Measuring mechanical tension across vinculin reveals r dynamics

Nature

466, 263-266

DOI: 10.1038/nature09198

Citation Report

#	Article	IF	CITATIONS
2	Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends in Cell Biology, 2010, 20, 705-714.	3.6	62
3	Actin Crosslinkers: Repairing theÂSense of Touch. Current Biology, 2010, 20, R895-R896.	1.8	2
4	Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Current Opinion in Cell Biology, 2010, 22, 669-676.	2.6	131
5	Sensing tension. Nature, 2010, 466, 192-193.	13.7	16
6	More than the sum of its parts. Nature, 2010, 466, 193-194.	13.7	41
7	Sensing and controlling protein dynamics. Nature Reviews Molecular Cell Biology, 2010, 11, 681-681.	16.1	1
8	Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions. PLoS ONE, 2010, 5, e15215.	1.1	21
9	Integrins and Extracellular Matrix in Mechanotransduction. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005066-a005066.	2.3	500
10	Advances in imaging cell–matrix adhesions. Journal of Cell Science, 2010, 123, 3629-3638.	1.2	32
11	Tyrosine phosphorylation of vinculin at position 1065 modifies focal adhesion dynamics and cell tractions. Biochemical and Biophysical Research Communications, 2010, 399, 560-564.	1.0	21
12	Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. Journal of Materials Chemistry, 2011, 21, 5234.	6.7	24
13	In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochemical Journal, 2011, 438, 1-10.	1.7	39
14	Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors. Nano Letters, 2011, 11, 4037-4042.	4.5	106
15	Chemical Tools for Studying Directed Cell Migration. ACS Chemical Biology, 2011, 6, 1164-1174.	1.6	11
16	Vinculin Activation Is Necessary for Complete Talin Binding. Biophysical Journal, 2011, 100, 332-340.	0.2	45
17	Spontaneous Mechanical Oscillations. Current Topics in Developmental Biology, 2011, 95, 67-91.	1.0	24
18	Mechanisms of mechanical signaling in development and disease. Journal of Cell Science, 2011, 124, 9-18.	1.2	398
19	Mechanotransduction in Development. Current Topics in Developmental Biology, 2011, 95, 243-265.	1.0	110

#	ARTICLE	IF	CITATIONS
20	New Insights into Vinculin Function and Regulation. International Review of Cell and Molecular Biology, 2011, 287, 191-231.	1.6	141
21	High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Reports on Progress in Physics, 2011, 74, 086601.	8.1	118
22	Force Generation, Transmission, and Integration during Cell and Tissue Morphogenesis. Annual Review of Cell and Developmental Biology, 2011, 27, 157-184.	4.0	483
23	Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine, 2011, 6, 229-240.	0.8	155
24	Myocardin-Related Transcription Factors A and B Are Key Regulators of TGF- \hat{I}^21 -Induced Fibroblast to Myofibroblast Differentiation. Journal of Investigative Dermatology, 2011, 131, 2378-2385.	0.3	120
25	Dynamic molecular processes mediate cellular mechanotransduction. Nature, 2011, 475, 316-323.	13.7	839
26	Reporting from the Field: Genetically Encoded Fluorescent Reporters Uncover Signaling Dynamics in Living Biological Systems. Annual Review of Biochemistry, 2011, 80, 375-401.	5.0	83
27	Nuclear Mechanics in Disease. Annual Review of Biomedical Engineering, 2011, 13, 397-428.	5.7	126
28	Measuring FRET Using Time-Resolved FLIM. Methods in Molecular Biology, 2011, 769, 403-413.	0.4	13
29	Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell, 2011, 147, 992-1009.	13.5	1,669
30	Whence Directionality: Guidance Mechanisms in Solitary and Collective Cell Migration. Developmental Cell, 2011, 20, 9-18.	3.1	95
31	Shifting Patterns: Merging Molecules, Morphogens, Motility, and Methodology. Developmental Cell, 2011, 21, 2-4.	3.1	8
32	A Hitchhiker's Guide to Mechanobiology. Developmental Cell, 2011, 21, 35-47.	3.1	417
33	Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Current Opinion in Genetics and Development, 2011, 21, 664-670.	1.5	15
34	Measuring the multi-scale integration of mechanical forces during morphogenesis. Current Opinion in Genetics and Development, 2011, 21, 653-663.	1.5	28
35	Shining light on Drosophila oogenesis: live imaging of egg development. Current Opinion in Genetics and Development, 2011, 21, 612-619.	1.5	51
36	Biofunctionalization of a generic collagenous triple helix with the $\hat{l}\pm2\hat{l}^21$ integrin binding site allows molecular force measurements. International Journal of Biochemistry and Cell Biology, 2011, 43, 721-731.	1.2	22
37	Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells. Biochemical and Biophysical Research Communications, 2011, 415, 396-400.	1.0	34

#	Article	IF	Citations
38	Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature, 2011, 478, 260-263.	13.7	309
39	Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. Pigment Cell and Melanoma Research, 2011, 24, 282-294.	1.5	74
40	Integrins in Cell Migration. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005074-a005074.	2.3	603
41	Single-Molecule FRET: Technique and Applications to the Studies of Molecular Machines., 2011,, 4-19.		1
43	Collective cell guidance by cooperative intercellular forces. Nature Materials, 2011, 10, 469-475.	13.3	781
44	Five challenges to bringing single-molecule force spectroscopy into living cells. Nature Methods, 2011, 8, 123-127.	9.0	155
45	Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews Molecular Cell Biology, 2011, 12, 565-580.	16.1	375
46	Productive tension: force-sensing and homeostasis of cell–cell junctions. Trends in Cell Biology, 2011, 21, 499-505.	3.6	131
47	Specificities of \hat{l}^21 integrin signaling in the control of cell adhesion and adhesive strength. European Journal of Cell Biology, 2011, 90, 261-269.	1.6	14
48	Spatial and temporal regulation of integrin signalling during cell migration. Current Opinion in Cell Biology, 2011, 23, 562-568.	2.6	55
49	Actin dynamics and turnover in cell motility. Current Opinion in Cell Biology, 2011, 23, 569-578.	2.6	170
50	The role of adhesion energy in controlling cell–cell contacts. Current Opinion in Cell Biology, 2011, 23, 508-514.	2.6	56
51	Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nature Protocols, 2011, 6, 1806-1817.	5.5	76
52	Genetically Encodable Fluorescent Biosensors for Tracking Signaling Dynamics in Living Cells. Chemical Reviews, 2011, 111, 3614-3666.	23.0	309
53	The Role of Mechanical Forces in Plant Morphogenesis. Annual Review of Plant Biology, 2011, 62, 365-385.	8.6	153
54	Cooperation Between Integrins and Growth Factor Receptors in Signaling and Endocytosis. Annual Review of Cell and Developmental Biology, 2011, 27, 291-320.	4.0	229
55	Cell and molecular biomechanics: perspectives and challenges. Acta Mechanica Solida Sinica, 2011, 24, 27-51.	1.0	20
56	Exploring the Formation of Focal Adhesions on Patterned Surfaces Using Superâ€Resolution Imaging. Small, 2011, 7, 2906-2913.	5.2	29

#	Article	IF	Citations
57	Mechanically Induced Focal Adhesion Assembly Amplifies Anti-Adipogenic Pathways in Mesenchymal Stem Cells. Stem Cells, 2011, 29, 1829-1836.	1.4	71
58	Forcing a connection: Impacts of singleâ€molecule force spectroscopy on in vivo tension sensing. Biopolymers, 2011, 95, 332-344.	1.2	26
59	A mechanism of mechanotransduction at the cellâ€eell interface. BioEssays, 2011, 33, 732-736.	1.2	25
60	Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration. Journal of Biomechanics, 2011, 44, 1046-1050.	0.9	19
61	Determination of chemical specific atomic interaction with scanning tunneling microscope. Applied Physics Letters, 2011, 99, .	1.5	6
62	Molecular Architecture and Function of Matrix Adhesions. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005033-a005033.	2.3	441
63	Development of an optimized backbone of FRET biosensors for kinases and GTPases. Molecular Biology of the Cell, 2011, 22, 4647-4656.	0.9	529
64	Dissecting cell adhesion architecture using advanced imaging techniques. Cell Adhesion and Migration, 2011, 5, 351-359.	1.1	13
65	Genetically encoded force sensors for measuring mechanical forces in proteins. Communicative and Integrative Biology, 2011, 4, 385-390.	0.6	24
66	The Rickettsia Surface Cell Antigen 4 Applies Mimicry to Bind to and Activate Vinculin. Journal of Biological Chemistry, 2011, 286, 35096-35103.	1.6	44
67	The Vinculin C-terminal Hairpin Mediates F-actin Bundle Formation, Focal Adhesion, and Cell Mechanical Properties. Journal of Biological Chemistry, 2011, 286, 45103-45115.	1.6	55
68	The secret life of α-catenin: Moonlighting in morphogenesis. Journal of Cell Biology, 2011, 195, 543-552.	2.3	100
69	Actomyosin-generated tension controls the molecular kinetics of focal adhesions. Journal of Cell Science, 2011, 124, 1425-1432.	1.2	171
70	Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20585-20590.	3.3	173
71	Real-time observation of flow-induced cytoskeletal stress in living cells. American Journal of Physiology - Cell Physiology, 2011, 301, C646-C652.	2.1	51
72	Mechanotransduction In Vivo by Repeated Talin Stretch-Relaxation Events Depends upon Vinculin. PLoS Biology, 2011, 9, e1001223.	2.6	180
73	Microenvironmental control of cell migration: Myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. Journal of Cell Science, 2012, 125, 2244-56.	1.2	105
74	Negative regulators of integrin activity. Journal of Cell Science, 2012, 125, 3271-80.	1.2	61

#	ARTICLE	IF	Citations
75	Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6933-6938.	3.3	474
76	New Technologies for 21st Century Plant Science. Plant Cell, 2012, 24, 374-394.	3.1	58
77	Stochastic Models of Cell Protrusion Arising From Spatiotemporal Signaling and Adhesion Dynamics. Methods in Cell Biology, 2012, 110, 223-241.	0.5	5
78	Mechano-sensing by actin filaments and focal adhesion proteins. Communicative and Integrative Biology, 2012, 5, 572-577.	0.6	35
79	Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7251-7256.	3.3	33
80	Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. Science and Technology of Advanced Materials, 2012, 13, 064205.	2.8	20
81	Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes and Development, 2012, 26, 54-68.	2.7	632
82	Orientation-based FRET sensor for real-time imaging of cellular forces. Journal of Cell Science, 2012, 125, 743-750.	1.2	100
83	Altered nanofeature size dictates stem cell differentiation. Journal of Cell Science, 2012, 125, 1217-1224.	1.2	73
84	The C-terminal tail domain of metavinculin, vinculin's splice variant, severs actin filaments. Journal of Cell Biology, 2012, 197, 585-593.	2.3	22
85	Actin Dynamics Associated with Focal Adhesions. International Journal of Cell Biology, 2012, 2012, 1-9.	1.0	43
86	Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biology Open, 2012, 1, 1128-1140.	0.6	102
87	Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Scientific Reports, 2012, 2, 555.	1.6	159
88	Dynamic force sensing of filamin revealed in single-molecule experiments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19679-19684.	3.3	141
89	Signalling through mechanical inputs – a coordinated process. Journal of Cell Science, 2012, 125, 3039-3049.	1.2	66
90	Mechanical Strain in Actin Networks Regulates FilGAP and Integrin Binding to Filamin A. Biophysical Journal, 2012, 102, 348a.	0.2	2
91	Physically based principles of cell adhesion mechanosensitivity in tissues. Reports on Progress in Physics, 2012, 75, 116601.	8.1	123
92	Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integrative Biology (United Kingdom), 2012, 4, 1049-1058.	0.6	132

#	Article	IF	Citations
93	Pulling on single molecules. Nature Methods, 2012, 9, 873-877.	9.0	24
94	A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab on A Chip, 2012, 12, 731-740.	3.1	89
95	The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. Pathologie Et Biologie, 2012, 60, 20-27.	2.2	69
96	Nanopatterning Reveals an ECM Area Threshold for Focal Adhesion Assembly and Force Transmission that is regulated by Integrin Activation and Cytoskeleton Tension. Journal of Cell Science, 2012, 125, 5110-23.	1.2	111
97	Fluorescent Proteins from the Oceans: Marine Macromolecules as Advanced Imaging Tools for Biomedical Research., 2012, , 1231-1257.		1
98	Mechanotransduction in cells ¹ . Cell Biology International, 2012, 36, 567-570.	1.4	32
99	Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are "Selected―upon Allosteric Regulation. Journal of the American Chemical Society, 2012, 134, 9296-9302.	6.6	38
100	A cellular sense of touch. Nature Cell Biology, 2012, 14, 902-903.	4.6	4
101	Rho GTPases link cellular contractile force to the density and distribution of nanoscale adhesions. FASEB Journal, 2012, 26, 2374-2382.	0.2	22
102	Knowing the Boundaries: Extending the Differential Adhesion Hypothesis in Embryonic Cell Sorting. Science, 2012, 338, 212-215.	6.0	141
103	Role of paxillin in the early phase of orientation of the vascular endothelial cells exposed to cyclic stretching. Biochemical and Biophysical Research Communications, 2012, 418, 708-713.	1.0	18
104	Spurred by Resistance: Mechanosensation in Collective Migration. Developmental Cell, 2012, 22, 3-4.	3.1	5
105	Bioengineering Methods for Analysis of Cells In Vitro. Annual Review of Cell and Developmental Biology, 2012, 28, 385-410.	4.0	38
106	Force probing of individual molecules inside the living cell is now a reality. Nature Chemical Biology, 2012, 8, 879-886.	3.9	66
107	A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Current Opinion in Chemical Biology, 2012, 16, 400-408.	2.8	62
108	Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor. Scientific Reports, 2012, 2, 698.	1.6	46
109	Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nature Communications, 2012, 3, 866.	5.8	124
110	Force-Induced Selective Dissociation of Noncovalent Antibody–Antigen Bonds. Journal of Physical Chemistry B, 2012, 116, 9944-9948.	1.2	22

#	Article	IF	CITATIONS
111	Mechanotransduction and focal adhesions. Cell Biology International, 2012, 36, 649-652.	1.4	63
112	Phosphorylation Primes Vinculin for Activation. Biophysical Journal, 2012, 102, 2022-2030.	0.2	39
113	Conformational Analysis of a Genetically Encoded FRET Biosensor byÂSAXS. Biophysical Journal, 2012, 102, 2866-2875.	0.2	19
114	Single-Molecule Analysis of SSB Dynamics on Single-Stranded DNA. Methods in Molecular Biology, 2012, 922, 85-100.	0.4	9
115	Cellular and Molecular Bioengineering: A Tipping Point. Cellular and Molecular Bioengineering, 2012, 5, 239-253.	1.0	3
116	Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nature Methods, 2012, 9, 64-67.	9.0	195
117	E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12568-12573.	3.3	512
118	Uniaxial cell stretcher enables high resolution live cell imaging. , 2012, , .		1
119	United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. Journal of Cell Science, 2012, 125, 3051-60.	1.2	278
120	Paxillin and Hic-5 Interaction with Vinculin Is Differentially Regulated by Rac1 and RhoA. PLoS ONE, 2012, 7, e37990.	1.1	54
121	GFP's Mechanical Intermediate States. PLoS ONE, 2012, 7, e46962.	1.1	25
122	Rap1 Can Bypass the FAK-Src-Paxillin Cascade to Induce Cell Spreading and Focal Adhesion Formation. PLoS ONE, 2012, 7, e50072.	1.1	15
123	A Synthetic, Xeno-Free Peptide Surface for Expansion and Directed Differentiation of Human Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e50880.	1.1	79
124	Mechanical Force Links Development, Death, Hierarchy, and Biophysics. Seibutsu Butsuri, 2012, 52, 106-107.	0.0	0
125	Nonpolarized signaling reveals two distinct modes of 3D cell migration. Journal of Cell Biology, 2012, 197, 439-455.	2.3	325
126	Finding the weakest link – exploring integrin-mediated mechanical molecular pathways. Journal of Cell Science, 2012, 125, 3025-38.	1.2	215
127	Molecular force transduction by ion channels – diversity and unifying principles. Journal of Cell Science, 2012, 125, 3075-83.	1.2	168
128	Quantitative Imaging with Fluorescent Biosensors. Annual Review of Plant Biology, 2012, 63, 663-706.	8.6	203

#	ARTICLE	IF	CITATIONS
129	Mechanical Stress Acts via Katanin to Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis. Cell, 2012, 149, 439-451.	13.5	418
130	Computational models for mechanics of morphogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 132-152.	3.6	81
131	Engineering strain-sensitive yellow fluorescent protein. Chemical Communications, 2012, 48, 7871.	2.2	17
132	Sculpting Organs: Mechanical Regulation of Tissue Development. Annual Review of Biomedical Engineering, 2012, 14, 129-154.	5.7	109
133	Single-Molecule Mechanoenzymatics. Annual Review of Biophysics, 2012, 41, 497-518.	4.5	63
134	Structure and function of focal adhesions. Current Opinion in Cell Biology, 2012, 24, 116-124.	2.6	187
135	Cell adhesion in embryo morphogenesis. Current Opinion in Cell Biology, 2012, 24, 148-153.	2.6	37
136	The structure of cell–matrix adhesions: the new frontier. Current Opinion in Cell Biology, 2012, 24, 134-140.	2.6	43
137	PTK7 Regulates Myosin II Activity to Orient Planar Polarity in the Mammalian Auditory Epithelium. Current Biology, 2012, 22, 956-966.	1.8	58
138	Chronic nerve compression alters schwann cell myelin architecture in a murine model. Muscle and Nerve, 2012, 45, 231-241.	1.0	50
139	Mechanical Control of Nanomaterials and Nanosystems. Advanced Materials, 2012, 24, 158-176.	11.1	389
140	Mechano-sensing in Embryonic Biochemical and Morphologic Patterning: Evolutionary Perspectives in the Emergence of Primary Organisms. Biological Theory, 2013, 8, 232-244.	0.8	3
141	Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013, 14, 581-591.	16.1	117
142	Guiding cell migration by tugging. Current Opinion in Cell Biology, 2013, 25, 619-626.	2.6	132
143	Bioactive Chemical Nanopatterns Impact Human Mesenchymal Stem Cell Fate. Nano Letters, 2013, 13, 3923-3929.	4.5	31
144	Using FRET to analyse signals controlling cell adhesion and migration. Journal of Microscopy, 2013, 251, 270-278.	0.8	7
145	In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells, 2013, 31, 2467-2477.	1.4	100
146	Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 2013, 14, 467-473.	16.1	732

