NINJA connects the co-repressor TOPLESS to jasmonate

Nature

464, 788-791

DOI: 10.1038/nature08854

Citation Report

#	Article	IF	Citations
1	Spontaneous Development of a Pancreatic Exocrine Disease in CD28-Deficient NOD Mice. Journal of Immunology, 2008, 180, 7793-7803.	0.4	44
2	Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant Journal, 2010, 63, 613-622.	2.8	167
3	Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63, 811-822.	2.8	198
4	Molecular battles between plant and pathogenic bacteria in the phyllosphere. Brazilian Journal of Medical and Biological Research, 2010, 43, 698-704.	0.7	34
5	The control of axillary meristem fate in the maize <i>ramosa</i> pathway. Development (Cambridge), 2010, 137, 2849-2856.	1.2	157
6	Modulating plant hormones by enzyme action. Plant Signaling and Behavior, 2010, 5, 1607-1612.	1.2	78
7	Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signaling and Behavior, 2010, 5, 1039-1041.	1.2	19
8	DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 2010, 19, 884-894.	3.1	646
9	Ubiquitin Ligase-Coupled Receptors Extend Their Reach to Jasmonate. Plant Physiology, 2010, 154, 471-474.	2.3	31
10	Systemin/Jasmonate-Mediated Systemic Defense Signaling in Tomato. Molecular Plant, 2011, 4, 607-615.	3.9	155
11	Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12539-12544.	3.3	622
12	Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in <i>Arabidopsis</i> and tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5891-5896.	3.3	228
13	Transcription Dynamics in Plant Immunity. Plant Cell, 2011, 23, 2809-2820.	3.1	221
14	Evidence for Network Evolution in an <i>Arabidopsis</i> Interactome Map. Science, 2011, 333, 601-607.	6.0	838
15	The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell, 2011, 23, 3089-3100.	3.1	547
16	A novel role for the floral homeotic gene <i>APETALA2</i> during <i>Arabidopsis</i> fruit development. Development (Cambridge), 2011, 138, 5167-5176.	1.2	102
17	Plant Transcription Factors. Methods in Molecular Biology, 2011, , .	0.4	5
18	Isolation of Transcription Factor Complexes from Arabidopsis Cell Suspension Cultures by Tandem Affinity Purification. Methods in Molecular Biology, 2011, 754, 195-218.	0.4	64

#	Article	IF	CITATIONS
19	Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics, 2011, 98, 128-136.	1.3	167
20	More than the sum of its parts $\hat{a} \in \text{``How to achieve a specific transcriptional response to abiotic stress.}$ Plant Science, 2011, 180, 421-430.	1.7	44
21	Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. Plant Science, 2011, 180, 655-660.	1.7	81
22	Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends in Plant Science, 2011, 16, 249-257.	4.3	243
23	Transcriptional regulation of plant inducible defenses against herbivores: a mini-review. Journal of Plant Interactions, 2011, 6, 113-119.	1.0	28
24	The Regulatory Networks of Plant Responses to Abscisic Acid. Advances in Botanical Research, 2011, , 201-248.	0.5	6
25	An Integrated PCR Colony Hybridization Approach to Screen cDNA Libraries for Full-Length Coding Sequences. PLoS ONE, 2011, 6, e24978.	1.1	5
26	Title is missing!. Kagaku To Seibutsu, 2011, 49, 85-87.	0.0	0
27	OsbHLH148, a basic helixâ€loopâ€helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant Journal, 2011, 65, 907-921.	2.8	438
28	APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonateâ€elicited nicotine biosynthesis. Plant Journal, 2011, 66, 1053-1065.	2.8	191
29	Auxinâ€Oxylipin Crosstalk: Relationship of Antagonists ^F . Journal of Integrative Plant Biology, 2011, 53, 429-445.	4.1	62
30	News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling. Current Opinion in Plant Biology, 2011, 14, 547-553.	3.5	121
31	Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 2011, 49, 317-343.	3.5	1,564
32	ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 2011, 124, 509-525.	1.2	860
33	Interplay Between Abscisic Acid and Jasmonic Acid and its Role in Water-oxidative Stress in Wild-type, ABA-deficient, JA-deficient, and Ascorbate-deficient Arabidopsis Plants. Journal of Plant Growth Regulation, 2011, 30, 322-333.	2.8	105
34	Proteomics insights into plant signaling and development. Proteomics, 2011, 11, 744-755.	1.3	37
35	Unraveling tobacco BY-2 protein complexes with BN PAGE/LC–MS/MS and clustering methods. Journal of Proteomics, 2011, 74, 1201-1217.	1.2	15
36	Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. Phytochemistry, 2011, 72, 1192-1218.	1.4	28

#	ARTICLE	IF	CITATIONS
37	Accumulation of the transcription factor ABA-insensitive (ABI)4 is tightly regulated post-transcriptionally. Journal of Experimental Botany, 2011, 62, 3971-3979.	2.4	54
38	The <i>Arabidopsis</i> bhlh Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	3.1	906
39	Regulation of Seed Germination in the Close Arabidopsis Relative <i>Lepidium sativum</i> : A Global Tissue-Specific Transcript Analysis Â. Plant Physiology, 2011, 155, 1851-1870.	2.3	77
40	Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions Â. Plant Physiology, 2011, 157, 742-756.	2.3	165
41	The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 1000-1013.	3.1	502
42	Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany, 2011, 62, 2143-2154.	2.4	291
43	Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine Biosynthesis Genes Directly and By Way of the NIC2-Locus ERF Genes. Plant and Cell Physiology, 2011, 52, 1117-1130.	1.5	200
44	Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome Â. Plant Physiology, 2011, 157, 1379-1393.	2.3	29
45	The Jasmonate-Responsive Element from the ORCA3 Promoter from Catharanthus roseus is Active in Arabidopsis and is Controlled by the Transcription Factor AtMYC2. Plant and Cell Physiology, 2011, 52, 578-587.	1.5	53
46	The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 2011, 4, 279-288.	3.9	236
47	EAR motif-mediated transcriptional repression in plants. Epigenetics, 2011, 6, 141-146.	1.3	390
48	The interplay between light and jasmonate signalling during defence and development. Journal of Experimental Botany, 2011, 62, 4087-4100.	2.4	151
49	The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses <i>PLETHORA</i> Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in <i>Arabidopsis</i> 2011, 23, 3335-3352.	3.1	374
50	The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in <i>Arabidopsis</i> À Â. Plant Cell, 2011, 23, 3319-3334.	3.1	140
51	Genome-Wide Patterns of Arabidopsis Gene Expression in Nature. PLoS Genetics, 2012, 8, e1002662.	1.5	110
52	Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit. PLoS Genetics, 2012, 8, e1003020.	1.5	38
53	JAZ8 Lacks a Canonical Degron and Has an EAR Motif That Mediates Transcriptional Repression of Jasmonate Responses in <i>Arabidopsis</i> In the property of th	3.1	214
54	Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis Â. Plant Physiology, 2012, 160, 808-822.	2.3	37

#	Article	IF	CITATIONS
55	The <i>Arabidopsis</i> Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors. Plant Cell, 2012, 24, 2898-2916.	3.1	307
56	TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant Signaling and Behavior, 2012, 7, 325-328.	1.2	59
57	RGLG3 and RGLG4, novel ubiquitin ligases modulating jasmonate signaling. Plant Signaling and Behavior, 2012, 7, 1709-1711.	1.2	2
58	Diverse roles of Groucho/Tup1 co-repressors in plant growth and development. Plant Signaling and Behavior, 2012, 7, 86-92.	1.2	33
59	The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 2012, 63, 2127-2139.	2.4	147
60	The Arabidopsis JAZ2 Promoter Contains a G-Box and Thymidine-Rich Module that are Necessary and Sufficient for Jasmonate-Dependent Activation by MYC Transcription Factors and Repression by JAZ Proteins. Plant and Cell Physiology, 2012, 53, 330-343.	1.5	75
61	Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to <i>Botrytis cinerea</i> and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism Â. Plant Physiology, 2012, 158, 2042-2052.	2.3	180
62	Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20148-20153.	3.3	98
63	Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum. Molecular and Cellular Proteomics, 2012, 11, 1140-1155.	2.5	126
64	Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Frontiers in Plant Science, 2012, 3, 234.	1.7	56
65	The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis Â. Plant Physiology, 2012, 158, 423-438.	2.3	481
66	Canopy Light and Plant Health. Plant Physiology, 2012, 160, 145-155.	2.3	128
67	NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in <i>Nicotiana attenuata</i> Plants Â. Plant Physiology, 2012, 159, 769-788.	2.3	72
68	Gibberellin Signaling in Plants – The Extended Version. Frontiers in Plant Science, 2011, 2, 107.	1.7	84
69	Defence on demand: mechanisms behind optimal defence patterns. Annals of Botany, 2012, 110, 1503-1514.	1.4	165
70	APETALA2 negatively regulates multiple floral organ identity genes in (i) Arabidopsis (li) by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development (Cambridge), 2012, 139, 4180-4190.	1.2	277
71	Phosphoproteome Dynamics Upon Changes in Plant Water Status Reveal Early Events Associated With Rapid Growth Adjustment in Maize Leaves. Molecular and Cellular Proteomics, 2012, 11, 957-972.	2.5	100
72	Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks. Plant Cell, 2012, 24, 3859-3875.	3.1	96

#	ARTICLE	IF	Citations
73	Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta, 2012, 236, 1351-1366.	1.6	98
74	Ubiquitin-Mediated Control of Plant Hormone Signaling. Plant Physiology, 2012, 160, 47-55.	2.3	162
75	TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in <i>Arabidopsis</i> Plant Cell, 2012, 24, 2470-2482.	3.1	151
76	Involvement of OsJAZ8 in Jasmonate-Induced Resistance to Bacterial Blight in Rice. Plant and Cell Physiology, 2012, 53, 2060-2072.	1.5	171
77	JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science, 2012, 17, 22-31.	4.3	332
78	Role of phytohormones in insect-specific plant reactions. Trends in Plant Science, 2012, 17, 250-259.	4.3	742
79	Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 2012, 17, 349-359.	4.3	467
80	A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae. BMC Molecular Biology, 2012, 13, 30.	3.0	21
81	Hormonal Interactions in the Regulation of Plant Development. Annual Review of Cell and Developmental Biology, 2012, 28, 463-487.	4.0	480
83	Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiology and Biochemistry, 2012, 61, 115-122.	2.8	62
84	Roles of various cullin-RING E3 ligases involved in hormonal and stress responses in plants. Journal of Plant Biology, 2012, 55, 421-428.	0.9	10
85	Interactome-Wide Prediction of Protein-Protein Binding Sites Reveals Effects of Protein Sequence Variation in Arabidopsis thaliana. PLoS ONE, 2012, 7, e47022.	1.1	1
86	Social Network: JAZ Protein Interactions Expand Our Knowledge of Jasmonate Signaling. Frontiers in Plant Science, 2012, 3, 41.	1.7	120
87	Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnology, 2012, 29, 19-34.	0.5	7
88	CRES-T for the Functional Analysis of Transcription Factors and Modification of Morphological Traits in Plants. Current Biotechnology, 2012, 1, 23-32.	0.2	3
89	Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1192-200.	3 . 3	697
90	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	4.0	2,396
91	Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 2012, 63, 599-616.	2.4	355

