A faint type of supernova from a white dwarf with a hel

Nature 465, 322-325 DOI: 10.1038/nature09056

Citation Report

#	Article	IF	CITATIONS
1	FALLBACK SUPERNOVAE: A POSSIBLE ORIGIN OF PECULIAR SUPERNOVAE WITH EXTREMELY LOW EXPLOSION ENERGIES. Astrophysical Journal, 2010, 719, 1445-1453.	1.6	116
2	REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS. Astrophysical Journal, 2010, 723, 329-341.	1.6	41
3	RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".la―EXPLOSION. Astrophysical Journal Letters, 2010 723, L98-L102.), 3.0	126
4	Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Monthly Notices of the Royal Astronomical Society, 2010, 409, 846-854.	1.6	62
5	A massive star origin for an unusual helium-rich supernova in an elliptical galaxy. Nature, 2010, 465, 326-328.	13.7	75
6	New explosions of old stars?. Nature, 2010, 465, 303-304.	13.7	3
7	A COMPREHENSIVE SURVEY OF HYDROGEN CHLORIDE IN THE GALAXY. Astrophysical Journal, 2010, 723, 218-228.	1.6	38
8	A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY. Astrophysical Journal Letters, 2011, 737, L23.	3.0	121
9	The Cygnus Loop: a weak core-collapse SN in our Galaxy. Astronomy and Astrophysics, 2011, 527, A55.	2.1	3
10	The impact of chemical differentiation of white dwarfs on thermonuclear supernovae. Astronomy and Astrophysics, 2011, 526, A26.	2.1	15
11	Systematically Bridging the Gap between Novæ and Supernovæ. Proceedings of the International Astronomical Union, 2011, 7, 62-62.	0.0	0
12	Systematically Bridging the Gap between Novae and Supernovae. Proceedings of the International Astronomical Union, 2011, 7, 9-16.	0.0	1
13	SUB-CHANDRASEKHAR MASS MODELS FOR SUPERNOVAE. Astrophysical Journal, 2011, 734, 38.	1.6	249
14	DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku. Astrophysical Journal Letters, 2011, 731, L11.	3.0	52
15	QUARK-NOVAE IN LOW-MASS X-RAY BINARIES WITH MASSIVE NEUTRON STARS: A UNIVERSAL MODEL FOR SHORT-HARD GAMMA-RAY BURSTS. Astrophysical Journal, 2011, 729, 60.	1.6	14
16	SUBLUMINOUS TYPE Ia SUPERNOVAE AT HIGH REDSHIFT FROM THE SUPERNOVA LEGACY SURVEY. Astrophysical Journal, 2011, 727, 107.	1.6	33
17	PTF 10bzf (SN 2010ah): A BROAD-LINE IC SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	1.6	33
18	THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES. Astrophysical Journal, 2011, 741, 97.	1.6	305

ATION REDO

#	Article	IF	Citations
19	EARLY-TYPE HOST GALAXIES OF TYPE II AND Ib SUPERNOVAE. Astrophysical Journal, 2011, 730, 110.	1.6	19
20	HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E. Astrophysical Journal, 2011, 738, 21.	1.6	97
21	THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz. Astrophysical Journal Letters, 2011, 728, L36.	3.0	35
22	THE DISCOVERY AND NATURE OF THE OPTICAL TRANSIENT CSS100217:102913+404220 \$^,\$. Astrophysical Journal, 2011, 735, 106.	1.6	77
23	Massive unseen companions to hot faint underluminous stars from SDSS (MUCHFUSS). Astronomy and Astrophysics, 2011, 526, A39.	2.1	31
24	The MUCHFUSS project – searching for hot subdwarf binaries with massive unseen companions. Astronomy and Astrophysics, 2011, 530, A28.	2.1	80
25	DISORDERED SILICATES IN SPACE: A STUDY OF LABORATORY SPECTRA OF "AMORPHOUS―SILICATES. Astrophysical Journal, 2011, 740, 93.	1.6	50
26	THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav. Astrophysical Journal, 2011, 732, 118.	1.6	61
27	AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA. Astrophysical Journal, 2011, 730, 89.	1.6	38
28	SDSS J0926+3624: the shortest period eclipsing binary star. Monthly Notices of the Royal Astronomical Society, 2011, 410, 1113-1129.	1.6	47
29	Nearby supernova rates from the Lick Observatory Supernova Search - I. The methods and data base. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1419-1440.	1.6	143
30	SN 2009jf: a slow-evolving stripped-envelope core-collapse supernovaâ~ Monthly Notices of the Royal Astronomical Society, 2011, 416, 3138-3159.	1.6	114
31	Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2. Monthly Notices of the Royal Astronomical Society, 2011, 417, 916-940.	1.6	98
32	PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011, 418, 747-758.	1.6	43
33	The merger rate of extremely low mass white dwarf binaries: links to the formation of AM CVn stars and underluminous supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 411, L31-L35.	1.2	26
34	Nearby supernova rates from the Lick Observatory Supernova Search - II. The observed luminosity functions and fractions of supernovae in a complete sample. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1441-1472.	1.6	597
35	Supernovae and their host galaxies. Astronomy and Astrophysics, 2012, 544, A81.	2.1	45
36	CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES. Astrophysical Journal, 2012, 755, 161.	1.6	174

