Control of Arabidopsis apical–basal embryo polarity l

Nature 464, 423-426 DOI: 10.1038/nature08843

Citation Report

#	Article	IF	CITATIONS
1	Ectopic Expression of LBD18/ASL20 Results in Arrest of Plant Growth and Development with Repression of AINTEGUMENTA and PLETHORA Genes. Journal of Plant Biology, 2010, 53, 214-221.	2.1	9
2	Regulation of transcription in plants: mechanisms controlling developmental switches. Nature Reviews Genetics, 2010, 11, 830-842.	16.3	178
4	The control of axillary meristem fate in the maize <i>ramosa</i> pathway. Development (Cambridge), 2010, 137, 2849-2856.	2.5	157
5	Root Development—Two Meristems for the Price of One?. Current Topics in Developmental Biology, 2010, 91, 67-102.	2.2	134
6	The GATA Factor HANABA TARANU Is Required to Position the Proembryo Boundary in the Early Arabidopsis Embryo. Developmental Cell, 2010, 19, 103-113.	7.0	64
7	Phenotypic Consequences of Aneuploidy in <i>Arabidopsis thaliana</i> . Genetics, 2010, 186, 1231-1245.	2.9	103
8	Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. Journal of Experimental Botany, 2011, 62, 1687-1697.	4.8	37
9	MADS and More: Transcription Factors That Shape the Plant. Methods in Molecular Biology, 2011, 754, 3-18.	0.9	15
10	Embryonic development in Arabidopsis thaliana: from the zygote division to the shoot meristem. Frontiers in Plant Science, 2011, 2, 93.	3.6	34
11	Ribosomal protein L27a is required for growth and patterning in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 65, 269-281.	5.7	93
12	Establishment of the embryonic shoot apical meristem in Arabidopsis thaliana. Journal of Plant Research, 2011, 124, 211-219.	2.4	8
13	Patterning the embryo in higher plants: Emerging pathways and challenges. Frontiers in Biology, 2011, 6, 3-11.	0.7	4
14	Transcription factors regulating the progression of monocot and dicot seed development. BioEssays, 2011, 33, 189-202.	2.5	138
15	Coordinated histone modifications are associated with gene expression variation within and between species. Genome Research, 2011, 21, 590-598.	5.5	140
16	Structural characterization and expression pattern analysis of the rice <italic>PLT</italic> gene family. Acta Biochimica Et Biophysica Sinica, 2011, 43, 688-697.	2.0	29
17	The root endodermis: A hub of developmental signals and nutrient flow. Plant Signaling and Behavior, 2011, 6, 1954-1958.	2.4	13
18	A Per-ARNT-Sim-Like Sensor Domain Uniquely Regulates the Activity of the Homeodomain Leucine Zipper Transcription Factor REVOLUTA in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 567-582.	6.6	36
19	<i>RopGEF7</i> Regulates PLETHORA-Dependent Maintenance of the Root Stem Cell Niche in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 2880-2894.	6.6	55

#	Article	IF	CITATIONS
20	Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit. PLoS Genetics, 2012, 8, e1003020.	3.5	38
21	MicroRNA–Mediated Repression of the Seed Maturation Program during Vegetative Development in Arabidopsis. PLoS Genetics, 2012, 8, e1003091.	3.5	68
22	The <i>bps</i> signal. Plant Signaling and Behavior, 2012, 7, 698-700.	2.4	5
23	Diverse roles of Groucho/Tup1 co-repressors in plant growth and development. Plant Signaling and Behavior, 2012, 7, 86-92.	2.4	33
25	ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1382-1387.	2.4	80
26	Of Blades and Branches: Understanding and Expanding the Arabidopsis Ad/Abaxial Regulatory Network through Target Gene Identification. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 31-45.	1.1	17
27	SPT6L Encoding a Putative WG/GW-Repeat Protein Regulates Apical–Basal Polarity of Embryo in Arabidopsis. Molecular Plant, 2012, 5, 249-259.	8.3	26
28	APETALA2 negatively regulates multiple floral organ identity genes in <i>Arabidopsis</i> by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development (Cambridge), 2012, 139, 4180-4190.	2.5	277
29	Transcriptional Switches Direct Plant Organ Formation and Patterning. Current Topics in Developmental Biology, 2012, 98, 229-257.	2.2	19
30	A complex systems approach to Arabidopsis root stem-cell niche developmental mechanisms: from molecules, to networks, to morphogenesis. Plant Molecular Biology, 2012, 80, 351-363.	3.9	13
31	From thin to thick: major transitions during stem development. Trends in Plant Science, 2012, 17, 113-121.	8.8	79
32	A PHABULOSA/Cytokinin Feedback Loop Controls Root Growth in Arabidopsis. Current Biology, 2012, 22, 1699-1704.	3.9	112
33	In the absence of BYPASS1-related gene function, the <i>bps</i> signal disrupts embryogenesis by an auxin-independent mechanism. Development (Cambridge), 2012, 139, 805-815.	2.5	10
34	Patterning the primary root in <i>Arabidopsis</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 675-691.	5.9	30
35	Plant Stem Cell Niches. Annual Review of Plant Biology, 2012, 63, 615-636.	18.7	280
36	Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annual Review of Plant Biology, 2012, 63, 483-506.	18.7	168
37	Stable establishment of cotyledon identity during embryogenesis in <i>Arabidopsis</i> by <i>ANGUSTIFOLIA3</i> and <i>HANABA TARANU</i> . Development (Cambridge), 2012, 139, 2436-2446.	2.5	52
38	Evaluation of different embryogenic systems for production of true somatic embryos in Arabidopsis. Biologia Plantarum, 2012, 56, 401-408.	1.9	22

