Bulgeless dwarf galaxies and dark matter cores from su

Nature 463, 203-206 DOI: 10.1038/nature08640

Citation Report

#	Article	IF	CITATIONS
1	Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds. Proceedings of the International Astronomical Union, 2010, 6, 491-498.	0.0	1
2	THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS. Astrophysical Journal Letters, 2010, 720, L149-L154.	3.0	214
3	THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES. Astrophysical Journal Letters, 2010, 710, L161-L166.	3.0	68
4	WANDERING BLACK HOLES IN BRIGHT DISK GALAXY HALOS. Astrophysical Journal Letters, 2010, 721, L148-L152.	3.0	99
5	STEALTH GALAXIES IN THE HALO OF THE MILKY WAY. Astrophysical Journal, 2010, 717, 1043-1053.	1.6	62
6	THE STRUCTURE OF GRAVITATIONALLY UNSTABLE GAS-RICH DISK GALAXIES. Astrophysical Journal, 2010, 719, 1230-1243.	1.6	49
7	STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS. Astrophysical Journal, 2010, 717, 121-132.	1.6	23
8	REIONIZATION SIMULATIONS POWERED BY GRAPHICS PROCESSING UNITS. I. ON THE STRUCTURE OF THE ULTRAVIOLET RADIATION FIELD. Astrophysical Journal, 2010, 724, 244-266.	1.6	80
9	PRESSURE SUPPORT IN GALAXY DISKS: IMPACT ON ROTATION CURVES AND DARK MATTER DENSITY PROFILES. Astrophysical Journal, 2010, 721, 547-561.	1.6	50
10	LOCAL GROUP DWARF SPHEROIDALS: CORRELATED DEVIATIONS FROM THE BARYONIC TULLY-FISHER RELATION. Astrophysical Journal, 2010, 722, 248-261.	1.6	108
11	THE INNER STRUCTURE AND KINEMATICS OF THE SAGITTARIUS DWARF GALAXY AS A PRODUCT OF TIDAL STIRRING. Astrophysical Journal, 2010, 725, 1516-1527.	1.6	59
12	Thin discs, thick dwarfs and the effects of stellar feedback. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 406, L65-L69.	1.2	41
13	An observer's view of simulated galaxies: disc-to-total ratios, bars and (pseudo-)bulges. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 407, L41-L45.	1.2	97
14	Misaligned angular momentum in hydrodynamic cosmological simulations: warps, outer discs and thick discs. Monthly Notices of the Royal Astronomical Society, 2010, 408, 783-796.	1.6	105
15	Cosmological galaxy formation simulations using smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2010, 408, 812-826.	1.6	131
16	Feedback and the structure of simulated galaxies at redshift z= 2. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1541-1556.	1.6	131
17	On the evolution of the velocity-mass-size relations of disc-dominated galaxies over the past 10 billion years. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	77
18	The central dark matter content of early-type galaxies: scaling relations and connections with star formation histories. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	33

#	ARTICLE	IF	CITATIONS
19	The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	135
20	Scalelength of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	26
21	The survival of dynamical fossils in dwarf spheroidal galaxies in conventional and modified dynamics. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1135-1147.	1.6	7
22	NGC 765 - a disturbed H i giant. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1674-1688.	1.6	5
23	Nearby galaxies as pointers to a better theory of cosmic evolution. Nature, 2010, 465, 565-569.	13.7	139
24	Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers. Nature, 2010, 466, 1082-1084.	13.7	186
25	Gone with the wind?. Nature, 2010, 463, 167-168.	13.7	1
26	Model offers intermediate insight. Nature, 2010, 463, 168-169.	13.7	43
27	A wide-field H I mosaic of Messier 31. Astronomy and Astrophysics, 2010, 511, A89.	2.1	123
28	BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING,. Astrophysical Journal, 2010, 723, 54-80.	1.6	237
29	FORMATION OF LATE-TYPE SPIRAL GALAXIES: GAS RETURN FROM STELLAR POPULATIONS REGULATES DISK DESTRUCTION AND BULGE GROWTH. Astrophysical Journal Letters, 2010, 714, L275-L279.	3.0	36
30	An analytical approach to the dwarf galaxies cusp problem. Astronomy and Astrophysics, 2010, 524, A74.	2.1	7
31	Impact of supernova feedback on the Tully-Fisher relation. Astronomy and Astrophysics, 2010, 519, A89.	2.1	28
32	Contradiction between strong lensing statistics and a feedback solution to the cusp/core problem. Research in Astronomy and Astrophysics, 2010, 10, 1215-1222.	0.7	7
33	Modeling the astronomical. Communications of the ACM, 2010, 53, 13-15.	3.3	14
34	THE TWO PHASES OF GALAXY FORMATION. Astrophysical Journal, 2010, 725, 2312-2323.	1.6	627
35	Dark-matter decays and self-gravitating halos. Physical Review D, 2010, 81, .	1.6	50
36	Modeling the dynamical friction timescale of a sinking satellite. Research in Astronomy and Astrophysics, 2010, 10, 1242-1254.	0.7	8