#	Article	IF	CITATIONS
37	CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS. Astrophysical Journal, 2012, 759, 107.	1.6	138
38	DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY. Astrophysical Journal Letters, 2012, 760, L33.	3.0	42
39	A SPECTROSCOPICALLY NORMAL TYPE IC SUPERNOVA FROM A VERY MASSIVE PROGENITOR. Astrophysical Journal Letters, 2012, 749, L28.	3.0	68
40	RELATIVISTIC SHOCK BREAKOUTS—A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE. Astrophysical Journal, 2012, 747, 88.	1.6	179
41	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE la SUPERNOVAE AND THEIR HOSTS AT 0.9 < <i>z</i> klt; 1.46. Astrophysical Journal, 2012, 750, 1.	1.6	46
42	LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS. Astrophysical Journal, 2012, 755, 4.	1.6	39
43	Systematically Bridging the Gap Between Novae and Supernovae. Publications of the Astronomical Society of Australia, 2012, 29, 482-488.	1.3	55
44	Luminous Supernovae. Science, 2012, 337, 927-932.	6.0	478
45	WISeREP—An Interactive Supernova Data Repository. Publications of the Astronomical Society of the Pacific, 2012, 124, 668-681.	1.0	596
46	A central excess of stripped-envelope supernovae within disturbed galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2841-2853.	1.6	25
47	THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es. Astrophysical Journal, 2012, 751, 142.	1.6	63
48	Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole. Monthly Notices of the Royal Astronomical Society, 2012, 419, 827-840.	1.6	91
49	2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3003-3016.	1.6	121
50	Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3512-3539.	1.6	75
51	Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formationâ~ Monthly Notices of the Royal Astronomical Society, 2012, 424, 1372-1391.	1.6	134
52	Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Frontiers of Physics, 2013, 8, 116-143.	2.4	232
53	CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS. Astrophysical Journal, 2013, 771, 58.	1.6	30
54	TYPE lax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION. Astrophysical Journal, 2013, 767, 57.	1.6	295