	CHATION RE	roiti	
#	Article	IF	CITATIONS
39	Growth and development of the root apical meristem. Current Opinion in Plant Biology, 2012, 15, 17-23.	7.1	183
40	Axis formation in Arabidopsis – transcription factors tell their side of the story. Current Opinion in Plant Biology, 2012, 15, 4-9.	7.1	19
41	<i>FHY3</i> promotes shoot branching and stress tolerance in Arabidopsis in an <i>AXR1</i> â€dependent manner. Plant Journal, 2012, 71, 907-920.	5.7	64
42	Genomeâ€wide bindingâ€site analysis of REVOLUTA reveals a link between leaf patterning and lightâ€mediated growth responses. Plant Journal, 2012, 72, 31-42.	5.7	120
44	Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in <i><scp>WUSCHEL</scp></i> â€dependent conversion of lateral root primordia into shoot meristems. Plant Journal, 2013, 73, 798-813.	5.7	80
45	<i>Arabidopsis</i> HD-Zip II transcription factors control apical embryo development and meristem function. Development (Cambridge), 2013, 140, 2118-2129.	2.5	99
46	Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca. Plant Cell, 2013, 25, 1960-1978.	6.6	268
47	Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops. Mechanisms of Development, 2013, 130, 25-33.	1.7	21
48	Modeling Framework for the Establishment of the Apical-Basal Embryonic Axis in Plants. Current Biology, 2013, 23, 2513-2518.	3.9	84
49	Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene, 2013, 522, 177-183.	2.2	26
50	The <scp>A</scp> rabidopsis embryo as a miniature morphogenesis model. New Phytologist, 2013, 199, 14-25.	7.3	76
51	Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Science China Life Sciences, 2013, 56, 1113-1123.	4.9	20
52	Establishing a Framework for the Ad/Abaxial Regulatory Network of <i>Arabidopsis</i> : Ascertaining Targets of Class III HOMEODOMAIN LEUCINE ZIPPER and KANADI Regulation. Plant Cell, 2013, 25, 3228-3249.	6.6	95
53	A Comprehensive Expression Analysis of the Arabidopsis MICRORNA165/6 Gene Family during Embryogenesis Reveals a Conserved Role in Meristem Specification and a Non-Cell-Autonomous Function. Plant and Cell Physiology, 2013, 54, 375-384.	3.1	77
54	Homeodomain-Leucine zipper II family of transcription factors to the limelight. Plant Signaling and Behavior, 2013, 8, e25447.	2.4	27
55	Genome-Wide Identification of KANADI1 Target Genes. PLoS ONE, 2013, 8, e77341.	2.5	61
56	Global Regulation of Embryonic Patterning in Arabidopsis by MicroRNAs. Plant Physiology, 2014, 165, 670-687.	4.8	44
57	REVOLUTA and WRKY53 connect early and late leaf development in <i>Arabidopsis</i> . Development (Cambridge), 2014, 141, 4772-4783.	2.5	107

