A large atomic chlorine source inferred from mid-contin

Nature

464, 271-274

DOI: 10.1038/nature08905

Citation Report

#	Article	IF	Citations
3	Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model–I: building an emissions data base. Atmospheric Chemistry and Physics, 2010, 10, 4931-4952.	1.9	28
4	Oxidative capacity of the Mexico City atmosphere – Part 2: A RO _x radical cycling perspective. Atmospheric Chemistry and Physics, 2010, 10, 6993-7008.	1.9	64
5	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 2010, 10, 11115-11130.	1.9	218
6	PLP–LIF study of the reactions of chlorine atoms with C2H2, C2H4, and C3H6 in 2–100 Torr of N2 diluent at 295 K. Chemical Physics Letters, 2010, 494, 174-178.	1.2	4
7	Rate Coefficients for Reactions of OH and Cl with Esters. ChemPhysChem, 2010, 11, 4097-4102.	1.0	8
8	Radicals in the Atmosphere: A Changing World!. ChemPhysChem, 2010, 11, 3059-3062.	1.0	12
9	Aspects of the Atmospheric Chemistry of Amides. ChemPhysChem, 2010, 11, 3844-3857.	1.0	81
10	Wider role for airborne chlorine. Nature, 2010, 464, 168-169.	13.7	20
11	Sticking to sugars. Nature, 2010, 464, 169-170.	13.7	35
12	Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China. Journal of Geophysical Research, 2010, 115, .	3.3	15
13	Incorporation and Exclusion of Long Chain Alkyl Halides in Fatty Acid Monolayers at the Airâ^'Water Interface. Langmuir, 2010, 26, 18806-18816.	1.6	17
14	Chemical Speciation of Individual Airborne Particles by the Combined Use of Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis and Attenuated Total Reflection Fourier Transform-Infrared Imaging Techniques. Analytical Chemistry, 2010, 82, 7987-7998.	3.2	24
15	FTIR Product Distribution Study of the Cl and OH Initiated Degradation of Methyl Acrylate at Atmospheric Pressure. Environmental Science & Environment	4.6	12
16	Kinetics of the Reactions of Cl Atoms with Several Ethers. Journal of Physical Chemistry A, 2010, 114, 8369-8375.	1.1	21
17	Kinetics and Mechanism of the Reaction of Methacrolein with Chlorine Atoms in 1a^'950 Torr of N ₂ or N ₂ /O ₂ Diluent at 297 K. Journal of Physical Chemistry A, 2010, 114, 6850-6860.	1,1	17
18	Quantification of Nitryl Chloride at Part Per Trillion Mixing Ratios by Thermal Dissociation Cavity Ring-Down Spectroscopy. Analytical Chemistry, 2011, 83, 2761-2766.	3.2	59
19	Kinetic and Mechanistic Study of the Reactions of Atomic Chlorine with CH ₃ CH ₂ Br, CH ₃ CH ₂ Br, and CH ₂ BrCH _{Br, Dournal of Physical Chemistry A, 2011, 115, 1658-1666.}	1.1	9
20	Observation of ClNO ₂ in a Mid-Continental Urban Environment. Environmental Science & Environmental & Environmental Science & Environmental & Environmental & Enviro	4.6	179

#	Article	IF	CITATIONS
21	Nitrate Ion Photolysis in Thin Water Films in the Presence of Bromide Ions. Journal of Physical Chemistry A, 2011, 115, 5810-5821.	1.1	54
22	Halide Affinity for the Waterâ^'Air Interface in Aqueous Solutions of Mixtures of Sodium Salts. Journal of Physical Chemistry A, 2011, 115, 5895-5899.	1.1	30
23	Characterization of an eastern U.S. severe air pollution episode using WRF/Chem. Journal of Geophysical Research, 2011, 116, .	3.3	31
24	Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature, 2011, 476, 198-201.	13.7	156
25	Controlling the action of chlorine radical: from lab to environment. Organic and Biomolecular Chemistry, 2011, 9, 7439.	1.5	12
26	A Compact Diode Laser Cavity Ring-Down Spectrometer for Atmospheric Measurements of NO ₃ and N ₂ 0 ₅ with Automated Zeroing and Calibration. Applied Spectroscopy, 2011, 65, 1260-1268.	1.2	20
27	Atmospheric Analytical Chemistry. Analytical Chemistry, 2011, 83, 4649-4664.	3.2	62
28	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	1.9	1,527
29	Longpath DOAS observations of surface BrO at Summit, Greenland. Atmospheric Chemistry and Physics, 2011, 11, 9899-9910.	1.9	42
30	Variable lifetimes and loss mechanisms for NO ₃ and N ₂ 0 _{during the DOMINO campaign: contrasts between marine, urban and continental air. Atmospheric Chemistry and Physics, 2011, 11, 10853-10870.}	1.9	55
31	Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles. Atmospheric Chemistry and Physics, 2011, 11, 4289-4301.	1.9	88
32	HOCl and Cl ₂ observations in marine air. Atmospheric Chemistry and Physics, 2011, 11, 7617-7628.	1.9	109
33	Deposition of dinitrogen pentoxide, N ₅ , to the snowpack at high latitudes. Atmospheric Chemistry and Physics, 2011, 11, 4929-4938.	1.9	22
34	Analyzing velocity map images to distinguish the primary methyl photofragments from those produced upon C–Cl bond photofission in chloroacetone at 193 nm. Journal of Chemical Physics, 2011, 135, 034302.	1.2	9
35	Broader perspectives for comparing different greenhouse gases. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1891-1905.	1.6	37
36	Rate constants for the gasâ€phase reactions of chlorine atoms with 1,4â€cyclohexadiene and 1,5â€cyclooctadiene at 298 K. International Journal of Chemical Kinetics, 2011, 43, 431-440.	1.0	10
37	Temperature (290â€"400K) and pressure (5â€"900Torr) dependence of the kinetics of the reactions of chlorine atoms with propene and 1-butene. Chemical Physics Letters, 2011, 501, 187-192.	1.2	3
38	Kinetic studies of Cl reactions with 3-buten-1-ol and 2-buten-1-ol over the temperature range 298–363K. Chemical Physics Letters, 2011, 502, 154-158.	1.2	9

3

#	ARTICLE	IF	CITATIONS
39	Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model Calculations of N ₂ O ₅ : A Review. Aerosol Science and Technology, 2011, 45, 665-695.	1.5	212
40	Diode laser-based cavity ring-down instrument for NO ₃ , N ₂ 0 _{, NO, NO₂ and O₃ from aircraft. Atmospheric Measurement Techniques. 2011. 4. 1227-1240.}	1.2	113
42	Comparison of N ₂ O ₅ mixing ratios during NO3Comp 2007 in SAPHIR. Atmospheric Measurement Techniques, 2012, 5, 2763-2777.	1.2	21
44	Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophysical Research Letters, 2012, 39,	1.5	116
46	Examining the impact of heterogeneous nitryl chloride production on air quality across the United States. Atmospheric Chemistry and Physics, 2012, 12, 6455-6473.	1.9	134
47	Direct N ₂ O ₅ reactivity measurements at a polluted coastal site. Atmospheric Chemistry and Physics, 2012, 12, 2959-2968.	1.9	64
48	Temperature dependent halogen activation by N ₅ reactions on halide-doped ice surfaces. Atmospheric Chemistry and Physics, 2012, 12, 5237-5247.	1.9	38
49	Nitrogen deposition to the United States: distribution, sources, and processes. Atmospheric Chemistry and Physics, 2012, 12, 4539-4554.	1.9	256
50	Ocean-atmosphere trace gas exchange. Chemical Society Reviews, 2012, 41, 6473.	18.7	206
51	Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chemical Society Reviews, 2012, 41, 6555.	18.7	201
52	Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chemical Society Reviews, 2012, 41, 6348.	18.7	416
53	Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget. Environmental Science & Environmental Science, 2012, 46, 10965-10973.	4.6	127
54	Heterogeneous reactivity of chlorine atoms with ammonium sulfate and ammonium nitrate particles. Physical Chemistry Chemical Physics, 2012, 14, 4527.	1.3	7
55	Nighttime radical observations and chemistry. Chemical Society Reviews, 2012, 41, 6405.	18.7	388
56	Ambient Pressure X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulation Studies of Liquid/Vapor Interfaces of Aqueous NaCl, RbCl, and RbBr Solutions. Journal of Physical Chemistry C, 2012, 116, 4545-4555.	1.5	58
57	Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chemical Society Reviews, 2012, 41, 6684.	18.7	279
58	The Atmospheric Chemist's Companion. , 2012, , .		69
59	Nitryl Chloride (CINO2): UV/Vis Absorption Spectrum between 210 and 296 K and O(3P) Quantum Yield at 193 and 248 nm. Journal of Physical Chemistry A, 2012, 116, 5796-5805.	1.1	39