#	Article	IF	CITATIONS
55	Locations of peculiar supernovae as a diagnostic of their origins. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1680-1686.	1.6	31
56	Environment-derived constraints on the progenitors of low-luminosity Type I supernovaeâ~ Monthly Notices of the Royal Astronomical Society, 2013, 434, 527-541.	1.6	66
57	The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2463-2473.	1.6	52
58	CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS. Astrophysical Journal, 2013, 771, 14.	1.6	39
59	A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au. Astrophysical Journal Letters, 2013, 772, L17.	3.0	29
60	SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION. Astrophysical Journal, 2013, 772, 30.	1.6	203
61	CLASSIFYING SUPERNOVAE USING ONLY GALAXY DATA. Astrophysical Journal, 2013, 778, 167.	1.6	30
62	LIMITS ON THE NUMBER OF GALACTIC YOUNG SUPERNOVA REMNANTS EMITTING IN THE DECAY LINES OF < sup > 44 < / sup > Ti. Astrophysical Journal, 2013, 775, 52.	1.6	9
63	OPACITIES AND SPECTRA OF THE <i>r</i> -PROCESS EJECTA FROM NEUTRON STAR MERGERS. Astrophysical Journal, 2013, 774, 25.	1.6	432
64	THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE IC SUPERNOVA 2005ek. Astrophysical Journal, 2013, 774, 58.	1.6	104
65	PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT. Astrophysical Journal, 2013, 769, 39.	1.6	47
66	ULTRA-STRIPPED TYPE IC SUPERNOVAE FROM CLOSE BINARY EVOLUTION. Astrophysical Journal Letters, 2013, 778, L23.	3.0	167
67	NUCLEAR DOMINATED ACCRETION FLOWS IN TWO DIMENSIONS. I. TORUS EVOLUTION WITH PARAMETRIC MICROPHYSICS. Astrophysical Journal, 2013, 763, 108.	1.6	55
68	Supernova Optical Observations and Theory. Proceedings of the International Astronomical Union, 2013, 9, 77-85.	0.0	0
69	WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS. Astrophysical Journal, 2013, 764, 169.	1.6	25
70	Producing Type Iax supernovae from a specific class of helium-ignited WD explosions. Astronomy and Astrophysics, 2013, 559, A94.	2.1	70
71	<i>SWIFT</i> /BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44. Astrophysical Journal Letters, 2014, 797, L6.	3.0	22
72	Double-detonation model of type Ia supernovae with a variable helium layer ignition mass. Research in Astronomy and Astrophysics, 2014, 14, 1146-1156.	0.7	3

#	Article	IF	CITATIONS
73	RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1. Astrophysical Journal, 2014, 794, 23.	1.6	254
74	PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovaeâ~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 1519-1533.	1.6	56
75	The Evolution of Compact Binary Star Systems. Living Reviews in Relativity, 2014, 17, 3.	8.2	319
76	The structure and fate of white dwarf merger remnants. Monthly Notices of the Royal Astronomical Society, 2014, 438, 14-34.	1.6	123
77	SN 2010MB: DIRECT EVIDENCE FOR A SUPERNOVA INTERACTING WITH A LARGE AMOUNT OF HYDROGEN-FREE CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2014, 785, 37.	1.6	54
78	DEFINING PHOTOMETRIC PECULIAR TYPE Ia SUPERNOVAE. Astrophysical Journal, 2014, 795, 142.	1.6	25
79	<i>HUBBLE SPACE TELESCOPE</i> AND GROUND-BASED OBSERVATIONS OF THE TYPE lax SUPERNOVAE SN 2005hk AND SN 2008A. Astrophysical Journal, 2014, 786, 134.	1.6	56
80	THE INITIATION AND PROPAGATION OF HELIUM DETONATIONS IN WHITE DWARF ENVELOPES. Astrophysical Journal, 2014, 797, 46.	1.6	121
81	THE IGNITION OF CARBON DETONATIONS VIA CONVERGING SHOCK WAVES IN WHITE DWARFS. Astrophysical Journal, 2014, 785, 61.	1.6	103
82	Rapidly fading supernovae from massive star explosions. Monthly Notices of the Royal Astronomical Society, 2014, 438, 318-328.	1.6	52
83	The progenitors of calcium-rich transients are not formed in situ*. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2157-2166.	1.6	43
84	CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM. Astrophysical Journal Letters, 2014, 780, L34.	3.0	27
85	THE TYPE IIb SUPERNOVA 2013df AND ITS COOL SUPERGIANT PROGENITOR. Astronomical Journal, 2014, 147, 37.	1.9	99
86	A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES. Astrophysical Journal, 2014, 793, 38.	1.6	332
87	A review of type Ia supernova spectra. Astrophysics and Space Science, 2014, 351, 1-52.	0.5	53
88	New approaches to SNe Ia progenitors. New Astronomy Reviews, 2014, 62-63, 15-31.	5.2	54
89	Do cement nanoparticles exist in space?. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1319-1325.	1.6	3
90	Portrait of a doomed star. Nature, 2014, 512, 34-35.	13.7	0