#	Article	IF	CITATIONS
58	Endomembrane Trafficking Protein SEC24A Regulates Cell Size Patterning in Arabidopsis. Plant Physiology, 2014, 166, 1877-1890.	4.8	22
59	MicroRNA functions in plant embryos. Biochemical Society Transactions, 2014, 42, 352-357.	3.4	36
60	Genetic control of identity and growth in the early Arabidopsis embryo. Biochemical Society Transactions, 2014, 42, 346-351.	3.4	4
61	Homeodomain leucineâ€zipper proteins and their role in synchronizing growth and development with the environment. Journal of Integrative Plant Biology, 2014, 56, 518-526.	8.5	46
62	Plant and animal stem cells: similar yet different. Nature Reviews Molecular Cell Biology, 2014, 15, 301-312.	37.0	204
63	Transcription factor-mediated cell-to-cell signalling in plants. Journal of Experimental Botany, 2014, 65, 1737-1749.	4.8	82
64	Prenatal plumbing—vascular tissue formation in the plant embryo. Physiologia Plantarum, 2014, 151, 126-133.	5.2	22
65	Signaling in shoot and flower meristems of Arabidopsis thaliana. Current Opinion in Plant Biology, 2014, 17, 96-102.	7.1	39
66	Small RNAs as positional signal for pattern formation. Current Opinion in Plant Biology, 2014, 21, 37-42.	7.1	17
67	The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. Protoplasma, 2014, 251, 731-746.	2.1	16
68	Auxin and Its Role in Plant Development. , 2014, , .		37
70	AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science, 2014, 19, 146-157.	8.8	157
71	Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants. Frontiers in Plant Science, 2015, 6, 513.	3.6	32
72	Plant development regulation: Overview and perspectives. Journal of Plant Physiology, 2015, 182, 62-78.	3.5	34
73	A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reproduction, 2015, 28, 161-169.	2.2	99
74	Building a plant: cell fate specification in the early <i>Arabidopsis</i> embryo. Development (Cambridge), 2015, 142, 420-430.	2.5	179
75	Genetic control of distal stem cell fate within root and embryonic meristems. Science, 2015, 347, 655-659.	12.6	91
76	Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation. Gene, 2015, 574, 61-68.	2.2	13

#	Article	IF	CITATIONS
77	PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1004973.	3.5	35
78	Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany, 2015, 66, 5043-5053.	4.8	76
79	A molecular mechanism that confines the activity pattern of miR165 in <scp>A</scp> rabidopsis leaf primordia. Plant Journal, 2015, 82, 596-608.	5.7	43
80	Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis. Plant and Cell Physiology, 2015, 56, 830-842.	3.1	35
81	Plant micro <scp>RNA</scp> s: key regulators of root architecture and biotic interactions. New Phytologist, 2016, 212, 22-35.	7.3	53
82	Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything. Annual Review of Cell and Developmental Biology, 2016, 32, 47-75.	9.4	73
84	De novo assembly of plant body plan: a step ahead of Deadpool. Regeneration (Oxford, England), 2016, 3, 182-197.	6.3	55
85	EgHOX1, a HD-Zip II gene, is highly expressed during early oil palm (Elaeis guineensis Jacq.) somatic embryogenesis. Plant Gene, 2016, 8, 16-25.	2.3	9
86	Transcription Factors in the Regulation of Somatic Embryogenesis. , 2016, , 53-79.		29
87	Genome-wide analysis of spatio-temporal gene expression patterns during early embryogenesis in rice. Development (Cambridge), 2016, 143, 1217-27.	2.5	29
88	Plant vascular development: from early specification to differentiation. Nature Reviews Molecular Cell Biology, 2016, 17, 30-40.	37.0	195
89	Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Functional and Integrative Genomics, 2017, 17, 537-549.	3.5	12
90	A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 2017, 40, 264-277.e4.	7.0	86
91	Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development (Cambridge), 2017, 144, 1187-1200.	2.5	48
92	A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science Advances, 2017, 3, e1601217.	10.3	64
93	A Two-Step Model for de Novo Activation of <i>WUSCHEL</i> during Plant Shoot Regeneration. Plant Cell, 2017, 29, 1073-1087.	6.6	229
94	Selection During Maize Domestication Targeted a Gene Network Controlling Plant and Inflorescence Architecture. Genetics, 2017, 207, 755-765.	2.9	75
95	Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche. Russian Journal of Genetics: Applied Research, 2017, 7, 404-420.	0.4	5