#	Article	IF	CITATIONS
92	Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annual Review of Plant Biology, 2012, 63, 483-506.	8.6	168
93	Light-dependent regulation of the jasmonate pathway. Protoplasma, 2012, 249, 137-145.	1.0	53
94	Global Analysis of Nonâ€coding Small RNAs in <i>Arabidopsis</i> in Response to Jasmonate Treatment by Deep Sequencing Technology. Journal of Integrative Plant Biology, 2012, 54, 73-86.	4.1	18
95	Comparison of phytohormone signaling mechanisms. Current Opinion in Plant Biology, 2012, 15, 84-91.	3 . 5	135
96	Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiologia Plantarum, 2013, 147, 296-306.	2.6	182
97	Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MalCE1 in methyl jasmonateâ€induced chilling tolerance in banana fruit. Plant, Cell and Environment, 2013, 36, 30-51.	2.8	198
98	EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237, 1443-1451.	1.6	88
100	NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biology, 2013, 13, 73.	1.6	41
101	Common bean (Phaseolus vulgarisL.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biology, 2013, 13, 26.	1.6	48
102	Jasmonate signalling: a copycat of auxin signalling?. Plant, Cell and Environment, 2013, 36, 2071-2084.	2.8	104
103	Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Reports, 2013, 32, 1085-1098.	2.8	263
104	Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, 2013, , .	0.5	16
105	Transcription Factors in Alkaloid Biosynthesis. International Review of Cell and Molecular Biology, 2013, 305, 339-382.	1.6	39
107	D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.	13.7	669
108	DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504, 401-405.	13.7	660
109	Jasmonate Signaling. Methods in Molecular Biology, 2013, , .	0.4	5
110	The Essential Role of Jasmonic Acid in Plant–Herbivore Interactions – Using the Wild Tobacco Nicotiana attenuata as a Model. Journal of Genetics and Genomics, 2013, 40, 597-606.	1.7	63
111	Analysis of the cell death-inducing ability of the ethylene response factors in group VIII of the AP2/ERF family. Plant Science, 2013, 209, 12-23.	1.7	26

#	Article	IF	CITATIONS
112	Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator. BMC Plant Biology, 2013, 13, 108.	1.6	8
113	Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Research, 2013, 22, 697-708.	1.3	75
114	Jasmonate-Responsive Transcription Factors: New Tools for Metabolic Engineering and Gene Discovery., 2013,, 345-357.		4
115	MYC2: The Master in Action. Molecular Plant, 2013, 6, 686-703.	3.9	765
116	Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 761-766.	3.3	232
117	Jasmonates in flower and seed development. Biochimie, 2013, 95, 79-85.	1.3	98
118	Plant Protein Interactomes. Annual Review of Plant Biology, 2013, 64, 161-187.	8.6	135
119	Rice zinc finger protein DST enhances grain production through controlling <i>Gn1a/OsCKX2</i> expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3167-3172.	3.3	252
120	Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SIERF4 to Suppress Ethylene Responses and Promote Pathogen Growth. Cell Host and Microbe, 2013, 13, 143-154.	5.1	168
121	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	2.8	178
122	The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in <i>Arabidopsis</i> Arabidopsis	3.1	116
123	Pull-Down Analysis of Interactions Among Jasmonic Acid Core Signaling Proteins. Methods in Molecular Biology, 2013, 1011, 159-171.	0.4	15
124	Yeast Two-Hybrid Analysis of Jasmonate Signaling Proteins. Methods in Molecular Biology, 2013, 1011, 173-185.	0.4	27
125	Modified Bimolecular Fluorescence Complementation Assay to Study the Inhibition of Transcription Complex Formation by JAZ Proteins. Methods in Molecular Biology, 2013, 1011, 187-197.	0.4	4
126	Systemic Wound Signaling in Plants. Signaling and Communication in Plants, 2013, , 323-362.	0.5	6
127	<i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annual Review of Phytopathology, 2013, 51, 473-498.	3.5	535
128	Medicinal Plants medicinal plant, Engineering of Secondary Metabolites cell/cellular cultures secondary metabolites in Cell Cultures cell/cellular cultures., 2013,, 1182-1200.		3
129	Marker-Assisted breeding/breed, see also animal breeding marker-assisted Breeding breeding/breed, see also animal breeding in Crops. , 2013, , 1158-1181.		1

#	Article	IF	CITATIONS
130	A Guide to CORNET for the Construction of Coexpression and Protein–Protein Interaction Networks. Methods in Molecular Biology, 2013, 1011, 327-343.	0.4	4
131	Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111, 1021-1058.	1.4	2,006
132	Negative Feedback Control of Jasmonate Signaling by an Alternative Splice Variant of JAZ10 \hat{A} \hat{A} \hat{A} . Plant Physiology, 2013, 162, 1006-1017.	2.3	120
133	The bHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and Development. PLoS Genetics, 2013, 9, e1003653.	1.5	237
134	Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis. Frontiers in Plant Science, 2013, 4, 13.	1.7	76
135	Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis. Plant Physiology, 2013, 163, 291-304.	2.3	178
136	S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Frontiers in Plant Science, 2013, 4, 430.	1.7	105
137	RICE SALT SENSITIVE3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-Induced Gene Expression and Root Cell Elongation Â. Plant Cell, 2013, 25, 1709-1725.	3.1	107
138	Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity. PLoS Genetics, 2013, 9, e1003422.	1.5	177
139	New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Frontiers in Plant Science, 2013, 4, 364.	1.7	35
140	Jasmonate Regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in <i>Arabidopsis</i> A. Plant Cell, 2013, 25, 2907-2924.	3.1	600
141	Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in Plant Science, 2013, 4, 72.	1.7	144
142	A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in <i>Arabidopsis</i> Ĉi>Â Â. Plant Cell, 2013, 25, 1641-1656.	3.1	269
143	Towards the Domestication of Jatropha: The Integration of Sciences. , 2013, , 263-299.		32
144	<i>Arabidopsis</i> Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior Â. Plant Cell, 2013, 25, 3117-3132.	3.1	453
145	Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122646.	1.2	47
146	ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis Â. Plant Physiology, 2013, 162, 319-332.	2.3	210
147	Abscisic Acid Synthesis and Response. The Arabidopsis Book, 2013, 11, e0166.	0.5	815

#	Article	IF	CITATIONS
148	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 \hat{A} \hat{A} . Plant Cell, 2013, 25, 744-761.	3.1	381
149	Role of NINJA in root jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15473-15478.	3.3	130
150	The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 517-534.	3.1	98
151	The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Scientific Reports, 2013, 3, 2866.	1.6	58
152	Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotechnology, 2013, 30, 217-224.	0.5	27
153	Identification of a Novel Jasmonate-Responsive Element in the AtJMT Promoter and Its Binding Protein for AtJMT Repression. PLoS ONE, 2013, 8, e55482.	1.1	18
154	Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses., 0,,.		33
155	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	1.1	55
158	Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics, 2014, 15, 1050.	1.2	22
160	Action of Strigolactones in Plants. The Enzymes, 2014, 35, 57-84.	0.7	10
161	An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2098-2113.	3.1	67
162	Genome-wide identification, phylogenetic analysis, expression profiling, and protein–protein interaction properties of TOPLESS gene family members in tomato. Journal of Experimental Botany, 2014, 65, 1013-1023.	2.4	25
163	DELLAs Function as Coactivators of GAI-ASSOCIATED FACTOR1 in Regulation of Gibberellin Homeostasis and Signaling in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2014, 26, 2920-2938.	3.1	153
164	Auxins in defense strategies. Biologia (Poland), 2014, 69, 1255-1263.	0.8	16
165	The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 2014, 240, 1149-1165.	1.6	112
166	Identification and characterization of genes involved in the jasmonate biosynthetic and signaling pathways in mulberry (<i>Morus notabilis</i>). Journal of Integrative Plant Biology, 2014, 56, 663-672.	4.1	6
167	ArabidopsisÂERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 2014, 5, 5833.	5 . 8	237
168	SPOROCYTELESS Is a Novel Embryophyte-Specific Transcription Repressor that Interacts with TPL and TCP Proteins in Arabidopsis. Journal of Genetics and Genomics, 2014, 41, 617-625.	1.7	38

#	Article	IF	CITATIONS
169	Molecular Reprogramming of <i>Arabidopsis</i> in Response to Perturbation of Jasmonate Signaling. Journal of Proteome Research, 2014, 13, 5751-5766.	1.8	29
170	Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 2014, 5, 671.	1.7	77
171	Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores. Frontiers in Plant Science, 2014, 5, 407.	1.7	56
172	The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in <i>Arabidopsis</i> . Nucleic Acids Research, 2014, 42, 4332-4347.	6.5	54
173	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	2.6	223
174	Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by <scp>JAZ</scp> protein in rice. Plant, Cell and Environment, 2014, 37, 451-461.	2.8	130
175	NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Molecular Biology, 2014, 84, 49-66.	2.0	75
177	Recent Trends in Jasmonate Signaling Pathway. , 2014, , 277-290.		1
178	Strigolactones and the control of plant development: lessons from shoot branching. Plant Journal, 2014, 79, 607-622.	2.8	203
179	Jasmonates in Plant Growth and Stress Responses. , 2014, , 221-263.		6
180	The Arabidopsis Mediator subunit <scp>MED</scp> 16 regulates iron homeostasis by associating with <scp>EIN</scp> 3/ <scp>EIL</scp> 1 through subunit <scp>MED</scp> 25. Plant Journal, 2014, 77, 838-851.	2.8	120
181	Life and death under salt stress: same players, different timing?. Journal of Experimental Botany, 2014, 65, 2963-2979.	2.4	240
182	Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. Plant Cell Reports, 2014, 33, 707-718.	2.8	15
183	Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 2014, 7, 1267-1287.	3.9	1,206
184	Light induces jasmonateâ€isoleucine conjugation via <scp>OsJAR1</scp> â€dependent and â€independent pathways in rice. Plant, Cell and Environment, 2014, 37, 827-839.	2.8	47
185	Molecular interaction of jasmonate and phytochrome A signalling. Journal of Experimental Botany, 2014, 65, 2847-2857.	2.4	32
186	Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma, 2014, 251, 881-898.	1.0	41
188	Light Regulation of Plant Defense. Annual Review of Plant Biology, 2014, 65, 335-363.	8.6	415

#	Article	IF	Citations
189	Major Phytohormones Under Abiotic Stress. , 2014, , 87-135.		3
190	Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. , 2014, , .		13
191	Cytokinin Antagonizes Abscisic Acid-Mediated Inhibition of Cotyledon Greening by Promoting the Degradation of ABSCISIC ACID INSENSITIVE5 Protein in Arabidopsis Â. Plant Physiology, 2014, 164, 1515-1526.	2.3	107
192	Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 2014, 24, 2714-2719.	1.8	157
193	A Generic Tool for Transcription Factor Target Gene Discovery in Arabidopsis Cell Suspension Cultures Based on Tandem Chromatin Affinity Purification. Plant Physiology, 2014, 164, 1122-1133.	2.3	43
194	Rational design of a ligand-based antagonist of jasmonate perception. Nature Chemical Biology, 2014, 10, 671-676.	3.9	74
195	Jasmonate signaling and crosstalk with gibberellin and ethylene. Current Opinion in Plant Biology, 2014, 21, 112-119.	3.5	191
196	Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. Journal of Plant Physiology, 2014, 171, 1315-1324.	1.6	37
197	Arabidopsis <i>PECTIN METHYLESTERASEs</i> Contribute to Immunity against <i>Pseudomonas syringae</i> Plant Physiology, 2014, 164, 1093-1107.	2.3	166
198	To grow or defend? Low redÂ:Âfarâ€red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting <scp>DELLA</scp> degradation and increasing <scp>JAZ</scp> 10 stability. New Phytologist, 2014, 204, 355-367.	3.5	120
199	Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. Journal of Experimental Botany, 2014, 65, 5743-5748.	2.4	71
200	Phytochrome Regulation of Plant Immunity in Vegetation Canopies. Journal of Chemical Ecology, 2014, 40, 848-857.	0.9	29
201	Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Molecular Biology, 2014, 86, 185-200.	2.0	17
202	Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 2014, 40, 657-675.	0.9	246
203	Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in <i>Arabidopsis</i> Plant Cell, 2014, 26, 1105-1117.	3.1	171
204	<i>Arabidopsis</i> DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy Â. Plant Cell, 2014, 26, 1118-1133.	3.1	202
205	TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nature Communications, 2014, 5, 4140.	5.8	113
206	Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in <i>Arabidopsis</i> Plant Cell, 2014, 26, 1967-1980.	3.1	152