#	Article	IF	CITATIONS
91	Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae. Astronomy and Astrophysics, 2014, 561, A146.	2.1	65
92	A quiescent galaxy at the position of the long GRB 050219A. Astronomy and Astrophysics, 2014, 572, A47.	2.1	18
93	Statistical Studies of Supernova Environments. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	53
94	THE ELM SURVEY. VI. ELEVEN NEW DOUBLE DEGENERATES. Astrophysical Journal, 2015, 812, 167.	1.6	64
95	LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC). Astrophysical Journal, 2015, 814, 63.	1.6	151
96	SPH Methods in the Modelling of Compact Objects. Living Reviews in Solar Physics, 2015, 1, 1.	5.0	50
97	Ultra-stripped supernovae: progenitors and fate. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2123-2144.	1.6	292
98	A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae?. Astronomy and Astrophysics, 2015, 573, A57.	2.1	13
99	High-precision abundances of elements in solar twin stars. Astronomy and Astrophysics, 2015, 579, A52.	2.1	187
100	Calcium-rich gap transients: tidal detonations of white dwarfs?. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4198-4206.	1.6	35
101	Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2463-2478.	1.6	49
102	Smoothed particle hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2948-2962.	1.6	31
103	OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION. Astrophysical Journal Letters, 2015, 799, L2.	3.0	25
104	TURBULENT MIXING ON HELIUM-ACCRETING WHITE DWARFS. Astrophysical Journal, 2015, 801, 137.	1.6	13
105	One-dimensional non-LTE time-dependent radiative transfer of an He-detonation model and the connection to faint and fast-decaying supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1370-1382.	1.6	34
106	Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1206-1231.	1.6	69
107	The response of a helium white dwarf to an exploding Type Ia supernova. Monthly Notices of the Royal Astronomical Society, 2015, 449, 942-954.	1.6	22
108	Liverpool telescope 2: a new robotic facility for rapid transient follow-up. Experimental Astronomy, 2015, 39, 119-165.	1.6	10

#	Article	IF	CITATIONS
109	ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2015, 803, 40.	1.6	28
110	Explosion of white dwarfs harboring hybrid CONe cores. Astronomy and Astrophysics, 2016, 589, A38.	2.1	33
111	ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS. Astrophysical Journal, 2016, 827, 90.	1.6	92
112	High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Astronomy and Astrophysics, 2016, 593, A65.	2.1	61
113	Time-dependent models of accretion discs with nuclear burning following the tidal disruption of a white dwarf by a neutron star. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1154-1176.	1.6	54
114	Nucleosynthetic history of elements in the Galactic disk. Astronomy and Astrophysics, 2016, 593, A125.	2.1	73
115	SUPERNOVAE FROM DIRECT COLLISIONS OF WHITE DWARFS AND THE ROLE OF HELIUM SHELL IGNITION. Astrophysical Journal, 2016, 822, 19.	1.6	27
116	Origin of central abundances in the hot intra-cluster medium. Astronomy and Astrophysics, 2016, 595, A126.	2.1	45
117	RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP. Astrophysical Journal, 2016, 819, 35.	1.6	122
118	<i>Hubble Space Telescope</i> observations of the host galaxies and environments of calcium-rich supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1768-1777.	1.6	29
119	The Dark Energy Survey: more than dark energy – an overview. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1270-1299.	1.6	618
120	Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 457, 328-350.	1.6	226
121	Merger of a white dwarf–neutron star binary to 10 ²⁹ carat diamonds: origin of the pulsar planets. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2790-2803.	1.6	44
122	A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86. Nature Astronomy, 2017, 1, .	4.2	21
123	Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations. Nature Astronomy, 2017, 1, .	4.2	40
124	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	1.6	60
125	Revisiting the Lick Observatory Supernova Search Volume-limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions. Publications of the Astronomical Society of the Pacific, 2017, 129, 054201.	1.0	103
126	LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies. Astrophysical Journal, 2017, 837, 121.	1.6	86