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
37	10ÂGeV dark matter candidates and cosmic-ray antiprotons. Physical Review D, 2010, 82, .	1.6	40
38	Origin of the gamma rays from the Galactic Center. Physical Review D, 2011, 84, .	1.6	386
39	Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Physical Review Letters, 2011, 106, 171302.	2.9	280
40	The modelling of feedback processes in cosmological simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2625-2642.	1.6	86
41	FORMING REALISTIC LATE-TYPE SPIRALS IN A $\hat{\mathbf{b}}$ CDM UNIVERSE: THE ERIS SIMULATION. Astrophysical Journal, 2011, 742, 76.	1.6	422
42	DO BARYONS ALTER THE HALOS OF LOW SURFACE BRIGHTNESS GALAXIES?. Astrophysical Journal Letters, 2011, 741, L29.	3.0	74
43	The Bosma effect revisited. Astronomy and Astrophysics, 2011, 532, A121.	2.1	7
44	Distant star clusters of the Milky Way in MOND. Astronomy and Astrophysics, 2011, 527, A33.	2.1	23
45	Galaxy Rotation Curves in the Context of LambdaCDM Cosmology. , 2011, , .		0
46	ON THE EFFICIENCY OF THE TIDAL STIRRING MECHANISM FOR THE ORIGIN OF DWARF SPHEROIDALS: DEPENDENCE ON THE ORBITAL AND STRUCTURAL PARAMETERS OF THE PROGENITOR DISKY DWARFS. Astrophysical Journal, 2011, 726, 98.	1.6	134
47	MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES. Astrophysical Journal, 2011, 727, 78.	1.6	259
48	THE FIRST GALAXIES: ASSEMBLY OF DISKS AND PROSPECTS FOR DIRECT DETECTION. Astrophysical Journal, 2011, 731, 54.	1.6	75
49	THE FIRST MASSIVE BLACK HOLE SEEDS AND THEIR HOSTS. Astrophysical Journal, 2011, 742, 13.	1.6	88
50	A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2011, 742, 20.	1.6	548
51	LOW SURFACE BRIGHTNESS GALAXIES: MASS PROFILES AS A CONSEQUENCE OF GALACTIC EVOLUTION. Astrophysical Journal Letters, 2011, 728, L47.	3.0	4
52	THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS FRACTION OF LOW-MASS CENTRAL GALAXIES IN COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2011, 736, 134.	1.6	34
53	INTERPRETING THE EVOLUTION OF THE SIZE-LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT. Astrophysical Journal, 2011, 728, 51.	1.6	83
54	DETECTING ADIABATIC CONTRACTION IN ROTATION CURVES. Astrophysical Journal, 2011, 739, 32.	1.6	2

#	Article	IF	CITATIONS
55	SIMULATED VOID GALAXIES IN THE STANDARD COLD DARK MATTER MODEL. Astrophysical Journal, 2011, 735, 132.	1.6	36
56	THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES. Astrophysical Journal, 2011, 736, 88.	1.6	70
57	TIDAL IMPRINTS OF A DARK SUB-HALO ON THE OUTSKIRTS OF THE MILKY WAY. II. PERTURBER AZIMUTH. Astrophysical Journal, 2011, 731, 40.	1.6	24
58	THE DARK MATTER DISTRIBUTION IN A383: EVIDENCE FOR A SHALLOW DENSITY CUSP FROM IMPROVED LENSING, STELLAR KINEMATIC, AND X-RAY DATA. Astrophysical Journal Letters, 2011, 728, L39.	3.0	99
59	The formation of disc galaxies in a Ĵ>CDM universe. Monthly Notices of the Royal Astronomical Society, 2011, 410, 1391-1408.	1.6	234
60	Angular momentum evolution in dark-matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1963-1976.	1.6	8
61	The PN.S Elliptical Galaxy Survey: a standard Ĵ›CDM halo around NGC 4374?â~ Monthly Notices of the Royal Astronomical Society, 2011, 411, 2035-2053.	1.6	80
62	Simulating high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 414, 847-859.	1.6	112
63	What is the (dark) matter with dwarf galaxies?. Monthly Notices of the Royal Astronomical Society, 2011, 413, 659-668.	1.6	75
64	Comparing galactic satellite properties in hydrodynamical and N-body simulations. Monthly Notices of the Royal Astronomical Society, 2011, 413, 878-886.	1.6	20
65	Bridging the gap between low- and high-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2665-2678.	1.6	27
66	Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback. Monthly Notices of the Royal Astronomical Society, 2011, 414, 195-208.	1.6	153
67	Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates. Monthly Notices of the Royal Astronomical Society, 2011, 415, 11-31.	1.6	297
68	Gravothermal collapse of isolated self-interacting dark matter haloes: N-body simulation versus the fluid model. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1125-1137.	1.6	91
69	Detection of satellite remnants in the Galactic Halo withâ€,Gaiaâ€,- II. A modified great circle cell method. Monthly Notices of the Royal Astronomical Society, 2011, 415, 214-224.	1.6	16
70	Disc heating: comparing the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2652-2664.	1.6	59
71	The effect of a single supernova explosion on the cuspy density profile of a small-mass dark matter halo. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2969-2973.	1.6	35
72	The effects of a hot gaseous halo in galaxy major mergers. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3750-3770.	1.6	74