#	Article	IF	CITATIONS
147	The mechanical control of nervous system development. Development (Cambridge), 2013, 140, 3069-3077.	1.2	199
148	The role of engineering approaches in analysing cancer invasion and metastasis. Nature Reviews Cancer, 2013, 13, 596-603.	12.8	53
149	Vinculin Regulates the Recruitment and Release of Core Focal Adhesion Proteins in a Force-Dependent Manner. Current Biology, 2013, 23, 271-281.	1.8	310
150	Vinculin tension distributions of individual stress fibers within cell-matrix adhesions. Journal of Cell Science, 2013, 126, 3021-30.	1.2	57
152	Vinculin and metavinculin: Oligomerization and interactions with Fâ€actin. FEBS Letters, 2013, 587, 1220-1229.	1.3	31
153	Label-free detection of cell-contractile activity with lipid nanotubes. Integrative Biology (United) Tj ETQq1 1 0.784	4314 rgBT 0.6	/Qverlock 1
154	Molecular mechanisms of cellular mechanosensing. Nature Materials, 2013, 12, 1064-1071.	13.3	231
155	Sharing the force. Nature Materials, 2013, 12, 948-949.	13.3	17
156	Molecular Biology of Atherosclerosis. Physiological Reviews, 2013, 93, 1317-1542.	13.1	418
157	Imaging Morphogenesis: Technological Advances and Biological Insights. Science, 2013, 340, 1234168.	6.0	168
158	Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions. European Journal of Cell Biology, 2013, 92, 339-348.	1.6	114
159	Mechanosensitive systems at the cadherin–F-actin interface. Journal of Cell Science, 2013, 126, 403-413.	1.2	194
160	Spectroscopy of hydroxyphenyl benzazoles in solution and human serum albumin: detecting flexibility, specificity and high affinity of the warfarin drug binding site. RSC Advances, 2013, 3, 8747.	1.7	34
161	How vinculin regulates force transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9788-9793.	3.3	209
162	Vinculin Arrests Motile B Cells by Stabilizing Integrin Clustering at the Immune Synapse. Journal of Immunology, 2013, 191, 2742-2751.	0.4	38
163	Integrins in mechanotransduction. Current Opinion in Cell Biology, 2013, 25, 613-618.	2.6	270
164	Plasma Membrane-Cortical Cytoskeleton Interactions: A Cell Biology Approach with Biophysical Considerations., 2013, 3, 1231-81.		52
165	Signaling and Mechanical Roles of E-cadherin. Cell Communication and Adhesion, 2013, 20, 189-199.	1.0	50

#	ARTICLE	IF	Citations
166	Interrogating Biology with Force: Single Molecule High-Resolution Measurements with Optical Tweezers. Biophysical Journal, 2013, 105, 1293-1303.	0.2	123
167	Let's push things forward: disruptive technologies and the mechanics of tissue assembly. Integrative Biology (United Kingdom), 2013, 5, 1162.	0.6	13
168	Cytosystems dynamics in self-organization of tissue architecture. Nature, 2013, 493, 318-326.	13.7	386
169	Cbl-associated protein regulates assembly and function of two tension-sensing structures in <i>Drosophila</i> . Development (Cambridge), 2013, 140, 627-638.	1.2	31
170	Use the force: membrane tension as an organizer of cell shape and motility. Trends in Cell Biology, 2013, 23, 47-53.	3.6	485
171	Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nature Protocols, 2013, 8, 265-281.	5.5	122
172	Studying genomic processes at the single-molecule level: introducing the tools and applications. Nature Reviews Genetics, 2013, 14, 9-22.	7.7	83
173	The scanning ion conductance microscope for cellular physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1-H11.	1.5	42
174	Three Functions of Cadherins in Cell Adhesion. Current Biology, 2013, 23, R626-R633.	1.8	217
175	Defining Single Molecular Forces Required to Activate Integrin and Notch Signaling. Science, 2013, 340, 991-994.	6.0	448
176	cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: Effects of PKA and EPAC. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2664-2672.	1.9	44
177	Optogenetic reporters. Biology of the Cell, 2013, 105, 14-29.	0.7	39
178	Stability and Dynamics of Cell–Cell Junctions. Progress in Molecular Biology and Translational Science, 2013, 116, 25-47.	0.9	53
179	The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials. Annual Review of Materials Research, 2013, 43, 589-618.	4.3	106
180	Mechanotransduction: Vinculin Provides Stability when Tension Rises. Current Biology, 2013, 23, R159-R161.	1.8	23
181	Smaller, Faster, Brighter: Advances in Optical Imaging of Living Plant Cells. Annual Review of Plant Biology, 2013, 64, 351-375.	8.6	47
182	Dynamic Regulation of the Structure and Functions of Integrin Adhesions. Developmental Cell, 2013, 24, 447-458.	3.1	224
183	Tension Sensing Nanoparticles for Mechano-Imaging at the Living/Nonliving Interface. Journal of the American Chemical Society, 2013, 135, 5320-5323.	6.6	118

#	Article	IF	CITATIONS
184	Motivated Action: New Light on Prefrontal-Neuromodulatory Circuits. Current Biology, 2013, 23, R161-R163.	1.8	5
185	Post-degradation forces kick in. Nature Materials, 2013, 12, 384-386.	13.3	16
186	Cadherin mechanotransduction in tissue remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4101-4116.	2.4	46
187	Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. Journal of Cellular and Molecular Medicine, 2013, 17, 704-712.	1.6	109
188	Quantifying Cellular Dynamics by Fluorescence Resonance Energy Transfer (FRET) Microscopy. Current Protocols in Neuroscience, 2013, 63, Unit5.22.	2.6	4
189	Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Reports, 2013, 14, 509-519.	2.0	238
190	Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1. Current Biology, 2013, 23, 1024-1030.	1.8	431
191	Forces in Tissue Morphogenesis and Patterning. Cell, 2013, 153, 948-962.	13.5	956
192	Weak adhesion at the mesoscale: particles at an interface. Soft Matter, 2013, 9, 6618.	1.2	18
193	Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics. Physical Biology, 2013, 10, 066003.	0.8	30
194	Matrix mechanics and regulation of the fibroblast phenotype. Periodontology 2000, 2013, 63, 14-28.	6.3	67
195	Vinculin, cell mechanics and tumour cell invasion. Cell Biology International, 2013, 37, 397-405.	1.4	79
196	Molecular Tension Sensors Report Forces Generated by Single Integrin Molecules in Living Cells. Nano Letters, 2013, 13, 3985-3989.	4.5	192
197	Modular Multifunctional Poly(ethylene glycol) Hydrogels for Stem Cell Differentiation. Advanced Functional Materials, 2013, 23, 575-582.	7.8	50
198	<i>Drosophila</i> integrin adhesion complexes are essential for hemocyte migration in vivo. Biology Open, 2013, 2, 795-801.	0.6	39
199	Recruitment, Assembly, and Molecular Architecture of the SpollIE DNA Pump Revealed by Superresolution Microscopy. PLoS Biology, 2013, 11, e1001557.	2.6	71
200	FilGAP and its close relatives: a mediator of Rho–Rac antagonism that regulates cell morphology and migration. Biochemical Journal, 2013, 453, 17-25.	1.7	77
201	Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R647-R657.	0.9	30

#	Article	IF	CITATIONS
202	A complex containing LPP and \hat{l}_{\pm} -Actinin mediates TGF \hat{l}^{2} -induced migration and invasion of ErbB2-expressing breast cancer cells. Journal of Cell Science, 2013, 126, 1981-91.	1.2	37
203	Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications, 2013, 4, 1412.	5.8	117
204	Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Molecular Biology of the Cell, 2013, 24, 3945-3955.	0.9	27
205	Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. Journal of Cell Biology, 2013, 202, 163-177.	2.3	230
206	Flow-dependent cellular mechanotransduction in atherosclerosis. Journal of Cell Science, 2013, 126, 5101-9.	1.2	67
207	Actin in Action: Imaging Approaches to Study Cytoskeleton Structure and Function. Cells, 2013, 2, 715-731.	1.8	29
208	Cellular control of connective tissue matrix tension. Journal of Cellular Biochemistry, 2013, 114, 1714-1719.	1.2	43
209	Mechanotransduction at focal adhesions: from physiology to cancer development. Journal of Cellular and Molecular Medicine, 2013, 17, 597-604.	1.6	58
210	Migration speed and directionality switch of normal epithelial cells after TGF- \hat{l}^21 -induced EMT (tEMT) on micro-structured polydimethylsiloxane (PDMS) substrates with variations in stiffness and topographic patterning. Cell Communication and Adhesion, 2013, 20, 115-126.	1.0	19
211	Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. Advances in Wound Care, 2013, 2, 122-141.	2.6	186
212	Vinculin regulation of F-actin bundle formation. Cell Adhesion and Migration, 2013, 7, 219-225.	1.1	28
213	Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19372-19377.	3.3	155
214	Stiffened lipid platforms at molecular force foci. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4886-4892.	3.3	87
215	Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 881-886.	3.3	239
216	Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nature Communications, 2013, 4, 2821.	5.8	160
217	<i>Physiology</i> 's Impact: Applying Mathematics and Advanced Technologies. Physiology, 2013, 28, 363-365.	1.6	0
218	Glycine Insertion Makes Yellow Fluorescent Protein Sensitive to Hydrostatic Pressure. PLoS ONE, 2013, 8, e73212.	1.1	22
219	Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies. Molecules, 2014, 19, 19407-19434.	1.7	19

#	ARTICLE	IF	CITATIONS
220	Maturation of Filopodia Shaft Adhesions Is Upregulated by Local Cycles of Lamellipodia Advancements and Retractions. PLoS ONE, 2014, 9, e107097.	1.1	24
221	Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. ELife, 2014, 3, e01741.	2.8	203
222	The Cellular Mastermind(?)â€"Mechanotransduction and the Nucleus. Progress in Molecular Biology and Translational Science, 2014, 126, 157-203.	0.9	30
223	Shear-induced force transmission in a multicomponent, multicell model of the endothelium. Journal of the Royal Society Interface, 2014, 11, 20140431.	1.5	24
224	Fluorescence lifetime plate reader: Resolution and precision meet high-throughput. Review of Scientific Instruments, 2014, 85, 113101.	0.6	38
225	Focal Adhesions Function as a Mechanosensor. Progress in Molecular Biology and Translational Science, 2014, 126, 55-73.	0.9	37
226	Force Engages Vinculin and Promotes Tumor Progression by Enhancing PI3K Activation of Phosphatidylinositol (3,4,5)-Triphosphate. Cancer Research, 2014, 74, 4597-4611.	0.4	168
227	Tiny tools to measure force. Nature Methods, 2014, 11, 29-29.	9.0	1
228	Mechanosensitive channels: feeling tension in a world under pressure. Frontiers in Plant Science, 2014, 5, 558.	1.7	89
229	Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry. Frontiers in Physiology, 2014, 5, 297.	1.3	35
230	Mechano-Transduction: From Molecules to Tissues. PLoS Biology, 2014, 12, e1001996.	2.6	72
231	Yielding Elastic Tethers Stabilize Robust Cell Adhesion. PLoS Computational Biology, 2014, 10, e1003971.	1.5	11
232	Actin Filament Dynamics Using Microfluidics. Methods in Enzymology, 2014, 540, 3-17.	0.4	19
233	Micropatterning on Micropost Arrays. Methods in Cell Biology, 2014, 121, 61-73.	0.5	9
234	ROCKâ€2 Is Associated With Focal Adhesion Maturation During Myoblast Migration. Journal of Cellular Biochemistry, 2014, 115, 1299-1307.	1.2	27
235	Lipid binding promotes oligomerization and focal adhesion activity of vinculin. Journal of Cell Biology, 2014, 207, 643-656.	2.3	50
236	Combining single-molecule manipulation and single-molecule detection. Current Opinion in Structural Biology, 2014, 28, 142-148.	2.6	35
237	Force Transmission at Cell–Cell and Cell–Matrix Adhesions. Biochemistry, 2014, 53, 7706-7717.	1.2	50

#	Article	IF	CITATIONS
238	Actin stress in cell reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5252-61.	3.3	85
239	Topography Design Concept of a Tissue Engineering Scaffold for Controlling Cell Function and Fate Through Actin Cytoskeletal Modulation. Tissue Engineering - Part B: Reviews, 2014, 20, 609-627.	2.5	63
240	Mechanical control of the sense of touch by \hat{l}^2 -spectrin. Nature Cell Biology, 2014, 16, 224-233.	4.6	173
241	Force is a signal that cells cannot ignore. Molecular Biology of the Cell, 2014, 25, 3717-3725.	0.9	77
242	Documentation and localization of force-mediated filamin A domain perturbations in moving cells. Nature Communications, 2014, 5, 4656.	5.8	37
243	Mechanical Force Sensing in Tissues. Progress in Molecular Biology and Translational Science, 2014, 126, 317-352.	0.9	86
244	Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin 43 containing gap junctions in cardiac Myocytes. Journal of Cell Science, 2014, 127, 1104-16.	1.2	57
245	Not all vinculins are created equal. Journal of Cell Biology, 2014, 205, 129-129.	2.3	O
246	Endothelial cell–cell adhesion during zebrafish vascular development. Cell Adhesion and Migration, 2014, 8, 136-145.	1.1	10
247	Mechanosensation. Progress in Molecular Biology and Translational Science, 2014, 126, 75-102.	0.9	25
248	Biomaterials Approaches in Stem Cell Mechanobiology. Progress in Molecular Biology and Translational Science, 2014, 126, 257-278.	0.9	1
249	A FAK-Cas-Rac-Lamellipodin Signaling Module Transduces Extracellular Matrix Stiffness into Mechanosensitive Cell Cycling. Science Signaling, 2014, 7, ra57.	1.6	171
250	A helping hand: How vinculin contributes to cell-matrix and cell-cell force transfer. Cell Adhesion and Migration, 2014, 8, 550-557.	1.1	9
251	Integrin-Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions. Biophysical Journal, 2014, 106, 1436-1446.	0.2	73
252	Identification of an Actin Binding Surface on Vinculin that Mediates Mechanical Cell and Focal Adhesion Properties. Structure, 2014, 22, 697-706.	1.6	49
253	Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer. Cellular and Molecular Life Sciences, 2014, 71, 479-492.	2.4	101
254	mTORC2 Regulates Mechanically Induced Cytoskeletal Reorganization and Lineage Selection in Marrow-Derived Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 2014, 29, 78-89.	3.1	134
255	Regulation of Rac translocation and activation by membrane domains and their boundaries. Journal of Cell Science, 2014, 127, 2565-76.	1.2	40

#	Article	IF	CITATIONS
256	Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chemical Society Reviews, 2014, 43, 1007-1013.	18.7	81
257	Mechanochemitry: A Molecular Biomechanics View of Mechanosensing. Annals of Biomedical Engineering, 2014, 42, 388-404.	1.3	28
258	Tuning cell–surface affinity to direct cell specific responses to patterned proteins. Biomaterials, 2014, 35, 727-736.	5.7	27
259	Molecules under pressure. Nature Nanotechnology, 2014, 9, 164-165.	15.6	25
260	Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Progress in Polymer Science, 2014, 39, 1312-1347.	11.8	57
261	Tension and Force-Resistant Attachment Are Essential for Myofibrillogenesis in Drosophila Flight Muscle. Current Biology, 2014, 24, 705-716.	1.8	114
262	Integrated Micro/Nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective. Advanced Materials, 2014, 26, 1494-1533.	11.1	121
263	Force Measurement Tools to Explore Cadherin Mechanotransduction. Cell Communication and Adhesion, 2014, 21, 193-205.	1.0	14
264	Mechanical Feedback through E-Cadherin Promotes Direction Sensing during Collective Cell Migration. Cell, 2014, 157, 1146-1159.	13.5	428
265	Materials as stem cell regulators. Nature Materials, 2014, 13, 547-557.	13.3	794
266	Fluorescence-Based Force/Tension Sensors: A Novel Tool to Visualize Mechanical Forces in Structural Proteins in Live Cells. Antioxidants and Redox Signaling, 2014, 20, 986-999.	2.5	49
267	Ground state spectroscopy of hydroxyquinolines: evidence for the formation of protonated species in water-rich dioxane–water mixtures. Physical Chemistry Chemical Physics, 2014, 16, 61-70.	1.3	7
268	Filamin A protects cells against forceâ€induced apoptosis by stabilizing talinâ€and vinculinâ€containing cell adhesions. FASEB Journal, 2014, 28, 453-463.	0.2	35
269	Quantifying cell-generated mechanical forces within living embryonic tissues. Nature Methods, 2014, 11, 183-189.	9.0	336
270	Protein conformation as a regulator of cell–matrix adhesion. Physical Chemistry Chemical Physics, 2014, 16, 6342-6357.	1.3	37
271	Appreciating force and shape — the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell Biology, 2014, 15, 825-833.	16.1	634
272	A DNA-based molecular probe for optically reporting cellular traction forces. Nature Methods, 2014, 11, 1229-1232.	9.0	171
273	Emergent mechanics of biological structures. Molecular Biology of the Cell, 2014, 25, 3461-3465.	0.9	46