#	Article	IF	CITATIONS
127	iPTF15eqv: Multiwavelength Exposé of a Peculiar Calcium-rich Transient. Astrophysical Journal, 2017, 846, 50.	1.6	30
128	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	13.7	601
129	The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source. Astrophysical Journal Letters, 2017, 848, L26.	3.0	31
130	Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions. Astrophysical Journal, 2017, 846, 36.	1.6	36
131	Related Explosions. Astronomy and Astrophysics Library, 2017, , 581-594.	0.2	0
132	Supernovae and their host galaxies – V. The vertical distribution of supernovae in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1390-1400.	1.6	18
133	LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2463-2480.	1.6	10
134	Mass transfer in white dwarf–neutron star binaries. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3556-3575.	1.6	59
135	Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2085-2098.	1.6	67
136	Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1894-1910.	1.6	143
137	Unusual Supernovae and Alternative Power Sources. , 2017, , 939-965.		10
138	Observational and Physical Classification of Supernovae. , 2017, , 195-237.		79
139	The Extremes of Thermonuclear Supernovae. , 2017, , 317-373.		75
140	Type Iax Supernovae. , 2017, , 375-401.		52
141	Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants. Astrophysical Journal, 2017, 850, 127.	1.6	13
142	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	1.6	57
143	Helium in double-detonation models of type Ia supernovae. Astronomy and Astrophysics, 2017, 599, A46.	2.1	29
144	White dwarf dynamical interactions and fast optical transients. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4815-4821.	1.6	9

#	Article	IF	CITATIONS
145	High-precision abundances of elements in <i>Kepler</i> LEGACY stars. Astronomy and Astrophysics, 2017, 608, A112.	2.1	54
146	Merging of a CO WD and a He-rich WD to produce a type Ia supernovae. Astronomy and Astrophysics, 2017, 606, A136.	2.1	14
147	Helium ignition in rotating magnetized CO white dwarfs leading to fast and faint rather than classical Type Ia supernovae. Astronomy and Astrophysics, 2017, 602, A55.	2.1	22
148	<i>Chandra</i> X-ray constraints on the candidate Ca-rich gap transient SN 2016hnk. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L111-L115.	1.2	12
149	Dynamical Properties of Eccentric Nuclear Disks: Stability, Longevity, and Implications for Tidal Disruption Rates in Post-merger Galaxies. Astrophysical Journal, 2018, 853, 141.	1.6	40
150	Investigating the diversity of supernovae type lax: a MUSE and NOT spectroscopic study of their environments. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1359-1387.	1.6	40
151	Supernovae Ia in 2017: a long time delay from merger/accretion to explosion. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	26
152	The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient. Astrophysical Journal Letters, 2018, 865, L3.	3.0	146
153	Neutron Stars Formation and Core Collapse Supernovae. Astrophysics and Space Science Library, 2018, , 1-56.	1.0	10
154	Rapidly evolving transients in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 894-917.	1.6	109
155	The Carnegie Supernova Project I. Astronomy and Astrophysics, 2018, 609, A134.	2.1	34
156	The demographics of neutron star – white dwarf mergers. Astronomy and Astrophysics, 2018, 619, A53.	2.1	48
157	Optical Observations of the Young Type Ic Supernova SN 2014L in M99. Astrophysical Journal, 2018, 863, 109.	1.6	11
158	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	1.6	31
159	Tidal disruption of a white dwarf by a black hole: the diversity of nucleosynthesis, explosion energy, and the fate of debris streams. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3449-3460.	1.6	24
160	High-precision stellar abundances of the elements: methods and applications. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	73
161	PSR J1755â^2550: a young radio pulsar with a massive, compact companion. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4315-4326.	1.6	21
162	The Volumetric Rate of Calcium-rich Transients in the Local Universe. Astrophysical Journal, 2018, 858, 50.	1.6	30