#	Article	IF	CITATIONS
207	Identification of Novel PAMP-Triggered Phosphorylation and Dephosphorylation Events in <i>Arabidopsis thaliana</i> by Quantitative Phosphoproteomic Analysis. Journal of Proteome Research, 2014, 13, 2137-2151.	1.8	44
208	Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 263-279.	3.1	309
209	Transcriptional control of plant defence responses. Current Opinion in Plant Biology, 2014, 20, 35-46.	3.5	206
210	Jasmonate signalling drives timeâ€ofâ€day differences in susceptibility of Arabidopsis to the fungal pathogen <i>Botrytis cinerea</i>). Plant Journal, 2015, 84, 937-948.	2.8	81
211	Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2015, 57, 198-212.	4.1	54
212	The Groucho/Transducinâ€like enhancer of split protein family in animal development. IUBMB Life, 2015, 67, 472-481.	1.5	47
213	Change of a conserved amino acid in the <scp>MYC</scp> 2 and <scp>MYC</scp> 3 transcription factors leads to release of <scp>JAZ</scp> repression and increased activity. New Phytologist, 2015, 206, 1229-1237.	3.5	75
214	Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. International Journal of Molecular Sciences, 2015, 16, 19195-19224.	1.8	62
215	The Effect on the Transcriptome of Anemone coronaria following Infection with Rust (Tranzschelia) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
216	A Maize Jasmonate Zim-Domain Protein, ZmJAZ14, Associates with the JA, ABA, and GA Signaling Pathways in Transgenic Arabidopsis. PLoS ONE, 2015, 10, e0121824.	1.1	40
217	Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genetics, 2015, 11, e1005300.	1.5	106
218	Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-Dependent and -Independent Pathways. PLoS ONE, 2015, 10, e0132723.	1.1	9
219	JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea. Frontiers in Plant Science, 2015, 6, 975.	1.7	61
220	The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis. Plant Physiology, 2015, 169, 166-179.	2.3	86
221	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	1.4	244
222	Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. Plant Cell, 2015, 27, 1634-1649.	3.1	247
223	Oviposition by <i>Spodoptera exigua</i> on <i>Nicotiana attenuata</i> primes induced plant defence against larval herbivory. Plant Journal, 2015, 83, 661-672.	2.8	63
224	FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. Plant Cell, 2015, 27, 3160-3174.	3.1	93

#	ARTICLE	IF	CITATIONS
225	Plant F-box Proteins – Judges between Life and Death. Critical Reviews in Plant Sciences, 2015, 34, 523-552.	2.7	48
226	A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. Plant Cell, 2015, 27, 3245-3259.	3.1	104
227	Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with <i>Pseudomonas syringae</i> pv tomato DC3000. Plant Cell, 2015, 27, 3038-3064.	3.1	148
228	Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. Plant Cell, 2015, 27, 3128-3142.	3.1	310
229	OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science, 2015, 232, 1-12.	1.7	145
230	Insights into the Origin and Evolution of the Plant Hormone Signaling Machinery. Plant Physiology, 2015, 167, 872-886.	2.3	206
231	Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. Current Opinion in Plant Biology, 2015, 24, 1-9.	3.5	39
232	Candidate Effector Proteins of the Rust Pathogen <i>Melampsora larici-populina</i> Plant Cell Compartments. Molecular Plant-Microbe Interactions, 2015, 28, 689-700.	1.4	172
233	Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg ²⁺ Concentrations in Arabidopsis. Plant Physiology, 2015, 167, 1039-1057.	2.3	51
234	Male sterility in <scp>A</scp> rabidopsis induced by overexpression of a <scp>MYC</scp> 5â€ <scp>SRDX</scp> chimeric repressor. Plant Journal, 2015, 81, 849-860.	2.8	84
235	Ethylene Signaling Modulates Herbivore-Induced Defense Responses in the Model Legume <i>Medicago truncatula </i> . Molecular Plant-Microbe Interactions, 2015, 28, 569-579.	1.4	19
236	The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes Â. Plant Physiology, 2015, 167, 693-710.	2.3	177
237	Regulation of MYB and bHLH Transcription Factors: A Glance at the Protein Level. Molecular Plant, 2015, 8, 378-388.	3.9	141
238	Cloning and characterisation of <scp>JAZ</scp> gene family in <i>Hevea brasiliensis</i> . Plant Biology, 2015, 17, 618-624.	1.8	33
239	The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Research, 2015, 25, 121-134.	5.7	93
240	Friends or Foes: New Insights in Jasmonate and Ethylene Co-Actions. Plant and Cell Physiology, 2015, 56, 414-420.	1.5	73
241	The tomato ⟨i⟩res⟨ i⟩ mutant which accumulates ⟨scp⟩ A⟨ scp⟩ in roots in nonâ€stressed conditions restores cell structure alterations under salinity. Physiologia Plantarum, 2015, 155, 296-314.	2.6	33
242	Growth–defence balance in grass biomass production: the role of jasmonates. Journal of Experimental Botany, 2015, 66, 4165-4176.	2.4	41

#	Article	IF	CITATIONS
243	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	3.5	401
244	Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Science Advances, 2015, 1, e1500107.	4.7	140
245	How Jasmonates Earned their Laurels: Past and Present. Journal of Plant Growth Regulation, 2015, 34, 761-794.	2.8	78
246	The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. Journal of Experimental Botany, 2015, 66, 4885-4896.	2.4	133
247	Dynamic Changes in ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory Mechanism in the Maize Leaf. Plant Cell, 2015, 27, 1605-1619.	3.1	154
248	A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biology, 2015, 13, 11.	1.7	14
249	Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis. Plant and Cell Physiology, 2015, 56, 830-842.	1.5	35
250	Repression of jasmonate signaling by a nonâ€TIFY JAZ protein in Arabidopsis. Plant Journal, 2015, 82, 669-679.	2.8	125
251	Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00619.	3.1	177
252	Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14354-14359.	3.3	51
253	SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell, 2015, 27, 3143-3159.	3.1	339
254	Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature, 2015, 525, 269-273.	13.7	248
255	A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. Plant Cell, 2015, 27, 2273-2287.	3.1	118
256	The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis. Plant Cell, 2015, 27, 2301-2313.	3.1	32
257	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	2.3	76
258	A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells. Journal of Plant Physiology, 2015, 185, 57-64.	1.6	17
259	An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nature Protocols, 2015, 10, 169-187.	5. 5	160
260	Plant hormone signalling through the eye of the mass spectrometer. Proteomics, 2015, 15, 1113-1126.	1.3	13

#	Article	IF	CITATIONS
261	Transcriptome Profiling Identified Multiple Jasmonate ZIM-Domain Proteins Involved in the Regulation of Alkaloid Biosynthesis in Tobacco BY-2 Cells. Plant Molecular Biology Reporter, 2015, 33, 153-166.	1.0	20
262	Ethylene in Plants., 2015, , .		28
263	Jasmonate Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 123-194.	0.5	4
264	Plant Hormone Signaling Systems in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , .	0.5	36
265	Jasmonic Acid: Genetic Pathway, Signal Transduction and Action in Plant Development and Defence. Biochemistry & Physiology, 2016, 5, .	0.2	2
266	How Microbes Twist Jasmonate Signaling around Their Little Fingers. Plants, 2016, 5, 9.	1.6	58
267	The Ubiquitin System and Jasmonate Signaling. Plants, 2016, 5, 6.	1.6	43
268	The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. Plants, 2016, 5, 8.	1.6	35
269	Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Frontiers in Plant Science, 2015, 6, 1129.	1.7	135
270	Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola. Frontiers in Plant Science, 2016, 7, 565.	1.7	85
271	Glucosinolate Regulation in a Complex Relationship – MYC and MYB – No One Can Act Without Each Other. Advances in Botanical Research, 2016, 80, 57-97.	0.5	28
272	Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in <i>Nicotiana tabacum</i> L Journal of Experimental Botany, 2016, 67, 3367-3381.	2.4	31
273	RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways. Plant Physiology, 2016, 171, 2069-2084.	2.3	57
274	SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nature Communications, 2016, 7, 11192.	5.8	77
275	Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany, 2017, 68, erw440.	2.4	156
276	Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. Journal of Experimental Botany, 2017, 68, erw443.	2.4	357
277	Evolution of jasmonate biosynthesis and signaling mechanisms. Journal of Experimental Botany, 2016, 68, erw470.	2.4	76
278	Genome-wide analysis of Gro/Tup1 family corepressors and their responses to hormones and abiotic stresses in maize. Journal of Plant Biology, 2016, 59, 603-615.	0.9	5

#	Article	IF	CITATIONS
279	Overexpression of <i>OsMYC2 </i> Results in the Up-Regulation of Early JA-Rresponsive Genes and Bacterial Blight Resistance in Rice. Plant and Cell Physiology, 2016, 57, 1814-1827.	1.5	84
280	Novel <scp>JAZ</scp> coâ€operativity and unexpected <scp>JA</scp> dynamics underpin <i><scp>A</scp>rabidopsis</i> defence responses to <i><scp>P</scp>seudomonas syringae</i> infection. New Phytologist, 2016, 209, 1120-1134.	3.5	43
281	Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Molecular Biology, 2016, 91, 673-689.	2.0	155
282	Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 2016, 35, 1159-1174.	2.8	93
283	Structural Basis for the Functional Coupling of the Alternative Splicing Factors Smu1 and RED. Structure, 2016, 24, 762-773.	1.6	25
284	How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 2016, 91, 727-740.	2.0	299
285	Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochemistry Reviews, 2016, 15, 339-361.	3.1	57
286	MODD Mediates Deactivation and Degradation of OsbZIP46 to Negatively Regulate ABA Signaling and Drought Resistance in Rice. Plant Cell, 2016, 28, 2161-2177.	3.1	140
287	Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 2016, 33, 147-156.	3.5	295
288	Unwinding JAZ7 – enigma to harmony. Journal of Experimental Botany, 2016, 67, 3183-3185.	2.4	5
289	Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet. Plant Physiology and Biochemistry, 2016, 108, 79-89.	2.8	20
290	Isolation of protein complexes from the model legume <i>Medicago truncatula</i> by tandem affinity purification in hairy root cultures. Plant Journal, 2016, 88, 476-489.	2.8	20
291	MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiology and Biochemistry, 2016, 108, 63-70.	2.8	40
292	Q&A: How does jasmonate signaling enable plants to adapt and survive?. BMC Biology, 2016, 14, 79.	1.7	26
293	Cloning, characterization, and subcellular localization of a novel JAZ repressor from Eleusine coracana. Biologia Plantarum, 2016, 60, 715-723.	1.9	0
294	Leaf miner-induced morphological, physiological and molecular changes in mangrove plantAvicennia marina(Forsk.) Vierh. Tree Physiology, 2016, 37, 82-97.	1.4	10
295	Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. Plant and Cell Physiology, 2016, 58, pcw187.	1.5	66
296	Increasing seed size and quality by manipulating <i>BIG SEEDS1</i> in legume species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12414-12419.	3.3	117

