experimental and Theoretical Physics, 2011, 113, 698-708.	0.2	1
123	Graphene Chemistry: Synthesis and Manipulation. Journal of Physical Chemistry Letters, 2011, 2, 2425-2432.	2.1	237
124	Controlling Graphene Properties Through Chemistry. Journal of Physical Chemistry Letters, 2011, 2, 2509-2510.	2.1	52
125	Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry. Journal of Nanoparticle Research, 2011, 13, 4829-4837.	0.8	32
126	Patterning nanoroads and quantum dots on fluorinated graphene. Nano Research, 2011, 4, 143-152.	5.8	120
127	Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611.	5.8	160
128	Transport in graphene nanostructures. Frontiers of Physics, 2011, 6, 271-293.	2.4	61
129	Chemical Preparation of Grapheneâ€Based Nanomaterials and Their Applications in Chemical and Biological Sensors. Small, 2011, 7, 2413-2427.	5.2	245
130	Precision Polymers—Modern Tools to Understand and Program Macromolecular Interactions. Macromolecular Rapid Communications, 2011, 32, 115-126.	2.0	62
131	Millimeterâ€Sized Molecular Monolayer Twoâ€Dimensional Crystals. Advanced Materials, 2011, 23, 2059-2063.	11.1	198
132	Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials, 2011, 23, 2779-2795.	11.1	708

#	Article	IF	CITATIONS
133	Patterning Graphene with Zigzag Edges by Selfâ€Aligned Anisotropic Etching. Advanced Materials, 2011, 23, 3061-3065.	11.1	167
134	Graphene: Piecing it Together. Advanced Materials, 2011, 23, 4471-4490.	11.1	127
138	Graphene Nanoribbons by Chemists: Nanometerâ€6ized, Soluble, and Defectâ€Free. Angewandte Chemie - International Edition, 2011, 50, 2540-2543.	7.2	228
139	Synthesis of Free‣tanding, Monolayered Organometallic Sheets at the Air/Water Interface. Angewandte Chemie - International Edition, 2011, 50, 7879-7884.	7.2	257
140	Highly Twisted Arenes by Scholl Cyclizations with Unexpected Regioselectivity. Angewandte Chemie - International Edition, 2011, 50, 12582-12585.	7.2	109
141	Enantiopure, Monodisperse Allenoâ€acetylenic Cyclooligomers: Effect of Symmetry and Conformational Flexibility on the Chiroptical Properties of Carbonâ€Rich Compounds. Chemistry - A European Journal, 2011, 17, 3876-3885.	1.7	25
142	Twoâ€Dimensional Nanocomposites Based on Chemically Modified Graphene. Chemistry - A European Journal, 2011, 17, 10804-10812.	1.7	67
143	Supramolecular Engineering through Temperatureâ€Induced Chemical Modification of 2 <i>H</i> â€Tetraphenylporphyrin on Ag(111): Flat Phenyl Conformation and Possible Dehydrogenation Reactions. Chemistry - A European Journal, 2011, 17, 14354-14359.	1.7	58
144	Chemie des Graphens. Chemie in Unserer Zeit, 2011, 45, 240-249.	0.1	7
145	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
146	Perfect spin-filtering and giant magnetoresistance with Fe-terminated graphene nanoribbon. Applied Physics Letters, 2011, 99, .	1.5	19
147	Dirac point resonances due to atoms and molecules adsorbed on graphene and transport gaps and conductance quantization in graphene nanoribbons with covalently bonded adsorbates. Physical Review B, 2011, 83, .	1.1	40
148	Solution-processed transparent electrodes. MRS Bulletin, 2011, 36, 749-755.	1.7	103
149	Structural and mechanical properties of partially unzipped carbon nanotubes. Physical Review B, 2011, 83, .	1.1	28
150	Edge saturation effects on the magnetism and band gaps in multilayer graphene ribbons and flakes. Physical Review B, 2011, 84, .	1.1	12
151	Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap. Nanotechnology, 2011, 22, 175705.	1.3	39
152	Electrooptic Switching in Graphene-Based Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2011, 543, 187/[953]-193/[959].	0.4	12
153	A few simple rules governing hydrogenation of graphene dots. Journal of Chemical Physics, 2011, 135, 164701.	1.2	34

#	Article	IF	CITATIONS
154	Printing of sub-20 nm wide graphene ribbon arrays using nanoimprinted graphite stamps and electrostatic force assisted bonding. Nanotechnology, 2011, 22, 445301.	1.3	21
155	Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfaces. Journal of Physics Condensed Matter, 2012, 24, 314203.	0.7	5
156	Universal magnetic properties of sp ³ -type defects in covalently functionalized graphene. New Journal of Physics, 2012, 14, 043022.	1.2	87
157	Spectroscopic evidence for spin-polarized edge states in graphitic Si nanowires. New Journal of Physics, 2012, 14, 103004.	1.2	21
158	SEMICONDUCTING GRAPHENE. Nano LIFE, 2012, 02, 1230009.	0.6	5
159	Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees. PLoS ONE, 2012, 7, e45540.	1.1	11
160	Patterning graphene nanoribbons using copper oxide nanowires. Applied Physics Letters, 2012, 100, 103106.	1.5	24
161	Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate. Applied Physics Letters, 2012, 101, .	1.5	42
162	Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	81
163	Sculpting molecular structures from bilayer graphene and other materials. Physical Review B, 2012, 86, .	1.1	12
164	Comment on "Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)― Physical Review Letters, 2012, 109, 119701; author reply 119702.	2.9	3
165	Strongly modulated transmissions in gapped armchair graphene nanoribbons with side-arm or on-site gate voltage. Physical Review B, 2012, 85, .	1.1	9
166	Graphene flakes with defective edge terminations: Universal and topological aspects, and one-dimensional quantum behavior. Physical Review B, 2012, 86, .	1.1	6
167	Negative Gaussian curvature distribution in physical and biophysical systems—Curved nanocarbons and ion-channel membrane proteins. Journal of Applied Physics, 2012, 112, .	1.1	13
168	Phase diagram of graphene nanoribbons and band-gap bifurcation of Dirac fermions under quantum confinement. Physical Review B, 2012, 85, .	1.1	16
169	Stabilizing the ground state in zigzag-edged graphene nanoribbons by dihydrogenation. Physical Review B, 2012, 86, .	1.1	40
170	Strain-activated edge reconstruction of graphene nanoribbons. Physical Review B, 2012, 85, .	1.1	25
171	Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices. Physical Review B, 2012, 85, .	1.1	26

		CITATION RE	PORT	
#	Article		IF	CITATIONS
172	Coherent radial-breathing-like phonons in graphene nanoribbons. Physical Review B, 20)12, 85, .	1.1	16
173	Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surface performance of density functionals with van der Waals interactions. Journal of Physics Matter, 2012, 24, 424217.	es: Condensed	0.7	19
174	Atomistic Mechanism of Carbon Nanostructure Self-Assembly as Predicted by Nonequ Simulations. , 2012, , 103-172.	librium QM/MD		5
175	The effect of N-doping on the electronic structure of graphene nanoribbon. Internation Materials and Structural Integrity, 2012, 6, 220.	al Journal of	0.1	3
176	Low-Temperature Graphene Growth Originating at Crystalline Facets of Catalytic Meta Physics Express, 2012, 5, 025101.	l. Applied	1.1	19
177	Benzo[<i>b</i>]trithiophene Polymer Network Prepared by Electrochemical Polymeriz Combination of Thermal Conversion. Chemistry Letters, 2012, 41, 140-141.	ation with a	0.7	4
178	Orbital Views on Electron-Transport Properties of Cyclophanes: Insight into Intermolec Transport. Bulletin of the Chemical Society of Japan, 2012, 85, 181-188.	ular	2.0	23
179	Dendrimers and Electronics. Kobunshi Ronbunshu, 2012, 69, 251-259.		0.2	1
180	Patterning of graphene. Nanoscale, 2012, 4, 4883.		2.8	107
181	Intramolecular Aryl–Aryl Coupling of Fluoroarenes through Al ₂ O _{ HF Elimination. Journal of Organic Chemistry, 2012, 77, 5445-5448.}	8-Mediated	1.7	58
182	High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocar of Materials, 2012, 24, 3906-3915.	bons. Chemistry	3.2	119
183	Three-Dimensional Nanographene Based on Triptycene: Synthesis and Its Application i Imaging. Organic Letters, 2012, 14, 5912-5915.	n Fluorescence	2.4	59
184	Controlling on-surface polymerization by hierarchical and substrate-directed growth. N Chemistry, 2012, 4, 215-220.	ature	6.6	483
185	Voltage-dependent conductance of a single graphene nanoribbon. Nature Nanotechno 713-717.	logy, 2012, 7,	15.6	298
186	Conductivity measurements pick up. Nature Nanotechnology, 2012, 7, 693-694.		15.6	4
187	Electronic Transport Properties of Assembled Carbon Nanoribbons. ACS Nano, 2012, 6	, 6483-6491.	7.3	29
188	Production: Beyond sticky tape. Nature, 2012, 483, S32-S33.		13.7	57
189	Electronic Transport in Graphene. , 2012, , 17-49.			Ο

	CITATION	N REPORT	
#	Article	IF	CITATIONS
191	Graphene Functionalization: A Review. RSC Nanoscience and Nanotechnology, 2012, , 1-52.	0.2	7
192	Molecular-scale bio-sensing using armchair graphene. Journal of Applied Physics, 2012, 112, 014905.	1.1	16
193	Optical Excitations and Field Enhancement in Short Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2012, 3, 924-929.	2.1	32
194	Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286.	1.7	226
195	Tri-Wing Graphene Nano-Paddle-Wheel with a Single-File Metal Joint: Formation of Multi-Planar Tetracoordinated-Carbon (ptC) Strips. Journal of Physical Chemistry C, 2012, 116, 11378-11385.	1.5	24
196	Yield and Shape Selection of Graphene Nanoislands Grown on Ni(111). Nano Letters, 2012, 12, 4431-4436.	4.5	43
197	Carbon Dioxide Separation with a Two-Dimensional Polymer Membrane. ACS Applied Materials & amp; Interfaces, 2012, 4, 3745-3752.	4.0	131
198	Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemical Society, 2012, 134, 18169-18172.	6.6	185
200	A Boronâ€Containing PAH as a Substructure of Boronâ€Doped Graphene. Angewandte Chemie - International Edition, 2012, 51, 12206-12210.	7.2	210
201	Edge States and Stacking Effects in Nanographene Systems. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2723-2725.	0.8	1
202	1D and 3D surface-assisted self-organization. Coordination Chemistry Reviews, 2012, 256, 2872-2892.	9.5	55
204	Putting aromatic compounds to work: Rational synthesis of organic 2D polymers. Pure and Applied Chemistry, 2012, 84, 861-867.	0.9	10
205	Anisotropic strain-field-induced change of the electronic conductivity of graphene sheets and carbon nanotubes. , 2012, , .		0
206	First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations. Physical Chemistry Chemical Physics, 2012, 14, 2040.	1.3	3
207	Magnetic response of conductance peak structure in junction-confined graphenenanoribbons. Nanoscale, 2012, 4, 1138-1145.	2.8	1
208	Self-Assembly of Cobalt-Phthalocyanine Molecules on Epitaxial Graphene on Ir(111). Journal of Physical Chemistry C, 2012, 116, 20433-20437.	1.5	74
209	Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion. Physical Review B, 2012, 86, .	1.1	46
210	Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction. Journal of Materials Chemistry, 2012, 22, 24676.	6.7	11

#	Article	IF	CITATIONS
211	The low-temperature (400 °C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751.	1.7	40
212	Evolution of graphene nanoribbons under low-voltage electron irradiation. Nanoscale, 2012, 4, 4555.	2.8	16
213	Intensive Edge Effects of Nanographenes in Molecular Adsorptions. Journal of Physical Chemistry Letters, 2012, 3, 511-516.	2.1	35
214	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52
215	Adsorption of Dichlorobenzene on Au and Pt Stepped Surfaces Using van der Waals Density Functional Theory. Journal of Physical Chemistry C, 2012, 116, 20409-20416.	1.5	27
216	Atmospheric Pressure, Temperature-Induced Conversion of Organic Monolayers into Nanocrystalline Graphene. Journal of Physical Chemistry C, 2012, 116, 12295-12303.	1.5	19
217	Making the right connections. Nature Chemistry, 2012, 4, 149-150.	6.6	22
218	Sequential Linking To Control Growth of a Surface Covalent Organic Framework. Journal of Physical Chemistry C, 2012, 116, 4819-4823.	1.5	88
219	Random matrices and quantum chaos in weakly disordered graphene nanoflakes. Physical Review B, 2012, 85, .	1.1	31
220	Large Area Extreme-UV Lithography of Graphene Oxide via Spatially Resolved Photoreduction. Langmuir, 2012, 28, 5489-5495.	1.6	46
221	Conductive Hybrid Nanofibers Self-Assembled with Three Different Amphiphilic Salts. ACS Applied Materials & Interfaces, 2012, 4, 2154-2159.	4.0	18
222	Multifunctional, supramolecular, continuous artificial nacre fibres. Scientific Reports, 2012, 2, 767.	1.6	98
223	Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1136-1141.	1.3	25
224	Electromechanical switch in metallic graphene nanoribbons via twisting. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 2021-2026.	1.3	10
225	Raman spectroscopy of magneto-phonon resonances in graphene and graphite. Solid State Communications, 2012, 152, 1289-1293.	0.9	22
226	Graphene Edge Lithography. Nano Letters, 2012, 12, 4642-4646.	4.5	49
227	Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition. Nano Letters, 2012, 12, 4424-4430.	4.5	99
228	Atomistic Boron-Doped Graphene Field-Effect Transistors: A Route toward Unipolar Characteristics. ACS Nano, 2012, 6, 7942-7947.	7.3	60

ARTICLE IF CITATIONS The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in 229 8.1 475 Physics, 2012, 75, 062501. Carbon origami. Nature, 2012, 486, 327-328. 13.7 231 Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935. 7.3 410 Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate. Nano Letters, 2012, 120 12, 4503-4507. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nature 233 15.6 164 Nanotechnology, 2012, 7, 651-656. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. Journal of Materials Chemistry, 2012, 22, 20626. 234 6.7 How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems. Journal of Materials Chemistry, 2012, 22, 22150. 235 6.7 46 Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on 6.6 63 Graphene. Journal of the American Chemical Society, 2012, 134, 16759-16764. Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions 237 6.6 181 and Sensing. Journal of the American Chemical Society, 2012, 134, 16725-16733. A roadmap for graphene. Nature, 2012, 490, 192-200. 13.7 8,011 Graphene: nanoscale processing and recent applications. Nanoscale, 2012, 4, 1824-1839. 239 2.8 115 Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825. 240 11.1 718 Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiâ€Walled Carbon Nanotube Sheets. 241 11.1 67 Advanced Materials, 2012, 24, 5695-5701. Synthesis of Monolayerâ€Patched Graphene from Glucose. Angewandte Chemie - International Edition, 244 7.2 377 2012, 51, 9689-9692 245 Graphene from Molecules. Angewandte Chemie - International Edition, 2012, 51, 10936-10937. 7.2 15 Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with 246 3.1 tight-binding π-bond model. Nanoscale Research Letters, 2012, 7, 114. Theoretical Evaluation of Ballistic Electron Transport in Field-Effect Transistors with 247 0.8 1 Semiconducting Graphene Channels. Japanese Journal of Applied Physics, 2012, 51, 055103. A molecular dynamics investigation of the mechanical properties of graphene nanochains. Journal of 249 Materials Chemistry, 2012, 22, 9798.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
250	Knots in a graphene nanoribbon. Physical Review B, 2012, 85, .		1.1	18
251	Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized by On-Surface of Diboronic Acids. ACS Nano, 2012, 6, 7234-7242.	Condensation	7.3	194
252	Graphene and Its Synthesis. , 2012, , 415-438.			10
254	Transport through graphene quantum dots. Reports on Progress in Physics, 2012, 75, 12	26502.	8.1	143
255	Size, Structure, and Helical Twist of Graphene Nanoribbons Controlled by Confinement i Nanotubes. ACS Nano, 2012, 6, 3943-3953.	ו Carbon	7.3	134
256	Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor Journal of Materials Chemistry, 2012, 22, 6061.	electrodes.	6.7	64
257	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Chemical Reviews, 2012, 112, 6156-6214.	Applications.	23.0	3,531
259	Tuning of the Band Structures of Zigzag Graphene Nanoribbons by an Electric Field and A Pyridine and BF3: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 20054-2006	Adsorption of 	1.5	10
260	Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanori Scientific Reports, 2012, 2, 983.	obons.	1.6	246
262	HALF-METALLIC SILICENE AND GERMANENE NANORIBBONS: TOWARDS HIGH-PERFORM DEVICE. Nano, 2012, 07, 1250037.	ANCE SPINTRONICS	0.5	105
263	Graphene Transistors. , 2012, , 51-91.			5
264	Coarse-Grained Molecular Simulation of Self-Assembly for Nonionic Surfactants on Grapl Nanostructures. Journal of Physical Chemistry B, 2012, 116, 12048-12056.	nene	1.2	49
265	High Quality Dispersions of Hexabenzocoronene in Organic Solvents. Journal of the Ame Chemical Society, 2012, 134, 12168-12179.	rican	6.6	49
266	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-	589.	8.3	866
267	Electronic and Magnetic Properties of Hybrid Graphene Nanoribbons with Zigzag-Armcha Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 208-213.	air	1.5	30
268	The enhanced optical conductivity for zigzag-edge graphene nanoribbons with applied g Applied Physics Letters, 2012, 100, 103101.	ate voltage.	1.5	11
269	Magneto-controlled electrochemical immunoassay of brevetoxin B in seafood based on guanine-functionalized graphene nanoribbons. Biosensors and Bioelectronics, 2012, 38,	86-93.	5.3	48
270	Influence of contact doping on graphene nanoribbon heterojunction tunneling field effectransistors. Solid-State Electronics, 2012, 77, 51-55.	2t	0.8	6

#	Article	IF	Citations
271	Electronic and magnetic properties of chevron-type graphene nanoribbon edge-terminated by oxygen atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 377, 112-117.	0.9	6
272	Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects. Physical Review B, 2012, 86, .	1.1	43
273	<i>Ab initio</i> characterization of graphene nanoribbons and their polymer precursors. Journal of Physics Condensed Matter, 2012, 24, 104023.	0.7	3
274	Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates. Journal of Physical Chemistry C, 2012, 116, 20023-20029.	1.5	14
275	Strain dependence of the heat transport properties of graphene nanoribbons. Nanotechnology, 2012, 23, 495702.	1.3	23
276	Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Advances, 2012, 2, 3008.	1.7	82
278	Transport properties of armchair graphene nanoribbon junctions between graphene electrodes. Physical Chemistry Chemical Physics, 2012, 14, 10683.	1.3	14
279	Edge-decorated graphene nanoribbons by scandium as hydrogen storage media. Nanoscale, 2012, 4, 915.	2.8	71
280	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	7.3	54
281	DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore. Nano Letters, 2012, 12, 50-55.	4.5	195
282	Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons. ACS Nano, 2012, 6, 2020-2025.	7.3	169
283	Electron transmission modes in electrically biased graphene nanoribbons and their effects on device performance. Physical Review B, 2012, 86, .	1.1	48
284	Structural and electronic properties of graphitic nanowiggles. Physical Review B, 2012, 85, .	1.1	24
285	Polyaromatic Ribbons from Oligo-Alkynes via Selective Radical Cascade: Stitching Aromatic Rings with Polyacetylene Bridges. Journal of the American Chemical Society, 2012, 134, 9609-9614.	6.6	72
286	Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons. Journal of Organic Chemistry, 2012, 77, 143-159.	1.7	72
287	Large Band Gap Opening between Graphene Dirac Cones Induced by Na Adsorption onto an Ir Superlattice. ACS Nano, 2012, 6, 199-204.	7.3	76
288	Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism. Journal of Physical Chemistry C, 2012, 116, 5531-5537.	1.5	22
289	Direct Growth of Graphene Nanoribbons for Large-Scale Device Fabrication. Nano Letters, 2012, 12, 6175-6179.	4.5	42

	CITATION	Report	
#	Article	IF	CITATIONS
290	High magnetoresistance in graphene nanoribbon heterojunction. Applied Physics Letters, 2012, 101, .	1.5	12
291	Quasiparticle Energies and Optical Excitations in Chevron-Type Graphene Nanoribbon. Journal of Physical Chemistry C, 2012, 116, 10193-10197.	1.5	49
292	Growth of triangle-shape graphene on Cu(111) surface. Applied Physics Letters, 2012, 100, 163106.	1.5	38
293	Facile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes. Nanoscale, 2012, 4, 6553.	2.8	14
294	Interface Formation in Monolayer Graphene-Boron Nitride Heterostructures. Nano Letters, 2012, 12, 4869-4874.	4.5	256
295	Graphene-based molecular dynamics nanolithography of fullerenes, nanotubes and other carbon structures. Europhysics Letters, 2012, 99, 63001.	0.7	12
296	Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons. Journal of Applied Physics, 2012, 111, .	1.1	34
297	Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788). Physical Review Letters, 2012, 108, 216801.	2.9	212
298	Spin and gravity give a helping hand. Nature Chemistry, 2012, 4, 150-152.	6.6	12
299	Adsorption Behaviors of Graphene and Graphene-related Materials. , 2012, , 435-467.		1
300	Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale, 2012, 4, 5178.	2.8	21
301	Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Physical Review B, 2012, 85, .	1.1	14
302	Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM. Beilstein Journal of Nanotechnology, 2012, 3, 301-311.	1.5	14
303	Chemical Approaches toward Grapheneâ€Based Nanomaterials and their Applications in Energyâ€Related Areas. Small, 2012, 8, 630-646.	5.2	368
304	Chemical Reaction on a Solid Surface with Nanoconfined Geometry. Small, 2012, 8, 333-335.	5.2	10
305	Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41, 2283-2307.	18.7	1,591
306	Nanoscale and edge effect on electronic properties of graphene. Solid State Communications, 2012, 152, 1420-1430.	0.9	63
307	Graphene nanoribbons subject to gentle bends. Physical Review B, 2012, 85, .	1.1	25

# 308	ARTICLE Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures. Nanoscale, 2012, 4, 369-379.	IF 2.8	Citations 27
309	Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nature Communications, 2012, 3, 844.	5.8	163
310	Disorder and dephasing effects on electron transport through conjugated molecular wires in molecular junctions. Physical Review B, 2012, 85, .	1.1	48
311	Quantum size effects in the atomistic structure of armchair nanoribbons. Physical Review B, 2012, 85, .	1.1	17
312	Twisting graphene nanoribbons into carbon nanotubes. Physical Review B, 2012, 85, .	1.1	75
313	Dimerization-Initiated Preferential Formation of Coronene-Based Graphene Nanoribbons in Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 15141-15145.	1.5	87
314	Supramolecular Synthesis of Graphenic Mesogenic Materials. Macromolecular Chemistry and Physics, 2012, 213, 1164-1174.	1.1	7
315	First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes. Journal of Computational Electronics, 2012, 11, 78-92.	1.3	57
316	Partially unzipped carbon nanotubes as magnetic field sensors. Applied Physics Letters, 2012, 100, 232104.	1.5	11
317	Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors. Frontiers of Physics, 2012, 7, 324-327.	2.4	13
323	From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 7640-7654.	7.2	725
324	Elements for a Rational Polymer Approach towards Carbon Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 6569-6571.	7.2	32
325	Clar's Aromatic Sextet and Ï€â€Electron Distribution in Nanographene. Angewandte Chemie - International Edition, 2012, 51, 7236-7241.	7.2	34
326	Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. , 2012, , 901-938.		2
327	The breast cancer landscape. Nature, 2012, 486, 328-329.	13.7	32
328	Toward controlled synthesis of carbon nanotubes and graphenes. Pure and Applied Chemistry, 2012, 84, 907-916.	0.9	72
329	<i>para</i> â€Connected Cyclophenylenes and Hemispherical Polyarenes: Building Blocks for Singleâ€Walled Carbon Nanotubes?. Angewandte Chemie - International Edition, 2012, 51, 7094-7101.	7.2	127
330	Densely aligned graphene nanoribbons at â^1⁄435 nm pitch. Nano Research, 2012, 5, 292-296.	5.8	30

#	Article	IF	CITATIONS
331	Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012, 50, 2147-2154.	5.4	197
332	Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons. Chemical Physics Letters, 2012, 533, 74-77.	1.2	33
333	Synthesis, characterization and DFT study of 1-bromo-4-(3,7-dimethyloctyl)benzene. Journal of Molecular Structure, 2012, 1015, 41-45.	1.8	3
334	Electronic substrate-mediated interactions. Surface Science Reports, 2012, 67, 19-81.	3.8	68
335	The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports, 2012, 67, 83-115.	3.8	746
336	Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 525-528.	0.9	98
337	Thermoelectric properties of hexagonal graphene quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1154-1158.	0.9	16
338	Influence of the Number of Anchoring Groups on the Electronic and Mechanical Properties of Benzeneâ€, Anthracene―and Pentaceneâ€Based Molecular Devices. ChemPhysChem, 2012, 13, 860-868.	1.0	10
339	Barrierâ€Guided Growth of Micro―and Nanoâ€Structured Graphene. Advanced Materials, 2012, 24, 1041-1045.	11.1	73
341	[16]Cloverphene: a Cloverâ€5haped <i>cata</i> â€Condensed Nanographene with Sixteen Fused Benzene Rings. Angewandte Chemie - International Edition, 2012, 51, 173-177.	7.2	71
342	Strainâ€Induced Orientationâ€Selective Cutting of Graphene into Graphene Nanoribbons on Oxidation. Angewandte Chemie - International Edition, 2012, 51, 1161-1164.	7.2	59
343	Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem, 2013, 14, 47-54.	1.0	203
344	Power law statistics of rippled graphene nanoflakes. Journal of Mathematical Chemistry, 2013, 51, 1221-1230.	0.7	1
345	Coupled spin and pseudomagnetic field in graphene nanoribbons. Physical Review B, 2013, 88, .	1.1	17
346	Polymerization of Polyanthrylene on a Titanium Dioxide (011)â€(2×1) Surface. Angewandte Chemie - International Edition, 2013, 52, 10300-10303.	7.2	53
347	Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices. Progress in Surface Science, 2013, 88, 171-211.	3.8	101
350	Aharonov-Bohm effect and giant magnetoresistance in graphene nanoribbon rings. Physical Review B, 2013, 88, .	1.1	16
351	Topological effects and particle physics analogies beyond the massless Dirac-Weyl fermion in graphene nanorings. Physical Review B, 2013, 87, .	1.1	14

#	Article	IF	CITATIONS
352	SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate. Physical Chemistry Chemical Physics, 2013, 15, 3233.	1.3	2
353	Meniscus-Mask Lithography for Narrow Graphene Nanoribbons. ACS Nano, 2013, 7, 6894-6898.	7.3	57
354	Functionalization of boron-doped tri(9,10-anthrylene)s. Tetrahedron, 2013, 69, 7073-7081.	1.0	20
355	Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation. Applied Physics Letters, 2013, 102, .	1.5	31
356	Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2013, , .	0.5	37
357	Topological Signatures in the Electronic Structure of Graphene Spirals. Scientific Reports, 2013, 3, 1632.	1.6	36
358	Fano effects in electron transport through an armchair graphene nanoribbon with one line defect. Journal of Applied Physics, 2013, 113, 233701.	1.1	3
359	Spin filtering in graphene nanoribbons with Mn-doped boron nitride inclusions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1347-1351.	1.7	21
360	Tailored Formation of N-Doped Nanoarchitectures by Diffusion-Controlled on-Surface (Cyclo)Dehydrogenation of Heteroaromatics. ACS Nano, 2013, 7, 3676-3684.	7.3	52
361	A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3, 1228.	1.6	117
362	Bandgap engineering of graphene by corrugation on lattice-mismatched MgO (111). Journal of Materials Chemistry C, 2013, 1, 1595.	2.7	25
363	Quasiparticle band gaps of graphene nanowiggles and their magnetism on Au(111). Physical Review B, 2013, 88, .	1.1	15
364	Investigating the edge state of graphene nanoribbons by a chemical approach: Synthesis and magnetic properties of zigzag-edged nanographene molecules. Solid State Communications, 2013, 175-176, 62-70.	0.9	18
365	Electronic structure of oxygen-functionalized armchair graphene nanoribbons. Physical Review B, 2013, 88, .	1.1	30
366	Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nature Communications, 2013, 4, 2402.	5.8	47
367	Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications. Proceedings of the IEEE, 2013, 101, 1670-1688.	16.4	29
368	Insights into the Early Growth of Homogeneous Single-Layer Graphene over Ni–Mo Binary Substrates. Chemistry of Materials, 2013, 25, 3880-3887.	3.2	27
369	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	7.8	31

#	Article	IF	CITATIONS
370	Coordination self-assembly of bromo-phenyl and pyridyl functionalized porphyrins with Fe on an Au(111) surface. Physical Chemistry Chemical Physics, 2013, 15, 12447.	1.3	16
371	Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. Journal of Applied Physics, 2013, 113, 114302.	1.1	35
373	An <i>ab initio</i> study of oxygen on strained graphene. Journal of Physics Condensed Matter, 2013, 25, 395301.	0.7	22
375	The investigation on the electronic structures of hybrid GNR-ZnO. Applied Physics A: Materials Science and Processing, 2013, 112, 357-362.	1.1	5
376	Interfacial growth of large-area single-layer metal-organic framework nanosheets. Scientific Reports, 2013, 3, 2506.	1.6	115
377	2 D Selfâ€Assembly and Catalytic Homoâ€coupling of the Terminal Alkyne 1,4â€Bis(3,5â€diethynylâ€phenyl)butadiyneâ€1,3 on Ag(111). ChemCatChem, 2013, 5, 3281-3288.	1.8	29
378	Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects. Physical Review B, 2013, 88, .	1.1	36
379	Point defect-induced transport bandgap widening in the downscaled armchair graphene nanoribbon device. Carbon, 2013, 64, 416-423.	5.4	21
380	Covalently bonded networks through surface-confined polymerization. Surface Science, 2013, 613, 6-14.	0.8	75
381	Effect of contact area on electron transport through graphene-metal interface. Journal of Chemical Physics, 2013, 139, 074703.	1.2	8
382	Graphenenanoribbon electrical decoupling from metallic substrates. Nanoscale, 2013, 5, 291-298.	2.8	8
383	Oxygen monomers and dimers at gas-phase and Ag(111)-supported nanographenes: A density functional theory study. Journal of Applied Physics, 2013, 113, 114307.	1.1	5
384	Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect. Nanoscale Research Letters, 2013, 8, 330.	3.1	22
385	Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1905-1910.	0.9	21
386	Proposal for all-graphene monolithic logic circuits. Applied Physics Letters, 2013, 103, .	1.5	60
387	Graphene nanoribbon based negative resistance device for ultra-low voltage digital logic applications. Applied Physics Letters, 2013, 102, 043114.	1.5	30
388	Bottom-up graphene nanoribbon field-effect transistors. Applied Physics Letters, 2013, 103, .	1.5	218
389	Giant quasiparticle bandgap modulation in graphene nanoribbons supported on weakly interacting surfaces. Applied Physics Letters, 2013, 103, .	1.5	28

#	Article	IF	CITATIONS
390	Ï€-Conjugated Heterotriangulene Macrocycles by Solution and Surface-supported Synthesis toward Honeycomb Networks. Journal of the American Chemical Society, 2013, 135, 4550-4557.	6.6	88
391	Absence of edge states near the 120 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mrow></mml:mrow><mml:mo>â~</mml:mo></mml:msup></mml:math> corners of zigzag graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	14
392	Change of the Magnetic Coupling of a Metal–Organic Complex with the Substrate by a Stepwise Ligand Reaction. Nano Letters, 2013, 13, 4840-4843.	4.5	78
393	Atomically perfect torn graphene edges and their reversible reconstruction. Nature Communications, 2013, 4, 2723.	5.8	110
394	Chemically Engineered Graphene-Based 2D Organic Molecular Magnet. ACS Nano, 2013, 7, 10011-10022.	7.3	47
395	Inducing Aromaticity Patterns and Tuning the Electronic Transport of Zigzag Graphene Nanoribbons via Edge Design. Journal of Physical Chemistry C, 2013, 117, 26371-26384.	1.5	11
396	Band Gap Engineering via Edge-Functionalization of Graphene Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 26790-26796.	1.5	78
397	Lattice-Oriented Catalytic Growth of Graphene Nanoribbons on Heteroepitaxial Nickel Films. ACS Nano, 2013, 7, 10825-10833.	7.3	27
398	Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons. Journal of Physics Condensed Matter, 2013, 25, 473202.	0.7	58
399	Electronic states in finite graphene nanoribbons: Effect of charging and defects. Physical Review B, 2013, 88, .	1.1	49
400	Conductance across strain junctions in graphene nanoribbons. Physical Review B, 2013, 88, .	1.1	26
401	Interaction of chlorine with Stone-Wales defects in graphene and carbon nanotubes and thermodynamical prospects of chlorine-induced nanotube unzipping. Physical Review B, 2013, 87, .	1.1	17
402	Density functional study of structural defects in h-BNC2sheets. Journal of Physics Condensed Matter, 2013, 25, 025304.	0.7	4
403	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	0.7	32
404	Weak localization and Raman study of anisotropically etched graphene antidots. Applied Physics Letters, 2013, 103, 143111.	1.5	29
405	Topological Modelling of Nanostructures and Extended Systems. Carbon Materials, 2013, , .	0.2	9
406	Electron-electron interactions and topology in the electronic properties of gated graphene nanoribbon rings in MA¶bius and cylindrical configurations. Physical Review B, 2013, 87, .	1.1	26
407	Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates. Scientific Reports, 2013, 3, 1348.	1.6	36

#	Article	IF	CITATIONS
408	Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization. Physical Review B, 2013, 87, .	1.1	16
409	Giant Spin-Orbit Interaction Due to Rotating Magnetic Fields in Graphene Nanoribbons. Physical Review X, 2013, 3, .	2.8	81
410	Rashba spin-orbit interaction in graphene armchair nanoribbons. European Physical Journal B, 2013, 86, 1.	0.6	21
411	Graphene $\hat{a} \in \hat{P}$ Properties and Characterization. , 2013, , 39-82.		7
412	Epitaxial graphene on step bunching of a 6H-SiC(0001) substrate: Aromatic ring pattern and Van Hove singularities. Applied Physics Letters, 2013, 102, .	1.5	9
413	Evidence for Edge‣tate Photoluminescence in Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 5062-5065.	7.8	113
414	Etched graphene quantum dots on hexagonal boron nitride. Applied Physics Letters, 2013, 103, .	1.5	40
415	Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines, 2013, , .	0.0	5
416	A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes. Carbon, 2013, 61, 284-293.	5.4	34
417	Polyradicals of Polycyclic Aromatic Hydrocarbons as Finite Size Models of Graphene: Highly Open-Shell Nature, Symmetry Breaking, and Enhanced-Edge Electron Density. Journal of Physical Chemistry A, 2013, 117, 8958-8968.	1.1	10
418	Structural and electronic properties of hybrid graphene and boron nitride nanostructures on Cu. Physical Review B, 2013, 88, .	1.1	9
419	One-pot synthesis of sterically congested large aromatic hydrocarbons via 1,4-diphenyl-2,3-triphenylyne. Chemical Communications, 2013, 49, 6274.	2.2	19
420	Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1832-1908.	11.8	698
421	Graphene-based semiconductor nanostructures. Physics-Uspekhi, 2013, 56, 105-122.	0.8	61
422	Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon, 2013, 65, 80-86.	5.4	26
423	Field-Effect Transistors Based on WS ₂ Nanotubes with High Current-Carrying Capacity. Nano Letters, 2013, 13, 3736-3741.	4.5	131
424	SeZnSb alloy and its nano tubes, graphene composites properties. AIP Advances, 2013, 3, 042124.	0.6	6
425	Can closed shell graphitic materials be exfoliated? Defect induced porphyra-like graphene from the cooperation of activation and oxidation. Journal of Materials Chemistry A, 2013, 1, 14103.	5.2	23

		LPORT	
#	ARTICLE Moderating Black Powder Chemistry for the Synthesis of Doped and Highly Porous Graphene	IF	Citations
426	Nanoplatelets and Their Use in Electrocatalysis. Advanced Materials, 2013, 25, 6284-6290.	11.1	235
427	Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation. Physical Chemistry Chemical Physics, 2013, 15, 12637.	1.3	32
428	Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force. Scientific Reports, 2013, 3, 1925.	1.6	62
429	Future of Biosensors: A Personal View. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 1-28.	0.6	11
430	Morphology of a graphene nanoribbon encapsulated in a carbon nanotube. AIP Advances, 2013, 3, .	0.6	13
431	A soluble bispentacenequinone precursor for creation of directly 6,6′-linked bispentacenes and a tetracyanobipentacenequinodimethane. RSC Advances, 2013, 3, 15310.	1.7	19
432	Second generation graphene: Opportunities and challenges for surface science. Surface Science, 2013, 609, 1-5.	0.8	54
433	Applications of Graphene. , 2013, , 333-437.		9
434	Characterisation Techniques. , 2013, , 229-332.		8
435	Selective surface functionalization at regions of high local curvature in graphene. Chemical Communications, 2013, 49, 677-679.	2.2	135
436	Synthesis and Characterization of Quarteranthene: Elucidating the Characteristics of the Edge State of Graphene Nanoribbons at the Molecular Level. Journal of the American Chemical Society, 2013, 135, 1430-1437.	6.6	237
437	Methods for Obtaining Graphene. , 2013, , 129-228.		13
438	A Guide to the Design of Electronic Properties of Graphene Nanoribbons. Accounts of Chemical Research, 2013, 46, 2319-2328.	7.6	187
439	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	2.8	614
440	The edges of graphene. Nanoscale, 2013, 5, 2556.	2.8	91
441	Fabrication, Optimization, and Use of Graphene Field Effect Sensors. Analytical Chemistry, 2013, 85, 509-521.	3.2	99
442	The Atomic Structure of Graphene and Its Few-layer Counterparts. , 2013, , 5-59.		4
443	Small but Strong Lessons from Chemistry for Nanoscience. Angewandte Chemie - International Edition, 2013, 52, 93-103.	7.2	88

#	Article	IF	CITATIONS
444	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
445	Colloidal Graphene Quantum Dots with Well-Defined Structures. Accounts of Chemical Research, 2013, 46, 2254-2262.	7.6	181
446	Twisted Polycyclic Arenes by Intramolecular Scholl Reactions of C3-Symmetric Precursors. Journal of Organic Chemistry, 2013, 78, 2266-2274.	1.7	145
447	The Multiradical Character of One―and Twoâ€Đimensional Graphene Nanoribbons. Angewandte Chemie - International Edition, 2013, 52, 2581-2584.	7.2	197
449	Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions. Journal of Materials Chemistry A, 2013, 1, 2752.	5.2	130
450	Absence of Edge States in Covalently Bonded Zigzag Edges of Graphene on Ir(111). Advanced Materials, 2013, 25, 1967-1972.	11.1	42
451	Theoretical Investigation of Graphene Nanoribbon Field-Effect Transistors Designed for Digital Applications. Japanese Journal of Applied Physics, 2013, 52, 094301.	0.8	13
452	Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. Physical Chemistry Chemical Physics, 2013, 15, 4897.	1.3	14
453	Dependence of Atomic Arrangement on Length of Flat Bands in Zigzag BC ₂ N Nanoribbons. Journal of the Physical Society of Japan, 2013, 82, 044708.	0.7	13
454	Strategies in Organic Synthesis for Condensed Arenes, Coronene, and Graphene. Topics in Current Chemistry, 2013, 349, 121-157.	4.0	9
455	Salting-out as a scalable, in-series purification method of graphene oxides from microsheets to quantum dots. Carbon, 2013, 63, 45-53.	5.4	22
456	Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon, 2013, 63, 202-209.	5.4	53
457	Programming Hierarchical Supramolecular Nanostructures by Molecular Design. Journal of Physical Chemistry C, 2013, 117, 3440-3445.	1.5	20
458	Locally Altering the Electronic Properties of Graphene by Nanoscopically Doping It with Rhodamine 6G. Nano Letters, 2013, 13, 1616-1621.	4.5	42
459	Synthesis and characterization of ultrathin metal coordination Prussian blue nanoribbons. Dalton Transactions, 2013, 42, 5242.	1.6	17
460	Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chemical Reviews, 2013, 113, 3407-3424.	23.0	643
461	Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nanotechnology, 2013, 24, 045609.	1.3	35
462	Termini of Bottom-Up Fabricated Graphene Nanoribbons. Journal of the American Chemical Society, 2013, 135, 2060-2063.	6.6	214

#	Article	IF	CITATIONS
463	Not a molecule, not a polymer, not a substrate… the many faces of graphene as a chemical platform. Chemical Communications, 2013, 49, 2848.	2.2	45
464	On-Surface Azide–Alkyne Cycloaddition on Cu(111): Does It "Click―in Ultrahigh Vacuum?. Journal of the American Chemical Society, 2013, 135, 2136-2139.	6.6	144
465	Steering On-Surface Polymerization with Metal-Directed Template. Journal of the American Chemical Society, 2013, 135, 3576-3582.	6.6	142
466	Polycondensation of Boron―and Nitrogen odoped Holey Graphene Monoliths from Molecules: Carbocatalysts for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 4572-4576.	7.2	215
467	Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping. Angewandte Chemie - International Edition, 2013, 52, 4422-4425.	7.2	225
468	Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon, 2013, 54, 419-431.	5.4	239
469	Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon, 2013, 54, 124-132.	5.4	162
470	Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 2013, 4, 1663.	5.8	155
471	Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces. Journal of the American Chemical Society, 2013, 135, 5768-5775.	6.6	216
472	Free-Standing, Single-Monomer-Thick Two-Dimensional Polymers through Covalent Self-Assembly in Solution. Journal of the American Chemical Society, 2013, 135, 6523-6528.	6.6	154
473	Grapheneâ€Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Advanced Functional Materials, 2013, 23, 1984-1997.	7.8	257
474	Graphene nanoribbons on vicinal SiC surfaces by molecular beam epitaxy. Physical Review B, 2013, 87, .	1.1	24
475	Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes. Physical Review B, 2013, 87, .	1.1	21
476	Graphene-Based Chemical and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2013, , 103-141.	0.5	9
477	Solution Preparation of Two-Dimensional Covalently Linked Networks by Polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111). ACS Nano, 2013, 7, 3014-3021.	7.3	50
478	Glaser Coupling at Metal Surfaces. Angewandte Chemie - International Edition, 2013, 52, 4024-4028.	7.2	288
479	Graphene-based electrodes for electrochemical energy storage. Energy and Environmental Science, 2013, 6, 1388.	15.6	696
480	Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons. Journal of Physics Condensed Matter, 2013, 25, 115303.	0.7	16

#	Article	IF	CITATIONS
481	lon Impacts on Graphene/Ir(111): Interface Channeling, Vacancy Funnels, and a Nanomesh. Nano Letters, 2013, 13, 1948-1955.	4.5	81
482	Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. Journal of Materials Chemistry C, 2013, 1, 38-41.	2.7	151
483	Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nature Communications, 2013, 4, 1776.	5.8	220
484	Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4, 1811.	5.8	681
485	Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nature Communications, 2013, 4, 2023.	5.8	177
486	Synthesis and electronic structure of a two dimensional π-conjugated polythiophene. Chemical Science, 2013, 4, 3263.	3.7	130
487	Evaluation of the Potential Performance of Graphene Nanoribbons as On-Chip Interconnects. Proceedings of the IEEE, 2013, 101, 1740-1765.	16.4	105
488	Surfaceâ€Assisted Organic Synthesis of Hyperbenzene Nanotroughs. Angewandte Chemie - International Edition, 2013, 52, 4668-4672.	7.2	166
489	One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. Polymer, 2013, 54, 3124-3130.	1.8	53
490	Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation. Physical Chemistry Chemical Physics, 2013, 15, 6431.	1.3	17
491	Concentration Effects of Carbon Oxides on Sensing by Graphene Nanoribbons: Ab Initio Modeling. Journal of Physical Chemistry C, 2013, 117, 12815-12825.	1.5	30
492	States Modulation in Graphene Nanoribbons through Metal Contacts. ACS Nano, 2013, 7, 5414-5420.	7.3	20
493	Sequential and Site-Specific On-Surface Synthesis on a Bulk Insulator. ACS Nano, 2013, 7, 5614-5620.	7.3	47
494	Natural Product and Material Chemistries—Separated Forever?. Journal of the American Chemical Society, 2013, 135, 8764-8769.	6.6	16
495	Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 9050-9054.	6.6	63
496	Electronic and Magnetic Properties of Zigzag Graphene Nanoribbons on the (111) Surface of Cu, Ag, and Au. Physical Review Letters, 2013, 110, 216804.	2.9	66
497	Graphene Growth and Device Integration. Proceedings of the IEEE, 2013, 101, 1536-1556.	16.4	46
498	On-Surface Formation of One-Dimensional Polyphenylene through Bergman Cyclization. Journal of the American Chemical Society, 2013, 135, 8448-8451.	6.6	154

#	Article	IF	CITATIONS
499	On-Surface Synthesis of Single-Layered Two-Dimensional Covalent Organic Frameworks via Solid–Vapor Interface Reactions. Journal of the American Chemical Society, 2013, 135, 10470-10474.	6.6	370
500	Electronic structure and transport properties of N ₂ ^{<i>AA</i>} -doped armchair and zigzag graphene nanoribbons. Nanotechnology, 2013, 24, 235701.	1.3	9
501	Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 6346-6353.	7.3	82
502	Molecular Self-Assembly on Graphene on SiO ₂ and h-BN Substrates. Nano Letters, 2013, 13, 3199-3204.	4.5	117
503	Hexagonal Graphene Onion Rings. Journal of the American Chemical Society, 2013, 135, 10755-10762.	6.6	31
504	Structure and local reactivity of the Au(111) surface reconstruction. Physical Review B, 2013, 87, .	1.1	125
505	Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 2013, 61, 40-46.	5.4	26
506	A molecular conformational change induced self-assembly: from randomness to order. Chemical Communications, 2013, 49, 5207.	2.2	5
507	Rationally synthesized two-dimensional polymers. Nature Chemistry, 2013, 5, 453-465.	6.6	879
508	Effect of edge states on the electronic, magnetic and transport properties of BN-fused polyacene zigzag nanoribbons. Journal of Materials Chemistry C, 2013, 1, 3439.	2.7	12
509	Resonant Tunneling in Graphene Pseudomagnetic Quantum Dots. Nano Letters, 2013, 13, 2692-2697.	4.5	49
510	Formation and Characterization of a Molecule–Metal–Molecule Bridge in Real Space. Journal of the American Chemical Society, 2013, 135, 9200-9203.	6.6	73
511	A 3Nrule for the electronic properties of doped graphene. Nanotechnology, 2013, 24, 225705.	1.3	53
512	Porous Co ₃ O ₄ Nanorods–Reduced Graphene Oxide with Intrinsic Peroxidase-Like Activity and Catalysis in the Degradation of Methylene Blue. ACS Applied Materials & Interfaces, 2013, 5, 3809-3815.	4.0	100
513	Bottomâ€up Synthesis of Nanoscale Conjugationâ€Interrupted Frameworks and Their Electrical Properties. Small, 2013, 9, 3218-3223.	5.2	14
514	Functional Single‣ayer Graphene Sheets from Aromatic Monolayers. Advanced Materials, 2013, 25, 4146-4151.	11.1	56
515	Damage and strain in single-layer graphene induced by very-low-energy electron-beam irradiation. Applied Physics Letters, 2013, 102, .	1.5	28
516	Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors. ACS Nano, 2013, 7, 6123-6128.	7.3	510