#	Article	IF	CITATIONS
163	Peculiar Supernovae. Space Science Reviews, 2018, 214, 1.	3.7	7
164	Stellar Binaries Incident on Supermassive Black Hole Binaries: Implications for Double Tidal Disruption Events, Calcium-rich Transients, and Hypervelocity Stars. Astrophysical Journal Letters, 2018, 863, L24.	3.0	12
165	Observational properties of extreme supernovae. Nature Astronomy, 2019, 3, 697-705.	4.2	60
166	SN1991bg-like supernovae are associated with old stellar populations. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	15
167	SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium. Astrophysical Journal, 2019, 881, 87.	1.6	28
168	Observational properties of thermonuclear supernovae. Nature Astronomy, 2019, 3, 706-716.	4.2	92
169	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
170	Nuclear-dominated accretion flows in two dimensions – II. Ejecta dynamics and nucleosynthesis for CO and ONe white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 259-279.	1.6	28
171	Evolution of helium star plus carbon-oxygen white dwarf binary systems and implications for diverse stellar transients and hypervelocity stars. Astronomy and Astrophysics, 2019, 627, A14.	2.1	18
172	Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC). Publications of the Astronomical Society of the Pacific, 2019, 131, 094501.	1.0	85
173	Evidence for Sub-Chandrasekhar Type Ia Supernovae from Stellar Abundances in Dwarf Galaxies ^{â^—} . Astrophysical Journal, 2019, 881, 45.	1.6	45
174	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	3.0	28
175	Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5802-5821.	1.6	30
176	Abundance to age ratios in the HARPS-GTO sample with <i>Gaia</i> DR2. Astronomy and Astrophysics, 2019, 624, A78.	2.1	92
177	Type Ibn Supernovae May not all Come from Massive Stars. Astrophysical Journal Letters, 2019, 871, L9.	3.0	32
178	Chandra-HETGS Characterization of an Outflowing Wind in the Accreting Millisecond Pulsar IGR J17591–2342. Astrophysical Journal, 2019, 874, 69.	1.6	13
179	Formation and evolution of hybrid He–CO white dwarfs and their properties. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1135-1142.	1.6	54
180	Hadronic Interactions of Energetic Charged Particles in Protogalactic Outflow Environments and Implications for the Early Evolution of Galaxies. Monthly Notices of the Royal Astronomical Society, O	1.6	5

#	Article	IF	CITATIONS
181	Neutron star–white dwarf mergers: early evolution, physical properties, and outcomes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1805-1813.	1.6	36
182	Star Clusters in the Elliptical Galaxy NGC 4589 Hosting a Calcium-rich SN Ib (SN 2005cz). Astrophysical Journal, 2019, 871, 33.	1.6	5
183	An Embedded X-Ray Source Shines through the Aspherical ATÂ2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophysical Journal, 2019, 872, 18.	1.6	160
184	The Two Most Recent Thermonuclear Supernovae in the Local Group: Radio Constraints on their Progenitors and Evolution. Astrophysical Journal, 2019, 872, 191.	1.6	6
185	On isolated millisecond pulsars formed by the coalescence of neutron stars and massive white dwarfs. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	2
186	On the formation of neutron stars via accretion-induced collapse in binaries. Monthly Notices of the Royal Astronomical Society, 2019, 484, 698-711.	1.6	50
187	Type Ia supernova sub-classes and progenitor origin. Proceedings of the International Astronomical Union, 2019, 15, 1-15.	0.0	31
188	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	1.6	8
189	Constraints on positron annihilation kinematics in the inner Galaxy. Astronomy and Astrophysics, 2019, 627, A126.	2.1	17
190	The Progenitors of Calcium-strong Transients. Astrophysical Journal, 2019, 887, 180.	1.6	32
191	The Berkeley sample of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1545-1556.	1.6	57
192	The GALAH survey: temporal chemical enrichment of the galactic disc. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2043-2056.	1.6	21
193	The formation of neutron star systems through accretion-induced collapse in white-dwarf binaries. Research in Astronomy and Astrophysics, 2020, 20, 135.	0.7	39
194	AT2018kzr: the merger of an oxygen–neon white dwarf and a neutron star or black hole. Monthly Notices of the Royal Astronomical Society, 2020, 497, 246-262.	1.6	18
195	White dwarf bounds on charged massive particles. Physical Review D, 2020, 101, .	1.6	10
196	Faint rapid red transients from neutron star–CO white dwarf mergers. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3956-3965.	1.6	22
197	Supernovae and their host galaxies – VII. The diversity of TypeÂla supernova progenitors. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1424-1440.	1.6	18
198	A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy. Astrophysical Journal Letters, 2020, 895, L23.	3.0	70

