A role for host–parasite interactions in the horizonta phyla

Nature 464, 1347-1350 DOI: 10.1038/nature08939

Citation Report

#	Article	IF	CITATIONS
1	Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. EFSA Supporting Publications, 2010, 7, 71E.	0.3	8
3	Pervasive Horizontal Transfer of Rolling-Circle Transposons among Animals. Genome Biology and Evolution, 2010, 2, 656-664.	1.1	93
4	Algal diseases: spotlight on a black box. Trends in Plant Science, 2010, 15, 633-640.	4.3	251
5	Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology and Evolution, 2010, 25, 537-546.	4.2	427
6	Pathogenesis of Chagas' Disease: Parasite Persistence and Autoimmunity. Clinical Microbiology Reviews, 2011, 24, 592-630.	5.7	182
7	The limited distribution of Helitrons to vesper bats supports horizontal transfer. Gene, 2011, 474, 52-58.	1.0	27
8	Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genetics and Biology, 2011, 48, 306-326.	0.9	115
9	Defining Environmental Risk Assessment Criteria for Genetically Modified (GM) Mammals and Birds to be placed on the EU market. EFSA Supporting Publications, 2011, 8, 107E.	0.3	0
10	Discovery of Highly Divergent Repeat Landscapes in Snake Genomes Using High-Throughput Sequencing. Genome Biology and Evolution, 2011, 3, 641-653.	1.1	87
11	The Evolution and Diversity of DNA Transposons in the Genome of the Lizard Anolis carolinensis. Genome Biology and Evolution, 2011, 3, 1-14.	1.1	39
12	A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Standards in Genomic Sciences, 2011, 4, 257-270.	1.5	31
13	Repeated DNA sequences as an engine of biological diversification. Molecular Biology, 2011, 45, 704-727.	0.4	9
14	<i>Trans</i> â€splicing. Wiley Interdisciplinary Reviews RNA, 2011, 2, 417-434.	3.2	119
15	The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica, 2011, 139, 327-338.	0.5	8
16	Co-evolution between transposable elements and their hosts: a major factor in genome size evolution?. Chromosome Research, 2011, 19, 777-786.	1.0	77
17	Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Research, 2011, 19, 787-808.	1.0	49
18	Bounds of percolation thresholds in the enhanced binary tree. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1447-1452.	1.2	5
19	Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evolutionary Biology, 2011, 11, 356.	3.2	39

		CLFORT	
#	Article	IF	Citations
20	Developing a community-based genetic nomenclature for anole lizards. BMC Genomics, 2011, 12, 554.	1.2	23
21	The transposable element profile of the Anolis genome. Mobile Genetic Elements, 2011, 1, 107-111.	1.8	27
22	Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus. Mobile Genetic Elements, 2011, 1, 179-186.	1.8	15
23	Eukaryotic Pyruvate Formate Lyase and Its Activating Enzyme Were Acquired Laterally from a Firmicute. Molecular Biology and Evolution, 2011, 28, 2087-2099.	3.5	66
24	Phylogenetic and Functional Characterization of the <i>hAT</i> Transposon Superfamily. Genetics, 2011, 188, 45-57.	1.2	69
25	Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants. PLoS Biology, 2012, 10, e1001428.	2.6	84
26	Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles. Molecular Biology and Evolution, 2012, 29, 503-515.	3.5	55
27	Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1907-1912.	3.3	103
28	On the transposon origins of mammalian SCAND3 and KRBA2, two zinc-finger genes carrying an integrase/transposase domain. Mobile Genetic Elements, 2012, 2, 205-210.	1.8	9
29	Horizontal Transfer and the Evolution of Host-Pathogen Interactions. International Journal of Evolutionary Biology, 2012, 2012, 1-9.	1.0	14
30	Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats. Genome Biology and Evolution, 2012, 4, 575-585.	1.1	38
31	Horizontal Transposon Transfer in Eukarya: Detection, Bias, and Perspectives. Genome Biology and Evolution, 2012, 4, 801-811.	1.1	103
32	The Tree, the Spiral and the Web of Life: A Visual Exploration of Biological Evolution for Public Murals. Leonardo, 2012, 45, 18-25.	0.2	3
33	Developments in RNA interference and genetic transformation to define gene function in parasitic helminths. Parasitology, 2012, 139, 557-559.	0.7	3
34	Human Transgenesis: Definitions, Technical Possibilities and Moral Challenges. Philosophy and Technology, 2012, 25, 513-524.	2.6	0
36	General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica, 2012, 140, 375-392.	0.5	9
37	Evolutionary Implications of Horizontal Gene Transfer. Annual Review of Genetics, 2012, 46, 341-358.	3.2	188
38	Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families. BMC Evolutionary Biology, 2012, 12, 201.	3.2	27