#	Article	IF	CITATIONS
73	Dark halo response and the stellar initial mass function in early-type and late-type galaxies. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	63
74	The other side of bulge formation in a $\hat{\mathbf{b}}$ cold dark matter cosmology: bulgeless galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	2
75	Simulations of the formation and evolution of isolated dwarf galaxies - II. Angular momentum as a second parameter. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	16
76	Corrective effect of many-body interactions in dynamical friction. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1181-1190.	1.6	30
77	Properties of dark matter haloes and their correlations: the lesson from principal component analysis. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2388-2400.	1.6	40
78	Cosmological simulations of the formation of the stellar haloes around disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2802-2820.	1.6	232
79	Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and futureâ€,γ-ray observatories - I. The classical dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1526-1556.	1.6	88
80	The cold gas content of bulgeless dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2891-2898.	1.6	23
81	Advanced morphological galaxy classification: a comparison of observed and simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 418, 801-810.	1.6	13
82	Cores and revived cusps of dark matter haloes in disc galaxy formation through clump clusters. Monthly Notices of the Royal Astronomical Society, 2011, 418, 2527-2531.	1.6	50
83	Small Bites: star formation recipes in extreme dwarfs. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 414, L55-L59.	1.2	20
84	The VLT LBG Redshift Survey - I. Clustering and dynamics of â‰^1000 galaxies at zâ‰^ 3â~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 2-27.	1.6	35
85	Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1051-1060.	1.6	202
86	Recovering cores and cusps in dark matter haloes using mock velocity field observations. Monthly Notices of the Royal Astronomical Society, 2011, 414, 3617-3626.	1.6	64
87	Proposed new probe of modified gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 695, 365-369.	1.5	2
88	Non-power law behavior of the radial profile of phase-space density of halos. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 014-014.	1.9	34
89	THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS. Astronomical Journal, 2011, 142, 24.	1.9	215
90	IMPROVED MODELING OF THE MASS DISTRIBUTION OF DISK GALAXIES BY THE EINASTO HALO MODEL. Astronomical Journal, 2011, 142, 109.	1.9	74

	CI	CITATION REPORT		
#	Article		IF	CITATIONS
91	DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES. Astronomical Journal, 2011, 141, 193.		1.9	338
92	Stellar Kinematics of the Isolated Dwarf Irregular WLM. EAS Publications Series, 2011, 48, 59-60.		0.3	1
93	Gas and Star Formation in Dwarf Galaxies. EAS Publications Series, 2011, 48, 131-138.		0.3	0
94	Rapidly Star-forming Galaxies At High Redshifts. EAS Publications Series, 2011, 52, 35-42.		0.3	0
95	Formation and Evolution of Dwarf Galaxies in the CDM Universe. EAS Publications Series, 2011, 48, 369-381.		0.3	11
96	Atomic hydrogen, star formation and feedback in the lowest mass blue compact dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 426, 665-672.		1.6	14
97	Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2610-2640.		1.6	118
98	Astrophysics with GRAPE. Progress of Theoretical and Experimental Physics, 2012, 2012, .		1.8	2
99	INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES THEIR INTRINSIC METALLICITY DISPERSIONS. Astronomical Journal, 2012, 144, 183.	FROM	1.9	31
100	The galactic halo in mixed dark matter cosmologies. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 047-047.		1.9	47
101	Impact of a warm dark matter late-time velocity dispersion on large-scale structures. Physical Review D, 2012, 86, .		1.6	6
102	Indirect dark matter searches: Towards a consistent top-bottom approach for studying the gamma-ray signals and associated backgrounds. Physical Review D, 2012, 86, .	,	1.6	5
103	THE BARYONIC TULLY–FISHER RELATION OF GAS-RICH GALAXIES AS A TEST OF ΛCDM AND MOND. Astronomical Journal, 2012, 143, 40.		1.9	348
104	Moving mesh cosmology: numerical techniques and global statistics. Monthly Notices of the Royal Astronomical Society, 2012, 425, 3024-3057.		1.6	169
105	"GALAXY,―DEFINED. Astronomical Journal, 2012, 144, 76.		1.9	169
106	The current status of galaxy formation. Research in Astronomy and Astrophysics, 2012, 12, 917-946.		0.7	208
107	OUTSIDE-IN SHRINKING OF THE STAR-FORMING DISK OF DWARF IRREGULAR GALAXIES. Astronomical Journal, 2012, 143, 47.		1.9	114
108	A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSH AND STARBURSTS. Astrophysical Journal, 2012, 745, 69.	IFT DISKS,	1.6	417

#	Article	IF	Citations
109	ON THE ASSEMBLY OF THE MILKY WAY DWARF SATELLITES AND THEIR COMMON MASS SCALE. Astrophysical Journal, 2012, 745, 142.	1.6	50
110	DARK MATTER SUBHALOS IN THE URSA MINOR DWARF GALAXY. Astrophysical Journal, 2012, 757, 87.	1.6	13
111	DISCOVERY OF AN ACTIVE SUPERMASSIVE BLACK HOLE IN THE BULGELESS GALAXY NGC 4561. Astrophysical Journal, 2012, 757, 179.	1.6	29
112	Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Reviews in Relativity, 2012, 15, 10.	8.2	645
113	THE IMPACT OF BARYON PHYSICS ON THE STRUCTURE OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2012, 748, 54.	1.6	56
114	THE COUPLING BETWEEN THE CORE/CUSP AND MISSING SATELLITE PROBLEMS. Astrophysical Journal Letters, 2012, 759, L42.	3.0	191
115	HALO EXPANSION IN COSMOLOGICAL HYDRO SIMULATIONS: TOWARD A BARYONIC SOLUTION OF THE CUSP/CORE PROBLEM IN MASSIVE SPIRALS. Astrophysical Journal Letters, 2012, 744, L9.	3.0	163
116	BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES. Astrophysical Journal, 2012, 761, 71.	1.6	278
117	THE ORIGIN OF METALS IN THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT <i>z</i> = 3. Astrophysical Journal, 2012, 760, 50.	1.6	87
118	THE A2667 GIANT ARC AT <i>z</i> = 1.03: EVIDENCE FOR LARGE-SCALE SHOCKS AT HIGH REDSHIFT. Astrophysical Journal, 2012, 759, 66.	1.6	38
119	Dark matter in massive galaxies. Proceedings of the International Astronomical Union, 2012, 8, 211-220.	0.0	2
120	THE CENTRAL DARK MATTER DISTRIBUTION OF NGC 2976. Astrophysical Journal, 2012, 745, 92.	1.6	35
121	FORMING EARLY-TYPE GALAXIES IN $\hat{\flat}$ CDM SIMULATIONS. I. ASSEMBLY HISTORIES. Astrophysical Journal, 2012, 754, 115.	1.6	136
122	BUILDING THE STELLAR HALO THROUGH FEEDBACK IN DWARF GALAXIES. Astrophysical Journal Letters, 2012, 755, L35.	3.0	18
123	HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES. Astrophysical Journal Letters, 2012, 751, L15.	3.0	18
124	An investigation of Sloan Digital Sky Survey imaging data and multiband scaling relations of spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2741-2765.	1.6	62
125	The distribution of metals in cosmological hydrodynamical simulations of dwarf disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 425, 969-978.	1.6	65
126	Moving-mesh cosmology: characteristics of galaxies and haloes. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2027-2048.	1.6	116