#	Article	IF	CITATIONS
274	Physical influences of the extracellular environment on cell migration. Nature Reviews Molecular Cell Biology, 2014, 15, 813-824.	16.1	585
275	Actomyosin-dependent formation of the mechanosensitive talin–vinculin complex reinforces actin anchoring. Nature Communications, 2014, 5, 3095.	5.8	102
276	The Talin Dimer Structure Orientation Is Mechanically Regulated. Biophysical Journal, 2014, 107, 1802-1809.	0.2	23
277	Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced composites. Journal of Materials Chemistry A, 2014, 2, 6231.	5.2	28
278	DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications, 2014, 5, 5167.	5.8	258
279	Ultra-soft cantilevers and 3-D micro-patterned substrates for contractile bundle tension measurement in living cells. Lab on A Chip, 2014, 14, 2539-2547.	3.1	9
280	Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology, 2014, 15, 802-812.	16.1	1,492
281	Integrin-Associated Complexes Form Hierarchically with Variable Stoichiometry in Nascent Adhesions. Current Biology, 2014, 24, 1845-1853.	1.8	128
282	Protein Kinase C, Focal Adhesions and the Regulation of Cell Migration. Journal of Histochemistry and Cytochemistry, 2014, 62, 172-184.	1.3	63
283	An outlook review: Mechanochromic materials and their potential for biological and healthcare applications. Materials Science and Engineering C, 2014, 45, 682-689.	3.8	53
284	Cellular mechanosensing: Getting to the nucleus of it all. Progress in Biophysics and Molecular Biology, 2014, 115, 76-92.	1.4	156
285	Receptor protein tyrosine phosphatase RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src signaling to cortactin. Journal of Cell Science, 2014, 127, 2420-32.	1.2	27
286	Joining forces: integrating the mechanical and optical single molecule toolkits. Chemical Science, 2014, 5, 1680-1697.	3.7	18
287	Tension-Sensitive Actin Assembly Supports Contractility at the Epithelial Zonula Adherens. Current Biology, 2014, 24, 1689-1699.	1.8	171
288	Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell, 2014, 158, 822-832.	13.5	444
289	Measuring a response in blood. Nature Nanotechnology, 2014, 9, 165-167.	15.6	4
290	FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Developmental Biology, 2014, 394, 340-356.	0.9	25
291	Molecular Mechanisms Underlying the Force-Dependent Regulation of Actin-to-ECM Linkage at the Focal Adhesions. Progress in Molecular Biology and Translational Science, 2014, 126, 135-154.	0.9	41

#	Article	IF	CITATIONS
292	The Detection and Role of Molecular Tension in Focal Adhesion Dynamics. Progress in Molecular Biology and Translational Science, 2014, 126, 3-24.	0.9	19
293	A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials, 2014, 35, 5278-5293.	5.7	114
294	In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. Journal of Cell Biology, 2014, 206, 113-127.	2.3	125
295	Stressing the limits of focal adhesion mechanosensitivity. Current Opinion in Cell Biology, 2014, 30, 68-73.	2.6	122
296	The Nanoscale Architecture of Force-Bearing Focal Adhesions. Nano Letters, 2014, 14, 4257-4262.	4.5	65
297	Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth. Experimental Cell Research, 2014, 327, 57-67.	1.2	40
298	SRF Phosphorylation by Glycogen Synthase Kinase-3 Promotes Axon Growth in Hippocampal Neurons. Journal of Neuroscience, 2014, 34, 4027-4042.	1.7	38
299	Vinculin E29R mutation changes cellular mechanics. Biochemical and Biophysical Research Communications, 2014, 452, 661-664.	1.0	3
300	Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnology Journal, 2014, 9, 203-212.	1.8	21
301	Phosphorylation at Y1065 in Vinculin Mediates Actin Bundling, Cell Spreading, and Mechanical Responses to Force. Biochemistry, 2014, 53, 5526-5536.	1.2	19
302	Mechanotransduction in C. elegans Morphogenesis and Tissue Function. Progress in Molecular Biology and Translational Science, 2014, 126, 281-316.	0.9	7
303	Integrin Cytoplasmic Tail Interactions. Biochemistry, 2014, 53, 810-820.	1.2	119
304	The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 2014, 511, 319-325.	13.7	610
305	The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechanotransduction. Nano Letters, 2014, 14, 3945-3952.	4.5	87
306	Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions. Journal of Cell Biology, 2014, 205, 251-263.	2.3	135
307	Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. American Journal of Physiology - Cell Physiology, 2014, 306, C607-C620.	2.1	77
308	Interaction of the vinculin proline-rich linker region with vinexin \hat{l}_{\pm} in sensing extracellular matrix stiffness. Journal of Cell Science, 2014, 127, 1875-86.	1.2	40
309	Mechanotransduction of fluid stresses governs 3D cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2447-2452.	3.3	214

#	Article	IF	CITATIONS
310	Deconstructing Signaling in Three Dimensions. Biochemistry, 2014, 53, 2078-2090.	1.2	60
311	Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms. Biophysical Journal, 2014, 106, 2096-2104.	0.2	25
312	Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation. Biomechanics and Modeling in Mechanobiology, 2014, 13, 27-39.	1.4	45
313	Motility of select ovarian cancer cell lines: Effect of extracellular matrix proteins and the involvement of PAK2. International Journal of Oncology, 2014, 45, 1401-1411.	1.4	28
314	Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsystems and Nanoengineering, 2015, 1 , .	3.4	66
315	Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Scientific Reports, 2014, 4, 4610.	1.6	296
316	Electron microscopy and three-dimensional single-particle analysis as tools for understanding the structural basis of mechanobiology. , 0, , 15-31.		0
317	Natural and Synthetic Materials for Selfâ€Renewal, Longâ€Term Maintenance, and Differentiation of Induced Pluripotent Stem Cells. Advanced Healthcare Materials, 2015, 4, 2342-2359.	3.9	20
318	Forces, fluctuations, and self-organization in the nucleus. Molecular Biology of the Cell, 2015, 26, 3915-3919.	0.9	8
319	Relationship of and cross-talk between physical and biologic properties of the glomerulus. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	1.0	7
320	Current perspectives on cadherin-cytoskeleton interactions and dynamics. Cell Health and Cytoskeleton, 0 , , 11 .	0.7	7
321	Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators of Inflammation, 2015, 2015, 1-24.	1.4	53
322	Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences. Sensors, 2015, 15, 26281-26314.	2.1	152
323	Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Frontiers in Cellular and Infection Microbiology, 2015, 5, 88.	1.8	29
324	On the Teneurin track: a new synaptic organization molecule emerges. Frontiers in Cellular Neuroscience, 2015, 9, 204.	1.8	62
325	Microtechnologies for studying the role of mechanics in axon growth and guidance. Frontiers in Cellular Neuroscience, 2015, 9, 282.	1.8	25
326	Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions. BioMed Research International, 2015, 2015, 1-13.	0.9	10
327	Molecular mechanisms of cellular mechanotransduction in wound healing. , 0, , 266-294.		O

#	Article	IF	CITATIONS
328	Mechanical Sensing of Living Systems — From Statics to Dynamics. , 0, , .		0
329	Basement Membranes in the Worm. Current Topics in Membranes, 2015, 76, 337-371.	0.5	27
330	Computational image analysis techniques for cell mechanobiology., 0,, 148-168.		0
331	ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. Journal of Cell Biology, 2015, 208, 821-838.	2.3	411
332	A biomechanical perspective on stress fiber structure and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3065-3074.	1.9	85
333	Spatial distribution of cell–cell and cell–ECM adhesions regulates force balance while mainÂŧaining E-cadherin molecular tension in cell pairs. Molecular Biology of the Cell, 2015, 26, 2456-2465.	0.9	77
334	Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. Journal of Cardiovascular Translational Research, 2015, 8, 293-318.	1.1	31
335	Mechanokinetics of receptor–ligand interactions in cell adhesion. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 248-258.	1.5	15
336	Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. Journal of Cell Biology, 2015, 209, 759-774.	2.3	47
337	Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3095-3104.	1.9	150
338	Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. Developmental Cell, 2015, 33, 729-736.	3.1	288
339	Tendon mechanobiology: <i>Current knowledge and future research opportunities</i> Orthopaedic Research, 2015, 33, 813-822.	1.2	117
340	A guide to mechanobiology: Where biology and physics meet. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3043-3052.	1.9	248
341	FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Molecular Reproduction and Development, 2015, 82, 587-604.	1.0	50
342	Optical Determination of Silicon Nanowire Diameters for Intracellular Applications. Journal of Physical Chemistry C, 2015, 119, 29105-29115.	1.5	8
343	Morphomechanics of Development. , 2015, , .		27
344	Computational models of the primary cilium and endothelial mechanotransmission. Biomechanics and Modeling in Mechanobiology, 2015, 14, 665-678.	1.4	14
345	Tissue mechanics and adhesion during embryo development. Developmental Biology, 2015, 401, 152-164.	0.9	56

#	Article	IF	Citations
346	Measurement Systems for Cell Adhesive Forces. Journal of Biomechanical Engineering, 2015, 137, 020908.	0.6	27
347	Fluid shear, intercellular stress, and endothelial cell alignment. American Journal of Physiology - Cell Physiology, 2015, 308, C657-C664.	2.1	100
348	Intracellular forces during guided cell growth on micropatterns using FRET measurement. Journal of Biomechanics, 2015, 48, 627-635.	0.9	20
349	Integration of Cell–Cell Adhesion and Contractile Actomyosin Activity During Morphogenesis. Current Topics in Developmental Biology, 2015, 112, 103-127.	1.0	45
350	Allosteric Regulation of Focal Adhesion Kinase by PIP2 and ATP. Biophysical Journal, 2015, 108, 698-705.	0.2	32
351	Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?. Reports on Progress in Physics, 2015, 78, 024101.	8.1	10
352	Molecular Force Spectroscopy on Cells. Annual Review of Physical Chemistry, 2015, 66, 427-451.	4.8	57
353	Mechanobiology of Collective Cell Migration. Cellular and Molecular Bioengineering, 2015, 8, 3-13.	1.0	8
354	Tug of warâ€"The influence of opposing physical forces on epithelial cell morphology. Developmental Biology, 2015, 401, 92-102.	0.9	64
355	Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods in Cell Biology, 2015, 125, 161-186.	0.5	46
356	Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab on A Chip, 2015, 15, 1205-1212.	3.1	55
357	Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nature Communications, 2015, 6, 6297.	5.8	67
358	A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology, 2015, 17, 276-287.	4.6	314
359	How to Measure Molecular Forces in Cells: A Guide to Evaluating Genetically-Encoded FRET-Based Tension Sensors. Cellular and Molecular Bioengineering, 2015, 8, 96-105.	1.0	103
360	Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: Implications for cell migration. Cell Adhesion and Migration, 2015, 9, 335-339.	1.1	48
361	Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission. Journal of Cell Science, 2015, 128, 3435-43.	1.2	48
362	A developmental biologist's "outside-the-cell―thinking. Journal of Cell Biology, 2015, 210, 369-372.	2.3	13
363	Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. FASEB Journal, 2015, 29, 4555-4567.	0.2	90

#	Article	IF	CITATIONS
364	Signaling Networks that Regulate Cell Migration. Cold Spring Harbor Perspectives in Biology, 2015, 7, a005959.	2.3	256
365	Cytological and Subcellular Response of Cells Exposed to the Type-1 RIP Curcin and its Hemocompatibility Analysis. Scientific Reports, 2014, 4, .	1.6	7
366	Single molecular force across single integrins dictates cell spreading. Integrative Biology (United) Tj ETQq0 0 0 rg	gBT/Overl 0.6	ock 10 Tf 50 6
367	Regulation of integrin-mediated adhesions. Current Opinion in Cell Biology, 2015, 36, 41-47.	2.6	168
368	Running with neighbors: coordinating cell migration and cell–cell adhesion. Current Opinion in Cell Biology, 2015, 36, 62-70.	2.6	118
369	Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin. Cellular and Molecular Bioengineering, 2015, 8, 364-382.	1.0	39
370	Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes. Molecular and Cellular Biology, 2015, 35, 2570-2582.	1.1	77
371	Vinculin network–mediated cytoskeletal remodeling regulates contractile function in the aging heart. Science Translational Medicine, 2015, 7, 292ra99.	5.8	81
372	Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells. Biophysical Journal, 2015, 108, 2783-2793.	0.2	242
373	Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nature Cell Biology, 2015, 17, 955-963.	4.6	421
374	A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nature Communications, 2015, 6, 7524.	5.8	34
375	Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles. PLoS Computational Biology, 2015, 11, e1004076.	1.5	87
376	The (dys)functional extracellular matrix. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3153-3164.	1.9	72
377	Force-induced remodelling of proteins and their complexes. Current Opinion in Structural Biology, 2015, 30, 89-99.	2.6	42
378	Generation of biocompatible droplets for in vivo and in vitro measurement of cell-generated mechanical stresses. Methods in Cell Biology, 2015, 125, 373-390.	0.5	13
379	Rho-guanine nucleotide exchange factors involved in cyclic stretch-induced reorientation of vascular endothelial cells. Journal of Cell Science, 2015, 128, 1683-95.	1.2	86
380	Regulation of tissue morphodynamics: an important role for actomyosin contractility. Current Opinion in Genetics and Development, 2015, 32, 80-85.	1.5	21
381	Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions. Journal of Cell Biology, 2015, 209, 403-418.	2.3	60

#	Article	IF	CITATIONS
382	Epithelial Morphogenesis. Current Topics in Developmental Biology, 2015, 111, 375-399.	1.0	22
383	Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 2015, 128, 1865-1875.	1.2	108
384	Mechanical induction of the tumorigenic \hat{l}^2 -catenin pathway by tumour growth pressure. Nature, 2015, 523, 92-95.	13.7	288
385	Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1889-1904.	1.9	42
386	Nuclear mechanotransduction: Forcing the nucleus to respond. Nucleus, 2015, 6, 19-22.	0.6	60
387	Emerging properties of adhesion complexes: what are they and what do they do?. Trends in Cell Biology, 2015, 25, 388-397.	3.6	101
388	Visualizing the Interior Architecture of Focal Adhesions with High-Resolution Traction Maps. Nano Letters, 2015, 15, 2220-2228.	4.5	86
389	Early T Cell Activation: Integrating Biochemical, Structural, and Biophysical Cues. Annual Review of Immunology, 2015, 33, 539-561.	9.5	125
390	Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annual Review of Cell and Developmental Biology, 2015, 31, 373-397.	4.0	58
391	Molecular-Scale Tools for Studying Mechanotransduction. Annual Review of Biomedical Engineering, 2015, 17, 287-316.	5.7	24
392	Towards a Dynamic Understanding of Cadherin-Based Mechanobiology. Trends in Cell Biology, 2015, 25, 803-814.	3.6	112
393	Mechanotransduction: use the force(s). BMC Biology, 2015, 13, 47.	1.7	183
394	Gap geometry dictates epithelial closure efficiency. Nature Communications, 2015, 6, 7683.	5.8	118
395	The conformational states of talin autoinhibition complex and its activation under forces. Science China Life Sciences, 2015, 58, 694-703.	2.3	1
396	Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces. Developmental Cell, 2015, 34, 421-434.	3.1	236
397	Talin determines the nanoscale architecture of focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4864-73.	3.3	150
398	Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics. Nano Letters, 2015, 15, 5492-5498.	4.5	43
399	Towards understanding the roles of position and geometry on cell fate decisions during preimplantation development. Seminars in Cell and Developmental Biology, 2015, 47-48, 74-79.	2.3	20

#	Article	IF	CITATIONS
400	Measuring Cell Mechanics. Colloquium Series on Quantitative Cell Biology, 2015, 2, 1-75.	0.5	3
401	Integrin Molecular Tension within Motile Focal Adhesions. Biophysical Journal, 2015, 109, 2259-2267.	0.2	72
402	A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size. Biophysical Journal, 2015, 109, 1807-1817.	0.2	49
403	Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nature Cell Biology, 2015, 17, 1597-1606.	4.6	278
404	Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nature Communications, 2015, 6, 8720.	5.8	374
405	Quantitative methods for analyzing cell–cell adhesion in development. Developmental Biology, 2015, 401, 165-174.	0.9	55
406	Cell Adhesion and Movement., 2015,, 61-72.		1
407	Do mechanical forces contribute to nanoscale membrane organisation in T cells?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 822-829.	1.9	10
408	Non-channel mechanosensors working at focal adhesion-stress fiber complex. Pflugers Archiv European Journal of Physiology, 2015, 467, 141-155.	1.3	14
409	The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Archiv European Journal of Physiology, 2015, 467, 27-37.	1.3	155
410	Fluorescent Cell Imaging in Regenerative Medicine. Biomedical Engineering and Computational Biology, 2016, 7s1, BECB.S39045.	0.8	3
411	Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Frontiers in Immunology, 2016, 7, 68.	2.2	114
412	Under Pressure: Mechanical Stress Management in the Nucleus. Cells, 2016, 5, 27.	1.8	50
413	Measurement of Mechanical Tension at cell-cell junctions using two-photon laser ablation. Bio-protocol, 2016, 6, .	0.2	58
414	Invadosomes ndash shaping actin networks to follow mechanical cues. Frontiers in Bioscience - Landmark, 2016, 21, 1092-1117.	3.0	15
415	All Subdomains of the Talin Rod Are Mechanically Vulnerable and May Contribute To Cellular Mechanosensing. ACS Nano, 2016, 10, 6648-6658.	7. 3	61
416	Observations of intracellular tension dynamics of MC3T3-E1 cells during substrate adhesion using a FRET-based actinin tension sensor. Journal of Biomechanical Science and Engineering, 2016, 11, 16-00504-16-00504.	0.1	3
417	Wide and high resolution tension measurement using FRET in embryo. Scientific Reports, 2016, 6, 28535.	1.6	37