#	Article	IF	CITATIONS
39	Genetic manipulation of schistosomes – progress with integration competent vectors. Parasitology, 2012, 139, 641-650.	0.7	15
40	The Evolutionary Dynamics of Transposable Elements in Eukaryote Genomes. Genome Dynamics, 2012, 7, 68-91.	2.4	44
41	Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA. Advances in Photosynthesis and Respiration, 2012, , 223-235.	1.0	18
42	The Repetitive Landscape of Sauropsid Genomes. , 2012, , 243-263.		0
43	Plant Genome Diversity Volume 1. , 2012, , .		15
44	Biocommunication of Fungi. , 2012, , .		22
45	Horizontal transfers of Mariner transposons between mammals and insects. Mobile DNA, 2012, 3, 14.	1.3	34
46	Mar, a MITE family of hAT transposons in Drosophila. Mobile DNA, 2012, 3, 13.	1.3	27
47	How does selfing affect the dynamics of selfish transposable elements?. Mobile DNA, 2012, 3, 5.	1.3	44
48	Evolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e50978.	1.1	91
49	Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution. Genes, 2012, 3, 409-422.	1.0	26
50	Methods for detection of horizontal transfer of transposable elements in complete genomes. Genetics and Molecular Biology, 2012, 35, 1078-1084.	0.6	21
51	Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genetics and Molecular Biology, 2012, 35, 395-406.	0.6	34
52	The Impact of Transposable Elements on Gene and Genome Evolution. , 2012, , 35-58.		19
53	Insect Transposable Elements. , 2012, , 57-89.		3
54	Lack of evidence for integration of Trypanosoma cruzi minicircle DNA in South American human genomes. International Journal for Parasitology, 2012, 42, 437-441.	1.3	0
55	High-resolution picture of a venom gland transcriptome: Case study with the marine snail Conus consors. Toxicon, 2012, 59, 34-46.	0.8	76
56	A novel <scp><i>hAT</i></scp> element in <scp><i>B</i></scp> <i>ombyx mori</i> and <scp><i>R</i></scp> <i>hodnius prolixus</i> : its relationship with miniature inverted repeat transposable elements (<scp>MITEs</scp>) and horizontal transfer. Insect Molecular Biology, 2013, 22, 584-596	1.0	15