#	Article	IF	CITATIONS
127	Adaptive mesh refinement simulations of collisional ring galaxies: effects of the interaction geometry. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2255-2266.	1.6	18
128	Stellar discs in Aquarius dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 426, 983-999.	1.6	31
129	Numerical simulations of the dark universe: State of the art and the next decade. Physics of the Dark Universe, 2012, 1, 50-93.	1.8	137
130	Cosmic-ray antiproton constraints on light singlino-like dark matter candidates. Nuclear Physics B, 2012, 854, 738-779.	0.9	27
131	Galaxy formation: The new Milky Way. Nature, 2012, 490, 24-27.	13.7	3
132	Dark matter and cosmic structure. Annalen Der Physik, 2012, 524, 507-534.	0.9	303
133	Infall times for Milky Way satellites from their present-day kinematics. Monthly Notices of the Royal Astronomical Society, 2012, 425, 231-244.	1.6	101
134	The distribution of mass in the Orion dwarf Galaxy. Monthly Notices of the Royal Astronomical Society, 2012, 426, 751-757.	1.6	12
135	The birth of a galaxy – II. The role of radiation pressure. Monthly Notices of the Royal Astronomical Society, 2012, 427, 311-326.	1.6	147
136	Rotation rates, sizes and star formation efficiencies of a representative population of simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 379-392.	1.6	44
137	Moving-mesh cosmology: properties of gas discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2224-2238.	1.6	92
138	ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 745, 149.	1.6	137
139	Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 425, 3058-3076.	1.6	138
140	Dark matter indirect signatures. Comptes Rendus Physique, 2012, 13, 740-782.	0.3	37
141	Dark matter: The astrophysical case. Comptes Rendus Physique, 2012, 13, 724-729.	0.3	2
142	Sommerfeld-enhanced annihilation in dark matter substructure: Consequences for constraints on cosmic-ray excesses. Physical Review D, 2012, 86, .	1.6	14
143	OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES. Astrophysical Journal Letters, 2012, 748, L7.	3.0	137
144	THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM. Astrophysical Journal, 2012, 750, 33.	1.6	91

#	Article	IF	CITATIONS
145	THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING. Astrophysical Journal, 2012, 751, 61.	1.6	31
146	IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES. Astrophysical Journal, 2012, 747, 105.	1.6	47
147	ON THE ORIGIN OF THE ANGULAR MOMENTUM PROPERTIES OF GAS AND DARK MATTER IN GALACTIC HALOS AND ITS IMPLICATIONS. Astrophysical Journal, 2012, 750, 107.	1.6	36
148	THE DYNAMICS AND METALLICITY DISTRIBUTION OF THE DISTANT DWARF GALAXY VV124. Astrophysical Journal, 2012, 751, 46.	1.6	30
149	TWO PSEUDOBULGES IN THE "BOXY BULGE―GALAXY NGC 5746. Astrophysical Journal, 2012, 754, 140.	1.6	17
150	The dynamical and chemical evolution of dwarf spheroidal galaxies with GEAR. Astronomy and Astrophysics, 2012, 538, A82.	2.1	69
151	Self-gravitating equilibrium models of dwarf galaxies and the minimum mass for star formation. Astronomy and Astrophysics, 2012, 543, A129.	2.1	10
152	Fundamentals of the dwarf fundamental plane. Astronomy and Astrophysics, 2012, 540, A49.	2.1	20
153	Theoretical challenges in understanding galaxy evolution. Physics Today, 2012, 65, 43-49.	0.3	27
154	Triumphs and tribulations of $\hat{ m b}$ CDM, the double dark theory. Annalen Der Physik, 2012, 524, 535-544.	0.9	19
155	Hierarchical formation of bulgeless galaxies - II. Redistribution of angular momentum via galactic fountains. Monthly Notices of the Royal Astronomical Society, 2012, 419, 771-779.	1.6	150
156	Density profile slopes of dwarf galaxies and their environment. Monthly Notices of the Royal Astronomical Society, 2012, 419, 971-984.	1.6	63
157	On the origin of the stellar halo and multiple stellar populations in the globular cluster NGC 1851. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2063-2076.	1.6	64
158	Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3200-3222.	1.6	73
159	The baryons in the Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3304-3318.	1.6	51
160	Dwarf galaxies in the Coma cluster - II. Spectroscopic and photometric fundamental planesâ~â€. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2835-2850.	1.6	24
161	Ring galaxies from off-centre collisions. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1158-1166.	1.6	34
162	Evolution of star-forming dwarf galaxies: characterizing the star formation scenarios. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1294-1308.	1.6	8