#	Article	IF	CITATIONS
517	On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. Nanoscale, 2013, 5, 8269.	2.8	67
518	Nanographite sheets derived from polyaniline nanocoating of cellulose nanofibers. Materials Research Bulletin, 2013, 48, 429-434.	2.7	9
519	Half-metallicity study of graphene nanoribbon bilayers under external fields. Physical Review B, 2013, 88, .	1.1	13
520	Giant spin thermoelectric efficiency in ferromagnetic graphene nanoribbons with antidots. Physical Review B, 2013, 88, .	1.1	52
521	Gigahertz multi-transistor graphene integrated circuits. , 2013, , .		3
522	First-principles study of edge-modified armchair graphene nanoribbons. Journal of Applied Physics, 2013, 113, .	1.1	37
523	Spintronics in MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> monolayer quantum wires. Physical Review B, 2013, 88, .	1.1	135
524	Effect of Metal Surfaces in On-Surface Glaser Coupling. Journal of Physical Chemistry C, 2013, 117, 18595-18602.	1.5	95
525	Graphene as a Target for Polymer Synthesis. Advances in Polymer Science, 2013, , 61-92.	0.4	12
526	Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization. ACS Nano, 2013, 7, 8190-8198.	7.3	190
527	Origami-based spintronics in graphene. Europhysics Letters, 2013, 104, 47001.	0.7	23
528	Confinement, Transport Gap, and Valley Polarization in Graphene from Two Parallel Decorated Line Defects. Nano Letters, 2013, 13, 259-263.	4.5	39
529	Van der Waals interactions between graphitic nanowiggles. Journal of Applied Physics, 2013, 114, 044308.	1.1	4
530	Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot. Applied Optics, 2013, 52, 5816.	0.9	8
531	Appearance of Flat Bands and Edge States in Boron–Carbon–Nitride Nanoribbons. Journal of the Physical Society of Japan, 2013, 82, 083710.	0.7	6
532	Interior and Edge Elastic Waves in Graphene. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	2
534	Preparation of Graphene by Green Reduction Method and Characterization. Advanced Materials Research, 2013, 807-809, 515-520.	0.3	1
535	Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction. Japanese Journal of Applied Physics, 2013, 52, 110110.	0.8	9

IF

#		
#	ARTICLE	

CITATIONS

536	Graphite Oxide. , 2013, , 571-604.		0
537	Towards graphene based ultrasensitive chemical detectors: Lithium anchoring of organic molecules on the surface of graphene. , 2013, , .		0
538	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. Advances in Polymer Science, 2013, , 115-210.	0.4	6
539	Computational study on band structure engineering using graphene nanomeshes. Journal of Applied Physics, 2013, 113, 143702.	1.1	7
540	Self organization of a hexagonal network of quasi-free-standing monolayer graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	5
541	Chargeâ€Transport Tuning of Solutionâ€Processable Graphene Nanoribbons by Substitutional Nitrogen Doping. Macromolecular Chemistry and Physics, 2013, 214, 2768-2773.	1.1	40
542	Spectral footprints of impurity scattering in graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	10
543	Gate modulation on angle-resolved photoabsorption spectra of zigzag-edge graphene nanoribbons. Journal of Applied Physics, 2013, 113, 103510.	1.1	3
544	Electronic and transport properties of graphene nanoribbon barbellâ€ s haped heterojunctions. Physica Status Solidi (B): Basic Research, 2013, 250, 2417-2423.	0.7	3
545	Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	44
546	Reversible Phase Transformation at the Solid–Liquid Interface: STM Reveals. Chemistry - an Asian Journal, 2013, 8, 2330-2340.	1.7	24
547	Line-defect–induced Fano interference in an armchair graphene nanoribbon. Europhysics Letters, 2013, 103, 18003.	0.7	7
548	Preserving the Edge Magnetism of Zigzag Graphene Nanoribbons by Ethylene Termination: Insight by Clar's Rule. Scientific Reports, 2013, 3, 2030.	1.6	37
550	Facile Synthesis and Lateral ï€-Expansion of Bisanthenes. Chemistry Letters, 2013, 42, 592-594.	0.7	52
551	Electronic Properties of Nanographene. , 2013, , 223-304.		0
552	Spin Structure of Polycyclic Aromatic Hydrocarbons. , 2013, , 305-368.		0
553	Introduction to carbon-based nanostructures. , 0, , 1-10.		0
554	Electronic properties of carbon-based papostructures 0 11-90		0

		EPORT	
#	ARTICLE Dense Arrays of Highly Aligned Graphene Nanoribbons Produced by Substrateâ€Controlled	IF	CITATIONS
555	Metalâ€Assisted Etching of Graphene. Advanced Materials, 2013, 25, 6562-6568.	11,1	33
558	A graphene quantum dot realized by an armchair graphene nanoribbon with line defect. Physica Status Solidi - Rapid Research Letters, 2013, 7, 579-582.	1.2	1
561	Etched graphene single electron transistors on hexagonal boron nitride in high magnetic fields. Physica Status Solidi (B): Basic Research, 2013, 250, 2692-2696.	0.7	10
562	Polymerization of Polyanthrylene on a Titanium Dioxide (011)â€ (2×1) Surface. Angewandte Chemie, 2013, 125, 10490-10493.	1.6	13
563	Tailoring Surfaceâ€Confined Nanopores with Photoresponsive Groups. Angewandte Chemie - International Edition, 2013, 52, 8373-8376.	7.2	57
565	Porous Nanocarbons: Molecular Filtration and Electronics. , 0, , .		0
566	Electronic and transport properties of kinked graphene. Beilstein Journal of Nanotechnology, 2013, 4, 103-110.	1.5	22
567	Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects. Electronics (Switzerland), 2013, 2, 280-314.	1.8	28
568	Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons. Applied Sciences (Switzerland), 2014, 4, 351-365.	1.3	1
569	Electromechanics of graphene spirals. AIP Advances, 2014, 4, 127125.	0.6	21
570	Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films. Beilstein Journal of Nanotechnology, 2014, 5, 394-401.	1.5	7
572	Bound states in the continuum: Localization of Dirac-like fermions. Europhysics Letters, 2014, 108, 46008.	0.7	11
573	Electronic transport in three-terminal triangular carbon nanopatches. Nanotechnology, 2014, 25, 045706.	1.3	3
574	Edge irregularities in extremely down-scaled graphene nanoribbon devices: role of channel width. Materials Research Express, 2014, 1, 045605.	0.8	6
575	Carbon nitride vs. graphene – now in 2D!. Materials Today, 2014, 17, 468-469.	8.3	21
576	Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons. Nature Communications, 2014, 5, 4311.	5.8	83
577	Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons. Journal of Applied Physics, 2014, 116, .	1.1	59
578	Transforming graphene nanoribbons into nanotubes by use of point defects. Journal of Physics Condensed Matter, 2014, 26, 125301.	0.7	8

	CITATION RE	PORT	
#	Article	IF	CITATIONS
579	Actively controlled super-resolution using graphene-based structure. Optics Express, 2014, 22, 28635.	1.7	17
581	Graphene-Based Nanoresonator with Applications in Optical Transistor and Mass Sensing. Sensors, 2014, 14, 16740-16753.	2.1	15
582	Growth of two-dimensional materials on non-catalytic substrates: h-BN/Au(111). 2D Materials, 2014, 1, 025003.	2.0	44
583	Probing Electronic Properties of Graphene on the Atomic Scale by Scanning Tunneling Microscopy and Spectroscopy. Graphene and 2D Materials, 2014, 1, .	2.0	7
584	Electron dynamics in unoccupied states of spatially aligned 7-a graphene nanoribbons on Au(788). Physical Review B, 2014, 90, .	1.1	3
585	IN SITU UNZIPPING OF CARBON NANOTUBES TO FORM GRAPHENE NANORIBBONS. Nano, 2014, 09, 1450010.	0.5	1
586	A Singleâ€Moleculeâ€Level Mechanistic Study of Pdâ€Catalyzed and Cuâ€Catalyzed Homocoupling of Aryl Bromide on an Au(111) Surface. Chemistry - A European Journal, 2014, 20, 4111-4116.	1.7	42
587	Atomic structure of silicene nanoribbons on Ag(110). Journal of Physics: Conference Series, 2014, 491, 012002.	0.3	32
588	Near field microwave microscopy for nanoscale characterization, imaging and patterning of graphene. , 2014, , .		3
589	Electric field control of the indirect magnetic coupling through a short graphene nanoribbon. Physical Review B, 2014, 90, .	1.1	13
590	Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons. Applied Physics Letters, 2014, 104, .	1.5	3
591	Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Applied Physics Letters, 2014, 105, .	1.5	82
592	Controlled epitaxial graphene growth within removable amorphous carbon corrals. Applied Physics Letters, 2014, 105, .	1.5	14
593	Substrate Templating Guides the Photoinduced Reaction of C ₆₀ on Calcite. Angewandte Chemie - International Edition, 2014, 53, 7952-7955.	7.2	28
594	Structure-Determining Step in the Hierarchical Assembly of Peptoid Nanosheets. ACS Nano, 2014, 8, 11674-11684.	7.3	47
595	Electronic properties of three-terminal graphitic nanowiggles. Physical Review B, 2014, 90, .	1.1	4
596	Surface Supported Gold–Organic Hybrids: On‣urface Synthesis and Surface Directed Orientation. Small, 2014, 10, 1361-1368.	5.2	62
597	Adsorption on epitaxial graphene on SiC(0001). Journal of Materials Research, 2014, 29, 447-458.	1.2	8

#	Article	IF	CITATIONS
599	Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon. Applied Physics Letters, 2014, 105, 113112.	1.5	16
600	Nanojunction between Fullerene and One-Dimensional Conductive Polymer on Solid Surfaces. ACS Nano, 2014, 8, 12259-12264.	7.3	25
601	Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation. Advanced Materials, 2014, 26, 2052-2058.	11.1	147
602	CHAPTER 2. Multicomponent Assembly Strategies for Supramolecular Systems. RSC Smart Materials, 2014, , 53-97.	0.1	Ο
603	CHAPTER 3. Low-Dimensional Supramolecular Assemblies on Surfaces. RSC Smart Materials, 2014, , 98-118.	0.1	2
604	Self-Assembly of Polyaromatic Precursors for 1D and 2D Carbon Structures. ACS Symposium Series, 2014, , 1-16.	0.5	0
605	Adsorption of Large Hydrocarbons on Coinage Metals: A van der Waals Density Functional Study. ChemPhysChem, 2014, 15, 2851-2858.	1.0	45
606	Thermally and photoinduced polymerization of ultrathin sexithiophene films. Journal of Chemical Physics, 2014, 141, 104704.	1.2	4
607	Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons. Applied Physics Letters, 2014, 104, 083119.	1.5	12
608	Convergent fabrication of a nanoporous two-dimensional carbon network from an aldol condensation on metal surfaces. 2D Materials, 2014, 1, 034005.	2.0	6
609	Graphene Nanoribbons. , 2014, , 1-7.		0
610	Mechanical Properties of Graphene Nanowiggles. Materials Research Society Symposia Proceedings, 2014, 1658, 14.	0.1	0
612	Graphene Constrictions. Nanoscience and Technology, 2014, , 141-169.	1.5	2
613	Graphene for Biosensor Applications. World Scientific Series on Carbon Nanoscience, 2014, , 83-145.	0.1	0
614	The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings. Journal of Physics Condensed Matter, 2014, 26, 205301.	0.7	0
615	Nodal adsorbate bound states in armchair graphene nanoribbons: Fano resonances and adsorbate recognition in weak disorder. Physical Review B, 2014, 90, .	1.1	5
616	Transition from Tubes to Sheets—A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene. , 2014, , 519-568.		2
617	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398

		CITATION I	Report	
#	Article		IF	CITATIONS
618	Realization of controlling the band alignment via atomic substitution. Carbon, 2014, 69,	495-501.	5.4	3
619	Raman-assessed structural evolution of as-deposited few-layer graphene by He/H2 arc dis during rapid-cooling thinning treatment. Carbon, 2014, 66, 426-435.	charge	5.4	32
620	Correlation between atomistic morphology and electron transport properties in defect-fro defected graphene nanoribbons: An interpretation through Clar sextet theory. Carbon, 20 190-200.	2e and)14, 75,	5.4	6
621	A Facile Molten alt Route to Graphene Synthesis. Small, 2014, 10, 193-200.		5.2	224
622	Nitrogen-Terminated Semiconducting Zigzag GNR FET With Negative Differential Resista Nanotechnology Magazine, 2014, 13, 16-22.	nce. IEEE	1.1	11
623	Top-Down versus Bottom-Up Fabrication of Graphene-Based Electronics. Chemistry of Ma 26, 163-171.	terials, 2014,	3.2	192
624	Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for p two-dimensional functional nanostructures. Science China Chemistry, 2014, 57, 13-25.	reparing	4.2	36
625	Construction of 2D Atomic Crystals on Transition Metal Surfaces: Graphene, Silicene, and Small, 2014, 10, 2215-2225.	Hafnene.	5.2	91
626	Negative quantum capacitance in graphene nanoribbons with lateral gates. Physical Revie	2w B, 2014, 89,	1.1	13
627	Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale, 2014, 6, 630	l-6314.	2.8	85
628	Synthesis and structures of Hexa-peri-hexabenzocoronene-based triptycenes. Tetrahedron 2014, 55, 521-524.	ı Letters,	0.7	14
629	Impact of the metal substrate on the electronic structure of armchair graphene nanoribbe Chemical Physics Letters, 2014, 597, 148-152.	bns.	1.2	4
630	Width ontrolled Subâ€Nanometer Graphene Nanoribbon Films Synthesized by Radica Chemical Vapor Deposition. Advanced Materials, 2014, 26, 4134-4138.	â€Polymerized	11.1	119
631	Anisotropic Etching of Graphite Flakes with Water Vapor to Produce Armchairâ€Edged G 2014, 10, 2809-2814.	raphene. Small,	5.2	23
632	Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chemistry - A Euro Journal, 2014, 20, 928-934.	pean	1.7	68
633	Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 2014, 1, 135-152.		3.2	1,000
634	Large-scale solution synthesis of narrow graphene nanoribbons. Nature Communications 3189.	, 2014, 5,	5.8	271
635	Positional selectivity of reversible azomethine condensation reactions at solid/liquid inter leading to supramolecule formation. Journal of Electroanalytical Chemistry, 2014, 716, 14		1.9	13

#	Article	IF	CITATIONS
636	Atomistic approach for simulating plasmons in nanostructures. Applied Physics A: Materials Science and Processing, 2014, 115, 427-431.	1.1	6
637	Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon, 2014, 70, 1-21.	5.4	284
638	Graphene Based Nonâ€Volatile Memory Devices. Advanced Materials, 2014, 26, 5496-5503.	11.1	95
639	Grapheneâ€Like Singleâ€Layered Covalent Organic Frameworks: Synthesis Strategies and Application Prospects. Advanced Materials, 2014, 26, 6912-6920.	11.1	200
640	Functionalized graphene grown by oxidative dehydrogenation chemistry. Carbon, 2014, 71, 11-19.	5.4	7
641	Octafunctionalized Biphenylenes: Molecular Precursors for Isomeric Graphene Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 1538-1542.	7.2	94
642	Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects. Journal of Applied Physics, 2014, 115, .	1.1	17
643	One-step synthesis of graphene nanoribbon–MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale, 2014, 6, 4233.	2.8	186
645	Single Electron Transfer in Radical Ion and Radical-Mediated Organic, Materials and Polymer Synthesis. Chemical Reviews, 2014, 114, 5848-5958.	23.0	367
646	Plasma Processing Based Synthesis of Functional Nanocarbons. Plasma Chemistry and Plasma Processing, 2014, 34, 377-402.	1.1	7
647	The effect of defects on negative differential thermal resistance in symmetric graphene nanoribbons. Applied Physics Letters, 2014, 104, 013106.	1.5	13
648	Photosensitive Graphene Transistors. Advanced Materials, 2014, 26, 5239-5273.	11.1	290
649	Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Research, 2014, 7, 626-657.	5.8	63
650	A Straightforward Strategy toward Large BN-Embedded π-Systems: Synthesis, Structure, and Optoelectronic Properties of Extended BN Heterosuperbenzenes. Journal of the American Chemical Society, 2014, 136, 3764-3767.	6.6	273
651	Molecular dynamics simulation of carbon nanostructures: The D5h C70 fullerene. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 422-426.	1.3	12
652	Helical Ribbons for Molecular Electronics. Journal of the American Chemical Society, 2014, 136, 8122-8130.	6.6	243
653	Toward Perylene Dyes by the Hundsdiecker Reaction. Organic Letters, 2014, 16, 2814-2817.	2.4	49
654	Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene–Nanotube Hybrids and More. ACS Nano. 2014. 8. 4061-4069.	7.3	140

#	Article	IF	CITATIONS
655	Synthesis of mono layer graphene oxide from sonicated graphite flakes and their Hall effect measurements. Materials Science-Poland, 2014, 32, 292-296.	0.4	5
656	Graphene synthesis. Diamond and Related Materials, 2014, 46, 25-34.	1.8	215
657	Self-assembled π-conjugated macromolecular architectures — A soft solution process based on Schiff base coupling. Current Opinion in Colloid and Interface Science, 2014, 19, 140-154.	3.4	17
658	Anomalous length-independent frontier resonant transmission peaks in armchair graphene nanoribbon molecular wires. Carbon, 2014, 76, 285-291.	5.4	20
659	<i>In Situ</i> Fabrication Of Quasi-Free-Standing Epitaxial Graphene Nanoflakes On Gold. ACS Nano, 2014, 8, 3735-3742.	7.3	50
660	Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons. Journal of the American Chemical Society, 2014, 136, 7555-7558.	6.6	103
661	Leveraging the Ambipolar Transport in Polymeric Fieldâ€Effect Transistors via Blending with Liquidâ€Phase Exfoliated Graphene. Advanced Materials, 2014, 26, 4814-4819.	11.1	27
662	Ionic liquid mediated synthesis of graphene–TiO2 hybrid and its photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 180, 38-45.	1.7	20
663	Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon, 2014, 68, 406-412.	5.4	49
664	Modulating the electronic properties of graphdiyne nanoribbons. Carbon, 2014, 66, 504-510.	5.4	49
665	Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6, 1922-1945.	2.8	613
666	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	6.6	468
667	First-principles electronic transport calculations of graphene nanoribbons on SiO ₂ /Si. Applied Physics Express, 2014, 7, 025101.	1.1	6
668	Nanoribbons from the bottom-up. Nature Chemistry, 2014, 6, 91-92.	6.6	18
669	Beyond the constant-mass Dirac physics: Solitons, charge fractionization, and the emergence of topological insulators in graphene rings. Physical Review B, 2014, 89, .	1.1	13
670	Graphene–organic composites for electronics: optical and electronic interactions in vacuum, liquids and thin solid films. Journal of Materials Chemistry C, 2014, 2, 3129.	2.7	62
671	Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, 2014,	0.6	8
672	Local Electronic and Chemical Structure of Oligo-acetylene Derivatives Formed Through Radical Cyclizations at a Surface. Nano Letters, 2014, 14, 2251-2255.	4.5	108

ARTICLE IF CITATIONS # Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope 673 3.1 26 lithography on gold substrates. Applied Surface Science, 2014, 291, 48-52. Charge transfer-assisted self-limited decyanation reaction of TCNQ-type electron acceptors on 674 2.2 Cu(100). Chemical Communications, 2014, 50, 833-835. The Thermoelectric Properties in Graphene and Graphene Nanoribbons. Lecture Notes in Nanoscale 675 0.4 2 Science and Technology, 2014, , 393-425. Effects of Edge Oxidation on the Structural, Electronic, and Magnetic Properties of Zigzag Boron Nitride Nanoribbons. Journal of Chemical Theory and Computation, 2014, 10, 373-380. Molecular sensing using armchair graphene nanoribbon. Journal of Computational Chemistry, 2014, 677 1.5 18 35, 1916-1920. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization. Applied Physics Letters, 2014, 104, 243101. 1.5 679 Chemical stitching. Nature Nanotechnology, 2014, 9, 875-876. 15.6 10 Thermoelectricity at the gate. Nature Nanotechnology, 2014, 9, 876-877. 680 15.6 16 Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties. Physics of the Solid State, 2014, 56, 2135-2145. 681 0.2 27 Electronic structure changes during the surface-assisted formation of a graphene nanoribbon. 1.2 Journal of Chemical Physics, 2014, 140, 024701. Polyarenes I. Topics in Current Chemistry, 2014, , . 683 4.09 High-modulus all-carbon ladder polymer of hydroquinone and formaldehyde that bridges the gap 684 between single-strand polymers and graphene nanoribbons. RSC Advances, 2014, 4, 18676-18682. <i>Ab</i> <i>iiitio</i> assessment of graphene nanoribbons reactivity for molecule adsorption and 685 1.7 8 conductance modulation: nitrogen dioxide nanosensor. RSC Advances, 2013, 4, 2346-2354. On-surface arylâ€"aryl coupling via selective Câ€"H activation. Chemical Communications, 2014, 50, 2.2 106 11825-11828 Sequential formation of N-doped nanohelicenes, nanographenes and nanodomes by surface-assisted 687 2.2 23 chemical (cyclo)dehydrogenation of heteroaromatics. Chemical Communications, 2014, 50, 1555. Graphite nanoribbons prepared by graphitization of poly(4-phthalimide) nanoribbons. Synthetic Metals, 2014, 198, 255-259. Bulk properties of solution-synthesized chevron-like graphene nanoribbons. Faraday Discussions, 689 1.6 21 2014, 173, 105-13. Current rectification by a single ZnS nanorod probed using a scanning tunneling microscopic 690 technique. Journal of Materials Chemistry C, 2014, 2, 1158.

#	Article	IF	CITATIONS
691	Label-free aptamer biosensor for thrombin detection on a nanocomposite of graphene and plasma polymerized allylamine. Journal of Materials Chemistry B, 2014, 2, 1530-1538.	2.9	38
692	Formation of ultra-long nanoribbons by self-assembly of carbon dots and anionic oligomers for multi-colored fluorescence and electrical conduction. Chemical Communications, 2014, 50, 10244.	2.2	17
693	Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy. Journal of Materials Chemistry C, 2014, 2, 3118-3128.	2.7	46
694	Confined growth of carbon nanoforms in one-dimension by fusion of anthracene rings inside the pores of MCM-41. Nanoscale, 2014, 6, 7981-7990.	2.8	6
695	Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. Journal of Materials Chemistry A, 2014, 2, 12262-12269.	5.2	85
696	Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chemical Science, 2014, 5, 4419-4423.	3.7	81
697	Cyclotrimerization of arylalkynes on Au(111). Chemical Communications, 2014, 50, 11200-11203.	2.2	103
698	Construction of carbon-based two-dimensional crystalline nanostructure by chemical vapor deposition of benzene on Cu(111). Nanoscale, 2014, 6, 7934-7939.	2.8	10
699	Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. Journal of Materials Chemistry C, 2014, 2, 856-863.	2.7	34
700	A novel bottom-up solvothermal synthesis of carbon nanosheets. Journal of Materials Chemistry A, 2014, 2, 2390.	5.2	38
701	Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chemical Communications, 2014, 50, 9627-9635.	2.2	64
702	In Situ Synthesis of Graphene Molecules on TiO ₂ : Application in Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 20473-20478.	4.0	16
703	Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds. Journal of Materials Chemistry A, 2014, 2, 15022.	5.2	35
704	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
705	Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.	7.3	138
706	Hybrid platforms of graphane–graphene 2D structures: prototypes for atomically precise nanoelectronics. Physical Chemistry Chemical Physics, 2014, 16, 23558-23563.	1.3	10
707	Temperature-induced transitions of self-assembled phthalocyanine molecular nanoarrays at the solid–liquid interface: from randomness to order. Nanoscale, 2014, 6, 4243-4249.	2.8	30
708	A first-principles study of the spin transport properties of a 4H-TAHDI-based multifunctional spintronic device with graphene nanoribbon electrodes. Journal of Materials Chemistry C, 2014, 2, 6648-6654.	2.7	30

#	Article	IF	CITATIONS
709	Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications, 2014, 5, 5357.	5.8	750
710	Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating. Nano Letters, 2014, 14, 1891-1897.	4.5	165
711	Detection of Protein Conformational Changes with Multilayer Graphene Nanopore Sensors. ACS Applied Materials & Interfaces, 2014, 6, 16777-16781.	4.0	16
712	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	15.6	528
713	Folding of Graphene Nanostructures Driven by Ionic Liquids Nanodroplets. Journal of Physical Chemistry C, 2014, 118, 21081-21091.	1.5	13
714	Equilibrium limit of thermal conduction and boundary scattering in nanostructures. Journal of Chemical Physics, 2014, 140, 244112.	1.2	11
715	Influence of interface combination of reduced graphene oxide/P25 composites on their visible photocatalytic performance. RSC Advances, 2014, 4, 43760-43765.	1.7	12
716	Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography. ACS Nano, 2014, 8, 1538-1546.	7.3	212
717	Shape Dependent Synthesis and Field Emission Induced Rectification in Single ZnS Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 7856-7863.	4.0	12
718	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5.8	155
719	A Computational Study on the Electronic Transport Properties of Ultranarrow Disordered Zigzag Graphene Nanoribbons. IEEE Transactions on Electron Devices, 2014, 61, 23-29.	1.6	16
720	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	1.3	10
721	Interfacial Properties and Design of Functional Energy Materials. Accounts of Chemical Research, 2014, 47, 3395-3405.	7.6	14
722	Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing, and Cancerous DNA Recognition. ACS Nano, 2014, 8, 1827-1833.	7.3	65
723	Highly dispersed graphene ribbons produced from ZnO–C core–shell nanorods and their use as a filler in polyimide composites. RSC Advances, 2014, 4, 41204-41211.	1.7	9
724	Novel electronic transport of zigzag graphdiyne nanoribbons induced by edge states. Europhysics Letters, 2014, 107, 57002.	0.7	12
725	Vacancy Effects on Electric and Thermoelectric Properties of Zigzag Silicene Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 21339-21346.	1.5	41
726	Large area uniformly oriented multilayer graphene with high transparency and conducting properties derived from highly oriented polyethylene films. Journal of Materials Chemistry C, 2014, 2, 6048-6055.	2.7	6

#	Article	IF	CITATIONS
727	Asymmetrically-gated graphene self-switching diodes as negative differential resistance devices. Nanoscale, 2014, 6, 7628-7634.	2.8	25
728	Recent Highlights and Perspectives on Acene Based Molecules and Materials. Chemistry of Materials, 2014, 26, 4046-4056.	3.2	277
729	Electric field induced transformation of carbon nanotube to graphene nanoribbons using Nafion as a solid polymer electrolyte. Applied Physics Letters, 2014, 104, .	1.5	13
730	Photochemical Glaser Coupling at Metal Surfaces. Journal of Physical Chemistry C, 2014, 118, 6272-6277.	1.5	74
731	Interface Engineering for CVD Graphene: Current Status and Progress. Small, 2014, 10, 4443-4454.	5.2	29
732	Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon, 2014, 77, 1187-1190.	5.4	43
733	Coronene Encapsulation in Singleâ€Walled Carbon Nanotubes: Stacked Columns, Peapods, and Nanoribbons. ChemPhysChem, 2014, 15, 1660-1665.	1.0	28
734	Covalent, Organometallic, and Halogen-Bonded Nanomeshes from Tetrabromo-Terphenyl by Surface-Assisted Synthesis on Cu(111). Journal of Physical Chemistry C, 2014, 118, 13018-13025.	1.5	66
735	Unraveling the Mechanism of the Covalent Coupling Between Terminal Alkynes on a Noble Metal. Journal of Physical Chemistry C, 2014, 118, 3181-3187.	1.5	73
736	A Call for Clinical Studies. ACS Nano, 2014, 8, 4055-4057.	7.3	5
737	Nanoscale Integration of Two-Dimensional Materials by Lateral Heteroepitaxy. Nano Letters, 2014, 14, 4846-4851.	4.5	88
738	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7.3	157
739	Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry A, 2014, 2, 13772-13782.	5.2	316
740	Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics. Physical Review Letters, 2014, 113, 085501.	2.9	49
741	Electronic Property Modification of Singleâ€Walled Carbon Nanotubes by Encapsulation of Sulfurâ€Terminated Graphene Nanoribbons. Small, 2014, 10, 5077-5086.	5.2	9
742	Structure and stability of graphene edges in O2 and H2 environments from ab initio thermodynamics. Carbon, 2014, 78, 181-189.	5.4	15
743	Emergent magnetism in irradiated graphene nanostructures. Carbon, 2014, 78, 196-203.	5.4	9
744	Specular graphene transport barrier. Physical Review B, 2014, 90, .	1.1	8

ARTICLE IF CITATIONS Photoinduced Câ€"C Reactions on Insulators toward Photolithography of Graphene 745 6.6 45 Nanoarchitectures. Journal of the American Chemical Society, 2014, 136, 4651-4658. Scanning tunneling microscopy (STM) of graphene., 2014, , 124-155. 746 Three-Dimensional Bicomponent Supramolecular Nanoporous Self-Assembly on a Hybrid All-Carbon 747 4.5 20 Atomically Flat and Transparent Platform. Nano Letters, 2014, 14, 4486-4492. Hydrogen-dimer lines and electron waveguides in graphene. Physical Chemistry Chemical Physics, 2014, 748 16, 17610-17616. Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity. ACS Nano, 749 7.3 187 2014, 8, 9181-9187. Versatile Bottom-Up Construction of Diverse Macromolecules on a Surface Observed by Scanning 7.3 Tunneling Microscopy. ACS Nano, 2014, 8, 8856-8870. Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons. 751 0.8 19 Journal of Nanoparticle Research, 2014, 16, 1. In Search of a Two-Dimensional Material for DNA Sequencing. Journal of Physical Chemistry C, 2014, 1.5 36 118, 10855-10858. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged 753 5.8 97 graphene. Nature Communications, 2014, 5, 5171. Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons. Nanoscale, 754 2.8 2014, 6, 11121-11129. A topological twist on materials science. MRS Bulletin, 2014, 39, 265-279. 755 1.7 44 Interactions and Chemical Transformations of Coronene Inside and Outside Carbon Nanotubes. Small, 5.2 2014, 10, 1369-1378. Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorene Nanoribbons. Nano 757 4.5 306 Letters, 2014, 14, 4607-4614. Formation and photovoltaic performance of few-layered graphene-decorated TiO₂ 2.8 nanocrystals used in dye-sensitized solar cells. Nanoscale, 2014, 6, 6755-6762. Graphene-like Molecules Based on Tetraphenylethene Oligomers: Synthesis, Characterization, and 759 3.2 55 Applications. Chemistry of Materials, 2014, 26, 4221-4229. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano, 2014, 8, 6531-6541. Synthesis of high-density arrays of graphene nanoribbons by anisotropic metal-assisted etching. 761 5.414 Carbon, 2014, 78, 339-346. Superstructure transformations from hexagonal to tetragonal microplates and nested two-dimensional nanonetworks. Science Bulletin, 2014, 59, 1787-1793.

	CITATION	Report	
#	Article	IF	CITATIONS
763	Functionalization of graphene nanoribbons. Journal Physics D: Applied Physics, 2014, 47, 094012.	1.3	26
764	Decarboxylative Polymerization of 2,6-Naphthalenedicarboxylic Acid at Surfaces. Journal of the American Chemical Society, 2014, 136, 9658-9663.	6.6	114
765	Atomic-scale insight into the formation, mobility and reaction of Ullmann coupling intermediates. Chemical Communications, 2014, 50, 1006-1008.	2.2	52
766	Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points. Europhysics Letters, 2014, 105, 57003.	0.7	9
767	Bottom-Up Synthesis of Anatase Nanoparticles with Graphene Domains. ACS Applied Materials & Interfaces, 2014, 6, 10638-10648.	4.0	27
768	Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study. Journal of Physical Chemistry C, 2014, 118, 12532-12540.	1.5	113
769	All-Graphene Planar Double Barrier Resonant Tunneling Diodes. IEEE Journal of the Electron Devices Society, 2014, 2, 118-122.	1.2	16
770	On-Surface Ullmann Coupling: The Influence of Kinetic Reaction Parameters on the Morphology and Quality of Covalent Networks. ACS Nano, 2014, 8, 7880-7889.	7.3	194
771	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	3.6	229
772	Tuning the Adsorption of Aromatic Molecules on Platinum via Halogenation. Journal of Physical Chemistry C, 2014, 118, 6235-6241.	1.5	21
773	Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chemical Communications, 2014, 50, 4172-4174.	2.2	136
774	Room Temperature Synthesis of a Covalent Monolayer Sheet at Air/Water Interface Using a Shape-Persistent Photoreactive Amphiphilic Monomer. ACS Macro Letters, 2014, 3, 153-158.	2.3	33
775	Modelling of Plasmonic and Graphene Nanodevices. Springer Theses, 2014, , .	0.0	9
776	Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135.	5.2	35
777	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
778	Metallic when narrow. Nature Nanotechnology, 2014, 9, 413-414.	15.6	9
779	Friedel–Crafts Bottom-up Synthesis of Fluorene-Based Soluble Luminescent Organic Nanogrids. Organic Letters, 2014, 16, 1748-1751.	2.4	30
780	Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111). Surface Science, 2014, 627, 70-74.	0.8	37

#	Article	IF	CITATIONS
781	Electron transport channels and their manipulation by impurity in armchair-edge graphene nanoribbons. Carbon, 2014, 72, 365-371.	5.4	6
782	Raman study of damage extent in graphene nanostructures carved by high energy helium ion beam. Carbon, 2014, 72, 233-241.	5.4	50
783	Dehalogenation and Coupling of a Polycyclic Hydrocarbon on an Atomically Thin Insulator. ACS Nano, 2014, 8, 6571-6579.	7.3	44
784	Novel graphene-based nanostructures: physicochemical properties and applications. Russian Chemical Reviews, 2014, 83, 251-279.	2.5	49
785	Solubilization of Fullerenes, Carbon Nanotubes, and Graphene. Topics in Current Chemistry, 2014, 348, 1-35.	4.0	3
786	Coreâ€Sheath Carbon Nanostructured Fibers for Efficient Wireâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 1694-1698.	11.1	76
787	UV/O ₃ Generated Graphene Nanomesh: Formation Mechanism, Properties, and FET Studies. Journal of Physical Chemistry C, 2014, 118, 725-731.	1.5	48
788	Tip-Enhanced Raman Spectroscopy of Graphene Nanoribbons on Au(111). Journal of Physical Chemistry C, 2014, 118, 11806-11812.	1.5	55
789	Anthenes: Model systems for understanding the edge state of graphene nanoribbons. Pure and Applied Chemistry, 2014, 86, 497-505.	0.9	24
790	Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society, 2014, 2, 77-104.	1.2	25
791	Graphene Synthesis <i>via</i> Thermal Polymerization of Aromatic Quinone Molecules. ACS Nano, 2014, 8, 5932-5938.	7.3	14
792	Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Physical Review B, 2014, 89, .	1.1	424
793	Designing coved graphene nanoribbons with charge carrier mobility approaching that of graphene. Carbon, 2014, 77, 868-879.	5.4	20
794	Efficient reduction and exfoliation of graphite oxide by sequential chemical reduction and microwave irradiation. Synthetic Metals, 2014, 194, 71-76.	2.1	19
795	Theoretical investigation on carrier mobilities of armchair graphene nanoribbons with substituted edges. Chemical Physics, 2014, 439, 57-62.	0.9	3
796	Formation of Oriented Graphene Nanoribbons over Heteroepitaxial Cu Surfaces by Chemical Vapor Deposition. Chemistry of Materials, 2014, 26, 5215-5222.	3.2	9
797	Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces. ACS Nano, 2014, 8, 5765-5773.	7.3	49
798	Synthesis and properties of a graphene-like macrocycle based on tetraphenylethene. Tetrahedron, 2014, 70, 5046-5051.	1.0	4

#	Article	IF	CITATIONS
799	Large magnetoresistance from long-range interface coupling in armchair graphene nanoribbon junctions. Applied Physics Letters, 2014, 105, .	1.5	3
800	Electrostatic force microscopy and electrical isolation of etched few-layer graphene nano-domains. Applied Physics Letters, 2014, 105, .	1.5	2
801	Stereoselective Photopolymerization of Tetraphenylporphyrin Derivatives on Ag(110) at the Subâ€Monolayer Level. Chemistry - A European Journal, 2014, 20, 14296-14304.	1.7	35
802	Synthesis of graphene nanoribbons from amyloid fibrils by solid-phase graphitization using liquid gallium catalyst. Materials Research Society Symposia Proceedings, 2014, 1658, 82.	0.1	2
803	Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics. Physical Review B, 2015, 91, .	1.1	14
804	Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers. Physical Review B, 2015, 91, .	1.1	18
805	Topological gap states of semiconducting armchair graphene ribbons. Physical Review B, 2015, 91, .	1.1	10
806	Contrasting interedge superexchange interactions of graphene nanoribbons embedded in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi>-BN and graphane. Physical Review B, 2015, 92, .</mml:math 	1.1	17
807	Tuning edge state localization in graphene nanoribbons by in-plane bending. Physical Review B, 2015, 92,	1.1	8
808	Edge structure of graphene monolayers in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>î½</mml:mi><mml:mo>=Hall state. Physical Review B, 2015, 92, .</mml:mo></mml:mrow></mml:math 	mo 1.a mml	:mr1£0
808 809	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Î+⁄2</mml:mi><mml:mo>=<td>mo1.4mml 2.9</td><td>:m11607</td></mml:mo></mml:mrow>	mo1.4mml 2.9	:m11607
	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>l1/2</mml:mi><mml:mo>=Hall state. Physical Review B, 2015, 92, . In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage.</mml:mo></mml:mrow>		
809	 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Î1/2</mml:mi><mml:mo>=Hall state. Physical Review B, 2015, 92, .</mml:mo></mml:mrow> In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage. Physical Review Letters, 2015, 115, 156601. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various 	2.9	7
809 810	 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Î1/2</mml:mi><mml:mo>=Hall state. Physical Review B, 2015, 92, .</mml:mo></mml:mrow> In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage. Physical Review Letters, 2015, 115, 156601. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, . 	2.9	7 7
809 810 811	 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>î¼2 </mml:mi> <mml:mo> = Hall state. Physical Review B, 2015, 92, .</mml:mo></mml:mrow> In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage. Physical Review Letters, 2015, 115, 156601. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, . Discrete Atomic Layers at the Molecular Level. Journal of the Physical Society of Japan, 2015, 84, 121016. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for 	2.9 1.1 0.7	7 7 2
809 810 811 812	 xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>î½< /mml:mi> < mml:mo> = Hall state. Physical Review B, 2015, 92, . In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage. Physical Review Letters, 2015, 115, 156601. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, . Discrete Atomic Layers at the Molecular Level. Journal of the Physical Society of Japan, 2015, 84, 121016. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710. Enhancement of thermospin effect in germanene based normal/ferromagnetic stub/normal junction. 	2.9 1.1 0.7 1.6	7 7 2 36
809 810 811 812 813	 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>14/2 </mml:mi> <mml:mo> = Hall state. Physical Review B, 2015, 92, .</mml:mo></mml:mrow> In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage. Physical Review Letters, 2015, 115, 156601. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, . Discrete Atomic Layers at the Molecular Level. Journal of the Physical Society of Japan, 2015, 84, 121016. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710. Enhancement of thermospin effect in germanene based normal/ferromagnetic stub/normal junction. Journal of Applied Physics, 2015, 118, 195101. The breakdown of superlubricity by driving-induced commensurate dislocations. Scientific Reports, 	2.9 1.1 0.7 1.6 1.1	7 7 2 36 1

#	Article	IF	CITATIONS
818	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	5.8	30
819	High-temperature transformations of coronene-based graphene nanoribbons encapsulated in SWNTs. Physica Status Solidi (B): Basic Research, 2015, 252, 2491-2495.	0.7	3
820	Bottomâ€Up Synthesis of Necklaceâ€Like Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	1.7	43
821	Control of the Intermolecular Coupling of Dibromotetracene on Cu(110) by the Sequential Activation of CBr and CH Bonds. Chemistry - A European Journal, 2015, 21, 5826-5835.	1.7	30
822	Trapping Nanostructures on Surfaces through Weak Interactions. Chemistry - A European Journal, 2015, 21, 13437-13444.	1.7	6
823	Mapping Local Quantum Capacitance and Charged Impurities in Graphene via Plasmonic Impedance Imaging. Advanced Materials, 2015, 27, 6213-6219.	11.1	38
824	Graphene Nanoribbons from Tetraphenyletheneâ€Based Polymeric Precursor: Chemical Synthesis and Application in Thinâ€Film Fieldâ€Effect Transistor. Chinese Journal of Chemistry, 2015, 33, 1380-1388.	2.6	4
825	Crossâ€Coupling of Arylâ€Bromide and Porphyrinâ€Bromide on an Au(111) Surface. Chemistry - A European Journal, 2015, 21, 8028-8032.	1.7	16
826	Quinoidal Oligo(9,10â€anthryl)s with Chainâ€Lengthâ€Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release. Chemistry - A European Journal, 2015, 21, 18724-18729.	1.7	13
827	Regioselective Synthesis of Polyheterohalogenated Naphthalenes via the Benzannulation of Haloalkynes. Chemistry - A European Journal, 2015, 21, 18122-18127.	1.7	43
828	On‣urface Reactions. ChemPhysChem, 2015, 16, 1582-1592.	1.0	122
829	Raman spectra of hydrocarbons formed in carbon nanotubes - a theoretical study. Physica Status Solidi (B): Basic Research, 2015, 252, 2541-2545.	0.7	4
830	Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso, 2015, 2015, 181-189.	0.1	11
831	Graphite nanoribbons prepared by the graphitization of poly(4-phthalimide) nanoribbons. Tanso, 2015, 2015, 190-194.	0.1	0
832	Tuning the Electronic Structure of Graphene through Collective Electrostatic Effects. Advanced Materials Interfaces, 2015, 2, 1500323.	1.9	8
833	Surfaceâ€Assisted Cyclodehydrogenation; Break the Symmetry, Enhance the Selectivity. Chemistry - A European Journal, 2015, 21, 12285-12290.	1.7	57
836	Template Synthesis of Linearâ€Chain Nanodiamonds Inside Carbon Nanotubes from Bridgeheadâ€Halogenated Diamantane Precursors. Angewandte Chemie - International Edition, 2015, 54, 10802-10806.	7.2	44
837	Cyclotrimerizationâ€Induced Chiral Supramolecular Structures of 4â€Ethynyltriphenylamine on Au(111) Surface. Chemistry - A European Journal, 2015, 21, 12978-12983.	1.7	17

#	Article	IF	CITATIONS
838	Graphene-based room-temperature implementation of a modified Deutsch–Jozsa quantum algorithm. Nanotechnology, 2015, 26, 485201.	1.3	10
839	Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. ChemCatChem, 2015, 7, 2788-2805.	1.8	83
840	The origin of nondispersive Raman lines in the D-band region for ferrocene@HiPco SWCNTs transformed at high temperatures. Physica Status Solidi (B): Basic Research, 2015, 252, 2530-2535.	0.7	4
842	Synthesis of Y-Tip Graphitic Nanoribbons from Alcohol Catalytic Chemical Vapor Deposition on Piezoelectric Substrate. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	5
844	Characterization of a Surface Reaction by Means of Atomic Force Microscopy. Journal of the American Chemical Society, 2015, 137, 7424-7428.	6.6	64
845	Graphene coatings for chemotherapy: avoiding silver-mediated degradation. 2D Materials, 2015, 2, 025004.	2.0	11
846	The influence of source molecule structure on the low temperature growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2015, 17, 14115-14121.	1.3	11
847	Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation. New Journal of Physics, 2015, 17, 053013.	1.2	25
848	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
849	Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sensors and Actuators B: Chemical, 2015, 219, 338-345.	4.0	37
850	Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale, 2015, 7, 12807-12811.	2.8	34
851	Stereoselective formation of coordination polymers with 1,4-diaminonaphthalene on various Cu substrates. Chemical Communications, 2015, 51, 10854-10857.	2.2	23
852	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
853	Photofunctional Layered Materials. Structure and Bonding, 2015, , .	1.0	10
854	Dehydrogenative Homocoupling of Terminal Alkenes on Copper Surfaces: A Route to Dienes. Angewandte Chemie - International Edition, 2015, 54, 4549-4552.	7.2	66
855	Graphene Oxide. , 2015, , .		91
856	Synthesis, Structure, and Characterizations. , 2015, , 1-28.		7
857	Thermoelectric effects in graphene nanostructures. Journal of Physics Condensed Matter, 2015, 27, 133204.	0.7	137

#	Article	IF	CITATIONS
858	Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors. Journal of Power Sources, 2015, 293, 143-150.	4.0	32
859	Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. ACS Nano, 2015, 9, 6305-6314.	7.3	114
860	Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons. ACS Nano, 2015, 9, 3510-3520.	7.3	44
861	Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 2015, 3, 18753-18808.	5.2	563
862	Realistic edge shape effects on the vibrational properties of graphene nanoribbons. , 2015, , .		3
863	Origin of room-temperature single-channel ballistic transport in zigzag graphene nanoribbons. Science China Materials, 2015, 58, 677-682.	3.5	5
864	Disclosing boron's thinnest side. Science, 2015, 350, 1468-1469.	6.0	41
865	Pushing back the limit of <i>ab-initio</i> quantum transport simulations on hybrid supercomputers. , 2015, , .		16
866	Terahertz Applications of Carbon Nanotubes and Graphene Nanoribbons. , 2015, , .		3
867	Ultra-narrow metallic armchair graphene nanoribbons. Nature Communications, 2015, 6, 10177.	5.8	359
868	Selective Formation of Zigzag Edges in Graphene Cracks. ACS Nano, 2015, 9, 9027-9033.	7.3	24
869	Graphene Nanomesh Formation by Fluorine Intercalation. Journal of Physical Chemistry C, 2015, 119, 29193-29200.	1.5	15
870	Anchoring superparamagnetic core–shells onto reduced graphene oxide: fabrication of Ni–carbon–rGO nanocomposite for effective adsorption and separation. RSC Advances, 2015, 5, 10033-10039.	1.7	11
871	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
872	RKKY interaction in graphene with a line defect. Journal of Physics Condensed Matter, 2015, 27, 046003.	0.7	6
873	Materials Meets Concepts in Moleculeâ€Based Electronics. Advanced Functional Materials, 2015, 25, 1933-1954.	7.8	47
874	Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures. Journal of Chemical Physics, 2015, 142, 101906.	1.2	38
875	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-312.	3.2	64