#	Article	IF	CITATIONS
57	Horizontal transfer of OC1 transposons in the Tasmanian devil. BMC Genomics, 2013, 14, 134.	1.2	11
58	Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins. Journal of Biological Chemistry, 2013, 288, 16127-16138.	1.6	12
59	Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mobile DNA, 2013, 4, 21.	1.3	48
60	Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei. BMC Evolutionary Biology, 2013, 13, 165.	3.2	17
61	Jumping the fine <scp>LINE</scp> between species: Horizontal transfer of transposable elements in animals catalyses genome evolution. BioEssays, 2013, 35, 1071-1082.	1.2	40
62	Widespread horizontal transfer of retrotransposons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1012-1016.	3.3	126
64	The impact of transposable elements in environmental adaptation. Molecular Ecology, 2013, 22, 1503-1517.	2.0	464
65	Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome, 2013, 56, 475-486.	0.9	76
66	Evolution of a transposon in Daphnia hybrid genomes. Mobile DNA, 2013, 4, 7.	1.3	6
67	Genetic Systems, Genome Evolution, and Genetic Control of Embryonic Development in Insects. , 2013, , 103-179.		2
68	Hosts, parasites, and horizontal gene transfer. Trends in Parasitology, 2013, 29, 329-338.	1.5	63
69	A resurrected mammalian <i>hAT</i> transposable element and a closely related insect element are highly active in human cell culture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E478-87.	3.3	46
70	Genome-Wide Characterization of Endogenous Retroviruses in the Bat Myotis lucifugus Reveals Recent and Diverse Infections. Journal of Virology, 2013, 87, 8493-8501.	1.5	46
71	APE-Type Non-LTR Retrotransposons of Multicellular Organisms Encode Virus-Like 2A Oligopeptide Sequences, Which Mediate Translational Recoding during Protein Synthesis. Molecular Biology and Evolution, 2013, 30, 1955-1965.	3.5	12
72	Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive <i>Toxoplasma gondii</i> Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders. Journal of Pathogens, 2013, 2013, 1-29.	0.9	76
73	The Origin and Evolution of Six Miniature Inverted-Repeat Transposable Elements in Bombyx mori and Rhodnius prolixus. Genome Biology and Evolution, 2013, 5, 2020-2031.	1.1	20
74	Circulating nucleic acids: possible inherited effects. Biological Journal of the Linnean Society, 2013, 110, 931-948.	0.7	12
75	Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes. Genome Biology and Evolution, 2013, 5, 822-832.	1.1	38

#	Article	IF	CITATIONS
76	Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 376-382.	0.8	49
77	Accidental Genetic Engineers: Horizontal Sequence Transfer from Parasitoid Wasps to Their Lepidopteran Hosts. PLoS ONE, 2014, 9, e109446.	1.1	14
78	Constraint and opportunity in genome innovation. RNA Biology, 2014, 11, 186-196.	1.5	4
79	Microsporidian Genomes Harbor a Diverse Array of Transposable Elements that Demonstrate an Ancestry of Horizontal Exchange with Metazoans. Genome Biology and Evolution, 2014, 6, 2289-2300.	1.1	34
80	Inhibition of Autoimmune Chagas-Like Heart Disease by Bone Marrow Transplantation. PLoS Neglected Tropical Diseases, 2014, 8, e3384.	1.3	8
82	The Holozoan Capsaspora owczarzaki Possesses a Diverse Complement of Active Transposable Element Families. Genome Biology and Evolution, 2014, 6, 949-963.	1.1	5
83	Rolling-Circle Transposons Catalyze Genomic Innovation in a Mammalian Lineage. Genome Biology and Evolution, 2014, 6, 2595-2610.	1.1	53
84	Reconceptualizing major depressive disorder as an infectious disease. Biology of Mood & Anxiety Disorders, 2014, 4, 10.	4.7	27
85	A New Genome-Wide Method to Track Horizontally Transferred Sequences: Application to Drosophila. Genome Biology and Evolution, 2014, 6, 416-432.	1.1	10
86	Recurrent Horizontal Transfers of Chapaev Transposons in Diverse Invertebrate and Vertebrate Animals. Genome Biology and Evolution, 2014, 6, 1375-1386.	1.1	42
87	Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research, 2014, 24, 831-838.	2.4	177
88	Horizontal transfer of transposons between and within crustaceans and insects. Mobile DNA, 2014, 5, 4.	1.3	31
89	Horizontal gene transfer in plants. Functional and Integrative Genomics, 2014, 14, 23-29.	1.4	99
90	An introduction to the vast world of transposable elements – what about the diatoms?. Diatom Research, 2014, 29, 91-104.	0.5	8
91	Large Numbers of Novel miRNAs Originate from DNA Transposons and Are Coincident with a Large Species Radiation in Bats. Molecular Biology and Evolution, 2014, 31, 1536-1545.	3.5	60
92	Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nature Communications, 2014, 5, 3348.	5.8	97
93	Genomic Landscape of Human, Bat, and Ex Vivo DNA Transposon Integrations. Molecular Biology and Evolution, 2014, 31, 1816-1832.	3.5	30
94	Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitology Research, 2014, 113, 285-304.	0.6	139