#	Article	IF	CITATIONS
418	Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells. Scientific Reports, 2016, 6, 21253.	1.6	46
419	Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D. Nature Communications, 2016, 7, 13873.	5.8	87
420	Mechano-adaptive sensory mechanism of α-catenin under tension. Scientific Reports, 2016, 6, 24878.	1.6	55
422	The inner workings of stress fibers â^' from contractile machinery to focal adhesions and back. Journal of Cell Science, 2016, 129, 1293-1304.	1.2	155
423	Applied stretch initiates directional invasion via the action of Rap1 GTPase as a tension sensor. Journal of Cell Science, 2017, 130, 152-163.	1.2	17
424	Inference of Internal Stress in a Cell Monolayer. Biophysical Journal, 2016, 110, 1625-1635.	0.2	62
425	Vinculin head–tail interaction defines multiple early mechanisms for cell substrate rigidity sensing. Integrative Biology (United Kingdom), 2016, 8, 693-703.	0.6	14
426	Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling. Cell Adhesion and Migration, 2016, 10, 554-567.	1.1	47
427	A toolbox to explore the mechanics of living embryonic tissues. Seminars in Cell and Developmental Biology, 2016, 55, 119-130.	2.3	112
428	Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. Journal of Cell Biology, 2016, 213, 371-383.	2.3	205
429	Measuring cell-generated forces: a guide to the available tools. Nature Methods, 2016, 13, 415-423.	9.0	380
430	Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophysical Reviews, 2016, 8, 121-138.	1.5	81
431	High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation. Integrative Biology (United Kingdom), 2016, 8, 1049-1058.	0.6	21
432	Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis. Developmental Biology, 2016, 416, 324-337.	0.9	39
433	Contact inhibition of locomotion and mechanical cross-talk between cell–cell and cell–substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Molecular Biology of the Cell, 2016, 27, 3436-3448.	0.9	21
434	Synergistic growth factor microenvironments. Chemical Communications, 2016, 52, 13327-13336.	2.2	46
435	Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Trends in Cell Biology, 2016, 26, 864-874.	3.6	63
436	Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Experimental Cell Research, 2016, 349, 85-94.	1.2	59

#	Article	IF	CITATIONS
437	Nano-mechanical single-cell sensing of cell–matrix contacts. Nanoscale, 2016, 8, 18105-18112.	2.8	7
438	New Biological Frontiers Illuminated by Molecular Sensors and Actuators. Biophysical Journal, 2016, 111, E01-E02.	0.2	1
439	Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy. Biophysical Journal, 2016, 111, 1103-1111.	0.2	37
440	Nanoscale mechanics guides cellular decision making. Integrative Biology (United Kingdom), 2016, 8, 929-935.	0.6	20
441	From actomyosin oscillations to tissueâ€level deformations. Developmental Dynamics, 2016, 245, 268-275.	0.8	42
442	Plasticity of Cell Migration In Vivo and In Silico. Annual Review of Cell and Developmental Biology, 2016, 32, 491-526.	4.0	201
443	Transcription upregulation via force-induced direct stretching of chromatin. Nature Materials, 2016, 15, 1287-1296.	13.3	458
444	Illuminating Cell Adhesion: Modern Microscopy Approaches to Study Integrin-Based Focal Adhesions. , 2016, , 119-140.		1
446	Cadherins in Mechanotransduction. , 2016, , 57-80.		0
447	Single molecule fluorescence spectroscopy for quantitative biological applications. Quantitative Biology, 2016, 4, 177-191.	0.3	4
448	Integrins outside focal adhesions transmit tensions during stable cell adhesion. Scientific Reports, 2016, 6, 36959.	1.6	29
449	Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands. Physical Review X, 2016, 6, .	2.8	7
450	Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6813-E6822.	3.3	57
451	Cell-ECM Interactions in Tumor Invasion. Advances in Experimental Medicine and Biology, 2016, 936, 73-91.	0.8	64
452	Integrin-mediated mechanotransduction. Journal of Cell Biology, 2016, 215, 445-456.	2.3	728
453	Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State. ACS Nano, 2016, 10, 10745-10752.	7.3	95
454	Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore. Nature Communications, 2016, 7, 13221.	5.8	44
455	Flexible nanopillars to regulate cell adhesion and movement. Nanotechnology, 2016, 27, 475101.	1.3	15

#	Article	IF	CITATIONS
456	The Piconewton Force Awakens: Quantifying Mechanics in Cells. Trends in Cell Biology, 2016, 26, 838-847.	3.6	60
457	The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials, $2016,1,.$	23.3	554
458	Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chemical Reviews, 2016, 116, 14137-14180.	23.0	140
459	Coordinated integrin activation by actin-dependent force during T-cell migration. Nature Communications, 2016, 7, 13119.	5.8	154
460	Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. Science, 2016, 354, 305-307.	6.0	234
461	Bioâ€Nanoâ€Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. Advanced Materials, 2016, 28, 5672-5680.	11.1	53
462	Role of vinculin in cellular mechanotransduction. Cell Biology International, 2016, 40, 241-256.	1.4	60
463	Spectroscopic Monitoring of Mechanical Forces during Protein Folding by using Molecular Force Probes. ChemPhysChem, 2016, 17, 1486-1492.	1.0	14
464	Photophysical properties of hydroxyphenyl benzazoles and their applications as fluorescent probes to study local environment in DNA, protein and lipid. Luminescence, 2016, 31, 614-625.	1.5	10
465	Regulation of Cadherin–Catenin Biology by Mechanical Force and Phosphorylation. , 2016, , 93-114.		2
466	AFM mapping of the elastic properties of brain tissue reveals kPa \hat{l}_4 m ^{\hat{a}_1} gradients of rigidity. Soft Matter, 2016, 12, 6232-6239.	1.2	55
468	Autonomous Indication of Mechanical Damage in Polymeric Coatings. Advanced Materials, 2016, 28, 2189-2194.	11.1	106
469	The Role of Stress Fibers in the Shape Determination Mechanism of Fish Keratocytes. Biophysical Journal, 2016, 110, 481-492.	0.2	17
470	Measuring forces and stresses <i>in situ</i> iin living tissues. Development (Cambridge), 2016, 143, 186-196.	1.2	163
471	Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension. Biophysical Journal, 2016, 110, 34-43.	0.2	174
472	Hemodynamics driven cardiac valve morphogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1760-1766.	1.9	53
473	Vinculin: An Unfolding Tale. Journal of Molecular Biology, 2016, 428, 1-4.	2.0	2
474	Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research, 2016, 343, 14-20.	1.2	308

#	Article	IF	CITATIONS
475	Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Molecular Biology of the Cell, 2016, 27, 500-517.	0.9	51
476	Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions. Nano Letters, 2016, 16, 341-348.	4.5	79
477	The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking. Experimental Cell Research, 2016, 343, 28-34.	1.2	19
478	Pulling together: Tissue-generated forces that drive lumen morphogenesis. Seminars in Cell and Developmental Biology, 2016, 55, 139-147.	2.3	31
479	Guidance of Axons by Local Coupling of Retrograde Flow to Point Contact Adhesions. Journal of Neuroscience, 2016, 36, 2267-2282.	1.7	49
480	Collective cell migration in development. Journal of Cell Biology, 2016, 212, 143-155.	2.3	356
481	Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. Nano Letters, 2016, 16, 2096-2102.	4.5	61
482	Mechanotransduction During Vertebrate Neurulation. Current Topics in Developmental Biology, 2016, 117, 359-376.	1.0	16
483	Experimental approaches in mechanotransduction: From molecules to pathology. Methods, 2016, 94, 1-3.	1.9	2
484	Talin: a mechanosensitive molecule in health and disease. FASEB Journal, 2016, 30, 2073-2085.	0.2	61
485	The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces. Journal of Cell Science, 2016, 129, 1093-100.	1.2	231
486	Development of a FRET-based recombinant tension sensor to visualize cell–material interactions. Journal of Materials Chemistry B, 2016, 4, 649-655.	2.9	5
487	Shaping tissues by balancing active forces and geometric constraints. Journal Physics D: Applied Physics, 2016, 49, 053001.	1.3	21
488	Mechanobiology of cell migration in the context of dynamic two-way cell–matrix interactions. Journal of Biomechanics, 2016, 49, 1355-1368.	0.9	42
489	Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Experimental Cell Research, 2016, 343, 7-13.	1.2	76
490	Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomaterialia, 2016, 30, 26-48.	4.1	152
491	Mechanosensitive components of integrin adhesions: Role of vinculin. Experimental Cell Research, 2016, 343, 21-27.	1.2	116
492	Mechanical Forces and Growth in Animal Tissues. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019232.	2.3	130

#	ARTICLE	IF	CITATIONS
493	FRET-based Molecular Tension Microscopy. Methods, 2016, 94, 33-42.	1.9	68
494	Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 2016, 343, 42-53.	1.2	340
495	The Structural Basis of Actin Organization by Vinculin and Metavinculin. Journal of Molecular Biology, 2016, 428, 10-25.	2.0	49
496	For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods, 2016, 94, 51-64.	1.9	61
497	Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods, 2016, 94, 13-18.	1.9	45
498	Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods, 2016, 94, 4-12.	1.9	27
499	Investigating piconewton forces in cells by FRET-based molecular force microscopy. Journal of Structural Biology, 2017, 197, 37-42.	1.3	52
500	<scp>YAP</scp> is essential for 3D organogenesis withstanding gravity. Development Growth and Differentiation, 2017, 59, 52-58.	0.6	6
501	Protein unfolding under isometric tension â€" what force can integrins generate, and can it unfold FNIII domains?. Current Opinion in Structural Biology, 2017, 42, 98-105.	2.6	12
502	Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chemical Reviews, 2017, 117, 4342-4375.	23.0	196
503	Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Methods in Enzymology, 2017, 582, 85-119.	0.4	66
504	Modes of invasion during tumour dissemination. Molecular Oncology, 2017, 11, 5-27.	2.1	147
505	Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes. Journal of Cell Science, 2017, 130, 989-1002.	1.2	51
506	Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins. Scientific Reports, 2017, 7, 41844.	1.6	28
507	Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochemical and Biophysical Research Communications, 2017, 484, 372-377.	1.0	6
508	Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biology, 2017, 64, 6-16.	1.5	104
509	Vinculin in cell–cell and cell–matrix adhesions. Cellular and Molecular Life Sciences, 2017, 74, 2999-3009.	2.4	314
510	A measure of molecular muscle. Nature, 2017, 544, 255-257.	13.7	26

#	ARTICLE	IF	CITATIONS
511	Tauâ€based fluorescent protein fusions to visualize microtubules. Cytoskeleton, 2017, 74, 221-232.	1.0	15
512	YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 2017, 8, 15321.	5 . 8	431
513	Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions. Nature Photonics, 2017, 11, 352-355.	15.6	31
514	The desmoplakin–intermediate filament linkage regulates cell mechanics. Molecular Biology of the Cell, 2017, 28, 3156-3164.	0.9	70
515	Supported lipid bilayer platforms to probe cell mechanobiology. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1465-1482.	1.4	70
516	Molecular force sensors to measure stress in cells. Journal Physics D: Applied Physics, 2017, 50, 233001.	1.3	14
517	Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4549-E4555.	3.3	88
518	Solid stress and elastic energy as measures of tumour mechanopathology. Nature Biomedical Engineering, 2017, 1, .	11.6	280
519	Mechanical forces during muscle development. Mechanisms of Development, 2017, 144, 92-101.	1.7	105
520	Coordinating cell movements in vivo: junctional and cytoskeletal dynamics lead the way. Current Opinion in Cell Biology, 2017, 48, 54-62.	2.6	29
521	Quantifying forces in cell biology. Nature Cell Biology, 2017, 19, 742-751.	4.6	376
522	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
523	Tension sensors reveal how the kinetochore shares its load. BioEssays, 2017, 39, 1600216.	1.2	22
524	Review of cellular mechanotransduction. Journal Physics D: Applied Physics, 2017, 50, 233002.	1.3	104
525	The fibrous cellular microenvironment, and how cells make sense of a tangled web. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5772-5774.	3.3	12
526	Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation ofÂAMPK. Nature Cell Biology, 2017, 19, 724-731.	4.6	161
527	The phospho–caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell, 2017, 28, 2190-2201.	0.9	41
528	Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis. Development Growth and Differentiation, 2017, 59, 329-339.	0.6	80

#	Article	IF	CITATIONS
529	Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Reports, 2017, 18, 2854-2867.	2.9	94
530	Nanoscale silicon for subcellular biointerfaces. Journal of Materials Chemistry B, 2017, 5, 4276-4289.	2.9	24
531	The rotation of mouse myoblast nuclei is dependent on substrate elasticity. Cytoskeleton, 2017, 74, 184-194.	1.0	6
532	Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1467-1488.	0.9	110
533	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq0 0 0 rgBT /	/Oyerlock	10 Tf 50 582
534	Recent Advances in Development of Genetically Encoded Fluorescent Sensors. Methods in Enzymology, 2017, 589, 1-49.	0.4	79
535	Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nature Protocols, 2017, 12, 783-796.	5 . 5	53
536	Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12791-12801.	4.0	18
537	Mapping cell surface adhesion by rotation tracking and adhesion footprinting. Scientific Reports, 2017, 7, 44502.	1.6	27
538	Forces directing germ-band extension in Drosophila embryos. Mechanisms of Development, 2017, 144, 11-22.	1.7	62
539	From static to animated: Measuring mechanical forces in tissues. Journal of Cell Biology, 2017, 216, 29-30.	2.3	8
540	Forces controlling organ growth and size. Mechanisms of Development, 2017, 144, 53-61.	1.7	59
541	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
542	Coordination between Intra- and Extracellular Forces Regulates Focal Adhesion Dynamics. Nano Letters, 2017, 17, 399-406.	4.5	63
543	Polarized cortical tension drives zebrafish epiboly movements. EMBO Journal, 2017, 36, 25-41.	3 . 5	28
544	Mechanical Communication at the Immunological Synapse. Trends in Cell Biology, 2017, 27, 241-254.	3.6	87
545	Receptor-mediated cell mechanosensing. Molecular Biology of the Cell, 2017, 28, 3134-3155.	0.9	168
546	The Biophysics of Cell Membranes. Springer Series in Biophysics, 2017, , .	0.4	9

#	ARTICLE	IF	CITATIONS
547	Principles of Mechanosensing at the Membrane Interface. Springer Series in Biophysics, 2017, , 85-119.	0.4	15
548	Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Journal of Cell Biology, 2017, 216, 3799-3816.	2.3	402
549	Coordination of Morphogenesis and Cell-Fate Specification in Development. Current Biology, 2017, 27, R1024-R1035.	1.8	171
550	Molecular Simulations Suggest a Force-Dependent Mechanism of Vinculin Activation. Biophysical Journal, 2017, 113, 1697-1710.	0.2	19
551	Challenging FRET-based E-Cadherin force measurements in Drosophila. Scientific Reports, 2017, 7, 13692.	1.6	38
552	Mechanosensing in the immune response. Seminars in Cell and Developmental Biology, 2017, 71, 137-145.	2.3	32
553	The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by Molecular Dynamics simulations. Scientific Reports, 2017, 7, 11669.	1.6	28
554	Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nature Methods, 2017, 14, 1090-1096.	9.0	120
555	$\hat{l}\pm 5\hat{l}^2$ 1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Molecular Biology of the Cell, 2017, 28, 2958-2977.	0.9	52
556	Spatiotemporal variation of endogenous cell-generated stresses within 3D multicellular spheroids. Scientific Reports, 2017, 7, 12022.	1.6	28
557	Nanomechanics of multidomain neuronal cell adhesion protein contactin revealed by single molecule AFM and SMD. Scientific Reports, 2017, 7, 8852.	1.6	17
558	VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Current Biology, 2017, 27, 2219-2225.e5.	1.8	53
559	Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion. Biology Open, 2017, 6, 1104-1114.	0.6	25
560	Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N. Developmental Cell, 2017, 42, 143-155.e5.	3.1	37
561	Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate. Annals of Biomedical Engineering, 2017, 45, 2475-2486.	1.3	16
562	Mechanotransduction at the cell-matrix interface. Seminars in Cell and Developmental Biology, 2017, 71, 75-83.	2.3	198
563	Nanoscale mechanobiology of cell adhesions. Seminars in Cell and Developmental Biology, 2017, 71, 53-67.	2.3	35
564	Mechanical forces in the immune system. Nature Reviews Immunology, 2017, 17, 679-690.	10.6	297