#	Article	IF	CITATIONS
876	Electron transport through a graphene quantum dot: the role of line defect. Applied Physics A: Materials Science and Processing, 2015, 118, 1211-1217.	1.1	2
877	Atomic Structure of Epitaxial Graphene Sidewall Nanoribbons: Flat Graphene, Miniribbons, and the Confinement Gap. Nano Letters, 2015, 15, 182-189.	4.5	67
878	Electrical Characteristics of Fieldâ€Effect Transistors based on Chemically Synthesized Graphene Nanoribbons. Advanced Electronic Materials, 2015, 1, 1400010.	2.6	32
879	Atomically Precise Graphene Nanoribbon Heterojunctions for Excitonic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 775-783.	1.5	34
880	Simulation of Graphene Nanoribbon Aggregation and Its Mediation by Edge Decoration. Journal of Physical Chemistry B, 2015, 119, 4766-4776.	1.2	7
881	Polyacrylonitrile Fibers Containing Graphene Oxide Nanoribbons. ACS Applied Materials & Interfaces, 2015, 7, 5281-5288.	4.0	41
882	Transport, Aharonov–Bohm, and Topological Effects in Graphene Molecular Junctions and Graphene Nanorings. Journal of Physical Chemistry C, 2015, 119, 11131-11142.	1.5	13
883	One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Nature Communications, 2015, 6, 6251.	5.8	167
884	Fano resonances in the conductance of graphene nanoribbons with side gates. Physical Review B, 2015, 91, .	1.1	17
885	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
886	Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods. Jom, 2015, 67, 44-52.	0.9	27
887	Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Physical Review B, 2015, 91, .	1.1	85
888	Formation of polyphenyl chains through hierarchical reactions: Ullmann coupling followed by cross-dehydrogenative coupling. Chemical Communications, 2015, 51, 495-498.	2.2	58
889	Critical Length Limiting Superlow Friction. Physical Review Letters, 2015, 114, 055501.	2.9	51
890	Tunable Organic Photocatalysts for Visible-Light-Driven Hydrogen Evolution. Journal of the American Chemical Society, 2015, 137, 3265-3270.	6.6	747
891	Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. International Journal of Mass Spectrometry, 2015, 377, 228-234.	0.7	25
892	Scanning probe microscopy and spectroscopy of graphene on metals. Physica Status Solidi (B): Basic Research, 2015, 252, 451-468.	0.7	23
893	Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene. Nanoscale, 2015, 7, 3263-3269.	2.8	25

#	Article	IF	CITATIONS
895	A theoretical study of asymmetric electron transport through linearly aromatic molecules. Physical Chemistry Chemical Physics, 2015, 17, 4558-4568.	1.3	4
896	Synthesis, structure and properties of C ₃ -symmetric heterosuperbenzene with three BN units. Chemical Communications, 2015, 51, 4368-4371.	2.2	82
897	Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnology, 2015, 10, 156-160.	15.6	414
898	Molecules–Oligomers–Nanowires–Graphene Nanoribbons: A Bottom-Up Stepwise On-Surface Covalent Synthesis Preserving Long-Range Order. Journal of the American Chemical Society, 2015, 137, 1802-1808.	6.6	221
899	Tunable doping of graphene nanoribbon arrays by chemical functionalization. Nanoscale, 2015, 7, 3572-3580.	2.8	19
900	Graphene for nanoelectronics. Japanese Journal of Applied Physics, 2015, 54, 040102.	0.8	31
901	Fabrication of Two-Dimensional PEDOT:PSS Nanosheets Through In Situ Formed Complexes. Nano, 2015, 10, 1550011.	0.5	4
902	Low-bias negative differential resistance effect in armchair graphene nanoribbon junctions. Applied Physics Letters, 2015, 106, .	1.5	15
903	Application and Uses of Graphene. , 2015, , 1-38.		27
904	Surfaceâ€Induced Selection During Inâ€Situ Photoswitching at the Solid/Liquid Interface. Angewandte Chemie - International Edition, 2015, 54, 4865-4869.	7.2	48
905	Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Physical Chemistry Chemical Physics, 2015, 17, 6925-6932.	1.3	54
907	Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study. RSC Advances, 2015, 5, 55762-55773.	1.7	75
908	Etching mechanisms of graphene nanoribbons in downstream H ₂ plasmas: insights from molecular dynamics simulations. Journal Physics D: Applied Physics, 2015, 48, 195202.	1.3	21
909	Graphene-based hybrid films for plasmonic sensing. Nanoscale, 2015, 7, 14561-14576.	2.8	46
910	Study of Nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance. Superlattices and Microstructures, 2015, 86, 355-362.	1.4	16
911	Nanocomposite coatings on cotton and silk fibers for enhanced electrical conductivity. Fibers and Polymers, 2015, 16, 1269-1275.	1.1	21
912	Low-temperature synthesis of few-layer graphene. Materials Letters, 2015, 160, 255-258.	1.3	6
913	Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets. Langmuir, 2015, 31, 8795-8801.	1.6	1

#	Article	IF	CITATIONS
914	Charge transfer and storage in nanostructures. Materials Science and Engineering Reports, 2015, 96, 1-69.	14.8	74
915	Graphene for Transparent Conductors. , 2015, , .		38
916	Graphene growth and properties on metal substrates. Journal of Physics Condensed Matter, 2015, 27, 303002.	0.7	86
917	Bottom-up fabrication of graphene on Ru(0001) via molecular self-assembly. Nanotechnology, 2015, 26, 295601.	1.3	5
918	Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 8872-8875.	6.6	213
919	On-Surface Synthesis of Carbon-Based Scaffolds and Nanomaterials Using Terminal Alkynes. Accounts of Chemical Research, 2015, 48, 2140-2150.	7.6	186
920	Surface-Confined Synthesis of One-Dimensional Schiff Base Polymers Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2015, 119, 16777-16784.	1.5	19
921	Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nature Communications, 2015, 6, 7397.	5.8	83
922	Adsorption of Ti atoms on zigzag silicene nanoribbons: influence on electric, magnetic, and thermoelectric properties. Journal Physics D: Applied Physics, 2015, 48, 215306.	1.3	6
923	Graft Polymerization from Surface. , 2015, , 870-877.		0
923 924	Craft Polymerization from Surface. , 2015, , 870-877. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297.	1.6	0
	High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional	1.6	
924	High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene		71
924 925	 High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons. Scientific Reports, 2015, 5, 7893. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 	1.6	71 5
924 925 926	 High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons. Scientific Reports, 2015, 5, 7893. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces. 	1.6 1.7	71 5 32
924 925 926 927	High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons. Scientific Reports, 2015, 5, 7893. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces. Nanoscale, 2015, 7, 13967-13973.	1.6 1.7 2.8	71 5 32 8
924 925 926 927 928	High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores. Scientific Reports, 2015, 5, 11297. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons. Scientific Reports, 2015, 5, 7893. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces. Nanoscale, 2015, 7, 13967-13973. Resolving Atomic Connectivity in Graphene Nanostructure Junctions. Nano Letters, 2015, 15, 5185-5190. Two dimensional polymerization of graphene oxide: Bottom-up approach. Materials Chemistry and	1.6 1.7 2.8 4.5	 71 5 32 8 71

#	ARTICLE Macroscopically Aligned Graphite Films Prepared from Iodine-Doped Stretchable Polyacetylene Films	IF	CITATIONS
932	Using Morphology-Retaining Carbonization. Journal of the American Chemical Society, 2015, 137, 9077-9087.	6.6	29
933	Atomically precise self-organization of perfectly ordered gadolinium–silicide nanomeshes controlled by anisotropic electromigration-induced growth on Si(1 1 0)-16 × 2 surfaces. Applied Surface Science, 2015, 349, 49-58.	3.1	5
934	Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Journal of the American Chemical Society, 2015, 137, 9870-9876.	6.6	545
935	Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light: Science and Applications, 2015, 4, e241-e241.	7.7	48
936	New advances in nanographene chemistry. Chemical Society Reviews, 2015, 44, 6616-6643.	18.7	1,212
937	Carbon-based nanomaterials. , 2015, , 203-231.		2
938	Graphene Edges and Beyond: Temperature-Driven Structures and Electromagnetic Properties. ACS Nano, 2015, 9, 4669-4674.	7.3	31
939	On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO ₂ (011). Chemical Communications, 2015, 51, 11276-11279.	2.2	36
940	On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling. Chemical Communications, 2015, 51, 12593-12596.	2.2	66
941	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	6.6	82
942	Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 6097-6103.	6.6	299
943	Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT. Journal of Chemical Theory and Computation, 2015, 11, 2003-2011.	2.3	69
944	Comment on "Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity― ACS Nano, 2015, 9, 3399-3403.	7.3	22
945	Reply to "Comment on â€~Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity'― ACS Nano, 2015, 9, 3404-3405.	7.3	18
946	Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight. Physical Chemistry Chemical Physics, 2015, 17, 10608-10614.	1.3	13
947	Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7, 8261-8283.	2.8	552
948	Fabrication and Optical Probing of Highly Extended, Ultrathin Graphene Nanoribbons in Carbon Nanotubes. ACS Nano, 2015, 9, 5034-5040.	7.3	36
949	Temperature Dependence of the Reconstruction of Zigzag Edges in Graphene. ACS Nano, 2015, 9, 4786-4795.	7.3	68

#	Article	IF	CITATIONS
950	Defect Control and <i>n</i> -Doping of Encapsulated Graphene by Helium-Ion-Beam Irradiation. Nano Letters, 2015, 15, 4006-4012.	4.5	61
951	Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges. Journal of Materials Science, 2015, 50, 5183-5190.	1.7	15
952	Synthesis of Surface Covalent Organic Frameworks via Dimerization and Cyclotrimerization of Acetyls. Journal of the American Chemical Society, 2015, 137, 4904-4907.	6.6	98
953	Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field. Journal of Physics Condensed Matter, 2015, 27, 145305.	0.7	33
954	On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 4022-4025.	6.6	278
955	Plasmonics in atomically thin materials. Faraday Discussions, 2015, 178, 87-107.	1.6	38
956	Graphene Composites Based Photodetectors. , 2015, , 193-222.		3
957	Directed self-assembly of end-functionalized nanofibers: from percolated networks to liquid crystal-like phases. Nanotechnology, 2015, 26, 205602.	1.3	6
958	Synthesis of Polybenzoquinolines as Precursors for Nitrogenâ€Doped Graphene Nanoribbons. Angewandte Chemie - International Edition, 2015, 54, 5883-5887.	7.2	25
959	9,9′-Anthryl-anthroxyl radicals: strategic stabilization of highly reactive phenoxyl radicals. Chemical Communications, 2015, 51, 6734-6737.	2.2	16
960	Formation of graphene nanoribbons and Y-junctions by hydrogen induced anisotropic etching. RSC Advances, 2015, 5, 35297-35301.	1.7	16
961	Magic Ratios for Connectivity-Driven Electrical Conductance of Graphene-like Molecules. Journal of the American Chemical Society, 2015, 137, 4469-4476.	6.6	101
962	Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. Synthetic Metals, 2015, 205, 6-10.	2.1	2
963	Two-Level Spatial Modulation of Vibronic Conductance in Conjugated Oligophenylenes on Boron Nitride. Nano Letters, 2015, 15, 2242-2248.	4.5	19
964	Curvature in graphene nanoribbons generates temporally and spatially focused electric currents. Nanoscale, 2015, 7, 8627-8635.	2.8	17
966	Self-Assembled Oligomeric Structures from 1,4-Benzenedithiol on Au(111) and the Formation of Conductive Linkers between Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 23042-23051.	1.5	20
967	Electronic structure and optical properties of boron-sulfur symmetric codoping in 4 × 4 graphene systems. European Physical Journal B, 2015, 88, 1.	0.6	11
968	Chemical Bonding and Electronic Properties of the Co Adatom and Dimer Interacting with Polyaromatic Hydrocarbons. Journal of Physical Chemistry C, 2015, 119, 24425-24438.	1.5	9

#	Article	IF	CITATIONS
969	Tailoring the transmission lineshape spectrum of zigzag graphene nanoribbon based heterojunctions via controlling their width and edge protrusions. Nanoscale, 2015, 7, 20003-20008.	2.8	11
970	Graphene-Based Photonics and Plasmonics. Nanostructure Science and Technology, 2015, , 93-126.	0.1	2
971	Bipolar spin-filtering effect in B- or N-doped zigzag graphene nanoribbons with asymmetric edge hydrogenation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2860-2865.	0.9	13
972	Optical field terahertz amplitude modulation by graphene nanoribbons. Nanoscale, 2015, 7, 19012-19017.	2.8	6
973	Direct oriented growth of armchair graphene nanoribbons on germanium. Nature Communications, 2015, 6, 8006.	5.8	157
974	Image potential states at chevron-shaped graphene nanoribbons /Au(111) interfaces. Physical Review B, 2015, 91, .	1.1	10
975	Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons. Nano Research, 2015, 8, 2988-2997.	5.8	7
976	Graphene nanoribbons: Relevance of etching process. Journal of Applied Physics, 2015, 117, 184303.	1.1	15
977	Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Nano Letters, 2015, 15, 5770-5777.	4.5	80
978	Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2, .	5.5	81
979	Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures. Carbon, 2015, 95, 833-842.	5.4	16
980	Tailoring the Reaction Path in the On-Surface Chemistry of Thienoacenes. Journal of Physical Chemistry C, 2015, 119, 22432-22438.	1.5	12
981	Tuning Porphyrin Assembly and Electrochemical Catalytic Activity with Halogen Substituents. Langmuir, 2015, 31, 11532-11538.	1.6	7
982	Surface-Activated Coupling Reactions Confined on a Surface. Accounts of Chemical Research, 2015, 48, 2765-2774.	7.6	218
983	Synthesis, Structure, and Properties of Graphene and Graphene Oxide. , 2015, , 29-94.		18
984	From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. ACS Nano, 2015, 9, 8997-9011.	7.3	127
985	Atomically controlled substitutional boron-doping of graphene nanoribbons. Nature Communications, 2015, 6, 8098.	5.8	400
986	Formation of Klein Edge Doublets from Graphene Monolayers. ACS Nano, 2015, 9, 8916-8922.	7.3	9

#	Article	IF	CITATIONS
987	I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons. Journal of Applied Physics, 2015, 117, .	1.1	2
988	A SPICE-Compatible Model of MOS-Type Graphene Nano-Ribbon Field-Effect Transistors Enabling Gate- and Circuit-Level Delay and Power Analysis Under Process Variation. IEEE Nanotechnology Magazine, 2015, 14, 1068-1082.	1.1	49
989	Surface-confined Ullmann coupling of thiophene substituted porphyrins. Nanotechnology, 2015, 26, 365602.	1.3	9
990	Elastic, plastic, and fracture mechanisms in graphene materials. Journal of Physics Condensed Matter, 2015, 27, 373002.	0.7	26
991	Graphene Quantum Rings Doped PEDOT:PSS Based Composite Layer for Efficient Performance of Optoelectronic Devices. Journal of Physical Chemistry C, 2015, 119, 19619-19627.	1.5	22
992	Sub-Nanometer Width Armchair Graphene Nanoribbon Energy Gap Atlas. Journal of Physical Chemistry Letters, 2015, 6, 3228-3235.	2.1	13
993	Synthesis, charge transport and device applications of graphene nanoribbons. Synthetic Metals, 2015, 210, 109-122.	2.1	30
994	Tuning the polarized quantum phonon transmission in graphene nanoribbons. Nanotechnology, 2015, 26, 305401.	1.3	5
995	Nanoscale reduction of graphene oxide under ambient conditions. Carbon, 2015, 95, 1069-1075.	5.4	38
996	Modulation of Electronic Structure of Armchair MoS ₂ Nanoribbon. Journal of Physical Chemistry C, 2015, 119, 22164-22171.	1.5	39
997	Ge- and Sn-Containing Polymers. , 2015, , 848-856.		1
998	Modulation of Electronic Structure of Armchair MoS2Nanoribbon. Journal of Physical Chemistry A, 2015, , 150902124434000.	1.1	1
999	Enhancement of thermoelectric properties of gamma-graphyne nanoribbons with edge modulation. European Physical Journal B, 2015, 88, 1.	0.6	6
1000	Switchable Negative Differential Resistance Induced by Quantum Interference Effects in Porphyrin-based Molecular Junctions. Journal of Physical Chemistry Letters, 2015, 6, 3950-3955.	2.1	26
1001	Boron–nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chemical Communications, 2015, 51, 15222-15236.	2.2	76
1002	Synthesis of Boron-Doped Polycyclic Aromatic Hydrocarbons by Tandem Intramolecular Electrophilic Arene Borylation. Organic Letters, 2015, 17, 6158-6161.	2.4	93
1003	Anti-stacking dense conversion of solid organic sodium salt particles into graphene with excellent electrode performance. RSC Advances, 2015, 5, 57576-57580.	1.7	4
1004	Aryl Halide C–C Coupling on Ge(001):H Surfaces. Journal of Physical Chemistry C, 2015, 119, 27478-27482.	1.5	11

#	Article	IF	CITATIONS
1005	Zigzag faceting and width refinement of graphene nanoribbons and nanoperforations via catalyzed edge-annealing on Cu(111). Solid State Communications, 2015, 224, 76-80.	0.9	1
1006	Ballistic Transport in Graphene Antidot Lattices. Nano Letters, 2015, 15, 8402-8406.	4.5	70
1007	High performance bipolar spin filtering and switching functions of poly-(terphenylene-butadiynylene) between zigzag graphene nanoribbon electrodes. RSC Advances, 2015, 5, 96455-96463.	1.7	22
1008	Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons. ACS Nano, 2015, 9, 12035-12044.	7.3	81
1009	Effects of vertical strain on zigzag graphene nanoribbon with a topological line defect. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 67, 116-120.	1.3	5
1010	Graphene nanoribbons formed from n-alkane by thermal dehydrogenation on Au(111) surface. Surface Science, 2015, 635, 44-48.	0.8	9
1011	Tracking and Removing Br during the On-Surface Synthesis of a Graphene Nanoribbon. Journal of Physical Chemistry C, 2015, 119, 486-493.	1.5	77
1012	C–H arylation of triphenylene, naphthalene and related arenes using Pd/C. Chemical Science, 2015, 6, 1816-1824.	3.7	87
1013	Strain-induced phase transition and electron spin-polarization in graphene spirals. Scientific Reports, 2015, 4, 5699.	1.6	17
1014	High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes. Scientific Reports, 2014, 4, 6157.	1.6	32
1015	Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 2015, 40, 948-979.	3.8	412
1016	From two-dimensional materials to heterostructures. Progress in Surface Science, 2015, 90, 21-45.	3.8	123
1017	BN Heterosuperbenzenes: Synthesis and Properties. Chemistry - A European Journal, 2015, 21, 3528-3539.	1.7	379
1019	Bottomâ€Up Synthesis of Chemically Precise Graphene Nanoribbons. Chemical Record, 2015, 15, 295-309.	2.9	151
1020	Graphene nanoribbons formed by a sonochemical graphene unzipping using flavin mononucleotide as a template. Carbon, 2015, 81, 629-638.	5.4	38
1021	Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. Journal of Materials Science, 2015, 50, 1317-1322.	1.7	6
1022	Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption. Journal of Alloys and Compounds, 2015, 623, 186-191.	2.8	31
1023	Conductance recovery and spin polarization in boron and nitrogen co-doped graphene nanoribbons. Carbon, 2015, 81, 339-346.	5.4	14

#	Article	IF	CITATIONS
1024	Metal atalyzed Cascade Reactions: Useful Synthetic Tools for the Preparation of Polycyclic Arenes. Chemical Record, 2015, 15, 266-279.	2.9	20
1025	Length dependence of electron transport through molecular wires – a first principles perspective. Physical Chemistry Chemical Physics, 2015, 17, 77-96.	1.3	46
1026	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429
1027	Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells. Scientific Reports, 2014, 4, 6579.	1.6	24
1028	All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes. Scientific Reports, 2014, 4, 3983.	1.6	42
1029	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
1030	Current Status of Reliability in Extended and Beyond CMOS Devices. IEEE Transactions on Device and Materials Reliability, 2016, 16, 647-666.	1.5	24
1031	Current-induced runaway vibrations in dehydrogenated graphene nanoribbons. Beilstein Journal of Nanotechnology, 2016, 7, 68-74.	1.5	4
1032	Tunable spatial mode converters and optical diodes for graphene parallel plate waveguides. Optics Express, 2016, 24, 23883.	1.7	11
1033	Tuning of the electronic properties of H-passivated armchair graphene nanoribbons by mild border oxidation: Theoretical study on periodic models. International Journal of Quantum Chemistry, 2016, 116, 1281-1284.	1.0	1
1034	Extended Oâ€Doped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2016, 128, 6051-6055.	1.6	21
1035	Large area self-ordered parallel C60 molecular nanowire arrays on Si(110) surfaces. Carbon, 2016, 107, 925-932.	5.4	10
1036	Dehydrogenative Homocoupling of Alkyl Chains on Cu(110). Chemistry - A European Journal, 2016, 22, 1918-1921.	1.7	15
1037	Postâ€Synthetic Decoupling of Onâ€Surfaceâ€Synthesized Covalent Nanostructures from Ag(111). Angewandte Chemie - International Edition, 2016, 55, 7650-7654.	7.2	39
1038	A Photoresponsive Surface Covalent Organic Framework: Surfaceâ€Confined Synthesis, Isomerization, and Controlled Guest Capture and Release. Chemistry - A European Journal, 2016, 22, 6768-6773.	1.7	79
1040	Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterialsâ€Based Electrical Sensors towards Explosives Vapors Detection. Advanced Functional Materials, 2016, 26, 2406-2425.	7.8	62
1041	Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386.	0.8	13
1042	Sequence-defined oligo(<i>ortho</i> -arylene) foldamers derived from the benzannulation of <i>ortho</i> (arylene ethynylene)s. Chemical Science, 2016, 7, 6357-6364.	3.7	40

#	Article	IF	CITATIONS
1043	The role of the substrate structure in the on-surface synthesis of organometallic and covalent oligophenylene chains. Physical Chemistry Chemical Physics, 2016, 18, 20627-20634.	1.3	32
1044	The unique Raman fingerprint of boron nitride substitution patterns in graphene. Physical Chemistry Chemical Physics, 2016, 18, 20270-20275.	1.3	9
1045	OberflÃ ¤ henâ€Dominoreaktion: Glaserâ€Kupplung und dehydrierende Kupplung von Dicarbonsären unter Bildung eines polymeren Bisacylperoxids. Angewandte Chemie, 2016, 128, 9929-9934.	1.6	7
1046	Isolated pentagons induced enhancement of conductance in ultra-narrow armchair graphene nanoribbon junctions. Journal of Applied Physics, 2016, 120, 164303.	1.1	5
1047	Cyclodehydrofluorination of fluoroarenes on metal oxides: Toward bottomâ€up synthesis of carbon nanostructures on insulating surfaces. Physica Status Solidi (B): Basic Research, 2016, 253, 2473-2477.	0.7	15
1048	Interplay of Chemical and Electronic Structure on the Single-Molecule Level in 2D Polymerization. ACS Nano, 2016, 10, 11511-11518.	7.3	35
1049	Lower Electric Field-Driven Magnetic Phase Transition and Perfect Spin Filtering in Graphene Nanoribbons by Edge Functionalization. Journal of Physical Chemistry Letters, 2016, 7, 5049-5055.	2.1	39
1050	Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons. New Journal of Physics, 2016, 18, 123033.	1.2	2
1051	CO2 adsorption on Fe-doped graphene nanoribbons: First principles electronic transport calculations. AIP Advances, 2016, 6, .	0.6	21
1052	Experimental demonstration of graphene plasmons working close to the near-infrared window. Optics Letters, 2016, 41, 5345.	1.7	28
1053	Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells. Chinese Physics B, 2016, 25, 098101.	0.7	1
1054	Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures. CheM, 2016, 1, 531-556.	5.8	78
1055	Sub-5 nm, globally aligned graphene nanoribbons on Ge(001). Applied Physics Letters, 2016, 108, .	1.5	31
1056	Electronic, transport, and magnetic properties of punctured carbon nanotubes. Physical Review B, 2016, 94, .	1.1	3
1057	Origin of multiple band gap values in single width nanoribbons. Scientific Reports, 2016, 6, 36168.	1.6	6
1058	Toward printing molecular nanostructures from microstructured samples in ultrahigh vacuum. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 011801.	0.6	1
1059	State-space reduction and equivalence class sampling for a molecular self-assembly model. Royal Society Open Science, 2016, 3, 150681.	1.1	5
1060	Nanoribbons: From fundamentals to state-of-the-art applications. Applied Physics Reviews, 2016, 3, .	5.5	77

#	Article	IF	CITATIONS
1061	Aryl Radical Geometry Determines Nanographene Formation on Au(111). Angewandte Chemie, 2016, 128, 13246-13249.	1.6	10
1062	Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures. Journal of Physical Chemistry C, 2016, 120, 29463-29475.	1.5	17
1063	Mechanism of stabilization and magnetization of impurity-doped zigzag graphene nanoribbons. Journal of Applied Physics, 2016, 120, .	1.1	6
1064	Graphene nanoribbons epitaxy on boron nitride. Applied Physics Letters, 2016, 108, .	1.5	21
1065	Electronic properties of NH4-adsorbed graphene nanoribbon as a promising candidate for a gas sensor. AIP Advances, 2016, 6, .	0.6	5
1066	Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3. Scientific Reports, 2016, 6, 29009.	1.6	6
1068	Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Applied Physics Letters, 2016, 109, .	1.5	20
1069	Optical properties of graphene nanoflakes: Shape matters. Journal of Chemical Physics, 2016, 144, 224305.	1.2	41
1070	Bioelectronics with two-dimensional materials. Microelectronic Engineering, 2016, 161, 18-35.	1.1	47
1071	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. ACS Nano, 2016, 10, 4847-4856.	7.3	52
1072	Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale, 2016, 8, 8749-8760.	2.8	37
1073	Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods. Australian Journal of Chemistry, 2016, 69, 960.	0.5	10
1074	Introduction to Boron Nanostructures. , 2016, , 1-12.		1
1075	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186
1076	Ullmann Reaction of Aryl Chlorides on Various Surfaces and the Application in Stepwise Growth of 2D Covalent Organic Frameworks. Organic Letters, 2016, 18, 1282-1285.	2.4	56
1077	Confined Synthesis of Organometallic Chains and Macrocycles by Cu–O Surface Templating. ACS Nano, 2016, 10, 3747-3754.	7.3	73
1078	Defective graphene and nanoribbons: electronic, magnetic and structural properties. European Physical Journal B, 2016, 89, 1.	0.6	10
1079	Fabrication of three terminal devices by ElectroSpray deposition of graphene nanoribbons. Carbon, 2016, 104, 112-118.	5.4	20

#	Article	IF	CITATIONS
1080	The stereoselective synthesis of dienes through dehalogenative homocoupling of terminal alkenyl bromides on Cu(110). Chemical Communications, 2016, 52, 6009-6012.	2.2	26
1081	Structural Variation in Surface-Supported Synthesis by Adjusting the Stoichiometric Ratio of the Reactants. ACS Nano, 2016, 10, 4228-4235.	7.3	55
1082	Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2016, 7, 1526-1533.	2.1	47
1083	Requirement on Aromatic Precursor for Graphene Formation. Journal of Physical Chemistry C, 2016, 120, 9821-9825.	1.5	11
1084	Dual response of graphene-based ultra-small molecular junctions to defect engineering. Nano Research, 2016, 9, 1480-1488.	5.8	10
1085	Room temperature on-surface synthesis of two-dimensional imine polymers at the solid/liquid interface: concentration takes control. Chemical Communications, 2016, 52, 6609-6612.	2.2	63
1086	Scanning tunneling microscopy and density functional theory investigations on molecular self-assembly of graphene on Ru(0 0 0 1). Applied Surface Science, 2016, 367, 424-431.	3.1	7
1087	Driving Forces for Covalent Assembly of Porphyrins by Selective C–H Bond Activation and Intermolecular Coupling on a Copper Surface. Journal of the American Chemical Society, 2016, 138, 5837-5847.	6.6	30
1088	Macrocyclic oligoarylamines as hole- and spin-containing scaffolds for molecule-based electronics. Journal of Materials Chemistry C, 2016, 4, 4614-4625.	2.7	28
1089	Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond Formation. Journal of the American Chemical Society, 2016, 138, 5585-5593.	6.6	67
1090	Î Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor. Journal of the American Chemical Society, 2016, 138, 5685-5692.	6.6	47
1091	Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces. Nanoscale, 2016, 8, 11503-11510.	2.8	11
1092	Graphene-based nanoelectronic biosensors. Journal of Industrial and Engineering Chemistry, 2016, 38, 13-22.	2.9	82
1093	On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures. ACS Nano, 2016, 10, 5490-5498.	7.3	97
1094	A facile biomass based approach towards hierarchically porous nitrogen-doped carbon aerogels. RSC Advances, 2016, 6, 83613-83618.	1.7	18
1095	Size dependent electronic and magnetic properties of ultra thin graphene nanoribbons. Materials Research Express, 2016, 3, 095007.	0.8	4
1096	Catalyst-free bottom-up growth of graphene nanofeatures along with molecular templates on dielectric substrates. Nanoscale, 2016, 8, 17022-17029.	2.8	20
1098	(Invited) Emerging Graphene Device Technologies. ECS Transactions, 2016, 75, 17-35.	0.3	1

#	Article	IF	CITATIONS
1099	Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide. Physical Chemistry Chemical Physics, 2016, 18, 29086-29091.	1.3	15
1100	Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide. Nanoscale, 2016, 8, 17976-17983.	2.8	16
1101	Simulation of structure and stability of carbon nanoribbons. Russian Journal of General Chemistry, 2016, 86, 1777-1786.	0.3	2
1102	Novel Strategy of Edge Saturation Hamiltonian for Graphene Nanoribbon Devices. IEEE Transactions on Electron Devices, 2016, 63, 4514-4520.	1.6	10
1103	Synthesis of Graphene Nanoribbons via the Topochemical Polymerization and Subsequent Aromatization of a Diacetylene Precursor. CheM, 2016, 1, 78-90.	5.8	87
1104	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. Journal of the American Chemical Society, 2016, 138, 14121-14128.	6.6	28
1105	Fused Helicene Chains: Towards Twisted Graphene Nanoribbons. Chemistry - A European Journal, 2016, 22, 18227-18235.	1.7	23
1106	Nanoporous Carbon Derived from Core–Shells@Sheets through the Template-Activation Method for Effective Adsorption of Dyes. ACS Omega, 2016, 1, 491-497.	1.6	5
1107	Quasi-ballistic transport model for top- and back-gated graphene nanoribbon field-effect transistors. Japanese Journal of Applied Physics, 2016, 55, 04EK01.	0.8	3
1108	Roomâ€Temperature Synthesis of Covalent Organic Frameworks with a Boronic Ester Linkage at the Liquid/Solid Interface. Chemistry - A European Journal, 2016, 22, 18412-18418.	1.7	39
1109	Synthesis of graphene nanoribbons with a defined mixed edge-site sequence by surface assisted polymerization of (1,6)-dibromopyrene on Ag(110). Nanoscale, 2016, 8, 17843-17853.	2.8	20
1110	Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Journal of the American Chemical Society, 2016, 138, 10136-10139.	6.6	83
1111	Graphene Transistors Gated by Salted Proton Conductor. Advanced Electronic Materials, 2016, 2, 1600122.	2.6	12
1112	Optical properties and charge transfer effects in single-walled carbon nanotubes filled with functionalized adamantane molecules. Carbon, 2016, 109, 87-97.	5.4	15
1113	Synthesis of ladder-type graphene ribbon oligomers from pyrene units. Tetrahedron Letters, 2016, 57, 4157-4161.	0.7	24
1114	Facile preparation of Au(111)/mica substrates for high-quality graphene nanoribbon synthesis. Physica Status Solidi (B): Basic Research, 2016, 253, 2362-2365.	0.7	3
1115	Heterostructures through Divergent Edge Reconstruction in Nitrogenâ€Doped Segmented Graphene Nanoribbons. Chemistry - A European Journal, 2016, 22, 13037-13040.	1.7	44
1116	Negative differential resistance effect in similar right triangle graphene devices. Journal of Computational Electronics, 2016, 15, 1284-1290.	1.3	1

ARTICLE IF CITATIONS # A facile method for the synthesis of transfer-free graphene from co-deposited nickel–carbon layers. 1117 5.4 9 Carbon, 2016, 109, 154-162. Synthesis Methods for Graphene., 2016, , 49-64. Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science, 2016, 3, 1500287. 5.6 1119 131 The importance of edges in reactive ion etched graphene nanodevices. Physica Status Solidi - Rapid 1.2 Research Letters, 2016, 10, 68-74. Growth and optical properties of colloidal graphene quantum dots. Physica Status Solidi - Rapid 1121 1.2 14 Research Letters, 2016, 10, 91-101. Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B, 2016, 1.1 94, . Graphene and Its Hybrids as Electrode Materials for High-Performance Lithium-Ion Batteries., 2016,, 1123 0 133-152. Optoelectronic and Transport Properties of Gapped Graphene., 2016, , 489-504. 1124 Electronic Properties of Carbon Nanotubes and Their Applications in Electrochemical Sensors and 1125 0 Biosensors., 2016,, 653-664. Two-Dimensional Chirality Transfer via On-Surface Reaction. Journal of the American Chemical 6.6 34 Society, 2016, 138, 11743-11748. Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons. ACS Nano, 2016, 10, 1127 7.3155 9000-9008. Self-organized growth of graphene nanomesh with increased gas sensitivity. Nanoscale, 2016, 8, 2.8 15490-15496. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution 1129 5.2 52 Atomic Force Microscopy. Small, 2016, 12, 5303-5311. Synthesis of NBN-Type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif. Journal of the American Chemical Society, 2016, 138, 11606-11615. 6.6 Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. Journal of the 1131 6.6 81 American Chemical Society, 2016, 138, 16696-16702. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111). Scientific Reports, 2016, 6, 23439. Goldâ€"Organic Hybrids: Onâ€Surface Synthesis and Perspectives. Advanced Materials, 2016, 28, 1133 11.1 30 10492-10498. Covalent Assembly and Characterization of Nonsymmetrical Singleâ€Molecule Nodes. Angewandte 1134 Chemie - International Edition, 2016, 55, 13724-13728.

#	Article	IF	CITATIONS
1135	Magnetoelectronic and optical properties of nonuniform graphene nanoribbons. Carbon, 2016, 109, 883-895.	5.4	10
1136	Aryl Radical Geometry Determines Nanographene Formation on Au(111). Angewandte Chemie - International Edition, 2016, 55, 13052-13055.	7.2	41
1137	Covalent Assembly and Characterization of Nonsymmetrical Singleâ€Molecule Nodes. Angewandte Chemie, 2016, 128, 13928-13932.	1.6	0
1138	Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations. Molecular Simulation, 2016, 42, 1512-1518.	0.9	6
1139	Exploring the stability and electronic structure of beryllium and sulphur co-doped graphene: a first principles study. RSC Advances, 2016, 6, 88392-88402.	1.7	19
1140	Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties. Russian Physics Journal, 2016, 59, 633-639.	0.2	17
1141	Surface-assisted diastereoselective Ullmann coupling of bishelicenes. Chemical Communications, 2016, 52, 12694-12697.	2.2	28
1142	Effect of electron injection in copper-contacted graphene nanoribbons. Nano Research, 2016, 9, 2735-2746.	5.8	10
1143	Optical Unzipping of Carbon Nanotubes in Liquid Media. Journal of Physical Chemistry C, 2016, 120, 16985-16993.	1.5	21
1144	Potential Application of Novel Boron-Doped Graphene Nanoribbon as Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2016, 120, 17427-17434.	1.5	131
1145	New Methods in Aqueous Graphene (Graphene Oxide) Synthesis for Biosensing. , 2016, , 305-326.		0
1146	High-Quality Graphene Sheets from Graphene Oxide Hot Pressing and Its Applications. , 2016, , 393-402.		1
1147	Synthesis and Application of Graphene Nanoribbons. , 2016, , 47-58.		0
1148	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
1149	Electronic transport in graphene nanoribbons with sublattice-asymmetric doping. Physical Review B, 2016, 93, .	1.1	11
1150	First-principles study of size- and edge-dependent properties of MXene nanoribbons. Physical Review B, 2016, 93, .	1.1	72
1151	Limits of stability in supported graphene nanoribbons subject to bending. Physical Review B, 2016, 93, .	1.1	5
1152	Recognizing nitrogen dopant atoms in graphene using atomic force microscopy. Physical Review B, 2016, 93, .	1.1	12

#	Article	IF	CITATIONS
1153	Carbon Tetragons as Definitive Spin Switches in Narrow Zigzag Graphene Nanoribbons. Physical Review Letters, 2016, 116, 026802.	2.9	51
1154	Physical properties of low-dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi> carbon nanostructures. Reviews of Modern Physics, 2016, 88, .</mml:mrow></mml:msup></mml:mrow></mml:math>	> ≛6 2∰l:mr	o v øøx mmki
1155	Selective doping of nitrogen into carbon materials without catalysts. Journal of Materials Science, 2016, 51, 8900-8915.	1.7	20
1156	Carbon Materials for Supercapacitors. Nanostructure Science and Technology, 2016, , 271-315.	0.1	7
1157	Spin-charge order and excitonic effects in sawtooth-like graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3092-3098.	0.9	2
1158	Onâ€5urface Domino Reactions: Glaser Coupling and Dehydrogenative Coupling of a Biscarboxylic Acid To Form Polymeric Bisacylperoxides. Angewandte Chemie - International Edition, 2016, 55, 9777-9782.	7.2	50
1159	Two-Dimensional Phosphorus Carbide: Competition between sp ² and sp ³ Bonding. Nano Letters, 2016, 16, 3247-3252.	4.5	137
1160	2D Materials Beyond Graphene for Highâ€₽erformance Energy Storage Applications. Advanced Energy Materials, 2016, 6, 1600671.	10.2	436
1161	Hydroxyl induced edge magnetism and metallicity in armchair MoS ₂ nanoribbons. Journal Physics D: Applied Physics, 2016, 49, 115303.	1.3	3
1162	The Antibacterial Applications of Graphene and Its Derivatives. Small, 2016, 12, 4165-4184.	5.2	188
1163	Theory of Magnetism in Graphitic Materials. Springer Series in Materials Science, 2016, , 1-24.	0.4	3
1164	Building Pentagons into Graphenic Structures by On-Surface Polymerization and Aromatic Cyclodehydrogenation of Phenyl-Substituted Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2016, 120, 17588-17593.	1.5	24
1165	Graphene Synthesis. , 2016, , 19-61.		2
1166	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie - International Edition, 2016, 55, 9881-9885.	7.2	23
1167	Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111). ACS Nano, 2016, 10, 8006-8011.	7.3	111
1168	Energy gaps of atomically precise armchair graphene sidewall nanoribbons. Physical Review B, 2016, 93,	1.1	54
1169	Boron and nitrogen doping in graphene antidot lattices. Physical Review B, 2016, 93, .	1.1	7
1170	On-surface molecular nanoarchitectonics: From self-assembly to directed assembly. Japanese Journal of Applied Physics, 2016, 55, 1102AA.	0.8	40

#	Article	IF	Citations
1171	Chemical principles of single-molecule electronics. Nature Reviews Materials, 2016, 1, .	23.3	442
1172	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	23.3	925
1173	Thermodynamics of an Electrocyclic Ring-Closure Reaction on Au(111). Journal of Physical Chemistry C, 2016, 120, 21716-21721.	1.5	23
1174	Oscillating edge states in one-dimensional MoS2 nanowires. Nature Communications, 2016, 7, 12904.	5.8	57
1175	Excitonic States in Narrow Armchair Graphene Nanoribbons on Gold Surfaces. Journal of Physical Chemistry C, 2016, 120, 26168-26172.	1.5	14
1177	Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays. Nature Communications, 2016, 7, 11797.	5.8	43
1178	Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons. Scientific Reports, 2016, 6, 24860.	1.6	8
1179	Giant edge state splitting at atomically precise graphene zigzag edges. Nature Communications, 2016, 7, 11507.	5.8	207
1180	Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nature Communications, 2016, 7, 12711.	5.8	71
1181	Spin polarization current induced by hydrogen hybrid within closed hexagon graphene nanoribbon devices. Modern Physics Letters B, 2016, 30, 1650333.	1.0	1
1182	Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Journal of the American Chemical Society, 2016, 138, 15488-15496.	6.6	129
1183	A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules. Nature Communications, 2016, 7, 11637.	5.8	60
1184	Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B, 2016, 4, 7813-7831.	2.9	140
1185	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie, 2016, 128, 10035-10039.	1.6	9
1186	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
1187	Ullmann-like reactions for the synthesis of complex two-dimensional materials. Nanotechnology, 2016, 27, 442501.	1.3	2
1188	Wave-front Transformation with Gradient Metasurfaces. Physical Review X, 2016, 6, .	2.8	183
1189	Thermoelectric phenomena in chemically synthesized graphene nanoribbons with substitution atoms and functional groups. Physica Status Solidi (B): Basic Research, 2016, 253, 2523-2527.	0.7	1

ARTICLE IF CITATIONS Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic 1190 3.1 10 Properties. Nanoscale Research Letters, 2016, 11, 456. Structurally uniform and atomically precise carbon nanostructures. Nature Reviews Materials, 2016, 1191 23.3 1, . A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics. 1192 0.7 5 Journal of Physics Condensed Matter, 2016, 28, 505303. Templating for hierarchical structure control in carbon materials. Nanoscale, 2016, 8, 18828-18848. 34 Anomalous transport properties in boron and phosphorus co-doped armchair graphene nanoribbons. 1194 1.3 6 Nanotechnology, 2016, 27, 47LT01. Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696. 5.2 836 Thermal selectivity of intermolecular versus intramolecular reactions on surfaces. Nature 1196 5.8 66 Communications, 2016, 7, 11002. Band gap engineering of graphene: From the point view of polymerization of porphyrins., 2016, , . 1197 Theoretical Analysis of Pseudodegenerate Zero-Energy Modes in Vacancy-Centered Hexagonal 1198 0.7 8 Armchair Nanographene. Journal of the Physical Society of Japan, 2016, 85, 084703. First-principles study on bottom-up fabrication process of atomically precise graphene nanoribbons. 1199 0.8 Japanese Journal of Applied Physics, 2016, 55, 06GF05. Direct Growth of Patterned Graphene. Small, 2016, 12, 1440-1445. 1200 5.2 15 Edge Functionalization of Graphene and Twoâ€Dimensional Covalent Organic Polymers for Energy 11.1 148 Conversion and Storage. Advanced Materials, 2016, 28, 6253-6261. Efficient Bottomâ€Up Preparation of Graphene Nanoribbons by Mild Suzuki–Miyaura Polymerization of 1202 1.7 55 Simple Triaryl Monomers. Chemistry - A European Journal, 2016, 22, 9116-9120. Chemistry at the Edge of Graphene. ChemPhysChem, 2016, 17, 785-801. 1203 1.0 Postsynthetische Entkopplung oberflÄchensynthetisierter kovalenter Nanostrukturen von Ag(111). 1204 1.6 8 Angewandte Chemie, 2016, 128, 7780-7784. Recent advances in experimental basic research on graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023001. The hierarchical construction of cross-junctions of molecular wires with covalent and noncovalent 1206 2.25 interactions at the liquid/solid interface. Chemical Communications, 2016, 52, 8317-8320. Ballistic electron propagation through periodic few-layer graphene nanostructures. Physica E: 1.3 Low-Dimensional Systems and Nanostructures, 2016, 84, 60-70.

