The genome-wide structure of the Jewish people

Nature

466, 238-242

DOI: 10.1038/nature09103

Citation Report

#	Article	IF	CITATIONS
1	Genetic differentiation of Jewish populations. Tissue Antigens, 2010, 76, 442-458.	1.0	39
2	Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16222-16227.	3.3	113
3	The origin of Eastern European Jews revealed by autosomal, sex chromosomal and mtDNA polymorphisms. Biology Direct, 2010, 5, 57.	1.9	8
4	The population genetics of chronic kidney disease: insights from the MYH9–APOL1 locus. Nature Reviews Nephrology, 2011, 7, 313-326.	4.1	58
5	A world in a grain of sand: human history from genetic data. Genome Biology, 2011, 12, 234.	13.9	9
6	A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry. Human Heredity, 2011, 72, 35-44.	0.4	24
7	Perspectives on Human Population Structure at the Cusp of the Sequencing Era. Annual Review of Genomics and Human Genetics, 2011, 12, 245-274.	2.5	69
8	Editorial (Forward Look: Tenth Anniversary of the Human Genome Sequence and 21st Century) Tj ETQq1 1 0.784. and Personalized Medicine, 2011, 9, 148-155.	314 rgBT 0.2	/Overlock 10 7
9	Shared and Unique Components of Human Population Structure and Genome-Wide Signals of Positive Selection in South Asia. American Journal of Human Genetics, 2011, 89, 731-744.	2.6	149
10	SNP marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2011, 123, 827-845.	1.8	182
11	Ancient founder mutation is responsible for Imerslund-GrÃøbeck Syndrome among diverse ethnicities. Orphanet Journal of Rare Diseases, 2011, 6, 74.	1.2	14
12	Regionalized autosomal STR profiles among Armenian groups suggest disparate genetic influences. American Journal of Physical Anthropology, 2011, 146, 171-178.	2.1	10
13	Population Genetic Structure in Indian Austroasiatic Speakers: The Role of Landscape Barriers and Sex-Specific Admixture. Molecular Biology and Evolution, 2011, 28, 1013-1024.	3.5	135
14	Absence of APOL1 Risk Variants Protects against HIV-Associated Nephropathy in the Ethiopian Population. American Journal of Nephrology, 2011, 34, 452-459.	1.4	66
15	Croatian genetic heritage: Y-chromosome story. Croatian Medical Journal, 2011, 52, 225-234.	0.2	22
16	A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci. PLoS Genetics, 2012, 8, e1002559.	1.5	144
17	Genome-wide scan with nearly 700 000 SNPs in two Sardinian sub-populations suggests some regions as candidate targets for positive selection. European Journal of Human Genetics, 2012, 20, 1155-1161.	1.4	20
18	Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations. Pharmacogenomics, 2012, 13, 543-554.	0.6	15

#	ARTICLE	IF	CITATIONS
19	Nerve growth factor \hat{l}^2 polypeptide (NGFB) genetic variability: association with the methadone dose required for effective maintenance treatment. Pharmacogenomics Journal, 2012, 12, 319-327.	0.9	23
20	Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas. Human Molecular Genetics, 2012, 21, 1907-1917.	1.4	60
21	Combining Markers into Haplotypes Can Improve Population Structure Inference. Genetics, 2012, 190, 159-174.	1.2	42
22	DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population. International Journal of Neuropsychopharmacology, 2012, 15, 459-469.	1.0	51
23	NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation. PLoS ONE, 2012, 7, e48375.	1.1	113
24	Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evolutionary Biology, 2012, 12, 234.	3.2	48
25	Reconstructing the Population History of European Romani from Genome-wide Data. Current Biology, 2012, 22, 2342-2349.	1.8	101
26	Implications for health and disease in the genetic signature of the Ashkenazi Jewish population. Genome Biology, 2012, 13, R2.	13.9	48
27	Divergent genetic strata in five Bahamian islands. Forensic Science International: Genetics, 2012, 6, 81-90.	1.6	4
28	Population-Specific Association between a Polymorphic Variant in ST18, Encoding a Pro-Apoptotic Molecule, and Pemphigus Vulgaris. Journal of Investigative Dermatology, 2012, 132, 1798-1805.	0.3	98
29	The effect of high versus low loading on bone strength in middle life. Bone, 2012, 50, 865-869.	1.4	7
30	Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm. Cell, 2012, 148, 873-885.	13.5	503
31	Genomic view on the peopling of India. Investigative Genetics, 2012, 3, 20.	3.3	35
32	Methods for Detecting and Correcting for Population Stratification. Current Protocols in Human Genetics, 2012, 73, Unit 1.22.1-14.	3.5	10
33	The adult polyglucosan body disease mutation GBE1 c.1076A>C occurs at high frequency in persons of Ashkenazi Jewish background. Biochemical and Biophysical Research Communications, 2012, 426, 286-288.	1.0	11
34	Complex genetic origin of Indian populations and its implications. Journal of Biosciences, 2012, 37, 911-919.	0.5	44
35	Empirical Distributions of FST from Large-Scale Human Polymorphism Data. PLoS ONE, 2012, 7, e49837.	1.1	45
36	Mennonite migrations: genetic and demographic consequences. , 0, , 299-316.		2