#	ARTICLE	IF	CITATIONS
60	Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer. Environmental Science & E	4.6	177
61	Heterogeneous Interaction of N2O5 with HCl Doped H2SO4 under Stratospheric Conditions: ClNO2 and Cl2 Yields. Journal of Physical Chemistry A, 2012, 116, 6003-6014.	1.1	12
62	NO $<$ sub $><$ i $>xi></sub> Reactions on Aqueous Surfaces with Gaseous HCl: Formation of a Potential Precursor to Atmospheric Cl Atoms. Journal of Physical Chemistry Letters, 2012, 3, 3405-3410.$	2.1	34
63	Gas-Phase Oxidation of Methyl Crotonate and Ethyl Crotonate. Kinetic Study of Their Reactions toward OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2012, 116, 6127-6133.	1.1	19
64	Detection and Characterization of Products from Photodissociation of XCH $<$ sub $>$ 2 $<$ /sub $>$ CH $<$ sub $>$ 2 $<$ /sub $>$ ONO (X = F, Cl, Br, OH). Journal of Physical Chemistry A, 2012, 116, 12032-12040.	1.1	12
65	Kinetic Investigation of the OH Radical and Cl Atom Initiated Degradation of Unsaturated Ketones at Atmospheric Pressure and 298 K. Journal of Physical Chemistry A, 2012, 116, 6033-6040.	1.1	26
66	Surface-Catalyzed Chlorine and Nitrogen Activation: Mechanisms for the Heterogeneous Formation of ClNO, NO, NO <aheen sub="">2, HONO, and N₂O from HNO<aheen sub="">3 and HCl on Aluminum Oxide Particle Surfaces. Journal of Physical Chemistry A, 2012, 116, 5180-5192.</aheen></aheen>	1.1	16
67	Reactive halogen chemistry in the troposphere. Chemical Society Reviews, 2012, 41, 6448.	18.7	327
68	Gas-phase reactivity study of (E)-3-pentenenitrile and 4-pentenenitrile towards OH radicals and Cl atoms at atmospheric pressure. Atmospheric Environment, 2012, 61, 597-604.	1.9	3
70	Effects of NO _x control and plume mixing on nighttime chemical processing of plumes from coalâ€fired power plants. Journal of Geophysical Research, 2012, 117, .	3.3	20
71	The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. Journal of Geophysical Research, 2012, 117, .	3.3	54
72	Kinetics and Mechanisms of the Tropospheric Reactions of Menthol, Borneol, Fenchol, Camphor, and Fenchone with Hydroxyl Radicals (OH) and Chlorine Atoms (Cl). Journal of Physical Chemistry A, 2012, 116, 4097-4107.	1.1	23
73	Kinetics, products, and mechanisms of secondary organic aerosol formation. Chemical Society Reviews, 2012, 41, 6582.	18.7	544
74	Photochemical analyses of ozone and related compounds under various environmental conditions. Atmospheric Environment, 2012, 47, 446-458.	1.9	13
75	Hydrochloroethers in the troposphere: Kinetics with Cl atoms, lifetimes and atmospheric acceptability indices. Atmospheric Environment, 2012, 47, 104-110.	1.9	14
76	FTIR gas-phase kinetic study on the reactions of OH radicals and Cl atoms with unsaturated esters: Methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate. Atmospheric Environment, 2013, 79, 546-552.	1.9	14
77	Isotopic composition of rainwater nitrate at Bermuda: The influence of air mass source and chemistry in the marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,304.	1.2	51
78	Halogen-induced organic aerosol (XOA): a study on ultra-fine particle formation and time-resolved chemical characterization. Faraday Discussions, 2013, 165, 135.	1.6	27

#	ARTICLE	IF	CITATIONS
79	N ₂ O ₅ uptake coefficients and nocturnal NO ₂ removal rates determined from ambient wintertime measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9331-9350.	1.2	87
80	CMAQ modeling and analysis of radicals, radical precursors, and chemical transformations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,376.	1.2	30
81	Alternative Copolymerization of a Conjugated Segment and a Flexible Segment and Fabrication of a Fluorescent Sensing Film for HCl in the Vapor Phase. Chemistry - an Asian Journal, 2013, 8, 101-107.	1.7	22
82	Rate constants for the reactions of Cl atoms with a series of C ₆ –C ₁₀ cycloalkanes and cycloketones at 297 ± 2 K. International Journal of Chemical Kinetics, 2013, 45, 52-58.	1.0	10
83	Atmospheric amines – Part III: Photochemistry and toxicity. Atmospheric Environment, 2013, 71, 95-103.	1.9	98
84	Kinetic study of the reactions of chlorine atoms with fluoroethane and d-fluoroethane in the gas phase. Chemical Physics Letters, 2013, 581, 30-35.	1.2	4
85	Cl atom initiated oxidation of 1-alkenes under atmospheric conditions. Atmospheric Environment, 2013, 67, 93-100.	1.9	20
86	Laser induced fluorescence study of the - transition of FCH2CH2O. Chemical Physics Letters, 2013, 555, 64-71.	1.2	3
87	Resonance Raman Intensity Analysis of CINO2 Dissolved in Methanol. Journal of Physical Chemistry A, 2013, 117, 300-310.	1.1	1
89	The detection of nocturnal N ₂ O ₅ as HNO ₃ by alkali- and aqueous-denuder techniques. Atmospheric Measurement Techniques. 2013. 6. 231-237.	1.2	18
90	Chlorine chemistry in urban atmospheres: a review. Environmental Chemistry, 2013, 10, 221.	0.7	98
91	Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security, 2013, , .	0.1	10
92	Rate Coefficients for the Gasâ€Phase Reactions of Chlorine Atoms with Cyclic Ethers at 298 K. International Journal of Chemical Kinetics, 2013, 45, 295-305.	1.0	16
93	Near-ultraviolet Incoherent Broadband Cavity Enhanced Absorption Spectroscopy for OCIO and CH2O in Cl-initiated Photooxidation Experiment. Chinese Journal of Chemical Physics, 2013, 26, 133-139.	0.6	7
94	Atmospheric Chemistry and Environmental Assessment of Inhalational Fluroxene. ChemPhysChem, 2013, 14, 3834-3842.	1.0	7
95	Investigation of aged Asian dust particles by the combined use of quantitative ED-EPMA and ATR-FTIR imaging. Atmospheric Chemistry and Physics, 2013, 13, 3463-3480.	1.9	32
96	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.	1.9	100
97	Oxidation of elemental Hg in anthropogenic and marine airmasses. Atmospheric Chemistry and Physics, 2013, 13, 2827-2836.	1.9	53

#	Article	IF	CITATIONS
98	Insights into anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic composition of aerosol and rainwater nitrate. Geophysical Research Letters, 2013, 40, 5977-5982.	1.5	37
99	Heterogeneous formation of nitryl chloride and its role as a nocturnal NO <i>_x</i> reservoir species during CalNex‣A 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,638.	1.2	65
100	Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8067-8085.	1.2	68
101	Chlorine activation within urban or power plant plumes: Vertically resolved ClNO ₂ and Cl ₂ measurements from a tall tower in a polluted continental setting. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8702-8715.	1.2	94
102	Phase partitioning of soluble trace gases with sizeâ€resolved aerosols in nearâ€surface continental air over northern Colorado, USA, during winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9414-9427.	1.2	56
103	Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,567.	1.2	33
104	Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,591.	1.2	18
105	Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFOâ€₹234yf. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,059.	1.2	32
106	Large daytime signals of N _{O₅ and NO₃ inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon?. Atmospheric Measurement Techniques, 2014, 7, 1-12.}	1.2	53
107	A controlling role for the airâ^'sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3943-3948.	3.3	42
108	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	5.4	105
109	Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. Geoscientific Model Development, 2014, 7, 2557-2579.	1.3	51
110	Nocturnal loss of NO <i></i> during the 2010 CalNex‣A study in the Los Angeles Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,004.	1.2	26
111	Tropospheric oxidation of cyclic unsaturated ethers in the day-time: Comparison of the reactions with Cl, OH and O3 based on the determination of their rate coefficients at 298ÂK. Atmospheric Environment, 2014, 82, 113-120.	1.9	13
112	Partial hydration of n-alkyl halides at the water–vapor interface: a molecular simulation study with atmospheric implications. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	15
113	Presence of high nitryl chloride in Asian coastal environment and its impact on atmospheric photochemistry. Science Bulletin, 2014, 59, 356-359.	1.7	54
114	Product distribution study of the Cl-atom initiated oxidation of ethyl methyl sulfide and diethyl sulfide. Atmospheric Environment, 2014, 85, 41-47.	1.9	3
115	Theoretical investigation on mechanisms and kinetics of the reactions of Cl atom with CH3OOH and CH3CH2OOH. Computational and Theoretical Chemistry, 2014, 1038, 33-39.	1.1	11