#	Article	IF	CITATIONS
1208	Stable and metallic borophene nanoribbons from first-principles calculations. Journal of Materials Chemistry C, 2016, 4, 6380-6385.	2.7	75
1209	Growth and low-energy electron microscopy characterizations of graphene and hexagonal boron nitride. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 155-176.	1.8	20
1210	Organisation and ordering of 1D porphyrin polymers synthesised by on-surface Glaser coupling. Chemical Communications, 2016, 52, 10342-10345.	2.2	28
1211	Energy band gaps in graphene nanoribbons with corners. Europhysics Letters, 2016, 114, 48001.	0.7	9
1212	Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach. Journal of Physical Chemistry Letters, 2016, 7, 2478-2482.	2.1	33
1213	Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures. ACS Nano, 2016, 10, 7023-7030.	7.3	150
1214	Tuning electronic transport of zigzag graphene nanoribbons by ordered B or N atom doping. Journal of Computational Electronics, 2016, 15, 891-897.	1.3	2
1215	Size Control Methods and Size-Dependent Properties of Graphene. , 2016, , 27-40.		0
1216	Adsorption and Catalysis of Graphene in Environmental Remediation. , 2016, , 59-70.		2
1217	A facile method to prepare porous graphene with tunable structure as electrode materials for immobilization of glucose oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 26-33.	2.3	9
1218	On-Surface Synthesis of Linear Polyphenyl Wires Guided by Surface Steric Effect. Journal of Physical Chemistry C, 2016, 120, 6619-6624.	1.5	32
1219	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	7.3	132
1220	Ullmann coupling reaction of aryl chlorides on Au(111) using dosed Cu as a catalyst and the programmed growth of 2D covalent organic frameworks. Chemical Communications, 2016, 52, 8726-8729.	2.2	46
1221	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
1222	Spectacular enhancement of thermoelectric phenomena in chemically synthesized graphene nanoribbons with substitution atoms. Physical Chemistry Chemical Physics, 2016, 18, 18246-18254.	1.3	10
1223	Thin film growth of aromatic rod-like molecules on graphene. Nanotechnology, 2016, 27, 292001.	1.3	21
1224	On the dispersion systems of graphene-like two-dimensional materials: From fundamental laws to engineering guidelines. Carbon, 2016, 107, 774-782.	5.4	28
1225	Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. Journal of the American Chemical Society, 2016, 138, 9137-9144.	6.6	181

#	Article	IF	CITATIONS
1226	Onâ€ S urface Synthesis of Atomically Precise Graphene Nanoribbons. Advanced Materials, 2016, 28, 6222-6231.	11.1	410
1227	Controllable Fabrication of Nanostructured Graphene Towards Electronics. Advanced Electronic Materials, 2016, 2, 1500456.	2.6	22
1228	Extended Oâ€Doped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2016, 55, 5947-5951.	7.2	47
1229	Coarse-grained molecular simulation of self-assembly nanostructures of CTAB on nanoscale graphene. Molecular Simulation, 2016, 42, 31-38.	0.9	15
1230	Transition Metals Trigger On-Surface Ullmann Coupling Reaction: Intermediate, Catalyst and Template. Advances in Atom and Single Molecule Machines, 2016, , 23-42.	0.0	6
1231	Bottom-Up Synthesis of <i>N</i> = 13 Sulfur-Doped Graphene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 2684-2687.	1.5	119
1232	Reversible Bergman cyclization by atomic manipulation. Nature Chemistry, 2016, 8, 220-224.	6.6	169
1233	Pyridine derivative/graphene nanoribbon composites as molecularly tunable heterogeneous electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 5040-5047.	1.3	11
1234	All-Graphene Planar Double-Quantum-Dot Resonant Tunneling Diodes. IEEE Journal of the Electron Devices Society, 2016, 4, 30-39.	1.2	14
1235	Bottom-Up Synthesis of Metalated Carbyne. Journal of the American Chemical Society, 2016, 138, 1106-1109.	6.6	104
1236	Subsurface-Controlled Angular Rotation: Triphenylene Molecules on Au(111) Substrates. Journal of Physical Chemistry C, 2016, 120, 1615-1622.	1.5	22
1237	Novel poly(triphenylamine- <i>alt</i> -fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation. Polymer Chemistry, 2016, 7, 1505-1516.	1.9	24
1238	On-Surface Synthesis. Advances in Atom and Single Molecule Machines, 2016, , .	0.0	21
1239	Bottom-up fabrication of graphene nanostructures on Ru\$left(10ar{1}0ight)\$. Nanotechnology, 2016, 27, 055602.	1.3	4
1240	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
1241	Single-molecule insight into Wurtz reactions on metal surfaces. Physical Chemistry Chemical Physics, 2016, 18, 2730-2735.	1.3	31
1242	Nitrogen Doping Position-Dependent Rectification of Spin-Polarized Current and Realization of Multifunction in Zigzag Graphene Nanoribbons with Asymmetric Edge Hydrogenation. Journal of Electronic Materials, 2016, 45, 1165-1174.	1.0	6
1243	Elongated Silicon–Carbon Bonds at Graphene Edges. ACS Nano, 2016, 10, 142-149.	7.3	20

#	Article	IF	CITATIONS
1244	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
1245	Graphene Functionalization forÂBiosensor Applications. , 2016, , 85-141.		43
1246	On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016, 531, 489-492.	13.7	1,154
1247	Spintronics with graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2016, 10, 75-90.	1.2	22
1248	Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials, 2016, 26, 2594-2608.	7.8	400
1249	Synthesis of graphene. International Nano Letters, 2016, 6, 65-83.	2.3	516
1250	Direct synthesis of highly conducting graphene nanoribbon thin films from graphene ridges and wrinkles. Acta Materialia, 2016, 107, 96-101.	3.8	7
1251	Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors. Journal of Physical Chemistry C, 2016, 120, 3791-3797.	1.5	11
1252	Sodium ion battery anode properties of designed graphene-layers synthesized from polycyclic aromatic hydrocarbons. RSC Advances, 2016, 6, 22069-22073.	1.7	9
1253	Graphene-plasmon polaritons: From fundamental properties to potential applications. Frontiers of Physics, 2016, 11, 1.	2.4	147
1254	Surface-Confined Polymerization of Halogenated Polyacenes: The Case of Dibromotetracene on Ag(110). Journal of Physical Chemistry C, 2016, 120, 4909-4918.	1.5	29
1255	A theoretical investigation on the transport properties of armchair biphenylene nanoribbons. Chemical Physics Letters, 2016, 648, 97-101.	1.2	8
1256	Bottom-Up Fabrication of Two-Dimensional Polymers on Solid Surfaces. Advances in Atom and Single Molecule Machines, 2016, , 199-219.	0.0	1
1257	Excited state analysis of absorption processes in metal decorated graphene nanoribbons. RSC Advances, 2016, 6, 20565-20570.	1.7	9
1258	Synthesis of Atomically Precise Graphene-Based Nanostructures: A Simulation Point of View. Advances in Atom and Single Molecule Machines, 2016, , 237-268.	0.0	5
1259	Surface-Controlled Mono/Diselective <i>ortho</i> C–H Bond Activation. Journal of the American Chemical Society, 2016, 138, 2809-2814.	6.6	120
1260	Graphene nanodevices for DNA sequencing. Nature Nanotechnology, 2016, 11, 127-136.	15.6	506
1261	Reaction mechanisms for on-surface synthesis of covalent nanostructures. Journal of Physics Condensed Matter, 2016, 28, 083002.	0.7	47

#	Article	IF	CITATIONS
1262	Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography. Journal of Magnetism and Magnetic Materials, 2016, 407, 273-278.	1.0	8
1263	Molecular Lifting, Twisting, and Curling during Metal-Assisted Polycyclic Hydrocarbon Dehydrogenation. Journal of the American Chemical Society, 2016, 138, 3395-3402.	6.6	12
1264	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
1265	Superlubricity of graphene nanoribbons on gold surfaces. Science, 2016, 351, 957-961.	6.0	302
1266	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC Advances, 2016, 6, 21954-21960.	1.7	24
1267	The growth mechanism of few-layer graphene in the arc discharge process. Carbon, 2016, 102, 494-498.	5.4	62
1268	Magnetism of N-doped graphene nanoribbons with zigzag edges from bottom-up fabrication. RSC Advances, 2016, 6, 10017-10023.	1.7	16
1269	Graphene nanoribbons: fabrication, properties and devices. Journal Physics D: Applied Physics, 2016, 49, 143001.	1.3	175
1270	Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016, 3, 186-207.	6.4	127
1271	Tetracene Formation by On-Surface Reduction. ACS Nano, 2016, 10, 4538-4542.	7.3	60
1272	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
1273	Unzipping of carbon nanotubes is geometry-dependent. Nanotechnology, 2016, 27, 015601.	1.3	7
1274	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
1275	One-Pot, High-Yielding, Oxidative Cyclodehydrogenation Route for N-Doped Nanographene Synthesis. Organic Letters, 2016, 18, 88-91.	2.4	11
1276	Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 2016, 18, 7573-7616.	1.3	74
1277	The electronic and transport properties of two-dimensional conjugated polymer networks including disorder. Nanoscale, 2016, 8, 1642-1651.	2.8	19
1278	Review on graphene nanoribbon devices for logic applications. Microelectronics Journal, 2016, 48, 18-38.	1.1	111
1279	Fabrication and <i>In Situ</i> Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices. ACS Nano, 2016, 10, 1475-1480.	7.3	31

#	Article	IF	CITATIONS
1280	Magnetism and magnetic transport properties of the polycrystalline graphene nanoribbon heterojunctions. Carbon, 2016, 98, 204-212.	5.4	32
1281	Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 730-738.	0.9	53
1282	Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nature Communications, 2016, 7, 10235.	5.8	91
1283	Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Carbon, 2016, 96, 1217.	5.4	0
1285	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	1.7	70
1286	Metal-catalyst-free and controllable growth of high-quality monolayer and AB-stacked bilayer graphene on silicon dioxide. Carbon, 2016, 96, 203-211.	5.4	48
1287	Boron-doped nanographene: Lewis acidity, redox properties, and battery electrode performance. Chemical Science, 2016, 7, 219-227.	3.7	105
1288	Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting. Renewable and Sustainable Energy Reviews, 2016, 53, 653-671.	8.2	147
1289	Dynamics and thermal stability of surface-confined metal–organic chains. Surface Science, 2016, 643, 91-97.	0.8	20
1290	Parent and trisubstituted triazacoronenes: synthesis, crystal structure and physicochemical properties. Chemical Communications, 2016, 52, 537-540.	2.2	36
1291	Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chemical Reviews, 2016, 116, 1272-1308.	23.0	99
1292	Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chemical Reviews, 2017, 117, 3479-3716.	23.0	1,018
1293	A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon. Biosensors and Bioelectronics, 2017, 89, 511-517.	5.3	27
1294	Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy, 2017, 32, 441-447.	8.2	45
1295	Spectroscopic and microscopic investigations of tautomerization in porphycenes: condensed phases, supersonic jets, and single molecule studies. Physical Chemistry Chemical Physics, 2017, 19, 4921-4937.	1.3	24
1296	Covalentâ€Bond Formation via On‣urface Chemistry. Chemistry - A European Journal, 2017, 23, 5874-5892.	1.7	135
1297	Molecular assembly on two-dimensional materials. Nanotechnology, 2017, 28, 082001.	1.3	92
1298	Nanocarbons for DNA sequencing: A review. Carbon, 2017, 115, 293-311.	5.4	64

ARTICLE IF CITATIONS Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging 1299 23.0 425 Biological Applications. Chemical Reviews, 2017, 117, 1826-1914. Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory., 2017, 1297-1337. Generation, manipulation and characterization of molecules by atomic force microscopy. Nature 1301 13.8 147 Reviews Chemistry, 2017, 1, . Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley 1.1 transition. Physical Review B, 2017, 95, . Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. 1303 5.8 35 Nano Research, 2017, 10, 1641-1650. Precursor Geometry Determines the Growth Mechanism in Graphene Nanoribbons. Journal of Physical Chemistry C, 2017, 121, 2896-2904. 1304 1.5 89 Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 2017, 7, 1305 1.7 36 2992-3002. Effect of edge-functionalization on the ease of graphene nanoribbon aggregation in solvent. Carbon, 1306 5.4 2017, 115, 154-161. Chiralâ€Selective Formation of 1D Polymers Based on Ullmannâ€Type Coupling: The Role of the Metallic 1307 5.2 35 Substrate. Small, 2017, 13, 1603675. Rylene Ribbons with Unusual Diradical Character. CheM, 2017, 2, 81-92. 5.8 On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. ACS 1309 270 7.3Nano, 2017, 11, 1380-1388. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale, 2017, 9, 2.8 2785-2792. Graphene: Nanostructure engineering and applications. Frontiers of Physics, 2017, 12, 1. 1311 2.4 26 Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne. Journal of Physics and Chemistry of Solids, 2017, 105, 61-65. 1.9 From a Two-Dimensional Supramolecular Network to One-Dimensional Covalent Polymer at the 1313 Liquid/Solid Interface: Insight into the Role of the Stoichiometric Ratio of the Precursors. Journal of 10 1.5 Physical Chemistry C, 2017, 121, 593-599. The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer graphene 1314 nanoribbons. Carbon, 2017, 115, 162-168. STM probing the supramolecular coordination chemistry on solid surface: Structure, dynamic, and 1315 9.5 76 reactivity. Coordination Chemistry Reviews, 2017, 337, 145-177. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene 1.1 quantum dots. Applied Physics Express, 2017, 10, 032102.

#	Article	IF	CITATIONS
1317	Atomically-resolved edge states on surface-nanotemplated graphene explored at room temperature. Nanoscale, 2017, 9, 3905-3911.	2.8	3
1318	Magnetic, electronic and optical properties of different graphene, BN and BC 2 N nanoribbons. Superlattices and Microstructures, 2017, 104, 532-539.	1.4	12
1319	Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nature Communications, 2017, 8, 14703.	5.8	119
1320	Perfect spin filtering, rectifying and negative differential resistance effects in armchair graphene nanoribbons. Journal of Applied Physics, 2017, 121, .	1.1	30
1321	Semiconductorâ€ŧoâ€Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons. Advanced Electronic Materials, 2017, 3, 1600490.	2.6	33
1322	Synthetic Two-Dimensional Polymers. Annual Review of Materials Research, 2017, 47, 361-389.	4.3	58
1323	Impurity scattering and size quantization effects in a single graphene nanoflake. Physical Review B, 2017, 95, .	1.1	8
1324	Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap <i>N</i> = 9 Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 3635-3638.	6.6	88
1325	Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil. Advanced Materials, 2017, 29, 1604665.	11.1	114
1326	Electronic properties of 1Tâ€MoS ₂ nanoribbon and its homojunction nanoribbon. Physica Status Solidi (B): Basic Research, 2017, 254, 1600728.	0.7	3
1327	Atomistic mechanisms of van der <scp>Waals</scp> epitaxy and property optimization of layered materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1300.	6.2	14
1328	Rationalizing and reconciling energy gaps and quantum confinement in narrow atomically precise armchair graphene nanoribbons. Carbon, 2017, 116, 422-434.	5.4	27
1329	A magnetic phase-transition graphene transistor with tunable spin polarization. 2D Materials, 2017, 4, 024008.	2.0	5
1331	Substrate-Mediated C–C and C–H Coupling after Dehalogenation. Journal of the American Chemical Society, 2017, 139, 3669-3675.	6.6	39
1332	Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots. Physical Review B, 2017, 95, .	1.1	7
1334	Chiral Self-Assembly of Nonplanar 10,10′-Dibromo-9,9′-bianthryl Molecules on Ag(111). Langmuir, 2017, 33 2993-2999.	' 1.6	15
1335	Lithographically Defined Graphene Patterns. Advanced Materials Technologies, 2017, 2, 1600237.	3.0	28
1336	Helically Coiled Graphene Nanoribbons. Angewandte Chemie - International Edition, 2017, 56, 6213-6217.	7.2	103

#	Article	IF	CITATIONS
1337	Structural, electronic and magnetic properties of chevron-type graphene, BN and BC 2 N nanoribbons. Journal of Solid State Chemistry, 2017, 248, 164-170.	1.4	7
1338	Spin-polarized transport in graphene nanoribbons with Rashba spin–orbit interaction: the effects of spatial symmetry. Physical Chemistry Chemical Physics, 2017, 19, 6871-6877.	1.3	13
1339	Synthesis and characterization of triangulene. Nature Nanotechnology, 2017, 12, 308-311.	15.6	351
1340	On-surface synthesis of covalent coordination polymers on micrometer scale. Nano Research, 2017, 10, 933-940.	5.8	21
1342	Supercapacitor and Photocurrent Performance of Tunable Reduced Graphene Oxide. ChemistrySelect, 2017, 2, 3163-3171.	0.7	14
1343	Prospects of spintronics based on <scp>2D</scp> materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1313.	6.2	161
1344	High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes. Journal of Physical Chemistry C, 2017, 121, 10620-10625.	1.5	45
1345	On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism. ACS Nano, 2017, 11, 5070-5079.	7.3	83
1346	Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles. Carbon, 2017, 119, 431-437.	5.4	22
1347	Mechanisms of Covalent Dimerization on a Bulk Insulating Surface. Journal of Physical Chemistry C, 2017, 121, 10053-10062.	1.5	9
1348	On-Surface Heck Reaction of Aryl Bromides with Alkene on Au(111) with Palladium as Catalyst. Organic Letters, 2017, 19, 2801-2804.	2.4	22
1349	A tunable electronic beam splitter realized with crossed graphene nanoribbons. Journal of Chemical Physics, 2017, 146, 092318.	1.2	18
1350	Practical Challenges in Employing Graphene for Lithium-Ion Batteries and Beyond. Small Methods, 2017, 1, 1700099.	4.6	31
1351	The Synthesis of Nonâ€planar, Helically Coiled Graphene Nanoribbons. Angewandte Chemie - International Edition, 2017, 56, 8048-8050.	7.2	13
1352	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
1353	Intermolecular On-Surface σ-Bond Metathesis. Journal of the American Chemical Society, 2017, 139, 7012-7019.	6.6	40
1354	Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition. Nature Communications, 2017, 8, 15135.	5.8	70
1355	Mechanochemical Suzuki polycondensation – from linear to hyperbranched polyphenylenes. Green Chemistry, 2017, 19, 2973-2979.	4.6	69

#	Article	IF	CITATIONS
1356	Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution. Nano Letters, 2017, 17, 50-56.	4.5	56
1357	Role of interlayer spacing in electrical transport of bilayer graphene nanoribbon: Perpendicular and armchair direction. Superlattices and Microstructures, 2017, 101, 354-361.	1.4	3
1358	Uniform and perfectly linear current–voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Physical Chemistry Chemical Physics, 2017, 19, 44-48.	1.3	13
1359	Graphene-based flexible electronic devices. Materials Science and Engineering Reports, 2017, 118, 1-43.	14.8	194
1360	Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chemical Communications, 2017, 53, 8463-8466.	2.2	36
1361	Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7485-7492.	3.2	7
1362	Controlling selectivity in the Ullmann reaction on Cu(111). Chemical Communications, 2017, 53, 7816-7819.	2.2	22
1363	Surface-assisted Ullmann coupling. Chemical Communications, 2017, 53, 7872-7885.	2.2	157
1364	Current and future directions in electron transfer chemistry of graphene. Chemical Society Reviews, 2017, 46, 4530-4571.	18.7	125
1365	Gram-scale production of nitrogen doped graphene using a 1,3-dipolar organic precursor and its utilisation as a stable, metal free oxygen evolution reaction catalyst. Chemical Communications, 2017, 53, 7748-7751.	2.2	8
1366	On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies. Chinese Chemical Letters, 2017, 28, 1631-1639.	4.8	23
1367	Current trends in the physics of nanoscale friction. Advances in Physics: X, 2017, 2, 569-590.	1.5	27
1368	Toward the control of graphenic foams. Pure and Applied Chemistry, 2017, 89, 565-577.	0.9	3
1369	Graphene based biosensors for healthcare. Journal of Materials Research, 2017, 32, 2905-2929.	1.2	45
1370	Dehydrogenative homocoupling of tetrafluorobenzene on Pd(111) via para-selective C–H activation. Chemical Communications, 2017, 53, 6347-6350.	2.2	15
1371	Electron and phonon transport in twisted graphene nanoribbons. Journal Physics D: Applied Physics, 2017, 50, 234005.	1.3	13
1372	Experimental and Theoretical Investigations of Surface-Assisted Graphene Nanoribbon Synthesis Featuring Carbon–Fluorine Bond Cleavage. ACS Nano, 2017, 11, 6204-6210.	7.3	37
1373	Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology, 2017, 28, 235303.	1.3	11

#	Article	IF	CITATIONS
1374	A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces. Faraday Discussions, 2017, 204, 297-305.	1.6	12
1375	Theoretical study on high-frequency graphene-nanoribbon heterojunction backward diode. Applied Physics Express, 2017, 10, 074001.	1.1	7
1376	Doping of Graphene Nanoribbons <i>via</i> Functional Group Edge Modification. ACS Nano, 2017, 11, 7355-7361.	7.3	78
1377	Calligraphy-inspired brush written foldable supercapacitors. Nano Energy, 2017, 38, 428-437.	8.2	26
1378	Raman Radial Mode Revealed from Curved Graphene. Journal of Physical Chemistry Letters, 2017, 8, 2597-2601.	2.1	8
1379	Molecular Graph Paper. Angewandte Chemie - International Edition, 2017, 56, 8290-8294.	7.2	19
1380	Functional carbon nitride materials — design strategies for electrochemical devices. Nature Reviews Materials, 2017, 2, .	23.3	768
1381	Quantum Dots in Graphene Nanoribbons. Nano Letters, 2017, 17, 4277-4283.	4.5	99
1382	Mechanism of mechanically induced optoelectronic and spintronic phase transitions in 1D graphene spirals: insight into the role of interlayer coupling. Nanoscale, 2017, 9, 9693-9700.	2.8	14
1383	Wide graphene nanoribbons produced by interchain fusion of poly(p-phenylene) via two-zone chemical vapor deposition. Chemical Communications, 2017, 53, 7034-7036.	2.2	8
1384	Quantized edge modes in atomic-scale point contacts in graphene. Nature Nanotechnology, 2017, 12, 564-568.	15.6	18
1385	Tuning the electrical property of a single layer graphene nanoribbon by adsorption of planar molecular nanoparticles. Nanotechnology, 2017, 28, 175704.	1.3	8
1386	Sulfur-doped, reduced graphene oxide nanoribbons for sodium-ion batteries. Materials Letters, 2017, 198, 106-109.	1.3	22
1387	On-surface synthesis of aligned functional nanoribbons monitored by scanning tunnelling microscopy and vibrational spectroscopy. Nature Communications, 2017, 8, 14735.	5.8	24
1388	Steering Onâ€ 5 urface Reactions by a Selfâ€Assembly Approach. Angewandte Chemie - International Edition, 2017, 56, 5026-5030.	7.2	28
1389	Steering Onâ€Surface Reactions by a Selfâ€Assembly Approach. Angewandte Chemie, 2017, 129, 5108-5112.	1.6	14
1390	Enhanced magnetic properties of cobalt-doped graphene nanoribbons. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
1391	Controllable synthesis of sandwich-like graphene-supported structures for energy storage and conversion. New Carbon Materials, 2017, 32, 1-14.	2.9	13

		CITATION REPORT	
# 1392	ARTICLE The role of defects and dimensionality in influencing the charge, capacitance, and energy storag graphene and 2D materials. Nanotechnology Reviews, 2017, 6, 421-433.	IF e of 2.6	Citations
1393	Frontiers of on-surface synthesis: From principles to applications. Nano Today, 2017, 13, 77-96.	6.2	201
1394	Ultrafast radiative heat transfer. Nature Communications, 2017, 8, 2.	5.8	108
1395	Helically Coiled Graphene Nanoribbons. Angewandte Chemie, 2017, 129, 6309-6313.	1.6	39
1396	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie, 2017, 129, 5089-5093.	1.6	14
1397	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ [~] 'H Bond Activations. Angewandte Chemie - International Edition, 2017, 56, 5007-5011.	7.2	61
1398	Making Graphene Nanoribbons Photoluminescent. Nano Letters, 2017, 17, 4029-4037.	4.5	73
1399	Manipulation of slow and superluminal light based on a graphene nanoribbon resonator. Europe Physical Journal D, 2017, 71, 1.	an 0.6	7
1400	Imaging Successive Intermediate States of the On-Surface Ullmann Reaction on Cu(111): Role o Metal Coordination. ACS Nano, 2017, 11, 4183-4190.	f the 7.3	71
1401	Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nature Communications, 2017, 8, 14924.	5.8	139
1402	Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon Sheets for Electrochemical Oxygen Reduction Reaction. Chemistry of Materials, 2017, 29, 2890-2898.	Robust 3.2	55
1403	Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nature Communications, 2017, 8, 14815.	5.8	58
1404	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Nano Letters, 2017, 17, 2197-2203.	4.5	92
1405	Ethene to Graphene: Surface Catalyzed Chemical Pathways, Intermediates, and Assembly. Journa Physical Chemistry C, 2017, 121, 9413-9423.	al of 1.5	29
1406	Efficient Lanthanide Catalyzed Debromination and Oligomeric Length-Controlled Ullmann Coupl of Aryl Halides. Journal of Physical Chemistry C, 2017, 121, 8033-8041.	ing 1.5	22
1407	Ultraâ€Narrow Lowâ€Bandgap Graphene Nanoribbons from Bromoperylenes—Synthesis and Terahertzâ€Spectroscopy. Chemistry - A European Journal, 2017, 23, 4870-4875.	1.7	28
1408	Carbon Materials. , 2017, , 429-462.		2
1409	Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures. Nature Communications, 2017, 8, 14765.	5.8	120

#	ARTICLE Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100). Nano Letters, 2017, 17,	IF	CITATIONS
1410	170-178.	4.5	49
1411	Stepâ€Edge Assisted Direct Linear Alkane Coupling. Chemistry - A European Journal, 2017, 23, 6185-6189.	1.7	26
1412	Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 693-700.	4.0	22
1413	Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers. Journal of Physics Condensed Matter, 2017, 29, 045303.	0.7	4
1414	Two-dimensional C ₁₂ Mn ₂ /C ₁₂ Cr ₂ as a room-temperature half metal/antiferromagnetic semiconductor: a systematic study. Physical Chemistry Chemical Physics, 2017, 19, 3394-3404.	1.3	4
1415	On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles. ACS Nano, 2017, 11, 134-143.	7.3	39
1416	Imaging the electronic structure of on-surface generated hexacene. Chemical Communications, 2017, 53, 1583-1586.	2.2	54
1417	Conductivity of impurity graphene nanoribbons and gate electric field. Modern Physics Letters B, 2017, 31, 1750340.	1.0	1
1418	Huge Trionic Effects in Graphene Nanoribbons. Nano Letters, 2017, 17, 6833-6837.	4.5	22
1419	Exploring the Relation Between Intramolecular Conjugation and Band Dispersion in One-Dimensional Polymers. Journal of Physical Chemistry C, 2017, 121, 27118-27125.	1.5	29
1420	Synthesis of <i>N</i> = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. Journal of the American Chemical Society, 2017, 139, 15878-15890.	6.6	78
1421	Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy, 2017, 140, 766-778.	4.5	119
1422	Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition. Langmuir, 2017, 33, 10439-10445.	1.6	6
1423	Face-to-face crosslinking of graphdiyne and related carbon sheets toward integrated graphene nanoribbon arrays. Carbon, 2017, 125, 536-543.	5.4	19
1424	Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nature Communications, 2017, 8, 820.	5.8	113
1425	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	2.8	19
1426	Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nature Nanotechnology, 2017, 12, 1077-1082.	15.6	162
1427	Gap states and edge properties of rectangular graphene quantum dot in staggered potential. Journal of the Korean Physical Society, 2017, 71, 283-288.	0.3	1

			-
#	Article	IF	CITATIONS
1428	Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure. Nature Communications, 2017, 8, 946.	5.8	16
1429	Raman Spectroscopy of Lithographically Defined Graphene Nanoribbons ―Influence of Size and Defects. Annalen Der Physik, 2017, 529, 1700167.	0.9	5
1430	Molecular assembly at surfaces: progress and challenges. Faraday Discussions, 2017, 204, 9-33.	1.6	16
1431	Benzenoid Quinodimethanes. Topics in Current Chemistry, 2017, 375, 83.	3.0	53
1432	Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111). ACS Nano, 2017, 11, 11661-11668.	7.3	149
1433	Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 29685-29692.	1.3	18
1434	High density oxidative plasma unzipping of multiwall carbon nanotubes. RSC Advances, 2017, 7, 48268-48274.	1.7	10
1435	Luminescent Carbon Dot Mimics Assembled on DNA. Journal of the American Chemical Society, 2017, 139, 13147-13155.	6.6	33
1436	A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 19866-19874.	5.2	93
1437	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11
1438	Electro-optical properties of phosphorene quantum dots. Physical Review B, 2017, 96, .	1.1	48
1439	Topological end states and Zak phase of rectangular armchair ribbon. Annals of Physics, 2017, 385, 688-694.	1.0	6
1440	Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy, 2017, 41, 117-127.	8.2	159
1441	Optical Investigation of Onâ€Surface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	0.7	14
1442	Effects of monolayer Bi on the self-assembly of DBBA on Au(111). Surface Science, 2017, 665, 89-95.	0.8	30
1443	London Dispersion Directs On-Surface Self-Assembly of [121]Tetramantane Molecules. ACS Nano, 2017, 11, 9459-9466.	7.3	25
1444	Graphene Growth by Conversion of Aromatic Selfâ€Assembled Monolayers. Annalen Der Physik, 2017, 529, 1700168.	0.9	8
1445	Imaging on-surface hierarchical assembly of chiral supramolecular networks. Physical Chemistry Chemical Physics, 2017, 19, 24605-24612.	1.3	11

	CIT	ATION REPORT	
#	Article	IF	Citations
1446	Rapid thermal thinning of black phosphorus. Journal of Materials Chemistry C, 2017, 5, 10638-10644.	2.7	17
1447	Relaxation of the photoexcited electrons in chevron-type graphene nanoribbons: Many-body theory and nonadiabatic molecular dynamics modeling. Carbon, 2017, 124, 308-313.	5.4	5
1448	High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium. ACS Nano, 2017, 11, 8924-8929.	7.3	38
1449	Atomistic simulations of nanoscale crack-vacancy interaction in graphene. Carbon, 2017, 125, 113-131	l. 5.4	28
1450	Plasmons in graphene nanoribbons. Physical Review B, 2017, 96, .	1.1	33
1451	Stark effect and polarizability of graphene quantum dots. Physical Review B, 2017, 96, .	1.1	11
1452	Selectivity of a Graphene Nanoribbon-Based Trinitrotoluene Detector: A Computational Assessment. Journal of Physical Chemistry C, 2017, 121, 21546-21552.	1.5	6
1453	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	5.8	312
1454	Synthesis of carbon nanofibers by thermal conversion of the molecular precursor 5,6;11,12-di-o-phenylenetetracene and its application in a chemiresistive gas sensor. RSC Advances, 20 7, 45185-45194.)17, 1.7	5
1455	Surfactant-Free Vapor-Phase Synthesis of Single-Crystalline Gold Nanoplates for Optimally Bioactive Surfaces. Chemistry of Materials, 2017, 29, 8747-8756.	3.2	23
1456	Graphene Ribbon Growth on Structured Silicon Carbide. Annalen Der Physik, 2017, 529, 1700052.	0.9	11
1457	Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons. Nano Letters, 2017, 17, 6241-6247.	4.5	64
1458	Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions. Chemistry - A European Journal, 2017, 23, 15588-15593.	1.7	19
1459	Optical detection of graphene nanoribbons synthesized on stepped SiC surfaces. Journal of Applied Physics, 2017, 122, 035701.	1.1	2
1460	Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Nature Communications, 2017, 8, 16089.	5.8	57
1461	Special photophysical properties of poly(2,11-diquinoxalinopyrene)s. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1097-1109.	2.0	4
1462	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	16.0	1,682
1463	Dense graphene nanoplatelet/yttria tetragonal zirconia composites: Processing, hardness and electrical conductivity. Ceramics International, 2017, 43, 11743-11752.	2.3	35

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
1464	Graphene nanoelectrodes for biomolecular sensing. Journal of Materials Research, 2017, 32, 3002-3010.	1.2	10
1465	Halogen-Free On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Macromolecular Chemistry and Physics, 2017, 218, 1700155.	1.1	8
1466	The growth of new extended carbon nanophases from ferrocene inside singleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700158.	1.2	17
1467	Competing Annulene and Radialene Structures in a Single Anti-Aromatic Molecule Studied by High-Resolution Atomic Force Microscopy. ACS Nano, 2017, 11, 8122-8130.	7.3	64
1468	Non-contact lateral force microscopy. Journal of Physics Condensed Matter, 2017, 29, 323001.	0.7	17
1469	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An <i>ab initio</i> investigation of their electronic properties. Physical Review B, 2017, 95, .	1.1	13
1470	On-surface Synthesis of Graphene Nanoribbons through Solution-processing of Monomers. Chemistry Letters, 2017, 46, 1476-1478.	0.7	11
1471	Spectroscopic characterization of N  = 9 armchair graphene nanoribbons. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700157.	1.2	11
1472	Graphene Nanoribbons for Electronic Devices. Annalen Der Physik, 2017, 529, 1700033.	0.9	39
1473	Surface-assisted dehydrogenative homocoupling and cyclodehydrogenation of mesityl groups on a copper surface. Chemical Communications, 2017, 53, 9151-9154.	2.2	5
1474	Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons. Physical Review B, 2017, 96, .	1.1	19
1475	Electronic components embedded in a single graphene nanoribbon. Nature Communications, 2017, 8, 119.	5.8	96
1476	Anisotropic etching of graphite and graphene in a remote hydrogen plasma. Npj 2D Materials and Applications, 2017, 1, .	3.9	16
1477	Sub-10-nm Graphene Nanoribbons with Tunable Surface Functionalities for Lithium-ion Batteries. Electrochimica Acta, 2017, 249, 404-412.	2.6	9
1478	Graphene Electronics. , 0, , 159-179.		0
1479	1D and 2D Graphdiynes: Recent Advances on the Synthesis at Interfaces and Potential Nanotechnological Applications. Annalen Der Physik, 2017, 529, 1700056.	0.9	38
1480	On‣urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dibromides. Angewandte Chemie - International Edition, 2017, 56, 12165-12169.	7.2	52
1481	Molekulares Kätchenpapier. Angewandte Chemie, 2017, 129, 8405-8410.	1.6	7

	C	CITATION REPORT		
#	Article		IF	CITATIONS
1482	Spatial design and control of graphene flake motion. Physical Review B, 2017, 96, .		1.1	4
1483	Dimensional Confinement in Carbonâ€based Structures – From 3D to 1D. Annalen Der Physik, 201 1700051.	7, 529,	0.9	6
1484	Transport gap engineering by contact geometry in graphene nanoribbons: Experimental and theoretical studies on artificial materials. Physical Review B, 2017, 95, .		1.1	15
1485	Steering Surface Reaction Dynamics with a Selfâ€Assembly Strategy: Ullmann Coupling on Metal Surfaces. Angewandte Chemie - International Edition, 2017, 56, 12852-12856.		7.2	56
1486	From Diffusive to Ballistic Transport in Etched Graphene Constrictions and Nanoribbons. Annalen Der Physik, 2017, 529, 1700082.		0.9	13
1487	Steering Surface Reaction at Specific Sites with Self-Assembly Strategy. ACS Nano, 2017, 11, 9397-9	404.	7.3	38
1488	Nonacene Generated by On-Surface Dehydrogenation. ACS Nano, 2017, 11, 9321-9329.		7.3	107
1489	Tracking On-Surface Chemistry with Atomic Precision. Synlett, 2017, 28, 2509-2516.		1.0	8
1490	Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chai Physical Review Letters, 2017, 119, 076401.	ns.	2.9	235
1491	On-Surface Synthesis of Porous Carbon Nanoribbons from Polymer Chains. Journal of the American Chemical Society, 2017, 139, 12976-12984.		6.6	97
1492	On‧urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dib Angewandte Chemie, 2017, 129, 12333-12337.	omides.	1.6	18
1493	On-Surface Synthesis of Heptacene Organometallic Complexes. Journal of the American Chemical Society, 2017, 139, 11658-11661.		6.6	83
1494	Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices. Journal of Applied Physics, 2017, 122, 035103.		1.1	3
1495	Steering Surface Reaction Dynamics with a Selfâ€Assembly Strategy: Ullmann Coupling on Metal Surfaces. Angewandte Chemie, 2017, 129, 13032-13036.		1.6	9
1496	Stability of edge magnetism in functionalized zigzag graphene nanoribbons. Carbon, 2017, 124, 123	-132.	5.4	21
1497	Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene. Nano Letters, 2017, 17, 5389-53	93.	4.5	20
1498	lodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion. Journal of Physical Chemistry C, 2017, 121, 18490-18495.		1.5	31
1499	Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 15933-15941.		1.3	21

#	Article	IF	CITATIONS
1500	Chiral magnetic interactions in graphene nanoribbons on topological insulator substrates. Physical Review B, 2017, 96, .	1.1	6
1501	Identification of On-Surface Reaction Mechanism by Targeted Metalation. Journal of Physical Chemistry C, 2017, 121, 27521-27527.	1.5	20
1502	Topological States Characterized by Mirror Winding Numbers in Graphene with Bond Modulation. Scientific Reports, 2017, 7, 16515.	1.6	55
1503	Aggregation of atomically precise graphene nanoribbons. RSC Advances, 2017, 7, 54491-54499.	1.7	7
1504	A proposed simulation method for directed self-assembly of nanographene. Journal of Physics Condensed Matter, 2017, 29, 355901.	0.7	0
1505	Nanographenes and Graphene Nanoribbons with Zigzag-Edged Structures. Advances in Polymer Science, 2017, , 1-32.	0.4	11
1506	Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. Nanoscale, 2017, 9, 18835-18844.	2.8	21
1507	Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7, 51546-51580.	1.7	53
1508	Polymerization of Well-Aligned Organic Nanowires on a Ferromagnetic Rare-Earth Surface Alloy. ACS Nano, 2017, 11, 12392-12401.	7.3	20
1509	Surface-confined [2 + 2] cycloaddition towards one-dimensional polymers featuring cyclobutadiene units. Nanoscale, 2017, 9, 18305-18310.	2.8	32
1510	Nanoribbons. Springer Handbooks, 2017, , 303-333.	0.3	1
1511	Graphene. Springer Handbooks, 2017, , 363-391.	0.3	2
1512	Steering on-surface reactions with self-assembly strategy. Physical Chemistry Chemical Physics, 2017, 19, 31531-31539.	1.3	13
1513	On-Surface Annulation Reaction Cascade for the Selective Synthesis of Diindenopyrene. ACS Nano, 2017, 11, 12419-12425.	7.3	18
1514	Low resistivity of graphene nanoribbons with zigzag-dominated edge fabricated by hydrogen plasma etching combined with Zn/HCl pretreatment. Applied Physics Letters, 2017, 111, 203102.	1.5	3
1515	Inserting Porphyrin Quantum Dots in Bottomâ€Up Synthesized Graphene Nanoribbons. Chemistry - A European Journal, 2017, 23, 17687-17691.	1.7	21
1516	Ullmann Coupling Reactions on Ag(111) and Ag(110); Substrate Influence on the Formation of Covalently Coupled Products and Intermediate Metal-Organic Structures. Scientific Reports, 2017, 7, 14541.	1.6	33
1517	Surface-Assisted Reaction Under Ultrahigh Vacuum Conditions. Advances in Polymer Science, 2017, , 67-97.	0.4	0

#	Article	IF	CITATIONS
1518	Charge doping in graphene on thermodynamically preferred BiFeO3(0001) polar surfaces. Physical Chemistry Chemical Physics, 2017, 19, 31352-31361.	1.3	12
1519	Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures. Journal of Applied Physics, 2017, 122, .	1.1	8
1520	Computational study of precision nitrogen doping on graphene nanoribbon edges. Nanotechnology, 2017, 28, 505602.	1.3	13
1521	Die Synthese von nichtplanaren, helikalen Graphenâ€Nanobädern. Angewandte Chemie, 2017, 129, 8160-8162.	1.6	2
1522	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	2.8	120
1523	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	8.3	202
1524	Lateral Fusion of Chemical Vapor Deposited <i>N</i> = 5 Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 9483-9486.	6.6	65
1525	Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications. ACS Applied Materials & Interfaces, 2017, 9, 24393-24406.	4.0	55
1526	Carbon materials with controlled edge structures. Carbon, 2017, 122, 694-701.	5.4	54
1527	Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Research, 2017, 10, 3377-3384.	5.8	44
1528	Chemical modification of graphene oxide through poly(ethylene oxide)-conjugations. Macromolecular Research, 2017, 25, 452-460.	1.0	3
1529	ZnO particles enhanced graphene-based hybrid light sensors. Journal of Materials Science: Materials in Electronics, 2017, 28, 7468-7472.	1.1	4
1530	Dibromobianthryl ordering and polymerization on Ag(100). Journal of Chemical Physics, 2017, 146, .	1.2	2
1531	Γ̈-Graphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 3234-3241.	2.1	205
1532	Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications. Springer Briefs in Molecular Science, 2017, , .	0.1	18
1533	Observations of carbon–carbon coupling of 4,4ʺ-dibromo- p -terphenyl on Cu(110) surface at molecular level. Chinese Chemical Letters, 2017, 28, 24-28.	4.8	5
1534	Structures and Properties of Carbon Nanomaterials. Springer Briefs in Molecular Science, 2017, , 1-19.	0.1	3
1535	On-surface synthesis approach to preparing one-dimensional organometallic and poly-p-phenylene chains. Materials Chemistry Frontiers, 2017, 1, 119-127.	3.2	39

#	Article	IF	CITATIONS
1536	Revealing mechanical and structural properties of molecules on surface by high-resolution atomic force microscopy. Polymer Journal, 2017, 49, 3-11.	1.3	7
1537	Confined state energies in AGNR semiconductor–semiconductor heterostructure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 319-322.	0.9	1
1538	Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nature Chemistry, 2017, 9, 33-38.	6.6	103
1539	Homochiral polymerization-driven selective growth of graphene nanoribbons. Nature Chemistry, 2017, 9, 57-63.	6.6	121
1540	Overview of Carbon Nanotube Interconnects. , 2017, , 37-80.		3
1541	Spatial manipulating spin-polarization and tunneling patterns in graphene spirals via periphery structural modification. Carbon, 2017, 113, 325-333.	5.4	12
1542	First-principles study of stability, electronic structure and magnetic properties of Be 2 C nanoribbons. Applied Surface Science, 2017, 394, 315-322.	3.1	1
1543	Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications. Carbon, 2017, 113, 318-324.	5.4	22
1544	Rational Synthesis of Fullerenes, Buckybowls, and Single-Walled Carbon Nanotubes by a Surface-Assisted Approach. Advances in Polymer Science, 2017, , 127-145.	0.4	4
1545	Pseudospin Electronics in Phosphorene Nanoribbons. Physical Review Applied, 2017, 8, .	1.5	17
1546	Probing the valley filtering effect by Andreev reflection in a zigzag graphene nanoribbon with a ballistic point contact. Physical Review B, 2017, 96, .	1.1	9
1547	Diameter dependence of longitudinal unzipping of single-walled carbon nanotube to obtain graphene nanoribbon. Japanese Journal of Applied Physics, 2017, 56, 06GG12.	0.8	8
1548	Bottom-Up Synthesis of Graphene Nanoribbons on Surfaces. Advances in Polymer Science, 2017, , 33-65.	0.4	4
1549	On-Surface Polymerization: From Polyarylenes to Graphene Nanoribbons and Two-Dimensional Networks. Advances in Polymer Science, 2017, , 99-125.	0.4	7
1550	Photo-oxidative doping in π-conjugated zig-zag chain of carbon atoms with sulfur-functional group. Applied Physics Letters, 2017, 111, 231605.	1.5	0
1551	Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning. Physical Review B, 2017, 96, .	1.1	6
1552	Numerical simulation of vibrational properties of AGNR with vacancy and stone wales defects. , 2017, , .		0
1553	Structure Deformation and Level Splitting in Vacancy-Centered Hexagonal Armchair Nanographene. Journal of the Physical Society of Japan, 2017, 86, 034802.	0.7	3

#	Article	IF	Citations
1554	7. Solution Synthesis of Atomically Precise Graphene Nanoribbons. , 2017, , .		3
1555	7 Graphene/Polymer Composite Materials: Processing, Properties and Applications. , 2017, , 349-419.		19
1556	Thermal transport of graphene and graphene nanoribbon: a summary review. International Journal of Materials and Structural Integrity, 2017, 11, 193.	0.1	0
1557	Graphene-based Polymer Nanocomposites: Recent Advances and Still Open Challenges. Current Graphene Science, 2017, 1, .	0.5	8
1558	Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects. Applied Sciences (Switzerland), 2017, 7, 79.	1.3	5
1559	Benzenoid Quinodimethanes. Topics in Current Chemistry Collections, 2017, , 69-105.	0.2	3
1560	1.14 Graphene Membranes. , 2017, , 358-385.		1
1561	Scanning Probe Microscopy Techniques for Modern Nanomaterials. , 2017, , 77-114.		1
1562	Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nature Communications, 2017, 8, 1948.	5.8	88
1563	Solution Synthesis of Atomically Precise Graphene Nanoribbons. ChemistrySelect, 2017, 2, .	0.7	3
1564	Self-organizing Behavior of Y-junctions of Graphene Nanoribbons. International Journal of Engineering Research and Applications, 2017, 07, 34-47.	0.1	0
1565	Direct Formation of Câ^'C Tripleâ€Bonded Structural Motifs by Onâ€Surface Dehalogenative Homocouplings of Tribromomethylâ€Substituted Arenes. Angewandte Chemie - International Edition, 2018, 57, 4035-4038.	7.2	50
1566	Nanomechanical control of spin current flip using monovacancy graphene. Carbon, 2018, 133, 218-223.	5.4	10
1567	Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotechnology, 2018, 13, 183-191.	15.6	319
1568	Onâ€Surface Synthesis of Carbon Nanostructures. Advanced Materials, 2018, 30, e1705630.	11.1	121
1569	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153
1570	Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1167-1170.	0.9	5
1571	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie, 2018, 130, 3424-3429.	1.6	12

#	Article	IF	CITATIONS
1572	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	5.4	80
1573	Graphene and its derivatives for solar cells application. Nano Energy, 2018, 47, 51-65.	8.2	284
1574	On-surface synthesis on a bulk insulator surface. Journal of Physics Condensed Matter, 2018, 30, 133001.	0.7	7
1575	Direct Formation of Câ^'C Tripleâ€Bonded Structural Motifs by Onâ€Surface Dehalogenative Homocouplings of Tribromomethylâ€Substituted Arenes. Angewandte Chemie, 2018, 130, 4099-4102.	1.6	10
1576	On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. Journal of the American Chemical Society, 2018, 140, 3532-3536.	6.6	60
1577	Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates. Scientific Reports, 2018, 8, 3506.	1.6	39
1578	Facile One-Pot Bottom–Up Synthesis of Graphene and Ni/Graphene Nanostructures and Their Excellent Adsorption Performances. Nano, 2018, 13, 1850021.	0.5	1
1579	Spontaneous rolling-up and assembly of graphene designed by using defects. Nanoscale, 2018, 10, 6487-6495.	2.8	7
1580	Rasterkraftmikroskopie für die molekulare Strukturaufkläung. Angewandte Chemie, 2018, 130, 3950-3972.	1.6	12
1581	Atomic Force Microscopy for Molecular Structure Elucidation. Angewandte Chemie - International Edition, 2018, 57, 3888-3908.	7.2	135
1582	Peptide bond detection <i>via</i> graphene nanogaps: a proof of principle study. Nanoscale, 2018, 10, 5928-5937.	2.8	16
1583	Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized <i>N</i> = 7 Armchair Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2018, 10, 9900-9903.	4.0	38
1584	Substrate-molecule decoupling induced by self-assembly—Implications for graphene nanoribbon fabrication. AIP Advances, 2018, 8, 045117.	0.6	2
1585	Activating impurity effect in edge nitrogen-doped chevron graphene nanoribbons. Journal of Physics Communications, 2018, 2, 045028.	0.5	8
1586	Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2018, 9, 2510-2517.	2.1	31
1587	The spin-dependent electronic transport properties of M(dcdmp) 2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1401-1408.	0.9	8
1588	Systematic Enhancement of Thermoelectric Figure of Merit in Edge-Engineered Nanoribbons. Journal of Physical Chemistry C, 2018, 122, 8843-8852.	1.5	3
1589	Finding the hidden valence band of N  =  7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy. 2D Materials, 2018, 5, 035007.	2.0	22

#	Article	IF	Citations
1590	Low-energy 3D sp ² carbons with versatile properties beyond graphite and graphene. Dalton Transactions, 2018, 47, 6233-6239.	1.6	7
1591	The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chemical Communications, 2018, 54, 5307-5310.	2.2	59
1592	Physical approach to quantum networks with massive particles. Physical Review B, 2018, 97, .	1.1	3
1593	Bottom-up synthesis of multifunctional nanoporous graphene. Science, 2018, 360, 199-203.	6.0	429
1594	A recipe for nanoporous graphene. Science, 2018, 360, 154-155.	6.0	14
1595	Multiple heteroatom substitution to graphene nanoribbon. Science Advances, 2018, 4, eaar7181.	4.7	151
1596	Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Science Advances, 2018, 4, eaaq0582.	4.7	71
1597	Selective interface transparency in graphene nanoribbon based molecular junctions. Nanoscale, 2018, 10, 4861-4864.	2.8	7
1598	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41
1599	Functionalized Graphdiyne Nanowires: On‣urface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential. Small, 2018, 14, e1704321.	5.2	38
1600	Rectification of graphene self-switching diodes: First-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 123-133.	1.3	8
1601	Surface-Assisted Alkane Polymerization: Investigation on Structure–Reactivity Relationship. Journal of the American Chemical Society, 2018, 140, 4820-4825.	6.6	37
1602	Effects of radical initiators, polymerization inhibitors, and other agents on the sonochemical unzipping of double-walled carbon nanotubes. Japanese Journal of Applied Physics, 2018, 57, 03ED01.	0.8	3
1603	Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces. Optics Communications, 2018, 416, 77-83.	1.0	40
1604	Advanced Phosphorusâ€Based Materials for Lithium/Sodiumâ€lon Batteries: Recent Developments and Future Perspectives. Advanced Energy Materials, 2018, 8, 1703058.	10.2	197
1605	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
1606	Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium. Nano Letters, 2018, 18, 898-906.	4.5	43
1607	Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions. ACS Nano, 2018, 12, 2193-2200.	7.3	75