#	Article	IF	CITATIONS
565	Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos. Scientific Reports, 2017, 7, 45058.	1.6	12
566	Engineering the geometrical shape of mesenchymal stromal cells through defined cyclic stretch regimens. Scientific Reports, 2017, 7, 6640.	1.6	28
567	Stiff Substrates Increase Inflammation-Induced Endothelial Monolayer Tension and Permeability. Biophysical Journal, 2017, 113, 645-655.	0.2	41
568	Vinculin forms a directionally asymmetric catch bond with F-actin. Science, 2017, 357, 703-706.	6.0	221
569	Analyzing Cell Surface Adhesion Remodeling in Response to Mechanical Tension Using Magnetic Beads. Journal of Visualized Experiments, 2017, , .	0.2	2
570	Focal adhesions: a personal perspective on a half century of progress. FEBS Journal, 2017, 284, 3355-3361.	2.2	184
571	Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue. Journal of Cell Science, 2018, 131, .	1.2	37
572	Understanding the extracellular forces that determine cell fate and maintenance. Development (Cambridge), 2017, 144, 4261-4270.	1.2	147
573	Instant integrin mechanosensing. Nature Materials, 2017, 16, 1173-1174.	13.3	17
574	Making way for neural stemness. Nature Materials, 2017, 16, 1174-1176.	13.3	2
575	Designer biomaterials for mechanobiology. Nature Materials, 2017, 16, 1164-1168.	13.3	144
576	SensorFRET: A Standardless Approach to Measuring Pixel-based Spectral Bleed-through and FRET Efficiency using Spectral Imaging. Scientific Reports, 2017, 7, 15609.	1.6	15
577	Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. Nature Communications, 2017, 8, 1383.	5.8	70
578	Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications, 2017, 8, 1402.	5.8	73
579	Adding a Piece to the Leaf Epidermal Cell Shape Puzzle. Developmental Cell, 2017, 43, 255-256.	3.1	5
580	Fibronectin-bound $\hat{l}\pm 5\hat{l}^21$ integrins sense load and signal to reinforce adhesion in less than a second. Nature Materials, 2017, 16, 1262-1270.	13.3	109
581	Structural components of nuclear integrity with gene regulatory potential. Current Opinion in Cell Biology, 2017, 48, 63-71.	2.6	3
582	Detection of an Integrin-Binding Mechanoswitch within Fibronectin during Tissue Formation and Fibrosis. ACS Nano, 2017, 11, 7110-7117.	7.3	50

#	Article	IF	CITATIONS
583	Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023234.	2.3	126
584	Single and collective cell migration: the mechanics of adhesions. Molecular Biology of the Cell, 2017, 28, 1833-1846.	0.9	287
585	Functional proteomics of cellular mechanosensing mechanisms. Seminars in Cell and Developmental Biology, 2017, 71, 118-128.	2.3	8
586	Molecular Force Sensors: From Fundamental Concepts toward Applications in Cell Biology. Advanced Materials Interfaces, 2017, 4, 1600441.	1.9	30
587	Cell–cell junctional mechanotransduction in endothelial remodeling. Cellular and Molecular Life Sciences, 2017, 74, 279-292.	2.4	137
588	Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomaterialia, 2017, 49, 575-589.	4.1	21
589	Cell shape information is transduced through tension-independent mechanisms. Nature Communications, 2017, 8, 2145.	5.8	47
590	Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics, 2017, 7, 3539-3558.	4.6	17
591	High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Optics Express, 2017, 25, 8144.	1.7	33
592	Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering, 2017, 4, 12.	1.6	34
593	In vitro interaction of polymeric biomaterials with cells. , 2017, , 285-315.		3
594	Inositol 1, 4, 5-trisphosphate-dependent nuclear calcium signals regulate angiogenesis and cell motility in triple negative breast cancer. PLoS ONE, 2017, 12, e0175041.	1.1	15
595	Vinculin association with actin cytoskeleton is necessary for stiffness-dependent regulation of vinculin behavior. PLoS ONE, 2017, 12, e0175324.	1.1	29
596	FRET-Based Biosensors: Genetically Encoded Tools to Track Kinase Activity in Living Cells. , 0, , .		7
597	Bio-Instructive Cues in Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine. , 2017, , 3-35.		6
598	Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget, 2017, 8, 48471-48487.	0.8	120
599	Emerging views of the nucleus as a cellular mechanosensor. Nature Cell Biology, 2018, 20, 373-381.	4.6	415
600	Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Current Opinion in Cell Biology, 2018, 50, 42-49.	2.6	43

#	Article	IF	CITATIONS
601	Mechanotransduction in tumor progression: The dark side of the force. Journal of Cell Biology, 2018, 217, 1571-1587.	2.3	225
602	Quantifying Local Molecular Tension Using Intercalated DNA Fluorescence. Nano Letters, 2018, 18, 2274-2281.	4.5	17
603	Talking to Cells: Semiconductor Nanomaterials at the Cellular Interface. Advanced Biology, 2018, 2, 1700242.	3.0	16
604	DNA-Based Probes for Measuring Mechanical Forces in Cell-Cell Contacts: Application to B Cell Antigen Extraction from Immune Synapses. Methods in Molecular Biology, 2018, 1707, 69-80.	0.4	2
605	Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury. Physical Biology, 2018, 15, 024001.	0.8	6
606	Control of Mechanotransduction by Molecular Clutch Dynamics. Trends in Cell Biology, 2018, 28, 356-367.	3.6	218
607	Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Biomaterials, 2018, 171, 23-33.	5.7	64
608	Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. Journal of Materials Chemistry B, 2018, 6, 2650-2676.	2.9	135
609	Vinculin Force-Sensitive Dynamics at Focal Adhesions Enable Effective Directed Cell Migration. Biophysical Journal, 2018, 114, 1680-1694.	0.2	73
610	Imaging mechanotransduction: Seeing forces from molecules to cells. Current Opinion in Biomedical Engineering, 2018, 5, 58-65.	1.8	7
611	Molecular mechanisms of mechanosensing and mechanotransduction in living cells. Extreme Mechanics Letters, 2018, 20, 91-98.	2.0	14
612	The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biology, 2018, 68-69, 81-93.	1.5	281
613	Highly parallel single-cell force cytometry. Nature Biomedical Engineering, 2018, 2, 60-61.	11.6	3
614	Integrin diversity brings specificity in mechanotransduction. Biology of the Cell, 2018, 110, 49-64.	0.7	91
615	The Work of Titin Protein Folding as a Major Driver in Muscle Contraction. Annual Review of Physiology, 2018, 80, 327-351.	5.6	66
616	Unraveling the Mechanobiology of Extracellular Matrix. Annual Review of Physiology, 2018, 80, 353-387.	5.6	158
617	Magneto-active substrates for local mechanical stimulation of living cells. Scientific Reports, 2018, 8, 1464.	1.6	43
618	Other Modern Methods for Studying Biomembranes. , 2018, , 393-421.		0

#	Article	IF	CITATIONS
619	The "Stressful―Life of Cell Adhesion Molecules: On the Mechanosensitivity of Integrin Adhesome. Journal of Biomechanical Engineering, 2018, 140, .	0.6	9
620	Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nature Reviews Materials, 2018, 3, .	23.3	51
621	Voltage-gated and stretch-activated potassium channels in the human heart. Herzschrittmachertherapie Und Elektrophysiologie, 2018, 29, 36-42.	0.3	8
622	Force Generation via \hat{I}^2 -Cardiac Myosin, Titin, and \hat{I}_\pm -Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Developmental Cell, 2018, 44, 87-96.e5.	3.1	120
623	Src- and confinement-dependent FAK activation causes E-cadherin relaxation and \hat{l}^2 -catenin activity. Journal of Cell Biology, 2018, 217, 1063-1077.	2.3	65
624	Sticking, steering, squeezing and shearing: cell movements driven by heterotypic mechanical forces. Current Opinion in Cell Biology, 2018, 54, 57-65.	2.6	26
625	Magnetic Field Changes Macrophage Phenotype. Biophysical Journal, 2018, 114, 2001-2013.	0.2	47
626	Mechanical signaling in plant morphogenesis. Current Opinion in Genetics and Development, 2018, 51, 26-30.	1.5	18
627	Characterization of the mechanical properties of cancer cells in 3D matrices in response to collagen concentration and cytoskeletal inhibitors. Integrative Biology (United Kingdom), 2018, 10, 232-241.	0.6	29
628	Nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective forceâ€dependence. FEBS Journal, 2018, 285, 1635-1652.	2.2	12
629	Photoactivatable substrates for systematic study of the impact of an extracellular matrix ligand on appearance of leader cells in collective cell migration. Biomaterials, 2018, 169, 72-84.	5.7	14
630	Mapping the 3D orientation of piconewton integrin traction forces. Nature Methods, 2018, 15, 115-118.	9.0	105
631	Multimodal Measurements of Single-Molecule Dynamics Using FluoRBT. Biophysical Journal, 2018, 114, 278-282.	0.2	14
632	Vinculin is required to maintain glomerular barrier integrity. Kidney International, 2018, 93, 643-655.	2.6	36
633	Bacterial Mechanosensors. Annual Review of Physiology, 2018, 80, 71-93.	5.6	140
634	Mechano-adaptation of the stem cell nucleus. Nucleus, 2018, 9, 9-19.	0.6	31
635	Membrane Biophysics. , 2018, , .		0
636	The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells. Biomedical Materials (Bristol), 2018, 13, 024102.	1.7	30

#	Article	IF	CITATIONS
637	Mechanosensing and Mechanotransduction at Cell–Cell Junctions. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028761.	2.3	138
638	Development of Methods and Techniques to Visualize Mechanical Tension in Embryos Using Genetically Encoded Fluorescent Mechanosensors. Russian Journal of Developmental Biology, 2018, 49, 362-369.	0.1	2
639	Vinculin and the mechanical response of adherent fibroblasts to matrix deformation. Scientific Reports, 2018, 8, 17967.	1.6	14
640	Optimized Feed-forward Control Scheme for Vienna Rectifier with Estimated Load-Current. , 2018, , .		1
641	Biomechanics in Oncology. Advances in Experimental Medicine and Biology, 2018, , .	0.8	7
642	Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway. Nature Communications, 2018, 9, 4862.	5.8	28
643	Visualizing the â€~backbone' of focal adhesions. Emerging Topics in Life Sciences, 2018, 2, 677-680.	1.1	3
644	Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering, 2018, 2, 046107.	3.3	78
645	Mechanical loading of desmosomes depends on theÂmagnitude and orientation of external stress. Nature Communications, 2018, 9, 5284.	5.8	78
646	Advanced Methods for the Investigation of Cell Contact Dynamics in Endothelial Cells Using Florescence-Based Live Cell Imaging. Journal of Vascular Research, 2018, 55, 350-364.	0.6	5
647	Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chemical Reviews, 2018, 118, 11707-11794.	23.0	351
648	SHP-2 is activated in response to force on E-cadherin and dephosphorylates vinculin Y822. Journal of Cell Science, 2018, 131, .	1.2	4
649	Mechanotransduction mechanisms in growing spherically structured tissues. New Journal of Physics, 2018, 20, 043041.	1.2	2
650	Local Tension on Talin in Focal Adhesions Correlates with F-Actin Alignment at the NanometerÂScale. Biophysical Journal, 2018, 115, 1569-1579.	0.2	28
651	Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Communications, 2018, 9, 3995.	5.8	190
652	Mechanisms of integrin $\hat{l}\pm\hat{Vl^2}$ 5 clustering in flat clathrin lattices. Journal of Cell Science, 2018, 131, .	1.2	42
653	Thermally Responsive Microfibers Mediated Stem Cell Fate via Reversibly Dynamic Mechanical Stimulation. Advanced Functional Materials, 2018, 28, 1804773.	7.8	32
654	A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. IScience, 2018, 7, 180-190.	1.9	30

#	Article	IF	CITATIONS
655	Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level. Nature Protocols, 2018, 13, 2714-2739.	5.5	8
656	Fluid shear stress sensing in vascular homeostasis and remodeling: Towards the development of innovative pharmacological approaches to treat vascular dysfunction. Biochemical Pharmacology, 2018, 158, 185-191.	2.0	31
657	Measurement of Force-Sensitive Protein Dynamics in Living Cells Using a Combination of Fluorescent Techniques. Journal of Visualized Experiments, 2018, , .	0.2	3
658	Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. BioEssays, 2018, 40, e1800140.	1.2	18
659	FRET-based tension measurement across actin-associated mechanotransductive structures using Lima1. International Journal of Developmental Biology, 2018, 62, 631-636.	0.3	4
660	NOX4 (NADPH Oxidase 4) and Poldip2 (Polymerase Î'-Interacting Protein 2) Induce Filamentous Actin Oxidation and Promote Its Interaction With Vinculin During Integrin-Mediated Cell Adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2423-2434.	1.1	25
661	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	5.8	106
662	Endothelial Cell Dynamics during Blood Vessel Morphogenesis. , 2018, , 17-35.		1
663	Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. Current Topics in Membranes, 2018, 82, 1-31.	0.5	12
664	Ultrafast Mapping of Subcellular Domains via Nanopipette-Based Electroosmotically Modulated Delivery into a Single Living Cell. Analytical Chemistry, 2018, 90, 13744-13750.	3.2	28
665	Traction Force Microscopy for Noninvasive Imaging of Cell Forces. Advances in Experimental Medicine and Biology, 2018, 1092, 319-349.	0.8	23
666	Histamine causes endothelial barrier disruption via Ca2+-mediated RhoA activation and tension at adherens junctions. Scientific Reports, 2018, 8, 13229.	1.6	42
667	Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Frontiers in Microbiology, 2018, 9, 2219.	1.5	24
668	Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms. Acta Biomaterialia, 2018, 79, 364-374.	4.1	9
669	Sensing and transducing forces in plants with <scp>MSL</scp> 10 and <scp>DEK</scp> 1 mechanosensors. FEBS Letters, 2018, 592, 1968-1979.	1.3	28
670	STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nature Communications, 2018, 9, 2124.	5.8	45
671	Development of a Novel Orthogonal Double Gradient for Highâ€Throughput Screening of Mesenchymal Stem Cellsâ€"Materials Interaction. Advanced Materials Interfaces, 2018, 5, 1800504.	1.9	24
672	Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Current Biology, 2018, 28, 2033-2045.e5.	1.8	29

#	Article	IF	CITATIONS
673	Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM). Light: Science and Applications, $2018, 7, .$	7.7	20
674	Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. Journal of Biosciences, 2018, 43, 519-540.	0.5	11
675	Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Scientific Reports, 2018, 8, 9788.	1.6	19
676	Quantitative Biology of Endocytosis. Colloquium Series on Quantitative Cell Biology, 2018, 4, i-74.	0.5	6
677	Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biology, 2018, 16, e2005599.	2.6	62
678	The Desmosomal Cadherin Desmoglein-2 Experiences Mechanical Tension as Demonstrated by a FRET-Based Tension Biosensor Expressed in Living Cells. Cells, 2018, 7, 66.	1.8	35
679	Intermediate filaments control collective migration by restricting traction forces and sustaining cell–cell contacts. Journal of Cell Biology, 2018, 217, 3031-3044.	2.3	126
680	Cellular and Nuclear Forces: An Overview. Methods in Molecular Biology, 2018, 1805, 1-29.	0.4	6
681	Basement Membranes in Development and Disease. Current Topics in Developmental Biology, 2018, 130, 143-191.	1.0	131
682	Visualizing Spatiotemporal Dynamics of Intercellular Mechanotransmission upon Wounding. ACS Photonics, 2018, 5, 3565-3574.	3.2	7
683	Using Nesprin Tension Sensors to Measure Force on the LINC Complex. Methods in Molecular Biology, 2018, 1840, 59-71.	0.4	11
684	Mechanobiology of Tumor Growth. Chemical Reviews, 2018, 118, 6499-6515.	23.0	118
685	Investigating supramolecular systems using FÃ \P rster resonance energy transfer. Chemical Society Reviews, 2018, 47, 7027-7044.	18.7	118
686	Mechanoimmunology: molecular-scale forces govern immune cell functions. Molecular Biology of the Cell, 2018, 29, 1919-1926.	0.9	39
687	Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Developmental Cell, 2018, 45, 565-579.e3.	3.1	33
688	Molecular and biophysical analysis of apoptosis using a combined quantitative phase imaging and fluorescence resonance energy transfer microscope. Journal of Biophotonics, 2018, 11, e201800126.	1.1	13
689	HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. PLoS ONE, 2018, 13, e0193279.	1.1	14
690	Force-activatable coating enables high-resolution cellular force imaging directly on regular cell culture surfaces. Physical Biology, 2018, 15, 065002.	0.8	14

#	Article	IF	CITATIONS
691	Innate and Mucosal Immunity in the Developing Gastrointestinal Tract., 2018, , 1054-1067.e5.		3
692	Measuring mitotic forces. Methods in Cell Biology, 2018, 144, 165-184.	0.5	5
693	Adjustable viscoelasticity allows for efficient collective cell migration. Seminars in Cell and Developmental Biology, 2019, 93, 55-68.	2.3	87
694	Dynamische Kopplung bei niedriger Reynoldszahl. Angewandte Chemie, 2019, 131, 2230-2251.	1.6	2
695	Dynamic Coupling at Low Reynolds Number. Angewandte Chemie - International Edition, 2019, 58, 2208-2228.	7.2	21
696	Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials, 2019, 223, 119430.	5.7	59
697	Mechanotransduction: from the cell surface to the nucleus via RhoA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180229.	1.8	73
698	Force-Dependent Regulation of Talin–KANK1 Complex at Focal Adhesions. Nano Letters, 2019, 19, 5982-5990.	4.5	34
699	Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Communications Biology, 2019, 2, 298.	2.0	141
700	Filamin A mediates isotropic distribution of applied force across the actin network. Journal of Cell Biology, 2019, 218, 2481-2491.	2.3	31
701	Mechanoresponsive Hydrogel Particles as a Platform for Three-Dimensional Force Sensing. ACS Applied Materials & Distriction (2019), 11, 26307-26313.	4.0	19
702	Connections between the cell cycle, cell adhesion and the cytoskeleton. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180227.	1.8	102
703	Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Frontiers in Bioengineering and Biotechnology, 2019, 7, 162.	2.0	124
704	Biophysical regulation of epidermal fate and function. Advances in Stem Cells and Their Niches, 2019, 3, 1-30.	0.1	1
705	Force-Dependent Binding Constants. Biochemistry, 2019, 58, 4696-4709.	1.2	44
706	Emerging regulators of vascular smooth muscle cell migration. Journal of Muscle Research and Cell Motility, 2019, 40, 185-196.	0.9	23
707	Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180215.	1.8	61
708	DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions. Biophysical Journal, 2019, 117, 1714-1727.	0.2	9