ARTICLE IF CITATIONS # Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite 21 95 1.6 interactions. Scientific Reports, 2014, 4, 5119. <i>Helitrons</i>, the Eukaryotic Rolling-circle Transposable Elements. Microbiology Spectrum, 2015, 1.2 A reconstruction problem for a class of phylogenetic networks with lateral gene transfers. 97 0.311 Algorithms for Molecular Biology, 2015, 10, 28. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. BMC 98 1.2 Genomics, 2015, 16, 1061. <i>Tc1</i>-like Transposase<i>Thm3</i>of Silver Carp (<i>Hypophthalmichthys molitrix</i>) Can Mediate Gene Transposition in the Genome of Blunt Snout Bream (<i>Megalobrama amblycephala</i>). 99 0.8 8 G3: Genes, Genomes, Genetics, 2015, 5, 2601-2610. Retroviral DNA Sequences as a Means for Determining Ancient Diets. PLoS ONE, 2015, 10, e0144951. 1.1 Horizontal gene transfer in schistosomes: A critical assessment. Molecular and Biochemical 101 0.5 4 Parasitology, 2015, 201, 57-65. Retrotransposons: Genomic and Trans-Genomic Agents of Change., 2015, , 55-75. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proceedings of the 103 3.3 136 National Academy of Sciences of the United States of America, 2015, 112, 464-469. Horizontal transfer of a non-autonomous Helitron among insect and viral genomes. BMC Genomics, 104 1.2 2015, 16, 137. Genetic variation of Lymnaea stagnalis tolerance to copper: A test of selection hypotheses and its 105 3.7 22 relevance for ecological risk assessment. Environmental Pollution, 2015, 205, 209-217. Repeated horizontal transfers of four DNA transposons in invertebrates and bats. Mobile DNA, 2015, 6, 1.3 Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in 108 1.0 92 vertebrates. Chromosome Research, 2015, 23, 505-531. Horizontal Transfers and the New Model of TE-Driven Genome Evolution in Eukaryotes., 2015, , 77-92. 109 Parasiteâ€"Parasite Interactions in the Wild: How To Detect Them?. Trends in Parasitology, 2015, 31, 110 1.5 88 640-652. An evaluation of the ecological relationship between Drosophila species and their parasitoid wasps as an opportunity for horizontal transposon transfer. Molecular Genetics and Genomics, 2015, 290, 67-78. Use of transgenic<i>Aedes aegypti</i>in Brazil: risk perception and assessment. Bulletin of the World 112 1.523 Health Organization, 2016, 94, 766-771. Nothing in Evolution Makes Sense Except in the Light of Genomics: Readâ€"Write Genome Evolution as 1.3 an Active Biological Process. Biology, 2016, 5, 27.