#	Article	IF	CITATIONS
116	Atmospheric chemistry of 2,3,7,8-TCDD/F: Mechanism and kinetics study. Journal of Environmental Chemical Engineering, 2014, 2, 1098-1103.	3.3	3
117	Analysis of depolarization ratios of CINO2 dissolved in methanol. Journal of Chemical Physics, 2014, 140, 014301.	1.2	1
	Formation and reactivity of the dichloride radical (<mml:math) (xm<="" 0="" 10="" 50="" 677="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>lns:mml="</td><td>http://www.v</td></mml:math)>	lns:mml="	http://www.v
118		4.2	32
119	Chemosphere, 2014, 95, 464-469. Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O(3P) in dielectric barrier discharge reactor. Journal of Environmental Sciences, 2014, 26, 2283-2289.	3.2	2
120	Heterogeneous Interaction of SiO ₂ with N ₂ O ₅ : Aerosol Flow Tube and Single Particle Optical Levitation–Raman Spectroscopy Studies. Journal of Physical Chemistry A, 2014, 118, 8817-8827.	1.1	28
121	High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 2014, 514, 351-354.	13.7	265
122	An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. Environmental Science & Environmental Science & 2014, 48, 6309-6317.	4.6	406
123	Atmospheric Reaction of Cl + Methacrolein: A Theoretical Study on the Mechanism, and Pressure- and Temperature-Dependent Rate Constants. Journal of Physical Chemistry A, 2014, 118, 3541-3551.	1.1	23
124	An $\langle i \rangle$ ab initio $\langle j i \rangle$ investigation of the ground and low-lying singlet and triplet electronic states of XNO2 and XONO (X = Cl, Br, and l). Journal of Chemical Physics, 2014, 140, 044308.	1.2	5
125	Atmospheric chemistry of HFE-7300 and HFE-7500: Temperature dependent kinetics, atmospheric lifetimes, infrared spectra and global warming potentials. Atmospheric Environment, 2014, 96, 145-153.	1.9	18
126	Rate Coefficients for the Gas-Phase Reaction of Chlorine Atoms with a Series of Methoxylated Aromatic Compounds. Journal of Physical Chemistry A, 2014, 118, 1777-1784.	1.1	25
127	Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air. Atmospheric Environment, 2014, 98, 693-703.	1.9	30
128	Kinetics of the Gas-Phase Reactions of Chlorine Atoms with Naphthalene, Acenaphthene, and Acenaphthylene. Journal of Physical Chemistry A, 2014, 118, 3535-3540.	1.1	16
129	The reaction mechanisms and kinetics of CF3CHFOCH3 and CHF2CHFOCF3 with atomic chlorine: a computational study. Journal of Molecular Modeling, 2014, 20, 2435.	0.8	2
130	Reactivity of Cl Atom with Triple-Bonded Molecules. An Experimental and Theoretical Study with Alcohols. Journal of Physical Chemistry A, 2014 , 118 , 7695 - 7706 .	1.1	7
131	Gas-phase reactivity study of a series of hydrofluoroolefins (HFOs) toward OH radicals and Cl atoms at atmospheric pressure and 298ÂK. Atmospheric Environment, 2014, 88, 107-114.	1.9	28
132	FTIR gas-phase kinetic study on the reactions of some acrylate esters with OH radicals and Cl atoms. Environmental Science and Pollution Research, 2014, 21, 11541-11551.	2.7	3
133	Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study. Atmospheric Environment, 2014, 99, 183-195.	1.9	15

#	Article	IF	CITATIONS
134	Products and Mechanism of the Reactions of OH Radicals and Cl Atoms with Methyl Methacrylate (CH ₂ â•€(CH ₃)C(O)OCH ₃) in the Presence of NOx. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental & E	4.6	19
135	Kinetics and Mechanism of the Tropospheric Reaction of 3-Hydroxy-3-methyl-2-butanone with Cl Atoms. Journal of Physical Chemistry A, 2014, 118, 6163-6170.	1.1	7
136	Computational study on the mechanism and kinetics of Cl-initiated oxidation of vinyl acetate. Atmospheric Environment, 2014, 94, 63-73.	1.9	11
137	Reactions of OH and Cl with isopropyl formate, isobutyl formate, n-propyl isobutyrate and isopropyl isobutyrate. Chemical Physics Letters, 2014, 602, 68-74.	1.2	3
138	Active moss monitoring allows to identify and track distribution of metal(loid)s emitted from fumaroles on Vulcano Island, Italy. Journal of Volcanology and Geothermal Research, 2014, 280, 30-39.	0.8	11
139	Rate coefficients at 298ÂK and 1Âatm for the tropospheric degradation of a series of C6, C7 and C8 biogenic unsaturated alcohols initiated by Cl atoms. Atmospheric Environment, 2014, 94, 564-572.	1.9	7
140	Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,365.	1.2	61
141	The primary and recycling sources of OH during the NACHTTâ€2011 campaign: HONO as an important OH primary source in the wintertime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6886-6896.	1.2	66
142	Observations of gas phase hydrochloric acid in the polluted marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6897-6915.	1.2	44
143	Importance of tropospheric CINO ₂ chemistry across the Northern Hemisphere. Geophysical Research Letters, 2014, 41, 4050-4058.	1.5	99
144	Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons. Atmospheric Chemistry and Physics, 2014, 14, 1463-1483.	1.9	31
145	The fate of NO& It; sub& gt; x& It; sub& gt; emissions due to nocturnal oxidation at high latitudes: 1-D simulations and sensitivity experiments. Atmospheric Chemistry and Physics, 2014, 14, 7601-7616.	1.9	15
146	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. Atmospheric Chemistry and Physics, 2014, 14, 3373-3395.	1.9	92
147	Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmospheric Chemistry and Physics, 2014, 14, 3427-3440.	1.9	90
148	Reactive uptake of N _{O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations. Atmospheric Chemistry and Physics, 2014, 14, 5693-5707.}	1.9	84
149	Heterogeneous reaction of N _{O₅ with airborne TiO₂ particles and its implication for stratospheric particle injection, Atmospheric Chemistry and Physics, 2014, 14, 6035-6048.}	1.9	31
150	Heterogeneous reaction of N _{O₅ with illite and Arizona test dust particles. Atmospheric Chemistry and Physics, 2014, 14, 245-254.}	1.9	30
151	Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry–global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant gases. Atmospheric Chemistry and Physics, 2014, 14, 3397-3425.	1.9	56

#	Article	IF	CITATIONS
152	An MCM modeling study of nitryl chloride (ClNO ₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics, 2014, 14, 3789-3800.	1.9	87
153	Revised structure activity parameters derived from new rate coefficient determinations for the reactions of chlorine atoms with a series of seven ketones at 290 K and 1 atm. Chemical Physics Letters, 2015, 640, 87-93.	1.2	16
154	The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5638-5657.	1.2	76
155	Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 2015, 15, 8889-8973.	1.9	942
156	Influence of aerosol chemical composition on N ₅ uptake: airborne regional measurements in northwestern Europe. Atmospheric Chemistry and Physics, 2015, 15, 973-990.	1.9	66
157	WRF-Chem model predictions of the regional impacts of N ₂ heterogeneous processes on night-time chemistry over north-western Europe. Atmospheric Chemistry and Physics, 2015. 15. 1385-1409.	1.9	38
158	A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics, 2015, 15, 2775-2790.	1.9	266
159	Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere. Atmospheric Chemistry and Physics, 2015, 15, 11341-11353.	1.9	80
160	Background atmospheric sulfate deposition at a remote alpine site in the Southern Canadian Rocky Mountains. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,352.	1,2	1
161	Development of a chlorine chemistry module for the Master Chemical Mechanism. Geoscientific Model Development, 2015, 8, 3151-3162.	1.3	59
162	Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity. Atmosphere, 2015, 6, 1487-1506.	1.0	61
163	Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. Chemical Reviews, 2015, 115, 4035-4062.	23.0	344
164	Chemistry and Release of Gases from the Surface Ocean. Chemical Reviews, 2015, 115, 4015-4034.	23.0	92
165	Kinetic Study of the Gas-Phase Reactions of Chlorine Atoms with 2-Chlorophenol, 2-Nitrophenol, and Four Methyl-2-nitrophenol Isomers. Journal of Physical Chemistry A, 2015, 119, 4735-4745.	1.1	11
166	Tropospheric chemical degradation of vinyl and allyl acetate initiated by Cl atoms under high and low NO _x conditions. RSC Advances, 2015, 5, 48154-48163.	1.7	8
167	Gas-phase oxidation of CH ₂ = C(CH ₃)CH ₂ Cl initiated by OH radicals and Cl atoms: kinetics and fate of the alcoxy radical formed. Journal of Physical Organic Chemistry, 2015, 28, 480-484.	0.9	6
168	Reactivity of Liquid and Semisolid Secondary Organic Carbon with Chloride and Nitrate in Atmospheric Aerosols. Journal of Physical Chemistry A, 2015, 119, 4498-4508.	1.1	73
169	Temperature Dependence of the Cl Atom Reaction with Deuterated Methanes. Journal of Physical Chemistry A, 2015, 119, 4396-4407.	1.1	3