#	Article	IF	CITATIONS
709	Biophysics of Cell-Substrate Interactions Under Shear. Frontiers in Cell and Developmental Biology, 2019, 7, 251.	1.8	27
710	Mechanotransduction in neuronal cell development and functioning. Biophysical Reviews, 2019, 11, 701-720.	1.5	87
711	Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophysical Reviews, 2019, 11, 765-782.	1.5	96
712	Emerging technologies in mechanotransduction research. Current Opinion in Chemical Biology, 2019, 53, 125-130.	2.8	19
713	Mechanosensitive transcriptional coactivators MRTFâ€A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. FASEB Journal, 2019, 33, 14022-14035.	0.2	56
714	Molecular tension sensors: moving beyond force. Current Opinion in Biomedical Engineering, 2019, 12, 83-94.	1.8	24
715	Multiscale Imaging of Metastasis in Zebrafish. Trends in Cancer, 2019, 5, 766-778.	3.8	36
716	Single Cell Durotaxis Assay for Assessing Mechanical Control of Cellular Movement and Related Signaling Events. Journal of Visualized Experiments, 2019, , .	0.2	3
717	Label-free Single-Molecule Quantification of Rapamycin-induced FKBP–FRB Dimerization for Direct Control of Cellular Mechanotransduction. Nano Letters, 2019, 19, 7514-7525.	4.5	23
718	Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS ONE, 2019, 14, e0221962.	1.1	19
719	Mechanical signaling in a pulmonary microvascular endothelial cell monolayer. Biochemical and Biophysical Research Communications, 2019, 519, 337-343.	1.0	8
720	Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Developmental Cell, 2019, 51, 62-77.e5.	3.1	35
721	Lateral Spacing of TiO2 Nanotubes Modulates Osteoblast Behavior. Materials, 2019, 12, 2956.	1.3	22
722	Mechanosensing through immunoreceptors. Nature Immunology, 2019, 20, 1269-1278.	7.0	118
723	Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Reports, 2019, 29, 1-12.	2.9	154
724	Five Piconewtons: The Difference between Osteogenic and Adipogenic Fate Choice in Human Mesenchymal Stem Cells. ACS Nano, 2019, 13, 11129-11143.	7.3	47
725	Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. Journal of Leukocyte Biology, 2019, 105, 1261-1273.	1.5	9
726	Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. Journal of Cell Science, 2019, 132, .	1.2	17

#	Article	IF	Citations
727	TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1992-1997.	3.3	60
728	Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers. Physical Review Letters, 2019, 122, 208103.	2.9	13
729	Prediction of Sub-Monomer A2 Domain Dynamics of the von Willebrand Factor by Machine Learning Algorithm and Coarse-Grained Molecular Dynamics Simulation. Scientific Reports, 2019, 9, 9037.	1.6	2
7 30	Mechanotransmission of haemodynamic forces by the endothelial glycocalyx in a full-scale arterial model. Royal Society Open Science, 2019, 6, 190607.	1.1	3
731	Integrins as biomechanical sensors ofÂthe microenvironment. Nature Reviews Molecular Cell Biology, 2019, 20, 457-473.	16.1	768
732	Dynamic Mechanicsâ€Modulated Hydrogels to Regulate the Differentiation of Stemâ€Cell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. Small, 2019, 15, e1901920.	5.2	44
733	Hydraulic control of mammalian embryo size and cell fate. Nature, 2019, 571, 112-116.	13.7	216
734	Spatiotemporally Super-Resolved Volumetric Traction Force Microscopy. Nano Letters, 2019, 19, 4427-4434.	4.5	43
736	The Fate of Osteoblast-Like MG-63 Cells on Pre-Infected Bactericidal Nanostructured Titanium Surfaces. Materials, 2019, 12, 1575.	1.3	33
737	Vinculin Force Sensor Detects Tumor-Osteocyte Interactions. Scientific Reports, 2019, 9, 5615.	1.6	24
738	Biomaterials to Mimic and Heal Connective Tissues. Advanced Materials, 2019, 31, e1806695.	11.1	131
739	Two Decades of Genetically Encoded Biosensors Based on Förster Resonance Energy Transfer. Cell Structure and Function, 2019, 44, 153-169.	0.5	37
740	Quantifying Molecular Forces with Serially Connected Force Sensors. Biophysical Journal, 2019, 116, 1282-1291.	0.2	18
741	Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies. Journal of Molecular Biology, 2019, 431, 1604-1618.	2.0	11
742	Dronpa: A Light-Switchable Fluorescent Protein for Opto-Biomechanics. Nano Letters, 2019, 19, 3176-3181.	4.5	25
743	The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease. Annual Review of Biomedical Engineering, 2019, 21, 443-468.	5.7	164
744	Genetically Encoded FRETâ€Based Tension Sensors. Current Protocols in Cell Biology, 2019, 83, e85.	2.3	19
74 5	Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch. Nature Communications, 2019, 10, 1703.	5.8	52

#	Article	IF	CITATIONS
746	T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. Frontiers in Physics, 2019, 7, .	1.0	44
747	The extracellular matrix in tumor progression and metastasis. Clinical and Experimental Metastasis, 2019, 36, 171-198.	1.7	354
748	A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biology, 2019, 17, e3000057.	2.6	65
749	The inner life of integrin adhesion sites: From single molecules to functional macromolecular complexes. Experimental Cell Research, 2019, 379, 235-244.	1.2	23
750	Signal Transduction across the Nuclear Envelope: Role of the LINC Complex in Bidirectional Signaling. Cells, 2019, 8, 124.	1.8	41
751	The role of nucleocytoplasmic transport in mechanotransduction. Experimental Cell Research, 2019, 377, 86-93.	1.2	29
752	The ABC Guide to Fluorescent Toolsets for the Development of Future Biomaterials. Frontiers in Bioengineering and Biotechnology, 2019, 7, 5.	2.0	1
7 53	Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nature Reviews Endocrinology, 2019, 15, 339-355.	4.3	140
754	Kindlin Is Mechanosensitive: Force-Induced Conformational Switch Mediates Cross-Talk among Integrins. Biophysical Journal, 2019, 116, 1011-1024.	0.2	15
755	Applications of Fluorescent Protein-Based Sensors in Bioimaging. Topics in Medicinal Chemistry, 2019, , 149-183.	0.4	3
756	Microscale Interrogation of 3D Tissue Mechanics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 412.	2.0	15
757	Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculinâ€"talin/α-catenin linkages. Science Advances, 2019, 5, eaav2720.	4.7	40
758	Vinculins interaction with talin is essential for mammary epithelial differentiation. Scientific Reports, 2019, 9, 18400.	1.6	7
7 59	Knock Down of Plakophillin 2 Dysregulates Adhesion Pathway through Upregulation of miR200b and Alters the Mechanical Properties in Cardiac Cells. Cells, 2019, 8, 1639.	1.8	18
760	Examining the Dynamics of Cellular Adhesion and Spreading of Epithelial Cells on Fibronectin During Oxidative Stress. Journal of Visualized Experiments, 2019, , .	0.2	0
761	Cyclic uniaxial mechanical stretching of cells using a LEGO® parts-based mechanical stretcher system. Journal of Cell Science, 2019, 133, .	1.2	15
762	B cell mechanosensing: A mechanistic overview. Advances in Immunology, 2019, 144, 23-63.	1.1	9
763	Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. Scientific Reports, 2019, 9, 17031.	1.6	47

#	Article	IF	CITATIONS
764	Multiscale dynamics of tight junction remodeling. Journal of Cell Science, 2019, 132, .	1.2	61
765	Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2019, 2, 145-156.	1.7	4
766	A novel FRET analysis method for tension dynamics in a single actin stress fiber: Application to MC3T3-E1 cells during movement on a substrate. Journal of Biorheology, 2019, 33, 21-26.	0.2	1
767	Putting VE-cadherin into JAIL for junction remodeling. Journal of Cell Science, 2019, 132, .	1.2	39
768	Mechanical regulation of oligodendrocyte morphology and maturation by the mechanosensor p130Cas. Journal of Neurochemistry, 2019, 150, 158-172.	2.1	3
769	Steps in Mechanotransduction Pathways that Control Cell Morphology. Annual Review of Physiology, 2019, 81, 585-605.	5.6	169
770	Cellular tension encodes local Src-dependent differential \hat{l}^2 (sub>1 and \hat{l}^2 (sub>3 integrin mobility. Molecular Biology of the Cell, 2019, 30, 181-190.	0.9	10
771	Dying under pressure: cellular characterisation and $\langle i \rangle$ in vivo $\langle i \rangle$ functions of cell death induced by compaction. Biology of the Cell, 2019, 111, 51-66.	0.7	26
772	Epithelial cells exert differential traction stress in response to substrate stiffness. Experimental Eye Research, 2019, 181, 25-37.	1.2	17
773	Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nature Communications, 2019, 10, 144.	5.8	83
774	Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomaterials Science and Engineering, 2019, 5, 3735-3752.	2.6	37
775	Atomic force microscopy-based mechanobiology. Nature Reviews Physics, 2019, 1, 41-57.	11.9	500
776	Where No Hand Has Gone Before: Probing Mechanobiology at the Cellular Level. ACS Biomaterials Science and Engineering, 2019, 5, 3703-3719.	2.6	20
777	Improving Quality, Reproducibility, and Usability of FRETâ€Based Tension Sensors. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 201-213.	1.1	39
778	Material approaches to active tissue mechanics. Nature Reviews Materials, 2019, 4, 23-44.	23.3	103
779	Cell Adhesion: Basic Principles and Computational Modeling. , 2019, , 45-58.		1
780	Imaging: Gear up for mechano-immunology. Cellular Immunology, 2020, 350, 103926.	1.4	5
781	Vinculin expression in non-small cell lung cancer. Journal of International Medical Research, 2020, 48, 030006051983952.	0.4	6

#	Article	IF	CITATIONS
782	The Role of Hypoxia in Corneal Extracellular Matrix Deposition and Cell Motility. Anatomical Record, 2020, 303, 1703-1716.	0.8	15
783	Quantifying molecular tension—classifications, interpretations and limitations of force sensors. Physical Biology, 2020, 17, 011001.	0.8	22
784	Quantification of Cell-Matrix Interaction in 3D Using Optical Tweezers. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 283-310.	0.7	2
785	Roles of Interactions Between Cells and Extracellular Matrices for Cell Migration and Matrix Remodeling. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 247-282.	0.7	1
786	Single-Molecule Analysis and Engineering of DNA Motors. Chemical Reviews, 2020, 120, 36-78.	23.0	59
787	Unleashing shear: Role of intercellular traction and cellular moments in collective cell migration. Biochemical and Biophysical Research Communications, 2020, 522, 279-285.	1.0	9
788	Enhanced Molecular Tension Sensor Based on Bioluminescence Resonance Energy Transfer (BRET). ACS Sensors, 2020, 5, 34-39.	4.0	29
789	Intracellular Force Measurements in Live Cells With Förster Resonance Energy Transfer–Based Molecular Tension Sensors. , 2020, , 161-171.		0
790	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
791	Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Reports, 2020, 32, 108071.	2.9	34
792	The Effects of Syndecan on Osteoblastic Cell Adhesion Onto Nano-Zirconia Surface International Journal of Nanomedicine, 2020, Volume 15, 5061-5072.	3.3	5
793	Tensional homeostasis at different length scales. Soft Matter, 2020, 16, 6946-6963.	1.2	21
794	The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophysical Reviews, 2020, 12, 931-946.	1.5	21
795	Focal adhesion displacement magnitude is a unifying feature of tensional homeostasis. Acta Biomaterialia, 2020, 113, 372-379.	4.1	7
796	Different Vinculin Binding Sites Use the Same Mechanism to Regulate Directional Force Transduction. Biophysical Journal, 2020, 118, 1344-1356.	0.2	21
797	Effects of Mechanical Forces on Cells and Tissues. , 2020, , 717-733.		3
798	Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 597950.	2.0	5
799	Actin flow-dependent and -independent force transmission through integrins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32413-32422.	3.3	22

#	Article	IF	CITATIONS
800	Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Reports, 2020, 32, 107924.	2.9	53
801	Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nature Cell Biology, 2020, 22, 1011-1023.	4.6	35
802	Resonance energy transfer sensitises and monitors in situ switching of LOV2-based optogenetic actuators. Nature Communications, 2020, $11,5107$.	5.8	4
803	Learning the non-equilibrium dynamics of Brownian movies. Nature Communications, 2020, 11, 5378.	5 . 8	20
804	Transcriptomic analysis reveals dynamic molecular changes in skin induced by mechanical forces secondary to tissue expansion. Scientific Reports, 2020, 10, 15991.	1.6	12
805	Infarct Collagen Topography Regulates Fibroblast Fate via p38-Yes-Associated Protein Transcriptional Enhanced Associate Domain Signals. Circulation Research, 2020, 127, 1306-1322.	2.0	40
806	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
807	A post-invasion role for Chlamydia type III effector TarP in modulating the dynamics and organization of host cell focal adhesions. Journal of Biological Chemistry, 2020, 295, 14763-14779.	1.6	9
808	Early Cell Response to Mechanical Stimuli during TBI. , 0, , .		0
809	Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains. Nature Communications, 2020, 11, 4476.	5.8	13
810	Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nature Methods, 2020, 17, 1018-1024.	9.0	85
811	Metavinculin modulates force transduction in cell adhesion sites. Nature Communications, 2020, 11, 6403.	5.8	21
812	Recent Advances in Cell Adhesive Force Microscopy. Sensors, 2020, 20, 7128.	2.1	6
813	Manipulation of Axonal Outgrowth via Exogenous Low Forces. International Journal of Molecular Sciences, 2020, 21, 8009.	1.8	7
814	Mechanosensitive Fluorescent Probes, Changing Color Like Lobsters during Cooking: Cascade Switching Variations. Bulletin of the Chemical Society of Japan, 2020, 93, 1401-1411.	2.0	16
815	Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595497.	2.0	50
816	Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. Tissue Engineering - Part B: Reviews, 2021, 27, 411-429.	2.5	5
817	Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds. Science Advances, 2020, 6, eaax0317.	4.7	65

#	Article	IF	Citations
818	Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale, 2020, 12, 12395-12404.	2.8	10
819	Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 240.	2.0	19
820	Computational models of melanoma. Theoretical Biology and Medical Modelling, 2020, 17, 8.	2.1	11
822	Syndecan-4 forces integrins to cooperate. Nature Materials, 2020, 19, 587-588.	13.3	2
823	Measuring mechanical stress in living tissues. Nature Reviews Physics, 2020, 2, 300-317.	11.9	79
824	The extracellular matrix in development. Development (Cambridge), 2020, 147, .	1.2	210
825	QuanTI-FRET: a framework for quantitative FRET measurements in living cells. Scientific Reports, 2020, 10, 6504.	1.6	21
826	Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces. ACS Chemical Biology, 2020, 15, 1731-1746.	1.6	7
827	Cell-cell junctions as sensors and transducers of mechanical forces. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183316.	1.4	92
828	Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chemical Communications, 2020, 56, 7937-7940.	2.2	32
829	Talin dissociates from RIAM and associates to vinculin sequentially in response to the actomyosin force. Nature Communications, 2020, 11, 3116.	5.8	27
830	lmaging of the immune system – towards a subcellular and molecular understanding. Journal of Cell Science, 2020, 133, .	1.2	12
831	Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomaterialia, 2020, 108, 237-249.	4.1	37
832	Yellow fluorescent protein-based label-free tension sensors for monitoring integrin tension. Chemical Communications, 2020, 56, 5556-5559.	2.2	5
833	Integrating Chemistry and Mechanics: The Forces Driving Axon Growth. Annual Review of Cell and Developmental Biology, 2020, 36, 61-83.	4.0	58
834	The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Frontiers in Physiology, 2020, 11, 684.	1.3	102
835	Osmotic Gradients in Epithelial Acini Increase Mechanical Tension across E-cadherin, Drive Morphogenesis, and Maintain Homeostasis. Current Biology, 2020, 30, 624-633.e4.	1.8	38
836	Dynamic actin cross-linking governs the cytoplasm's transition to fluid-like behavior. Molecular Biology of the Cell, 2020, 31, 1744-1752.	0.9	23