#	Article	IF	CITATIONS
114	<i>TRT</i> , a Vertebrate and Protozoan <i>Tc1</i> -Like Transposon: Current Activity and Horizontal Transfer. Genome Biology and Evolution, 2016, 8, 2994-3005.	1.1	31
115	Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3: Genes, Genomes, Genetics, 2016, 6, 2091-2101.	0.8	5
116	Evidence for horizontal transfer of a recently active <i>Academ</i> transposon. Insect Molecular Biology, 2016, 25, 338-346.	1.0	7
117	Delivery of parasite RNA transcripts into infected epithelial cells during Cryptosporidium infection and its potential impact on host gene transcription. Journal of Infectious Diseases, 2016, 215, jiw607.	1.9	32
118	Ape malaria transmission and potential for ape-to-human transfers in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5329-5334.	3.3	59
119	Reexamining the <i>P</i> -Element Invasion of <i>Drosophila melanogaster</i> Through the Lens of piRNA Silencing. Genetics, 2016, 203, 1513-1531.	1.2	57
120	Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nature Communications, 2016, 7, 11396.	5.8	76
121	High Similarity between Distantly Related Species of a Plant SINE Family Is Consistent with a Scenario of Vertical Transmission without Horizontal Transfers. Molecular Biology and Evolution, 2016, 33, 2593-2604.	3.5	12
122	Horizontal transfers of transposable elements in eukaryotes: The flying genes. Comptes Rendus - Biologies, 2016, 339, 296-299.	0.1	38
123	Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila. Molecular Biology and Evolution, 2016, 33, 1641-1653.	3.5	18
124	Squamate Reptile Genomics and Evolution. , 2016, , 29-49.		0
125	Sequence variation of Bemisia tabaci Chemosensory Protein 2 in cryptic species B and Q: New DNA markers for whitefly recognition. Gene, 2016, 576, 284-291.	1.0	12
126	Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals. Genomics, 2017, 109, 383-390.	1.3	3
127	Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biology and Evolution, 2017, 9, 161-177.	1.1	226
128	Evolutionary modes of emergence of short interspersed nuclear element (<scp>SINE</scp>) families in grasses. Plant Journal, 2017, 92, 676-695.	2.8	6
129	Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida). Scientific Reports, 2017, 7, 41946.	1.6	6
130	Foreign DNA acquisition by invertebrate genomes. Journal of Invertebrate Pathology, 2017, 147, 157-168.	1.5	32
131	Exploring the read-write genome: mobile DNA and mammalian adaptation. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 1-17.	2.3	24

		CITATION REPORT		
#	Article		IF	CITATIONS
132	Living Organisms Author Their Read-Write Genomes in Evolution. Biology, 2017, 6, 42.		1.3	44
133	TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a sp structure and horizontal transfer in four Rosaceae species. Mobile DNA, 2017, 8, 14.	ecific LTR	1.3	2
134	Horizontal acquisition of transposable elements and viral sequences: patterns and con Current Opinion in Genetics and Development, 2018, 49, 15-24.	sequences.	1.5	109
135	Horizontal transfer of retrotransposons between bivalves and other aquatic species of phyla. Proceedings of the National Academy of Sciences of the United States of Americ E4227-E4235.	multiple ca, 2018, 115,	3.3	47
136	Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges a BioEssays, 2018, 40, 1700177.	nd Prospects.	1.2	20
137	Adaptations in energy metabolism and gene family expansions revealed by comparative of three Chagas disease triatomine vectors. BMC Genomics, 2018, 19, 296.	e transcriptomics	1.2	12
138	Fusion of piggyBac-like transposons and herpesviruses occurs frequently in teleosts. Zo Letters, 2018, 4, 6.	oological	0.7	22
139	Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilor 2018, 9, 6.	ne. Mobile DNA,	1.3	50
140	Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants Biology and Evolution, 2018, 35, 354-364.	. Molecular	3.5	41
141	Helena and BS: two travellers between the genera Drosophila and Zaprionus. Genome Evolution, 2018, 10, 2671-2685.	Biology and	1.1	1
142	Rapid Expansion of a Highly Germline-Expressed <i>Mariner</i> Element Acquired by Ho Transfer in the Fire Ant Genome. Genome Biology and Evolution, 2018, 10, 3262-3278	rizontal	1.1	6
144	The genome of tapeworm <i>Taenia multiceps</i> sheds light on understanding parasi and control of coenurosis disease. DNA Research, 2018, 25, 499-510.	tic mechanism	1.5	36
145	Extensive exchange of transposable elements in the Drosophila pseudoobscura group. 2018, 9, 20.	Mobile DNA,	1.3	28
146	Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biology, 2	018, 19, 85.	3.8	78
147	Squamate reptiles challenge paradigms of genomic repeat element evolution set by bir Nature Communications, 2018, 9, 2774.	ds and mammals.	5.8	101
148	Role of Horizontal Gene Transfer in Evolution of the Plant Genome. , 2019, , 291-314.			1
149	Horizontal transfer of a retrotransposon between parasitic nematodes and the commo Mobile DNA, 2019, 10, 24.	n shrew.	1.3	18
150	Characterization of a novel Helitron family in insect genomes: insights into classification and horizontal transfer. Mobile DNA, 2019, 10, 25.	n, evolution	1.3	10