3

#	ARTICLE	IF	CITATIONS
37	Distinguishing the co-ancestries of haplogroup G Y-chromosomes in the populations of Europe and the Caucasus. European Journal of Human Genetics, 2012, 20, 1275-1282.	1.4	74
38	The Caucasus as an Asymmetric Semipermeable Barrier to Ancient Human Migrations. Molecular Biology and Evolution, 2012, 29, 359-365.	3.5	161
39	North African Jewish and non-Jewish populations form distinctive, orthogonal clusters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13865-13870.	3.3	49
40	Ethiopian Genetic Diversity Reveals Linguistic Stratification and Complex Influences on the Ethiopian Gene Pool. American Journal of Human Genetics, 2012, 91, 83-96.	2.6	177
41	Lessons Learned from Phagocytic Function Studies in a Large Cohort of Patients with Recurrent Infections. Journal of Clinical Immunology, 2012, 32, 454-466.	2.0	21
42	Association of the ZFPM2 gene with antipsychotic-induced parkinsonism in schizophrenia patients. Psychopharmacology, 2012, 220, 519-528.	1.5	20
43	Recurrent germline mutations in BRCA1 and BRCA2 genes in high risk families in Israel. Breast Cancer Research and Treatment, 2012, 133, 1153-1157.	1.1	18
44	The Basque Paradigm: Genetic Evidence of a Maternal Continuity in the Franco-Cantabrian Region since Pre-Neolithic Times. American Journal of Human Genetics, 2012, 90, 486-493.	2.6	58
45	Gene pool of ethnic groups of the Caucasus: Results of integrated study of the Y chromosome and mitochondrial DNA and genome-wide data. Russian Journal of Genetics, 2012, 48, 640-650.	0.2	10
46	<i>CYP2B6</i> SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addiction Biology, 2013, 18, 709-716.	1.4	88
47	The Nature/Culture of Genetic Facts. Annual Review of Anthropology, 2013, 42, 247-267.	0.4	29
48	Genetic Evidence for Recent Population Mixture in India. American Journal of Human Genetics, 2013, 93, 422-438.	2.6	234
49	Neanderthal and Denisova genetic affinities with contemporary humans: Introgression versus common ancestral polymorphisms. Gene, 2013, 530, 83-94.	1.0	35
50	Variation at Diabetes- and Obesity-Associated Loci May Mirror Neutral Patterns of Human Population Diversity and Diabetes Prevalence in India. Annals of Human Genetics, 2013, 77, 392-408.	0.3	3
51	Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity. European Journal of Human Genetics, 2013, 21, 659-665.	1.4	64
52	Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites. Nature Communications, 2013, 4, 2928.	5.8	31
53	A general linear model-based approach for inferring selection to climate. BMC Genetics, 2013, 14, 87.	2.7	18
54	Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics, 2013, 14, 755-768.	0.6	44

#	Article	IF	CITATIONS
55	Genetics and the History of the Samaritans: Y-Chromosomal Microsatellites and Genetic Affinity between Samaritans and Cohanim. Human Biology, 2013, 85, 825-857.	0.4	4
56	From Generation to Generation: The Genetics of Jewish Populations. Human Biology, 2013, 85, 817-823.	0.4	1
57	Genetics and the Archaeology of Ancient Israel. Human Biology, 2013, 85, 925-939.	0.4	6
58	Evolution of the Pygmy Phenotype: Evidence of Positive Selection from Genome-wide Scans in African, Asian, and Melanesian Pygmies. Human Biology, 2013, 85, 251-284.	0.4	66
59	The Human Genome. , 2013, , 4-27.		1
60	The population genetics of the Jewish people. Human Genetics, 2013, 132, 119-127.	1.8	92
61	The phenetic distances of the living Druze from other human populations suggest a major genetic drift from the Western Eurasian ancestral category. HOMO- Journal of Comparative Human Biology, 2013, 64, 377-390.	0.3	6
62	The religion, spirituality, and psychology of Jews , 2013, , 665-679.		10
63	Trends and challenges in searching for HLA-matched unrelated donors in Israel. Human Immunology, 2013, 74, 942-945.	1.2	10
64	The Missing Link of Jewish European Ancestry: Contrasting the Rhineland and the Khazarian Hypotheses. Genome Biology and Evolution, 2013, 5, 61-74.	1.1	46
65	Biological races in humans. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 262-271.	0.8	145
66	Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evolutionary Biology, 2013, 13, 127.	3.2	106
67	No Evidence from Genome-Wide Data of a Khazar Origin for the Ashkenazi Jews. Human Biology, 2013, 85, 859-900.	0.4	68
68	Highlight: Out of KhazariaEvidence for "Jewish Genome" Lacking. Genome Biology and Evolution, 2013, 5, 75-76.	1.1	1
69	Population Structure in a Comprehensive Genomic Data Set on Human Microsatellite Variation. G3: Genes, Genomes, Genetics, 2013, 3, 891-907.	0.8	123
70	The Effect of Very High versus Very Low Sustained Loading on the Lower Back and Knees in Middle Life. BioMed Research International, 2013, 2013, 1-6.	0.9	3
71	Genome-Wide Diversity in the Levant Reveals Recent Structuring by Culture. PLoS Genetics, 2013, 9, e1003316.	1.5	77
72	The Light Skin Allele of SLC24A5 in South Asians and Europeans Shares Identity by Descent. PLoS Genetics, 2013, 9, e1003912.	1.5	93