#	Article	IF	CITATIONS
199	The mystery of photometric twins DES17X1boj and DES16E2bjy. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5576-5589.	1.6	5
200	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	1.6	8
201	Tidal Disruptions of White Dwarfs: Theoretical Models and Observational Prospects. Space Science Reviews, 2020, 216, 1.	3.7	27
202	Rapid Transients Originating from Thermonuclear Explosions in Helium White Dwarf Tidal Disruption Events. Astrophysical Journal Letters, 2020, 890, L26.	3.0	9
203	Electronically Driven 1D Cooperative Diffusion in a Simple Cubic Crystal. Physical Review X, 2021, 11, .	2.8	12
204	Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source. Astrophysical Journal Letters, 2021, 908, L32.	3.0	14
205	The ANTARES Astronomical Time-domain Event Broker. Astronomical Journal, 2021, 161, 107.	1.9	31
206	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	1.6	52
207	No velocity-kicks are required to explain large-distance offsets of Ca-rich supernovae and short-GRBs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5997-6004.	1.6	16
208	Calcium-rich Transient SN 2019ehk in a Star-forming Environment: Yet Another Candidate for a Precursor of a Double Neutron-star Binary. Astrophysical Journal, 2021, 912, 30.	1.6	12
209	Hoinga: a supernova remnant discovered in the SRG/eROSITA All-Sky Survey eRASS1. Astronomy and Astrophysics, 2021, 648, A30.	2.1	15
210	Rare events of a peculiar thermonuclear supernova that precedes a core-collapse supernova. Monthly Notices of the Royal Astronomical Society, 2021, 506, 919-927.	1.6	1
211	Rates and delay times of type Ia supernovae in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	21
212	Family-Based Cohort Association Study of PRKCB1, CBLN1 and KCNMB4 Gene Polymorphisms and Autism in Polish Population. Journal of Autism and Developmental Disorders, 2021, , 1.	1.7	Ο
213	Prospects of direct detection of 48V gamma-rays from thermonuclear supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1590-1598.	1.6	4
214	Nebular Models of Sub-Chandrasekhar Mass Type Ia Supernovae: Clues to the Origin of Ca-rich Transients. Astrophysical Journal, 2021, 906, 65.	1.6	25
215	The Peculiar Ca-rich SN2019ehk: Evidence for a Type IIb Core-collapse Supernova from a Low-mass Stripped Progenitor. Astrophysical Journal Letters, 2021, 907, L18.	3.0	20
216	Observational and Physical Classification of Supernovae. , 2016, , 1-43.		4

#	Article	IF	CITATIONS
217	Type lax Supernovae. , 2017, , 1-27.		3
218	Supernovae and Gamma-Ray Bursts. , 2013, , 693-733.		4
219	Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing. Astronomy and Astrophysics, 2016, 595, A35.	2.1	141
220	The rise and fall of an extraordinary Ca-rich transient. Astronomy and Astrophysics, 2020, 635, A186.	2.1	15
221	⁴⁴ Ti ejecta in young supernova remnants. Astronomy and Astrophysics, 2020, 638, A83.	2.1	23
222	Formation of sdB-stars via common envelope ejection by substellar companions. Astronomy and Astrophysics, 2020, 642, A97.	2.1	30
223	Low-luminosity Type II supernovae – III. SN 2018hwm, a faint event with an unusually long plateau. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1059-1071.	1.6	13
224	A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY. Astrophysical Journal, 2016, 821, 119.	1.6	95
225	Magnetars from Neutron Star–White Dwarf Mergers: Application to Fast Radio Bursts. Astrophysical Journal, 2020, 893, 9.	1.6	20
226	Ca hnk: The Calcium-rich Transient Supernova 2016hnk from a Helium Shell Detonation of a Sub-Chandrasekhar White Dwarf. Astrophysical Journal, 2020, 896, 165.	1.6	19
227	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	1.6	48
228	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	1.6	57
229	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	1.6	107
230	The Distant, Galaxy Cluster Environment of the Short GRB 161104A at z â^1⁄4 0.8 and a Comparison to the Short GRB Host Population. Astrophysical Journal, 2020, 904, 52.	1.6	17
231	Strong Calcium Emission Indicates that the Ultraviolet-flashing SN Ia 2019yvq Was the Result of a Sub-Chandrasekar-mass Double-detonation Explosion. Astrophysical Journal Letters, 2020, 900, L27.	3.0	28
232	Sub-Chandrasekhar models for Type Ia supernovae and astrophysical transients. , 2013, , .		0
233	The Extremes of Thermonuclear Supernovae. , 2016, , 1-57.		1
234	- X-Ray Bursts and Superbursts. , 2016, , 280-315.		0