#	Article	IF	Citations
151	Population management using gene drive: molecular design, models ofÂspread dynamics and assessment of ecological risks. Conservation Genetics, 2019, 20, 671-690.	0.8	81
152	Birth, School, Work, Death, and Resurrection: The Life Stages and Dynamics of Transposable Element Proliferation. Genes, 2019, 10, 336.	1.0	37
153	Giant Transposons in Eukaryotes: Is Bigger Better?. Genome Biology and Evolution, 2019, 11, 906-918.	1.1	45
154	The Mobilome of Reptiles: Evolution, Structure, and Function. Cytogenetic and Genome Research, 2019, 157, 21-33.	0.6	14
155	Genetic Systems, Genome Evolution, and Genetic Control of Embryonic Development in Insects. , 2019, , 103-175.		1
156	High frequency of horizontal transfer in Jockey families (LINE order) of drosophilids. Mobile DNA, 2019, 10, 43.	1.3	6
157	The conserved 3′ Angioâ€domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. Plant Journal, 2020, 101, 681-699.	2.8	8
158	The wide distribution and horizontal transfers of beta satellite DNA in eukaryotes. Genomics, 2020, 112, 5295-5304.	1.3	2
159	Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends in Parasitology, 2020, 36, 927-941.	1.5	41
160	Evaluating the probability of CRISPRâ€based gene drive contaminating another species. Evolutionary Applications, 2020, 13, 1888-1905.	1.5	17
161	Existence of Bov-B LINE Retrotransposons in Snake Lineages Reveals Recent Multiple Horizontal Gene Transfers with Copy Number Variation. Genes, 2020, 11, 1241.	1.0	3
162	piRNA and Transposon Dynamics in Drosophila: A Female Story. Genome Biology and Evolution, 2020, 12, 931-947.	1.1	20
163	Evolutionary puzzle of Toxoplasma gondii with suicidal ideation and suicide attempts: An updated systematic review and meta-analysis. Transboundary and Emerging Diseases, 2020, 67, 1847.	1.3	9
164	Mining histone methyltransferases and demethylases from whole genome sequence. Journal of Biosciences, 2020, 45, 1.	0.5	2
165	Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing. BioEssays, 2020, 42, 1900197.	1.2	2
166	The Cassandra retrotransposon landscape in sugar beet (<i>Beta vulgaris</i>) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. Annals of Botany, 2021, 127, 91-109.	1.4	13
167	Proteomic investigation of Peristenus spretus ovary and characterization of an ovary-enriched heat shock protein. Bulletin of Entomological Research, 2021, 111, 270-281.	0.5	0
168	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	5.7	64