#	Article	IF	CITATIONS
73	The Variance of Identity-by-Descent Sharing in the Wright–Fisher Model. Genetics, 2013, 193, 911-928.	1.2	38
74	The substance that empowers? DNA in South Asia. Contemporary South Asia, 2013, 21, 291-303.	0.2	23
75	Molecular Phylogeography of a Human Autosomal Skin Color Locus Under Natural Selection. G3: Genes, Genomes, Genetics, 2013, 3, 2059-2067.	0.8	20
76	High mammographic density in women of Ashkenazi Jewish descent. Breast Cancer Research, 2013, 15, R40.	2.2	4
77	North Africans traveling north. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11668-11669.	3.3	2
78	The GenoChip: A New Tool for Genetic Anthropology. Genome Biology and Evolution, 2013, 5, 1021-1031.	1.1	54
79	A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages. Nature Communications, 2013, 4, 2543.	5.8	80
80	Letter to the Editor Genetics and the Archaeology of Ancient Israel. Human Biology, 2013, 85, 925.	0.4	1
82	Evolution of the Pygmy Phenotype: Evidence of Positive Selection from Genome-wide Scans in African, Asian, and Melanesian Pygmies. Human Biology, 2013, 85, 251.	0.4	12
83	No Evidence from Genome-wide Data of a Khazar Origin fo the Ashkenazi Jews. Human Biology, 2013, 85, 859.	0.4	30
85	Genetics and the History of The Samaritans: Y-Chromosomal Microsatellites and Genetic Affinity between Samaritans and Cohanim. Human Biology, 2013, 85, 825.	0.4	0
86	Clarifying Mitochondrial DNA Subclades of T2e from Mideast to Mexico. Journal of Phylogenetics & Evolutionary Biology, 2013, 1 , .	0.2	6
88	Ethnic Fluidity in Ephesians. New Testament Studies, 2014, 60, 379-402.	0.1	28
89	The Genome of a Mongolian Individual Reveals the Genetic Imprints of Mongolians on Modern Human Populations. Genome Biology and Evolution, 2014, 6, 3122-3136.	1.1	24
90	Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration. Frontiers in Genetics, 2014, 5, 384.	1.1	8
91	Achilles Tendons Hypertrophy in Response to High Loading Training. Foot and Ankle International, 2014, 35, 1303-1308.	1.1	28
93	The KCNJ8-S422L variant previously associated with J-wave syndromes is found at an increased frequency in Ashkenazi Jews. European Journal of Human Genetics, 2014, 22, 94-98.	1.4	28
94	Early Back-to-Africa Migration into the Horn of Africa. PLoS Genetics, 2014, 10, e1004393.	1.5	87

#	Article	IF	CITATIONS
95	Israeli-born offspring of Jewish immigrants of Middle Eastern origin have a lower incidence of multiple myeloma than those of European origin: a cohort study of 746 200 Israeli men followed from late adolescence. Leukemia and Lymphoma, 2014, 55, 2290-2295.	0.6	8
96	Genes as a Historical Archive: On the Applicability of Genetic Research to Sociohistorical Questions: The Debate on the Origins of Ashkenazi Jewry Revisited. Perspectives in Biology and Medicine, 2014, 57, 105-117.	0.3	5
97	Pharmacogenetics in Jewish populations. Drug Metabolism and Drug Interactions, 2014, 29, 221-233.	0.3	14
98	Genome flux and stasis in a five millennium transect of European prehistory. Nature Communications, 2014, 5, 5257.	5.8	542
99	Ancestry and other genetic associations with plasma PCSK9 response to simvastatin. Pharmacogenetics and Genomics, 2014, 24, 492-500.	0.7	13
100	Hypodontia: Prevalence and pattern amongst the living Druze population – A Near Eastern genetic isolate. HOMO- Journal of Comparative Human Biology, 2014, 65, 201-213.	0.3	7
101	A Genetic Atlas of Human Admixture History. Science, 2014, 343, 747-751.	6.0	691
102	Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data. Annual Review of Statistics and Its Application, 2014, 1, 279-300.	4.1	40
103	Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers. Science, 2014, 344, 747-750.	6.0	315
104	Genetic Considerations in Human Sexâ€Mate Selection: Partners Share Human Leukocyte Antigen but not Shortâ€₹andemâ€Repeat Identity Markers. American Journal of Reproductive Immunology, 2014, 71, 467-471.	1.2	7
105	Genome-wide evidence of Austronesian–Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 936-941.	3.3	75
106	The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations. Journal of Applied Genetics, 2014, 55, 163-171.	1.0	5
107	Genomic structure in Europeans dating back at least 36,200 years. Science, 2014, 346, 1113-1118.	6.0	287
108	Ancient west Eurasian ancestry in southern and eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2632-2637.	3.3	246
109	Juden. , 2014, , 239-250.		0
110	Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 2014, 30, 377-389.	2.9	227
111	Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nature Communications, 2014, 5, 4835.	5.8	156
112	Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease. Cold Spring Harbor Perspectives in Biology, 2014, 6, a008524-a008524.	2.3	87