ARTICLE IF CITATIONS # Regulatory function of homeodomainâ€leucine zipper (<scp>HD</scp>â€<scp>ZIP)</scp> family proteins 7.3 34 96 during embryogenesis. New Phytologist, 2017, 213, 95-104. Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation. Journal of 4.8 79 Experimental Botany, 2017, 68, 55-69. CLE peptide-mediated signaling in shoot and vascular meristem development. Frontiers in Biology, 2017, 98 0.7 5 12, 406-420. miR160 and miR166/165 Contribute to the LEC2-Mediated Auxin Response Involved in the Somatic 99 Embryogenesis Induction in Arabidopsis. Frontiers in Plant Science, 2017, 8, 2024. Cell type boundaries organize plant development. ELife, 2017, 6, . 100 6.0 106 Shoot stem cell specification in roots by the WUSCHEL transcription factor. PLoS ONE, 2017, 12, 2.5 e0176093. Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in 102 3.1 48 Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 1017-1026. Cs<scp>SPL</scp> functions as an adaptor between <scp>HD</scp>â€<scp>ZIP</scp>Â<scp>III</scp> and Cs<scp>WUS</scp> transcription factors regulating anther and ovule development in <i>Cucumis sativus</i> (cucumber). Plant Journal, 2018, 94, 535-547. 5.7 49 Genetic Regulation of Zygotic Embryogenesis in Angiosperm Plants. Russian Journal of Plant 104 1.1 13 Physiology, 2018, 65, 1-14. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. Annals of Botany, 2018, 122, 697-7<u>10</u>. New insights into the regulation of leaf senescence in Arabidopsis. Journal of Experimental Botany, 107 141 4.8 2018, 69, 787-799. Multiple Pathways in the Control of the Shade Avoidance Response. Plants, 2018, 7, 102. 3.5 34 Multiple Links between HD-Zip Proteins and Hormone Networks. International Journal of Molecular 109 4.1 31 Sciences, 2018, 19, 4047. A shared <i>cis</i> -regulatory module activates transcription in the suspensor of plant embryos. 7.1 Proceedings of the National Ácademy of Sciences of the United States of America, 2018, 115, E5824-E5833. ALTERED MERISTEM PROGRAM1 Restricts Shoot Meristem Proliferation and Regeneration by Limiting 111 30 4.8 HD-ZIP III-Mediated Expression of RAP2.6L. Plant Physiology, 2018, 177, 1580-1594. MicroRNA166 Monitors SPOROCYTELESS/NOZZLE for Building of the Anther Internal Boundary. Plant 4.8 29 Physiology, 2019, 181, 208-220. MicroRNA Dynamics and Functions During Arabidopsis Embryogenesis. Plant Cell, 2019, 31, 2929-2946. 113 6.6 51 114 Patterning the Axes: A Lesson from the Root. Plants, 2019, 8, 8. 19

#	Article	IF	CITATIONS
115	Specification of the basal region identity after asymmetric zygotic division requires mitogen-activated protein kinase 6 in rice. Development (Cambridge), 2019, 146, .	2.5	12
116	The Role of Small RNAs in Plant Somatic Embryogenesis. , 2019, , 311-338.		3
117	Domain-specific expression of meristematic genes is defined by the LITTLE ZIPPER protein DTM in tomato. Communications Biology, 2019, 2, 134.	4.4	24
118	Tackling Plant Phosphate Starvation by the Roots. Developmental Cell, 2019, 48, 599-615.	7.0	99
119	Central role of the LEAFY COTYLEDON1 transcription factor in seed development. Journal of Integrative Plant Biology, 2019, 61, 564-580.	8.5	71
120	The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. PLoS Genetics, 2019, 15, e1007988.	3.5	55
122	Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. Development (Cambridge), 2020, 147, .	2.5	8
123	Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineageâ€specific patterns. Plant Journal, 2020, 103, 1516-1524.	5.7	22
124	Root stem cells: how to establish and maintain the eternal youth. Rendiconti Lincei, 2020, 31, 223-230.	2.2	2
125	The Winner Takes It All: Auxin—The Main Player during Plant Embryogenesis. Cells, 2020, 9, 606.	4.1	39
126	Overexpression of MADS-box Gene AGAMOUS-LIKE 12 Activates Root Development in Juglans sp. and Arabidopsis thaliana. Plants, 2020, 9, 444.	3.5	7
127	An Essential Function for Auxin in Embryo Development. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039966.	5.5	25
128	Developmental and genomic architecture of plant embryogenesis: from model plant to crops. Plant Communications, 2021, 2, 100136.	7.7	24
129	Do Plasmodesmata Play a Prominent Role in Regulation of Auxin-Dependent Genes at Early Stages of Embryogenesis?. Cells, 2021, 10, 733.	4.1	2
130	Spatio-temporal selection of reference genes in the two congeneric species of Glycyrrhiza. Scientific Reports, 2021, 11, 1122.	3.3	4
131	MiRNA: the taskmaster of plant world. Biologia (Poland), 2021, 76, 1551-1567.	1.5	15
132	Repressor for hire! The vital roles of TOPLESSâ€mediated transcriptional repression in plants. New Phytologist, 2021, 231, 963-973.	7.3	34
134	Zygotic Embryogenesis in Flowering Plants. Methods in Molecular Biology, 2021, 2288, 73-88.	0.9	1