#	Article	IF	CITATIONS
298	A role for jasmonates in the release of dormancy by cold stratification in wheat. Journal of Experimental Botany, 2016, 67, 3497-3508.	2.4	73
299	No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Seminars in Cell and Developmental Biology, 2016, 56, 174-189.	2.3	202
300	Organ-specific regulation of growth-defense tradeoffs by plants. Current Opinion in Plant Biology, 2016, 29, 129-137.	3.5	62
301	MaJAZ1 Attenuates the MaLBD5-Mediated Transcriptional Activation of Jasmonate Biosynthesis Gene <i>MaAOC2</i> in Regulating Cold Tolerance of Banana Fruit. Journal of Agricultural and Food Chemistry, 2016, 64, 738-745.	2.4	46
302	Transcriptional regulatory networks in <i> Arabidopsis thaliana < /i > during single and combined stresses. Nucleic Acids Research, 2016, 44, 3147-3164.</i>	6.5	62
303	Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 2016, 91, 713-725.	2.0	135
304	Characterization of a <i>JAZ7</i> activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen <i>Fusarium oxysporum</i> . Journal of Experimental Botany, 2016, 67, 2367-2386.	2.4	68
305	Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling. Trends in Genetics, 2016, 32, 176-188.	2.9	90
306	Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1396-1408.	1.2	38
307	Topoisomerase II-associated protein PAT1H1 is involved in the root stem cell niche maintenance in Arabidopsis thaliana. Plant Cell Reports, 2016, 35, 1297-1307.	2.8	10
308	Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to <i>Pieris brassicae</i> Egg Extract. Plant Physiology, 2016, 170, 2432-2443.	2.3	71
309	Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms. Plant Cell, 2016, 28, 326-344.	3.1	202
310	Jasmonate signaling in plant stress responses and development $\hat{a}\in$ active and inactive compounds. New Biotechnology, 2016, 33, 604-613.	2.4	177
311	Role of the proteome in phytohormonal signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1003-1015.	1.1	27
312	JAZ7 negatively regulates dark-induced leaf senescence in <i>Arabidopsis</i> . Journal of Experimental Botany, 2016, 67, 751-762.	2.4	113
313	Recent insights into the molecular mechanism of jasmonate signaling during insect-plant interaction. Australasian Plant Pathology, 2016, 45, 123-133.	0.5	14
314	Identification of JAZ1-MYC2 Complex in Lotus corniculatus. Journal of Plant Growth Regulation, 2016, 35, 440-448.	2.8	4
315	Epigenetic Modifications and Plant Hormone Action. Molecular Plant, 2016, 9, 57-70.	3.9	146

#	Article	IF	CITATIONS
316	General Aspects of Plant Transcription Factor Families. , 2016, , 35-56.		26
317	Ubiquitination of Plant Transcription Factors. , 2016, , 395-409.		2
318	Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Critical Reviews in Biotechnology, 2017, 37, 685-700.	5.1	41
319	Molecular cloning, bioinformatics analysis, and transcriptional profiling of <i>JAZ1</i> and <i>JAZ2</i> from <i>Salvia miltiorrhiza</i> Biotechnology and Applied Biochemistry, 2017, 64, 27-34.	1.4	6
320	GhERFâ€Ib3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. Molecular Plant Pathology, 2017, 18, 825-836.	2.0	16
321	The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation. Plant Cell, 2017, 29, 243-259.	3.1	33
322	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	5.7	115
323	Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1720-1725.	3.3	67
324	Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany, 2017, 68, erw478.	2.4	214
325	Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling. Bioscience, Biotechnology and Biochemistry, 2017, 81, 906-913.	0.6	29
326	The Trojan horse coronatine: the COI1–JAZ2–MYC2,3,4–ANAC019,055,072 module in stomata dynamics upon bacterial infection. New Phytologist, 2017, 213, 972-975.	3.5	8
327	Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host and Microbe, 2017, 21, 156-168.	5.1	115
328	Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.). BMC Genomics, 2017, 18, 152.	1.2	55
329	Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Biologia (Poland), 2017, 72, 43-52.	0.8	3
330	Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. Scientific Reports, 2017, 7, 42418.	1.6	46
331	Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs. Gene, 2017, 620, 66-74.	1.0	15
332	Jasmonic acid signalling and the plant holobiont. Current Opinion in Microbiology, 2017, 37, 42-47.	2.3	61
333	Structural basis for the regulation of phytohormone receptors. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1261-1273.	0.6	5

#	Article	IF	Citations
334	Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin. Biochemical and Biophysical Research Communications, 2017, 488, 609-613.	1.0	17
335	The Jasmonate-Activated Transcription Factor MdMYC2 Regulates <i>ETHYLENE RESPONSE FACTOR</i> and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening. Plant Cell, 2017, 29, 1316-1334.	3.1	202
336	MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany, 2017, 68, 2977-2990.	2.4	101
337	Strigolactones, karrikins and beyond. Plant, Cell and Environment, 2017, 40, 1691-1703.	2.8	61
339	Jasmonate action in plant growth and development. Journal of Experimental Botany, 2017, 68, 1349-1359.	2.4	448
340	Jasmonate inhibits <scp>COP</scp> 1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant Journal, 2017, 90, 1144-1155.	2.8	46
341	TOPLESS mediates brassinosteroid control of shoot boundaries and root meristem development in <i>Arabidopsis thaliana </i> Development (Cambridge), 2017, 144, 1619-1628.	1.2	47
345	Coordination of Meristem Doming and the Floral Transition by Late Termination, a Kelch Repeat Protein. Plant Cell, 2017, 29, 681-696.	3.1	16
346	OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochemical and Biophysical Research Communications, 2017, 486, 796-803.	1.0	28
347	The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors. Plant Cell, 2017, 29, 854-870.	3.1	118
348	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	3.5	124
349	Regulation of gene expression by manipulating transcriptional repressor activity using a novel Co SRI technology. Plant Biotechnology Journal, 2017, 15, 879-893.	4.1	2
350	The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Molecular Biology, 2017, 93, 283-298.	2.0	39
351	ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers. Plant Molecular Biology, 2017, 93, 403-418.	2.0	46
352	Transcription Factor AsMYC2 Controls the Jasmonate-Responsive Expression of ASS1 Regulating Sesquiterpene Biosynthesis in Aquilaria sinensis (Lour.) Gilg. Plant and Cell Physiology, 2017, 58, 1924-1933.	1.5	48
353	Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8930-E8939.	3.3	135
354	Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Scientific Reports, 2017, 7, 7849.	1.6	32
355	MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. Plant and Cell Physiology, 2017, 58, 1752-1763.	1.5	61

#	Article	IF	CITATIONS
356	The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Scientific Reports, 2017, 7, 9260.	1.6	27
357	MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. Plant Cell, 2017, 29, 1883-1906.	3.1	263
358	The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. Journal of Experimental Botany, 2017, 68, 4695-4707.	2.4	61
359	Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7205-E7214.	3.3	55
360	De novo Transcriptome Sequencing of MeJA-Induced Taraxacum koksaghyz Rodin to Identify Genes Related to Rubber Formation. Scientific Reports, 2017, 7, 15697.	1.6	27
361	Genome-wide identification and characterization of JAZ gene family in upland cotton (Gossypium) Tj ETQq $1\ 1\ 0.7$	784314 rg 1.6	BT /Overlock
362	Regulation of growth–defense balance by the JASMONATE ZIMâ€ĐOMAIN (JAZ)â€MYC transcriptional module. New Phytologist, 2017, 215, 1533-1547.	3.5	182
363	CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 218-226.	0.9	33
364	Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. Plant Cell Reports, 2017, 36, 255-265.	2.8	21
365	Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in <i>Nicotiana attenuata (i). Plant Journal, 2017, 89, 15-30.</i>	2.8	28
366	The JASMONATE ZIM-Domain Gene Family Mediates JA Signaling and Stress Response in Cotton. Plant and Cell Physiology, 2017, 58, 2139-2154.	1.5	70
367	Jasmonate – a blooming decade. Journal of Experimental Botany, 2017, 68, 1299-1302.	2.4	8
368	A Conserved EAR Motif Is Required for Avirulence and Stability of the Ralstonia solanacearum Effector PopP2 In Planta. Frontiers in Plant Science, 2017, 8, 1330.	1.7	17
369	Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza. Frontiers in Plant Science, 2017, 8, 1804.	1.7	83
370	Jasmonates. , 2017, , 243-272.		15
371	Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Frontiers in Chemistry, 2017, 5, 106.	1.8	158
372	Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS ONE, 2017, 12, e0177381.	1.1	79
373	The Intronic cis Element SE1 Recruits trans-Acting Repressor Complexes to Repress the Expression of ELONGATED UPPERMOST INTERNODE1 inÂRice. Molecular Plant, 2018, 11, 720-735.	3.9	57

#	Article	IF	CITATIONS
374	Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus) Tj ETQq0 0 0 rgBT /Ove 519-531.	rlock 10 T 1.4	f 50 747 Td 21
375	Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclobutrazol treatment. Plant Physiology and Biochemistry, 2018, 127, 276-286.	2.8	30
376	Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nature Chemical Biology, 2018, 14, 480-488.	3.9	194
377	Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 2018, 25, 149-160.	1.5	68
378	YODA MAP3K kinase regulates plant immune responses conferring broadâ€spectrum disease resistance. New Phytologist, 2018, 218, 661-680.	3.5	54
379	Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 210-215.	3.3	71
380	SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Journal of Experimental Botany, 2018, 69, 1663-1678.	2.4	80
381	Jasmonic and salicylic acid response in the fern <scp><i>Azolla filiculoides</i></scp> and its cyanobiont. Plant, Cell and Environment, 2018, 41, 2530-2548.	2.8	40
382	ZEITLUPE in the Roots of Wild Tobacco Regulates Jasmonate-Mediated Nicotine Biosynthesis and Resistance to a Generalist Herbivore. Plant Physiology, 2018, 177, 833-846.	2.3	28
383	Utilization of transcription factors for controlling floral morphogenesis in horticultural plants. Breeding Science, 2018, 68, 88-98.	0.9	15
384	The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. Journal of Molecular Biology, 2018, 430, 1479-1494.	2.0	28
385	Physiological and transcriptomic analysis revealed the involvement of crucial factors in heat stress response of Rhododendron hainanense. Gene, 2018, 660, 109-119.	1.0	30
386	Modularity in Jasmonate Signaling for Multistress Resilience. Annual Review of Plant Biology, 2018, 69, 387-415.	8.6	446
387	Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response. Phytochemistry Reviews, 2018, 17, 51-80.	3.1	86
388	GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Molecular Plant Pathology, 2018, 19, 896-908.	2.0	68
389	The Jasmonate ZIM-domain protein gene SIJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Science, 2018, 267, 65-73.	1.7	57
390	A network of jasmonateâ€responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . New Phytologist, 2018, 217, 1566-1581.	3.5	81
391	Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environmental and Experimental Botany, 2018, 145, 104-120.	2.0	192

#	Article	IF	CITATIONS
392	Jasmonic Acid-Ethylene Crosstalk via ETHYLENE INSENSITIVE 2 Reprograms Arabidopsis Root System Architecture Through Nitric Oxide Accumulation. Journal of Plant Growth Regulation, 2018, 37, 438-451.	2.8	23
393	Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in <i>Artemisia annua</i> . Science Advances, 2018, 4, eaas9357.	4.7	101
394	A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS ONE, 2018, 13, e0201270.	1.1	30
395	Heterologous Expression of the Grapevine JAZ7 Gene in Arabidopsis Confers Enhanced Resistance to Powdery Mildew but Not to Botrytis cinerea. International Journal of Molecular Sciences, 2018, 19, 3889.	1.8	11
396	Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. International Journal of Molecular Sciences, 2018, 19, 3206.	1.8	368
397	JAZ repressors of metabolic defense promote growth and reproductive fitness in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10768-E10777.	3.3	172
398	Structural analysis of the woodland strawberry COI1-JAZ1 co-receptor for the plant hormone jasmonoyl-isoleucine. Journal of Molecular Graphics and Modelling, 2018, 85, 250-261.	1.3	8
399	Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential. Plant Journal, 2018, 96, 910-920.	2.8	33
400	Characterization of Brassinazole resistant (BZR) gene family and stress induced expression in Eucalyptus grandis. Physiology and Molecular Biology of Plants, 2018, 24, 821-831.	1.4	30
401	INDETERMINATE SPIKELET1 Recruits Histone Deacetylase and a Transcriptional Repression Complex to Regulate Rice Salt Tolerance. Plant Physiology, 2018, 178, 824-837.	2.3	52
402	Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. PLoS ONE, 2018, 13, e0197118.	1.1	26
403	Quantitative Tandem Affinity Purification, an Effective Tool to Investigate Protein Complex Composition in Plant Hormone Signaling: Strigolactones in the Spotlight. Frontiers in Plant Science, 2018, 9, 528.	1.7	13
404	Recent Trends in Plant Protein Complex Analysis in a Developmental Context. Frontiers in Plant Science, 2018, 9, 640.	1.7	32
405	Cross Regulatory Network Between Circadian Clock and Leaf Senescence Is Emerging in Higher Plants. Frontiers in Plant Science, 2018, 9, 700.	1.7	8
406	Somatic embryogenesis-related gene expression and functional genomics in mangosteen. Plant Gene, 2018, 15, 51-66.	1.4	4
407	Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of <i>CYCLIN D3</i> Plant Physiology, 2018, 178, 217-232.	2.3	50
408	Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13, e0200566.	1.1	53
409	Structural Biology of Jasmonic Acid Metabolism and Responses in Plants. , 2018, , 67-82.		3