#	Article	IF	CITATIONS
1608	On-surface synthesis of graphene clusters from a Z-bar-linkage precursor with quaterphenyl branches. Materials Chemistry Frontiers, 2018, 2, 775-779.	3.2	3
1609	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie - International Edition, 2018, 57, 3366-3371.	7.2	52
1610	Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors. IEEE Electron Device Letters, 2018, 39, 143-146.	2.2	18
1611	Conjugated Microporous Polymers with Extended π-Structures for Organic Vapor Adsorption. Macromolecules, 2018, 51, 947-953.	2.2	80
1613	Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Applied Materials & Interfaces, 2018, 10, 6090-6095.	4.0	23
1614	Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788). Applied Physics Letters, 2018, 112, .	1.5	29
1615	Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis. Journal of Physics Condensed Matter, 2018, 30, 093001.	0.7	29
1616	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. Advanced Materials, 2018, 30, 1701460.	11.1	137
1617	Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science, 2018, 359, 435-439.	6.0	127
1618	Coherent control of the route of magnetic phases in quasi-1D armchair graphene nanoribbons via doping in the presence of electronic correlations. Solid State Communications, 2018, 271, 21-28.	0.9	12
1619	Fundamental Properties of Graphene. , 2018, , 73-102.		8
1620	High-yield single-step catalytic growth of graphene nanostripes by plasma enhanced chemical vapor deposition. Carbon, 2018, 129, 527-536.	5.4	20
1621	Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes. Nanoscale, 2018, 10, 2073-2080.	2.8	17
1622	Toward <i>GW</i> Calculations on Thousands of Atoms. Journal of Physical Chemistry Letters, 2018, 9, 306-312.	2.1	104
1623	Homocoupling of terminal alkynes on calcite (10.4). Surface Science, 2018, 678, 106-111.	0.8	7
1624	Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. Nanoscale, 2018, 10, 1337-1344.	2.8	23
1625	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2018, 2, .	13.8	228
1626	Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 2018, 34, 553-560.	1.6	18

#	Article	IF	CITATIONS
1627	Unimolecular Logic Gate with Classical Input by Single Gold Atoms. ACS Nano, 2018, 12, 1139-1145.	7.3	24
1628	Monodisperse Nâ€Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angewandte Chemie, 2018, 130, 711-716.	1.6	44
1629	Hirshfeld-based atomic population analysis of the B, N doping effect in zigzag graphene nanoribbons: \$\$pi\$\$ï€ electron density as requirement to follow the B, N doping guidelines. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	4
1630	Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). Chemical Communications, 2018, 54, 1619-1622.	2.2	19
1631	Quantum mechanical analysis of nonlinear optical response of interacting graphene nanoflakes. APL Photonics, 2018, 3, 016102.	3.0	10
1632	Electronic Structure and I-V Characteristics of InSe Nanoribbons. Nanoscale Research Letters, 2018, 13, 107.	3.1	12
1633	Dichotomous On-Surface Self-Assembly of Tripod Molecules with Anchor Like Interaction Pattern. Topics in Catalysis, 2018, 61, 1218-1226.	1.3	2
1634	Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on highly ordered pyrolytic graphite. Chemical Communications, 2018, 54, 5546-5549.	2.2	8
1635	The adsorption geometry and molecular self-assembly of graphene for 1,3,5-triphenylbenzene on Cu(111). Surface Science, 2018, 675, 42-46.	0.8	3
1636	Probing Local Electronic Structures of Au–PbS Metal–Semiconductor Nanodumbbells. ACS Applied Nano Materials, 2018, 1, 2104-2111.	2.4	6
1637	A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nature Communications, 2018, 9, 1687.	5.8	59
1638	Study of local currents in low dimension materials using complex injecting potentials. Journal of Applied Physics, 2018, 123, 165102.	1.1	5
1639	Zigzag graphene nanoribbons separated by hydrogenation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 95-100.	1.3	7
1640	On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology. Nature Communications, 2018, 9, 1714.	5.8	98
1641	Crystallization-Induced Morphological Tuning Toward Denim-like Graphene Nanosheets in a KCl-Copolymer Solution. ACS Nano, 2018, 12, 4019-4024.	7.3	32
1642	Hierarchical Dehydrogenation Reactions on a Copper Surface. Journal of the American Chemical Society, 2018, 140, 6076-6082.	6.6	53
1643	A Numerical Analysis of Electronic and Optical Properties of the Zigzag MoS ₂ Nanoribbon Under Uniaxial Strain. IEEE Transactions on Electron Devices, 2018, 65, 1988-1994.	1.6	7
1644	Aryl–Aryl Covalent Coupling on Rutile TiO2 Surfaces. Advances in Atom and Single Molecule Machines, 2018, , 153-177.	0.0	0

#	Article	IF	Citations
1645	Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons. ACS Nano, 2018, 12, 3985-3993.	7.3	88
1646	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	18.7	161
1647	Unified bulk-boundary correspondence for band insulators. Physical Review B, 2018, 97, .	1.1	71
1648	On-surface synthesis of polyethylenedioxythiophene. Chemical Communications, 2018, 54, 3723-3726.	2.2	6
1649	Chevron-based graphene nanoribbon heterojunctions: Localized effects of lateral extension and structural defects on electronic properties. Carbon, 2018, 134, 310-315.	5.4	31
1650	Low-dimensional thermoelectricity in graphene: The case of gated graphene superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 188-196.	1.3	15
1651	Temperature and pressure dependent Raman spectroscopy of plasma treated multilayer graphene nanosheets. Diamond and Related Materials, 2018, 84, 146-156.	1.8	22
1652	Bubble-wrap carbon: an integration of graphene and fullerenes. Nanoscale, 2018, 10, 11328-11334.	2.8	15
1653	Sulfur-driven switching of the Ullmann coupling on Au(111). Chemical Communications, 2018, 54, 3621-3624.	2.2	15
1654	Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?. Physica Scripta, 2018, 93, 053001.	1.2	10
1655	Addressing Long-Standing Chemical Challenges by AFM with Functionalized Tips. Advances in Atom and Single Molecule Machines, 2018, , 209-227.	0.0	2
1656	On-Surface Ullmann Reaction for the Synthesis of Polymers and Macrocycles. Advances in Atom and Single Molecule Machines, 2018, , 83-112.	0.0	7
1657	On-Surface Synthesis of Two-Dimensional Polymers: Rational Design and Electronic Properties. Advances in Atom and Single Molecule Machines, 2018, , 179-194.	0.0	1
1658	On-Surface Synthesis II. Advances in Atom and Single Molecule Machines, 2018, , .	0.0	12
1659	Highly-efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots. Organic Electronics, 2018, 57, 305-310.	1.4	14
1660	Co-mixing hydrogen and methane may double the energy storage capacity. Journal of Materials Chemistry A, 2018, 6, 8916-8922.	5.2	22
1661	Bromine adatom promoted C–H bond activation in terminal alkynes at room temperature on Ag(111). Physical Chemistry Chemical Physics, 2018, 20, 11081-11088.	1.3	35
1662	Hexa- <i>peri</i> -hexabenzo[7]helicene: Homogeneously π-Extended Helicene as a Primary Substructure of Helically Twisted Chiral Graphenes. Journal of the American Chemical Society, 2018, 140, 4317-4326.	6.6	151

#	Article	IF	Citations
1663	Fabrication of Functional Polymer Structures through Bottom-Up Selective Vapor Deposition from Bottom-Up Conductive Templates. Langmuir, 2018, 34, 4651-4657.	1.6	2
1664	Surface Nanostructure Formation and Atomic-Scale Templates for Nanodevices. ACS Omega, 2018, 3, 3285-3293.	1.6	13
1665	Grown with the wind. Nature Materials, 2018, 17, 296-297.	13.3	0
1666	2D carbon sheets with negative Gaussian curvature assembled from pentagonal carbon nanoflakes. Physical Chemistry Chemical Physics, 2018, 20, 9123-9129.	1.3	6
1667	Elastic polyurethane foams containing graphene nanoplatelets. Advances in Polymer Technology, 2018, 37, 1625-1634.	0.8	6
1668	First-principles studies on electronic properties of Oligo- p -phenylene molecular device. Solid State Communications, 2018, 269, 50-57.	0.9	12
1669	Imaging prototypical aromatic molecules on insulating surfaces: a review. Reports on Progress in Physics, 2018, 81, 016501.	8.1	22
1670	Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Research, 2018, 11, 820-830.	5.8	22
1671	A bottom-up strategy to surface assembly: Second growth from metal-rich embryos. Materials Chemistry and Physics, 2018, 204, 228-235.	2.0	0
1672	Doping Polycyclic Aromatics with Boron for Superior Performance in Materials Science and Catalysis. Asian Journal of Organic Chemistry, 2018, 7, 37-53.	1.3	260
1673	Monodisperse Nâ€Đoped Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angewandte Chemie - International Edition, 2018, 57, 703-708.	7.2	87
1674	On-Surface Route for Producing Planar Nanographenes with Azulene Moieties. Nano Letters, 2018, 18, 418-423.	4.5	85
1675	Orbitally Matched Edge-Doping in Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 807-813.	6.6	64
1676	On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. ACS Nano, 2018, 12, 74-81.	7.3	135
1677	Bright Electroluminescence from Single Graphene Nanoribbon Junctions. Nano Letters, 2018, 18, 175-181.	4.5	61
1678	Unraveling the Electronic Structure of Narrow Atomically Precise Chiral Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2018, 9, 25-30.	2.1	41
1679	One-Shot Multiple Borylation toward BN-Doped Nanographenes. Journal of the American Chemical Society, 2018, 140, 1195-1198.	6.6	380
1680	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	7.1	56

#	Article	IF	CITATIONS
1681	Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen printed electrode for sensitive determination of ampyra. Talanta, 2018, 176, 350-359.	2.9	42
1682	Surface Confined Synthesis of Covalent Organic Frameworks by Schiff-Base Coupling. , 2018, , 414-423.		0
1683	Enhancement and Templating of Ullmann Coupling by Adatoms. , 2018, , 261-271.		0
1684	Graphene-Based Nanostructures in Electrocatalytic Oxygen Reduction. , 2018, , 651-659.		4
1685	Strategies for Improving the Structural Quality of Covalent Networks in On-Surface Ullmann Coupling. , 2018, , 406-413.		0
1686	Combined Microscopic and Spectroscopic Insights Into the On-surface Synthesis of Graphene Nanoribbons. , 2018, , 236-243.		0
1687	C H Bond Breaking: A Simple Route to Synthesizing Complex Porphyrin Oligomers at a Surface. , 2018, , 1-10.		0
1688	Bottom-Up Synthesis and Electronic Structure of Graphene Nanoribbons on Surfaces. , 2018, , 210-225.		2
1689	UV-curable Graphene-containing Systems: Recent Advances and Future Perspectives. Current Graphene Science, 2018, 2, 21-26.	0.5	0
1691	On-surface reactions of aryl chloride and porphyrin macrocycles via merging two reactive sites into a single precursor. Chemical Communications, 2018, 54, 12626-12629.	2.2	7
1692	Spin-polarized Fermi surface, hole-doping and band gap in graphene with boron impurities. Nanoscale, 2018, 10, 22810-22817.	2.8	2
1693	Crystal-controlled polymerization: recent advances in morphology design and control of organic polymer materials. Journal of Materials Chemistry A, 2018, 6, 23197-23219.	5.2	35
1694	Ultrahigh Vacuum Optical Spectroscopy of Chemically Functionalized Graphene Nanoribbons. , 2018, , 367-374.		4
1696	Surface-Supported Boronic Acid Condensation. , 2018, , 424-435.		0
1697	Rational Synthesis of Fullerenes. , 0, , .		0
1699	A Vision on Organosilicon Chemistry and Silicene. Nanoscience and Technology, 2018, , 1-21.	1.5	2
1700	Exploration of Interfacial Porphine Coupling Schemes and Hybrid Systems by Bondâ€Resolved Scanning Probe Microscopy. Angewandte Chemie, 2018, 130, 16262-16267.	1.6	5
1701	Termini effects on the optical properties of graphene nanoribbons. European Physical Journal B, 2018, 91, 1.	0.6	5

#	Article	IF	Citations
1702	Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom. Journal of Physical Chemistry Letters, 2018, 9, 6801-6807.	2.1	7
1703	Organometallic Structures and Intermediates in Surface Ullmann Coupling. , 2018, , 343-353.		5
1704	Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing. Applied Physics Letters, 2018, 113, .	1.5	9
1705	Selective C H Bond Activation on Surfaces. , 2018, , 1-14.		0
1706	Electronic structure of graphene nanoribbons on hexagonal boron nitride. Physical Review B, 2018, 98, .	1.1	11
1707	The electronic transport efficiency of a graphene charge carrier guider and an Aharanov–Bohm interferometer. Journal of Physics Condensed Matter, 2018, 30, 485302.	0.7	3
1708	Exploration of Interfacial Porphine Coupling Schemes and Hybrid Systems by Bondâ€Resolved Scanning Probe Microscopy. Angewandte Chemie - International Edition, 2018, 57, 16030-16035.	7.2	21
1709	Aryl–Aryl Coupling on Semiconductor Surfaces. , 2018, , 204-209.		1
1710	Absorption in Finite-Length Chevron-Type Graphene Nanoribbons. Semiconductors, 2018, 52, 1890-1893.	0.2	14
1711	Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects. Physical Review B, 2018, 98, .	1.1	34
1713	Effect and Characterization of Stone–Wales Defects on Graphene Quantum Dot: A First-Principles Study. Condensed Matter, 2018, 3, 50.	0.8	10
1714	Doublon Formation by Ions Impacting a Strongly Correlated Finite Lattice System. Physical Review Letters, 2018, 121, 267602.	2.9	22
1715	Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. ACS Omega, 2018, 3, 17789-17796.	1.6	58
1716	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. Journal of the American Chemical Society, 2018, 140, 18051-18057.	6.6	138
1717	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
1718	High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano, 2018, 12, 12612-12618.	7.3	35
1719	Formation of Micro- and Nano-Trenches on Epitaxial Graphene. Applied Sciences (Switzerland), 2018, 8, 2518.	1.3	3
1721	Modeling Disordered and Nanostructured Graphene. , 2018, , 1-20.		0

#	Article	IF	CITATIONS
1722	Electronic Structure of Atomically Precise Graphene Nanoribbons. , 2018, , 1-35.		1
1723	Electronic Structure Tunability by Periodic <i>meta</i> -Ligand Spacing in One-Dimensional Organic Semiconductors. ACS Nano, 2018, 12, 10537-10544.	7.3	27
1724	Graphene thermoelectric transducers. , 2018, , 125-185.		0
1725	Graphene Nanoribbon Spin-Photodetector. Physical Review Applied, 2018, 10, .	1.5	35
1726	Kinetic Strategies for the Formation of Graphyne Nanowires via Sonogashira Coupling on Ag(111). Journal of the American Chemical Society, 2018, 140, 13421-13428.	6.6	68
1727	A Largeâ€Sized Reduced Graphene Oxide with Low Chargeâ€Transfer Resistance as a Highâ€Performance Electrode for a Nonflammable Highâ€Temperature Stable Ionicâ€Liquidâ€Based Supercapacitor. ChemSusChem, 2018, 11, 4026-4032.	3.6	11
1728	Vibrational Signatures of Carboxylated Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2018, 122, 24996-25006.	1.5	5
1729	Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, Z ₂ Invariants, and Junction States. Nano Letters, 2018, 18, 7247-7253.	4.5	55
1730	Synthesis of corrugated C-based nanostructures by Br-corannulene oligomerization. Physical Chemistry Chemical Physics, 2018, 20, 26161-26172.	1.3	9
1731	Pyrene-Like HOMO Governs Polaron Delocalization in Model Graphitic Strips: A Combined Experimental and Computational Analysis. Journal of Physical Chemistry C, 2018, 122, 24527-24534.	1.5	1
1732	Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-Micro Letters, 2018, 10, 70.	14.4	95
1733	Ballistic tracks in graphene nanoribbons. Nature Communications, 2018, 9, 4426.	5.8	45
1734	Alterations in the Electronic Structure Upon Hierarchical Growth of 2D Networks. , 2018, , 195-203.		0
1735	Unimolecular Reactions on Metal Surfaces. , 2018, , .		0
1736	Linear Alkane Polymerization on Au-Covered Ag(110) Surfaces. Journal of Physical Chemistry C, 2018, 122, 24209-24214.	1.5	7
1737	Hybrid Graphene Ribbon/Carbon Electrodes for Highâ€Performance Energy Storage. Advanced Energy Materials, 2018, 8, 1802439.	10.2	23
1738	Topological Properties of Gapped Graphene Nanoribbons with Spatial Symmetries. Nano Letters, 2018, 18, 7254-7260.	4.5	27
1739	Emergent scale invariance of nonclassical plasmons in graphene nanoribbons. Physical Review B, 2018, 98, .	1.1	10

#	Article	IF	CITATIONS
1740	Tuning On-Surface Synthesis of Graphene Nanoribbons by Noncovalent Intermolecular Interactions. Journal of Physical Chemistry C, 2018, 122, 24415-24420.	1.5	6
1741	Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure. ACS Omega, 2018, 3, 12930-12935.	1.6	3
1742	Diastereoselective Ullmann Coupling to Bishelicenes by Surface Topochemistry. Journal of the American Chemical Society, 2018, 140, 15186-15189.	6.6	24
1743	Observation of Room-Temperature Photoluminescence Blinking in Armchair-Edge Graphene Nanoribbons. Nano Letters, 2018, 18, 7038-7044.	4.5	8
1744	Hoâ€Mediated Alkyne Reactions at Low Temperatures on Ag(111). Chemistry - A European Journal, 2018, 24, 16126-16135.	1.7	9
1745	Carbon Materials with Zigzag and Armchair Edges. ACS Applied Materials & Interfaces, 2018, 10, 40710-40739.	4.0	51
1746	RF Performance Analysis of Carbon-Based Interconnects. , 2018, , .		1
1747	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	5.5	121
1748	Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Communications, 2018, 8, 703-711.	0.8	13
1749	Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering. Nanoscale, 2018, 10, 17975-17982.	2.8	12
1750	A transport isolation by orbital hybridization transformation toward graphene nanoribbon-based nanostructure integration. Nanotechnology, 2018, 29, 455704.	1.3	1
1751	Conductance and Electroluminescence from On-surface Synthesized Molecular Wires. , 2018, , 244-252.		0
1752	Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon, 2018, 137, 349-357.	5.4	16
1753	Stereospecific Autocatalytic Surface Explosion Chemistry of Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 7705-7709.	6.6	11
1754	Steering a cycloaddition reaction via the surface structure. Surface Science, 2018, 678, 194-200.	0.8	24
1755	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	4.0	12
1756	DNA Sequencing Using Carbon Nanopores. Springer Series on Chemical Sensors and Biosensors, 2018, , 233-271.	0.5	0
1757	Higher Acenes by Onâ€Surface Dehydrogenation: From Heptacene to Undecacene. Angewandte Chemie - International Edition, 2018, 57, 10500-10505.	7.2	128

#	Article	IF	CITATIONS
1758	Controlling the Reaction Steps of Bifunctional Molecules 1,5-Dibromo-2,6-dimethylnaphthalene on Different Substrates. Journal of Physical Chemistry C, 2018, 122, 13001-13008.	1.5	21
1759	First principles study on the electronic structures and transport properties of armchair/zigzag edge hybridized graphene nanoribbons. Journal of Applied Physics, 2018, 123, .	1.1	30
1760	Driving π-plane to π-bowl through lateral coordination at room temperature. Materials Chemistry Frontiers, 2018, 2, 1456-1461.	3.2	17
1761	Graphene Oxideâ€Based Polymeric Membranes for Water Treatment. Advanced Materials Interfaces, 2018, 5, 1701427.	1.9	70
1762	Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature, 2018, 557, 691-695.	13.7	232
1763	Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8984-8988.	7.2	46
1764	Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons. Nano Letters, 2018, 18, 3550-3556.	4.5	31
1765	Makroskopische kristalline 2Dâ€Polymere. Angewandte Chemie, 2018, 130, 13942-13959.	1.6	23
1766	Towards Macroscopic Crystalline 2D Polymers. Angewandte Chemie - International Edition, 2018, 57, 13748-13763.	7.2	113
1767	Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent Organic Framework. Angewandte Chemie, 2018, 130, 9122-9126.	1.6	6
1768	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Đimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie, 2018, 130, 9827-9831.	1.6	17
1769	A first-principles study on DNA sequencing using graphene quantum dot. European Physical Journal B, 2018, 91, 1.	0.6	5
1770	Higher Acenes by On‣urface Dehydrogenation: From Heptacene to Undecacene. Angewandte Chemie, 2018, 130, 10660-10665.	1.6	29
1771	Graphene and Graphene Oxide for Fuel Cell Technology. Industrial & Engineering Chemistry Research, 2018, 57, 9333-9350.	1.8	134
1772	Spontaneous separation of on-surface synthesized tris-helicenes into two-dimensional homochiral domains. Chemical Communications, 2018, 54, 7948-7951.	2.2	30
1773	Electronic Properties of Substitutionally Boron-Doped Graphene Nanoribbons on a Au(111) Surface. Journal of Physical Chemistry C, 2018, 122, 16092-16099.	1.5	31
1774	Spin photocurrents in chevron-type graphene nanoribbons under terahertz to visible light irradiation. Journal Physics D: Applied Physics, 2018, 51, 305103.	1.3	7
1775	Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons. ACS Nano, 2018, 12, 7048-7056.	7.3	31

#	Article	IF	CITATIONS
1776	First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	4
1777	Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chemical Society Reviews, 2018, 47, 6073-6100.	18.7	97
1778	Materials informatics for self-assembly of functionalized organic precursors on metal surfaces. Nature Communications, 2018, 9, 2469.	5.8	13
1779	Ultrahigh-luminosity white-light-emitting devices based on edge functionalized graphene quantum dots. Nano Energy, 2018, 51, 199-205.	8.2	27
1780	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.	7.3	225
1781	Understanding the non-covalent interaction mediated modulations on the electronic structure of quasi-zero-dimensional graphene nanoflakes. Physical Chemistry Chemical Physics, 2018, 20, 18718-18728.	1.3	2
1782	Multiple Exciton Generation in Nanostructures for Advanced Photovoltaic Cells. Journal of Nanotechnology, 2018, 2018, 1-12.	1.5	9
1783	On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chemical Communications, 2018, 54, 9402-9405.	2.2	39
1784	Reaction Selectivity in On‧urface Chemistry by Surface Coverage Control—Alkyne Dimerization versus Alkyne Trimerization. Chemistry - A European Journal, 2018, 24, 15303-15308.	1.7	9
1785	Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces. Nature Communications, 2018, 9, 3113.	5.8	41
1786	From MoO ₂ @MoS ₂ Core–Shell Nanorods to MoS ₂ Nanobelts. Physica Status Solidi (B): Basic Research, 2018, 255, 1800254.	0.7	23
1787	Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. ACS Nano, 2018, 12, 8662-8669.	7.3	49
1788	Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies. Journal of the American Chemical Society, 2018, 140, 10416-10420.	6.6	48
1789	Graphene-based nanomaterials for solar cells. , 2018, , 127-152.		3
1790	Mechanisms of Covalent Coupling Reaction of Dibromofluoranthene on Au(111). Journal of Physical Chemistry C, 2018, 122, 17756-17763.	1.5	3
1791	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6845-6888.	18.7	202
1792	How Structural Defects Affect the Mechanical and Electrical Properties of Single Molecular Wires. Physical Review Letters, 2018, 121, 047701.	2.9	24
1793	Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro. Synthetic Metals, 2018, 244, 106-112.	2.1	30

#	Article	IF	CITATIONS
1794	On-Surface Coupling Reactions with Extrinsic Catalysts. Advances in Atom and Single Molecule Machines, 2018, , 195-207.	0.0	0
1795	Stability of Two-Dimensional Polymorphs for 10,12-Pentacosadyn-1-ol on Graphite Investigated by SPM. Applied Sciences (Switzerland), 2018, 8, 503.	1.3	1
1796	Carbon-Based Materials for Thermoelectrics. Advances in Condensed Matter Physics, 2018, 2018, 1-29.	0.4	35
1797	The spin-dependent Seebeck effect and the charge and spin figure of merit in a hybrid structure of single-walled carbon nanotubes and zigzag-edge graphene nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 19424-19429.	1.3	7
1798	Self-assembly of conformationally flexible molecules under 2D confinement: structural analysis from computer simulations. Chemical Communications, 2018, 54, 8749-8752.	2.2	9
1799	Direct Formation of C–C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of <i>gem</i> -Dibromomethyl Molecules. ACS Nano, 2018, 12, 7959-7966.	7.3	24
1800	Super-Resolution Imaging of Clickable Graphene Nanoribbons Decorated with Fluorescent Dyes. Journal of the American Chemical Society, 2018, 140, 9574-9580.	6.6	26
1801	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	6.6	110
1802	Enhanced light–matter interaction of aligned armchair graphene nanoribbons using arrays of plasmonic nanoantennas. 2D Materials, 2018, 5, 045006.	2.0	10
1803	Defect induced Anderson localization and magnetization in graphene quantum dots. Solid State Communications, 2018, 281, 44-48.	0.9	5
1804	Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint. ACS Nano, 2018, 12, 7571-7582.	7.3	38
1805	Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Research, 2018, 11, 6190-6196.	5.8	20
1806	Precise Monoselective Aromatic C–H Bond Activation by Chemisorption of <i>Meta</i> -Aryne on a Metal Surface. Journal of the American Chemical Society, 2018, 140, 7526-7532.	6.6	51
1807	Building a 22-ring nanographene by combining in-solution and on-surface syntheses. Chemical Communications, 2018, 54, 10256-10259.	2.2	39
1808	Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation. Optics Express, 2018, 26, 20726.	1.7	6
1809	Tailored Synthesis of the Narrowest Zigzag Graphene Nanoribbon Structure by Compressing the Lithium Acetylide under High Temperature. Journal of Physical Chemistry C, 2018, 122, 20506-20512.	1.5	10
1810	Energy gap in graphene and silicene nanoribbons: A semiclassical approach. AIP Conference Proceedings, 2018, , .	0.3	4
1811	Highly Stable Persistent Photoconductivity with Suspended Graphene Nanoribbons. Scientific Reports, 2018, 8, 11819.	1.6	16

# 1812	ARTICLE Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nature Chemistry, 2018, 10, 1112-1117.	IF 6.6	CITATIONS 38
1813	Interpolymer Self-Assembly of Bottom-up Graphene Nanoribbons Fabricated from Fluorinated Precursors. ACS Applied Materials & Interfaces, 2018, 10, 31623-31630.	4.0	12
1814	Tuning the conductance of a molecular wire by the interplay of donor and acceptor units. Nanoscale, 2018, 10, 17131-17139.	2.8	4
1815	Long triple carbon chains formation by heat treatment of graphene nanoribbon: Molecular dynamics study with revised Brenner potential. Carbon, 2018, 140, 543-556.	5.4	13
1816	Edge State Engineering of Graphene Nanoribbons. Nano Letters, 2018, 18, 5744-5751.	4.5	49
1817	Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. Nano Letters, 2018, 18, 6009-6016.	4.5	104
1818	Symmetry breakdown of 4,4″-diamino-p-terphenyl on a Cu(111) surface by lattice mismatch. Nature Communications, 2018, 9, 3277.	5.8	32
1819	Diacetylene Linked Anthracene Oligomers Synthesized by One-Shot Homocoupling of Trimethylsilyl on Cu(111). ACS Nano, 2018, 12, 8791-8797.	7.3	41
1820	Topological states engineered in narrow strips of graphene. Nature, 2018, 560, 175-176.	13.7	9
1821	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	13.7	397
1822	Topological band engineering of graphene nanoribbons. Nature, 2018, 560, 204-208.	13.7	452
1823	Edgeâ€Terminated MoS ₂ Nanoassembled Electrocatalyst via In Situ Hybridization with 3D Carbon Network. Small, 2018, 14, e1802191.	5.2	15
1824	Dependence of the adsorption height of graphenelike adsorbates on their dimensionality. Physical Review B, 2018, 98, .	1.1	3
1825	Energy gap opening by crossing drop cast single-layer graphene nanoribbons. Nanotechnology, 2018, 29, 315705.	1.3	7
1826	Modulating capacitive response of MoS2 flake by controlled nanostructuring through focused laser irradiation. Nanotechnology, 2018, 29, 345302.	1.3	4
1827	Photoelectric Detectors Based on Inorganic pâ€īype Semiconductor Materials. Advanced Materials, 2018, 30, e1706262.	11.1	344
1828	Unravelling the Mechanism of Glaser Coupling Reaction on Ag(111) and Cu(111) Surfaces: a Case for Halogen Substituted Terminal Alkyne. Journal of Physical Chemistry C, 2018, 122, 14537-14545.	1.5	38
1829	Epitaxial Growth of Single‣ayer Niobium Selenides with Controlled Stoichiometric Phases. Advanced Materials Interfaces, 2018, 5, 1800429.	1.9	13

#	Article	IF	CITATIONS
1830	Synthesis of Graphene-like Films by Electrochemical Reduction of Polyhalogenated Aromatic Compounds and their Electrochemical Capacitor Applications. Langmuir, 2018, 34, 7958-7970.	1.6	16
1831	Electrophilic radical coupling at the edge of graphene. Nanoscale, 2018, 10, 12011-12017.	2.8	7
1832	Onâ€ S urface Synthesis of Graphene Nanoribbons Catalyzed by Ni Atoms. Chemistry - an Asian Journal, 2018, 13, 2023-2026.	1.7	6
1833	Kinetic and Thermodynamic Considerations in On-Surface Synthesis. Advances in Atom and Single Molecule Machines, 2018, , 19-34.	0.0	5
1834	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie - International Edition, 2018, 57, 9679-9683.	7.2	80
1835	Luminescence in 2D Materials and van der Waals Heterostructures. Advanced Optical Materials, 2018, 6, 1701296.	3.6	58
1836	Surface Engineering of Twoâ€Ðimensional Materials. ChemNanoMat, 2019, 5, 6-23.	1.5	22
1837	TOPSIS based Taguchi design optimization for CVD growth of graphene using different carbon sources: Graphene thickness, defectiveness and homogeneity. Chinese Journal of Chemical Engineering, 2019, 27, 685-694.	1.7	15
1838	On‣urface Synthesis of Porous Carbon Nanoribbons on Silver: Reaction Kinetics and the Influence of the Surface Structure. ChemPhysChem, 2019, 20, 2333-2339.	1.0	13
1839	High-efficiency spin polarization in electron transport through the graphene nanoribbon coupled to chromium triiodide. Journal Physics D: Applied Physics, 2019, 52, 435304.	1.3	2
1840	Electronic structure, strain effects and transport property of armchair graphene nanoribbon with variously possible edge oxidation. Journal Physics D: Applied Physics, 2019, 52, 475301.	1.3	12
1841	Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angewandte Chemie - International Edition, 2019, 58, 18758-18775.	7.2	14
1842	Two‣idedness of Surface Reaction Mediation. Advanced Materials, 2019, 31, e1902080.	11.1	12
1843	Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6,6,12-graphyne. Nature Communications, 2019, 10, 3714.	5.8	33
1844	Chemische Synthese an OberflÄ e hen mit PrĤision in atomarer GrĶğenordnung: Beherrschung von KomplexitĤund Genauigkeit. Angewandte Chemie, 2019, 131, 18932-18951.	1.6	0
1845	Carbon nanomaterials for thermoelectric applications. , 2019, , 121-137.		0
1846	Investigation of performance of aluminum doped carbon nanotube (8, 0) as adequate catalyst to oxygen reduction reaction. Journal of Molecular Graphics and Modelling, 2019, 92, 123-130.	1.3	3
1847	Green function, quasi-classical Langevin and Kubo–Greenwood methods in quantum thermal transport. Journal of Physics Condensed Matter, 2019, 31, 273003.	0.7	15

#	Article	IF	CITATIONS
1848	Soliton fractional charge of disordered graphene nanoribbon. Journal of Physics Condensed Matter, 2019, 31, 265601.	0.7	8
1849	Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 2019, 11, 16571-16581.	2.8	176
1850	Graphene Nanoribbon Dielectric Passivation Layers for Graphene Electronics. ACS Applied Nano Materials, 2019, 2, 4825-4831.	2.4	17
1851	An effective approach to realize graphene based p-n junctions via adsorption of donor and acceptor molecules. Carbon, 2019, 153, 525-530.	5.4	6
1852	Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 2019, 75, 100786.	15.8	379
1853	Identifying surface reaction intermediates with photoemission tomography. Nature Communications, 2019, 10, 3189.	5.8	18
1854	Design of carbon sources: starting point for chemical vapor deposition of graphene. 2D Materials, 2019, 6, 042003.	2.0	8
1855	Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences. Nanomaterials, 2019, 9, 885.	1.9	15
1856	Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications. International Reviews in Physical Chemistry, 2019, 38, 149-199.	0.9	46
1857	Synthetic Engineering of Graphene Nanoribbons with Excellent Liquid-Phase Processability. Trends in Chemistry, 2019, 1, 549-558.	4.4	44
1858	Anisotropic Synthesis of Armchair Graphene Nanoribbon Arrays from Sub-5 nm Seeds at Variable Pitches on Germanium. Journal of Physical Chemistry Letters, 2019, 10, 4266-4272.	2.1	17
1859	Backbone Chemical Composition and Monomer Sequence Effects on Phenylene Polymer Persistence Lengths. Macromolecules, 2019, 52, 5307-5316.	2.2	4
1860	Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. Journal of the American Chemical Society, 2019, 141, 12011-12020.	6.6	112
1861	Naphthylenes: 1D and 2D carbon allotropes based on naphthyl units. Carbon, 2019, 153, 792-803.	5.4	23
1862	Examination of potential of B-CNT (6, 0), Al-CNT (6, 0) and Ga-CNT (6, 0) as novel catalysts to oxygen reduction reaction: A DFT study. Journal of Molecular Liquids, 2019, 290, 111366.	2.3	4
1863	Defect tolerant and dimension dependent ferromagnetism in MnSe ₂ . Physical Chemistry Chemical Physics, 2019, 21, 16718-16725.	1.3	18
1864	On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1- <i>b</i>]fluorene Polymers and Their Lateral Fusion into Porous Ribbons. Journal of the American Chemical Society, 2019, 141, 12346-12354.	6.6	71
1865	Improving gas sensing properties of armchair graphene nanoribbons by oxygen–hydrogen terminated edges. Nanotechnology, 2019, 30, 435501.	1.3	0

#	Article	IF	CITATIONS
1866	Band Gap of Atomically Precise Graphene Nanoribbons as a Function of Ribbon Length and Termination. ChemPhysChem, 2019, 20, 2348-2353.	1.0	17
1867	Subwavelength Electro-Optical Half-Subtractor and Half-Adder Based on Graphene Plasmonic Waveguides. Plasmonics, 2019, 14, 1939-1947.	1.8	18
1868	Impact of electrostatic doping level on the dissipative transport in graphene nanoribbons tunnel field-effect transistors. Carbon, 2019, 153, 120-126.	5.4	11
1869	On-Surface Synthesis within a Porphyrin Nanoring Template. Scientific Reports, 2019, 9, 9352.	1.6	16
1870	Transferâ€Free Synthesis of Lateral Graphene–Hexagonal Boron Nitride Heterostructures from Chemically Converted Epitaxial Graphene. Advanced Materials Interfaces, 2019, 6, 1900419.	1.9	10
1871	Design and AC Modeling of a Bipolar GNR-h-BN RTD With Enhanced Tunneling Properties and High Robustness to Edge Defects. IEEE Transactions on Electron Devices, 2019, 66, 3675-3682.	1.6	1
1872	Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surface‣upported to Onâ€Device Nanostructures. Advanced Functional Materials, 2019, 29, 1903535.	7.8	13
1873	Synthesis of Armchair Graphene Nanoribbons on Germanium-on-Silicon. Journal of Physical Chemistry C, 2019, 123, 18445-18454.	1.5	12
1874	Direct growth of large area uniform bi-layer graphene films on silicon substrates by chemical vapor deposition. Materials Research Express, 2019, 6, 095611.	0.8	4
1875	Control of electric, optical, thermal properties of C60 films by electron-beam irradiation. Carbon, 2019, 152, 882-887.	5.4	15
1876	Controlling of the 2D Self-Assembly Process by the Variation of Molecular Geometry. Journal of Physical Chemistry C, 2019, 123, 19549-19556.	1.5	13
1877	Hierarchy in the Halogen Activation During Surfaceâ€Promoted Ullmann Coupling. ChemPhysChem, 2019, 20, 2305-2310.	1.0	11
1878	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
1879	Quantum Interference Engineering of Nanoporous Graphene for Carbon Nanocircuitry. Journal of the American Chemical Society, 2019, 141, 13081-13088.	6.6	26
1880	Negatively Curved Warped Nanographene Self-Assembled on Metal Surfaces. Journal of the American Chemical Society, 2019, 141, 13158-13164.	6.6	38
1881	Role of boron doped silicon nanocage (B-Si48) as catalyst for oxygen reduction reaction in fuel cells. Chemical Physics Letters, 2019, 731, 136629.	1.2	5
1882	Atomically precise bottom-up synthesis of π-extended [5]triangulene. Science Advances, 2019, 5, eaav7717.	4.7	159
1883	Dechlorinated Ullmann Coupling Reaction of Aryl Chlorides on Ag(111): A Combined STM and XPS Study. ChemPhysChem, 2019, 20, 2367-2375.	1.0	12

#	Article	IF	CITATIONS
1884	Kinetic Control over Morphology of Nanoporous Graphene on Surface. ChemPhysChem, 2019, 20, 2327-2332.	1.0	12
1885	Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase. Journal of the American Chemical Society, 2019, 141, 10972-10977.	6.6	36
1886	In Situ Coupling of Single Molecules Driven by Goldâ€Catalyzed Electrooxidation. Angewandte Chemie, 2019, 131, 16154-16158.	1.6	3
1887	Effect of backbone aspect ratio on the surface-confined self-assembly of tetratopic molecular building blocks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123632.	2.3	3
1889	Nanoribbons with Nonalternant Topology from Fusion of Polyazulene: Carbon Allotropes beyond Graphene. Journal of the American Chemical Society, 2019, 141, 17713-17720.	6.6	158
1890	Low-temperature synthesis of sp2 carbon nanomaterials. Science Bulletin, 2019, 64, 1817-1829.	4.3	18
1891	Low-Temperature Spectra and Density Functional Theory Modeling of Ru(II)-Bipyridine Complexes with Cyclometalated Ancillary Ligands: The Excited State Spin–Orbit Coupling Origin of Variations in Emission Efficiencies. Journal of Physical Chemistry A, 2019, 123, 9431-9449.	1.1	8
1892	Long-Range Ordered Structures of Corannulene Governed by Electrostatic Repulsion and Surface-State Mediation. Journal of Physical Chemistry Letters, 2019, 10, 6800-6806.	2.1	9
1893	Metalâ€Free Synthesis of Benzothiophenes by Twofold Câ^'H Functionalization: Direct Access to Materialsâ€Oriented Heteroaromatics. Angewandte Chemie - International Edition, 2019, 58, 15675-15679.	7.2	40
1894	Metalâ€Free Synthesis of Benzothiophenes by Twofold Câ^'H Functionalization: Direct Access to Materialsâ€Oriented Heteroaromatics. Angewandte Chemie, 2019, 131, 15822-15826.	1.6	10
1895	Doubly passively Q-switched Tm:YAP laser with MoS2 and WS2 saturable absorbers at 2 μm. Optik, 2019, 198, 163205.	1.4	12
1896	A metal-semiconductor transition in helical graphene nanoribbon. Journal of Applied Physics, 2019, 126, 144303.	1.1	9
1897	State-of-the-art advancements in studies and applications of graphene: a comprehensive review. Materials Today Sustainability, 2019, 6, 100026.	1.9	8
1898	Top-down bottom-up graphene synthesis. Nano Futures, 2019, 3, 042003.	1.0	39
1899	Effect of Edge Functionalization on the Bottomâ€Up Synthesis of Nanoâ€Graphenes. ChemPhysChem, 2019, 20, 3366-3372.	1.0	5
1900	Dielectricâ€Screening Reductionâ€Induced Large Transport Gap in Suspended Subâ€10 nm Graphene Nanoribbon Functional Devices. Small, 2019, 15, 1903025.	5.2	14
1901	First-Principle Prediction on STM Tip Manipulation of Ti Adatom on Two-Dimensional Monolayer YBr3. Scanning, 2019, 2019, 1-7.	0.7	3
1902	Anisotropic Failure of sp2-Hybrid Bonds in Graphene Sheets. Journal of Physical Chemistry C, 2019, 123, 28469-28476.	1.5	3

#	Article	IF	CITATIONS
1903	Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons. Advances in Physics: X, 2019, 4, 1651672.	1.5	33
1904	Bottomâ€Up On‧urface Synthesis of Twoâ€Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties. Chemistry - an Asian Journal, 2019, 14, 4400-4407.	1.7	11
1905	Half-metallicity modulation of zigzag BC2N nanoribbons by transverse electric fields: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125984.	0.9	1
1906	Atomicâ€Scale Manipulation and In Situ Characterization with Scanning Tunneling Microscopy. Advanced Functional Materials, 2019, 29, 1903770.	7.8	33
1907	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie, 2019, 131, 18764-18770.	1.6	19
1908	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie - International Edition, 2019, 58, 18591-18597.	7.2	37
1909	Electronic States at the Zigzag Edges of Graphene Terraces. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900513.	1.2	0
1910	Assemblyâ€Induced Diverse Optical Property of 4â€Biphenylcarboxyâ€Protected Serine and Tyrosine. ChemistrySelect, 2019, 4, 10302-10306.	0.7	1
1911	Laserâ€Directed Assembly of Nanorods of 2D Materials. Small, 2019, 15, 1904415.	5.2	8
1912	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	0.7	26
1913	Franz-Keldysh effect and electric field-induced second harmonic generation in graphene: From one-dimensional nanoribbons to two-dimensional sheet. Physical Review B, 2019, 99, .	1.1	2
1914	Light absorption and pseudospin density generation in graphene nanoribbons. Physical Review B, 2019, 100, .	1.1	2
1915	Dielectric and optical properties of porous graphenes with uniform pore structures. Journal of Molecular Modeling, 2019, 25, 266.	0.8	3
1916	Nonlinear Graphene Nanoplasmonics. Accounts of Chemical Research, 2019, 52, 2536-2547.	7.6	52
1917	Ab initio investigation of the cyclodehydrogenation process for polyanthrylene transformation to graphene nanoribbons. Npj Computational Materials, 2019, 5, .	3.5	9
1918	On-surface synthesis and characterization of individual polyacetylene chains. Nature Chemistry, 2019, 11, 924-930.	6.6	67
1919	Heteroatom-Doped Nanographenes with Structural Precision. Accounts of Chemical Research, 2019, 52, 2491-2505.	7.6	239
1920	Graphene Nanoscrolls via Electric-Field-Induced Transformation of Water-Submerged Graphene Nanoribbons for Energy Storage, Nanofluidic, and Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 5857-5870.	2.4	7

#	Article	IF	Citations
1921	Electronic and optical properties of XN-ynes (X = B, Al, Ga): A first-principle study with many-body effects. Applied Surface Science, 2019, 495, 143612.	3.1	31
1922	Topologically Unique Molecular Nanocarbons. Accounts of Chemical Research, 2019, 52, 2760-2767.	7.6	102
1923	An atomic-scale view of cyclocarbon synthesis. Science, 2019, 365, 1245-1246.	6.0	9
1924	Transport properties of Ag decorated zigzag graphene nanoribbons as a function of temperature: a density functional based tight binding molecular dynamics study. Adsorption, 2019, 25, 1655-1662.	1.4	15
1925	Bilayer graphene nanoribbons junction with aligned holes exhibiting high ZT values. Carbon, 2019, 155, 438-444.	5.4	6
1926	Synthesis and reactivity of a trigonal porous nanographene on a gold surface. Chemical Science, 2019, 10, 10143-10148.	3.7	18
1927	Step edge-mediated assembly of periodic arrays of long graphene nanoribbons on Au(111). Chemical Communications, 2019, 55, 11848-11851.	2.2	14
1928	Bioinspired Mineralization under Freezing Conditions: An Approach to Fabricate Porous Carbons with Complicated Architecture and Superior K ⁺ Storage Performance. ACS Nano, 2019, 13, 11582-11592.	7.3	146
1929	Review on Quasi One-Dimensional CdSe Nanomaterials: Synthesis and Application in Photodetectors. Nanomaterials, 2019, 9, 1359.	1.9	23
1930	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	7.3	36
1931	Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 38006-38015.	4.0	13
1932	The fate of bromine after temperature-induced dehydrogenation of on-surface synthesized bisheptahelicene. Chemical Science, 2019, 10, 2998-3004.	3.7	25
1933	Gate-controlled photo-oxidation of graphene for electronic structure modification. Journal of Materials Chemistry C, 2019, 7, 1904-1912.	2.7	7
1934	Defects in Carbon Nanotubes and their Impact on the Electronic Transport Properties. Journal of Electronic Materials, 2019, 48, 2301-2306.	1.0	19
1935	Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Applied Sciences, 2019, 1, 1.	1.5	55
1936	Bandgap engineering in aperiodic Thue-Morse graphene superlattices. AIP Advances, 2019, 9, .	0.6	5
1937	Efficient synthesis of graphene oxide by Hummers method assisted with an electric field. Materials Research Express, 2019, 6, 055602.	0.8	8
1938	Effects of an edge vacancy on electron transport in zigzag-graphene nanoribbons with oxygen terminations. Japanese Journal of Applied Physics, 2019, 58, 025002.	0.8	3