#	Article	IF	CITATIONS
170	Computational Study on the Mechanisms and Rate Constants of the Cl-Initiated Oxidation of Methyl Vinyl Ether in the Atmosphere. Journal of Physical Chemistry A, 2015, 119, 719-727.	1.1	13
171	Experimental and Computational Investigation on the Gas Phase Reaction of <i>p</i> -Cymene with Cl Atoms. Journal of Physical Chemistry A, 2015, 119, 559-570.	1.1	9
172	Iron(III)-Induced Activation of Chloride and Bromide from Modeled Salt Pans. Journal of Physical Chemistry A, 2015, 119, 4373-4385.	1.1	22
173	An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH3NH2, (CH3)2NH, and (CH3)3N. Physical Chemistry Chemical Physics, 2015, 17, 911-917.	1.3	29
174	Kinetic study of the gas-phase reactions of hydroxyl radicals and chlorine atoms with cis-3-hexenylformate. International Journal of Environmental Science and Technology, 2015, 12, 2881-2890.	1.8	4
175	Origins of aerosol chlorine during winter over north central Colorado, USA. Journal of Geophysical Research D: Atmospheres, 2015, 120, 678-694.	1.2	30
176	Review and Integration of Biosphere-Atmosphere Modelling of Reactive Trace Gases and Volatile Aerosols. , $2015, , .$		1
177	Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl ^{â^'} on aqueous films. Physical Chemistry Chemical Physics, 2015, 17, 19360-19370.	1.3	20
178	Atmospheric Degradation of Ozone Depleting Substances, Their Substitutes, and Related Species. Chemical Reviews, 2015, 115, 3704-3759.	23.0	128
179	Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 2015, 115, 4440-4475.	23.0	468
180	Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase. Chemical Reviews, 2015, 115, 4259-4334.	23.0	438
181	Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chemical Reviews, 2015, 115, 3898-3918.	23.0	176
182	Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea. Atmospheric Environment, 2015, 109, 70-78.	1.9	70
183	Summer deposition of sulfate and reactive nitrogen to two alpine valleys in the Canadian Rocky Mountains. Atmospheric Environment, 2015, 101, 270-285.	1.9	9
184	Gas-phase reaction of two unsaturated ketones with atomic Cl and O ₃ : kinetics and products. Physical Chemistry Chemical Physics, 2015, 17, 12000-12012.	1.3	24
185	Quantum Chemical Study on \hat{A} ·Cl-Initiated Atmospheric Degradation of Monoethanolamine. Environmental Science & Environmen	4.6	58
186	Theoretical investigation of an atmospherically important reaction between methyl methacrylate and Cl atom: A mechanistic and kinetic approach. Journal of Theoretical and Computational Chemistry, 2015, 14, 1550010.	1.8	9
187	Iron(III)-induced activation of chloride from artificial sea-salt aerosol. Environmental Chemistry, 2015, 12, 461.	0.7	15

#	Article	IF	CITATIONS
188	Chemistry of Urban Grime: Inorganic Ion Composition of Grime vs Particles in Leipzig, Germany. Environmental Science & Environmental &	4.6	35
189	Kinetics of the reactions of Cl atoms with CF3C(O)OCH3, CF3C(O)OCH2CH3, CF2HC(O)OCH3 in the temperature range of 287–313K and 1atm. Chemical Physics Letters, 2015, 638, 15-20.	1.2	5
190	Kinetic study of the OH and Cl-initiated oxidation, lifetimes and atmospheric acceptability indices of three halogenated ethenes. RSC Advances, 2015, 5, 73501-73509.	1.7	7
191	The Role of Sulfur in the Atmospheric Corrosion of Silver. Journal of the Electrochemical Society, 2015, 162, C630-C637.	1.3	43
192	Reactions of Cl atoms with alkyl esters: kinetic, mechanism and atmospheric implications. Environmental Science and Pollution Research, 2015, 22, 4820-4832.	2.7	19
195	Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	1.9	146
196	A two-channel thermal dissociation cavity ring-down spectrometer for the detection of ambient NO ₂ , RO ₂ and RONO ₂ Atmospheric Measurement Techniques, 2016, 9, 553-576.	1.2	48
199	A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,271.	1.2	86
201	Nighttime chemistry at a high altitude site above Hong Kong. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2457-2475.	1.2	78
202	Kinetics and mechanism of the OH-radical and Cl-atom oxidation of propylene carbonate. RSC Advances, 2016, 6, 98234-98242.	1.7	4
203	Ubiquity of ClNO ₂ in the urban boundary layer of Calgary, Alberta, Canada. Canadian Journal of Chemistry, 2016, 94, 414-423.	0.6	43
204	The mechanism and kinetic studies for Cl-initiated oxidation of allyl acetate in troposphere. Computational and Theoretical Chemistry, 2016, 1087, 48-56.	1.1	7
205	Atmospheric Reaction Chemistry. Springer Atmospheric Sciences, 2016, , .	0.4	27
206	Dissociation Pathways of the CH ₂ CH ₂ ONO Radical: NO ₂ + Ethene, NO + Oxirane, and a Non-Intrinsic Reaction Coordinate HNO + Vinoxy Pathway. Journal of Physical Chemistry A, 2016, 120, 4973-4987.	1.1	6
207	The environmental impact of unsaturated fluoroesters: atmospheric chemistry towards OH radicals and Cl atoms, radiative behavior and cumulative ozone creation. RSC Advances, 2016, 6, 21833-21843.	1.7	11
208	Adsorption and heterogeneous reactions of ClONO ₂ and N ₂ O ₅ on/with NaCl aerosol. RSC Advances, 2016, 6, 46336-46344.	1.7	3
209	Theoretical study on the mechanisms and kinetics of Cl-initiated oxidation of methyl acrylate. Computational and Theoretical Chemistry, 2016, 1091, 99-106.	1.1	6
210	Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2476-2489.	1.2	118

#	Article	IF	CITATIONS
211	Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia. Scientific Reports, 2016, 6, 36821.	1.6	21
212	Gas-phase kinetic and mechanistic investigation of the OH radical and Cl atom oxidation of tetraethoxysilane. RSC Advances, 2016, 6, 100577-100584.	1.7	O
213	Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,819.	1.2	106
214	Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12239-12271.	1.9	231
215	Heterogeneous reaction of ClONO ₂ with TiO ₂ aerosol particles: implications for stratospheric particle injection for climate engineering. Atmospheric Chemistry and Physics, 2016, 16, 15397-15412. Estimating N ₂ U _{U_UU_{Uamp;lt;sub>Uamp;lt;sub}}	1.9	16
216	coefficients using ambient measurements of NO ₃ uptake N ₂ , N ₂ 0 ₅ , ClNO ₂ and particle-phase nitrate. Atmospheric Chemistry and	1.9	71
217	Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China. Atmospheric Chemistry and Physics, 2016, 16, 14875-14890.	1.9	59
218	Chemical and meteorological influences on the lifetime of NO ₃ at a semi-rural mountain site during PARADE. Atmospheric Chemistry and Physics, 2016, 16, 4867-4883.	1.9	51
219	Atmospheric sink of methyl chlorodifluoroacetate and ethyl chlorodifluoroacetate: temperature dependent rate coefficients, product distribution of their reactions with Cl atoms and CF ₂ ClC(O)OH formation. RSC Advances, 2016, 6, 51834-51844.	1.7	3
220	Lung health and heart rate variability changes in salt workers. Indian Journal of Tuberculosis, 2016, 63, 115-118.	0.3	0
221	Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?. Journal of Physical Chemistry A, 2016, 120, 4096-4107.	1.1	7
222	Tropospheric Reaction Chemistry. Springer Atmospheric Sciences, 2016, , 285-386.	0.4	2
223	Evaluating N ₂ O ₅ heterogeneous hydrolysis parameterizations for CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5051-5070.	1.2	33
224	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.	1.9	26
225	Reacto-Diffusive Length of N ₂ O ₅ in Aqueous Sulfate- and Chloride-Containing Aerosol Particles. Journal of Physical Chemistry A, 2016, 120, 1039-1045.	1.1	40
226	Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chemical Reviews, 2016, 116, 4205-4259.	23.0	296
227	Effects of halogens on European air-quality. Faraday Discussions, 2017, 200, 75-100.	1.6	43
228	Computational Study of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds Featuring NH _{<i>x</i>} â€'Ï€-Bond (<i>x</i> = 1, 2) Structures. Journal of Physical Chemistry A, 2017, 121, 1657-1665.	1.1	27

#	Article	IF	Citations
229	Surface-Catalyzed Reaction between the Gases Hydrogen Chloride and Isoprene. ACS Earth and Space Chemistry, 2017, 1, 122-129.	1.2	2
230	Kinetics and product identification of the reactions of (E) -2-hexenyl acetate and 4-methyl-3-penten-2-one with OH radicals and Cl atoms at 298ÂK and atmospheric pressure. Atmospheric Environment, 2017, 161, 155-166.	1.9	9
231	Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM _{2.5} Pollution Events and N ₂ O ₅ Observations in Utah's Salt Lake Valley. Environmental Science & Environmental	4.6	78
232	Reactions of lactones with tropospheric oxidants: A kinetics and products study. Atmospheric Environment, 2017, 161, 18-26.	1.9	6
233	Computational study on the mechanism and kinetics of Cl-initiated oxidation of ethyl acrylate. Structural Chemistry, 2017, 28, 1831-1842.	1.0	7
234	Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discussions, 2017, 200, 11-58.	1.6	17
235	Observations of N 2 O 5 and ClNO 2 at a polluted urban surface site in North China: High N 2 O 5 uptake coefficients and low ClNO 2 product yields. Atmospheric Environment, 2017, 156, 125-134.	1.9	90
236	Atmospheric fate of hydrofluoroolefins, $CxF2x+1CH$ CH2 ($x\hat{A}=\hat{A}1,2,3,4$ and 6): Kinetics with Cl atoms and products. Chemosphere, 2017, 167, 330-343.	4.2	16
237	Atmospheric Chemistry of αâ€Diketones: Kinetics of C ₅ and C ₆ Compounds with Cl Atoms and OH Radicals. International Journal of Chemical Kinetics, 2017, 49, 112-118.	1.0	4
238	Ground and Airborne U.K. Measurements of Nitryl Chloride: An Investigation of the Role of Cl Atom Oxidation at Weybourne Atmospheric Observatory. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,154.	1.2	18
239	Keto-ether and glycol-ethers in the troposphere: reactivity toward OH radicals and Cl atoms, global lifetimes, and atmospheric implications. Environmental Science and Pollution Research, 2017, 24, 26049-26059.	2.7	5
240	High N ₂ O ₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science and Technology Letters, 2017, 4, 416-420.	3.9	167
241	Trapping and Structural Characterization of the XNO ₂ ·NO ₃ ^{â€"} (X =) Tj E Reactions with Cryogenic Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 4710-4715.	ETQq0 0 0 2.1) rgBT /Overlo 11
243	Reaction of Methyl Fluoroformyl Peroxycarbonate (FC(O)OOC(O)OCH3) with Cl Atoms: Formation of Hydro-ChloroFluoro-Peroxides. Journal of Physical Chemistry A, 2017, 121, 7469-7476.	1.1	1
244	Experimental and theoretical investigations of the kinetics and mechanism of the ClÂ+4-hydroxy-4-methyl-2-pentanone reaction. Atmospheric Environment, 2017, 166, 315-326.	1.9	12
245	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & Echnology, 2017, 51, 9588-9595.	4.6	78
246	Theoretical study of the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone. RSC Advances, 2017, 7, 52801-52811.	1.7	6
247	Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment. Environmental Science & Environmental Science & 2017, 51, 14030-14037.	4.6	5