#	ARTICLE	IF	CITATIONS
113	A genetic contribution from the Far East into Ashkenazi Jews via the ancient Silk Road. Scientific Reports, 2015, 5, 8377.	1.6	17
114	â€Jewish Genetics' and the â€~Nature' of Israeli Citizenship. Transversal, 2015, 13, 90-102.	0.1	22
115	Archaeogenetics. , 2015, , 26-54.		1
116	Genome-Wide SNP Analysis of Southern African Populations Provides New Insights into the Dispersal of Bantu-Speaking Groups. Genome Biology and Evolution, 2015, 7, 2560-2568.	1.1	27
117	Characterization of the biological processes shaping the genetic structure of the Italian population. BMC Genetics, 2015, 16, 132.	2.7	10
118	Genomeâ€wide association study of schizophrenia in Ashkenazi Jews. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 649-659.	1.1	203
119	Genetic Stratigraphy of Key Demographic Events in Arabia. PLoS ONE, 2015, 10, e0118625.	1.1	40
120	Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS ONE, 2015, 10, e0135820.	1.1	91
121	Rare Variation Facilitates Inferences of Fine-Scale Population Structure in Humans. Molecular Biology and Evolution, 2015, 32, 653-660.	3.5	38
122	Genome-wide insights into the genetic history of human populations. Investigative Genetics, 2015, 6, 6.	3.3	18
123	Extensive genome-wide autozygosity in the population isolates of Daghestan. European Journal of Human Genetics, 2015, 23, 1405-1412.	1.4	21
124	The Genetic Legacy of the Expansion of Turkic-Speaking Nomads across Eurasia. PLoS Genetics, 2015, 11, e1005068.	1.5	149
125	The EuroBioBank Network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. European Journal of Human Genetics, 2015, 23, 1116-1123.	1.4	63
126	Portuguese crypto-Jews: the genetic heritage of a complex history. Frontiers in Genetics, 2015, 6, 12.	1.1	7
127	Genome-wide genotype and sequence-based reconstruction of the 140,000 year history of modern human ancestry. Scientific Reports, 2015, 4, 6055.	1.6	54
128	Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 2015, 349, aab3884.	6.0	449
129	Lichen Planopilaris is Associated with HLA DRB1*11 and DQB1*03 Alleles. Acta Dermato-Venereologica, 2015, 95, 177-180.	0.6	17
130	Current state of research in ethnogenomics: Genome-wide analysis and uniparental markers. Russian Journal of Genetics, 2015, 51, 418-429.	0.2	0

#	Article	IF	CITATIONS
131	Cardiovascular and bone health of former elite infantry soldiers at middle life. Disaster and Military Medicine, 2015, 1, 3.	1.0	0
132	The Kalash Genetic Isolate: Ancient Divergence, Drift, and Selection. American Journal of Human Genetics, 2015, 96, 775-783.	2.6	46
133	Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Medical Genetics, 2015, 16, 55.	2.1	8
134	<i>CDC174</i> , a novel component of the exon junction complex whose mutation underlies a syndrome of hypotonia and psychomotor developmental delay. Human Molecular Genetics, 2015, 24, 6485-6491.	1.4	13
135	The Role of Recent Admixture in Forming the Contemporary West Eurasian Genomic Landscape. Current Biology, 2015, 25, 2518-2526.	1.8	68
137	The phylogenetic and geographic structure of Y-chromosome haplogroup R1a. European Journal of Human Genetics, 2015, 23, 124-131.	1.4	122
138	Genotyping of geographically diverse Druze trios reveals substructure and a recent bottleneck. European Journal of Human Genetics, 2015, 23, 1093-1099.	1.4	10
139	Echoes from Sepharad: signatures on the maternal gene pool of crypto-Jewish descendants. European Journal of Human Genetics, 2015, 23, 693-699.	1.4	17
140	Founder mutation for Huntington disease in Caucasus Jews. Clinical Genetics, 2015, 87, 167-172.	1.0	6
141	Socioeconomic Outcomes of Genomics in the Developing World. , 2016, , 239-258.		0
142	Admixture into and within sub-Saharan Africa. ELife, 2016, 5, .	2.8	120
143	Migration Route Out of Africa Unresolved by 225 Egyptian and Ethiopian Whole Genome Sequences. Frontiers in Genetics, 2016, 7, 98.	1.1	4
144	In Search of the jÃ⅓dische Typus: A Proposed Benchmark to Test the Genetic Basis of Jewishness Challenges Notions of "Jewish Biomarkers― Frontiers in Genetics, 2016, 7, 141.	1.1	6
146	The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry. PLoS ONE, 2016, 11, e0152056.	1.1	17
147	Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean. PLoS ONE, 2016, 11, e0167065.	1.1	12
148	Pitfalls of the Geographic Population Structure (GPS) Approach Applied to Human Genetic History: A Case Study of Ashkenazi Jews. Genome Biology and Evolution, 2016, 8, 2259-2265.	1.1	7
149	Population stratification and its implications: lessons from genome-wide studies., 0,, 315-340.		1
150	Genetic Structure of the Armenian Population. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 113-116.	1.0	5