#	Article	IF	CITATIONS
163	Local Group dwarf galaxies: nature and nurture. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1714-1730.	1.6	50
164	The haloes of bright satellite galaxies in a warm dark matter universe. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2318-2324.	1.6	329
165	The formation of the brightest cluster galaxies in cosmological simulations: the case for active galactic nucleus feedback. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2859-2873.	1.6	76
166	A semi-analytic model of the turbulent multi-phase interstellar medium. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1838-1860.	1.6	22
167	The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	30
168	Effect of Population III multiplicity on dark star formation. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	6
169	Galaxy formation in warm dark matter cosmology. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2384-2394.	1.6	62
170	How supernova feedback turns dark matter cusps into cores. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3464-3471.	1.6	677
171	Stellar feedback in galaxies and the origin of galaxy-scale winds. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3522-3537.	1.6	425
172	The Milky Way's bright satellites as an apparent failure of Ĵ·CDM. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1203-1218.	1.6	608
173	Cuspy no more: how outflows affect the central dark matter and baryon distribution in \hat{I} cold dark matter galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1231-1240.	1.6	524
174	Coplanar streams, pancakes and angular-momentum exchange in high-z disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1732-1749.	1.6	108
175	Towards a self-consistent numerical model of late-type galaxies: calibrating the effects of sub-grid physics on galactic models. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2609-2619.	1.6	26
176	The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3081-3091.	1.6	126
177	The degeneracy between star formation parameters in dwarf galaxy simulations and the Mstar-Mhalo relation. Monthly Notices of the Royal Astronomical Society, 2012, 423, 735-745.	1.6	19
178	Statistical properties of the dark matter haloes of dwarf galaxies and correlations with the environment. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1060-1072.	1.6	25
179	A minor merger scenario for the ultraluminous X-ray source ESO 243-49 HLX-1. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1309-1317.	1.6	22
180	The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1726-1749.	1.6	381

#	Article	IF	CITATIONS
181	Simulation of radiation-driven winds from disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2153-2161.	1.6	17
182	Effects of baryon mass loss on profiles of large galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3243-3250.	1.6	15
183	Star formation in bulgeless late-type galaxies: clues to their evolution. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3274-3284.	1.6	4
184	The radius of baryonic collapse in disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 424, 502-507.	1.6	17
185	Cores in warm dark matter haloes: a Catch 22 problem. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1105-1112.	1.6	204
186	Pseudo-bulge formation via major mergers. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1232-1243.	1.6	28
187	Globular cluster systems as tracers of environmental effects on Virgo early-type dwarfs. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2614-2624.	1.6	24
188	MaGICC discs: matching observed galaxy relationships over a wide stellar mass range. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1275-1283.	1.6	150
189	The baryonic Tully-Fisher relation and galactic outflows. Monthly Notices of the Royal Astronomical Society, 2012, 424, 3123-3128.	1.6	48
191	Stringent constraints on the dark matter annihilation cross section from the region of the Galactic Center. Astroparticle Physics, 2013, 46, 55-70.	1.9	133
192	A model for cosmological simulations of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3031-3067.	1.6	711
193	Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astronomy Reviews, 2013, 57, 52-79.	5.2	84
194	Dark Matter in the Galactic Dwarf Spheroidal Satellites. , 2013, , 1039-1089.		49
195	TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS. Astrophysical Journal, 2013, 770, 25.	1.6	371
196	A NEW PROBE OF THE DISTRIBUTION OF DARK MATTER IN GALAXIES. Astrophysical Journal, 2013, 771, 98.	1.6	6
197	Observational Status of Dark Matter. Lecture Notes in Physics, 2013, , 271-287.	0.3	Ο
198	The satellites of the Milky Way – insights from semi-analytic modelling in a ĥCDM cosmology. Monthly Notices of the Royal Astronomical Society, 2013, 429, 725-743.	1.6	73
199	Resolving the generation of starburst winds in Galaxy mergers. Monthly Notices of the Royal	1.6	52

#	Article	IF	CITATIONS
200	The ATLAS3D project – XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1709-1741.	1.6	532
201	On the theory of mass-loss in dwarf galaxies – I. Basic equations and the case of wave/thermal driven winds. Monthly Notices of the Royal Astronomical Society, 2013, 432, 589-597.	1.6	5
202	Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1901-1927.	1.6	208
203	The ATLAS3D Project – XXIII. Angular momentum and nuclear surface brightness profiles. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2812-2839.	1.6	60
204	A minor merger scenario for the ultraluminous X-ray source ESO 243-49 HLX-1 – II. Constraints from photometry. Monthly Notices of the Royal Astronomical Society, 2013, 433, 849-866.	1.6	11
205	The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2647-2653.	1.6	147
206	Cusp–core transformations induced by AGN feedback in the progenitors of cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1947-1954.	1.6	105
207	Conserved actions, maximum entropy and dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 430, 121-133.	1.6	58
208	Limits in late time conversion of cold dark matter into dark radiation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 006-006.	1.9	1
209	Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 026-026.	1.9	7
210	Constraints on WIMP annihilation for contracted dark matter in the inner Galaxy with the <i>Fermi</i> -LAT. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 029-029.	1.9	50
211	On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2736-2752.	1.6	18
212	Non-baryonic dark matter in cosmology. , 2013, , .		27
213	Stellar orbits and the survival of metallicity gradients in simulated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 434, 888-905.	1.6	35
214	Galaxy stability within a self-interacting dark matter halo. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1578-1598.	1.6	41
215	Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2496-2511.	1.6	87
216	The abundance of (not just) dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1366-1382.	1.6	130
217	The SWELLS survey – V. A Salpeter stellar initial mass function in the bulges of massive spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3183-3195.	1.6	65