#	Article	IF	Citations
410	Nucleolar GTP-Binding Protein 1-2 (NOG1-2) Interacts with Jasmonate-ZIMDomain Protein 9 (JAZ9) to Regulate Stomatal Aperture during Plant Immunity. International Journal of Molecular Sciences, 2018, 19, 1922.	1.8	19
411	Quantitative Trait Loci (QTLs) for Intumescence Severity in <i>Eucalyptus globulus</i> of QTL Detection Based on Phenotyping Using Open-Pollinated Families of a Mapping Population. Plant Disease, 2018, 102, 1566-1573.	0.7	7
412	Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 2018, 9, 2132.	5.8	138
413	Fast Quenching the Burst of Host Salicylic Acid Is Common in Early Strawberry/ <i>Colletotrichum fructicola</i> Interaction. Phytopathology, 2019, 109, 531-541.	1.1	10
414	Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in <i>Marchantia polymorpha</i> . Plant Cell, 2019, 31, 2491-2509.	3.1	73
415	The evolution of gene duplicates in angiosperms and the impact of protein-protein interactions and the mechanism of duplication. Genome Biology and Evolution, 2019, 11, 2292-2305.	1.1	48
416	The role of volatiles in plant communication. Plant Journal, 2019, 100, 892-907.	2.8	180
417	Arabidopsis FHY3 and FAR1 Regulate the Balance between Growth and Defense Responses under Shade Conditions. Plant Cell, 2019, 31, 2089-2106.	3.1	73
418	LEUNIG_HOMOLOG Mediates MYC2-Dependent Transcriptional Activation in Cooperation with the Coactivators HAC1 and MED25. Plant Cell, 2019, 31, 2187-2205.	3.1	51
420	Rapid Detection of Hormonal Involvement in Light Responses. Methods in Molecular Biology, 2019, 2026, 201-213.	0.4	0
421	Genome-Wide Identification and Characterization of JAZ Protein Family in Two Petunia Progenitors. Plants, 2019, 8, 203.	1.6	8
422	Circadian Network Interactions with Jasmonate Signaling and Defense. Plants, 2019, 8, 252.	1.6	14
423	High throughput in vitro seed germination screen identified new ABA responsive RING-type ubiquitin E3 ligases in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2019, 139, 563-575.	1.2	3
424	Evolutionary Analysis of JAZ Proteins in Plants: An Approach in Search of the Ancestral Sequence. International Journal of Molecular Sciences, 2019, 20, 5060.	1.8	26
425	New different origins and evolutionary processes of AP2/EREBP transcription factors in Taxus chinensis. BMC Plant Biology, 2019, 19, 413.	1.6	11
426	Arabidopsis Flowers Unlocked the Mechanism of Jasmonate Signaling. Plants, 2019, 8, 285.	1.6	26
427	Ectopic Expression of Multiple Chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB Transcription Factor Genes Regulates Anthocyanin Accumulation in Tobacco. Genes, 2019, 10, 777.	1.0	21
429	Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco (Nicotiana tabacum L.). Genes, 2019, 10, 930.	1.0	14

#	Article	IF	Citations
430	The jasmonate-ZIM domain gene VqIAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 143, 329-339.	2.8	21
431	The MYB–bHLH–WDR interferers (MBWi) epigenetically suppress the MBW's targets. Biology of the Cell, 2019, 111, 284-291.	0.7	7
432	Unraveling vascular development-related genes in laticifer-containing tissue of rubber tree by high-throughput transcriptome sequencing. Current Plant Biology, 2019, 19, 100112.	2.3	9
433	Fracture in tension–compression-asymmetry solids via phase field modeling. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112573.	3.4	20
434	MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants. Trends in Plant Science, 2019, 24, 275-289.	4.3	274
435	A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. Molecular Plant, 2019, 12, 185-198.	3.9	107
436	Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. International Journal of Molecular Sciences, 2019, 20, 2917.	1.8	43
437	Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101210.	1.5	59
438	Jasmonate and auxin perception: how plants keep F-boxes in check. Journal of Experimental Botany, 2019, 70, 3401-3414.	2.4	16
439	MED25 connects enhancer–promoter looping and MYC2-dependent activation of jasmonate signalling. Nature Plants, 2019, 5, 616-625.	4.7	82
440	A single residue change in the product of the chrysanthemum gene TPL1-2 leads to a failure in its repression of flowering. Plant Science, 2019, 285, 165-174.	1.7	6
441	Rice DNA-Binding One Zinc Finger 24 (OsDOF24) Delays Leaf Senescence in a Jasmonate-Mediated Pathway. Plant and Cell Physiology, 2019, 60, 2065-2076.	1.5	28
442	Tobacco transcription repressors NtJAZ: Potential involvement in abiotic stress response and glandular trichome induction. Plant Physiology and Biochemistry, 2019, 141, 388-397.	2.8	19
443	The plant Mediator complex and its role in jasmonate signaling. Journal of Experimental Botany, 2019, 70, 3415-3424.	2.4	55
444	Transcriptional Corepressor ASP1 and CLV-Like Signaling Regulate Meristem Maintenance in Rice. Plant Physiology, 2019, 180, 1520-1534.	2.3	20
445	Control of leaf blade outgrowth and floral organ development by <scp>LEUNIG</scp> , <scp> ANGUSTIFOLIA</scp> 3 and <scp>WOX</scp> transcriptional regulators. New Phytologist, 2019, 223, 2024-2038.	3.5	32
446	JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1618180.	1.2	8
447	Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genetics, 2019, 15, e1007993.	1.5	93

#	ARTICLE	IF	Citations
448	The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. Nature Plants, 2019, 5, 512-524.	4.7	68
449	Strigolactone Biosynthesis and Signal Transduction. , 2019, , 1-45.		15
450	Jasmonate action in plant defense against insects. Journal of Experimental Botany, 2019, 70, 3391-3400.	2.4	127
451	Role of Methyl Jasmonates in Salt Stress Tolerance in Crop Plants. , 2019, , 371-384.		12
452	Jasmonate Signal Receptor Gene Family ZmCOIs Restore Male Fertility and Defense Response of Arabidopsis mutant coi1-1. Journal of Plant Growth Regulation, 2019, 38, 479-493.	2.8	23
453	Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS ONE, 2019, 14, e0214145.	1.1	36
454	Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat. Scientific Reports, 2019, 9, 5691.	1.6	36
455	Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering?. International Journal of Molecular Sciences, 2019, 20, 671.	1.8	312
456	FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. Plant Physiology, 2019, 180, 367-380.	2.3	115
457	Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. Journal of Proteomics, 2019, 196, 81-91.	1.2	49
458	<pre><scp>JAZ</scp> proteins modulate seed germination through interaction with <scp>ABI</scp>5 in bread wheat and <i>Arabidopsis</i>. New Phytologist, 2019, 223, 246-260.</pre>	3.5	113
459	The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein–protein interaction surface. Plant Molecular Biology, 2019, 100, 47-58.	2.0	22
460	Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study. Rice, 2019, 12, 69.	1.7	31
461	Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.). BMC Genomics, 2019, 20, 1032.	1.2	22
462	Jasmonate Signaling during Arabidopsis Stamen Maturation. Plant and Cell Physiology, 2019, 60, 2648-2659.	1.5	39
463	Genome-wide identification and expression analysis of the PHD-finger gene family in Solanum tuberosum. PLoS ONE, 2019, 14, e0226964.	1.1	11
464	Reconstitution of the Jasmonate Signaling Pathway in Plant Protoplasts. Cells, 2019, 8, 1532.	1.8	12
465	Exploring the protein–protein interaction landscape in plants. Plant, Cell and Environment, 2019, 42, 387-409.	2.8	76

#	Article	IF	CITATIONS
466	Activatorâ€type R2R3â€MYB genes induce a repressorâ€type R2R3â€MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2019, 221, 1919-1934.	3.5	190
467	Design of a bacterial speck resistant tomato by <scp>CRISPR</scp> /Cas9â€mediated editing of <i>SI<scp>JAZ</scp>2</i> . Plant Biotechnology Journal, 2019, 17, 665-673.	4.1	215
468	Transcriptional regulators involved in responses to volatile organic compounds in plants. Journal of Biological Chemistry, 2019, 294, 2256-2266.	1.6	56
469	Overexpression of OsNINJA1 negatively affects a part of OsMYC2-mediated abiotic and biotic responses in rice. Journal of Plant Physiology, 2019, 232, 180-187.	1.6	15
470	NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. Journal of Experimental Botany, 2019, 70, 1033-1047.	2.4	28
471	MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. Plant Cell, 2019, 31, 106-127.	3.1	173
472	ABI5-BINDING PROTEIN2 Coordinates CONSTANS to Delay Flowering by Recruiting the Transcriptional Corepressor TPR2. Plant Physiology, 2019, 179, 477-490.	2.3	29
473	Defenceâ€related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant, Cell and Environment, 2019, 42, 983-997.	2.8	53
474	Jasmonates are signals in the biosynthesis of secondary metabolites â€" Pathways, transcription factors and applied aspects â€" A brief review. New Biotechnology, 2019, 48, 1-11.	2.4	178
475	Effect of prohydrojasmon on total phenolic content, anthocyanin accumulation and antioxidant activity in komatsuna and lettuce. Bioscience, Biotechnology and Biochemistry, 2020, 84, 178-186.	0.6	6
476	Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). Journal of Experimental Botany, 2020, 71, 330-343.	2.4	61
477	Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiology, 2020, 182, 167-184.	2.3	47
479	Arabidopsis ECAP Is a New Adaptor Protein that Connects JAZ Repressors with the TPR2 Co-repressor to Suppress Jasmonate-Responsive Anthocyanin Accumulation. Molecular Plant, 2020, 13, 246-265.	3.9	48
480	A Jasmonate-Activated MYC2–Dof2.1–MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis. Plant Cell, 2020, 32, 242-262.	3.1	79
481	JAZ4 is involved in plant defense, growth, and development in Arabidopsis. Plant Journal, 2020, 101, 371-383.	2.8	42
482	Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta, 2020, 251, 42.	1.6	52
483	Silencing JA hydroxylases in Nicotiana attenuata enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura. Plant Diversity, 2020, 42, 111-119.	1.8	11
484	Crosstalk with Jasmonic Acid Integrates Multiple Responses in Plant Development. International Journal of Molecular Sciences, 2020, 21, 305.	1.8	76

#	Article	IF	CITATIONS
485	Bioinformatics insights into microRNA mediated gene regulation in Triticum aestivum during multiple fungal diseases. Plant Gene, 2020, 21, 100219.	1.4	6
486	Mediator Subunit MED25 Couples Alternative Splicing of <i>JAZ</i> Genes with Fine-Tuning of Jasmonate Signaling. Plant Cell, 2020, 32, 429-448.	3.1	64
487	ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Reports, 2020, 39, 273-288.	2.8	23
488	Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9. Plant Molecular Biology, 2020, 102, 339-357.	2.0	11
489	The overexpression of OsSRO1a, which encodes an OsNINJA1- and OsMYC2-interacting protein, negatively affects OsMYC2-mediated jasmonate signaling in rice. Plant Cell Reports, 2020, 39, 489-500.	2.8	13
492	The JAâ€pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant Journal, 2020, 102, 138-152.	2.8	47
493	Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. Plant Cell, 2020, 32, 3846-3865.	3.1	78
494	An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Functional and Integrative Genomics, 2020, 20, 839-855.	1.4	9
495	Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. International Journal of Molecular Sciences, 2020, 21, 7482.	1.8	30
496	SnRK1α1 Antagonizes Cell Death Induced by Transient Overexpression of Arabidopsis thaliana ABI5 Binding Protein 2 (AFP2). Frontiers in Plant Science, 2020, 11, 582208.	1.7	2
497	Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 2021, 40, 1513-1541.	2.8	120
498	Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26197-26205.	3.3	14
499	A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1–JA-lle/COR–JAZs complexes. Scientific Reports, 2020, 10, 11310.	1.6	12
500	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	13.7	98
501	Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 2020, 11, 604489.	1.7	18
502	Induction of Jasmonoyl-Isoleucine (JA-Ile)-Dependent JASMONATE ZIM-DOMAIN (JAZ) Genes in NaCl-Treated Arabidopsis thaliana Roots Can Occur at Very Low JA-Ile Levels and in the Absence of the JA/JA-Ile Transporter JAT1/AtABCG16. Plants, 2020, 9, 1635.	1.6	6
503	Submergence deactivates wound-induced plant defence against herbivores. Communications Biology, 2020, 3, 651.	2.0	5
504	Mediator subunit MED25: at the nexus of jasmonate signaling. Current Opinion in Plant Biology, 2020, 57, 78-86.	3.5	39