#	Article	IF	Citations
248	Kinetic investigations of Cl atom initiated photo-oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study. New Journal of Chemistry, 2017, 41, 7491-7505.	1.4	14
249	Model simulation of NO 3 , N 2 O 5 and ClNO 2 at a rural site in Beijing during CAREBeijing-2006. Atmospheric Research, 2017, 196, 97-107.	1.8	35
250	Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 2017, 575, 1582-1596.	3.9	1,069
251	Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrateÂconcentrations. Atmospheric Chemistry and Physics, 2017, 17, 14747-14770.	1.9	45
252	Combined impacts of nitrous acid and nitryl chloride on lower-tropospheric ozone: new module development in WRF-Chem and application to China. Atmospheric Chemistry and Physics, 2017, 17, 9733-9750.	1.9	35
253	Higher measured than modeled ozone production at increased NO _{<i>x</i>} levels in the Colorado Front Range. Atmospheric Chemistry and Physics, 2017, 17, 11273-11292.	1.9	18
254	Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and Physics, 2017, 17, 11727-11777.	1.9	129
255	Impact of agricultural emission reductions on fine-particulate matter and public health. Atmospheric Chemistry and Physics, 2017, 17, 12813-12826.	1.9	160
256	Secondary organic aerosol from chlorine-initiated oxidation of isoprene. Atmospheric Chemistry and Physics, 2017, 17, 13491-13508.	1.9	61
257	Bromine atom production and chain propagation during springtime Arctic ozone depletion events in Barrow, Alaska. Atmospheric Chemistry and Physics, 2017, 17, 3401-3421.	1.9	11
258	Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO ₂ and RO ₂ radicals. Atmospheric Chemistry and Physics, 2017, 17, 663-690.	1.9	239
262	N ₂ O ₅ uptake and ClNO ₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmospheric Chemistry and	1.9	92
264	Measurement of ambient NO ₃ reactivity: design, characterization and first deployment of a new instrument. Atmospheric Measurement Techniques, 2017, 10, 1241-1258.	1.2	16
266	Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO ₃ and N ₂ O ₅ : experimental setup, lab characterizations, and field applications in a polluted urban environment. Atmospheric	1.2	65
268	Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chemical Reviews, 2018, 118, 3337-3390.	23.0	339
269	Perspective on Mechanism Development and Structureâ€Activity Relationships for Gasâ€Phase Atmospheric Chemistry. International Journal of Chemical Kinetics, 2018, 50, 435-469.	1.0	45
270	Forecasting air quality time series using deep learning. Journal of the Air and Waste Management Association, 2018, 68, 866-886.	0.9	172
271	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	1.2	103

#	Article	IF	CITATIONS
272	Kinetic and product studies of Cl atoms reactions with a series of branched Ketones. Journal of Environmental Sciences, 2018, 71, 271-282.	3.2	9
273	Atmospheric degradation of industrial fluorinated acrylates and methacrylates with Cl atoms at atmospheric pressure and 298â€⁻K. Atmospheric Environment, 2018, 178, 206-213.	1.9	7
274	A three-dimensional model of the atmospheric chemistry of E and Z-CF3CH=CHCl (HCFO-1233(zd) (E/Z)). Atmospheric Environment, 2018, 179, 250-259.	1.9	16
275	Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China. Environmental Science & Environmental Sci	4.6	88
276	Atmospheric Reaction of Cl with 4-Hydroxy-2-pentanone (4H2P): A Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 2135-2143.	1.1	6
277	Kinetic and mechanistic study on gas phase reactions of ozone with a series ofcis-3-hexenyl esters. RSC Advances, 2018, 8, 4230-4238.	1.7	8
278	"New―Reactive Nitrogen Chemistry Reshapes the Relationship of Ozone to Its Precursors. Environmental Science & Environmen	4.6	44
279	Nighttime NO loss and ClNO2 formation in the residual layer of a polluted region: Insights from field measurements and an iterative box model. Science of the Total Environment, 2018, 622-623, 727-734.	3.9	28
280	Abundance and origin of fine particulate chloride in continental China. Science of the Total Environment, 2018, 624, 1041-1051.	3.9	58
281	Theoretical investigations on the kinetics of Cl atom initiated reactions of series of 1-alkenes. Environmental Science and Pollution Research, 2018, 25, 4387-4405.	2.7	4
282	Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmospheric Environment, 2018, 177, 195-202.	1.9	48
283	Direct measurement of NO ₃ radical reactivity in a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 3799-3815.	1.9	45
284	Stretchable nanofibrous membranes for colorimetric/fluorometric HCl sensing: Highly sensitive charge-transfer excited state. Sensors and Actuators B: Chemical, 2018, 254, 785-794.	4.0	34
285	Production of N ₂ O ₅ and ClNO ₂ through Nocturnal Processing of Biomass-Burning Aerosol. Environmental Science & Environ	4.6	42
286	Chlorine-initiated oxidation of <i>n</i> -alkanes under high-NO _{<i>x</i>> conditions: insights into secondary organic aerosol composition and volatility using a FIGAERO–CIMS. Atmospheric Chemistry and Physics, 2018, 18, 15535-15553.}	1.9	53
287	A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane. Atmospheric Chemistry and Physics, 2018, 18, 9831-9843.	1.9	32
288	Autonomous Conflict Resolution Method for multi-UAVs Based on Preorder Flight Information. , 2018, , .		0
289	Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia. Atmospheric Chemistry and Physics, 2018, 18, 6293-6315.	1.9	17

#	Article	IF	CITATIONS
290	MEASURING THE IMPACT OF MICU ROUNDING PRACTICES ON TRAINEE LEARNING EXPERIENCE: A QUALITATIVE NEEDS ASSESSMENT. Chest, 2018, 154, 558A.	0.4	0
291	The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes. Atmospheric Measurement Techniques, 2018, 11, 3251-3262.	1.2	12
292	Efficient N ₂ O ₅ uptake and NO ₃ oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 9705-9721.	1.9	64
295	HCl Gas Sensor Coating Based on Poly(N-isopropylacrylamide) Nanoparticles Prepared from Water-Methanol Binary Solvent. Sensors, 2018, 18, 3283.	2.1	6
296	IUPAC in the (real) clouds. Chemistry International, 2018, 40, 10-13.	0.3	1
300	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	1.2	31
301	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	2.4	96
302	Masthead - Full issue pdf. Chemistry International, 2018, 40, 1-54.	0.3	1
304	Heterogeneous N ₂ O ₅ uptake coefficient and production yield of ClNO ₂ in polluted northern China: roles of aerosol water content and chemical composition. Atmospheric Chemistry and Physics, 2018, 18, 13155-13171.	1.9	67
305	Chemical Composition and Sources of Marine Aerosol over the Western North Pacific Ocean in Winter. Atmosphere, 2018, 9, 298.	1.0	23
306	Seasonal and geographical variability of nitryl chloride and its precursors in Northern Europe. Atmospheric Science Letters, 2018, 19, e844.	0.8	19
307	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	1.2	49
308	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	1.9	54
309	Observations of organic and inorganic chlorinated compounds and their contribution to chlorine radical concentrations in an urban environment in northern Europe during the wintertime. Atmospheric Chemistry and Physics, 2018, 18, 13481-13493.	1.9	41
310	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	1.2	21
311	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	1.2	33
312	Fast particulate nitrate formation via N _{O₅ uptake aloft in winter in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10483-10495.}	1.9	82
313	Polar Nighttime Chemistry Produces Intense Reactive Bromine Events. Geophysical Research Letters, 2018, 45, 9987-9994.	1.5	10