#	Article	IF	CITATIONS
218	Towards a more realistic population of bright spiral galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3142-3164.	1.6	236
219	The intrinsic shapes of dwarf irregular galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 436, L104-L108.	1.2	42
220	Making Galaxies In a Cosmological Context: the need for early stellar feedback. Monthly Notices of the Royal Astronomical Society, 2013, 428, 129-140.	1.6	361
221	Cusp-core transformations in dwarf galaxies: observational predictions. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3068-3078.	1.6	338
222	The mass-loss process in dwarf galaxies from 3D hydrodynamical simulations: the role of dark matter and starbursts. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1437-1449.	1.6	15
223	The ATLAS3D project – XX. Mass–size and mass–ไf distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1862-1893.	1.6	496
224	The effect of feedback and reionization on star formation in low-mass dwarf galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1989-2011.	1.6	68
225	Can we measure the slopes of density profiles in dwarf spheroidal galaxies?. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2796-2807.	1.6	25
226	New composition-dependent cooling and heating curves for galaxy evolution simulations. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3005-3016.	1.6	21
227	The star-forming progenitors of massive red galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 430, 686-698.	1.6	11
228	Magnitude and size evolution of bulgeless galaxiesâ~ Monthly Notices of the Royal Astronomical Society, 2013, 435, 1186-1197.	1.6	11
229	ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS. Astrophysical Journal, 2013, 769, 74.	1.6	138
230	PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS. Astrophysical Journal, 2013, 772, 36.	1.6	70
231	THE RELATIVE ROLE OF GALAXY MERGERS AND COSMIC FLOWS IN FEEDING BLACK HOLES. Astrophysical Journal, 2013, 779, 136.	1.6	36
232	CONFRONTING MODELS OF DWARF GALAXY QUENCHING WITH OBSERVATIONS OF THE LOCAL GROUP. Astrophysical Journal, 2013, 773, 17.	1.6	18
233	TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES: ENHANCED TRANSFORMATION INTO DWARF SPHEROIDALS. Astrophysical Journal Letters, 2013, 764, L29.	3.0	32
234	Cosmological simulations with self-interacting dark matter – I. Constant-density cores and substructure. Monthly Notices of the Royal Astronomical Society, 2013, 430, 81-104.	1.6	555
235	PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONSâ€"THE IONIZATION POTENTIAL ENERGY RESERVOIR. Astrophysical Journal, 2013, 771, 36.	1.6	6

#	Article	IF	CITATIONS
236	HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY. Astrophysical Journal, 2013, 767, 93.	1.6	20
237	PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN <i>z</i> â ⁻¹ /4 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 768, 74.	1.6	752
238	Two-phase galaxy evolution: the cosmic star formation histories of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2622-2632.	1.6	62
239	RELAXATION IN <i>N</i> -BODY SIMULATIONS OF DISK GALAXIES. Astrophysical Journal Letters, 2013, 769, L24.	3.0	49
240	The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2929-2949.	1.6	77
241	THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300. Astrophysical Journal, 2013, 772, 12.	1.6	24
242	UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION. Astrophysical Journal Letters, 2013, 762, L11.	3.0	11
243	The phase-space density of fermionic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2346-2357.	1.6	84
244	Constraining self-interacting dark matter with the Milky Way's dwarf spheroidals. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L20-L24.	1.2	326
245	KAT-7 SCIENCE VERIFICATION: USING H I OBSERVATIONS OF NGC 3109 TO UNDERSTAND ITS KINEMATICS AND MASS DISTRIBUTION. Astronomical Journal, 2013, 146, 48.	1.9	34
246	DWARF GALAXY FORMATION WITH H ₂ -REGULATED STAR FORMATION. II. GAS-RICH DARK GALAXIES AT REDSHIFT 2.5. Astrophysical Journal, 2013, 776, 34.	1.6	42
247	The origin of pseudo-bulges in cosmological simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2013, 428, 718-728.	1.6	51
248	Dwarf galaxy populations in present-day galaxy clusters - II. The history of early-type and late-type dwarfs. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1162-1177.	1.6	43
249	Feedback effects of aspherical supernova explosions on galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 428, L31-L35.	1.2	7
250	Hints on halo evolution in scalar field dark matter models with galaxy observations. Physical Review D, 2013, 87, .	1.6	25
251	Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure. Physical Review D, 2013, 87, .	1.6	330
252	A GALACTIC WEIGH-IN: MASS MODELS OF SINGS GALAXIES USING CHEMO-SPECTROPHOTOMETRIC GALACTIC EVOLUTION MODELS. Astrophysical Journal, 2013, 773, 173.	1.6	8
253	REPRODUCING THE STELLAR MASS/HALO MASS RELATION IN SIMULATED Ĵ›CDM GALAXIES: THEORY VERSUS OBSERVATIONAL ESTIMATES. Astrophysical Journal, 2013, 766, 56.	1.6	153