#	Article	IF	Citations
151	<i>CHRNA5/A3/B4</i> Variant rs3743078 and Nicotine-Related Phenotypes: Indirect Effects Through Nicotine Craving. Journal of Studies on Alcohol and Drugs, 2016, 77, 227-237.	0.6	4
152	Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature Genetics, 2016, 48, 1071-1076.	9.4	314
153	Early Neolithic genomes from the eastern Fertile Crescent. Science, 2016, 353, 499-503.	6.0	230
154	The genetic history of Cochin Jews from India. Human Genetics, 2016, 135, 1127-1143.	1.8	12
155	Reconstructing Druze population history. Scientific Reports, 2016, 6, 35837.	1.6	18
156	Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Scientific Reports, 2016, 6, 20768.	1.6	48
157	Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell, 2016, 167, 643-656.e17.	13.5	373
158	Was ADH1B under Selection in European Populations?. American Journal of Human Genetics, 2016, 99, 1217-1219.	2.6	3
159	Landscape Complexity in the Caucasus Impedes Genetic Assimilation of Human Populations More Effectively than Language or Ethnicity. Human Biology, 2016, 88, 287.	0.4	6
160	Genetic affinities of the Jewish populations of India. Scientific Reports, 2016, 6, 19166.	1.6	18
161	Genomic continuity of Argentinean Mennonites. Scientific Reports, 2016, 6, 36392.	1.6	4
162	The association of the MTHFR C677T polymorphism with inflammatory bowel diseases in the Israeli Jewish population. Medicine (United States), 2016, 95, e5611.	0.4	6
163	The Incidence of Primary Systemic Vasculitis in Jerusalem: A 20-year Hospital-based Retrospective Study. Journal of Rheumatology, 2016, 43, 1072-1077.	1.0	25
164	Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6713-6718.	3.3	53
165	Genetic evidence for an origin of the Armenians from Bronze Age mixing of multiple populations. European Journal of Human Genetics, 2016, 24, 931-936.	1.4	44
166	World Jewish Population, 2015. Journal of Magnesium and Alloys, 2016, , 273-364.	5.5	9
167	Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biology and Evolution, 2016, 8, 1132-1149.	1.1	41
168	Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. Investigative Genetics, 2016, 7, 1.	3.3	20

#	Article	IF	CITATIONS
169	Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations. Genome Research, 2016, 26, 151-162.	2.4	89
170	Genetic diversity of 38 insertion–deletion polymorphisms in Jewish populations. Forensic Science International: Genetics, 2016, 21, 1-4.	1.6	9
171	Strictly conserved tri-nucleotide motif "CAT―is associated with TAS DNA protein-binding sites in human mitochondrial DNA control region. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 250-253.	0.7	3
172	High frequency of CYP2D6 ultrarapid metabolizer genotypes in an Ashkenazi Jewish population from Argentina. Pharmacogenomics Journal, 2017, 17, 378-381.	0.9	7
173	Incidence and epidemiology of nonâ€Hodgkin lymphoma and risk of second malignancy among 22 466 survivors in Israel with 30 years of followâ€up. Hematological Oncology, 2017, 35, 599-607.	0.8	13
174	Mapping Post-Glacial expansions: The Peopling of Southwest Asia. Scientific Reports, 2017, 7, 40338.	1.6	29
175	Reconstructing the population history of the largest tribe of India: the Dravidian speaking Gond. European Journal of Human Genetics, 2017, 25, 493-498.	1.4	12
176	Overcoming the dichotomy between open and isolated populations using genomic data from a large European dataset. Scientific Reports, 2017, 7, 41614.	1.6	15
177	East Meets Westâ€"Impact of Ethnicity on Donor Match Rates in the Ezer Mizion Bone Marrow Donor Registry. Biology of Blood and Marrow Transplantation, 2017, 23, 1381-1386.	2.0	6
178	Live birth sex ratios and father's geographic origins in Jerusalem, 1964–1976. American Journal of Human Biology, 2017, 29, e22945.	0.8	1
179	The last sea nomads of the Indonesian archipelago: genomic origins and dispersal. European Journal of Human Genetics, 2017, 25, 1004-1010.	1.4	21
180	Human ancestry correlates with language and reveals that race is not an objective genomic classifier. Scientific Reports, 2017, 7, 1572.	1.6	66
181	A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling. Journal of the American Society of Nephrology: JASN, 2017, 28, 2364-2376.	3.0	40
182	Genetic portrait of Jewish populations based on three sets of X-chromosome markers: Indels, Alu insertions and STRs. Forensic Science International: Genetics, 2017, 31, e5-e11.	1.6	12
183	The genetic variation in the R1a clade among the Ashkenazi Levites' Y chromosome. Scientific Reports, 2017, 7, 14969.	1.6	13
184	The promise of discovering population-specific disease-associated genes in South Asia. Nature Genetics, 2017, 49, 1403-1407.	9.4	129
185	Impact of Sixteen Established Pancreatic Cancer Susceptibility Loci in American Jews. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1540-1548.	1.1	6
186	Genomic admixture tracks pulses of economic activity over 2,000 years in the Indian Ocean trading network. Scientific Reports, 2017, 7, 2919.	1.6	13

#	Article	IF	CITATIONS
187	The Jews of Africa and Asia (1500–1815). , 2017, , 1022-1045.		0
188	Adolescent Body Mass Index and Cardiovascular Disease–Specific Mortality by Midlife. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3011-3020.	1.8	15
189	Eight Millennia of Matrilineal Genetic Continuity in the South Caucasus. Current Biology, 2017, 27, 2023-2028.e7.	1.8	37
190	The Multiple Histories of Western Asia: Perspectives from Ancient and Modern Genomes. Human Biology, 2017, 89, 107.	0.4	6
191	Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat. Frontiers in Plant Science, 2017, 8, 2115.	1.7	47
192	Between Lake Baikal and the Baltic Sea: genomic history of the gateway to Europe. BMC Genetics, 2017, 18, 110.	2.7	34
193	Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes. Genome Medicine, 2017, 9, 79.	3.6	30
194	Race, Definition, and Science., 2017, , .		0
195	Negative Shocks and Mass Persecutions: Evidence from the Black Death. SSRN Electronic Journal, 2017,	0.4	7
196	Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nature Immunology, 2018, 19, 302-314.	7.0	205
197	Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genomeâ€wide SNP data. Annals of Human Genetics, 2018, 82, 216-226.	0.3	13
198	Environment dominates over host genetics in shaping human gut microbiota. Nature, 2018, 555, 210-215.	13.7	1,958
199	PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations. Nucleic Acids Research, 2018, 46, D984-D993.	6.5	12
200	Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics, 2018, 19, 220-234.	7.7	497
201	Unusually high prevalence of classical Kaposi's sarcoma in Druze Muslims of Northern Israel. Journal of the European Academy of Dermatology and Venereology, 2018, 32, e80-e81.	1.3	0
202	Genetic polymorphisms of pharmacogenomic VIP variants in the Lisu population of southwestern China. Medicine (United States), 2018, 97, e12231.	0.4	2
203	Donorâ€recipient ethnic mismatching impacts shortâ€and longâ€term results of heart transplantation. Clinical Transplantation, 2018, 32, e13389.	0.8	2
204	Revealing the impact of the Caucasus region on the genetic legacy of Romani people from genome-wide data. PLoS ONE, 2018, 13, e0202890.	1.1	5