#	ARTICLE	IF	CITATIONS
314	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	1.9	57
315	Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition. Environmental Science and Pollution Research, 2018, 25, 20999-21010.	2.7	13
316	Gas–Liquid Interfaces in the Atmosphere. , 2018, , 271-313.		6
317	Continuous detection of HCl and NH ₃ gases with a high-performance fluorescent polymer sensor. New Journal of Chemistry, 2018, 42, 13367-13374.	1.4	39
318	Control of Interfacial Cl ₂ and N ₂ O ₅ Reactivity by a Zwitterionic Phospholipid in Comparison with Ionic and Uncharged Surfactants. Journal of Physical Chemistry A, 2018, 122, 6593-6604.	1.1	12
319	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.	3.3	118
320	Gasâ€phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms. International Journal of Chemical Kinetics, 2018, 50, 544-555.	1.0	5
321	Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. Environmental Science & Environmenta	4.6	45
322	A modeling study of the influence of sea salt on inorganic aerosol concentration, size distribution, and deposition in the western Pacific Ocean. Atmospheric Environment, 2018, 188, 157-173.	1.9	20
323	Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	1.2	39
326	Atmospheric sink of \hat{l}^2 -ocimene and camphene initiated by Cl atoms: kinetics and products at NOxfree-air. RSC Advances, 2018, 8, 27054-27063.	1.7	5
327	Heterogeneous reaction of Cl2 and NO2 on \hat{I}^3 -Al2O3: A potential formation pathway of secondary aerosols. Atmospheric Environment, 2018, 188, 25-33.	1.9	5
328	N ₂ O ₅ at water surfaces: binding forces, charge separation, energy accommodation and atmospheric implications. Physical Chemistry Chemical Physics, 2018, 20, 17961-17976.	1.3	18
329	Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. National Science Review, 2019, 6, 579-594.	4.6	123
330	Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity. Review of Palaeobotany and Palynology, 2019, 269, 104-128.	0.8	11
331	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Environmenta	4.6	147
332	Gas-phase degradation of 2-butanethiol initiated by OH radicals and Cl atoms: kinetics, product yields and mechanism at 298 K and atmospheric pressure. RSC Advances, 2019, 9, 22618-22626.	1.7	2
333	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	3.9	29

#	Article	IF	CITATIONS
334	Observational Constraints on the Formation of Cl ₂ From the Reactive Uptake of ClNO ₂ on Aerosols in the Polluted Marine Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8851-8869.	1.2	19
335	A Large Source of Atomic Chlorine From ClNO ₂ Photolysis at a U.K. Landfill Site. Geophysical Research Letters, 2019, 46, 8508-8516.	1.5	11
336	Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate. Journal of Physical Chemistry A, 2019, 123, 9978-9994.	1.1	2
337	Near-Explicit Multiphase Modeling of Halogen Chemistry in a Mixed Urban and Maritime Coastal Area. ACS Earth and Space Chemistry, 2019, 3, 2452-2471.	1.2	10
338	Corrosion map of South Africa's macro atmosphere. South African Journal of Science, 2019, 115, .	0.3	O
340	Research on the Teaching Mode of Information Technology Course Based on Education Cloud Platform. , 2019, , .		O
341	On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. Atmospheric Chemistry and Physics, 2019, 19, 9287-9308.	1.9	33
342	Sulfate and Carboxylate Suppress the Formation of ClNO2 at Atmospheric Interfaces. ACS Earth and Space Chemistry, 2019, 3, 1987-1997.	1.2	18
343	Ion reactions in atmospherically-relevant clusters: mechanisms, dynamics and spectroscopic signatures. Faraday Discussions, 2019, 217, 342-360.	1.6	3
344	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Envi	4.6	68
345	Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2 C3) perfluoroalkyl carboxylic acids. Water Research, 2019, 153, 169-177.	5. 3	99
346	Nitramine and nitrosamine formation is a minor pathway in the atmospheric oxidation of methylamine: A theoretical kinetic study of the CH 3 NH + O 2 reaction. International Journal of Chemical Kinetics, 2019, 51, 723-728.	1.0	9
347	Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada. Environmental Science & Experimental Science & 2019, 53, 8017-8026.	4.6	29
348	ClNO ₂ Production from N ₂ O ₅ Uptake on Saline Playa Dusts: New Insights into Potential Inland Sources of ClNO ₂ . Environmental Science & Environmental Scienc	4.6	27
349	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 6737-6747.	1.9	29
350	Non-methane hydrocarbon (C ₂ –C ₈) sources and sinks around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2019, 19, 7209-7232.	1.9	35
351	Theoretical Studies of the Gas-Phase Reactions of $\langle i \rangle S \langle i \rangle$ -Methyl Methanesulfinothioate (Dimethyl) Tj ETQq0 0 (Physical Chemistry A, 2019, 123, 8448-8459.	0 rgBT /Ον 1.1	verlock 10 Tf : 13
352	Springtime Nitrogen Oxide-Influenced Chlorine Chemistry in the Coastal Arctic. Environmental Science &	4.6	28

#	Article	IF	CITATIONS
353	Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. Atmosphere, 2019, 10, 204.	1.0	16
354	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. Meteorological Monographs, 2019, 59, 10.1-10.52.	5.0	11
355	Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement. Atmospheric Measurement Techniques, 2019, 12, 1935-1954.	1.2	21
356	The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 2019, 19, 3981-4003.	1.9	160
357	Temperature dependence of the reactions of Cl with toluene and the xylenes. International Journal of Chemical Kinetics, 2019, 51, 579-589.	1.0	3
358	The Role of Clouds in the Tropospheric NO _{<i>x</i>} Cycle: A New Modeling Approach for Cloud Chemistry and Its Global Implications. Geophysical Research Letters, 2019, 46, 4980-4990.	1.5	51
359	Kinetics and mechanisms of the gas-phase reactions of OH radicals with three C15 alkanes. Atmospheric Environment, 2019, 207, 75-81.	1.9	19
360	Collision Energy Dependence of the Competing Mechanisms of Reaction of Chlorine Atoms with Propene. Journal of Physical Chemistry A, 2019, 123, 2679-2686.	1.1	5
361	Tropospheric degradation of propanethiol initiated by Cl radicals: Kinetics, mechanism and computational studies. Chemical Physics Letters, 2019, 723, 69-75.	1.2	1
362	Spatial characteristics of the nighttime oxidation capacity in the Yangtze River Delta, China. Atmospheric Environment, 2019, 208, 150-157.	1.9	22
363	Wintertime distribution and atmospheric interactions of reactive nitrogen species along the urban transect of Delhi – NCR. Atmospheric Environment, 2019, 209, 40-53.	1.9	9
364	Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983.	1.5	25
366	Shipborne measurements of ClNO ₂ in the Mediterranean Sea and around the Arabian Peninsula during summer. Atmospheric Chemistry and Physics, 2019, 19, 12121-12140.	1.9	23
367	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	1.9	24
368	Impact of halogen chemistry on summertime air quality in coastal and continental Europe: application of the CMAQ model and implications for regulation. Atmospheric Chemistry and Physics, 2019, 19, 15321-15337.	1.9	15
369	N ₂ O ₅ reactive uptake kinetics and chlorine activation on authentic biomass-burning aerosol. Environmental Sciences: Processes and Impacts, 2019, 21, 1684-1698.	1.7	14
370	Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate with OH Radicals and Cl Atoms: An Experimental and Computational Approach. Journal of Physical Chemistry A, 2019, 123, 10868-10884.	1.1	2
372	Atmospheric sink of styrene, \hat{l}_{\pm} -methylstyrene, trans- \hat{l}_{\pm} -methylstyrene and indene: Rate constants and mechanisms of Cl atom-initiated degradation. Atmospheric Environment, 2019, 200, 78-89.	1.9	8

#	Article	lF	CITATIONS
373	Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach. Journal of Physical Chemistry A, 2019, 123, 723-741.	1.1	18
374	Rate coefficients of reactions of 1-chlorocyclopentene with tropospheric oxidants at 298†K. Atmospheric Environment, 2019, 199, 274-283.	1.9	2
375	CFCs replacements: Reactivity and atmospheric lifetimes of a series of Hydrofluoroolefins towards OH radicals and Cl atoms. Chemical Physics Letters, 2019, 714, 190-196.	1.2	20
376	Atmospheric chemistry of 3-methoxy-1-propanol and 3-methoxy-1-butanol: Kinetics with OH radicals and Cl atoms, identification of the end-products in the presence of NO, mechanisms and atmospheric implications. Atmospheric Environment, 2019, 202, 28-40.	1.9	9
377	Interfacial Structure and Partitioning of Nitrate Ions in Reverse Micelles. Journal of Physical Chemistry A, 2019, 123, 336-342.	1.1	7
378	Formation and emission of hydrogen chloride in indoor air. Indoor Air, 2019, 29, 70-78.	2.0	30
379	Open path incoherent broadband cavity-enhanced measurements of NO3 radical and aerosol extinction in the North China Plain. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 208, 24-31.	2.0	22
380	Quantum chemical study on \hat{A} -Cl-initiated degradation of ethyl vinyl ether in atmosphere. Molecular Physics, 2020, 118, e1676475.	0.8	1
381	A review of measurements of air-surface exchange of reactive nitrogen in natural ecosystems across North America. Science of the Total Environment, 2020, 698, 133975.	3.9	13
382	Atmospheric oxidation mechanism and kinetics of isoprene initiated by chlorine radicals: A computational study. Science of the Total Environment, 2020, 712, 136330.	3.9	24
383	S _N 2 Reactions of N ₂ O ₅ with lons in Water: Microscopic Mechanisms, Intermediates, and Products. Journal of Physical Chemistry A, 2020, 124, 711-720.	1.1	8
384	New analysis of line positions of the $\hat{1}\frac{1}{2}$ 3 bands of 35ClNO2 and 37ClNO2 around 370 cm \hat{a} 1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107078.	1.1	8
385	Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. Environmental Science & Environmental Science & 2020, 54, 9862-9871.	4.6	17
386	Spatial and long-term analysis of rainwater chemistry over the conterminous United States. Environmental Research, 2020, 188, 109872.	3.7	43
387	Gaseous and Particulate Chlorine Emissions From Typical Iron and Steel Industry in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032729.	1.2	13
388	Urban Snowpack ClNO2 Production and Fate: A One-Dimensional Modeling Study. ACS Earth and Space Chemistry, 2020, 4, 1140-1148.	1.2	8
389	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environmental Science & Environmental Scien	4.6	24
390	Anthropogenic Photolabile Chlorine in the Cold-Climate City of Montreal. Atmosphere, 2020, 11, 812.	1.0	6