#	Article	IF	CITATIONS
169	Diversity of short interspersed nuclear elements (SINEs) in lepidopteran insects and evidence of horizontal SINE transfer between baculovirus and lepidopteran hosts. BMC Genomics, 2021, 22, 226.	1.2	5
170	Mobilizing molluscan models and genomes in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200163.	1.8	24
171	Monitoring Insect Transposable Elements in Large Double-Stranded DNA Viruses Reveals Host-to-Virus and Virus-to-Virus Transposition. Molecular Biology and Evolution, 2021, 38, 3512-3530.	3.5	8
172	Protein–Protein Interactions Shape Genomic Autoimmunity in the Adaptively Evolving Rhino-Deadlock-Cutoff Complex. Genome Biology and Evolution, 2021, 13, .	1.1	2
173	Horizontal Gene Transfers in Plants. Life, 2021, 11, 857.	1.1	18
176	Chromosome Structure and Evolution of Triatominae: A Review. True Bugs (Heteroptera) of the Neotropics, 2021, , 65-99.	1.2	10
177	Genes from Double-Stranded RNA Viruses in the Nuclear Genomes of Fungi. , 2012, , 71-83.		2
180	<i>Helitrons</i> , the Eukaryotic Rolling-circle Transposable Elements. , 0, , 891-924.		8
181	Bedbugs (Hemiptera). , 2014, , 285-326.		17
182	Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biology, 2017, 15, e2001536.	2.6	39
183	Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genetics, 2020, 16, e1008946.	1.5	31
184	Analyses of 32 Loci Clarify Phylogenetic Relationships among Trypanosoma cruzi Lineages and Support a Single Hybridization prior to Human Contact. PLoS Neglected Tropical Diseases, 2011, 5, e1272.	1.3	56
185	Distribution and Evolution of Repeated Sequences in Genomes of Triatominae (Hemiptera-Reduviidae) Inferred from Genomic In Situ Hybridization. PLoS ONE, 2014, 9, e114298.	1.1	20
186	The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae. PLoS ONE, 2015, 10, e0137648.	1.1	11
187	Progress with schistosome transgenesis. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 785-793.	0.8	6
188	Prokaryotic and Eukaryotic Horizontal Transfer of Sailor (DD82E), a New Superfamily of IS630-Tc1-Mariner DNA Transposons. Biology, 2021, 10, 1005.	1.3	10
189	<i>At</i> L1 a Non-LTR Retrotrasposon Fragment in the Genome of <i>Arabidopsis thaliana </i> with Homology to Plants and Animals. American Journal of Plant Sciences, 2013, 04, 806-816.	0.3	1
191	Die Struktur des Zufalls als Motor der VerÄ ¤ derung. , 2014, , 75-96.		0

#	Article	IF	CITATIONS
192	Genomes. , 2017, , 1-20.		0
200	Epigenetic targeting of transposon relics: beating the dead horses of the genome?. Epigenetics, 2022, 17, 1331-1344.	1.3	3
201	Nucleic acids movement and its relation to genome dynamics of repetitive DNA. BioEssays, 2022, 44, e2100242.	1.2	2
202	Mining histone methyltransferases and demethylases from whole genome sequence. Journal of Biosciences, 2020, 45, .	0.5	1
203	Geography-Dependent Horizontal Gene Transfer from Vertebrate Predators to Their Prey. Molecular Biology and Evolution, 2022, 39, .	3.5	7
204	Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus. Mobile DNA, 2022, 13, 5.	1.3	17
205	The genome sequence of the lesser marbled fritillary, <i>Brenthis ino</i> , and evidence for a segregating neo-Z chromosome. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	8
208	Influence of retroelements on oncogenes and tumor suppressors in carcinogenesis: A review. Journal of Modern Oncology, 2021, 23, 666-673.	0.1	4
210	Closing the Gap: Horizontal Transfer of Mariner Transposons between Rhus Gall Aphids and Other Insects. Biology, 2022, 11, 731.	1.3	3
211	Horizontal transfer of Buster transposons across multiple phyla and classes of animals. Molecular Phylogenetics and Evolution, 2022, 173, 107506.	1.2	7
214	How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview. Algal Research, 2022, 67, 102850.	2.4	1
215	Genome assembly of the Pendlebury's roundleaf bat, <i>Hipposideros pendleburyi</i> , revealed the expansion of <i>Tc1/Mariner</i> DNA transposons in Rhinolophoidea. DNA Research, 2022, 29, .	1.5	0
217	Horizontal Transfer and Evolutionary Profiles of Two Tc1/DD34E Transposons (ZB and SB) in Vertebrates. Genes, 2022, 13, 2239.	1.0	4
218	Genetic variation in P-element dysgenic sterility is associated with double-strand break repair and alternative splicing of TE transcripts. PLoS Genetics, 2022, 18, e1010080.	1.5	1
219	<i>P</i> -element invasion fuels molecular adaptation in laboratory populations of <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2023, 77, 980-994.	1.1	4
221	Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia. Molecular Biology and Evolution, 2023, 40,	3.5	5