#	Article	IF	CITATIONS
254	THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. I. THE TOTAL DENSITY OVER THREE DECADES IN RADIUS. Astrophysical Journal, 2013, 765, 24.	1.6	226
255	A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO). Astronomy and Astrophysics, 2013, 554, A20.	2.1	12
256	THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT <i>z</i> â^¼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS. Astrophysical Journal, 2013, 765, 89.	1.6	168
257	Supernovae driven galactic outflows. Proceedings of the International Astronomical Union, 2013, 9, 253-259.	0.0	0
258	Studying the core-cusp problem in cold dark matter halos using <i>N</i> -body simulations on GPU clusters. Journal of Physics: Conference Series, 2013, 454, 012014.	0.3	16
259	Secular evolution in disk galaxies. , 2013, , 1-154.		55
260	EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK. Astrophysical Journal, 2013, 763, 19.	1.6	39
261	Mass limits for dark clusters of degenerate fermions. Astronomy and Astrophysics, 2013, 551, A68.	2.1	2
262	AN OFF-CENTER DENSITY PEAK IN THE MILKY WAY'S DARK MATTER HALO?. Astrophysical Journal, 2013, 765, 10.	1.6	43
263	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352.		76
263 264	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22.	1.6	76
263 264 265	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136.	1.6 2.1	76 181 16
263 264 265 266	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136. Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71.	1.6 2.1 2.1	76 181 16 98
263 264 265 266	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136. Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71. Origin and evolution of structure and nucleosynthesis for galaxies in the local group. Modern Physics Letters A, 2014, 29, 1430012.	1.6 2.1 2.1 0.5	 76 181 16 98 10
263 264 265 266 267	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136. Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71. Origin and evolution of structure and nucleosynthesis for galaxies in the local group. Modern Physics Letters A, 2014, 29, 1430012. On the surface density of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3512-3524.	1.6 2.1 2.1 0.5 1.6	 76 181 16 98 10 34
263 264 265 266 267 268	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136. Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71. Origin and evolution of structure and nucleosynthesis for galaxies in the local group. Modern Physics Letters A, 2014, 29, 1430012. On the surface density of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3512-3524. Hollow cores in warm dark matter halos from the Vlasov-Poisson equation. Physical Review D, 2014, 90, .	1.6 2.1 2.1 0.5 1.6	 76 181 16 98 10 34 4
263 264 265 266 267 268 269	Bars and secular evolution in disk galaxies: Theoretical input. , 2013, , 305-352. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM. Astrophysical Journal, 2013, 765, 22. 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astronomy and Astrophysics, 2014, 562, A136. Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71. Origin and evolution of structure and nucleosynthesis for galaxies in the local group. Modern Physics Letters A, 2014, 29, 1430012. On the surface density of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3512-3524. Hollow cores in warm dark matter halos from the Vlasov-Poisson equation. Physical Review D, 2014, 90, . The local dark matter density. Journal of Physics G: Nuclear and Particle Physics, 2014, 41, 063101.	1.6 2.1 2.1 0.5 1.6 1.4	 76 181 16 98 10 34 4 365

#	Article	IF	CITATIONS
272	Evolution of dust and molecular hydrogen in the Magellanic System. Monthly Notices of the Royal Astronomical Society, 2014, 443, 522-546.	1.6	28
273	Red giants in the Small Magellanic Cloud – II. Metallicity gradient and age–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1680-1692.	1.6	43
274	The First Billion Years project: dark matter haloes going from contraction to expansion and back again. Monthly Notices of the Royal Astronomical Society, 2014, 443, 985-1001.	1.6	17
275	The relation between atomic gas and star formation rate densities in faint dwarf irregular galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1392-1402.	1.6	28
276	Chemo-dynamical evolution of tidal dwarf galaxies. I. Method and IMF dependence. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3980-3993.	1.6	40
277	The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1750-1775.	1.6	289
278	On the density profile of dark matter substructure in gravitational lens galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3598-3603.	1.6	26
279	The bulge–halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3594-3602.	1.6	75
280	A systematic look at the effects of radiative feedback on disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2837-2853.	1.6	69
281	Numerical simulations of bubble-induced star formation in dwarf irregular galaxies with a novel stellar feedback scheme. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1208-1222.	1.6	25
282	Numerical hydrodynamic simulations based on semi-analytic galaxy merger trees: method and Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1027-1044.	1.6	17
283	The formation of stellar nuclear discs in bar-induced gas inflows. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3352-3369.	1.6	63
284	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3529-3539.	1.6	50
285	A unified solution to the small scale problems of the Ĵ›CDM model. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 021-021.	1.9	49
286	Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 079-079.	1.9	7
287	Reproducing cosmic evolution of galaxy population from <i>z</i> Â=Â4 to 0. Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	32
288	Numerical simulations of dwarf galaxy merger trees. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2909-2925.	1.6	24
289	Cusps and cores in the presence of galactic bulges. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 047-047.	1.9	39