#	Article	IF	CITATIONS
837	From cellular to molecular mechanobiology. APL Bioengineering, 2020, 4, 010902.	3.3	1
838	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">î±</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">v</mml:mi></mml:mrow></mml:msub><mml:mi< td=""><td>1.0</td><td>4</td></mml:mi<></mml:mrow>	1.0	4
839	mathvariant="bold-italic" x12 <mmkmrow> <mmkmrow> </mmkmrow> </mmkmrow> <td>5.4</td> <td>ml:mrow>40</td>	5.4	ml:mrow>40
840	Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nature Communications, 2020, $11,535$.	5.8	66
841	Super-Resolution Imaging of Tight and Adherens Junctions: Challenges and Open Questions. International Journal of Molecular Sciences, 2020, 21, 744.	1.8	16
842	FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules, 2020, 10, 179.	1.8	123
843	Stochastic fluctuation-induced cell polarization on elastic substrates: A cytoskeleton-based mechanical model. Journal of the Mechanics and Physics of Solids, 2020, 137, 103872.	2.3	23
844	DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. Journal of Cell Science, 2020, 133, .	1.2	23
845	Intracellular nonequilibrium fluctuating stresses indicate how nonlinear cellular mechanical properties adapt to microenvironmental rigidity. Scientific Reports, 2020, 10, 5902.	1.6	7
846	Implementing Optogenetic Modulation in Mechanotransduction. Physical Review X, 2020, 10, .	2.8	5
847	Dependence of Membrane Tether Strength on Substrate Rigidity Probed by Single-Cell Force Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 4173-4178.	2.1	5
848	Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 2020, 108, 56-66.	4.1	95
849	Loadingâ€induced antitumor capability of murine and human urine. FASEB Journal, 2020, 34, 7578-7592.	0.2	11
850	Simplified Instrument Calibration for Wideâ€Field Fluorescence Resonance Energy Transfer (FRET) Measured by the Sensitized Emission Method. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 407-416.	1.1	10
851	In Pursuit of Designing Multicellular Engineered Living Systems: A Fluid Mechanical Perspective. Annual Review of Fluid Mechanics, 2021, 53, 411-437.	10.8	6
852	The cellular mechanobiology of aging: from biology to mechanics. Annals of the New York Academy of Sciences, 2021, 1491, 3-24.	1.8	25
853	Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cellular Signalling, 2021, 78, 109876.	1.7	13
854	Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends in Biotechnology, 2021, 39, 731-744.	4.9	28

#	Article	IF	CITATIONS
855	Rethinking organoid technology through bioengineering. Nature Materials, 2021, 20, 145-155.	13.3	150
856	Kontrolle über die optische und katalytische Aktivitägentechnisch hergestellter Proteine mit Ultraschall. Angewandte Chemie, 2021, 133, 1515-1519.	1.6	6
857	The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 2021, 10, e2001244.	3.9	42
858	YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death and Differentiation, 2021, 28, 1193-1207.	5.0	33
859	Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound. Angewandte Chemie - International Edition, 2021, 60, 1493-1497.	7.2	31
860	Fine-tuning viscoelasticity: the key to collectively move in vivo. , 2021, , 79-109.		0
861	Genetically Encoded Biosensors Based on Fluorescent Proteins. Sensors, 2021, 21, 795.	2.1	26
862	Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis. ELife, 2021, 10, .	2.8	24
864	Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation. Jacs Au, 2021, 1, 221-232.	3.6	19
865	Mechanotransduction, nanotechnology, and nanomedicine. Journal of Biomedical Research, 2021, 35, 284.	0.7	7
866	Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. Plant Physiology, 2021, 187, 485-503.	2.3	24
868	Probing ion channel macromolecular interactions using fluorescence resonance energy transfer. Methods in Enzymology, 2021, 653, 319-347.	0.4	9
869	Molecular mechanisms of the vascular responses to hemodynamic forces., 2021,, 49-83.		7
870	Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus, 2021, 12, 90-114.	0.6	14
871	Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596746.	2.0	16
872	Tug-of-war: molecular dynamometers against living cells for analyzing sub-piconewton interaction of a specific protein with the cell membrane. Chemical Science, 2021, 12, 14389-14395.	3.7	2
873	Spectroscopic Analysis of a Library of DNA Tension Probes for Mapping Cellular Forces at Fluid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 2145-2164.	4.0	8
874	High-throughput mechanobiology: Force modulation of ensemble biochemical and cell-based assays. Biophysical Journal, 2021, 120, 631-641.	0.2	7

#	Article	IF	CITATIONS
875	Mechanical regulation of tension-transmission supramolecular linkages. Current Opinion in Solid State and Materials Science, 2021, 25, 100895.	5.6	4
876	Functionalization of Cellular Membranes with DNA Nanotechnology. Trends in Biotechnology, 2021, 39, 1208-1220.	4.9	19
877	Probing mechanotransduction in living cells by optical tweezers and FRET-based molecular force microscopy. European Physical Journal Plus, 2021, 136, 1.	1.2	5
878	Dynamic Endothelial Stalk Cell–Matrix Interactions Regulate Angiogenic Sprout Diameter. Frontiers in Bioengineering and Biotechnology, 2021, 9, 620128.	2.0	14
879	Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets. Advanced Biology, 2021, 5, e2000592.	1.4	5
880	Intracellular detection and communication of a wireless chip in cell. Scientific Reports, 2021, 11, 5967.	1.6	10
881	The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. ELife, 2021, 10, .	2.8	45
882	Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Reports, 2021, 34, 108816.	2.9	34
883	The Dynamic Interaction between Extracellular Matrix Remodeling and Breast Tumor Progression. Cells, 2021, 10, 1046.	1.8	16
884	A new 3D finite element-based approach for computing cell surface tractions assuming nonlinear conditions. PLoS ONE, 2021, 16, e0249018.	1.1	6
885	Durotaxis: the mechanical control of directed cell migration. FEBS Journal, 2022, 289, 2736-2754.	2.2	43
886	A novel method for sensor-based quantification of single/multicellular force dynamics and stiffening in 3D matrices. Science Advances, 2021, 7, .	4.7	11
887	Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain. Scientific Reports, 2021, 11, 7810.	1.6	9
888	Regulation of intestinal epithelial intercellular adhesion and barrier function by desmosomal cadherin desmocollin-2. Molecular Biology of the Cell, 2021, 32, 753-768.	0.9	18
889	Fluorescent Membrane Tension Probes for Early Endosomes. Angewandte Chemie, 2021, 133, 12366-12371.	1.6	8
890	Imaging methods in mechanosensing: a historical perspective and visions for the future. Molecular Biology of the Cell, 2021, 32, 842-854.	0.9	8
892	Measuring cellular contraction: Current progress and a future in bioelectronics. APL Materials, 2021, 9, .	2.2	9
893	Fluorescent Membrane Tension Probes for Early Endosomes. Angewandte Chemie - International Edition, 2021, 60, 12258-12263.	7.2	28

#	Article	IF	CITATIONS
894	Linear Behavior of the Phase Lifetime in Frequency-Domain Fluorescence Lifetime Imaging of FRET Constructs. Frontiers in Physics, $2021, 9, .$	1.0	2
895	Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Science Advances, 2021, 7, .	4.7	65
897	Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton, 2021, 78, 249-276.	1.0	28
898	Unveiling the polarity of actin filaments by cryo-electron tomography. Structure, 2021, 29, 488-498.e4.	1.6	31
900	Molecular Force Measurement with Tension Sensors. Annual Review of Biophysics, 2021, 50, 595-616.	4.5	37
901	Temporal analysis of T-cell receptor-imposed forces via quantitative single molecule FRET measurements. Nature Communications, 2021, 12, 2502.	5.8	50
902	The principles of directed cell migration. Nature Reviews Molecular Cell Biology, 2021, 22, 529-547.	16.1	252
905	The cell as matter: Connecting molecular biology to cellular functions. Matter, 2021, 4, 1863-1891.	5.0	16
906	A computational framework for modeling cell–matrix interactions in soft biological tissues. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1851-1870.	1.4	23
907	Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death and Disease, 2021, 12, 629.	2.7	24
908	Optoregulated force application to cellular receptors using molecular motors. Nature Communications, 2021, 12, 3580.	5.8	19
909	Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Seminars in Cell and Developmental Biology, 2021, 120, 53-65.	2.3	15
910	In Vitro Measurements of Cellular Forces and their Importance in the Lung—From the Sub- to the Multicellular Scale. Life, 2021, 11, 691.	1.1	1
911	Unexpected Low Mechanical Stability of Titin I27 Domain at Physiologically Relevant Temperature. Journal of Physical Chemistry Letters, 2021, 12, 7914-7920.	2.1	5
912	Direct measurement of nearâ€nanoâ€Newton forces developed by selfâ€organizing actomyosin fibers bound αâ€catenin. Biology of the Cell, 2021, 113, 441-449.	0.7	1
913	The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces. Molecular Biology of the Cell, 2021, 32, 1737-1748.	0.9	8
915	Tension Sensor Based on Fluorescence Resonance Energy Transfer Reveals Fiber Diameter-Dependent Mechanical Factors During Myelination. Frontiers in Cellular Neuroscience, 2021, 15, 685044.	1.8	0
916	Profiling the responsiveness of focal adhesions of human cardiomyocytes to extracellular dynamic nano-topography. Bioactive Materials, 2022, 10, 367-377.	8.6	4

#	ARTICLE	IF	CITATIONS
918	Molecular tension in syndecan-1 is regulated by extracellular mechanical cues and fluidic shear stress. Biomaterials, 2021, 275, 120947.	5.7	12
919	A Multidisciplinary Journey towards Bone Tissue Engineering. Materials, 2021, 14, 4896.	1.3	19
920	Turn-key mapping of cell receptor force orientation and magnitude using a commercial structured illumination microscope. Nature Communications, 2021, 12, 4693.	5.8	10
921	Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Advanced Healthcare Materials, 2021, 10, e2100102.	3.9	14
922	The LINC complex is required for endothelial cell adhesion and adaptation to shear stress and cyclic stretch. Molecular Biology of the Cell, 2021, 32, 1654-1663.	0.9	24
923	Focal adhesion dynamics in cellular function and disease. Cellular Signalling, 2021, 85, 110046.	1.7	68
924	Bioengineering methods for organoid systems. Biology of the Cell, 2021, 113, 475-491.	0.7	8
925	Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. Journal of Nanotheranostics, 2021, 2, 174-195.	1.7	1
927	Viral Manipulation of a Mechanoresponsive Signaling Axis Disassembles Processing Bodies. Molecular and Cellular Biology, 2021, 41, e0039921.	1.1	6
929	An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity. Science Advances, 2021, 7, eabg4617.	4.7	17
930	Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Frontiers in Cell and Developmental Biology, 2021, 9, 706126.	1.8	6
931	Quantifying molecular- to cellular-level forces in living cells. Journal Physics D: Applied Physics, 2021, 54, 483001.	1.3	5
932	Integrin-based mechanosensing through conformational deformation. Biophysical Journal, 2021, 120, 4349-4359.	0.2	10
933	Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Developmental Cell, 2021, 56, 2419-2426.e4.	3.1	16
935	At the nuclear envelope of bone mechanobiology. Bone, 2021, 151, 116023.	1.4	14
936	Traction force microscopy – Measuring the forces exerted by cells. Micron, 2021, 150, 103138.	1.1	40
937	Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioengineering, 2021, 5, 041501.	3.3	11
939	Microtubule pivoting enables mitotic spindle assembly in <i>S. cerevisiae</i> . Journal of Cell Biology, 2021, 220, .	2.3	5

#	Article	IF	CITATIONS
940	Micro systems for probing cellular forces and cellular mechanical properties., 2021, , 1-22.		0
941	Molecular stretching modulates mechanosensing pathways. Protein Science, 2017, 26, 1337-1351.	3.1	55
942	Molecular Tension Microscopy of E-Cadherin During Epithelial-Mesenchymal Transition. Methods in Molecular Biology, 2021, 2179, 289-299.	0.4	6
943	Measuring Cell–Cell Tugging Forces Using Bowtie-Patterned mPADs (Microarray Post Detectors). Methods in Molecular Biology, 2013, 1066, 157-168.	0.4	8
944	Generation and Analysis of Biosensors to Measure Mechanical Forces Within Cells. Methods in Molecular Biology, 2013, 1066, 169-184.	0.4	23
945	MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia, 2019, 33, 710-729.	3.3	14
946	Chapter 11. Self-reporting Polymeric Materials with Mechanochromic Properties. RSC Polymer Chemistry Series, 2016, , 354-401.	0.1	2
947	Viscoelastic hydrogels for 3D cell culture. Biomaterials Science, 2017, 5, 1480-1490.	2.6	230
949	Relief of talin autoinhibition triggers a force-independent association with vinculin. Journal of Cell Biology, 2020, 219, .	2.3	39
950	Nesprins are mechanotransducers that discriminate epithelial–mesenchymal transition programs. Journal of Cell Biology, 2020, 219, .	2.3	35
951	Nesprin-2G tension fine-tunes Wnt/ \hat{l}^2 -catenin signaling. Journal of Cell Biology, 2020, 219, .	2.3	1
952	Designer substrates and devices for mechanobiology study. Journal of Semiconductors, 2020, 41, 041607.	2.0	2
953	Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. Molecular Biology of the Cell, 2017, 28, 1901-1911.	0.9	74
954	Prostaglandins regulate invasive, collective border cell migration. Molecular Biology of the Cell, 2020, 31, 1584-1594.	0.9	11
975	Recovery of Tractions Exerted by Single Cells in Three-Dimensional Nonlinear Matrices. Journal of Biomechanical Engineering, 2020, 142, .	0.6	14
976	Fiber Crimp Confers Matrix Mechanical Nonlinearity, Regulates Endothelial Cell Mechanosensing, and Promotes Microvascular Network Formation. Journal of Biomechanical Engineering, 2020, 142, .	0.6	11
977	FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope. Journal of Biomedical Optics, 2019, 24, 1.	1.4	9
978	Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Science Advances, 2020, 6, eaaz4707.	4.7	47

#	Article	IF	CITATIONS
979	Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. Journal of Cell Science, 2020, 133, .	1.2	51
980	Seeing and believing: recent advances in imaging cell-cell interactions. F1000Research, 2015, 4, 273.	0.8	5
981	Actomyosin stress fiber mechanosensing in 2D and 3D. F1000Research, 2016, 5, 2261.	0.8	61
982	Epithelial adhesive junctions. F1000prime Reports, 2014, 6, 1.	5.9	84
983	3D integrated photonics platform with deterministic geometry control. Photonics Research, 2020, 8, 194.	3 . 4	10
984	Mechanism of Focal Adhesion Kinase Mechanosensing. PLoS Computational Biology, 2015, 11, e1004593.	1.5	109
985	The Integrin-Ligand Interaction Regulates Adhesion and Migration through a Molecular Clutch. PLoS ONE, 2012, 7, e40202.	1.1	47
986	Combining FRET and optical tweezers to study RhoGTPases spatio-temporal dynamics upon local stimulation. Journal of Biological Methods, 2017, 4, e65.	1.0	2
987	Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology. Critical Reviews in Biomedical Engineering, 2020, 48, 1-16.	0.5	4
988	Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging, 2019, 11, 5829-5847.	1.4	24
989	Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities., 2012, 24, 426-440.		22
990	Microgravity Induces Transient EMT in Human Keratinocytes by Early Down-Regulation of E-Cadherin and Cell-Adhesion Remodeling. Applied Sciences (Switzerland), 2021, 11, 110.	1.3	7
991	A Protocol for Using Förster Resonance Energy Transfer (FRET)-force Biosensors to Measure Mechanical Forces across the Nuclear LINC Complex. Journal of Visualized Experiments, 2017, , .	0.2	7
992	Cellular mechanotransduction. AIMS Biophysics, 2016, 3, 50-62.	0.3	37
993	Genetically encoded force sensors for measuring mechanical forces in proteins. Communicative and Integrative Biology, 2011, 4, 385-90.	0.6	18
994	Mechanical transduction by ion channels: A cautionary tale. World Journal of Neurology, 2015, 5, 74.	0.6	38
995	FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. ELife, 2015, 4, .	2.8	52
996	Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. ELife, 2016, 5, .	2.8	66

#	Article	IF	CITATIONS
997	The major \hat{l}^2 -catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. ELife, 2018, 7, .	2.8	62
998	Tunable molecular tension sensors reveal extension-based control of vinculin loading. ELife, 2018, 7, .	2.8	74
999	A brighter force gauge for cells. ELife, 2018, 7, .	2.8	4
1000	Talin-activated vinculin interacts with branched actin networks to initiate bundles. ELife, 2020, 9, .	2.8	39
1001	Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. ELife, 2020, 9, .	2.8	39
1002	The emerin-binding transcription factor Lmo7 is regulated by association with p130Cas at focal adhesions. PeerJ, 2013, 1, e134.	0.9	24
1004	Analyses of Actin Dynamics, Clutch Coupling and Traction Force for Growth Cone Advance. Journal of Visualized Experiments, 2021, , .	0.2	4
1005	Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nature Communications, 2021, 12, 6019.	5.8	16
1006	Effects of early geometric confinement on the transcriptomic profile of human cerebral organoids. BMC Biotechnology, 2021, 21, 59.	1.7	11
1007	A DNAâ€Encoded FRET Biosensor for Visualizing the Tension across Paxillin in Living Cells upon Shear Stress. Analysis & Sensing, 0, , .	1.1	0
1008	Effects of forces on chromatin. APL Bioengineering, 2021, 5, 041503.	3.3	17
1009	Visualizing Myosin-Actin Interaction with a GFP-based Strain Sensor. Seibutsu Butsuri, 2010, 50, 238-239.	0.0	0
1010	Tension as Important Information for Signal Transduction at Cell-cell Adhesion. Seibutsu Butsuri, 2011, 51, 162-167.	0.0	0
1012	Biophysical Mechanisms That Govern the Vascularization of Microfluidic Scaffolds., 2014, , 128-143.		0
1013	Design Concept of Topographical and Mechanical Properties of Synthetic Extracellular Matrix to Control Cell Functions and Fates Through Actin Cytoskeletal Modulation. Frontiers of Biomechanics, 2015, , 159-186.	0.1	1
1015	Molecular Mechanisms Regulating the Pulmonary Blood–Gas Barrier. , 2015, , 65-84.		O
1017	Effect of Cooling Stimulus on Collection Efficiency of Calf Chondrocytes Cultivated on Metal Surface. International Journal of Automation Technology, 2017, 11, 925-931.	0.5	1
1018	The PhosphooCaveolinn1 Scaffolding Domain Dampens Force Fluctuations in Focal Adhesions to Drive Cancer Cell Migration. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1019	Oscillatory cortical forces promote three dimensional mesenchymal cell intercalations to shape the mandibular arch. SSRN Electronic Journal, 0 , , .	0.4	1
1022	Ultrafast single molecule technique for the study of force dependent kinetics and conformational changes of actin-protein interaction involved in mechanotransduction. , 2018, , .		0
1024	Fluorescent molecular force probes for rheology and mechanobiology. , 2018, , .		0
1032	Measuring Internal Forces in Single-Stranded DNA. Springer Theses, 2019, , 95-125.	0.0	O
1033	Micro-tweezers and Force Microscopy Techniques for Single-Cell Mechanobiological Analysis. , 2019, , 1-22.		0
1043	Multiplexed single-molecule flow-stretching bead assay for DNA enzymology. BMB Reports, 2019, 52, 589-594.	1.1	1
1048	Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering, 2021, 8 , 163 .	1.6	2
1049	Micro-tweezers and Force Microscopy Techniques for Single-Cell Mechanobiological Analysis. , 2022, , 1011-1032.		0
1050	FRET Efficiency Measurement with a Low-Cost Frequency Domain Fluorescence Lifetime Imaging Microscope. , 2020, , .		0
1053	Focal Adhesion Displacement Magnitude is a Unifying Feature of Tensional Homeostasis. SSRN Electronic Journal, 0, , .	0.4	0
1054	Focal Adhesion Proteins Regulate Cell–Matrix and Cell–Cell Adhesion and Act as Force Sensors. Biological and Medical Physics Series, 2020, , 95-140.	0.3	0
1055	The Mechanosensing and Global DNA Methylation of Human Osteoblasts on MEW Fibers. Nanomaterials, 2021, 11, 2943.	1.9	9
1058	Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition. Methods in Molecular Biology, 2021, 2179, 275-287.	0.4	0
1061	Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Molecular Medicine Reports, 2020, 22, 5326-5338.	1.1	0
1062	Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. Small, 2021, , 2103466.	5.2	5
1063	Signaling at Physical Barriers during Pollen–Pistil Interactions. International Journal of Molecular Sciences, 2021, 22, 12230.	1.8	10
1064	Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Frontiers in Physiology, 2021, 12, 769586.	1.3	6
1065	Mechanobiology of muscle and myofibril morphogenesis. Cells and Development, 2021, 168, 203760.	0.7	30