#	Article	IF	CITATIONS
505	Epigenetic Regulation of Gibberellin Metabolism and Signaling. Plant and Cell Physiology, 2020, 61, 1912-1918.	1.5	10
506	The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of <i>Ghd7</i> expression. Plant Journal, 2020, 104, 447-459.	2.8	18
507	Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS ONE, 2020, 15, e0237457.	1.1	36
508	Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathogens, 2020, 16, e1008835.	2.1	34
509	Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. Frontiers in Plant Science, 2020, 11 , 559070.	1.7	16
510	Heterologous expression of chrysanthemum TOPLESS corepressor CmTPL1-1 alters meristem maintenance and organ development in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 157, 256-263.	2.8	2
512	Jasmonate induced alternative splicing responses in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00245.	0.8	11
513	Ring/U-Box Protein AtUSR1 Functions in Promoting Leaf Senescence Through JA Signaling Pathway in Arabidopsis. Frontiers in Plant Science, 2020, 11, 608589.	1.7	14
514	The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Scientific Reports, 2020, 10, 20362.	1.6	21
515	Interactions of JAZ Repressors with Anthocyanin Biosynthesis-Related Transcription Factors of Fragaria \tilde{A} — ananassa. Agronomy, 2020, 10, 1586.	1.3	9
516	New Findings on the Resistance Mechanism of an Elite Diploid Wild Potato Species JAM1-4 in Response to a Super Race Strain of Phytophthora infestans. Phytopathology, 2020, 110, 1375-1387.	1.1	11
517	Overexpression of jasmonate-responsive OsbHLH034 in rice results in the induction of bacterial blight resistance via an increase in lignin biosynthesis. Plant Cell Reports, 2020, 39, 1175-1184.	2.8	38
518	CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 2020, 26, 1099-1110.	1.4	166
519	Origin and evolution of jasmonate signaling. Plant Science, 2020, 298, 110542.	1.7	14
520	<i>ERF4</i> affects fruit firmness through TPL4 by reducing ethylene production. Plant Journal, 2020, 103, 937-950.	2.8	51
521	A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in <i>Arabidopsis thaliana</i> I). Journal of Agricultural and Food Chemistry, 2020, 68, 7281-7297.	2.4	67
522	Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annual Review of Cell and Developmental Biology, 2020, 36, 291-313.	4.0	33
523	Identification, molecular characterization and expression of JAZ genes in Lycoris aurea. PLoS ONE, 2020, 15, e0230177.	1.1	9

#	Article	IF	Citations
524	Abiotic and biotic stress interactions in plants: A cross-tolerance perspective. , 2020, , 267-302.		15
525	Structural Aspects of Plant Hormone Signal Perception and Regulation by Ubiquitin Ligases. Plant Physiology, 2020, 182, 1537-1544.	2.3	31
526	Molecular Rewiring of the Jasmonate Signaling Pathway to Control Auxin-Responsive Gene Expression. Cells, 2020, 9, 641.	1.8	6
527	Integrated multi-omics framework of the plant response to jasmonic acid. Nature Plants, 2020, 6, 290-302.	4.7	145
528	<i>ETHYLENE RESPONSE FACTOR 115</i> integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in <i>Arabidopsis</i> New Phytologist, 2020, 228, 1611-1626.	3.5	43
529	Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. International Journal of Molecular Sciences, 2020, 21, 4335.	1.8	20
530	OsJAZ13 Negatively Regulates Jasmonate Signaling and Activates Hypersensitive Cell Death Response in Rice. International Journal of Molecular Sciences, 2020, 21, 4379.	1.8	16
531	The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell, 2020, 32, 2806-2822.	3.1	64
532	Jasmonates: An Emerging Approach in Biotic and Abiotic Stress Tolerance. , 0, , .		3
533	lbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. Plant Cell, 2020, 32, 1102-1123.	3.1	65
534	CUL3 ^{BPM} E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6205-6215.	3.3	67
535	Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. International Journal of Molecular Sciences, 2020, 21, 621.	1.8	227
536	NbCycB2 represses Nbwo activity via a negative feedback loop in tobacco trichome development. Journal of Experimental Botany, 2020, 71, 1815-1827.	2.4	26
537	A repressor complex silencing ABA signaling in seeds?. Journal of Experimental Botany, 2020, 71, 2847-2853.	2.4	14
538	Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses, 2020, 12, 148.	1.5	40
539	Mass Spectrometry Untangles Plant Membrane Protein Signaling Networks. Trends in Plant Science, 2020, 25, 930-944.	4.3	30
540	Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants, 2020, , .	0.5	24
541	FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. New Phytologist, 2020, 227, 1124-1137.	3.5	17

#	Article	IF	Citations
542	Identification of EIL and ERF Genes Related to Fruit Ripening in Peach. International Journal of Molecular Sciences, 2020, 21, 2846.	1.8	11
543	Linking signaling pathways to histone acetylation dynamics in plants. Journal of Experimental Botany, 2020, 71, 5179-5190.	2.4	47
544	Transcriptional repression of GIF1 by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis. Nature Communications, 2020, 11 , 1846 .	5.8	45
545	A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. Journal of Plant Physiology, 2020, 248, 153158.	1.6	9
546	Identification of gene co-expression networks and key genes regulating flavonoid accumulation in apple (Malus $\tilde{A}-$ domestica) fruit skin. Plant Science, 2021, 304, 110747.	1.7	23
547	Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chemistry, 2021, 337, 127772.	4.2	40
548	<i>Ustilago maydis</i> effector Jsil interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytologist, 2021, 229, 3393-3407.	3.5	54
549	The PEAPOD Pathway and Its Potential To Improve Crop Yield. Trends in Plant Science, 2021, 26, 220-236.	4.3	14
550	Modulation of <i>Arabidopsis</i> root growth by specialized triterpenes. New Phytologist, 2021, 230, 228-243.	3.5	20
551	Microbe-Plant-Insect Interactions: A Comparative Dissection of Interactome., 2021,, 365-398.		1
552	SCARECROW-LIKE3 regulates the transcription of gibberellin-related genes by acting as a transcriptional co-repressor of GAI-ASSOCIATED FACTOR1. Plant Molecular Biology, 2021, 105, 463-482.	2.0	8
553	Jasmonate: A Versatile Messenger in Plants. Signaling and Communication in Plants, 2021, , 129-158.	0.5	1
554	Apple Autotetraploids with Enhanced Resistance to Apple Scab (Venturia inaequalis) Due to Genome Duplication-Phenotypic and Genetic Evaluation. International Journal of Molecular Sciences, 2021, 22, 527.	1.8	14
555	Study of JASMONATE ZIM-Domain gene family to waterlogging stress in <i>Cucumis sativus</i> L Vegetable Research, 2021, 1, 1-12.	0.2	2
557	Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 341-355.	0.9	43
558	Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review). Applied Biochemistry and Microbiology, 2021, 57, 1-19.	0.3	11
559	The emerging role of jasmonate in the control of flowering time. Journal of Experimental Botany, 2022, 73, 11-21.	2.4	14
560	Jasmonic Acid for Sustainable Plant Growth and Production Under Adverse Environmental Conditions., 2021,, 71-98.		2

#	Article	IF	CITATIONS
561	The Crucial Role of Jasmonates in Enhancing Heavy Metals Tolerance in Plants. Signaling and Communication in Plants, 2021 , , $159-183$.	0.5	6
562	Distinct Arabidopsis Responses to Two Generalist Caterpillar Species Differing in Host Breadth. PhytoFrontiers, 2021, 1, 21-39.	0.8	1
563	Jasmonates: The Fine-Tuning Bio-regulators and Their Crosstalk with Plant Reproductive Biology. Signaling and Communication in Plants, 2021, , 185-205.	0.5	0
564	Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. Journal of Experimental Botany, 2021, 72, 3395-3409.	2.4	6
566	An updated census of the maize TIFY family. PLoS ONE, 2021, 16, e0247271.	1.1	10
567	Involvement of Arachis hypogaea Jasmonate ZIM domain/TIFY proteins in root nodule symbiosis. Journal of Plant Research, 2021, 134, 307-326.	1.2	4
568	Transcriptome analysis of the impact of exogenous methyl jasmonate on the opening of sorghum florets. PLoS ONE, 2021, 16, e0248962.	1.1	4
569	Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 2021, 22, 2914.	1.8	52
570	Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools. International Journal of Molecular Sciences, 2021, 22, 3082.	1.8	46
571	A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118,$	3.3	24
572	Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (Solanum) Tj ETQqC	0 0 0 rgBT	/Oyerlock 10
573	Genome-wide identification, characterization and expression analysis of BES1 gene family in tomato. BMC Plant Biology, 2021, 21, 161.	1.6	28
574	Identification and evolution analysis of the JAZ gene family in maize. BMC Genomics, 2021, 22, 256.	1.2	20
575	Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. Frontiers in Plant Science, 2021, 12, 665842.	1.7	17
577	Comparative Analysis of the Apple Root Transcriptome as Affected by Rootstock Genotype and Brassicaceae Seed Meal Soil Amendment: Implications for Plant Health. Microorganisms, 2021, 9, 763.	1.6	2
578	Overexpression of the <i>CmJAZ1-like</i> gene delays flowering in <i>Chrysanthemum morifolium</i> Horticulture Research, 2021, 8, 87.	2.9	32
579	Identification of a Putative DNA-Binding Protein in <i>Arabidopsis</i> That Acts as a Susceptibility Hub and Interacts With Multiple <i>Pseudomonas syringae</i> Effectors. Molecular Plant-Microbe Interactions, 2021, 34, 410-425.	1.4	3
580	Quantitative Proteomics Reveals the Dynamic Regulation of the Tomato Proteome in Response to Phytophthora infestans. International Journal of Molecular Sciences, 2021, 22, 4174.	1.8	7