#	Article	IF	CITATIONS
1939	Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Advances, 2019, 9, 2848-2856.	1.7	10
1940	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	5.4	70
1941	All-Armchair Graphene Nanoribbon Field-Effect Uridine Diphosphate Glucose Sensor: First-Principles In-Silico Design and Characterization. IEEE Sensors Journal, 2019, 19, 3975-3983.	2.4	14
1942	Important role of screening the electron-hole exchange interaction for the optical properties of molecules near metal surfaces. Physical Review B, 2019, 99, .	1.1	8
1943	Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chemical Science, 2019, 10, 964-975.	3.7	104
1944	Onâ€Surface Activation of Trimethylsilylâ€Terminated Alkynes on Coinage Metal Surfaces. ChemPhysChem, 2019, 20, 2382-2393.	1.0	10
1945	Carbon‣upportâ€Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. Asian Journal of Organic Chemistry, 2019, 8, 1263-1305.	1.3	59
1946	Persistent Homology to Quantify the Quality of Surfaceâ€Supported Covalent Networks. ChemPhysChem, 2019, 20, 2286-2291.	1.0	2
1947	Electric field induced enhancement of photovoltaic effects in graphene nanoribbons. Physical Review B, 2019, 99, .	1.1	9
1948	In Situ Coupling of Single Molecules Driven by Gold atalyzed Electrooxidation. Angewandte Chemie - International Edition, 2019, 58, 16008-16012.	7.2	23
1949	Photochemistry Highlights on Onâ \in Surface Synthesis. ChemPhysChem, 2019, 20, 2271-2280.	1.0	19
1950	Molecularly defined graphitic interface toward proton manipulation. Current Opinion in Electrochemistry, 2019, 17, 158-166.	2.5	2
1951	Fabrication of nanographene using nickel supported by a tungsten mesh. Thin Solid Films, 2019, 685, 186-194.	0.8	8
1952	Templated Synthesis of End-Functionalized Graphene Nanoribbons through Living Ring-Opening Alkyne Metathesis Polymerization. Journal of the American Chemical Society, 2019, 141, 11050-11058.	6.6	36
1953	Polycyclic aromatic hydrocarbons in the graphene era. Science China Chemistry, 2019, 62, 1099-1144.	4.2	142
1955	Synthesis of Regioisomeric Graphene Nanoribbon Junctions via Heteroprecursors. Journal of Physical Chemistry C, 2019, 123, 17632-17638.	1.5	8
1956	Recent Trends in the Synthesis of Carbon Nanomaterials. , 2019, , 519-555.		1
1957	A carrier velocity model for electrical detection of gas molecules. Beilstein Journal of Nanotechnology, 2019, 10, 644-653.	1.5	1

#	Article	IF	CITATIONS
1958	On‣urface Synthesis and Spectroscopic Characterization of Laterally Extended Chevron Graphene Nanoribbons. ChemPhysChem, 2019, 20, 2281-2285.	1.0	22
1959	Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nature Communications, 2019, 10, 2545.	5.8	26
1960	Sterically controlled C–H/C–H homocoupling of arenes <i>via</i> C–H borylation. Organic and Biomolecular Chemistry, 2019, 17, 5703-5707.	1.5	4
1961	On-surface synthesis of 2D COFs on Cu(111) <i>via</i> the formation of thermodynamically stable organometallic networks as the template. Physical Chemistry Chemical Physics, 2019, 21, 13222-13229.	1.3	20
1962	Core-crystalline nanoribbons of controlled length via diffusion-limited colloid aggregation. Soft Matter, 2019, 15, 4751-4760.	1.2	7
1963	Optimizing the thermoelectric performance of γ-graphyne nanoribbons via introducing disordered surface fluctuation. Solid State Communications, 2019, 298, 113646.	0.9	5
1964	Direct growth of large area uniform double layer graphene films on MgO(100) substrates by chemical vapor deposition. Materials Chemistry and Physics, 2019, 233, 213-219.	2.0	6
1965	Topologyâ€Selective Ullmann Coupling on Metal Surfaces by Precursor Design and Adsorbateâ€Substrate Interaction: Towards the Control over Polymer versus Macrocycle Formation. ChemPhysChem, 2019, 20, 2311-2316.	1.0	7
1966	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
1967	Electronic transport in graphene nanoribbons with correlated line-edge roughness. Journal Physics D: Applied Physics, 2019, 52, 375102.	1.3	2
1968	Negative differential resistance in hybrid carbon-based structures. Physical Review B, 2019, 99, .	1.1	4
1969	On-Surface Fabrication of Small-Sized Nanoporous Graphene. Journal of Physical Chemistry C, 2019, 123, 14404-14407.	1.5	4
1971	Confined on-surface organic synthesis: Strategies and mechanisms. Surface Science Reports, 2019, 74, 97-140.	3.8	71
1972	Surface onfined Selfâ€Assembly of Asymmetric Tetratopic Molecular Building Blocks. ChemPhysChem, 2019, 20, 1850-1859.	1.0	3
1973	Overcoming Steric Hindrance in Arylâ€Aryl Homocoupling via Onâ€5urface Copolymerization. ChemPhysChem, 2019, 20, 2360-2366.	1.0	14
1974	Family-dependent magnetism in atomic boron adsorbed armchair graphene nanoribbons. Journal of Materials Chemistry C, 2019, 7, 6241-6245.	2.7	16
1975	Onâ€Surface Synthesis of Oneâ€Dimensional Carbonâ€Based Nanostructures via Câ^'X and Câ^'H Activation Reactions. ChemPhysChem, 2019, 20, 2251-2261.	1.0	15
1976	Characterization of hydrogen plasma defined graphene edges. Carbon, 2019, 150, 417-424.	5.4	7

#	Article	IF	CITATIONS
1977	Spin-dependent transport properties of debrominated tetrabromopolyaromatic with Cu or Co doping embedded between zigzag graphene nanoribbon electrodes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2185-2192.	0.9	5
1978	Length-Dependent Evolution of Type II Heterojunctions in Bottom-Up-Synthesized Graphene Nanoribbons. Nano Letters, 2019, 19, 3221-3228.	4.5	41
1979	Dissolution of Sodium Halides by Confined Water on Au(111) <i>via</i> Langmuir–Hinshelwood Process. ACS Nano, 2019, 13, 6025-6032.	7.3	7
1980	Electronic structures and magnetic properties of CrSiTe3 single-layer nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2346-2351.	0.9	9
1981	Graphene nanoribbons on hexagonal boron nitride: Deposition and transport characterization. Applied Physics Letters, 2019, 114, 173101.	1.5	6
1982	Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution. Journal of the American Chemical Society, 2019, 141, 7399-7406.	6.6	49
1983	Effect of nano-metal oxide and nano-metal oxide/graphene composites on thermal decomposition of potassium perchlorate. Chemical Papers, 2019, 73, 1489-1497.	1.0	6
1984	Onâ€Surface Synthesis of Iron Phthalocyanine Using Metalâ€Organic Coordination Templates. ChemPhysChem, 2019, 20, 2394-2397.	1.0	5
1985	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	2.4	75
1986	Probing the origin of photoluminescence brightening in graphene nanoribbons. 2D Materials, 2019, 6, 035009.	2.0	11
1987	Effect of side gates doping on graphene self-switching nano-diode rectification. Materials Research Express, 2019, 6, 075012.	0.8	2
1988	Effects of ion beam etching of fused silica substrates on the laser-induced damage properties of antireflection coatings at 355†nm. Optical Materials, 2019, 90, 172-179.	1.7	16
1989	Onâ€Surface Synthesis of 8―and 10â€Armchair Graphene Nanoribbons. Small, 2019, 15, e1804526.	5.2	35
1990	From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale, 2019, 11, 6610-6619.	2.8	24
1991	Long rylene nanoribbons express polyacetylene-like signatures at their edges. Physical Chemistry Chemical Physics, 2019, 21, 7281-7287.	1.3	3
1992	Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosensors and Bioelectronics, 2019, 132, 271-278.	5.3	91
1993	Recent Progress in Inkjetâ€Printed Thinâ€Film Transistors. Advanced Science, 2019, 6, 1801445.	5.6	187
1994	Advance in Closeâ€Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication. Small, 2019, 15, e1804473.	5.2	20

#	Article	IF	CITATIONS
1995	One Precursor but Two Types of Graphene Nanoribbons: On-Surface Transformations of 10,10′-Dichloro-9,9′-bianthryl on Ag(111). Journal of Physical Chemistry C, 2019, 123, 8892-8901.	1.5	17
1996	Graphene-Based Inks for Printing of Planar Micro-Supercapacitors: A Review. Materials, 2019, 12, 978.	1.3	40
1997	Two-dimensional haeckelite h567: A promising high capacity and fast Li diffusion anode material for lithium-ion batteries. Carbon, 2019, 148, 344-353.	5.4	59
1998	Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic Ï€-Conjugated Systems. Chemical Reviews, 2019, 119, 8291-8331.	23.0	446
1999	Edge functionalization of finite graphene nanoribbon superlattices. Superlattices and Microstructures, 2019, 129, 54-61.	1.4	12
2000	Dimensionality Control of Self-Assembled Azobenzene Derivatives on a Gold Surface. Journal of Physical Chemistry C, 2019, 123, 8859-8864.	1.5	2
2001	Catalytic Properties of Selected Transition Metal Oxides—Computational Studies. Challenges and Advances in Computational Chemistry and Physics, 2019, , 345-408.	0.6	2
2002	Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chemical Reviews, 2019, 119, 4717-4776.	23.0	433
2003	Production of phosphorene nanoribbons. Nature, 2019, 568, 216-220.	13.7	208
2004	Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities. Chinese Physics B, 2019, 28, 017202.	0.7	3
2005	Nanofabrication based on DNA nanotechnology. Nano Today, 2019, 26, 123-148.	6.2	36
2006	Electronic structure evolution at DBBA/Au(111) interface W/O Bismuth insertion layer. Synthetic Metals, 2019, 251, 24-29.	2.1	10
2007	On-surface light-induced generation of higher acenes and elucidation of their open-shell character. Nature Communications, 2019, 10, 861.	5.8	114
2008	Direct observation of copper-induced role on Ullmann reaction by scanning tunneling microscopy. Chemical Physics, 2019, 522, 65-68.	0.9	3
2009	Coordination-Controlled C–C Coupling Products via <i>ortho</i> -Site C–H Activation. ACS Nano, 2019, 13, 1385-1393.	7.3	25
2010	Graphene-Based Sensing of Gas-Phase Explosives. ACS Applied Nano Materials, 2019, 2, 1445-1456.	2.4	18
2011	Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(<i>para</i> -2,9-dibenzo[<i>bc</i> , <i>kl</i>]coronenylene) Polymer Chains. Journal of the American Chemical Society, 2019, 141, 2843-2846.	6.6	40
2012	Spin polarization in graphene nanoribbons functionalized with nitroxide. Journal of Molecular Modeling, 2019, 25, 58.	0.8	10

#	Article	IF	CITATIONS
2013	Exploring Approaches for the Synthesis of Few‣ayered Graphdiyne. Advanced Materials, 2019, 31, e1803758.	11.1	67
2014	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, 2019, , .	0.5	3
2015	Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy. Angewandte Chemie, 2019, 131, 2288-2293.	1.6	3
2016	Self-Assembly and Electronic Structure of Tribenzotriquinacenes on Ag(111). Journal of Physical Chemistry C, 2019, 123, 5469-5478.	1.5	6
2017	Interface Coupling as a Crucial Factor for Spatial Localization of Electronic States in a Heterojunction of Graphene Nanoribbons. Physical Review Applied, 2019, 11, .	1.5	8
2018	Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. Materials, 2019, 12, 662.	1.3	16
2019	Graphene nanoribbons under axial compressive and point tensile stresses. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 1-12.	1.3	10
2020	The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces. Journal of the American Chemical Society, 2019, 141, 4824-4832.	6.6	83
2021	Effects of structural defects on laser-induced damage of 355-nm high-reflective coatings sputtered on etched substrates. Optical Materials, 2019, 89, 173-177.	1.7	7
2022	Onâ€Surface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers. Angewandte Chemie, 2019, 131, 6631-6635.	1.6	16
2023	Onâ€ S urface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers. Angewandte Chemie - International Edition, 2019, 58, 6559-6563.	7.2	44
2024	Fabrication of dispersive α-Co(OH)2 nanosheets on graphene nanoribbons for boosting their oxygen evolution performance. Journal of Materials Science, 2019, 54, 7692-7701.	1.7	18
2025	13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons. , 2019, , 327-352.		0
2026	Tuning of 2D Nanographene Adlayers on Au(111) by Electrodeposition of Metal Halide Complexes. ACS Applied Materials & Interfaces, 2019, 11, 46361-46367.	4.0	5
2027	On-Surface Intramolecular Dehalogenation of Vicinal Dibromides for the Direct Formation of C–C Double Bonds. Journal of Physical Chemistry C, 2019, 123, 30467-30472.	1.5	1
2028	Engineered Nanopores-Based Armchair Graphene Nanoribbon FET With Resonant Tunneling Performance. IEEE Transactions on Electron Devices, 2019, 66, 5339-5346.	1.6	5
2029	Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons. Scientific Reports, 2019, 9, 17990.	1.6	5
2030	Unusual stabilization of larger acenes and heteroacenes. Journal of Materials Chemistry C, 2019, 7, 14011-14034.	2.7	72

#	Article	IF	CITATIONS
2031	Theoretical investigation of the ORR on boron–silicon nanotubes (B–SiNTs) as acceptable catalysts in fuel cells. RSC Advances, 2019, 9, 31572-31582.	1.7	4
2032	Tip-enhanced Raman spectroscopy for structural analysis of two-dimensional covalent monolayers synthesized on water and on Au (111). Chemical Science, 2019, 10, 9673-9678.	3.7	13
2033	A Br-regulated transition metal active-site anchoring and exposure strategy in biomass-derived carbon nanosheets for obtaining robust ORR/HER electrocatalysts at all pH values. Journal of Materials Chemistry A, 2019, 7, 27089-27098.	5.2	40
2034	Precise control of graphene etching by remote hydrogen plasma. Nano Research, 2019, 12, 137-142.	5.8	17
2035	Wafer Scale Growth and Characterization of Edge Specific Graphene Nanoribbons for Nanoelectronics. ACS Applied Nano Materials, 2019, 2, 156-162.	2.4	22
2036	Design of Atomically Precise Nanoscale Negative Differential Resistance Devices. Advanced Theory and Simulations, 2019, 2, 1800172.	1.3	18
2037	Strain engineering of chevron graphene nanoribbons. Journal of Applied Physics, 2019, 125, .	1.1	7
2038	Spin dependent transport in hybrid one dimensional BNC systems. Semiconductor Science and Technology, 2019, 34, 015004.	1.0	2
2039	Reinforcing nanomedicine using graphene nanoribbons. Journal of Drug Delivery Science and Technology, 2019, 49, 334-344.	1.4	2
2040	Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Materials Research Express, 2019, 6, 042002.	0.8	48
2041	Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO ₂ surfaces. Science, 2019, 363, 57-60.	6.0	81
2042	Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy. Angewandte Chemie - International Edition, 2019, 58, 2266-2271.	7.2	8
2043	1D metallic edge states of oxygen-terminated zigzag graphene edges. 2D Materials, 2019, 6, 025038.	2.0	7
2044	Mechanochemical Routes to Functionalized Graphene Nanofillers Tuned for Lightweight Carbon/Hydrocarbon Composites. Macromolecular Materials and Engineering, 2019, 304, 1800496.	1.7	16
2045	Intermediate States Directed Chiral Transfer on a Silver Surface. Journal of the American Chemical Society, 2019, 141, 168-174.	6.6	40
2046	Andreev reflection in a patterned graphene nanoribbon superconducting heterojunction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1174-1181.	0.9	1
2047	Selective on-surface covalent coupling based on metal-organic coordination template. Nature Communications, 2019, 10, 70.	5.8	55
2048	Edge-dependent reflection and inherited fine structure of higher-order plasmons in graphene nanoribbons. Physical Review B, 2019, 99, .	1.1	5

#	Article	IF	Citations
2049	Critical Role of Phenyl Substitution and Catalytic Substrate in the Surface-Assisted Polymerization of Dibromobianthracene Derivatives. Chemistry of Materials, 2019, 31, 331-341.	3.2	32
2050	Surface-catalyzed dehydrogenation and intermolecular C C bond formation at peripheral alkyl units on Cu(100) and Au(111). Surface Science, 2019, 683, 23-30.	0.8	2
2051	Nanographene and Graphene Nanoribbon Synthesis via Alkyne Benzannulations. Molecules, 2019, 24, 118.	1.7	58
2052	Odd-even phonon transport effects in strained carbon atomic chains bridging graphene nanoribbon electrodes. Carbon, 2019, 142, 107-114.	5.4	9
2053	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	11.1	74
2054	Exploring the effect of halogens on semiconducting nature of boron doped molecular precursor graphene nanoribbons at molecular and bulk level. Optik, 2019, 179, 526-534.	1.4	15
2055	Polycyclic Arene Synthesis by Annulative π-Extension. Journal of the American Chemical Society, 2019, 141, 3-10.	6.6	185
2056	Synthesis of Carbon Nanomaterials Using Catalytic Chemical Vapor Deposition Technique. , 2019, , 1-27.		16
2057	Recent Advances in Lowâ€Dimensional Heterojunctionâ€Based Tunnel Field Effect Transistors. Advanced Electronic Materials, 2019, 5, 1800569.	2.6	53
2058	Detachment Dynamics of Graphene Nanoribbons on Gold. ACS Nano, 2019, 13, 689-697.	7.3	14
2059	Adsorption Structure of Mono- and Diradicals on a Cu(111) Surface: Chemoselective Dehalogenation of 4-Bromo-3″-iodo- <i>p</i> -terphenyl. ACS Nano, 2019, 13, 324-336.	7.3	26
2060	Catalyst-free synthesis of few-layer graphene films on silicon dioxide/Si substrates using ethylene glycol by chemical vapor deposition. Materials Research Express, 2019, 6, 035602.	0.8	2
2061	Thermal dehydrogenation of n-alkane on Au(111) and Pt(111) surface. Surface Science, 2019, 681, 32-37.	0.8	2
2062	Directed On-Surface Growth of Covalently-Bonded Molecular Nanostructures. , 2019, , 299-326.		2
2063	Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 566-574.	2.7	18
2064	Realizing robust half-metallic transport with chemically modified graphene nanoribbons. Carbon, 2019, 141, 676-684.	5.4	17
2065	Theoretical study of electron transport properties of SimCn /Cn clusters tethered on graphene nanoribbon. Ceramics International, 2019, 45, 530-538.	2.3	7
2066	Al-zigzag-SiNT (9, 0), Al-armchair-SiNT (5, 5) and Al-chiral-SiNT (9, 3) as catalysts with high efficiency to oxygen reduction reaction in fuel cells. Journal of Physics and Chemistry of Solids, 2020, 136, 109149.	1.9	0

#	Article	IF	CITATIONS
2067	Temperature-dependent lithium diffusion in phographene: Insights from molecular dynamics simulation. Journal of Industrial and Engineering Chemistry, 2020, 81, 287-293.	2.9	10
2068	Design and construction of on-surface molecular nanoarchitectures: lessons and trends from trimesic acid and other small carboxlyated building blocks. Journal Physics D: Applied Physics, 2020, 53, 043002.	1.3	32
2069	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	5.2	75
2070	A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons. Vacuum, 2020, 171, 109011.	1.6	57
2071	Multiscale Plasma atalytic On‧urface Assembly. Small, 2020, 16, 1903184.	5.2	8
2072	Emerging Bottomâ€Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angewandte Chemie, 2020, 132, 4652-4661.	1.6	36
2073	Emerging Bottomâ€Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angewandte Chemie - International Edition, 2020, 59, 4624-4633.	7.2	92
2074	Synthetic Applications of Oxidative Aromatic Coupling—From Biphenols to Nanographenes. Angewandte Chemie - International Edition, 2020, 59, 2998-3027.	7.2	224
2075	Field-modulated electronic specific heat of armchair graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113660.	1.3	1
2076	Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angewandte Chemie, 2020, 132, 3020-3050.	1.6	74
2077	Influence of defects on dissipative transport in graphene nanoribbons tunnel field-effect transistor. Nanotechnology, 2020, 31, 045703.	1.3	4
2078	Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal "Defect―and Helicene Strain for Cyclizations. Angewandte Chemie - International Edition, 2020, 59, 1256-1262.	7.2	32
2079	On‣urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie - International Edition, 2020, 59, 1334-1339.	7.2	47
2080	Conjugated polymers – Problems and promises. Progress in Polymer Science, 2020, 100, 101179.	11.8	101
2081	Direct Growth of Unidirectional Graphene Nanoribbons on Vicinal Ge(001). Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900398.	1.2	7
2082	In-plane breathing and shear modes in low-dimensional nanostructures. Carbon, 2020, 157, 364-370.	5.4	14
2083	Research on the Preparation of Graphdiyne and Its Derivatives. Chemistry - A European Journal, 2020, 26, 569-583.	1.7	42
2084	Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottomâ€Up Fabrication. ChemNanoMat, 2020, 6, 493-515.	1.5	10

#	Article	IF	Citations
2086	Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons. Nano Letters, 2020, 20, 1124-1130.	4.5	21
2087	Step-Growth Annulative ï€-Extension Polymerization for Synthesis of Cove-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2020, 142, 1686-1691.	6.6	23
2088	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
2089	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
2090	Quantum Transport: General Concepts. , 2020, , 92-119.		0
2091	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
2092	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
2095	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
2096	Quantum Hall Effects in Graphene. , 2020, , 210-236.		0
2097	Spin-Related Phenomena. , 2020, , 237-277.		0
2098	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials. , 2020, , 293-353.		0
2102	Direct observation of the geometric isomer selectivity of a reaction controlled <i>via</i> adsorbed bromine. Nanoscale, 2020, 12, 2726-2731.	2.8	11
2103	Controllable preparation of graphene-based film deposited on cemented carbides by chemical vapor deposition. Journal of Materials Science, 2020, 55, 4251-4264.	1.7	9
2104	Electronic and optical properties of doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113894.	1.3	20
2105	Triangulenes: From Precursor Design to On‣urface Synthesis and Characterization. Angewandte Chemie, 2020, 132, 7730-7740.	1.6	18
2106	Triangulenes: From Precursor Design to Onâ€Surface Synthesis and Characterization. Angewandte Chemie - International Edition, 2020, 59, 7658-7668.	7.2	53
2107	Structural, electronic and mechanical properties of all-sp2 carbon allotropes with density lower than graphene. Carbon, 2020, 159, 512-526.	5.4	18
2108	Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal "Defect―and Helicene Strain for Cyclizations. Angewandte Chemie, 2020, 132, 1272-1278.	1.6	12

#	Article	IF	CITATIONS
2109	On‧urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie, 2020, 132, 1350-1355.	1.6	11
2110	Template synthesis of armchair-edge graphene nanoribbons inside carbon nanotubes. Applied Physics Express, 2020, 13, 015002.	1.1	2
2111	On-surface synthesis of graphyne nanowires through stepwise reactions. Chemical Communications, 2020, 56, 1685-1688.	2.2	19
2112	Strain effects on the quantum capacitance of graphene nanoribbon devices. Applied Surface Science, 2020, 502, 144292.	3.1	11
2113	Transport gaps in ideal zigzag-edge graphene nanoribbons with chemical edge disorder. Applied Surface Science, 2020, 512, 144714.	3.1	5
2114	Sequential Bending and Twisting around C–C Single Bonds by Mechanical Lifting of a Pre-Adsorbed Polymer. Nano Letters, 2020, 20, 652-657.	4.5	12
2115	On-Surface Synthesis and Characterization of Polythiophene Chains. Journal of Physical Chemistry C, 2020, 124, 764-768.	1.5	6
2116	Modified Engineering of Graphene Nanoribbons Prepared via Onâ€Surface Synthesis. Advanced Materials, 2020, 32, e1905957.	11.1	65
2117	Local impact of Stone–Wales defect on a single layer GNRFET. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126170.	0.9	3
2118	A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. Journal of Organic Chemistry, 2020, 85, 4-33.	1.7	101
2119	Mesh structure formed by hexabromotriphenylene on Au (111) and Cu (111). Japanese Journal of Applied Physics, 2020, 59, SDDA16.	0.8	0
2120	Oxidation-driven formation of precisely ordered antimonene nanoribbons. Journal of Physics Condensed Matter, 2020, 32, 165302.	0.7	1
2121	Armchair Graphene Nanoribbon Gate-Controllable RTD With Boron Nitride Barriers. IEEE Transactions on Electron Devices, 2020, 67, 5209-5215.	1.6	6
2122	Charge Transport Mechanism in Chevron-Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 22392-22398.	1.5	3
2123	Magnetism of Topological Boundary States Induced by Boron Substitution in Graphene Nanoribbons. Physical Review Letters, 2020, 125, 146801.	2.9	73
2124	Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction. Carbon, 2020, 169, 307-311.	5.4	15
2125	Graphene synthesis from pentacene by soft X-ray irradiation. Thin Solid Films, 2020, 713, 138365.	0.8	9
2126	Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. Journal of the American Chemical Society, 2020, 142, 17881-17886.	6.6	51

#	Article	IF	CITATIONS
2127	On-Surface Synthesis of Oligo(indenoindene). Journal of the American Chemical Society, 2020, 142, 12925-12929.	6.6	29
2128	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photoâ€Fenton Reaction. Angewandte Chemie, 2020, 132, 18673-18679.	1.6	1
2129	Photodetection Using Atomically Precise Graphene Nanoribbons. ACS Applied Nano Materials, 2020, 3, 8343-8351.	2.4	15
2130	Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance. Scientific Reports, 2020, 10, 10922.	1.6	10
2131	Spin-polarized electron transmission through B-doped graphene nanoribbons with Fe functionalization: a first-principles study. New Journal of Physics, 2020, 22, 063022.	1.2	2
2132	Heaterâ€Free and Substrateâ€Independent Growth of Vertically Standing Graphene Using A Highâ€Flux Plasmaâ€Enhanced Chemical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2000854.	1.9	8
2133	Recent Advances in Graphene Patterning. ChemPlusChem, 2020, 85, 1655-1668.	1.3	34
2135	Synthesis of graphene. , 2020, , 181-221.		2
2136	On-surface synthesis of doubly-linked one-dimensional pentacene ladder polymers. Chemical Communications, 2020, 56, 15309-15312.	2.2	10
2137	Synthesis and Morphological Control of Organic Semiconducting Materials Using the Precursor Approach. Bulletin of the Chemical Society of Japan, 2020, 93, 1234-1267.	2.0	26
2139	On-Surface Synthesis of Chlorinated Narrow Graphene Nanoribbon Organometallic Hybrids. Journal of Physical Chemistry Letters, 2020, 11, 10290-10297.	2.1	14
2140	Steering Effect of Bromine on Intermolecular Dehydrogenation Coupling of Poly(<i>p</i> -phenylene) on Cu(111). ACS Nano, 2020, 14, 17134-17141.	7.3	19
2141	Excitonic Photoluminescence of Ultra-Narrow 7-Armchair Graphene Nanoribbons Grown by a New "Bottom-Up―Approach on a Ni Substrate under Low Vacuum. Journal of Physical Chemistry C, 2020, 124, 25984-25991.	1.5	11
2142	Oxygenâ€Induced 1D to 2D Transformation of Onâ€Surface Organometallic Structures. Small, 2020, 16, 2002393.	5.2	6
2143	Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif. Carbon, 2020, 170, 677-684.	5.4	12
2144	Detecting Mercury (II) and Thiocyanate Using "Turn-on―Fluorescence of Graphene Quantum Dots. Journal of Fluorescence, 2020, 30, 1181-1187.	1.3	14
2145	Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coordination Chemistry Reviews, 2020, 422, 213469.	9.5	33
2146	On-Surface Hydrogenation of Buckybowls: From Curved Aromatic Molecules to Planar Non-Kekulé Aromatic Hydrocarbons. ACS Nano, 2020, 14, 16735-16742.	7.3	15

#	Article	IF	Citations
2147	Rich essential properties of Si-doped graphene. Scientific Reports, 2020, 10, 12051.	1.6	30
2148	Synthetic Tailoring of Graphene Nanostructures with Zigzagâ€Edged Topologies: Progress and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 23386-23401.	7.2	133
2149	Atomistic Modelling of Size-Dependent Mechanical Properties and Fracture of Pristine and Defective Cove-Edged Graphene Nanoribbons. Nanomaterials, 2020, 10, 1422.	1.9	11
2150	Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Letters, 2020, 20, 6429-6436.	4.5	64
2151	Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzackâ€Rädern. Angewandte Chemie, 2020, 132, 23591-23607.	1.6	50
2152	Diborane Concatenation Leads to New Planar Boron Chemistry. ChemPhysChem, 2020, 21, 2460-2467.	1.0	17
2153	Beyond conventional nonlinear fracture mechanics in graphene nanoribbons. Nanoscale, 2020, 12, 18363-18370.	2.8	7
2154	Atomically Precise Synthesis and Characterization of Heptauthrene with Triplet Ground State. Nano Letters, 2020, 20, 6859-6864.	4.5	43
2155	<i>Ab initio</i> studies of propane dehydrogenation to propene with graphene. Molecular Physics, 2020, 118, .	0.8	6
2156	Crossed graphene nanoribbons as beam splitters and mirrors for electron quantum optics. Physical Review B, 2020, 102, .	1.1	10
2157	Highly luminescent polyethylene glycol-passivated graphene quantum dots for light emitting diodes. RSC Advances, 2020, 10, 27418-27423.	1.7	14
2158	On-surface synthesis of gold–coronene molecular wires. Chemical Communications, 2020, 56, 11239-11242.	2.2	3
2159	Low-Temperature Removal of Dissociated Bromine by Silicon Atoms for an On-Surface Ullmann Reaction. Journal of Physical Chemistry C, 2020, 124, 19675-19680.	1.5	10
2160	Templating Effect of Different Low-Miller-Index Gold Surfaces on the Bottom-Up Growth of Graphene Nanoribbons. ACS Applied Nano Materials, 2020, 3, 11497-11509.	2.4	2
2161	Probing local moments in nanographenes with electron tunneling spectroscopy. Progress in Surface Science, 2020, 95, 100595.	3.8	16
2162	Manipulable Metal Catalyst for Nanographene Synthesis. Nano Letters, 2020, 20, 8339-8345.	4.5	6
2163	Graphene gets bent. Physics Today, 2020, 73, 46-52.	0.3	6
2164	Design of Ternary Logic and Arithmetic Circuits Using GNRFET. IEEE Open Journal of Nanotechnology, 2020, 1, 77-87.	0.9	47

#	Article	IF	CITATIONS
2165	Electrostatic forces above graphene nanoribbons and edges interpreted as partly hydrogen-free. Nanoscale, 2020, 12, 17895-17901.	2.8	2
2166	Family of Magicâ€Sized Carbon Clusters on Transition Metal Substrates. Advanced Functional Materials, 2020, 30, 2006671.	7.8	2
2167	Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science, 2020, 369, 1597-1603.	6.0	127
2168	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
2169	Surface-Confined Metal–Organic Precursors Comprising Naphthalene-Like Derivatives with Differently Distributed Halogen Substituents: A Monte Carlo Model. Journal of Physical Chemistry C, 2020, 124, 20280-20293.	1.5	19
2170	Intramolecular Coupling of Terminal Alkynes by Atom Manipulation. Angewandte Chemie - International Edition, 2020, 59, 22989-22993.	7.2	15
2171	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	23.0	319
2172	Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites. New Carbon Materials, 2020, 35, 336-343.	2.9	40
2173	Even–odd conductance effect in graphene nanoribbons induced by edge functionalization with aromatic molecules: basis for novel chemosensors. European Physical Journal Plus, 2020, 135, 1.	1.2	6
2174	Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: determination of epinephrine. Scientific Reports, 2020, 10, 14614.	1.6	40
2175	Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures*. Chinese Physics Letters, 2020, 37, 088502.	1.3	5
2176	Atomic-Level Electronic Properties of Carbon Nitride Monolayers. ACS Nano, 2020, 14, 14008-14016.	7.3	22
2177	A facile and scalable approach to develop electrochemical unzipping of multi-walled carbon nanotubes to graphene nanoribbons. Journal of Materials Chemistry A, 2020, 8, 22045-22053.	5.2	12
2178	Graphene Nanoribbons: On‣urface Synthesis and Integration into Electronic Devices. Advanced Materials, 2020, 32, e2001893.	11.1	156
2179	Intramolecular Coupling of Terminal Alkynes by Atom Manipulation. Angewandte Chemie, 2020, 132, 23189-23193.	1.6	0
2180	On-Surface Synthesis with Atomic Hydrogen. ACS Nano, 2020, 14, 13316-13323.	7.3	32
2181	Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society, 2020, 142, 18093-18102.	6.6	24
2182	Air-stable, long-length, solution-based graphene nanoribbons. Chemical Science, 2020, 11, 9978-9982.	3.7	3

#	Article	IF	CITATIONS
2183	Kinetics of Growth of a Covalent Assembly of Porphyrin Molecules on a Copper Surface. Journal of Physical Chemistry C, 2020, 124, 22250-22258.	1.5	1
2184	Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. Physical Chemistry Chemical Physics, 2020, 22, 23195-23206.	1.3	10
2185	Conformation modification of terthiophene during the on-surface synthesis of pure polythiophene. Nanoscale, 2020, 12, 18096-18105.	2.8	6
2186	Stabilizing Edge Fluorination in Graphene Nanoribbons. ACS Nano, 2020, 14, 11120-11129.	7.3	23
2187	Structural characterisation of molecular conformation and the incorporation of adatoms in an on-surface Ullmann-type reaction. Communications Chemistry, 2020, 3, .	2.0	16
2188	Combining Molecular Spintronics with Electron Paramagnetic Resonance: The Path Towards Single-Molecule Pulsed Spin Spectroscopy. Applied Magnetic Resonance, 2020, 51, 1357-1409.	0.6	9
2189	Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions. Physical Review B, 2020, 102, .	1.1	15
2190	Sub-Maxwellian Source Injection and Negative Differential Transconductance in Decorated Graphene Nanoribbons. Physical Review Applied, 2020, 14, .	1.5	2
2191	Rotational self-alignment of graphene seeds for nanoribbon synthesis on Ge(001) via chemical vapor deposition. APL Materials, 2020, 8, .	2.2	5
2192	Electronic properties of zigzag boron nitride nanoribbons periodically embedded with four- and eight-membered rings. Molecular Simulation, 2020, 46, 581-591.	0.9	0
2193	Substrate-Controlled Synthesis of 5-Armchair Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 11422-11427.	1.5	15
2194	Unveiling 79‥earâ€Old Ixene and Its BNâ€Doped Derivative. Angewandte Chemie, 2020, 132, 15001-15005.	1.6	7
2195	Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nature Materials, 2020, 19, 874-880.	13.3	158
2196	The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2020, 74, 1313-1340.	1.2	26
2197	Resolving Quinoid Structure in Poly(<i>para</i> -phenylene) Chains. Journal of the American Chemical Society, 2020, 142, 10034-10041.	6.6	20
2198	Photomodulation of Charge Transport in Allâ€5emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	11.1	20
2199	Increase of Polymerization Yield on Titania by Surface Reduction. Journal of Physical Chemistry C, 2020, 124, 16918-16925.	1.5	5
2200	Proximity-induced spin-orbit splitting in graphene nanoribbons on transition-metal dichalcogenides. Physical Review B, 2020, 101, .	1.1	9

#	Article	IF	CITATIONS
2201	Unveiling 79â€Yearâ€Old Ixene and Its BNâ€Đoped Derivative. Angewandte Chemie - International Edition, 2020, 59, 14891-14895.	7.2	29
2202	On-Surface Synthesis of a π-Extended Diaza[8]circulene. Journal of the American Chemical Society, 2020, 142, 11363-11369.	6.6	34
2203	Topological junction states and their crystalline network in systems with chiral symmetry: Application to graphene nanoribbons. Physical Review B, 2020, 101, .	1.1	7
2204	Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Research, 2020, 13, 1713-1722.	5.8	12
2205	Electrical properties and spintronic application of carbon phosphide nanoribbons with edge functionalization. Journal of Materials Chemistry C, 2020, 8, 9313-9321.	2.7	18
2206	On-Surface Synthesis of All-cis Standing Phenanthrene Polymers upon Selective C–H Bond Activation. Journal of Physical Chemistry Letters, 2020, 11, 5022-5028.	2.1	2
2207	GNRFET based Ternary Logic â \in $$ Prospects and Potential Implementation. , 2020, , .		9
2208	From spin-labelled fused polyaromatic compounds to magnetically active graphene nanostructures. Russian Chemical Reviews, 2020, 89, 693-712.	2.5	15
2209	Graphene fractals: Energy gap and spin polarization. Physical Review B, 2020, 101, .	1.1	6
2210	Tailoring the opto-electronic response of graphene nanoflakes by size and shape optimization. Physical Chemistry Chemical Physics, 2020, 22, 8212-8218.	1.3	5
2211	Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Advances, 2020, 10, 22222-22229.	1.7	42
2212	Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Subâ€Nanometer Precision. Advanced Materials, 2020, 32, e2001119.	11.1	19
2213	Precise lateral control of graphene via living zigzag edges. Carbon, 2020, 167, 718-723.	5.4	4
2214	Synthesis of Graphene Nanoribbons on a Kinked Au Surface: Revealing the Frontier Valence Band at the Brillouin Zone Center. Journal of Physical Chemistry C, 2020, 124, 15474-15480.	1.5	5
2215	Stability and gas sensing properties of Ta ₂ X ₃ M ₈ (X = Pd, Pt; M = S,) Tj ET 14651-14659.	Qq0 0 0 rg 1.3	gBT /Overlocl 6
2216	Gold-linked strings of donor–acceptor dyads: on-surface formation and mutual orientation. Chemical Communications, 2020, 56, 7901-7904.	2.2	1
2217	Two dimensional semiconducting polymers. Materials Chemistry Frontiers, 2020, 4, 3472-3486.	3.2	2
2218	Probing the origin of photoluminescence blinking in graphene nanoribbons: Influence of plasmonic field enhancement. 2D Materials, 2020, 7, 045009.	2.0	0

#	Article	IF	CITATIONS
2219	Electronic and structural properties of tetragraphenes. Carbon, 2020, 167, 403-413.	5.4	11
2220	Photothermal Bottom-up Graphene Nanoribbon Growth Kinetics. Nano Letters, 2020, 20, 4761-4767.	4.5	15
2221	Molecular Nanocarbon Science: Present and Future. Nano Letters, 2020, 20, 4718-4720.	4.5	32
2222	Electronic structure and carrier mobilities of twisted graphene helix. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114280.	1.3	1
2223	Supramolecular Ordering and Reactions of a Chlorophenyl Porphyrin on Ag(111). Journal of Physical Chemistry C, 2020, 124, 14220-14228.	1.5	9
2224	Electrochemical Polymerization of Pyrrole–Perimidine Hybrids: Low-Band-Gap Materials with High n-Doping Activity. Journal of Physical Chemistry C, 2020, 124, 14350-14362.	1.5	13
2225	On-Surface Synthesis of Graphene Nanoribbons on Two-Dimensional Rare Earth–Gold Intermetallic Compounds. Journal of Physical Chemistry Letters, 2020, 11, 5044-5050.	2.1	9
2226	On-surface chemical reactions characterised by ultra-high resolution scanning probe microscopy. Chemical Society Reviews, 2020, 49, 4189-4202.	18.7	26
2227	Substrate induced strain for on-surface transformation and synthesis. Nanoscale, 2020, 12, 7500-7508.	2.8	7
2228	Preparation of graphene. , 2020, , 39-171.		1
2229	Exploration of the potential efficacy of natural resource-derived blue-emitting graphene quantum dots in cancer therapeutic applications. New Journal of Chemistry, 2020, 44, 5366-5376.	1.4	23
2230	Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. Npj Computational Materials, 2020, 6, .	3.5	29
2231	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
2232	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	5.2	140
2233	Electro-absorption spectra of magnetic states of diamond shaped graphene quantum dots. Materials Today: Proceedings, 2020, 26, 2058-2061.	0.9	5
2234	On‣urface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie, 2020, 132, 8958-8964.	1.6	20
2235	Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 5509-5514.	6.6	37
2236	Quality control of on-surface-synthesised seven-atom wide armchair graphene nanoribbons. Nanoscale, 2020, 12, 6651-6657.	2.8	13

#	Article	IF	CITATIONS
2237	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation. , 2020, , 325-359.		0
2238	Golden Networking of Magic Phosphorus Clusters. Matter, 2020, 2, 13-14.	5.0	4
2239	Gold–Carbon Contacts from Oxidative Addition of Aryl Iodides. Journal of the American Chemical Society, 2020, 142, 7128-7133.	6.6	31
2240	Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. Bulletin of the Chemical Society of Japan, 2020, 93, 490-506.	2.0	62
2241	Oligomerization of Dehydrogenated Polycyclic Aromatic Hydrocarbons on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2020, 124, 8236-8246.	1.5	4
2242	Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons. Nano Letters, 2020, 20, 2993-3002.	4.5	52
2243	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	7.3	46
2244	Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors, 2020, 20, 1506.	2.1	17
2245	Onâ€Surface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie - International Edition, 2020, 59, 8873-8879.	7.2	61
2246	A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2020, 142, 6588-6599.	6.6	189
2247	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie, 2020, 132, 17747-17752.	1.6	14
2248	Interface Magnetism in Topological Armchair/Cove-Edged Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 15448-15453.	1.5	9
2249	Pentadiamond: A Hard Carbon Allotrope of a Pentagonal Network of sp2 and sp3 C Atoms. Physical Review Letters, 2020, 125, 016001.	2.9	25
2250	Reaction Pathway toward Seven-Atom-Wide Armchair Graphene Nanoribbon Formation and Identification of Intermediate Species on Au(111). Journal of Physical Chemistry C, 2020, 124, 16009-16018.	1.5	3
2251	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photoâ€Fenton Reaction. Angewandte Chemie - International Edition, 2020, 59, 18515-18521.	7.2	23
2252	Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science, 2020, 369, 571-575.	6.0	105
2253	Bottom-up Synthesis of Nitrogen-Doped Porous Graphene Nanoribbons. Journal of the American Chemical Society, 2020, 142, 12568-12573.	6.6	97
2254	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie - International Edition, 2020, 59, 17594-17599.	7.2	33

#	Article	IF	CITATIONS
2255	Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO 2 to Ethanol. ChemPhysChem, 2020, 21, 1768-1774.	1.0	9
2256	Large-Cavity Coronoids with Different Inner and Outer Edge Structures. Journal of the American Chemical Society, 2020, 142, 12046-12050.	6.6	38
2257	Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Communications Materials, 2020, 1, .	2.9	40
2258	Graphenated Ceramic Particles as Functional Fillers for Nonisocyanate Polyhydroxyurethane Composites. Macromolecular Materials and Engineering, 2020, 305, 2000203.	1.7	8
2259	Negative differential resistance effect in different structures of armchair graphene nanoribbon. Diamond and Related Materials, 2020, 108, 107970.	1.8	13
2260	Atomically Precise PdSe2 Pentagonal Nanoribbons. ACS Nano, 2020, 14, 1951-1957.	7.3	21
2261	On-Surface Synthesis of Armchair-Edged Graphene Nanoribbons with Zigzag Topology. Journal of Physical Chemistry C, 2020, 124, 5248-5256.	1.5	25
2262	Skewness and critical current behavior in a graphene Josephson junction. Physical Review B, 2020, 101,	1.1	5
2263	Directing On‣urface Reaction Pathways via Metalâ€Organic Cuâ^'N Coordination. ChemPhysChem, 2020, 21, 843-846.	1.0	8
2264	High gas-sensing selectivity of bilaterally edge-doped graphene nano-ribbons towards detecting NO2, O2 and SO3 gas molecules: Ab-initio investigation. Applied Surface Science, 2020, 514, 145866.	3.1	20
2265	Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Science Advances, 2020, 6, eaay8913.	4.7	58
2266	Controlling the emission frequency of graphene nanoribbon emitters based on spatially excited topological boundary states. Physical Chemistry Chemical Physics, 2020, 22, 8277-8283.	1.3	5
2267	Fused pentagon carbon network: A new anode material for Li ion batteries. Chemical Physics Letters, 2020, 745, 137225.	1.2	6
2268	Charge transport mechanism in networks of armchair graphene nanoribbons. Scientific Reports, 2020, 10, 1988.	1.6	41
2269	Ullmann coupling of 2,7-dibromopyrene on Au(1Â1Â1) assisted by surface adatoms. Applied Surface Science, 2020, 513, 145797.	3.1	19
2270	Molecular Nanowire Bonding to Epitaxial Single‣ayer MoS 2 by an On‣urface Ullmann Coupling Reaction. Small, 2020, 16, 1906892.	5.2	6
2271	Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks. CheM, 2020, 6, 1125-1133.	5.8	29
2272	Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons. ACS Nano, 2020, 14, 4499-4508.	7.3	75

#	Article	IF	CITATIONS
2273	Advanced porous graphene materials: from in-plane pore generation to energy storage applications. Journal of Materials Chemistry A, 2020, 8, 6125-6143.	5.2	65
2274	DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons. Chemical Physics Letters, 2020, 745, 137280.	1.2	24
2275	Aromatic Fragmentation Based on a Ring Overlap Scheme: An Algorithm for Large Polycyclic Aromatic Hydrocarbons Using the Molecules-in-Molecules Fragmentation-Based Method. Journal of Chemical Theory and Computation, 2020, 16, 2160-2171.	2.3	7
2276	Dissymmetric On-Surface Dehalogenation Reaction Steered by Preformed Self-Assembled Structure. Journal of Physical Chemistry Letters, 2020, 11, 1867-1872.	2.1	15
2277	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
2278	Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Advanced Functional Materials, 2020, 30, 1909909.	7.8	264
2279	Removing contaminants from transferred CVD graphene. Nano Research, 2020, 13, 599-610.	5.8	43
2280	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	11.1	44
2281	A patterning-free approach for growth of free-standing graphene nanoribbons using step-bunched facets of off-oriented 4H-SiC(0 0 0 1) epilayers. Journal Physics D: Applied Physics, 2020, 53, 115102	2 ^{1.3}	2
2282	Using Superlattice Structure in the Source of GNRFET to Improve Its Switching Performance. IEEE Transactions on Electron Devices, 2020, 67, 1334-1339.	1.6	6
2283	On-Surface Dehydro-Diels–Alder Reaction of Dibromo-bis(phenylethynyl)benzene. Journal of the American Chemical Society, 2020, 142, 1721-1725.	6.6	15
2284	Millimeter-scale laminar graphene matrix by organic molecule confinement reaction. Carbon, 2020, 161, 277-286.	5.4	8
2285	High-yield and <i>in situ</i> fabrication of high-content nitrogen-doped graphene nanoribbons@Co/CoOOH as an integrated sulfur host towards Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 3048-3059.	5.2	32
2286	Covalent on-surface polymerization. Nature Chemistry, 2020, 12, 115-130.	6.6	217
2287	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
2288	Band Depopulation of Graphene Nanoribbons Induced by Chemical Gating with Amino Groups. ACS Nano, 2020, 14, 1895-1901.	7.3	23
2289	Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catalysis, 2020, 10, 3059-3073.	5.5	16
2290	Molecular Semiconductors for Logic Operations: Deadâ€End or Bright Future?. Advanced Materials, 2020, 32, e1905909.	11.1	135

ARTICLE IF CITATIONS Quantum Transport beyond DC., 2020, , 278-292. 2291 0 Highly Selective Gas Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition. 2293 4.0 59 AČS Ápplied Materials & Interfaces, 2020, 12, 7392-7402. Onâ€Surface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€Step Dehalogenative Homocoupling of 2294 1.6 15 Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie, 2020, 132, 13383-13389. Constructing graphene nanostructures with zigzag edge terminations by controllable STM tearing 2295 and folding. Carbon, 2020, 165, 169-174. Transferring axial molecular chirality through a sequence of on-surface reactions. Chemical Science, 2296 3.7 22 2020, 11, 5441-5446. Onâ€Surface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€Step Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie - International Edition, 2020, 7.2 59, 13281-13287. Functionalized graphene and targeted applications â€" Highlighting the road from chemistry to 2298 16.0 61 applications. Progress in Materials Science, 2020, 114, 100683. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence. ACS Nano, 2020, 14, 5090-5098. 2200 7.3 A multiporous carbon family with superior stability, tunable electronic structures and amazing 2300 1.3 4 hydrogen storage capability. Physical Chemistry Chemical Physics, 2020, 22, 9734-9739. Pseudo chiral anomaly in zigzag graphene ribbons. Journal of Physics Condensed Matter, 2020, 32, 025301. Reversible Dehalogenation in Onâ€Surface Aryl–Aryl Coupling. Angewandte Chemie, 2020, 132, 2302 2 1.6 14210-14214. Reversible Dehalogenation in Onâ€Surface Aryl–Aryl Coupling. Angewandte Chemie - International 2303 Edition, 2020, 59, 14106-14110. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic 2304 2.9 113 Precision on a Metal Surface. Physical Review Letters, 2020, 124, 177201. Crease-induced targeted cutting and folding of graphene origami. Carbon, 2020, 165, 259-266. 5.4 A novel AGNR/h-BN transistor with tunable negative differential resistance. Physica E: 2306 1.3 5 Low-Dimensional Systems and Nanostructures, 2020, 121, 114110. Tailoring Magnetic Features in Zigzagâ€Edged Nanographenes by Controlled Diels–Alder Reactions. Chemistry - A European Journal, 2020, 26, 7497-7503. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nature 2308 15.6 95 Nanotechnology, 2020, 15, 437-443. Tunable rectifications in nanofluidic diodes by ion selectivity of charged polystyrene opals for 2309 5.2 osmotic energy conversion. Journal of Materials Chemistry A, 2020, 8, 11275-11281.