#	Article	IF	Citations
205	The Genetic Ancestry of Modern Indus Valley Populations from Northwest India. American Journal of Human Genetics, 2018, 103, 918-929.	2.6	38
207	Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Communications Biology, 2018, 1, 167.	2.0	73
208	Non-Ashkenazi Jewish Origin is Associated with Early Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 65, 877-884.	1.2	1
209	Genetic Basis of Delayed Hypersensitivity Reactions to Drugs in Jewish and Arab Populations. Pharmaceutical Research, 2018, 35, 211.	1.7	3
210	Ancient human parallel lineages within North America contributed to a coastal expansion. Science, 2018, 360, 1024-1027.	6.0	138
211	Comprehensive overview of the pharmacogenetic diversity in Ashkenazi Jews. Journal of Medical Genetics, 2018, 55, 617-627.	1.5	24
213	Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Current Biology, 2019, 29, 2430-2441.e10.	1.8	44
214	Analysis of the genetic basis of height in large Jewish nuclear families. PLoS Genetics, 2019, 15, e1008082.	1.5	1
215	Revealing the Genetic Impact of the Ottoman Occupation on Ethnic Groups of East-Central Europe and on the Roma Population of the Area. Frontiers in Genetics, 2019, 10, 558.	1.1	9
216	Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations. Journal of Biosciences, 2019, 44, 1.	0.5	3
217	Inter-individual genomic heterogeneity within European population isolates. PLoS ONE, 2019, 14, e0214564.	1.1	3
218	Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science, 2019, 366, 708-714.	6.0	164
219	Surveillance of Individuals with a Family History of Pancreatic Cancer and Inherited Cancer Syndromes: A Strategy for Detecting Early Pancreatic Cancers. Diagnostics, 2019, 9, 169.	1.3	8
220	Impact of Immigration on Body Mass Index and Blood Pressure Among Adolescent Males and Females. Hypertension, 2019, 74, 1316-1323.	1.3	11
221	PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biology, 2019, 20, 215.	3.8	30
222	Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. Science Advances, 2019, 5, eaaw3492.	4.7	53
223	Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Scientific Reports, 2019, 9, 13581.	1.6	9
224	Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genetics, 2019, 15, e1008385.	1.5	34

#	ARTICLE	IF	Citations
225	Native American admixture recapitulates population-specific migration and settlement of the continental United States. PLoS Genetics, 2019, 15, e1008225.	1.5	25
226	The genetic legacy of the Yaghnobis: A witness of an ancient Eurasian ancestry in the historically reshuffled central Asian gene pool. American Journal of Physical Anthropology, 2019, 168, 717-728.	2.1	6
227	The spectrum of <i>BRCA1</i> and <i>BRCA2</i> pathogenic sequence variants in Middle Eastern, North African, and South European countries. Human Mutation, 2019, 40, e1-e23.	1.1	34
228	Negative shocks and mass persecutions: evidence from the Black Death. Journal of Economic Growth, 2019, 24, 345-395.	1.1	48
229	Genetic history of the population of Crete. Annals of Human Genetics, 2019, 83, 373-388.	0.3	2
230	The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East. Current Biology, 2019, 29, 1701-1711.e16.	1.8	80
231	The Geography of Jewish Ethnogenesis. Journal of Anthropological Research, 2019, 75, 206-234.	0.1	3
232	Genomic evidence for MHC disassortative mating in humans. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182664.	1.2	14
233	Substructured Population Growth in the Ashkenazi Jews Inferred with Approximate Bayesian Computation. Molecular Biology and Evolution, 2019, 36, 1162-1171.	3.5	11
234	Family history of cancer, Ashkenazi Jewish ancestry, and pancreatic cancer risk. British Journal of Cancer, 2019, 120, 848-854.	2.9	11
235	The genetic legacy of continental scale admixture in Indian Austroasiatic speakers. Scientific Reports, 2019, 9, 3818.	1.6	30
236	Sex Differences in Plasma MicroRNA Biomarkers of Early and Complicated Diabetes Mellitus in Israeli Arab and Jewish Patients. Non-coding RNA, 2019, 5, 32.	1.3	18
237	Ancestry-Specific Analyses Reveal Differential Demographic Histories and Opposite Selective Pressures in Modern South Asian Populations. Molecular Biology and Evolution, 2019, 36, 1628-1642.	3.5	20
238	Single haplotype admixture models using large scale HLA genotype frequencies to reproduce human admixture. Immunogenetics, 2019, 71, 589-604.	1.2	2
239	Epistasis detectably alters correlations between genomic sites in a narrow parameter window. PLoS ONE, 2019, 14, e0214036.	1.1	10
240	West Asian sources of the Eurasian component in Ethiopians: a reassessment. Scientific Reports, 2019, 9, 18811.	1.6	14
241	Gene Flow and Subdivided Populations. , 2019, , 155-193.		0
242	A genome-wide association study of tramadol metabolism from post-mortem samples. Pharmacogenomics Journal, 2020, 20, 94-103.	0.9	3