#	Article	IF	CITATIONS
581	Role of jasmonic acid in plants: the molecular point of view. Plant Cell Reports, 2021, 40, 1471-1494.	2.8	135
582	JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Molecular Plant, 2021, 14, 732-747.	3.9	21
584	Influence of virus–host interactions on plant response to abiotic stress. Plant Cell Reports, 2021, 40, 2225-2245.	2.8	14
585	New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum: A Genome-Wide Comprehensive Analysis. Frontiers in Genetics, 2021, 12, 657970.	1.1	31
586	Repressor for hire! The vital roles of TOPLESSâ€mediated transcriptional repression in plants. New Phytologist, 2021, 231, 963-973.	3.5	34
587	Molecular mechanism of MdWUS2–MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 2021, 72, 4822-4838.	2.4	10
588	DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiology, 2021, 187, 947-962.	2.3	18
589	Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. Theoretical and Applied Genetics, 2021, 134, 2823-2839.	1.8	8
590	Extended JAZ degron sequence for plant hormone binding in jasmonate co-receptor of tomato SICOI1-SIJAZ. Scientific Reports, 2021, 11, 13612.	1.6	11
591	Methyl Jasmonate Applications in Viticulture: A Tool to Increase the Content of Flavonoids and Stilbenes in Grapes and Wines. Horticulturae, 2021, 7, 133.	1.2	9
593	OsJAZ11 regulates phosphate starvation responses in rice. Planta, 2021, 254, 8.	1.6	16
594	Functional specificity, diversity, and redundancy of <i>Arabidopsis</i> JAZ family repressors in jasmonate and COI1â€regulated growth, development, and defense. New Phytologist, 2021, 231, 1525-1545.	3.5	45
597	A New Approach for Wounding Research: MYC2 Gene Expression and Protein Stability in Wounded Arabidopsis Protoplasts. Plants, 2021, 10, 1518.	1.6	5
598	Arabidopsis OXS3 family proteins repress ABA signaling through interactions with AFP1 in the regulation of <i>ABI4</i> expression. Journal of Experimental Botany, 2021, 72, 5721-5734.	2.4	13
599	AaWRKY9 contributes to light―and jasmonateâ€mediated to regulate the biosynthesis of artemisinin in <i>Artemisia annua</i> . New Phytologist, 2021, 231, 1858-1874.	3.5	67
600	JA Shakes Hands with ABA to Delay Seed Germination. Trends in Plant Science, 2021, 26, 764-766.	4.3	21
601	Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. International Journal of Molecular Sciences, 2021, 22, 8568.	1.8	164
602	<scp>OsPHR2</scp> modulates phosphate starvationâ€induced <scp>OsMYC2</scp> signalling and resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Plant, Cell and Environment, 2021, 44, 3432-3444.	2.8	19

#	Article	IF	CITATIONS
603	Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L International Journal of Molecular Sciences, 2021, 22, 8859.	1.8	8
604	The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14, 1266-1280.	3.9	70
605	Genome-Wide Identification and Characterization of the Brassinazole-resistant (BZR) Gene Family and Its Expression in the Various Developmental Stage and Stress Conditions in Wheat (Triticum aestivum) Tj ETQq0	0 0.8 gBT/0	Oværlock 10 T
606	NtAIDP1, a novel NtJAZ interacting protein, binds to an AT-rich region to activate the transcription of jasmonate-inducible genes in tobacco. Journal of Plant Physiology, 2021, 263, 153452.	1.6	1
607	JA signal-mediated immunity of Dendrobium catenatum to necrotrophic Southern Blight pathogen. BMC Plant Biology, 2021, 21, 360.	1.6	9
608	A small molecule antagonizes jasmonic acid perception and auxin responses in vascular and nonvascular plants. Plant Physiology, 2021, 187, 1399-1413.	2.3	13
609	Pathogen Effectors: Exploiting the Promiscuity of Plant Signaling Hubs. Trends in Plant Science, 2021, 26, 780-795.	4.3	36
610	Genome-Wide Identification and Expression Analysis of JAZ Family Involved in Hormone and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. International Journal of Molecular Sciences, 2021, 22, 9786.	1.8	8
611	Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. Plant Journal, 2021, 108, 1083-1096.	2.8	10
612	Spatiotemporal regulation of <i>JAZ4</i> expression and splicing contribute to ethylene―and auxinâ€mediated responses in Arabidopsis roots. Plant Journal, 2021, 108, 1266-1282.	2.8	4
613	GmFULc Is Induced by Short Days in Soybean and May Accelerate Flowering in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 10333.	1.8	7
614	Genome-Wide Identification, Characterization and Expression Analysis of the JAZ Gene Family in Resistance to Gray Leaf Spots in Tomato. International Journal of Molecular Sciences, 2021, 22, 9974.	1.8	10
615	Effects of exogenous methyl-jasmonate on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 2021, 289, 110419.	1.7	4
616	Hormone mediated cell signaling in plants under changing environmental stress. Plant Gene, 2021, 28, 100335.	1.4	6
617	Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor. Molecular and Cellular Proteomics, 2021, 20, 100040.	2.5	11
618	Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell, 2021, 33, 697-713.	3.1	33
619	SIKIX8 and SIKIX9 are negative regulators of leaf and fruit growth in tomato. Plant Physiology, 2022, 188, 382-396.	2.3	12
620	Understanding and Manipulation of Plant–Microbe Interaction Signals for Yield Enhancement. , 2021, , 267-291.		0

#	ARTICLE	IF	Citations
621	The URL1–ROC5–TPL2 transcriptional repressor complex represses the <i>ACL1</i> gene to modulate leaf rolling in rice. Plant Physiology, 2021, 185, 1722-1744.	2.3	30
622	Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators. Methods in Molecular Biology, 2020, 2085, 3-22.	0.4	13
623	Interactions of Ethylene and Other Signals. , 2015, , 135-152.		2
624	How Plants Respond to Pathogen Attack: Interaction and Communication. , 2019, , 537-568.		9
625	Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Scientific Reports, 2020, 10, 2792.	1.6	23
626	Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. , 0 , .		1
627	Novel players fine-tune plant trade-offs. Essays in Biochemistry, 2015, 58, 83-100.	2.1	38
628	Comparison of plant hormone signalling systems. Essays in Biochemistry, 2015, 58, 165-181.	2.1	52
629	Jasmonates: biosynthesis, perception and signal transduction. Essays in Biochemistry, 2020, 64, 501-512.	2.1	46
630	NGPINT: a next-generation protein–protein interaction software. Briefings in Bioinformatics, 2021, 22, .	3.2	12
639	Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.	8.6	169
640	The OsJAZ1 degron modulates jasmonate signaling sensitivity during rice development. Development (Cambridge), 2019, 146, .	1.2	14
641	Promoter of CaZF, a Chickpea Gene That Positively Regulates Growth and Stress Tolerance, Is Activated by an AP2-Family Transcription Factor CAP2. PLoS ONE, 2013, 8, e56737.	1.1	9
642	A Jasmonate ZIM-Domain Protein NaJAZd Regulates Floral Jasmonic Acid Levels and Counteracts Flower Abscission in Nicotiana attenuata Plants. PLoS ONE, 2013, 8, e57868.	1.1	55
643	Jasmonate ZIM-Domain (JAZ) Protein Regulates Host and Nonhost Pathogen-Induced Cell Death in Tomato and Nicotiana benthamiana. PLoS ONE, 2013, 8, e75728.	1.1	56
644	bHLH003, bHLH013 and bHLH017 Are New Targets of JAZ Repressors Negatively Regulating JA Responses. PLoS ONE, 2014, 9, e86182.	1.1	104
645	A JAZ Protein in Astragalus sinicus Interacts with a Leghemoglobin through the TIFY Domain and Is Involved in Nodule Development and Nitrogen Fixation. PLoS ONE, 2015, 10, e0139964.	1.1	11
646	Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Current Genomics, 2017, 18, 512-522.	0.7	22

#	Article	IF	CITATIONS
647	Plant Hormone Signalling: Current Perspectives on Perception and Mechanisms of Action. Ceylon Journal of Science (Biological Sciences), 2013, 42, 1.	0.2	12
648	Alterations of Endogenous Hormonal Levels in Plants under Drought and Salinity. American Journal of Plant Sciences, 2016, 07, 1357-1371.	0.3	69
649	Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation. ELife, 2020, 9, .	2.8	61
650	Unique N-Terminal Interactions Connect F-BOX STRESS INDUCED (FBS) Proteins to a WD40 Repeat-like Protein Pathway in Arabidopsis. Plants, 2021, 10, 2228.	1.6	2
652	Medicinal Plants medicinal plant, Engineering of Secondary Metabolites cell/cellular cultures secondary metabolites in Cell Cultures cell/cellular cultures., 2012,, 6519-6538.		2
653	Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. Signaling and Communication in Plants, 2014, , 409-430.	0.5	2
654	Identification and characterization of the MYC2 gene in relation to leaf senescence response in hybrid poplar (<i>Populus alba</i> & amp;times; <i>P. glandulosa</i>). Journal of Plant Biotechnology, 2017, 44, 409-415.	0.1	0
659	Crystallization of a Complex Between MYC and Jas Motif. Methods in Molecular Biology, 2020, 2085, 133-144.	0.4	0
660	How Plants Might Recognize Rhizospheric Bacterial Volatiles. , 2020, , 139-165.		2
662	Genome-wide identification and expression analysis of the JAZ gene family in turnip. Scientific Reports, 2021, 11, 21330.	1.6	7
664	Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. International Journal of Molecular Sciences, 2020, 21, 9755.	1.8	14
665	Phytohormone Signaling in Response to Drought. Signaling and Communication in Plants, 2020, , 315-335.	0.5	2
668	Hydrogen Sulfide in Plants: Crosstalk with Other Signal Molecules in Response to Abiotic Stresses. International Journal of Molecular Sciences, 2021, 22, 12068.	1.8	34
670	bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors. Plant Physiology, 2022, 188, 1335-1349.	2.3	22
671	Aboveground Herbivory Influences Belowground Defense Responses in Maize. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
672	Chromatin enrichment for proteomics in plants (ChEP-P) implicates the histone reader ALFIN-LIKE 6 in jasmonate signalling. BMC Genomics, 2021, 22, 845.	1.2	9
673	Modulation of JA signalling reveals the influence of <i>StJAZ1â€ike</i> on tuber initiation and tuber bulking in potato. Plant Journal, 2022, 109, 952-964.	2.8	15
674	The Arabidopsis HDZIP class II transcription factor <i>ABA INSENSITIVE TO GROWTH $1 < l$i> functions in leaf development. Journal of Experimental Botany, 2022, 73, 1978-1991.</i>	2.4	10

#	Article	IF	Citations
675	Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 813-828.	0.9	14
679	Ca2+/CaM increases the necrotrophic pathogen resistance through the inhibition of a CaM-regulated dual-specificity protein phosphatase 1 in Arabidopsis. Plant Biotechnology Reports, 2022, 16, 71-78.	0.9	4
680	Genome-Wide Identification of TIFY Genes and Their Response to Various Pathogen Infections in Cucumber (Cucumis sativus L.). Scientia Horticulturae, 2022, 295, 110814.	1.7	10
681	ERF4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 2022, 8, 689-699.	2.3	21
682	Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Frontiers in Genetics, 2021, 12, 784883.	1.1	1
683	MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in <i>Lotus japonicus</i> . Journal of Experimental Botany, 2022, 73, 2650-2665.	2.4	12
684	BnA.JAZ5 Attenuates Drought Tolerance in Rapeseed through Mediation of ABA–JA Crosstalk. Horticulturae, 2022, 8, 131.	1.2	3
685	H and HL synergistically regulate jasmonate-triggered trichome formation in tomato. Horticulture Research, 2022, 9, .	2.9	14
686	Protein–protein interactions between jasmonate-related master regulator MYC and transcriptional mediator MED25 depend on a short binding domain. Journal of Biological Chemistry, 2022, 298, 101504.	1.6	7
687	Genome-wide TIFY family in Arachis hypogaea in the perspective of legume JAZs. Journal of Crop Science and Biotechnology, 2022, 25, 465-488.	0.7	2
688	Evolution and conserved functionality of organ size and shape regulator PEAPOD. PLoS ONE, 2022, 17, e0263928.	1.1	2
689	The interface of central metabolism with hormone signaling in plants. Current Biology, 2021, 31, R1535-R1548.	1.8	22
690	Interactomes: Experimental and In Silico Approaches. Advances in Experimental Medicine and Biology, 2021, 1346, 107-117.	0.8	1
691	Fine Mapping of a Vigor QTL in Chickpea (Cicer arietinum L.) Reveals a Potential Role for Ca4_TIFY4B in Regulating Leaf and Seed Size. Frontiers in Plant Science, 2022, 13, 829566.	1.7	6
693	Genome-Wide Analysis of the Gene Structure, Expression and Protein Interactions of the Peach (Prunus persica) TIFY Gene Family. Frontiers in Plant Science, 2022, 13, 792802.	1.7	11
694	Investigation of the JASMONATE ZIM-DOMAIN Gene Family Reveals the Canonical JA-Signaling Pathway in Pineapple. Biology, 2022, 11, 445.	1.3	5
695	TOPLESS in the regulation of plant immunity. Plant Molecular Biology, 2022, 109, 1-12.	2.0	9
697	Repressors: the gatekeepers of phytohormone signaling cascades. Plant Cell Reports, 2022, 41, 1333-1341.	2.8	1