#	Article	IF	CITATIONS
2310	Step-flow growth of graphene-boron nitride lateral heterostructures by molecular beam epitaxy. 2D Materials, 2020, 7, 035014.	2.0	14
2311	Spiers Memorial Lecture : Carbon nanostructures by macromolecular design – from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2021, 227, 8-45.	1.6	9
2312	Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. European Polymer Journal, 2021, 142, 110124.	2.6	26
2313	Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon, 2021, 171, 221-229.	5.4	23
2314	Structural Impact of Graphene Nanoribbon on Mechanical Properties and Anti-corrosion Performance of Polyurethane Nanocomposites. Chemical Engineering Journal, 2021, 405, 126858.	6.6	46
2315	High-power instant-synthesis technology of carbon nanomaterials and nanocomposites. Nano Energy, 2021, 80, 105500.	8.2	21
2316	Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114438.	1.3	13
2317	Transformation of a graphene nanoribbon into a hybrid 1D nanoobject with alternating double chains and polycyclic regions. Physical Chemistry Chemical Physics, 2021, 23, 425-441.	1.3	4
2318	TPDH-graphene: A new two dimensional metallic carbon with NDR behaviour of its one dimensional derivatives. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114569.	1.3	19
2319	Enhanced hydrogen gas sensing characteristics of graphene modified with rubidium (Rb). Materials Chemistry and Physics, 2021, 260, 124105.	2.0	7
2320	Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016–2020. Analytical Chemistry, 2021, 93, 124-166.	3.2	30
2321	Open-Shell Graphene Fragments. CheM, 2021, 7, 358-386.	5.8	136
2322	Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon, 2021, 173, 609-636.	5.4	53
2323	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	3.7	27
2324	Topological materials and topologically engineered materials: properties, synthesis, and applications for energy conversion and storage. Journal of Materials Chemistry A, 2021, 9, 1297-1313.	5.2	17
2325	Collective radical oligomerisation induced by an STM tip on a silicon surface. Nanoscale, 2021, 13, 349-354.	2.8	7
2326	Topology Classification using Chiral Symmetry and Spin Correlations in Graphene Nanoribbons. Nano Letters, 2021, 21, 197-202.	4.5	27
2327	Carbon materials with high pentagon density. Journal of Materials Science, 2021, 56, 2912-2943.	1.7	35

#	Article	IF	CITATIONS
2328	The growth mechanism of graphene based on self-assembly of 1,3,5-Benzenetribenzoic acid on Ru(0001). Surface Science, 2021, 704, 121746.	0.8	1
2329	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie - International Edition, 2021, 60, 439-445.	7.2	23
2330	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie, 2021, 133, 443-449.	1.6	0
2331	Unusual reversibility in molecular break-up of PAHs: the case of pentacene dehydrogenation on Ir(111). Chemical Science, 2021, 12, 170-178.	3.7	4
2332	Synthesis, Properties, and Applications of Graphene Nanocomposite. , 2021, , 1185-1205.		0
2333	Advanced Carbon Materials: Base of 21st Century Scientific Innovations in Chemical, Polymer, Sensing and Energy Engineering. , 0, , .		2
2334	Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Science Advances, 2021, 7, .	4.7	43
2335	Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110026.	8.2	452
2336	On-surface formation of metal–organic coordination networks with C⋯Ag⋯C and C=O⋯Ag interactions assisted by precursor self-assembly. Journal of Chemical Physics, 2021, 154, 044703.	1.2	9
2337	Imprinting Tunable π-Magnetism in Graphene Nanoribbons via Edge Extensions. Journal of Physical Chemistry Letters, 2021, 12, 1214-1219.	2.1	14
2338	Synthesis, Properties, and Applications of Graphene Nanocomposite. , 2021, , 1-21.		0
2339	Calculation of the Raman spectra of graphene nanoribbon. AIP Conference Proceedings, 2021, , .	0.3	0
2340	Unravelling the growth mechanism of (3,1) graphene nanoribbons on a Cu(111) surface. Chemical Communications, 2021, 57, 6043-6045.	2.2	6
2341	2D self-assembly and electronic characterization of oxygen–boron–oxygen-doped chiral graphene nanoribbons. Chemical Communications, 2021, 57, 6031-6034.	2.2	4
2342	Facile room-temperature self-assembly of extended cation-free guanine-quartet network on Mo-doped Au(111) surface. Nanoscale Advances, 2021, 3, 3867-3874.	2.2	2
2343	Carbon nanoflakes and nanofibers. , 2021, , 399-459.		0
2344	On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews, 2021, 50, 3238-3262.	18.7	102
2345	First principles quantum calculations for graphyne for electronic devices. Nanoscale Advances, 2021, 3, 5853-5859.	2.2	4

#	Article	IF	CITATIONS
2346	Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization. Chemical Science, 2021, 12, 8438-8444.	3.7	19
2347	A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits. AIMS Materials Science, 2021, 8, 247-260.	0.7	1
2348	Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 053101.	0.2	2
2349	Impact of Topological Edge Defects on Spin Transport Properties of Zigzag Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2021, 258, 2000538.	0.7	2
2350	Interfacial photoinduced carrier dynamics tuned by polymerization of coronene molecules encapsulated in carbon nanotubes: bridging type-I and type-II heterojunctions. Physical Chemistry Chemical Physics, 2021, 23, 13503-13511.	1.3	7
2351	Electrode effects on the observability of destructive quantum interference in single-molecule junctions. Nanoscale, 2021, 13, 17011-17021.	2.8	2
2352	One-pot bottom-up synthesis of a 2D graphene derivative: application in biomolecular recognition and nanozyme activity. Nanoscale Advances, 2021, 3, 5102-5110.	2.2	7
2353	Identification and electronic characterization of four cyclodehydrogenation products of H ₂ TPP molecules on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 11784-11788.	1.3	10
2354	The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. Journal of Materials Chemistry C, 2021, 9, 13600-13616.	2.7	27
2355	Electronic properties of N-rich graphene nano-chevrons. Physical Chemistry Chemical Physics, 2021, 23, 13204-13215.	1.3	6
2356	Versatile graphene oxide nanosheets <i>via</i> covalent functionalization and their applications. Materials Chemistry Frontiers, 2021, 5, 4424-4444.	3.2	18
2357	Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker. Sensors, 2021, 21, 580.	2.1	10
2358	2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomaterials Science, 2021, 9, 2768-2803.	2.6	29
2359	Mechanically induced single-molecule helicity switching of graphene-nanoribbon-fused helicene on Au(111). Chemical Science, 2021, 12, 13301-13306.	3.7	6
2360	Morphological characterization and electronic properties of pristine and oxygen-exposed graphene nanoribbons on Ag(110). Physical Chemistry Chemical Physics, 2021, 23, 7926-7937.	1.3	2
2361	Scanning tunneling microscopy (STM) of graphene. , 2021, , 345-379.		1
2362	Symmetry-Driven Formation of Chiral Boroxine-Based Organometallic Oligomers on Ag(001). Journal of Physical Chemistry C, 2021, 125, 2015-2021.	1.5	3
2363	Unzipping Process of Wet Carbon Nanotubes Adsorbed on Cu(111) in Ultra-High VacuumÂ: an STM/STS study. Vacuum and Surface Science, 2021, 64, 40-46.	0.0	2

#	Article	IF	CITATIONS
2364	On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS Nano, 2021, 15, 3578-3585.	7.3	15
2365	Why a Good Catalyst Can Turn Out Detrimental to Good Polymerization. Journal of Physical Chemistry C, 2021, 125, 5066-5075.	1.5	3
2366	Energetics and magnetism of topological graphene nanoribbons. Journal of Applied Physics, 2021, 129, 064305.	1.1	2
2367	Multi-orbital tight binding model for the electronic and optical properties of armchair graphene nanoribbons in the presence of a periodic potential. Journal of Physics Condensed Matter, 2021, 33, 155702.	0.7	2
2368	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141
2369	Initiating Ullmann-like coupling of Br2Py by a semimetal surface. Scientific Reports, 2021, 11, 3414.	1.6	9
2370	Nanographene synthesis on metal film using pentacene, H ₂ gas and heated W mesh at low temperature. Japanese Journal of Applied Physics, 2021, 60, SBBK09.	0.8	1
2371	Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure <i>versus</i> Porous Graphene Nanoribbon. ACS Nano, 2021, 15, 4617-4626.	7.3	15
2372	Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110). Journal of Physical Chemistry C, 2021, 125, 2918-2925.	1.5	7
2373	A Fundamental Role of the Molecular Length in Forming Metal–Organic Hybrids of Phenol Derivatives on Silver Surfaces. Journal of Physical Chemistry Letters, 2021, 12, 1869-1875.	2.1	5
2374	AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Computational Materials Science, 2021, 188, 110165.	1.4	40
2375	Pure spin current generation with photogalvanic effect in graphene interconnect junctions. Nanophotonics, 2021, 10, 1701-1709.	2.9	18
2376	Influence of electric and magnetic fields and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ïf</mml:mi>-edge bands on the electronic and optical spectra of graphene nanoribbons. Physical Review B, 2021, 103, .</mml:math 	1.1	8
2377	RECENT ADVANCES IN BOND-RESOLVED SCANNING TUNNELING MICROSCOPY. Surface Review and Letters, 2021, 28, 2140007.	0.5	3
2378	Suspended graphene electromechanical switches for energy efficient electronics. Progress in Quantum Electronics, 2021, 76, 100315.	3.5	10
2379	ON-SURFACE MOLECULAR REACTIONS. Surface Review and Letters, 2021, 28, 2140006.	0.5	0
2380	Graphene properties and applications in nanoelectronic. Optical and Quantum Electronics, 2021, 53, 1.	1.5	21
2381	Optical Excitations with Electron Beams: ChallengesÂandÂOpportunities. ACS Photonics, 2021, 8, 945-974.	3.2	85

#	Article	IF	CITATIONS
2382	On‣urface Hydrogen/Deuterium Isotope Exchange in Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 8527-8530.	1.6	2
2383	Lateral Interfaces between Monolayer MoS2 Edges and Armchair Graphene Nanoribbons on Au(111). ACS Nano, 2021, 15, 6699-6708.	7.3	4
2384	Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie - International Edition, 2021, 60, 8370-8375.	7.2	26
2385	Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. Journal of Materials Science, 2021, 56, 10406-10413.	1.7	7
2386	Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie, 2021, 133, 8451-8456.	1.6	1
2387	Thermally Controlled Construction of Fe–N <i>_x</i> Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 15101-15112.	4.0	25
2388	Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111). Science China Chemistry, 2021, 64, 636-641.	4.2	8
2389	Role of diaminonaphthalene based polymers as sensors in detection of biomolecules: A review. Results in Materials, 2021, 9, 100174.	0.9	5
2390	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie, 2021, 133, 9513-9518.	1.6	2
2391	Chemical Stability of (3,1)-Chiral Graphene Nanoribbons. ACS Nano, 2021, 15, 5610-5617.	7.3	23
2392	Heterocyclic Ringâ€Opening of Nanographene on Au(111). Angewandte Chemie - International Edition, 2021, 60, 9427-9432.	7.2	15
2393	Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano, 2021, 15, 3674-3708.	7.3	108
2394	Polymerization of silanes through dehydrogenative Si–Si bond formation on metal surfaces. Nature Chemistry, 2021, 13, 350-357.	6.6	11
2395	Onâ€Surface Hydrogen/Deuterium Isotope Exchange in Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 8446-8449.	7.2	4
2396	On-Surface Synthesis of Dibenzohexacenohexacene and Dibenzopentaphenoheptaphene. Bulletin of the Chemical Society of Japan, 2021, 94, 997-999.	2.0	27
2397	Construction of poly-naphthalocyanine linked by [4]-radialene-like structures on silver surfaces. Nano Research, 2021, 14, 4563.	5.8	2
2398	Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer. Journal of the American Chemical Society, 2021, 143, 4174-4178.	6.6	23
2399	Diverse structural and electronic properties of pentagonal SiC2 nanoribbons: A first-principles study. Materials Today Communications, 2021, 26, 102047.	0.9	3

#	Article	IF	CITATIONS
2400	The preparation and use of Î ³ -graphdiyne, a superb new photoelectrocatalyst. New Carbon Materials, 2021, 36, 304-321.	2.9	3
2401	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	6.6	52
2402	Diamantanethiols on Metal Surfaces: Spatial Configurations, Bond Dissociations, and Polymerization. Journal of Physical Chemistry Letters, 2021, 12, 3468-3475.	2.1	7
2403	Self-Assembled Borophene/Graphene Nanoribbon Mixed-Dimensional Heterostructures. Nano Letters, 2021, 21, 4029-4035.	4.5	11
2404	Open the door to the atomic world by single-molecule atomic force microscopy. Matter, 2021, 4, 1189-1223.	5.0	11
2405	Magnetic localized states and tunable magnetism of single vacancies in generalized chiral graphene nanoribbons. Materials Research Express, 2021, 8, 045602.	0.8	1
2406	Montmorillonite-Based Two-Dimensional Nanocomposites: Preparation and Applications. Molecules, 2021, 26, 2521.	1.7	22
2407	Yu-Shiba-Rusinov states and ordering of magnetic impurities near the boundary of a superconducting nanowire. Physical Review B, 2021, 103, .	1.1	5
2408	On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Research, 2021, 14, 4754-4759.	5.8	14
2409	Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 2021, 175, 50-59.	5.4	20
2410	Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials, 2021, 03, 128-133.	1.0	3
2412	Tunable electro-optical properties of doped chiral graphene nanoribbons. Chemical Physics, 2021, 544, 111116.	0.9	11
2413	Aromatic hydrocarbon belts. Nature Chemistry, 2021, 13, 402-419.	6.6	102
2414	Topological Surface State in Epitaxial Zigzag Graphene Nanoribbons. Nano Letters, 2021, 21, 2876-2882.	4.5	10
2415	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
2416	Soft X-ray absorption and emission spectra of nanographene prepared from pentacene with hot mesh deposition and soft X-ray irradiation. Japanese Journal of Applied Physics, 2021, 60, 045506.	0.8	3
2417	Chemistry at graphene edges in the electron microscope. 2D Materials, 2021, 8, 035023.	2.0	14
2419	Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Research, O, , 1.	5.8	20

#	Article	IF	CITATIONS
2420	Quantum electronic transport across â€`bite' defects in graphene nanoribbons. 2D Materials, 2021, 8, 035025.	2.0	17
2421	Impact of the Air Atmosphere on Photoinduced Chain Polymerization in Self-Assembled Monolayers of Diacetylene on Graphite. Langmuir, 2021, 37, 6002-6006.	1.6	0
2422	Topological metal-insulator transition in narrow graphene nanoribbons?. Carbon, 2021, 176, 548-557.	5.4	9
2423	Gas Sensing Properties of Graphene-Rb-Based Sensor for Liquefied Petroleum Gas and Hydrogen. International Journal of Scientific Research in Science and Technology, 2021, , 353-359.	0.1	0
2424	Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene. Beilstein Journal of Nanotechnology, 2021, 12, 432-439.	1.5	1
2425	NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface*. Chinese Physics B, 2021, 30, 056802.	0.7	4
2426	Scanning probe microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	103
2427	Onâ€Surface Synthesis of Giant Conjugated Macrocycles. Angewandte Chemie - International Edition, 2021, 60, 13896-13899.	7.2	14
2428	Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport. Journal of Physical Chemistry Letters, 2021, 12, 4692-4696.	2.1	22
2430	Electronic and Transport Properties of Graphene Nanoribbons Based on Super-Heptazethrene Molecular Blocks. Journal of Physical Chemistry C, 2021, 125, 11235-11248.	1.5	7
2431	On‣urface Synthesis of Giant Conjugated Macrocycles. Angewandte Chemie, 2021, 133, 14015-14018.	1.6	0
2432	Direct transformation of <i>n</i> -alkane into all- <i>trans</i> conjugated polyene via cascade dehydrogenation. National Science Review, 2021, 8, nwab093.	4.6	15
2433	Twisted helical armchair graphene nanoribbons: mechanical and electronic properties. European Physical Journal B, 2021, 94, 1.	0.6	2
2434	Precise Synthesis of Carbon Nanotubes and <scp>Oneâ€Dimensional</scp> Hybrids from Templates ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1726-1744.	2.6	18
2435	Crossover point of the field effect transistor and interconnect applications in turbostratic multilayer graphene nanoribbon channel. Scientific Reports, 2021, 11, 10206.	1.6	3
2436	Biphenylene network: A nonbenzenoid carbon allotrope. Science, 2021, 372, 852-856.	6.0	379
2437	Sensing mechanism of the nano-confined space constructed by graphene. Nanotechnology, 2021, 32, 375502.	1.3	2
2438	Headâ€toâ€Tail Oligomerization by Silyleneâ€Tethered Sonogashira Coupling on Ag(111). Angewandte Chemie, 2021, 133, 19750-19755.	1.6	4

#	Article	IF	CITATIONS
2439	Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity. ACS Applied Materials & Interfaces, 2021, 13, 28593-28599.	4.0	7
2440	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
2441	Structural and Electrical Properties of Nanographene Prepared from Pentacene by Hot Mesh Deposition and Soft X-ray Irradiation. , 2021, , .		0
2442	Organic molecules encapsulated in single-walled carbon nanotubes. Oxford Open Materials Science, 2020, 1, .	0.5	6
2444	Direct Growth of Patterned Ge on Insulators Using Graphene. Journal of Physical Chemistry C, 2021, 125, 14117-14121.	1.5	0
2445	Headâ€ŧoâ€īail Oligomerization by Silyleneâ€īethered Sonogashira Coupling on Ag(111). Angewandte Chemie - International Edition, 2021, 60, 19598-19603.	7.2	12
2446	Polaron transport in porous graphene nanoribbons. Computational Materials Science, 2021, 194, 110423.	1.4	2
2447	Electronic Structure and Transport in Graphene Nanoribbon Heterojunctions under Uniaxial Strain: Implications for Flexible Electronics. ACS Applied Nano Materials, 2021, 4, 5816-5824.	2.4	6
2448	Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy. Physical Review B, 2021, 103, .	1.1	5
2449	Synthesis of graphene nanoribbons by topological engineering and their applications. Tanso, 2021, 2021, 95-104.	0.1	0
2450	Tamoxifen-loaded functionalized graphene nanoribbons for breast cancer therapy. Journal of Drug Delivery Science and Technology, 2021, 63, 102499.	1.4	11
2451	Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13415-13426.	7.3	5
2452	Reassessing the Adsorption Behavior and on-Surface Reactivity of a Brominated Porphyrin on Cu(111). Journal of Physical Chemistry C, 2021, 125, 17164-17173.	1.5	9
2453	Bottom-up synthesis of semiconductive carbonaceous nanosheets on hematite photoanode for photoelectrochemical water splitting. Nano Research, 2022, 15, 627-636.	5.8	6
2454	Gate-tunable optical extinction of graphene nanoribbon nanoclusters. APL Materials, 2021, 9, 071101.	2.2	1
2455	Epitaxial growth of atomically thick WSe2 nanoribbons. Vacuum, 2021, 189, 110254.	1.6	6
2456	Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)*. Chinese Physics B, 2021, 30, 077306.	0.7	6
2457	Reconfiguring graphene to achieve intrinsic negative Poisson's ratio and strain-tunable bandgap. Nanotechnology, 2021, 32, 415705.	1.3	2

#	Article	IF	CITATIONS
2458	Controlling electronic and optical properties of zigzag graphene nanoribbons by a modulated electric field: significance of If bands. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2284.	0.9	1
2459	Energy band engineering via "Bite―defect located on N = 8 armchair graphene nanoribbons. Nano Research, 2022, 15, 653-658.	5.8	16
2460	Modify of Electronic Properties for Carbon Nanoribbon due to Effect Different Donors and Acceptors. Journal of Physics: Conference Series, 2021, 1963, 012054.	0.3	0
2461	Twisting or untwisting graphene twisted nanoribbons without rotation. Physical Review B, 2021, 104, .	1.1	3
2462	Structure Formation and Coupling Reactions of Hexaphenylbenzene and Its Brominated Analog. ChemPhysChem, 2021, 22, 1769-1773.	1.0	3
2463	Electrochemical Control of Charge Current Flow in Nanoporous Graphene. Advanced Functional Materials, 2021, 31, 2104031.	7.8	6
2464	Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. Journal of Composites Science, 2021, 5, 181.	1.4	28
2465	1,2,4-Azadiphosphole-based piezoelectric penta-CNP sheet with high spontaneous polarization. Applied Surface Science, 2021, 554, 149499.	3.1	21
2466	Developing Anisotropy in Selfâ€Assembled Block Copolymers: Methods, Properties, and Applications. Macromolecular Rapid Communications, 2021, 42, e2100300.	2.0	9
2467	Surface-assisted fabrication of low-dimensional carbon-based nanoarchitectures. Journal of Physics Condensed Matter, 2021, 33, 343001.	0.7	10
2468	GNRFET with superlattice source, channel, and drain: SLSCD-GNRFET. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 131, 114728.	1.3	1
2469	Ladder Phenylenes Synthesized on Au(111) Surface via Selective [2+2] Cycloaddition. Journal of the American Chemical Society, 2021, 143, 12955-12960.	6.6	32
2470	Switching Behavior of a Heterostructure Based on Periodically Doped Graphene Nanoribbon. Physical Review Applied, 2021, 16, .	1.5	55
2471	Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer. Nanotechnology, 2021, 32, 475603.	1.3	2
2472	Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews, 2021, 121, 12465-12547.	23.0	186
2473	Synthesis and Characterization of Nitrogen-Doped Graphene Nanowalls by Plasma-Enhanced Chemical Vapor Deposition for High Voltage Supercapacitors: Effects of Carbon Sources. Journal of the Electrochemical Society, 2021, 168, 080505.	1.3	5
2474	Demonstration of the Existence of Dumbbell Silicene: A Stable Two-Dimensional Allotrope of Silicon. Journal of Physical Chemistry C, 2021, 125, 17906-17917.	1.5	11
2475	Super-Resolution Nanolithography of Two-Dimensional Materials by Anisotropic Etching. ACS Applied Materials & Interfaces, 2021, 13, 41886-41894.	4.0	16

#	Article	IF	CITATIONS
2476	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
2477	A single-molecule blueprint for synthesis. Nature Reviews Chemistry, 2021, 5, 695-710.	13.8	24
2478	Bottomâ€Up Synthesized Nanoporous Graphene Transistors. Advanced Functional Materials, 2021, 31, 2103798.	7.8	15
2479	Laser-assisted micropyramid patterned PDMS encapsulation of 1D tellurium nanowires on cellulose paper for highly sensitive strain sensor and its photodetection studies. Nanotechnology, 2021, 32, 455201.	1.3	12
2480	Stereospecific onâ€Surface Cyclodehydrogenation of Bishelicenes: Preservation of Handedness from Helical to Planar Chirality. Chemistry - A European Journal, 2021, 27, 13523-13526.	1.7	5
2481	Flat epitaxial quasi-1D phosphorene chains. Nature Communications, 2021, 12, 5160.	5.8	22
2482	Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chemical Reviews, 2021, 121, 14031-14087.	23.0	61
2483	On-Surface Synthesis of Ligands to Elaborate Coordination Polymers on an Au(111) Surface. Nanomaterials, 2021, 11, 2102.	1.9	1
2484	Spin current distribution in antiferromagnetic zigzag graphene nanoribbons under transverse electric fields. Scientific Reports, 2021, 11, 17088.	1.6	3
2485	Evolution of the Topological Energy Band in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8679-8684.	2.1	30
2486	Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nature Electronics, 2021, 4, 653-663.	13.1	61
2487	Optimizing thermal transport in graphene nanoribbon based on phonon resonance hybridization. Materials Today Physics, 2021, 20, 100445.	2.9	27
2488	Graphene nanoribbons for quantum electronics. Nature Reviews Physics, 2021, 3, 791-802.	11.9	141
2489	Inert Mask Lithography of Edge Narrowed Graphene Nanoribbons Directly Contacted to Metallic Electrodes. Advanced Materials Interfaces, 2021, 8, 2100293.	1.9	0
2490	Prediction of a Kinetic Pathway for Fabricating the Narrowest Zigzag Graphene Nanoribbons on Cu(111). Journal of Physical Chemistry C, 2021, 125, 21933-21942.	1.5	1
2491	Identification of Topotactic Surfaceâ€Confined Ullmannâ€Polymerization. Small, 2021, 17, e2103044.	5.2	9
2492	Mechanosynthesis of graphene nanoribbons from waste zinc–carbon batteries. Carbon Letters, 2022, 32, 475-493.	3.3	1
2493	Onâ€Surface Synthesis of Variable Bandgap Nanoporous Graphene. Small, 2021, 17, e2102246.	5.2	11

# 2494	ARTICLE Engineering plasmon modes and their loss in armchair graphene nanoribbons by selected edge-extended defects. Journal of Physics Condensed Matter, 2021, 33, 485001.	IF 0.7	CITATIONS 2
2495	Width Dependent Elastic Properties of Graphene Nanoribbons. Materials, 2021, 14, 5042.	1.3	5
2496	Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Advanced Materials, 2021, 33, e2104060.	11.1	34
2497	Calculation of the Electronic Properties and Reactivity of Nanoribbons. , 0, , .		0
2498	Atomic-level engineering of anisotropically nanoporous graphyne membranes for efficient water desalination. Applied Surface Science, 2021, 559, 149977.	3.1	8
2499	Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2, 490-519.	1.7	24
2500	Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. Nanomaterials, 2021, 11, 2425.	1.9	21
2501	Electron-transport and gas sensing in armchair graphene nanoribbons by density functional method. Materials Science in Semiconductor Processing, 2021, 132, 105881.	1.9	1
2502	Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Research, 2022, 15, 1709-1714.	5.8	8
2503	Spiro-graphene: A two-dimensional metallic carbon allotrope of fused pentagons. Carbon, 2021, 185, 404-409.	5.4	7
2504	Symmetrical dehalogenation of 2, 7-dibromopyrene on Cu(1 1 1) with tunable intermediates and reaction paths. Applied Surface Science, 2021, 566, 150663.	3.1	3
2505	Strain-induced switching in field effect transistor based on zigzag graphene nanoribbons. Physica B: Condensed Matter, 2021, 622, 413304.	1.3	3
2506	Electronic properties of boron-rich graphene nanowiggles. Computational Materials Science, 2022, 201, 110907.	1.4	1
2507	Strength of electronic decoupling of fullerene on an AuSi _X layer formed on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 5455-5459.	1.3	4
2508	Selfâ€assembled Microâ€nanorobots: From Assembly Mechanisms to Applications. ChemNanoMat, 2021, 7, 238-252.	1.5	4
2510	Edge State Induced Spintronic Properties of Graphene Nanoribbons: A Theoretical Perspective. Advances in Sustainability Science and Technology, 2021, , 165-198.	0.4	0
2511	Bio-inspired Synthesis of Nanomaterials. Indian Institute of Metals Series, 2021, , 589-622.	0.2	0
2512	On-surface synthesis of ï€-conjugated ladder-type polymers comprising nonbenzenoid moieties. RSC Advances, 2021, 11, 23437-23441.	1.7	5

#	Article	IF	CITATIONS
2513	Unexpectedly flexible graphene nanoribbons with a polyacene ladder skeleton. Journal of Materials Chemistry C, 2021, 9, 16208-16216.	2.7	9
2514	Molecular embroidering of graphene. Nature Communications, 2021, 12, 552.	5.8	25
2515	Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates. ACS Nano, 2021, 15, 2635-2642.	7.3	27
2516	Metallic Graphene Nanoribbons. Nano-Micro Letters, 2021, 13, 53.	14.4	6
2517	When graphene meets ionic liquids: a good match for the design of functional materials. Nanoscale, 2021, 13, 2750-2779.	2.8	34
2518	<i>In situ</i> laser annealing as pathway for the metal free synthesis of tailored nanographenes. Nanoscale Advances, 2021, 3, 703-709.	2.2	0
2519	Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews, 2021, 50, 6541-6568.	18.7	105
2520	Nanopores in two-dimensional materials: accurate fabrication. Materials Horizons, 2021, 8, 1390-1408.	6.4	36
2521	Expanded all-phenylene molecular spoked wheels: cutouts of graphenylene-3. Organic Chemistry Frontiers, 2021, 8, 4980-4985.	2.3	3
2522	Challenges in the synthesis of corannulene-based non-planar nanographenes on Au(111) surfaces. Physical Chemistry Chemical Physics, 2021, 23, 10845-10851.	1.3	2
2523	Direct aryl–aryl coupling of pentacene on Au(110). Physical Chemistry Chemical Physics, 2021, 23, 22155-22159.	1.3	0
2524	Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Advances, 2021, 11, 32158-32202.	1.7	42
2525	One Nanometer Wide Functional Patterns with a Sub-10 Nanometer Pitch Transferred to an Amorphous Elastomeric Material. ACS Nano, 2021, 15, 1426-1435.	7.3	16
2527	Atomic-Scale Contrast Formation in AFM Images on Molecular Systems. Nanoscience and Technology, 2015, , 173-194.	1.5	3
2528	On-Surface (Cyclo-)Dehydrogenation Reactions: Role of Surface Diffusion. Advances in Atom and Single Molecule Machines, 2016, , 43-83.	0.0	2
2529	Enediyne Cyclization Chemistry on Surfaces Under Ultra-High Vacuum. Advances in Atom and Single Molecule Machines, 2016, , 85-99.	0.0	2
2530	Modeling Disordered and Nanostructured Graphene. , 2020, , 53-72.		1
2531	Raman Spectroscopy of Graphene Nanoribbons: A Review. Carbon Nanostructures, 2017, , 19-30.	0.1	7

#	Article	IF	CITATIONS
2532	Bottom-Up Fabrication of Atomically Precise Graphene Nanoribbons. Advances in Atom and Single Molecule Machines, 2018, , 113-152.	0.0	19
2533	Organic Chemistry of Graphene Framework. , 2015, , 337-360.		5
2534	First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures. Carbon Materials, 2013, , 41-76.	0.2	1
2535	Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy. Journal of Materials Science, 2020, 55, 10522-10542.	1.7	12
2536	On-Surface Chemistry of Alkyne Derivatives. , 2018, , 324-334.		3
2537	Polyaniline-Graphene Nanocomposite Based Supercapacitors. , 2020, , .		1
2538	Origin of nonlinear current-voltage curves for suspended zigzag edge graphene nanoribbons. Carbon, 2020, 165, 476-483.	5.4	11
2541	Synthesis of Two-Dimensional Metal–Organic Frameworks via Dehydrogenation Reactions on a Cu(111) Surface. Journal of Physical Chemistry C, 2020, 124, 12390-12396.	1.5	15
2542	Structural, Electronic, and Vibrational Properties of a Two-Dimensional Graphdiyne-like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp ² Carbon Nanostructures. ACS Applied Nano Materials, 2020, 3, 12178-12187.	2.4	14
2543	On-Surface Intramolecular Reactions. ACS Nano, 2020, 14, 6376-6382.	7.3	12
2544	Fabrication Techniques of Graphene Nanostructures. RSC Nanoscience and Nanotechnology, 2014, , 1-30.	0.2	17
2545	A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Nanoscale Advances, 2020, 2, 5905-5911.	2.2	10
2546	Correlation between UV resilience and wavelength of narrow diffuse interstellar bands. Astronomy and Astrophysics, 2020, 637, A74.	2.1	4
2547	Probing divacancy defects in a zigzag graphene nanoribbon through an RKKY exchange interaction. Journal Physics D: Applied Physics, 2021, 54, 095302.	1.3	1
2548	Optical scanning tunneling microscopy based chemical imaging and spectroscopy. Journal of Physics Condensed Matter, 2020, 32, 463001.	0.7	17
2549	Strain modulated carrier mobility and optical properties of graphene nanowiggles. Nanotechnology, 2020, 31, 505202.	1.3	5
2550	Nanoscale patterning at the Si/SiO2/graphene interface by focused He+ beam. Nanotechnology, 2020, 31, 505302.	1.3	2
2551	Interfaces between MoO _x and MoX ₂ (X = S, Se, and Te)*. Chinese Physics B, 2020, 29, 116802.	0.7	7

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
2552	Synthesis of borophene nanoribbons on Ag(110) surface. Physical Review Materials, 2017, 1, .	0.9	113
2553	Oxidization stability of atomically precise graphene nanoribbons. Physical Review Materials, 2018, 2, .	0.9	25
2554	Direct writing of heterostructures in single atomically precise graphene nanoribbons. Physical Review Materials, 2019, 3, .	0.9	18
2555	Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness. Physical Review Materials, 2019, 3, .	0.9	9
2556	Hybrid optical security system using photonic crystals and MEMS devices. , 2017, , .		1
2560	Research Progress in Preparation Technology of Graphene. Material Sciences, 2016, 06, 346-360.	0.0	1
2561	STRATEGIES OF FABRICATING GRAPHENE AND GRAPHENE-ANALOGOUS 2D NANOSHEETS. Ceramics - Silikaty, 2018, , 211-220.	0.2	2
2562	Electronic Properties of Functionalized Graphene Nanoribbons. Ukrainian Journal of Physics, 2013, 58, 389-397.	0.1	6
2563	PHONON TRANSPORT AND THERMAL CONDUCTIVITY IN TWO-DIMENSIONAL MATERIALS. Annual Review of Heat Transfer, 2016, 19, 1-65.	0.3	57
2564	Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	1
2565	Formation of Majorana fermions in finite-size graphene strips. SciPost Physics, 2017, 3, .	1.5	14
2566	Comprehensive Review on Graphene Oxide for Use in Drug Delivery System. Current Medicinal Chemistry, 2020, 27, 3665-3685.	1.2	92
2567	Graphene Nanoribbons: Towards Graphitic Materials with Predefined Dimensions and Electronic Properties. Current Organic Chemistry, 2015, 19, 1850-1871.	0.9	2
2568	Fuller-Rylenes: Cross-Dimensional Molecular Carbons. CCS Chemistry, 2020, 2, 271-279.	4.6	36
2569	Nanoscale Crystalline Sheets and Vesicles Assembled from Nonplanar Cyclic <i>Ï€</i> -Conjugated Molecules. Research, 2019, 2019, 1953926.	2.8	6
2570	Formation and Control of Porous Two-Dimensional Molecular Self-Assembly at Solid-Liquid Interfaces. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1255-1266.	0.0	2
2571	Polymer-Graphene Nanocomposites: Preparation, Characterization, Properties, and Applications. , 0, , .		23
2572	Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 168102.	0.2	2

#	Article	IF	CITATIONS
2573	Theoretical Evaluation of Ballistic Electron Transport in Field-Effect Transistors with Semiconducting Graphene Channels. Japanese Journal of Applied Physics, 2012, 51, 055103.	0.8	7
2574	Conformational evolution following the sequential molecular dehydrogenation of PMDI on a Cu(111) surface. Nanoscale Advances, 0, , .	2.2	2
2575	Selective On-Surface Reactions of the Alkenyl <i>gem</i> -Dibromide Group Directed by Substrate Lattices. Journal of Physical Chemistry C, 2021, 125, 23840-23847.	1.5	3
2576	An onâ€surface Diels–Alder reaction. Angewandte Chemie - International Edition, 2021, 60, 26346-26350.	7.2	9
2577	Molecular Nanocarbons Add New Dimensions to Organic Chemistry. Journal of Organic Chemistry, 2021, 86, 14239-14241.	1.7	2
2578	Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi ₂ N ₄ nanoribbon with armchair and zigzag edges. Journal Physics D: Applied Physics, 2022, 55, 035301.	1.3	23
2579	Pentagons and Heptagons on Edges of Graphene Nanoflakes Analyzed by X-ray Photoelectron and Raman Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 9955-9962.	2.1	15
2580	Light assisted synthesis of poly-para-phenylene on Ag(001). Journal of Physics Condensed Matter, 2022, 34, 055001.	0.7	1
2581	Current-Induced One-Dimensional Diffusion of Co Adatoms on Graphene Nanoribbons. Nano Letters, 2021, 21, 8794-8799.	4.5	4
2582	Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons. ACS Nano, 2021, 15, 16552-16561.	7.3	11
2583	Manipulation of Dirac Fermions in Nanochain-Structured Graphene. Chinese Physics Letters, 2021, 38, 097101.	1.3	4
2584	Emerging Singleâ€Photon Detectors Based on Lowâ€Dimensional Materials. Small, 2022, 18, e2103963.	5.2	23
2585	Molecular Nanocarbons Add New Dimensions to Organic Chemistry. Organic Letters, 2021, 23, 8119-8121.	2.4	0
2586	Topological Phases in Graphene Nanoribbons Tuned by Electric Fields. Physical Review Letters, 2021, 127, 166401.	2.9	20
2587	Tailoring plasmon excitations in \$\$alpha -{mathcal {T}}_3\$\$ armchair nanoribbons. Scientific Reports, 2021, 11, 20577.	1.6	16
2588	Onâ€Surface Formation of Cyanoâ€Vinylene Linked Chains by Knoevenagel Condensation. Chemistry - A European Journal, 2021, 27, 17336-17340.	1.7	4
2589	Asymmetric Elimination Reaction on Chiral Metal Surfaces. Advanced Materials, 2022, 34, e2104481.	11.1	9
2590	Nanoporous Graphene <i>via</i> a Pressing Organization Calcination Strategy for Highly Efficient Electrocatalytic Hydrogen Peroxide Generation. ACS Applied Materials & Interfaces, 2021, 13, 47478-47487.	4.0	7

#	Article	IF	CITATIONS
2591	A novel universal tunable method for the NDR engineering of nanoribbon devices; the defect engineering of PNR devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115465.	1.7	1
2592	Fast DNA Sequencing With Graphene Nanochannels. Materials and Methods, 0, 1, .	0.0	0
2593	Nano-Engineering of Graphene and Related Materials. , 0, , .		0
2594	Electrode Nanostructures for Advanced Supercapacitors. Acta Physica Polonica A, 2011, 120, 260-265.	0.2	1
2595	Modeling and Simulation of Electron Transport at the Nanoscale: Illustrations in Low-Dimensional Carbon Nanostructures. Advances in Atom and Single Molecule Machines, 2013, , 123-133.	0.0	0
2596	Electronic Structure and Properties of Graphen Nanoribbons: Zigzag and Armchair Edges. Advances in Atom and Single Molecule Machines, 2013, , 81-90.	0.0	0
2597	Structural Defects on the Electronic Transport Properties of Carbon-Based Nanostructures. Carbon Materials, 2013, , 77-103.	0.2	0
2598	Electron-Beam Mediated Rearrangement and Fragmentation of Bis(diphenylphosphino)alkane Derivatives in Gas Phase. Rapid Communication in Photoscience, 2013, 2, 31-33.	0.1	0
2601	Tight-Binding Description of Graphene Nanostructures. Springer Theses, 2014, , 13-23.	0.0	2
2602	Graphene Nanostructures and Quantum Dots. Nanoscience and Technology, 2014, , 29-38.	1.5	1
2604	Fiber-Shaped Dye-Sensitized Solar Cell. Nanostructure Science and Technology, 2015, , 39-76.	0.1	2
2605	Direct Growth of Graphene and Graphene Nanoribbon on an Insulating Substrate by Rapid-Heating Plasma CVD. , 2015, , 37-52.		1
2606	Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. , 2015, , 1-41.		0
2611	E-beam Irradiation of Diyne-Cobaltcarbonyl Complexes for the Generation of Conjugated Alkyne in Gas Phase. Rapid Communication in Photoscience, 2015, 4, 86-87.	0.1	1
2612	Formation Mechanisms of Covalent Nanostructures from Density Functional Theory. Advances in Atom and Single Molecule Machines, 2016, , 269-287.	0.0	0
2613	Anisotropic etching of bilayer graphene controlled by gate voltage. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 196101.	0.2	1
2614	Room-Temperature Tip-Enhanced Raman Spectroscopy for Graphene Nanoribbons Under Ultrahigh-Vacuum Conditions. Hyomen Kagaku, 2016, 37, 310-314.	0.0	0
2616	E-beam Irradiated Fragmentation of Thio-Alkyne Cobaltcarbonyl Complex in Gas Phase as Alkyne Precursor. Rapid Communication in Photoscience, 2016, 5, 16-17.	0.1	0

#	Article	IF	CITATIONS
2617	Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218101.	0.2	0
2619	Surface Synthesis of Molecular Wire Architectures. Advances in Atom and Single Molecule Machines, 2017, , 467-486.	0.0	0
2620	Fabrication and electrical engineering of graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218103.	0.2	5
2621	Characterization of Nanocarbons: From Graphene to Graphene Nanoribbons (GNRs) and Quantum Dots (GQDs). , 2017, , 315-338.		0
2622	Defect Characterization and Metrology. , 2017, , 631-678.		0
2623	Electronic and Optical Properties of Graphite-Related Systems. , 0, , .		2
2624	Structure and band structure of epitaxial graphene on hexagonal silicon carbide. , 2018, , 689-715.		0
2625	Dehydrogenative and Dehalogenative Homocoupling Reactions of C–X Groups on Metal Surfaces. Advances in Atom and Single Molecule Machines, 2018, , 63-81.	0.0	0
2626	Simulation of Reaction Pathways for On-Surface Polymerization. , 2018, , 392-405.		0
2627	Electronic Structure of Atomically Precise Graphene Nanoribbons. , 2019, , 1-35.		0
2628	Thermal spin transport properties in a hybrid structure of single-walled carbon nanotubes and zigzag-edge boron nitride nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 057301.	0.2	1
2629	Bio-inspired Surface Catalysis to Produce Graphene Nanoribbons. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 576-583.	0.0	0
2630	Organic Electronics: For a Better Tomorrow. , 2019, , 153-169.		0
2631	Graphene Growth and Characterization: Advances, Present Challenges and Prospects. Journal of Materials Science Research, 2020, 8, 37.	0.1	4
2633	Graphene: Preparation and Applications. RSC Smart Materials, 2020, , 100-130.	0.1	0
2634	Naphthylene- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Î³ </mml:mi> : 1D and 2D carbon allotropes based on the fusion of phenyl- and naphthyl-like groups. Physical Review Materials, 2020. 4</mml:math 	0.9	4
2635	Electrically Induced Dirac Fermions in Graphene Nanoribbons. Nano Letters, 2021, 21, 9332-9338.	4.5	10
2636	Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano, 2021, 15, 17966-17976.	7.3	21

#	Article	IF	CITATIONS
2637	Abiotic Formation of an Amide Bond via Surface‧upported Direct Carboxyl–Amine Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
2638	One-Step Formation of Reduced Graphene Oxide from Insulating Polymers Induced by Laser Writing Method. Crystals, 2021, 11, 1308.	1.0	11
2639	Abiotic Formation of Amide Bond via Surfaceâ€Supported Direct Carboxylâ€Amine Coupling. Angewandte Chemie, 0, , .	1.6	0
2640	Smart Peptide Assembly Architectures to Mimic Biology's Adaptive Properties and Applications. Nanostructure Science and Technology, 2022, , 233-255.	0.1	0
2641	Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 52892-52900.	4.0	10
2642	Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110). Chinese Physics B, 2022, 31, 018202.	0.7	0
2643	Electronic Structure of Atomically Precise Graphene Nanoribbons. , 2020, , 685-719.		0
2644	Performance Analysis of Graphene Nanoribbon Field Effect Transistor (GNRFET) based 6T and 7T SRAMs. , 2020, , .		4
2646	Bottom-up Synthesis of Graphene Nanoribbon by Plasma CVD and Its Optoelectrical Application. Vacuum and Surface Science, 2019, 62, 599-604.	0.0	0
2647	Self-assembly of Organic Molecules at Metal Surfaces. Springer Handbooks, 2020, , 967-1004.	0.3	1
2648	Electronic States of Vicinal Surfaces. Springer Handbooks, 2020, , 351-385.	0.3	0
2649	Fiber Dye-Sensitized Solar Cells. , 2020, , 71-111.		0
2650	Electronic properties of armchair graphene nanoribbons. AIP Conference Proceedings, 2020, , .	0.3	0
2651	Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit. Physical Chemistry Chemical Physics, 2021, 23, 25114-25125.	1.3	7
2652	An onâ€surface Dielsâ€Alder reaction. Angewandte Chemie, 2021, 133, 26550.	1.6	2
2653	Single-layered assembly of vanadium pentoxide nanowires on graphene for nanowire-based lithography technique. Nanotechnology, 2022, 33, 075602.	1.3	0
2654	All-carbon approach to inducing electrical and optical anisotropy in graphene. AIP Advances, 2021, 11, .	0.6	2
2655	Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods, 2021, 5, e2100771.	4.6	17