#	Article	IF	CITATIONS
135	MicroRNAs expression dynamics reveal post-transcriptional mechanisms regulating seed development in Phaseolus vulgaris L Horticulture Research, 2021, 8, 18.	6.3	9
136	From Stained Plant Tissues to Quantitative Cell Segmentation Analysis with MorphoGraphX. Methods in Molecular Biology, 2020, 2122, 63-83.	0.9	6
137	Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Methods in Molecular Biology, 2014, 1110, 3-33.	0.9	29
138	microRNAs in Plant Embryogenesis. Concepts and Strategies in Plant Sciences, 2020, , 99-120.	O.5	5
139	Genetic activity during early plant embryogenesis. Biochemical Journal, 2020, 477, 3743-3767.	3.7	26
141	LEAFY COTYLEDONs: old genes with new roles beyond seed development. F1000Research, 2019, 8, 2144.	1.6	8
142	Genetic Control and Phytohormonal Regulation of Plant Embryogenesis. International Journal of Medical Biotechnology & Genetics, 0, , 9-20.	0.0	4
143	Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. ELife, 2020, 9, .	6.0	40
148	Integrative analysis of HD-Zip III gene PmHB1 contribute to the plant architecture in Prunus mume. Scientia Horticulturae, 2022, 293, 110664.	3.6	3
150	The Arabidopsis HDZIP class II transcription factor <i>ABA INSENSITIVE TO GROWTH 1</i> functions in leaf development. Journal of Experimental Botany, 2022, 73, 1978-1991.	4.8	10
152	Genome-wide identification and characterization of AINTEGUMENTA-LIKE (AIL) family genes in apple (Malus domestica Borkh.). Genomics, 2022, 114, 110313.	2.9	7
153	Transcriptional control of Arabidopsis seed development. Planta, 2022, 255, 90.	3.2	23
154	The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean. Journal of Integrative Plant Biology, 2022, 64, 995-1006.	8.5	23
156	A novel chemical inhibitor of polar auxin transport promotes shoot regeneration by local enhancement of HDâ $\in\!$ III transcription. New Phytologist, 2022, , .	7.3	3
157	The HD-Zip transcription factor SIHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. Plant Physiology, 2022, 189, 2396-2412.	4.8	17
158	CkREV Enhances the Drought Resistance of Caragana korshinskii through Regulating the Expression of Auxin Synthetase Gene CkYUC5. International Journal of Molecular Sciences, 2022, 23, 5902.	4.1	5
159	TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars. Nature Plants, 2022, 8, 792-801.	9.3	13
160	The SIHB8 acts as a negative regulator in tapetum development and pollen wall formation in Tomato. Horticulture Research, 2022, 9, .	6.3	10

#	Article	IF	CITATIONS
162	Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. International Journal of Molecular Sciences, 2023, 24, 4392.	4.1	2
163	RWP-RK Domain 3 (OsRKD3) induces somatic embryogenesis in black rice. BMC Plant Biology, 2023, 23, .	3.6	0
164	The miR165/166– <i>PHABULOSA</i> module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1. Plant Cell, 2023, 35, 2952-2971.	6.6	11
165	Genomic asymmetry of the <i>Brassica napus</i> seed: epigenetic contributions of <scp>DNA</scp> methylation and small <scp>RNAs</scp> to subgenome bias. Plant Journal, 2023, 115, 690-708.	5.7	1
167	Maintenance of stem cell activity in plant development and stress responses. Frontiers in Plant Science, 0, 14, .	3.6	1
168	Imaging plant cell walls using fluorescent stains: The beauty is in the details. Journal of Microscopy, 0, , .	1.8	0