#	Article	IF	CITATIONS
698	ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation. Plant Physiology, 2022, 189, 666-678.	2.3	5
699	TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Communications, 2022, 3, 100269.	3.6	30
700	Mechanisms of pre-attachment Striga resistance in sorghum through genome-wide association studies. Molecular Genetics and Genomics, 2022, 297, 751-762.	1.0	12
701	Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. International Journal of Molecular Sciences, 2022, 23, 3945.	1.8	42
703	Post-harvest Application of Methyl Jasmonate or Prohydrojasmon Affects Color Development and Anthocyanins Biosynthesis in Peach by Regulation of Sucrose Metabolism. Frontiers in Nutrition, 2022, 9, 871467.	1.6	8
704	PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. Plant Cell, 2022, 34, 2615-2637.	3.1	12
705	Ectopic Expression of OsJAZs Alters Plant Defense and Development. International Journal of Molecular Sciences, 2022, 23, 4581.	1.8	7
706	Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biology, 2022, 20, 83.	1.7	5
719	The Multifaceted Roles of MYC2 in Plants: Toward Transcriptional Reprogramming and Stress Tolerance by Jasmonate Signaling. Frontiers in Plant Science, 2022, 13, 868874.	1.7	41
720	Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. Frontiers in Plant Science, 2022, 13, .	1.7	12
721	TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. Plant Cell, 2022, 34, 2907-2924.	3.1	4
722	<i>OsJAZ11</i> regulates spikelet and seed development in rice. Plant Direct, 2022, 6, e401.	0.8	8
723	Overexpression of ABI5 Binding Proteins Suppresses Inhibition of Germination Due to Overaccumulation of DELLA Proteins. International Journal of Molecular Sciences, 2022, 23, 5537.	1.8	4
724	The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. International Journal of Molecular Sciences, 2022, 23, 6170.	1.8	14
725	Improved pathogen and stress tolerance in tomato mutants of <scp>SET</scp> domain histone 3 lysine methyltransferases. New Phytologist, 2022, 235, 1957-1976.	3.5	10
728	ZmMYC7 directly regulates ZmERF147 to increase maize resistance to Fusarium graminearum. Crop Journal, 2023, 11, 79-88.	2.3	5
729	Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany, 2023, 74, 1186-1197.	2.4	9
730	Transcriptomic Analysis of the CM-334/P. capsici/N. aberrans Pathosystem to Identify Components in Plant Resistance and Resistance-Breaking Responses. International Journal of Plant Biology, 2022, 13, 151-162.	1.1	0

#	ARTICLE	IF	CITATIONS
731	Transcriptional Regulation in Leaves of Cut Chrysanthemum (Chrysanthemum morifolium)  FenDante' in Response to Post-Harvest Ethylene Treatment. Horticulturae, 2022, 8, 573.	1.2	3
732	Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Molecular Plant, 2022, 15, 1329-1346.	3.9	23
733	Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25. Bioscience, Biotechnology and Biochemistry, 2022, 86, 1405-1412.	0.6	1
734	Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor. Journal of Integrative Agriculture, 2022, 21, 3540-3555.	1.7	5
735	GhMYC2 activates cytochrome P450 gene CYP71BE79 to regulate gossypol biosynthesis in cotton. Planta, 2022, 256, .	1.6	6
736	Reversible acetylation fine-tunes plant hormone signaling and immunity. Molecular Plant, 2022, , .	3.9	1
737	Comparison of the pathway structures influencing the temporal response of salicylate and jasmonate defence hormones in Arabidopsis thaliana. Frontiers in Plant Science, $0,13,.$	1.7	4
738	OPDA, more than just a jasmonate precursor. Phytochemistry, 2022, 204, 113432.	1.4	15
739	Role of jasmonate signaling in the regulation of plant responses to nutrient deficiency. Journal of Experimental Botany, 2023, 74, 1221-1243.	2.4	11
741	Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. , 2022, 15, .		2
742	Jasmonate perception: Ligand–receptor interaction, regulation, and evolution. Molecular Plant, 2023, 16, 23-42.	3.9	19
743	<i>Arabidopsis</i> TIE1 and TIE2 transcriptional repressors dampen cytokinin response during root development. Science Advances, 2022, 8, .	4.7	4
744	Phylogenetic analysis and expression profiles of jasmonate ZIM-domain gene family provide insight into abiotic stress resistance in sunflower. Frontiers in Plant Science, 0, 13, .	1.7	4
745	Genome-wide identification and expression of TIFY family in cassava (Manihot esculenta Crantz). Frontiers in Plant Science, $0,13,.$	1.7	6
746	Genome-Wide Identification and Variation Analysis of JAZ Family Reveals BnaJAZ8.C03 Involved in the Resistance to Plasmodiophora brassicae in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 12862.	1.8	1
747	<i>Plagiodera versicolora</i> feeding induces systemic and sexually differential defense responses in poplars. Physiologia Plantarum, 2022, 174, .	2.6	4
748	The JASMONATE ZIM-domain–OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. Journal of Experimental Botany, 2023, 74, 443-457.	2.4	18
749	The Core Jasmonic Acid-Signalling Module CoCOI1/CoJAZ1/CoMYC2 Are Involved in Jas Mediated Growth of the Pollen Tube in Camellia oleifera. Current Issues in Molecular Biology, 2022, 44, 5405-5415.	1.0	3

#	Article	IF	CITATIONS
750	Jasmonate-regulated root growth inhibition and root hair elongation. Journal of Experimental Botany, 2023, 74, 1176-1185.	2.4	15
751	The <scp>TIFY</scp> family protein <scp>CmJAZ1</scp> â€like negatively regulates petal size via interaction with the <scp>bHLH</scp> transcription factor <scp>CmBPE2</scp> in <i>Chrysanthemum morifolium</i> . Plant Journal, 2022, 112, 1489-1506.	2.8	7
752	Histone Deacetylase HDA15 Restrains PHYB-Dependent Seed Germination via Directly Repressing GA20ox1/2 Gene Expression. Cells, 2022, 11, 3788.	1.8	3
753	A novel genome sequence of <i>Jasminum sambac </i> helps uncover the molecular mechanism underlying the accumulation of jasmonates. Journal of Experimental Botany, 2023, 74, 1275-1290.	2.4	4
754	JAZ is essential for ligand specificity of the COI1/JAZ co-receptor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	12
755	Post-translational modifications: emerging regulators manipulating jasmonate biosynthesis and signaling. Plant Cell Reports, 0 , , .	2.8	0
756	Rice OsPUB16 modulates the â€~SAPK9-OsMADS23-OsAOC' pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis. PLoS Genetics, 2022, 18, e1010520.	1.5	5
757	Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany, 2023, 74, 1162-1175.	2.4	9
758	A genomeâ€wide association study identifies novel players in Na and Fe homeostasis in <i>Arabidopsis thaliana</i> under alkalineâ€salinity stress. Plant Journal, 2023, 113, 225-245.	2.8	2
759	<scp>HDAC19</scp> recruits <scp>ERF4</scp> to the <scp><i>MYB5a</i></scp> promoter and diminishes anthocyanin accumulation during grape ripening. Plant Journal, 2023, 113, 127-144.	2.8	7
760	Seed Myco-priming improves crop yield and herbivory induced defenses in maize by coordinating antioxidants and Jasmonic acid pathway. BMC Plant Biology, 2022, 22, .	1.6	8
762	NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature, 2023, 613, 145-152.	13.7	16
763	Brassinosteroid-induced gene repression requires specific and tight promoter binding of BIL1/BZR1 via DNA shape readout. Nature Plants, 2022, 8, 1440-1452.	4.7	8
764	Exploring the metabolic basis of growth/defense tradeâ€offs in complex environments with ⟨i⟩Nicotiana attenuata⟨ i⟩ plants cosilenced in ⟨i⟩NaMYC2a b⟨ i⟩ expression. New Phytologist, 2023, 238, 349-366.	3.5	5
765	Rhizogenic <i>Agrobacterium</i> protein RolB interacts with the TOPLESS repressor proteins to reprogram plant immunity and Adevelopment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
766	SlBBX20 attenuates JA signalling and regulates resistance to <i>Botrytis cinerea</i> by inhibiting SlMED25 in tomato. Plant Biotechnology Journal, 2023, 21, 792-805.	4.1	4
767	Mass spectrometric exploration of phytohormone profiles and signaling networks. Trends in Plant Science, 2023, 28, 399-414.	4.3	7
768	Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. Plant Communications, 2023, 4, 100552.	3.6	16

#	Article	IF	CITATIONS
769	Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966.	2.3	6
771	Extended role of auxin: reconciliation of growth and defense responses under biotic stress. , 2023, , 147-165.		0
772	Roles of jasmonates in tomato growth, development and defense. Vegetable Research, 2023, 3, 0-0.	0.2	2
773	The Non-JAZ TIFY Protein TIFY8 of Arabidopsis thaliana Interacts with the HD-ZIP III Transcription Factor REVOLUTA and Regulates Leaf Senescence. International Journal of Molecular Sciences, 2023, 24, 3079.	1.8	3
774	$\mbox{\sc i} \times \mbox{\sc OsRbohl} \times \mbox{\sc /i} \times \mbox{\sc Regulates}$ Rice Growth and Development through Jasmonic Acid Signal. Plant and Cell Physiology, 0, , .	1.5	0
775	OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. Nature Communications, 2023, 14, .	5.8	4
776	Plant Immunity: A Plastic System Operated Through Cell-Fate Transition. Journal of Plant Biology, 2023, 66, 193-206.	0.9	1
777	The transcription factor POPEYE negatively regulates the expression of bHLH lb genes to maintain iron homeostasis. Journal of Experimental Botany, 2023, 74, 2754-2767.	2.4	6
778	NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR–CYCD6;1 module in Arabidopsis. Molecular Plant, 2023, 16, 709-725.	3.9	6
779	Regulatory role of phytohormones in the interaction of plants with insect herbivores. , 2023, , 41-64.		0
780	Genome-Wide Analysis and Expression of MYC Family Genes in Tomato and the Functional Identification of slmyc1 in Response to Salt and Drought Stress. Agronomy, 2023, 13, 757.	1.3	3
781	The ethylene-responsive transcription factor PpERF9 represses <i>PpRAP2.4</i> and <i>PpMYB114</i> via histone deacetylation to inhibit anthocyanin biosynthesis in pear. Plant Cell, 2023, 35, 2271-2292.	3.1	23
782	Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance. ABIOTECH, 2023, 4, 124-139.	1.8	8
783	Signal, Not Poisonâ€"Screening Mint Essential Oils for Weed Control Leads to Horsemint. Agriculture (Switzerland), 2023, 13, 712.	1.4	1
784	Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. International Journal of Molecular Sciences, 2023, 24, 5990.	1.8	16
785	<i>Poaceae</i> â€specific βâ€1,3;1,4â€ <scp>d</scp> â€glucans link jasmonate signalling to <scp>OsLecRK1</scp> â€mediated defence response during riceâ€brown planthopper interactions. Plant Biotechnology Journal, 2023, 21, 1286-1300.	4.1	4
786	Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells, 2023, 12, 1027.	1.8	7
787	OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice. Frontiers in Plant Science, 0, 14 , .	1.7	2

#	ARTICLE	IF	CITATIONS
788	GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. Journal of Integrative Plant Biology, 2023, 65, 1983-2000.	4.1	7
790	Role of jasmonates in regulating physiological and molecular aspects of plants under abiotic stress. , 2023, , 137-173.		0
800	Cataloguing Protein Complexes In Planta Using TurboID-Catalyzed Proximity Labeling. Methods in Molecular Biology, 2023, , 311-334.	0.4	2
828	Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Advances in Virus Research, 2024, , 77-212.	0.9	0