#	Article	IF	CITATIONS
243	High-resolution inference of genetic relationships among Jewish populations. European Journal of Human Genetics, 2020, 28, 804-814.	1.4	6
244	Ethnic Variability Among Jews is Associated With Hypertension: Results of a Nationwide Study of 1.44 Million Adolescents. American Journal of Hypertension, 2020, 33, 175-181.	1.0	4
245	Genetic Landscapes Reveal How Human Genetic Diversity Aligns with Geography. Molecular Biology and Evolution, 2020, 37, 943-951.	3 . 5	40
246	Investigating the genetic characteristics of the Csangos, a traditionally Hungarian speaking ethnic group residing in Romania. Journal of Human Genetics, 2020, 65, 1093-1103.	1.1	2
247	European genetic ancestry associated with risk of childhood ependymoma. Neuro-Oncology, 2020, 22, 1637-1646.	0.6	16
248	Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Scientific Reports, 2020, 10, 21428.	1.6	2
249	Populations dynamics in Northern Eurasian forests: a long-term perspective from Northeast Asia. Evolutionary Human Sciences, 2020, 2, .	0.9	4
250	Recent Demographic History Inferred by High-Resolution Analysis of Linkage Disequilibrium. Molecular Biology and Evolution, 2020, 37, 3642-3653.	3.5	141
251	Genome-Wide Selection Scan in an Arabian Peninsula Population Identifies a TNKS Haplotype Linked to Metabolic Traits and Hypertension. Genome Biology and Evolution, 2020, 12, 77-87.	1.1	11
252	Adolescent obesity and midlife cancer risk: a population-based cohort study of 2·3 million adolescents in Israel. Lancet Diabetes and Endocrinology,the, 2020, 8, 216-225.	5.5	80
253	Association of a Variant in VWA3A with Response to Anti-Vascular Endothelial Growth Factor Treatment in Neovascular AMD. , 2020, 61, 48.		4
254	Loss-of-Function Variants in SERPINA12 Underlie Autosomal Recessive Palmoplantar Keratoderma. Journal of Investigative Dermatology, 2020, 140, 2178-2187.	0.3	14
255	Adolescent Obesity and Early-Onset Type 2 Diabetes. Diabetes Care, 2020, 43, 1487-1495.	4.3	84
256	<scp>Janusâ€faced</scp> race: Is race biological, social, or mythical?. American Journal of Physical Anthropology, 2021, 175, 453-464.	2.1	17
257	Adolescent Nonalcoholic Fatty Liver Disease and Type 2 Diabetes in Young Adulthood. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e34-e44.	1.8	13
258	Integrating Linguistics, Social Structure, and Geography to Model Genetic Diversity within India. Molecular Biology and Evolution, 2021, 38, 1809-1819.	3 . 5	7
260	Dissecting dynamics and differences of selective pressures in the evolution of human pigmentation. Biology Open, 2021, 10, .	0.6	4
262	The forensic landscape and the population genetic analyses of Hainan Li based on massively parallel sequencing DNA profiling. International Journal of Legal Medicine, 2021, 135, 1295-1317.	1.2	16

#	Article	IF	CITATIONS
264	mtDNA tests as a vehicle for Jewish recognition of Former Soviet Union Israeli citizens: religious and political debate. BioSocieties, 0 , 1 .	0.8	0
265	Evidence of the interplay of genetics and culture in Ethiopia. Nature Communications, 2021, 12, 3581.	5.8	25
266	Asthma in Youth and Early-onset Type 2 Diabetes: A Nationwide Study of 1.72 Million Israeli Adolescents. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e5043-e5053.	1.8	2
267	Dissecting the genetic history of the Roman Catholic populations of West Coast India. Human Genetics, 2021, 140, 1487-1498.	1.8	4
268	Ancestral patterns of recessive dystrophic epidermolysis bullosa mutations in Hispanic populations suggest sephardic ancestry. American Journal of Medical Genetics, Part A, 2021, 185, 3390-3400.	0.7	1
270	World Jewish Population, 2018. American Jewish Year Book, 2019, , 361-449.	0.4	13
271	World Jewish Population, 2013. Journal of Magnesium and Alloys, 2014, , 279-358.	5.5	12
272	The Genomic Impact of European Colonization of the Americas. Current Biology, 2019, 29, 3974-3986.e4.	1.8	89
280	New insights on intercontinental origins of paternal lineages in Northeast Brazil. BMC Evolutionary Biology, 2020, 20, 15.	3.2	5
281	Uniparental Genetic Analyses Reveal the Major Origin of Fujian Tanka from Ancient Indigenous Daic Populations. Human Biology, 2019, 91, 257.	0.4	6
283	The time and place of European admixture in Ashkenazi Jewish history. PLoS Genetics, 2017, 13, e1006644.	1.5	25
284	Predicting Diabetic Nephropathy Using a Multifactorial Genetic Model. PLoS ONE, 2011, 6, e18743.	1.1	29
285	A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe. PLoS ONE, 2013, 8, e58552.	1.1	32
286	Characterization of SNPs Associated with Prostate Cancer in Men of Ashkenazic Descent from the Set of GWAS Identified SNPs: Impact of Cancer Family History and Cumulative SNP Risk Prediction. PLoS ONE, 2013, 8, e60083.	1.1	21
287	Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial Expansions from the Near East and Neolithic Dispersals within Europe. PLoS ONE, 2013, 8, e70492.	1.1	51
288	Global Patterns of Diversity and Selection in Human Tyrosinase Gene. PLoS ONE, 2013, 8, e74307.	1.1	21
289	A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans. PLoS ONE, 2014, 9, e105920.	1.1	23
290	Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana. PLoS ONE, 2015, 10, e0127655.	1.1	15