#	Article	IF	CITATIONS
1066	Calculating the force-dependent unbinding rate of biological macromolecular bonds from force-ramp optical trapping assays. Scientific Reports, 2022, 12, 82.	1.6	3
1067	Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Molecular Medicine Reports, 2020, 22, 5326-5338.	1.1	0
1068	Combined Quantitative Phase Microscopy and FÃ \P rster Resonance Energy Transfer for Analyzing Cell Ion Dynamics. , 2021, , .		0
1069	Complete Model of Vinculin Suggests the Mechanism of Activation by Helical Super-Bundle Unfurling. Protein Journal, 2022, 41, 55-70.	0.7	4
1070	Next generation single-molecule techniques: Imaging, labeling, and manipulation inÂvitro and in cellulo. Molecular Cell, 2022, 82, 304-314.	4.5	17
1071	Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomaterialia, 2023, 163, 259-274.	4.1	24
1073	Patterning the embryonic pulmonary mesenchyme. IScience, 2022, 25, 103838.	1.9	13
1074	Microsphere sensors for characterizing stress fields within three-dimensional extracellular matrix. Acta Biomaterialia, 2022, 141, 1-13.	4.1	5
1075	Instantaneous splicing and excision of inteins to synthesize polyproteins on a substrate with tunable linkers. Soft Matter, 2022, 18, 602-608.	1.2	1
1076	KIAA0319 influences cilia length, cell migration and mechanical cell–substrate interaction. Scientific Reports, 2022, 12, 722.	1.6	7
1077	Substrate rigidity modulates traction forces and stoichiometry of cell–matrix adhesions. Journal of Chemical Physics, 2022, 156, 085101.	1.2	5
1078	Live 3D imaging and mapping of shear stresses within tissues using incompressible elastic beads. Development (Cambridge), 2022, 149, .	1.2	8
1079	Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nature Communications, 2022, 13, 303.	5.8	43
1080	Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. American Journal of Physiology - Renal Physiology, 2022, 322, G234-G246.	1.6	15
1081	Ultrasoundâ€Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer. Advanced Healthcare Materials, 2022, 11, e2101672.	3.9	4
1082	Ratiometric Flapping Force Probe That Works in Polymer Gels. Journal of the American Chemical Society, 2022, 144, 2804-2815.	6.6	48
1083	HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chemical Science, 2022, 13, 2086-2093.	3.7	21
1084	Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annual Review of Biomedical Engineering, 2022, 24, 29-59.	5.7	11

#	Article	IF	CITATIONS
1085	The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of Biomechanical Engineering, 2022, 144, .	0.6	6
1086	Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. Membranes, 2022, 12, 205.	1.4	5
1087	Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Frontiers in Cell and Developmental Biology, 2022, 10, 789841.	1.8	16
1088	Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin. Journal of Cell Biology, 2022, 221, .	2.3	20
1089	Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. Journal of Biosciences, 2018, 43, 519-540.	0.5	5
1090	Recent developments in DNA-based mechanical nanodevices. Chemical Communications, 2022, 58, 4700-4710.	2.2	7
1091	Molecular sensors for detection of tumor-stroma crosstalk. Advances in Cancer Research, 2022, 154, 47-91.	1.9	1
1092	Mechanofluorochromic Material toward a Recoverable Microscale Force Sensor. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1093	The Effect of Magnetic Field Gradient and Gadolinium-Based MRI Contrast Agent Dotarem on Mouse Macrophages. Cells, 2022, 11, 757.	1.8	6
1094	Cell adhesion tunes inflammatory TPL2 kinase signal transduction. Cellular and Molecular Life Sciences, 2022, 79, 156.	2.4	O
1095	Ret kinase-mediated mechanical induction of colon stem cells by tumor growth pressure stimulates cancer progression in vivo. Communications Biology, 2022, 5, 137.	2.0	4
1096	Understanding immune signaling using advanced imaging techniques. Biochemical Society Transactions, 2022, 50, 853-866.	1.6	4
1098	Forces in stem cells and cancer stem cells. Cells and Development, 2022, 170, 203776.	0.7	4
1099	Integrating mechanical signals into cellular identity. Trends in Cell Biology, 2022, 32, 669-680.	3. 6	10
1100	Phosphorylated paxillin and phosphorylated FAK constitute subregions within focal adhesions. Journal of Cell Science, 2022, 135, .	1.2	5
1101	Assessing models of force-dependent unbinding rates via infrequent metadynamics. Journal of Chemical Physics, 2022, 156, 125102.	1.2	12
1102	Myosin VI regulates the spatial organisation of mammalian transcription initiation. Nature Communications, 2022, 13, 1346.	5.8	17
1104	Biophysics involved in the process of tumor immune escape. IScience, 2022, 25, 104124.	1.9	5

#	Article	IF	CITATIONS
1105	Direct observation of chaperone-modulated talin mechanics with single-molecule resolution. Communications Biology, 2022, 5, 307.	2.0	6
1106	A Thromboxane A ₂ Receptor-Driven COX-2–Dependent Feedback Loop That Affects Endothelial Homeostasis and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 444-461.	1.1	15
1107	Biophysical Approaches for Applying and Measuring Biological Forces. Advanced Science, 2022, 9, e2105254.	5.6	15
1108	Dynamics of the Actin Cytoskeleton at Adhesion Complexes. Biology, 2022, 11, 52.	1.3	10
1110	Cell–matrix interactions, force transmission, and mechanosensation. , 2022, , 129-147.		0
1111	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis., 2022,, 245-270.		0
1112	Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand. International Journal of Molecular Sciences, 2022, 23, 4396.	1.8	0
1113	Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. American Journal of Physiology - Cell Physiology, 2022, 322, C1138-C1150.	2.1	9
1116	Understanding the cellular response of human tenon fibroblast on polycaprolactone-Aloe vera blend fiber. Journal of Biomaterials Applications, 2022, , 088532822210910.	1,2	1
1119	A numerical method to predict the membrane tension distribution of spreading cells based on the reconstruction of focal adhesions. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	2
1120	Thromboxane A2 receptor activation via $\widehat{Gl}\pm 13$ -RhoA/C-ROCK-LIMK2-dependent signal transduction inhibits angiogenic sprouting of human endothelial cells. Biochemical Pharmacology, 2022, 201, 115069.	2.0	4
1121	Focal adhesion-mediated cell anchoring and migration: from <i>in vitro</i> to <i>in vivo</i> . Development (Cambridge), 2022, 149, .	1.2	13
1122	Understanding the interplay of membrane trafficking, cell surface mechanics, and stem cell differentiation. Seminars in Cell and Developmental Biology, 2023, 133, 123-134.	2.3	3
1123	$F\tilde{A}\P$ rster resonance energy transfer efficiency of the vinculin tension sensor in cultured primary cortical neuronal growth cones. Neurophotonics, 2022, 9, .	1.7	2
1124	Contractile force assessment methods for in vitro skeletal muscle tissues. ELife, 0, 11, .	2.8	11
1125	Integrin molecular tension required for focal adhesion maturation and YAP nuclear translocation. Biochemistry and Biophysics Reports, 2022, 31, 101287.	0.7	3
1126	Endotoxins Induced ECM-Receptor Interaction Pathway Signal Effect on the Function of MUC2 in Caco2/HT29 Co-Culture Cells. Frontiers in Immunology, 0, 13, .	2.2	6
1127	Resource for FRET-Based Biosensor Optimization. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	1

#	Article	IF	CITATIONS
1128	Dystrophin missense mutations alter focal adhesion tension and mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
1129	Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials, 2022, 287, 121642.	5.7	3
1130	Combined Quantitative Phase Microscopy and FÃ \P rster Resonance Energy Transfer Imaging for Analyzing Endothelial Cell Shear Stress Response. , 2022, , .		0
1133	Molecular tension microscopy of the LINC complex in live cells. STAR Protocols, 2022, 3, 101538.	0.5	0
1134	May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology. Frontiers in Immunology, 0, 13, .	2.2	1
1136	Weak catch bonds make strong networks. Nature Materials, 2022, 21, 1019-1023.	13.3	17
1138	ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. IScience, 2022, 25, 104795.	1.9	2
1140	Estimation of microtubule-generated forces using a DNA origami nanospring. Journal of Cell Science, 2023, 136, .	1.2	3
1141	Measurement and Manipulation of Cellular Forces Using Silicone Elastomers. Biomaterials Science Series, 2022, , 64-84.	0.1	0
1142	An Introduction to Material-based Mechanobiology. Biomaterials Science Series, 2022, , 1-20.	0.1	1
1143	Combining Genetic and Mechanical Factors to Model Disease. Biomaterials Science Series, 2022, , 309-337.	0.1	0
1144	Thermo-sensitive Sacrificial Microsphere-based Bioink for Centimeter-scale Tissue with Angiogenesis. International Journal of Bioprinting, 2022, 8, 599.	1.7	4
1145	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220.	3.6	5
1146	Advanced optical tweezers on cell manipulation and analysis. European Physical Journal Plus, 2022, 137, .	1.2	6
1147	Facile detection of mechanical forces across proteins in cells with STReTCh. Cell Reports Methods, 2022, 2, 100278.	1.4	4
1148	New insights into FAK structure and function in focal adhesions. Journal of Cell Science, 2022, 135, .	1.2	20
1149	The role of single-protein elasticity in mechanobiology. Nature Reviews Materials, 2023, 8, 10-24.	23.3	9
1150	Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nature Communications, 2022, 13, .	5.8	7

#	Article	IF	CITATIONS
1151	Dynamically regulated focal adhesions coordinate endothelial cell remodelling in developing vasculature. Development (Cambridge), 2022, 149, .	1.2	4
1152	Integrin Conformational Dynamics and Mechanotransduction. Cells, 2022, 11, 3584.	1.8	12
1154	Vinculin phosphorylation impairs vascular endothelial junctions promoting atherosclerosis. European Heart Journal, 2023, 44, 304-318.	1.0	11
1156	Transgenic force sensors and software to measure force transmission across the mammalian nuclear envelope $\langle i \rangle$ in $vivo\langle i \rangle$. Biology Open, 2022, 11, .	0.6	3
1157	Molecular mechanisms of interrod spacing-mediated osseointegration via modulating inflammatory response and osteogenic differentiation. Chemical Engineering Journal, 2023, 454, 140141.	6.6	2
1158	Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system. Nature Cell Biology, 2023, 25, 120-133.	4.6	15
1160	Engineered hydrogels for mechanobiology. Nature Reviews Methods Primers, 2022, 2, .	11.8	37
1162	A network of mixed actin polarity in the leading edge of spreading cells. Communications Biology, 2022, 5, .	2.0	3
1163	Paxillin Tunes the Relationship between Cell–Matrix and Cell–Cell Adhesions to Regulate Stiffness-Dependent Dentinogenesis. International Journal of Energy Production and Management, 0, , .	1.9	3
1165	Analysis of Vascular Morphogenesis in Zebrafish. Methods in Molecular Biology, 2023, , 425-450.	0.4	0
1166	Visualizing Neurons Under Tension In Vivo with Optogenetic Molecular Force Sensors. Methods in Molecular Biology, 2023, , 239-266.	0.4	6
1167	Microfluidic Engineering of Crater–Terrain Hydrogel Microparticles: Toward Novel Cell Carriers. ACS Applied Materials & Interfaces, 2023, 15, 7833-7840.	4.0	3
1169	Multiplexed Molecular Tension Sensor Measurements Using PIE-FLIM. Methods in Molecular Biology, 2023, , 221-237.	0.4	0
1171	Structure-Related Mechanical Properties and Bioactivity of Silica–Gelatin Hybrid Aerogels for Bone Regeneration. Gels, 2023, 9, 67.	2.1	4
1172	Single-Molecule Imaging of Membrane Proteins on Vascular Endothelial Cells. Journal of Lipid and Atherosclerosis, 2023, 12, 58.	1.1	2
1173	Recent advances in label-free imaging of cell–matrix adhesions. Chemical Communications, 2023, 59, 2341-2351.	2.2	3
1174	Pathogenic tau decreases nuclear tension in cultured neurons. Frontiers in Aging, 0, 4, .	1,2	9
1175	Understanding How Cells Probe the World: A Preliminary Step towards Modeling Cell Behavior?. International Journal of Molecular Sciences, 2023, 24, 2266.	1.8	O

#	Article	IF	CITATIONS
1176	Tension Gauge Tethers as Tension Threshold and Duration Sensors. ACS Sensors, 2023, 8, 704-711.	4.0	8
1177	Fluorescent Flippers: Smallâ€Molecule Probes to Image Membrane Tension in Living Systems. Angewandte Chemie, 2023, 135, .	1.6	1
1178	Accurate detection of reactive oxygen species by tuning an elastic motif (GPGGA) ₄ in nanopores. Chemical Communications, 2023, 59, 4368-4371.	2.2	0
1179	Understanding the interplay between cell force and cell adhesion processes. Engineered Regeneration, 2023, 4, 277-288.	3.0	1
1180	Effects of wounds in the cell membrane on cell division. Scientific Reports, 2023, 13, .	1.6	2
1181	Force-Induced Shuttling of Rotaxanes Controls Fluorescence Resonance Energy Transfer in Polymer Hydrogels. ACS Applied Materials & Samp; Interfaces, 2023, 15, 8502-8509.	4.0	19
1182	Fluorescent Flippers: Smallâ€Molecule Probes to Image Membrane Tension in Living Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1183	The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules, 2023, 13, 294.	1.8	3
1184	Fracture Detection in Bioâ€Glues with Fluorescentâ€Proteinâ€Based Optical Force Probes. Advanced Materials, 2023, 35, .	11.1	7
1186	Metabolic reprogramming in response to cell mechanics. Biology of the Cell, 2023, 115, .	0.7	4
1187	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
1188	Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Developmental Cell, 2023, 58, 522-534.e7.	3.1	5
1189	Crawling, waving, inch worming, dilating, and pivoting mechanics of migrating cells: Lessons from Ken Jacobson. Biophysical Journal, 2023, , .	0.2	1
1190	Feasibility of imaging intracellular tension probes in multicellular aggregates. , 2023, , .		0
1191	A Bioinspired Gelatin–Amorphous Calcium Phosphate Coating on Titanium Implant for Bone Regeneration. Advanced Healthcare Materials, 2023, 12, .	3.9	4
1192	Biphasic reinforcement of nascent adhesions by vinculin. Journal of Molecular Recognition, 2023, 36, .	1,1	1
1193	Human cells with osteogenic potential in bone tissue research. BioMedical Engineering OnLine, 2023, 22, .	1.3	12
1194	Evaluation of focal adhesion mediated subcellular curvature sensing in response to engineered extracellular matrix. Biointerphases, 2023, 18, 021004.	0.6	1

#	Article	IF	CITATIONS
1195	Understanding the Driving Force for Cell Migration Plasticity. Biophysical Journal, 2023, , .	0.2	1
1196	Genetically encoded imaging tools for investigating cell dynamics at a glance. Journal of Cell Science, 2023, 136, .	1.2	3
1200	Cell characterization by nanonewton force sensing. , 2023, , 245-270.		1
1201	Cellular mechanical measurement by magnetic micro/nanorobots. , 2023, , 271-288.		0
1236	Visualizing molecular deformation in fibrin networks under tensile loading ⟨i>via⟨ i> FLIM–FRET. Chemical Communications, 2023, 59, 14575-14578.	2.2	0
1245	Biophysical Changes in Local Onco-Sphere. , 2023, , 201-220.		0
1269	Using FRET to Determine How Myo10 Responds to Force in Filopodia. Springer Series in Biophysics, 2024, , 67-77.	0.4	0