#	Article	IF	Citations
2656	From graphene to graphene ribbons: atomically precise cutting via hydrogenation pseudo-crack. Nanotechnology, 2020, 31, 415705.	1.3	1
2657	Bottom-up Growth of Graphene Nanoribbons for Application to Electronic Devices. Vacuum and Surface Science, 2020, 63, 492-497.	0.0	0
2658	Quantum transport: general concepts. , 0, , 91-117.		1
2659	Liquid-phase catalytic growth of graphene. Journal of Materials Chemistry C, 2022, 10, 571-578.	2.7	2
2660	Graphene quantum dots, graphene nanoplatelets, and graphene nanoribbons with polymers. , 2022, , 91-116.		0
2661	Assembling biphenylene into 3D porous metallic carbon allotrope for promising anode of lithium-ion batteries. Carbon, 2022, 188, 95-103.	5.4	31
2663	Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review. Materials Science in Semiconductor Processing, 2022, 139, 106331.	1.9	24
2664	Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons. Nature Communications, 2021, 12, 6794.	5.8	29
2665	Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups. Journal of Physical Chemistry Letters, 2021, 12, 11061-11069.	2.1	11
2666	Electrocatalytic Hydrogen Evolution Reaction Promoted by Co/N/C Catalysts with Co–N <i>x</i> Active Sites Derived from Precursors Forming N-Doped Graphene Nanoribbons. Bulletin of the Chemical Society of Japan, 2021, 94, 2898-2905.	2.0	3
2667	Role Played by Edge-Defects in the Optical Properties of Armchair Graphene Nanoribbons. Nanomaterials, 2021, 11, 3229.	1.9	2
2668	Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons. ACS Nano, 2021, 15, 20633-20642.	7.3	22
2669	Exploiting Cooperative Catalysis for the Onâ€surface Synthesis of Linear Heteroaromatic Polymers via Selective Câ€H Activation. Angewandte Chemie, 0, , .	1.6	2
2670	Recent progresses of quantum confinement in graphene quantum dots. Frontiers of Physics, 2022, 17, 1.	2.4	31
2671	3D Steric Bulky Semiconductor Molecules toward Organic Optoelectronic Nanocrystals. , 2021, 3, 1799-1818.		10
2672	Exploiting Cooperative Catalysis for the Onâ€Surface Synthesis of Linear Heteroaromatic Polymers via Selective C–H Activation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
2673	Acetylene-Mediated Electron Transport in Nanostructured Graphene and Hexagonal Boron Nitride. Journal of Physical Chemistry Letters, 2021, 12, 11220-11227.	2.1	4
2674	Onâ€5urface Synthesis of Porphyrin omplex Multiâ€8lock Coâ€Oligomers by Defluorinative Coupling. Angewandte Chemie - International Edition, 2021, , .	7.2	9

#	Article	IF	CITATIONS
2675	Topologically protected edge and confined states in finite armchair graphene nanoribbons and their junctions. Physical Review B, 2021, 104, .	1.1	5
2676	On-surface cyclodehydrogenation reaction pathway determined by selective molecular deuterations. Chemical Science, 2021, 12, 15637-15644.	3.7	11
2677	Untying the Bundles of Solutionâ€Synthesized Graphene Nanoribbons for Highly Capacitive Microâ€Supercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	7.8	13
2678	Nanoscale self-assembly: concepts, applications and challenges. Nanotechnology, 2022, 33, 132001.	1.3	32
2679	Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coordination Chemistry Reviews, 2022, 453, 214335.	9.5	20
2680	Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42, 101372.	6.2	21
2681	Formation of C/Zn C/Ni Nanocomposites for Potential Application in Electrodes of LIB. , 2020, , .		0
2682	THz-STM of Atomically Precise Graphene Nanoribbons. , 2020, , .		0
2683	Optical Properties of 3â€Armchair Graphene Nanoribbons Produced by a Combination of Chemical Vapor Deposition with a Bottomâ€up Approach. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	5
2684	Self-assembly and photoinduced fabrication of conductive nanographene wires on boron nitride. Nature Communications, 2022, 13, 442.	5.8	4
2685	Halogen and structure sensitivity of halobenzene adsorption on copper surfaces. Physical Chemistry Chemical Physics, 2022, 24, 4485-4492.	1.3	2
2686	12b,24bâ€Diborahexabenzo[<i>a</i> , <i>c</i> , <i>fg</i> , <i>l</i> , <i>n</i> , <i>qr</i>]pentacene: A Lowâ€LUMO Boronâ€Doped Polycyclic Aromatic Hydrocarbon. Angewandte Chemie - International Edition, 2022, 61, e202115746.	7.2	26
2687	Effects of Ge and Ni catalytic underlayers to nanographene synthesis from pentacene-based film via soft X-ray irradiation. Japanese Journal of Applied Physics, 2022, 61, SC1057.	0.8	0
2688	On-surface synthesis and characterization of nitrogen-substituted undecacenes. Nature Communications, 2022, 13, 511.	5.8	26
2689	Chiral structures of 6,12-dibromochrysene on Au(111) and Cu(111) surfaces. Chinese Chemical Letters, 2022, 33, 5142-5146.	4.8	5
2690	12b,24bâ€Diborahexabenzo[<i>a</i> , <i>c</i> , <i>fg</i> , <i>l</i> , <i>n</i> , <i>qr</i>]pentacene: A Lowâ€LUMO Boronâ€Doped Polycyclic Aromatic Hydrocarbon. Angewandte Chemie, 2022, 134, .	1.6	8
2691	Structural and electronic properties of nonconventional $\hat{I}\pm$ -graphyne nanocarbons. Physical Review Materials, 2022, 6, .	0.9	2
2692	Geometric and Electronic Structures of Spiro-graphene Comprising Fused Pentagons and Octagons. Journal of the Physical Society of Japan, 2022, 91, .	0.7	1

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
2693	Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon, 2022, 190, 312	-318.	5.4	11
2694	Nanomaterials for Quantum Information Science and Engineering. Advanced Materials e2109621.	, 2023, 35,	11.1	25
2695	Ï€â€Extended <i>peri</i> â€Acenes: Recent Progress in Synthesis and Characterization. Organic Chemistry, 2022, 2022, .	European Journal of	1.2	7
2696	Electronic transport properties of B/N/P co-doped armchair graphene nanoribbon field transistor. Diamond and Related Materials, 2022, 124, 108893.	effect	1.8	3
2697	Multilayer stacks of polycyclic aromatic hydrocarbons. Nature Chemistry, 2022, 14, 45	7-462.	6.6	45
2698	Quantum interference and domain–wall-like magnetic correlations in hexagonal graµ Journal of Physics Condensed Matter, 2022, 34, 225804.	bhene nanodisks.	0.7	0
2699	Diffusion-controlled on-surface synthesis of graphene nanoribbon heterojunctions. RSC 2022, 12, 6615-6618.	C Advances,	1.7	5
2700	Magnetic single-layer nanoribbons of manganese oxide: edge- and width-dependent ele properties. Journal of Materials Chemistry C, 2022, 10, 7567-7574.	ectronic	2.7	1
2701	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Jou Materials Chemistry C, 2022, 10, 4173-4181.	urnal of	2.7	5
2702	On-surface synthesis of a phenylene analogue of nonacene. Chemical Communication: 4063-4066.	s, 2022, 58,	2.2	6
2703	Inducing a topological transition in graphene nanoribbon superlattices by external stra Chemistry Chemical Physics, 2022, 24, 7134-7143.	in. Physical	1.3	2
2704	Advances in detection and regulation of surface-supported molecular quantum states. Xuebao/Acta Physica Sinica, 2022, 71, 060701.	Wuli	0.2	0
2705	On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains. Chemist 112-117.	ry, 2022, 4,	0.9	5
2706	Small Size, Big Impact: Recent Progress in Bottomâ€Up Synthesized Nanographenes fo and Energy Applications. Advanced Science, 2022, 9, e2106055.	or Optoelectronic	5.6	54
2707	A two-dimensional magnetic carbon allotrope of hexagonally arranged fused pentagon Physics Express, 2022, 15, 035001.	s. Applied	1.1	0
2708	Onâ€Surface Synthesis of [3]Radialenes via [1+1+1] Cycloaddition. Angewandte Cher Edition, 2022, 61, e202117714.	nie - International	7.2	10
2709	Ferromagnetism in armchair graphene nanoribbon heterostructures. Physical Review B	, 2022, 105, .	1.1	3
2710	Electronic Quantum Materials Simulated with Artificial Model Lattices. ACS Nanoscien 198-224.	ce Au, 2022, 2,	2.0	9

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2711	Onâ \in Surface Synthesis of [3]Radialenes via [1+1+1] Cycloaddition. Angewandte Chemie	e, 2022, 134, .	1.6	0
2712	Edge-Topological Regulation for <i>in Situ</i> Fabrication of Bridging Nanosensors. Nano 2022, 22, 2569-2577.	Letters,	4.5	3
2713	Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at t Letters, 2022, 22, 1922-1928.	1e Edge. Nano	4.5	13
2714	Electro-mechanically switchable hydrocarbons based on [8]annulenes. Nature Communic 13, 860.	ations, 2022,	5.8	10
2715	On-Surface Reactivity of Disubstituted-Bianthryl Molecules on Cu(111) and Au(111) Surf Journal of Solid State Science and Technology, 2022, 11, 035006.	aces. ECS	0.9	0
2716	Visualization of on-surface ethylene polymerization through ethylene insertion. Science, 2 1188-1191.	2022, 375,	6.0	18
2717	Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. Journal of American Chemical Society, 2022, 144, 4522-4529.	the	6.6	49
2718	Atomically Sharp Lateral Superlattice Heterojunctions Builtâ€In Nitrogenâ€Doped Nanop Advanced Materials, 2022, 34, e2110099.	orous Graphene.	11.1	14
2719	Onâ€surface synthesis and atomic scale characterization of unprotected indenofluorene Journal of Polymer Science, 2022, 60, 1814-1826.	polymers.	2.0	9
2720	Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Cove–Armchair–Gulf Edge Structures. Advanced Science, 2022, 9, e2200708.	n Hybrid	5.6	12
2721	Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nature Communications, 2022, 13, 1239.		5.8	20
2722	Contribution of nicotinamide as an intracyclic N dopant to the structure and properties c dots synthesized using three \hat{l} ±-hydroxy acids as C sources. Nanotechnology, 2022, 33, 2		1.3	2
2723	Initial Coupling and Reaction Progression of Directly Deposited Biradical Graphene Nanor Monomers on Iodine-Passivated Versus Pristine Ag(111). Chemistry, 2022, 4, 259-269.	ibbon	0.9	0
2724	 <i>ï€</i> -magnetism and spin-dependent transport in boron pair doped armcha nanoribbons. Applied Physics Letters, 2022, 120, .	ir graphene	1.5	10
2725	First Principle Study on Electronic and Transport Properties of Finite-Length Nanoribbons Nanodiscs for Selected Two-Dimensional Materials. Molecules, 2022, 27, 2228.	and	1.7	2
2726	Converting <i>n</i> -Alkanol to Conjugated Polyenal on Cu(110) Surface at Mild Tempera of Physical Chemistry Letters, 2022, , 3276-3282.	ture. Journal	2.1	2
2727	Bonding character of intermediates in onâ€surface Ullmann reactions revealed with ener decomposition analysis. Journal of Computational Chemistry, 2023, 44, 179-189.	Зу	1.5	2
2728	Tandem Desulfurization/C–C Coupling Reaction of Tetrathienylbenzenes on Cu(111): S Pentacene and an Exotic Ladder Polymer. ACS Nano, 2022, 16, 6506-6514.	Synthesis of	7.3	7

#	Article	IF	Citations
2729	Electronic transport properties of compressed and stretched helicene-graphene nanostructures, a theoretical study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 141, 115111.	1.3	2
2731	Anchoring and Reacting On-Surface to Achieve Programmability. Jacs Au, 2022, 2, 58-65.	3.6	7
2732	Modeling of a Graphene Nanoribbon–based Microfluidic Surface Plasmon Resonance Biosensor. Plasmonics, 2022, 17, 745-752.	1.8	1
2733	Clever substitutions reveal magnetism in zigzag graphene nanoribbons. Nature, 2021, 600, 613-614.	13.7	4
2734	Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Journal of the American Chemical Society, 2022, 144, 228-235.	6.6	28
2735	Chemisorption-Induced Formation of Biphenylene Dimer on Ag(111). Journal of the American Chemical Society, 2022, 144, 723-732.	6.6	20
2736	On-Surface Synthesis of sp-Carbon Nanostructures. Nanomaterials, 2022, 12, 137.	1.9	3
2738	Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials, 2022, 32,	7.8	62
2739	Competitive and/or cooperative interactions of graphene-family materials and benzo[a]pyrene with pulmonary surfactant: a computational and experimental study. Particle and Fibre Toxicology, 2021, 18, 46.	2.8	3
2740	Pseudo-atomic orbital behavior in graphene nanoribbons with four-membered rings. Science Advances, 2021, 7, eabl5892.	4.7	11
2741	Substrate Engineering-Tailored Fabrication of Aligned Graphene Nanoribbon Arrays: Implications for Graphene Electronic Devices. ACS Applied Nano Materials, 2021, 4, 13838-13847.	2.4	3
2743	Onâ€Surface Synthesis of Porphyrin omplex Multiâ€Block Coâ€Oligomers by Defluorinative Coupling. Angewandte Chemie, 2022, 134, .	1.6	3
2744	<i>In silico</i> design of graphene plasmonic hot-spots. Nanoscale Advances, 2022, 4, 2294-2302.	2.2	6
2745	Theoretical prediction of novel two-dimensional auxetic material SiGeS and study of its electronic and optical properties. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2746	Charge transport in topological graphene nanoribbons and nanoribbon heterostructures. Physical Review B, 2022, 105, .	1.1	10
2747	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	23.0	89
2748	Phenanthrene-Extended Phenazine Dication: An Electrochromic Conformational Switch Presenting Dual Reactivity. Journal of the American Chemical Society, 2022, 144, 7295-7301.	6.6	13
2749	[2+2] Cyclo-Addition Reactions for Efficient Polymerization on a HOPG Surface at Ambient Conditions. Nanomaterials, 2022, 12, 1334.	1.9	2

# 2750	ARTICLE Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chemistry of Materials, 2022, 34, 3588-3615.	IF 3.2	CITATIONS
2751	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		Ο
2752	Quantum transport in disordered graphene-based materials. , 0, , 143-218.		0
2753	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		Ο
2754	Electronic structure calculations: the density functional theory (DFT). , 0, , 314-331.		0
2755	Electronic structure calculations: the many-body perturbation theory (MBPT). , 0, , 332-337.		0
2756	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
2757	Virtual Screening for Organic Solar Cells and Light Emitting Diodes. Advanced Science, 2022, 9, e2200825.	5.6	13
2758	Onâ€Surface Synthesis of a Nitrogenâ€Doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
2759	Carbon Nanomaterials for Imaging. Monographs in Supramolecular Chemistry, 2022, , 242-277.	0.2	1
2761	Onâ€Surface Debromination of 2,3â€Bis(dibromomethyl)―and 2,3â€Bis(bromomethyl)naphthalene: Dimerization or Polymerization?. Angewandte Chemie, 0, , .	1.6	0
2762	Enhancing the sensitivity and selectivity of pyrene-based sensors for detection of small gaseous molecules via destructive quantum interference. Physical Review B, 2022, 105, .	1.1	2
2763	Onâ€5urface Debromination of 2,3â€Bis(dibromomethyl)―and 2,3â€Bis(bromomethyl)naphthalene: Dimerization or Polymerization?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
2764	Magnetism engineering of nanographene: An enrichment strategy by co-depositing diverse precursors on Au(111). Chinese Chemical Letters, 2023, 34, 107450.	4.8	4
2765	Onâ€surface Synthesis of Nitrogenâ€doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie, 0, , .	1.6	0
2766	Desilylative Coupling Involving C(sp ²)–Si Bond Cleavage on Metal Surfaces. Journal of the American Chemical Society, 2022, 144, 8789-8796.	6.6	2
2767	Magnetization in CNT induced by nitrogen doping and enhanced by transversal electric field application. Journal of Materials Science, 2022, 57, 9277-9298.	1.7	4
2768	Interplay of boundary states of graphene nanoribbons with a Kondo impurity. Physical Review B, 2022, 105, .	1.1	5

#	Article	IF	CITATIONS
2769	Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Advanced Functional Materials, 2022, 32, .	7.8	20
2770	On-Surface Synthesis of Rigid Benzenoid- and Nonbenzenoid-Coupled Porphyrin–Graphene Nanoribbon Hybrids. Journal of Physical Chemistry C, 0, , .	1.5	2
2771	Self-Q-switched Tm:YAP vortex laser by thermal-lensing effect. Infrared Physics and Technology, 2022, 123, 104197.	1.3	4
2772	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	11.1	12
2773	Steric hindrance in the on-surface synthesis of diethynyl-linked anthracene polymers. Physical Chemistry Chemical Physics, 2022, 24, 13616-13624.	1.3	2
2774	Graphene Membranes for Multiâ€Dimensional Electron Microscopy Imaging: Preparation, Application, and Prospect. Advanced Functional Materials, 2022, 32, .	7.8	4
2775	Characterizations of two-dimensional materials with cryogenic ultrahigh vacuum near-field optical microscopy in the visible range. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	4
2776	Electricâ€Fieldâ€Tunable Bandgaps in the Inverseâ€Designed Nanoporous Graphene/Graphene Heterobilayers. Advanced Electronic Materials, 2022, 8, .	2.6	3
2777	Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons. Japanese Journal of Applied Physics, 2022, 61, 075001.	0.8	3
2778	Surfaceâ€Assisted Synthesis of N <i>â€</i> Containing <i>Ï€</i> Onjugated Polymers. Advanced Science, 2022, 9, .	5.6	7
2779	Length-dependent symmetry in narrow chevron-like graphene nanoribbons. Nanoscale Advances, 2022, 4, 3531-3536.	2.2	1
2780	Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics. ACS Applied Electronic Materials, 2022, 4, 2667-2671.	2.0	6
2781	Graphene nanoribbons initiated from molecularly derived seeds. Nature Communications, 2022, 13, .	5.8	9
2782	Scanning probe microscopy study of functionalized nanographene. , 2022, 1, 79-88.		0
2783	Localization effects in graphene nanoribbons with quasiperiodic hopping modulation. , 2022, 168, 207295.		1
2784	Low-Dimensional Porous Carbon Networks Using Single-/Triple-Coupling Polycyclic Hydrocarbon Precursors. ACS Nano, 2022, 16, 9843-9851.	7.3	3
2785	Controlled assemblies of conjugated polymers in metalâ^'organic frameworks. Polymer Journal, 2022, 54, 1045-1053.	1.3	2
2786	Tuning the Carrier Mobility and Electronic Structure of Graphene Nanoribbons Using Stone-Wales Defects. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
2787	Delocalized magnetism in low-dimensional graphene system. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 188101.	0.2	1
2788	Bottom-Up Synthesized Graphene Nanoribbon Transistors. , 2022, , .		0
2789	Manipulation of Spin Polarization in Boron-Substituted Graphene Nanoribbons. ACS Nano, 2022, 16, 11244-11250.	7.3	12
2790	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	5.2	17
2791	Thermoelectric transport properties of armchair graphene nanoribbon heterostructures. Journal of Physics Condensed Matter, 2022, 34, 335302.	0.7	2
2792	Resolving Atomicâ€5cale Defects in Conjugated Polymers Onâ€5urfaces. Chemistry - A European Journal, 2022, 28, .	1.7	3
2793	Synthesis of oligoacenes using precursors for evaluation of their electronic structures. Photochemical and Photobiological Sciences, 2022, 21, 1511-1532.	1.6	2
2794	Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. Journal of the American Chemical Society, 2022, 144, 11499-11524.	6.6	88
2795	Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction. Nano Research, 0, , .	5.8	8
2796	Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model. Nanomaterials, 2022, 12, 2028.	1.9	9
2797	Electronic properties of carbon sheets and nanoribbons based on acepentalene-like building blocks. Computational Materials Science, 2022, 211, 111520.	1.4	0
2798	Rectifying Performance Induced by B/P, B/As, and B/Sb Co-doped Armchair Graphene Nanoribbons P-N Junction: A DFT Investigation. Chinese Journal of Physics, 2022, 78, 13-26.	2.0	2
2799	Investigating arrangements of doping B atoms affecting electrical structures of graphene nanoribbons from DFTB simulations. Materials Science in Semiconductor Processing, 2022, 149, 106899.	1.9	3
2800	Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Science China Materials, 2022, 65, 3157-3170.	3.5	5
2801	Electronic and magnetic properties of tripentaphene nanoribbons. Physical Review Materials, 2022, 6, .	0.9	2
2802	On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, .	1.2	4
2803	Polarization Raman spectra of graphene nanoribbons. Chinese Physics B, O, , .	0.7	0
2804	Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review. Luminescence, 2023, 38, 909-953.	1.5	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2805	Surface Confined Hydrogenation of Graphene Nanoribbons. ACS Nano, 2022, 16, 102	81-10291.	7.3	5
2806	On-surface synthesis of one-dimensional carbyne-like nanostructures with <i>sp</i> -ca	rbon. Chinese	0.7	0
2807	Spin-Polarizing Electron Beam Splitter from Crossed Graphene Nanoribbons. Physical R 2022, 129, .	eview Letters,	2.9	11
2809	Beyond CMOS. , 2021, , .			2
2810	Nanoconfined synthesis of conjugated ladder polymers. Polymer Chemistry, 2022, 13,	5003-5018.	1.9	2
2811	Auxetic ographene: a new 2D Dirac nodal-ring semimetal carbon-based material with a Poisson's ratio. Physical Chemistry Chemical Physics, 2022, 24, 21806-21811.	high negative	1.3	1
2812	Anomalous magnetic and transport properties of laterally connected graphene quantu Journal of Materials Science, 2022, 57, 14356-14370.	m dots.	1.7	13
2813	缺é™.å⁻¹çŸ³å¢¨çƒ⁻纳米带金属度的弱åŒ−作ç". Chinese Science Bulletin	, 2022, , .	0.4	0
2814	Momentum space imaging of lf orbitals for chemical analysis. Science Advances, 2022	2, 8, .	4.7	5
2815	Magnetic Interactions in Substitutional Core-Doped Graphene Nanoribbons. Journal of Chemical Society, 2022, 144, 13696-13703.	the American	6.6	24
2816	Molecular Carbon Imides. Journal of the American Chemical Society, 2022, 144, 14976	5-14991.	6.6	68
2817	Ribbonâ€Type Boronâ€Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynand Electronic Properties. Angewandte Chemie, 0, , .	amic Complexation	1.6	4
2818	Bottomâ $\in\!\!\!\!\!\!\!\!$ Up Growth of Graphene Nanospears and Nanoribbons. Advanced Functional .	Materials, 2022, 32,	7.8	2
2819	Programmable Fabrication of Monodisperse Graphene Nanoribbons via Deterministic F Synthesis. Journal of the American Chemical Society, 2022, 144, 16012-16019.	terative	6.6	15
2820	New paradigms in molecular nanocarbon science. Tetrahedron, 2022, , 132907.		1.0	6
2821	Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticle 2022, 15, 5404.	es. Materials,	1.3	4
2822	On-Surface Synthesis toward Two-Dimensional Polymers. Journal of Physical Chemistry 13, 8062-8077.	/ Letters, 2022,	2.1	9
2823	Step-Assisted On-Surface Synthesis of Graphene Nanoribbons Embedded with Periodic Journal of the American Chemical Society, 2022, 144, 14798-14808.	Divacancies.	6.6	16

		CITATION REPORT		
#	Article		IF	Citations
2824	"Red Carbon†A Rediscovered Covalent Crystalline Semiconductor. Advanced Mater	ials, 2022, 34, .	11.1	4
2825	Pentalene-based metallic and semiconducting nanostructures. Physica E: Low-Dimension Nanostructures, 2022, , 115472.	al Systems and	1.3	1
2826	On-Surface Chemistry on Low-Reactive Surfaces. Chemistry, 2022, 4, 796-810.		0.9	3
2827	Ribbonâ€Type Boronâ€Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynam and Electronic Properties. Angewandte Chemie - International Edition, 2022, 61, .	ic Complexation	7.2	17
2829	Effects of molecular shapes, molecular weight, and types of edges on peak positions of C photoelectron spectra of graphene-related materials and model compounds. Journal of M Science, 2022, 57, 15789-15808.	1s X-ray aterials	1.7	7
2830	Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Materials Futures, 2022, 1, 032301.	ł	3.1	13
2831	One-dimensional sp carbon: Synthesis, properties, and modifications. Chinese Physics B, 2	2022, 31, 128103.	0.7	2
2832	Photovoltaic Cell Generations and Current Research Directions for Their Development. M 2022, 15, 5542.	aterials,	1.3	62
2833	Graphene nanoribbons are internalized by human primary immune cell subpopulations masafety profile: A high-dimensional pilot study by single-cell mass cytometry. Applied Mater 2022, 29, 101593.	aintaining a rials Today,	2.3	1
2834	Preparation, Supramolecular Organization, and On-Surface Reactivity of Enantiopure Subphthalocyanines: From Bulk to 2D-Polymerization. Journal of the American Chemical S 144, 16579-16587.	Society, 2022,	6.6	10
2835	Theoretical investigation of electron dynamics driven by laser pulses in graphene nanoribl Physical Review B, 2022, 106, .	bons.	1.1	0
2836	Planar bridging an atomically precise surface trench with a single molecular wire on an Au surface. Chemical Physics Letters, 2022, 806, 140029.	(1 1 1)	1.2	3
2837	Tuning the carrier mobility and electronic structure of graphene nanoribbons using Stone defects. Carbon, 2023, 201, 222-233.	:–Wales	5.4	6
2838	Radical-promoted room-temperature terminal alkyne activation on Au(111). Surface Scien 122180.	nce, 2023, 727,	0.8	1
2839	On-surface synthesis of ethers through dehydrative coupling of hydroxymethyl substituer Chemistry Chemical Physics, 2022, 24, 22122-22128.	nts. Physical	1.3	4
2840	Interfacial electric fields catalyze Ullmann coupling reactions on gold surfaces. Chemical 2022, 13, 10798-10805.	Science,	3.7	4
2841	Synthetic carbon nanomaterials for electrochemical energy conversion. Nanoscale, 2022, 13473-13489.	, 14,	2.8	6
2842	N-doped graphene for electrocatalytic O ₂ and CO ₂ reduction. Advances, 2022, 4, 4197-4209.	Nanoscale	2.2	6

#	Article	IF	CITATIONS
2843	Multiple molecular interactions between alkyl groups and dissociated bromine atoms on Ag(111). Physical Chemistry Chemical Physics, 2022, 24, 22191-22197.	1.3	0
2844	Multiscale simulation of surface-assisted synthesis of 7-armchair graphene nanoribbons. Computational Materials Science, 2023, 216, 111814.	1.4	1
2845	Predicting magnetic edge behavior in graphene using neural networks. Physical Review B, 2022, 106, .	1.1	1
2846	Addressing Electron Spins Embedded in Metallic Graphene Nanoribbons. ACS Nano, 2022, 16, 14819-14826.	7.3	14
2847	Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. Materials, 2022, 15, 5898.	1.3	7
2848	Direct growth of globally aligned graphene nanoribbons on reconstructed sapphire substrate using PECVD. Nano Research, 0, , .	5.8	0
2849	Spatially Resolved Stimulation for the Controlled Debromination in Single Molecules on a Surface. ACS Nano, 2022, 16, 18592-18600.	7.3	0
2850	A covalent organic framework onion structure. Materials Today, 2022, 60, 98-105.	8.3	11
2851	Pt nanoparticle/N-doped graphene nanozymes for colorimetric detection of acetylcholinesterase activity and inhibition. Chinese Journal of Analytical Chemistry, 2022, 50, 100177.	0.9	4
2852	Electrochemical Detection of H2O2 on Graphene Nanoribbons/Cobalt Oxide Nanorods-Modified Electrode. Journal of Nanomaterials, 2022, 2022, 1-10.	1.5	8
2853	A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability, 2022, 14, 12336.	1.6	10
2854	Real-Space Identification of Non-Noble Single Atomic Catalytic Sites within Metal-Coordinated Supramolecular Networks. ACS Nano, 2022, 16, 14284-14296.	7.3	6
2855	Sumanene Monolayer of Pure Carbon: A Twoâ€Dimensional Kagomeâ€Analogy Lattice with Desirable Band Gap, Ultrahigh Carrier Mobility, and Strong Exciton Binding Energy. Small, 2022, 18, .	5.2	5
2856	High thermoelectric figure of merit in rhombic porous carbon nitride nanoribbons. Journal of the Chinese Chemical Society, 0, , .	0.8	0
2857	Stable Dispersion of Graphene in Water, Promoted by High-Yield, Scalable Exfoliation of Graphite in Natural Aqueous Extracts: The Role of Hydrophobic Organic Molecules. ACS Sustainable Chemistry and Engineering, 2022, 10, 12552-12558.	3.2	7
2858	Particlelike valleytronics in graphene. Physical Review B, 2022, 106, .	1.1	0
2859	Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Nanomaterials, 2022, 12, 3357.	1.9	7
2860	Carbon Surface Chemistry: New Insight into the Old Story. Advanced Materials, 2022, 34, .	11.1	43

#	Article	IF	CITATIONS
2861	Bottomâ€Up Preparation of Twisted Graphene Nanoribbons by Cu atalyzed Deoxygenative Coupling. Angewandte Chemie, 2022, 134, .	1.6	0
2862	Nucleobase-Bonded Graphene Nanoribbon Junctions: Electron Transport from First Principles. ACS Nano, 2022, 16, 16736-16743.	7.3	2
2863	Bottomâ€Up Preparation of Twisted Graphene Nanoribbons by Cuâ€Catalyzed Deoxygenative Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
2864	Origin of the herringbone reconstruction of Au(111) surface at the atomic scale. Science Advances, 2022, 8, .	4.7	12
2865	Self-Assemblies and Properties of Side-On Picene Strips on a Monolayered CuO Film. Journal of Physical Chemistry C, 2022, 126, 17753-17758.	1.5	0
2866	A new double signal on electrochemical aptasensor based on gold nanoparticles/graphene nanoribbons/MOF-808 as enhancing nanocomposite for ultrasensitive and selective detection of carbendazim. OpenNano, 2022, 8, 100086.	1.8	5
2867	Nanocar swarm movement on graphene surfaces. Physical Chemistry Chemical Physics, 2022, 24, 27759-27771.	1.3	5
2868	On-surface synthesis of hydroxy-functionalized graphene nanoribbons through deprotection of methylenedioxy groups. Nanoscale Advances, 0, , .	2.2	0
2869	Grand challenges in graphene and graphite research. , 0, 1, .		5
2870	Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures. Nanomaterials, 2022, 12, 3475.	1.9	4
2871	Quantum nanomagnets in on-surface metal-free porphyrin chains. Nature Chemistry, 2023, 15, 53-60.	6.6	28
2872	Molecular Encapsulation from the Liquid Phase and Graphene Nanoribbon Growth in Carbon Nanotubes. Journal of Physical Chemistry Letters, 2022, 13, 9752-9758.	2.1	1
2873	Selective activation of four quasi-equivalent C–H bonds yields N-doped graphene nanoribbons with partial corannulene motifs. Nature Communications, 2022, 13, .	5.8	5
2874	The Role of Metal Adatoms in a Surfaceâ€Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angewandte Chemie, 0, , .	1.6	2
2875	Arsenic Monolayers Formed by Zero-Dimensional Tetrahedral Clusters and One-Dimensional Armchair Nanochains. ACS Nano, 2022, 16, 17087-17096.	7.3	2
2876	The Role of Metal Adatoms in a Surfaceâ€Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
2877	Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor. Materials, 2022, 15, 7312.	1.3	1
2878	First-principles study of the structural and electronic properties of BN-ring doped graphene. Physical Review Materials, 2022, 6, .	0.9	1

#	Article	IF	CITATIONS
2879	Experimental and density functional theory studies of laminar double-oxidized graphene oxide nanofiltration membranes. Chemical Engineering Research and Design, 2022, 188, 590-606.	2.7	5
2880	Atomic-scale construction and characterization of quantum dots array and poly-fluorene chains via 2,7-dibromofluorene on Au(1 1 1). Applied Surface Science, 2023, 609, 155315.	3.1	3
2881	Molecular Self-Assembly of DBBA on Au(111) at Room Temperature. Physical Chemistry Chemical Physics, 0, , .	1.3	0
2882	On-surface homocoupling reactivity of a chiral bifunctional bromoindanone molecule on Cu(111). New Journal of Chemistry, 2022, 46, 22869-22876.	1.4	3
2883	Stereoselective Chiral Molecular Carbon Imides Featuring 12â€Fold [5]helicenes Around Four Cores. Angewandte Chemie, 0, , .	1.6	0
2884	Plasmon Damping Rates in Coulomb-Coupled 2D Layers in a Heterostructure. Materials, 2022, 15, 7964.	1.3	0
2885	Synthesis of Dendronized Polymers on the Au(111) Surface. Journal of Physical Chemistry Letters, 2022, 13, 10589-10596.	2.1	2
2886	Atomically Precise Incorporation of BN-Doped Rubicene into Graphene Nanoribbons. Journal of Physical Chemistry C, 2022, 126, 19726-19732.	1.5	4
2887	Influence of Molecular Configurations on the Desulfonylation Reactions on Metal Surfaces. Journal of the American Chemical Society, 2022, 144, 21596-21605.	6.6	14
2888	Polymerization of Epoxides via Ring-Opening Coupling on Surfaces. Journal of Physical Chemistry C, 2022, 126, 20049-20056.	1.5	0
2889	Stereoselective Chiral Molecular Carbon Imides Featuring 12â€Fold [5]helicenes Around Four Cores**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
2890	On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nature Chemistry, 2023, 15, 136-142.	6.6	15
2891	Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. Journal of the American Chemical Society, 2022, 144, 21389-21397.	6.6	14
2892	Porous carbon-based metal-free monolayers towards highly stable and flexible wearable thermoelectrics and microelectronics. Nanoscale, 0, , .	2.8	0
2893	Probing dynamic covalent chemistry in a 2D boroxine framework by <i>in situ</i> near-ambient pressure X-ray photoelectron spectroscopy. Nanoscale, 0, , .	2.8	4
2894	Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons. Physical Chemistry Chemical Physics, 0, , .	1.3	0
2895	Molecular insight into on-surface chemistry of an organometallic polymer. Physical Chemistry Chemical Physics, 0, , .	1.3	1
2896	Strainâ€Sensitive Onâ€Surface Ladderization by Nonâ€Dehydrogenative Heterocyclization. Chemistry - A European Journal, 2023, 29, .	1.7	2

#	Article	IF	Citations
2897	Onâ€5urface Synthesis of Chiral Graphene Nanoribbon Segments via the Quarterâ€Anthryl on Au(111) Surface. Advanced Materials Interfaces, 2023, 10, .	1.9	4
2898	A Step toward Amino Acid-Labeled DNA Sequencing: Boosting Transmission Sensitivity of Graphene Nanogap. ACS Applied Bio Materials, 2023, 6, 218-227.	2.3	2
2899	Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition. ACS Nano, 2023, 17, 597-605.	7.3	2
2900	Formation of graphene nanoribbons on the macrofacets of vicinal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>6</mml:mn><mml:mi>H-SiC(0001) surfaces. Physical Review Materials, 2022, 6, .</mml:mi></mml:mrow></mml:math 	i> o/. ջոml:n	າrຜ _w >
2901	Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	13
2902	High-Yield Production of Quantum Corrals in a Surface Reconstruction Pattern. Nano Letters, 2023, 23, 148-154.	4.5	2
2903	Design and Synthesis of Kekulè and Non-Kekulè Diradicaloids via the Radical Periannulation Strategy: The Power of Seven Clar's Sextets. Journal of the American Chemical Society, 2022, 144, 23448-23464.	6.6	11
2904	Bottom-Up Synthesis of Multiply Fused Pd ^{II} Anthriporphyrinoids. ACS Central Science, 2022, 8, 1627-1632.	5.3	1
2905	Theory of triangulene two-dimensional crystals. 2D Materials, 2023, 10, 015015.	2.0	8
2906	Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions. , 2022, 1, .		2
2907	Charge-induced phase transition in encapsulated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Hf</mml:mi><mml:msub><mml:m nanoribbons. Physical Review Materials, 2023, 7, .</mml:m </mml:msub></mml:mrow></mml:math 	ni> ōe 9(mm	ıl:mi> <mml:m< td=""></mml:m<>
2908	Dibenzotropylium-Capped Orthogonal Geometry Enabling Isolation and Examination of a Series of Hydrocarbons with Multiple 14ï€-Aromatic Units. Journal of the American Chemical Society, 2023, 145, 2596-2608.	6.6	6
2909	Near infrared photoluminescence of the bottom-up produced 7-armchair graphene nanoribbons. Applied Physics Letters, 2023, 122, .	1.5	2
2910	Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. Physical Review Letters, 2023, 130, .	2.9	6
2911	Unveiling the formation mechanism of the biphenylene network. Nanoscale Horizons, 2023, 8, 368-376.	4.1	4
2912	Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials. Reviews in Physics, 2023, 10, 100082.	4.4	14
2913	A versatile platform for graphene nanoribbon synthesis, electronic decoupling, and spin polarized measurements. Nanoscale Advances, 2023, 5, 1722-1728.	2.2	1
2914	Helical Synthetic Nanographenes with Atomic Precision. Accounts of Chemical Research, 2023, 56, 363-373.	7.6	17

#	Article	IF	CITATIONS
2915	Carbon–Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
2916	Copper Powder and Pd(II) Salts Triggered One-Pot Aromatic Halide Homocoupling via a Radical Pathway. Journal of Organic Chemistry, 2023, 88, 2306-2313.	1.7	3
2917	Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter, 2023, 6, 728-760.	5.0	24
2918	On-Surface Synthesis of Nanographenes and Graphene Nanoribbons on Titanium Dioxide. ACS Nano, 2023, 17, 2580-2587.	7.3	9
2919	Chirality variation from self-assembly on Ullmann coupling for the DBCh adsorbate on Au(111) and Ag(111). Nanoscale Advances, 2023, 5, 1368-1377.	2.2	5
2920	Carbon nanotubes and graphene: From structural to device properties. , 2023, , 271-303.		0
2921	Wave functions and edge states in rectangular honeycomb lattices revisited: Nanoflakes, armchair and zigzag nanoribbons, and nanotubes. Physical Review B, 2023, 107, .	1.1	2
2922	Laser-Induced Forward Transfer of Graphene Nanoribbons. Doklady Physics, 2022, 67, 228-235.	0.2	0
2924	Photoresponse of Solution-Synthesized Graphene Nanoribbon Heterojunctions on Diamond Indicating Phototunable Photodiode Polarity. Journal of the American Chemical Society, 2023, 145, 8757-8763.	6.6	6
2925	Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons. Angewandte Chemie, 2023, 135, .	1.6	1
2926	Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
2927	Tailoring carbon nanotubes quickly into graphene nanoribbons along axis-direction via dynamic magnetic flux template. Carbon, 2023, 208, 338-344.	5.4	0
2928	Planar, curved and twisted molecular nanographenes: Reduction-induced alkali metal coordination. Coordination Chemistry Reviews, 2023, 486, 215144.	9.5	6
2929	Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors. Carbon, 2023, 205, 519-526.	5.4	11
2930	Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multiâ€Gate Architecture. Advanced Electronic Materials, 2023, 9, .	2.6	11
2931	Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons. Nature Materials, 2023, 22, 180-185.	13.3	27
2932	On-surface polymerisation and self-assembly of DPP-based molecular wires. Molecular Systems Design and Engineering, 0, , .	1.7	0
2933	Scanning gate microscopy in graphene nanostructures. Physical Review B, 2023, 107, .	1.1	2

#	Article	IF	CITATIONS
2934	Current-driven collective dynamics of non-Hermitian edge vibrations in armchair graphene nanoribbons. Physical Review B, 2023, 107, .	1.1	1
2935	Real-space imaging of a phenyl group migration reaction on metal surfaces. Nature Communications, 2023, 14, .	5.8	2
2936	From defect to effect: controlling electronic transport in chevron graphene nanoribbons. Electronic Structure, 2023, 5, 014006.	1.0	0
2937	Steering On-Surface Reactions by Kinetic and Thermodynamic Strategies. Journal of Physical Chemistry Letters, 2023, 14, 2251-2262.	2.1	6
2938	The Regioselective Solidâ€State Photoâ€Mechanochemical Synthesis of Nanographenes with UV light. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
2939	Plasmonic properties of Ag@TiO2 nanostructures improve the graphitization of polyacrylonitrile and the mechanism. Journal of Materials Research, 2023, 38, 1994-2006.	1.2	Ο
2940	UVâ€Licht trifft Mechanochemie: Die Regioselektive Photochemische Festkörpersynthese von Nanographenen. Angewandte Chemie, 2023, 135, .	1.6	2
2941	Onâ€Surface Synthesis of Polyphenylene Wires Comprising Rigid Aliphatic Bicyclo[1.1.1]Pentane Isolator Units. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
2942	Onâ€ s urface Synthesis of Polyphenylene Wires Comprising Rigid Aliphatic Bicyclo[1.1.1]Pentane Isolator Units. Angewandte Chemie, 2023, 135, .	1.6	0
2943	Disorder-tuned conductivity in amorphous monolayer carbon. Nature, 2023, 615, 56-61.	13.7	24
2943 2944	Disorder-tuned conductivity in amorphous monolayer carbon. Nature, 2023, 615, 56-61. Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472.	13.7 2.1	24 1
	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling		
2944	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472.	2.1	1
2944 2945	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472. Full analytical solution of finite-length armchair/zigzag nanoribbons. Physical Review B, 2023, 107, .	2.1 1.1	1
2944 2945 2946	 Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472. Full analytical solution of finite-length armchair/zigzag nanoribbons. Physical Review B, 2023, 107, . On-surface synthesis of enetriynes. Nature Communications, 2023, 14, . Tailoring Two-Dimensional Matter Using Strong Light–Matter Interactions. Nano Letters, 2023, 23, 	2.1 1.1 5.8	1 3 1
2944 2945 2946 2947	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472. Full analytical solution of finite-length armchair/zigzag nanoribbons. Physical Review B, 2023, 107, . On-surface synthesis of enetriynes. Nature Communications, 2023, 14, . Tailoring Two-Dimensional Matter Using Strong Light–Matter Interactions. Nano Letters, 2023, 23, 3645-3652. Proximity-Induced Superconductivity in Atomically Precise Nanographene on Ag/Nb(110). , 2023, 5,	2.1 1.1 5.8	1 3 1 2
2944 2945 2946 2947 2948	Insights into the Polymerization Reactions on Solid Surfaces Provided by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 2463-2472. Full analytical solution of finite-length armchair/zigzag nanoribbons. Physical Review B, 2023, 107, . On-surface synthesis of enetriynes. Nature Communications, 2023, 14, . Tailoring Two-Dimensional Matter Using Strong Light–Matter Interactions. Nano Letters, 2023, 23, 3645-3652. Proximity-Induced Superconductivity in Atomically Precise Nanographene on Ag/Nb(110). , 2023, 5, 1083-1090. On-Surface Reaction of 1,4-Dibromo-2,5-Diiodobenzene on Au(111) and Ag(100). Journal of Physical	2.1 1.1 5.8 4.5	1 3 1 2 2

#	Article	IF	CITATIONS
2953	Metal Atoms Participate in the Selfâ€Assembly and Onâ€Surface Reaction Behaviors of 1,4â€DBN on Ag(111) Surface. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
2954	On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons. Nano Research, 2023, 16, 10436-10442.	5.8	3
2955	Topologically localized excitons in single graphene nanoribbons. Science, 2023, 379, 1049-1054.	6.0	8
2956	Molecular Bridge Engineering for Tuning Quantum Electronic Transport and Anisotropy in Nanoporous Graphene. Journal of the American Chemical Society, 2023, 145, 8988-8995.	6.6	7
2958	Design of Frustrated Lewis Pairs by Functionalizing N-Doped Graphene Edge with Tunable Activity for H ₂ Dissociation. Journal of Physical Chemistry C, 2023, 127, 6714-6722.	1.5	4
2959	Self-Limited Embedding Alternating 585-Ringed Divacancies and Metal Atoms into Graphene Nanoribbons. Journal of the American Chemical Society, 0, , .	6.6	4
2960	Effects of metallic electrodes on the thermoelectric properties of zigzag graphene nanoribbons with periodic vacancies. Journal of Physics Condensed Matter, 2023, 35, 305301.	0.7	2
2962	Spatially Controlled Aryl Radical Grafting of Graphite Surfaces Guided by Self-Assembled Molecular Networks of Linear Alkane Derivatives: The Importance of Conformational Dynamics. Langmuir, 0, , .	1.6	0
2963	Two-Step On-Surface Synthesis of One-Dimensional Nanographene Chains. Journal of Physical Chemistry C, 0, , .	1.5	0
2966	Graphene, electronic properties and topological properties. , 2024, , 273-287.		Ο
2969	Bottom–up on-surface synthesis based on click-functionalized peptide bundles. Nanoscale, 2023, 15, 8996-9002.	2.8	1
2971	On-Surface Cross-Coupling Reactions. Journal of Physical Chemistry Letters, 2023, 14, 4462-4470.	2.1	1
2978	Experimental measurements. , 2023, , 55-71.		0
2979	Open issues and future challenges. , 2023, , 491-519.		0
2981	Steering on-surface polymerization through coordination with a bidentate ligand. Chemical Communications, 2023, 59, 8067-8070.	2.2	4
2982	Structure and Properties of Graphene and Chemically Modified Graphene Materials. , 2023, , 43-75.		0
2986	Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , .	6.4	0
2992	Prospects of 2D graphdiynes and their applications in desalination and wastewater remediation. RSC Advances, 2023, 13, 18568-18604.	1.7	3

		CITATION REPORT		
#	Article		IF	Citations
3002	Synthetic two-dimensional electronics for transistor scaling. Frontiers of Physics, 2023	3, 18, .	2.4	0
3026	Strain-Induced 2D Materials. , 2023, , 301-320.			Ο
3070	Study of Transmission and l–V Characteristics of 10-Atom Armchair Graphene Nano Using Non-Equilibrium Green's Function Approach. , 2023, , 985-991.	Ribbon (AGNR)		0
3097	Toward three-dimensionally ordered nanoporous graphene materials: template synthe and applications. Chemical Science, 2024, 15, 1953-1965.	sis, structure,	3.7	0
3109	Tailoring giant quantum transport anisotropy in nanoporous graphenes under electros disorder. Nanoscale Horizons, 2024, 9, 407-415.	static	4.1	0
3118	Recent progress and challenges in crystalline graphdiyne. Science China Materials, 202	24, 67, 729-751.	3.5	0
3133	One-Dimensional Carbon for Electrocatalytic Activities. Engineering Materials, 2024, ,	81-98.	0.3	0