#	Article	IF	CITATIONS
391	Theoretical Investigation of the Atmospheric Cl Oxidation Chemistry of 4-Methyl-3-penten-2-one. ACS Earth and Space Chemistry, 2020, 4, 1957-1965.	1.2	1
392	Heterogeneous N ₂ O ₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. Atmospheric Chemistry and Physics, 2020, 20, 4367-4378.	1.9	33
393	The impact of sea-salt chloride on ozone through heterogeneous reaction with N2O5 in a coastal region of south China. Atmospheric Environment, 2020, 236, 117604.	1.9	20
395	Observation of Road Salt Aerosol Driving Inland Wintertime Atmospheric Chlorine Chemistry. ACS Central Science, 2020, 6, 684-694.	5.3	41
396	Significant production of ClNO ₂ and possible source of Cl ₂ from N ₂ 0 ₅ uptake at a suburban site in eastern China. Atmospheric Chemistry and Physics, 2020, 20, 6147-6158.	1.9	29
397	Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene. Atmospheric Chemistry and Physics, 2020, 20, 5145-5155.	1.9	20
398	Cl-Initiated Photo-oxidation Studies of Methyl Valerate and Methyl Isovalerate under Tropospherically Relevant Conditions. Journal of Physical Chemistry A, 2020, 124, 2515-2529.	1.1	0
399	Spatial distribution of perfluoroalkyl acids (PFAAs) and their precursors and conversion of precursors in seawater deeply affected by a city in China. Ecotoxicology and Environmental Safety, 2020, 194, 110404.	2.9	12
400	Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. Journal of Physical Chemistry A, 2020, 124, 2768-2784.	1.1	1
401	A low-activity ion source for measurement of atmospheric gases by chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2020, 13, 2473-2480.	1.2	6
402	Effects of Anthropogenic Chlorine on PM _{2.5} and Ozone Air Quality in China. Environmental Science & Environmental Sc	4.6	38
403	The observation of isotopic compositions of atmospheric nitrate in Shanghai China and its implication for reactive nitrogen chemistry. Science of the Total Environment, 2020, 714, 136727.	3.9	23
404	Understanding the role of Cl and NO3 radicals in initiating atmospheric oxidation of fluorene: A mechanistic and kinetic study. Science of the Total Environment, 2020, 716, 136905.	3.9	15
405	Cl Atom-Initiated Photo-Oxidation Reactions of Vinyl Trifluoroacetate and Allyl Trifluoroacetate in Tropospheric Conditions. Journal of Physical Chemistry A, 2020, 124, 2123-2139.	1.1	0
406	Wintertime N2O5 uptake coefficients over the North China Plain. Science Bulletin, 2020, 65, 765-774.	4.3	27
407	Atmospheric Chemistry of Volatile Methyl Siloxanes: Kinetics and Products of Oxidation by OH Radicals and Cl Atoms. Environmental Science & Environmen	4.6	30
408	Computational study on mechanisms and kinetics of the atmospheric CFCl2CH2O2 with Cl reaction. Journal of Molecular Graphics and Modelling, 2020, 99, 107618.	1.3	1
409	Tropospheric chemistry of ethyl tiglate initiated by Cl atoms. Chemical Physics Letters, 2020, 748, 137371.	1.2	0

#	Article	IF	CITATIONS
410	Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere, 2020, 11, 256.	1.0	8
411	Theoretical study on the enthalpies of adduct formation between alkyl iodides and chlorine atoms. Chemical Physics Letters, 2021, 762, 138140.	1.2	1
413	Formation of secondary organic aerosol from nitrate radical oxidation of phenolic VOCs: Implications for nitration mechanisms and brown carbon formation. Atmospheric Environment, 2021, 244, 117910.	1.9	50
414	Elastic Halochromic Fiber as a Reversible pH Sensor. Advanced Materials Technologies, 2021, 6, 2001058.	3.0	17
415	The Role of Hydrates, Competing Chemical Constituents, and Surface Composition on CINO ₂ Formation. Environmental Science & Technology, 2021, 55, 2869-2877.	4.6	8
416	Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. Environmental Science & Envi	4.6	88
417	Enhanced wintertime oxidation of VOCs via sustained radical sources in the urban atmosphere. Environmental Pollution, 2021, 274, 116563.	3.7	15
418	Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy. Cryosphere, 2021, 15, 2001-2020.	1.5	8
419	Observation of N $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 5 $<$ /sub $>$ Deposition and ClNO $<$ sub $>$ 2 $<$ /sub $>$ Production on the Saline Snowpack. ACS Earth and Space Chemistry, 2021, 5, 1020-1031.	1.2	9
420	Spatial and Temporal Distributions and Sources of Anthropogenic NMVOCs in the Atmosphere of China: A Review. Advances in Atmospheric Sciences, 2021, 38, 1085-1100.	1.9	15
421	A nature-based negative emissions technology able to remove atmospheric methane and other greenhouse gases. Atmospheric Pollution Research, 2021, 12, 101035.	1.8	23
422	Sizeâ€dependent Molecular Characteristics and Possible Sources of Organic Aerosols at a Coastal New Particle Formation Hotspot of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034610.	1.2	0
424	Anthropogenic Impacts on Tropospheric Reactive Chlorine Since the Preindustrial. Geophysical Research Letters, 2021, 48, e2021GL093808.	1.5	8
425	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	1.9	12
426	Theoretical and experimental studies of the kinetics of the reaction of 1â€chloropropane and fully deuterated 1â€chloropropane with atomic chlorine. International Journal of Chemical Kinetics, 2021, 53, 1157-1177.	1.0	0
427	Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NO _{<i>x</i>} , and Relative Humidity Observed during Environmental Chamber Experiments. Journal of Physical Chemistry A, 2021, 125, 7303-7317.	1.1	13
428	Impact assessment of Beirut explosion on local and regional air quality. Air Quality, Atmosphere and Health, 2021, 14, 1911-1929.	1.5	2
429	Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride. Atmospheric Measurement Techniques, 2021, 14, 5859-5871.	1.2	7

#	Article	IF	Citations
432	Important Role of NO ₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower. Environmental Science & Envi	4.6	34
433	Understanding Sources of Atmospheric Hydrogen Chloride in Coastal Spring and Continental Winter. ACS Earth and Space Chemistry, 2021, 5, 2507-2516.	1.2	4
434	Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 2021, 21, 13973-13996.	1.9	57
435	Halogens Enhance Haze Pollution in China. Environmental Science & Enviro	4.6	22
436	Observations and Modeling of NO <i>_x</i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	1.2	17
437	Response of the Reaction Probability of N ₂ O ₅ with Authentic Biomass-Burning Aerosol to High Relative Humidity. ACS Earth and Space Chemistry, 2021, 5, 2587-2598.	1.2	5
438	Chlorine-Initiated Oxidation of \hat{l}_{\pm} -Pinene: Formation of Secondary Organic Aerosol and Highly Oxygenated Organic Molecules. ACS Earth and Space Chemistry, 2021, 5, 2307-2319.	1.2	12
439	New mechanistic understanding for atmospheric oxidation of isoprene initiated by atomic chlorine. Science of the Total Environment, 2021, 801, 149768.	3.9	3
440	FTIR product study of the Cl-initiated oxidation products of CFC replacements: $(\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle)$ -1,2,3,3,3-pentafluoropropene and hexafluoroisobutylene. RSC Advances, 2021, 11, 12739-12747.	1.7	4
441	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nature Geoscience, 2021, 14, 77-84.	5.4	94
443	Short-Lived Trace Gases in the Surface Ocean and the Atmosphere. Springer Earth System Sciences, 2014, , 1-54.	0.1	17
444	Trace Gases. , 2012, , 69-125.		1
445	Surface/Atmosphere Exchange of Atmospheric Acids and Aerosols, Including the Effect and Model Treatment of Chemical Interactions. , 2015, , 115-149.		3
446	Significant Decrease in Wet Deposition of Anthropogenic Chloride Across the Eastern United States, 1998–2018. Geophysical Research Letters, 2020, 47, e2020GL090195.	1.5	9
447	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. National Science Review, 2021, 8, nwaa304.	4.6	42
448	Mixed Chloride Aerosols and their Atmospheric Implications: A Review. Aerosol and Air Quality Research, 2017, 17, 878-887.	0.9	24
472	AÂvacuum ultraviolet ion source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources. Atmospheric Measurement Techniques, 2020, 13, 3683-3696.	1.2	14
473	Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs). Atmospheric Measurement Techniques, 2020, 13, 5293-5301.	1.2	9