#	Article	IF	CITATIONS
235	- Nuclear Physics. , 2016, , 90-137.		0
236	Unusual Supernovae and Alternative Power Sources. , 2017, , 1-27.		1
237	Type lax Supernovae. , 2017, , 1-27.		1
238	Peculiar Supernovae. Space Sciences Series of ISSI, 2019, , 147-171.	0.0	0
239	Multidimensional Radiative Transfer Calculations of Double Detonations of Sub-Chandrasekhar-mass White Dwarfs. Astrophysical Journal, 2021, 922, 68.	1.6	27
240	Photometric Classification of Early-time Supernova Light Curves with SCONE. Astronomical Journal, 2022, 163, 57.	1.9	6
241	Spatially Resolved X-Ray Study of Supernova Remnant G306.3–0.9 with Unusually High Calcium Abundance. Astrophysical Journal, 2022, 924, 119.	1.6	3
242	Still Brighter than Pre-explosion, SN 2012Z Did Not Disappear: Comparing Hubble Space Telescope Observations a Decade Apart. Astrophysical Journal, 2022, 925, 138.	1.6	17
243	Transients from ONe white dwarf – neutron star/black hole mergers. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3758-3777.	1.6	24
244	Linking Extragalactic Transients and Their Host Galaxy Properties: Transient Sample, Multiwavelength Host Identification, and Database Construction. Astrophysical Journal, Supplement Series, 2022, 259, 13.	3.0	6
245	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	1.6	10
246	Physical Properties of the Host Galaxies of Ca-rich Transients. Astrophysical Journal, 2022, 927, 199.	1.6	7
247	Characterization of Supernovae Based on the Spectral–Temporal Energy Distribution: Two Possible SN Ib Subtypes. Astrophysical Journal, 2022, 930, 31.	1.6	1
248	Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5686-5705.	1.6	11
249	The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl. Astrophysical Journal, 2022, 932, 58.	1.6	15
250	SN 2016dsg: A Thermonuclear Explosion Involving a Thick Helium Shell. Astrophysical Journal, 2022, 934, 102.	1.6	10
251	Probe for Type Ia Supernova Progenitor in Decihertz Gravitational Wave Astronomy. Astrophysical Journal, 2022, 938, 52.	1.6	4
252	Hyper-runaway and hypervelocity white dwarf candidates in <i>Gaia</i> Data Release 3: Possible remnants from Ia/Iax supernova explosions or dynamical encounters. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6223-6237	1.6	4

#	Article	IF	CITATIONS
253	Using 44Ti emission to differentiate between thermonuclear supernova progenitors. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 519, L74-L78.	1.2	3
254	The Relationship between Age, Metallicity, and Abundances for Disk Stars in a Simulated Milky Way. Astrophysical Journal, 2023, 942, 35.	1.6	5
255	Nucleosynthesis and Tracer Methods in Type Ia Supernovae. , 2023, , 1-34.		0
256	Shock Breakout from Stellar Envelopes: The Relativistic Limit. Astrophysical Journal, 2023, 943, 97.	1.6	0
257	The Origins of Calcium-rich Supernovae From Disruptions of CO White Dwarfs by Hybrid He–CO White Dwarfs. Astrophysical Journal, 2023, 944, 22.	1.6	7
258	SN 2020uem: a Possible Thermonuclear Explosion within a Dense Circumstellar Medium. I. The Nature of Type IIn/Ia-CSM SNe from Photometry and Spectroscopy. Astrophysical Journal, 2023, 944, 203.	1.6	4
259	Chemical characterisation of the X-shooter Spectral Library (XSL): [Mg/Fe] and [Ca/Fe] abundances. Astronomy and Astrophysics, 2023, 672, A166.	2.1	0
260	SN 2020jgb: A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy. Astrophysical Journal, 2023, 946, 83.	1.6	3
266	Nucleosynthesis and Tracer Methods in Type Ia Supernovae. , 2023, , 3809-3842.		0

Nucleosynthesis and Tracer Methods in Type Ia Supernovae. , 2023, , 3809-3842. 266