#	Article	IF	CITATIONS
291	Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in neuropsychiatric disorders. Dialogues in Clinical Neuroscience, 2016, 18, 267-276.	1.8	25
292	Population genetics of chronic kidney disease: The evolving story of APOL1. Journal of Nephrology, 2012, 25, 603-618.	0.9	45
294	Differences in Autosomal DNA Characteristics between Jewish and Non-Jewish Populations. Surname DNA Journal, $0, , .$	0.0	0
302	From DNA to Politics. History, Philosophy and Theory of the Life Sciences, 2017, , 175-202.	0.4	0
314	Cartographic atlas of frequency variation for 45 pharmacogenetic markers in populations of Russia and its neighbor states. Bulletin of Russian State Medical University, 2020, , .	0.3	7
318	Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Molecular Vision, 2015, 21, 783-92.	1.1	48
319	A common founder effect of the splice site variant c23 + 1G > A in GJB2 gene causing autos recessive deafness 1A (DFNB1A) in Eurasia. Human Genetics, 2022, 141, 697-707.	somal 1.8	4
322	Fine-Scale Genetic Structure in the United Arab Emirates Reflects Endogamous and Consanguineous Culture, Population History, and Geography. Molecular Biology and Evolution, 2022, 39, .	3.5	3
323	Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations. Journal of Biosciences, 2019, 44, .	0.5	1
324	Recurring pathogenic variants in the BRCA2 gene in the Ethiopian Jewish population. Founder mutations?. Familial Cancer, 2022, 21, 121-123.	0.9	1
326	Genome-Wide Marker Data-Based Comparative Population Analysis of Szeklers From Korond, Transylvania, and From Transylvania Living Non-Szekler Hungarians. Frontiers in Genetics, 2022, 13, 841769.	1.1	1
328	The opposing trends of body mass index and blood pressure during 1977–2020; nationwide registry of 2.8Âmillion male and female adolescents. Cardiovascular Diabetology, 2021, 20, 242.	2.7	5
335	The spatiotemporal patterns of major human admixture events during the European Holocene. ELife, 0, 11, .	2.8	23
336	Glucose Intolerance in Pregnancy and Offspring Obesity in Late Adolescence. Diabetes Care, 2022, 45, 1540-1548.	4.3	12
337	Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy. Genomics, 2022, 114, 110405.	1.3	0
338	Exploring the relationships between genetic, linguistic and geographic distances in Bantuâ€speaking populations. American Journal of Biological Anthropology, 2022, 179, 104-117.	0.6	3
339	Invasive Management in Older Adults (â%¥80 Years) With Non-ST Elevation Myocardial Infarction. Mayo Clinic Proceedings, 2022, 97, 1247-1256.	1.4	5
340	An efficient method to identify, date, and describe admixture events using haplotype information. Genome Research, 2022, 32, 1553-1564.	2.4	18

#	Article	IF	CITATIONS
341	World Jewish Population, 2021. American Jewish Year Book, 2022, , 313-412.	0.4	11
342	Genomes from a medieval mass burial show Ashkenazi-associated hereditary diseases pre-date the 12th century. Current Biology, 2022, 32, 4350-4359.e6.	1.8	3
343	Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 2022, 12, .	1.6	48
344	Alzheimer's Disease Polygenic Risk Score Is Not Associated With Cognitive Decline Among Older Adults With Type 2 Diabetes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
345	The Anglo-Saxon migration and the formation of the early English gene pool. Nature, 2022, 610, 112-119.	13.7	33
346	Twenty years of the Human Genome Diversity Project. , 0, , 1-17.		1
347	Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14th century. Cell, 2022, 185, 4703-4716.e16.	13.5	12
348	The genetic history of Scandinavia from the Roman Iron Age to the present. Cell, 2023, 186, 32-46.e19.	13.5	9
349	Glucose intolerance in pregnancy and risk of early-onset type 2 diabetes: a population-based cohort study. Lancet Diabetes and Endocrinology, the, 2023, 11, 333-344.	5.5	10
350	A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure. Human Genetics and Genomics Advances, 2023, 4, 100189.	1.0	1
351	Genetic and selfâ€perceived ancestries in Argentina: Beyond the threeâ€hybrid model. American Journal of Biological Anthropology, 2023, 181, 85-95.	0.6	0
352	Exploring regional aspects of 3D facial variation within European individuals. Scientific Reports, 2023, 13, .	1.6	0
353	Genomic analyses of hair from Ludwig van Beethoven. Current Biology, 2023, 33, 1431-1447.e22.	1.8	20
362	Chapter 7 World Jewish Population, 2022. American Jewish Year Book, 2023, , 291-402.	0.4	O