#	Article	IF	CITATIONS
474	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
475	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
477	A Novel Macro-Engineering Approach to Seawater Desalination. Environmental Science and Engineering, 2010, , 675-689.	0.1	0
479	Heterogeneous Atmospheric Chemistry of Nitrogen Oxides: New Insights from Recent Field Measurements. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 125-138.	0.1	O
484	Winter ClNO& lt; sub& gt; 2& lt; /sub& gt; formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. Atmospheric Chemistry and Physics, 2021, 21, 15985-16000.	1.9	8
487	Atmospheric Impacts. Springer Theses, 2021, , 95-112.	0.0	O
488	Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta. Chinese Science Bulletin, 2022, 67, 2060-2068.	0.4	4
490	Barrierless HNO3 formation from the hydrolysis reaction of NO2 with Cl atom in the atmosphere. Atmospheric Environment, 2022, 270, 118871.	1.9	3
491	Hydrophobic halochromic aerogel capable of reversibly measuring acidic and basic vapors. AIP Advances, 2021, 11, 115115.	0.6	2
492	Degradation mechanism of 2-fluoropropene by Cl atoms: experimental and theoretical products distribution studies. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
493	Observation based study on atmospheric oxidation capacity in Shanghai during late-autumn: Contribution from nitryl chloride. Atmospheric Environment, 2022, 271, 118902.	1.9	8
494	Study on the reaction of 3-methyl-2-butenal and 3-methylbutanal with Cl atoms: kinetics and reaction mechanism. Journal of Environmental Sciences, 2022, 116, 25-33.	3.2	0
495	Large Daytime Molecular Chlorine Missing Source at a Suburban Site in East China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
496	N ₂ O ₅ uptake onto saline mineral dust: a potential missing source of tropospheric ClNO ₂ in inland China. Atmospheric Chemistry and Physics, 2022, 22, 1845-1859.	1.9	7
497	Urban inland wintertime N& t;sub>2& t;/sub>O& t;sub>5& t;/sub> and ClNO& t;sub>2& t;/sub> influenced by snow-covered ground, air turbulence, and precipitation. Atmospheric Chemistry and Physics, 2022, 22, 2553-2568.	1.9	4
498	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2. Nature Communications, 2022, 13, 939.	5 . 8	26
499	Global Emissions of Hydrogen Chloride and Particulate Chloride from Continental Sources. Environmental Science & Environmental	4.6	15
501	Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020. Geoscientific Model Development, 2022, 15, 2813-2838.	1.3	8

#	Article	IF	CITATIONS
502	Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties. Journal of Geophysical Research D: Atmospheres, 2022, 127, 1-16.	1.2	1
503	Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nature Communications, 2022, 13, 2768.	5.8	20
504	Limitations in representation of physical processes prevent successful simulation of PM _{2.5} during KORUS-AQ. Atmospheric Chemistry and Physics, 2022, 22, 7933-7958.	1.9	17
505	Isoprene–Chlorine Oxidation in the Presence of NO <i>_x</i> and Implications for Urban Atmospheric Chemistry. Environmental Science & Envi	4.6	3
506	A diurnal story of \hat{i} "17O($\$m\{NO\}_{3}^{-}$ \$\$) in urban Nanjing and its implication for nitrate aerosol formation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	15
507	Thermochemistry and Kinetics of the Atmospheric Oxidation Reactions of Propanesulfinyl Chloride Initiated by OH Radicals: A Computational Approach. Journal of Physical Chemistry A, 2022, 126, 4264-4276.	1.1	6
508	Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
509	Progress in quantitative research on the relationship between atmospheric oxidation and air quality. Journal of Environmental Sciences, 2023, 123, 350-366.	3.2	5
510	Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2022, 15, 4295-4305.	1.2	9
511	Solar Driven Gas Phase Advanced Oxidation Processes for Methane Removal ―Challenges and Perspectives. Chemistry - A European Journal, 2022, 28, .	1.7	5
512	Spatial evaluation of precipitation patterns in the catchment area of Malir River during monsoon spells of 2019 through geospatial techniques. Arabian Journal of Geosciences, 2022, 15, .	0.6	2
513	A review of atmospheric aging of sea spray aerosols: Potential factors affecting chloride depletion. Atmospheric Environment, 2022, 290, 119365.	1.9	18
514	The role of sources and meteorology in driving PM2.5-bound chlorine. Journal of Hazardous Materials, 2023, 441, 129910.	6.5	2
515	Gas-phase spectroscopic identification of the chlorovinyl radical. Physical Chemistry Chemical Physics, 2022, 24, 25099-25105.	1.3	1
516	Aerosol Impacts on Atmospheric and Precipitation Chemistry., 2022,, 427-456.		2
517	Atmospheric oxidation mechanism and kinetics of indole initiated by $\hat{a}-\Theta H$ and $\hat{a}-C I$: a computational study. Atmospheric Chemistry and Physics, 2022, 22, 11543-11555.	1.9	7
518	Emerging investigator series: ozone uptake by urban road dust and first evidence for chlorine activation during ozone uptake by agro-based anti-icer: implications for wintertime air quality in high-latitude urban environments. Environmental Sciences: Processes and Impacts, 2022, 24, 2070-2084.	1.7	1
519	Highly elastic halochromic fibers capable of reversible sensing of acidic/basic vapor for use in wearable textiles. AIP Advances, 2022, 12, 105011.	0.6	0

#	Article	IF	CITATIONS
520	Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany. Atmospheric Chemistry and Physics, 2022, 22, 13137-13152.	1.9	4
521	Mechanisms of Reactions between HOI and HY (Y = Cl, Br, I) on a Water Nanodroplet Surface. Journal of Physical Chemistry A, 2022, 126, 8028-8036.	1.1	0
522	Reactive Chlorine Emissions from Cleaning and Reactive Nitrogen Chemistry in an Indoor Athletic Facility. Environmental Science & Eachnology, 2022, 56, 15408-15416.	4.6	8
523	Occurrence and behavior of per- and polyfluoroalkyl substances and conversion of oxidizable precursors in the waters of coastal tourist resorts in China. Environmental Pollution, 2023, 316, 120460.	3.7	2
524	Fast near-surface ClNO2 production and its impact on O3 formation during a heavy pollution event in South China. Science of the Total Environment, 2023, 858, 159998.	3.9	1
525	Atmospheric breakdown chemistry of the new "green―solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals. Atmospheric Chemistry and Physics, 2022, 22, 14589-14602.	1.9	1
526	Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air. Atmospheric Chemistry and Physics, 2022, 22, 14377-14399.	1.9	4
527	Formation and impacts of nitryl chloride in Pearl River Delta. Atmospheric Chemistry and Physics, 2022, 22, 14837-14858.	1.9	1
528	Reduction and Photoreduction of NO ₂ in Humic Acid Films as a Source of HONO, ClNO, N ₂ O, NO <i>>_X</i> , and Organic Nitrogen. ACS Earth and Space Chemistry, 2022, 6, 3066-3077.	1.2	3
529	Direct measurement of N ₂ O ₅ heterogeneous uptake coefficients on ambient aerosols via an aerosol flow tube system: design, characterization and performance. Atmospheric Measurement Techniques, 2022, 15, 7019-7037.	1.2	0
530	Multiple Impacts of Aerosols on O ₃ Production Are Largely Compensated: A Case Study Shenzhen, China. Environmental Science & Environmental	4.6	11
531	Increased night-time oxidation over China despite widespread decrease across the globe. Nature Geoscience, 2023, 16, 217-223.	5.4	23
532	Observationally constrained modelling of NO3 radical in different altitudes: Implication to vertically resolved nocturnal chemistry. Atmospheric Research, 2023, 286, 106674.	1.8	0
533	Product study of the reactions of γ-caprolactone and γ-heptalactone initiated by OH radicals at 298ÂK and atmospheric pressure: Formation of acyl peroxynitrates (APN) Chemosphere, 2023, 323, 138156.	4.2	0
534	Midlatitude Ozone Depletion and Air Quality Impacts from Industrial Halogen Emissions in the Great Salt Lake Basin. Environmental Science & Environmen	4.6	6
535	Experimental chemical budgets of OH, HO ₂ , and RO ₂ radicals in rural air in western Germany during the JULIAC campaign 2019. Atmospheric Chemistry and Physics, 2023, 23, 2003-2033.	1.9	1
536	Kinetics and products study of the reaction of Cl atoms with methyl dichloroacetate: reactivity, mechanism, and environmental implications. Environmental Science Atmospheres, 2023, 3, 872-881.	0.9	1
537	Autoxidation Mechanism and Kinetics of Methacrolein in the Atmosphere. Journal of Physical Chemistry A, 2023, 127, 2819-2829.	1.1	1

#	Article	IF	CITATIONS
538	Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Reviews of Geophysics, $2023, 61, .$	9.0	10
543	Naturally Occurring Organohalogen Compoundsâ€"A Comprehensive Review. Progress in the Chemistry of Organic Natural Products, 2023, , 1-546.	0.8	5
548	QSAR models on degradation rate constants of atmospheric pollutants. , 2023, , 459-471.		0
551	Removal of methane and other non-CO2 GHGs. , 2023, , 307-321.		0