#	Article	IF	CITATIONS
290	Effects of baryon removal on the structure of dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1466-1482.	1.6	81
291	Dark halo microphysics and massive black hole scaling relations in galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3415-3434.	1.6	5
292	COSMOLOGICAL SIMULATIONS OF GALAXY FORMATION WITH COSMIC RAYS. Astrophysical Journal Letters, 2014, 797, L18.	3.0	52
293	Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - impact of physical parameters and triaxiality. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3002-3021.	1.6	71
294	Dark Radiation Alleviates Problems with Dark Matter Halos. Physical Review Letters, 2014, 113, 161301.	2.9	45
295	THE BARYON CYCLE OF DWARF GALAXIES: DARK, BURSTY, GAS-RICH POLLUTERS. Astrophysical Journal, 2014, 792, 99.	1.6	117
296	NON-AXISYMMETRIC STRUCTURE IN THE SATELLITE DWARF GALAXY NGC 2976: IMPLICATIONS FOR ITS DARK/BRIGHT MASS DISTRIBUTION AND EVOLUTION. Astronomical Journal, 2014, 147, 27.	1.9	14
297	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. II. SEARCHING FOR SIGNATURES OF REIONIZATION. Astrophysical Journal, 2014, 789, 148.	1.6	135
298	FAINT DWARFS IN NEARBY GROUPS. Astrophysical Journal, 2014, 788, 188.	1.6	8
299	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	3.0	185
300	Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Monthly Notices of the Royal Astronomical Society, 2014, 445, 581-603.	1.6	1,068
301	Red giants in the Small Magellanic Cloud – I. Disc and tidal stream kinematics. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1663-1679.	1.6	43
302	Simulating disc galaxy bulges that are consistent with observed scaling relations. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 440, L51-L55.	1.2	31
303	The role of feedback in shaping the structure of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2014, 441, 525-531.	1.6	17
304	Why stellar feedback promotes disc formation in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2092-2111.	1.6	101
305	Dark matter in disc galaxies – II. Density profiles as constraints on feedback scenarios. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3712-3727.	1.6	11
306	Gravitational and distributed heating effects of a cD galaxy on the hydrodynamical structure of its host cluster. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3750-3765.	1.6	2
307	Gaseous infall triggering starbursts in simulated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1830-1843.	1.6	37

#	Article	IF	CITATIONS
308	Tidal-induced lopsidedness in Magellanic-type galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1948-1958.	1.6	27
309	Extragalactic gamma-ray signal from dark matter annihilation: an appraisal. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1861-1878.	1.6	24
310	FUNDAMENTAL MASS-SPIN-MORPHOLOGY RELATION OF SPIRAL GALAXIES. Astrophysical Journal, 2014, 784, 26.	1.6	117
311	THE DISTRIBUTION OF DARK MATTER IN THE MILKY WAY'S DISK. Astrophysical Journal, 2014, 784, 161.	1.6	78
312	LINE OVERLAP AND SELF-SHIELDING OF MOLECULAR HYDROGEN IN GALAXIES. Astrophysical Journal, 2014, 795, 37.	1.6	65
313	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I. <i>HUBBLE SPACE TELESCOPE</i> /WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS. Astrophysical Journal, 2014, 789, 147.	1.6	362
314	THE ACS LCID PROJECT. X. THE STAR FORMATION HISTORY OF IC 1613: REVISITING THE OVER-COOLING PROBLEM. Astrophysical Journal, 2014, 786, 44.	1.6	64
315	GALAXY LUMINOSITY FUNCTION AND TULLY-FISHER RELATION: RECONCILED THROUGH ROTATION-CURVE STUDIES. Astrophysical Journal, 2014, 783, 66.	1.6	12
316	REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?. Astrophysical Journal Letters, 2014, 790, L17.	3.0	17
317	THE CORE-CUSP PROBLEM IN COLD DARK MATTER HALOS AND SUPERNOVA FEEDBACK: EFFECTS OF OSCILLATION. Astrophysical Journal, 2014, 793, 46.	1.6	51
318	A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2986-2995.	1.6	217
319	The biasing of baryons on the cluster mass function and cosmological parameter estimation. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2290-2299.	1.6	51
320	DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS. Astrophysical Journal, 2014, 789, 63.	1.6	108
321	Chemodynamical Simulations of Dwarf Galaxy Evolution. Advances in Astronomy, 2014, 2014, 1-30.	0.5	13
322	The effect of models of the interstellar media on the central mass distribution of galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2843-2859.	1.6	41
323	COSMOLOGICAL ZOOM SIMULATIONS OF <i>z</i> = 2 GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS. Astrophysical Journal, 2014, 782, 84.	1.6	55
324	THE ROLE OF STELLAR FEEDBACK IN THE DYNAMICS OF H II REGIONS. Astrophysical Journal, 2014, 795, 121.	1.6	109
325	DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES. Astrophysical Journal Letters, 2014, 782, L39.	3.0	47

ARTICLE IF CITATIONS Cold dark matter heats up. Nature, 2014, 506, 171-178. 326 13.7 242 Secular evolution in disk galaxies. Reviews of Modern Physics, 2014, 86, 1-46. 327 16.4 The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps 328 1.6 349 versus cores. Monthly Notices of the Royal Astronomical Society, 2014, 437, 415-423. Chandra X-ray galaxy clusters at z < 1.4: Constraints on the inner slope of the density profiles. Astronomy Reports, 2014, 58, 587-610. Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings. Physical Review D, 2014, 330 130 1.6 89,. Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. 1.6 166 Monthly Notices of the Royal Astronomical Society, 2014, 444, 3684-3698. COSMIC REIONIZATION ON COMPUTERS. I. DESIGN AND CALIBRATION OF SIMULATIONS. Astrophysical 332 1.6 139 Journal, 2014, 793, 29. Non-equilibrium chemistry and cooling in the diffuse interstellar medium – II. Shielded gas. Monthly 333 1.6 Notices of the Royal Astronomical Society, 2014, 442, 2780-2796. 334 Cosmic Star-Formation History. Annual Review of Astronomy and Astrophysics, 2014, 52, 415-486. 2,724 8.1 Scalar field dark matter mass model and evolution of rotation curves for low surface brightness 1.6 galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 185-191. Cosmological Simulations of Multicomponent Cold Dark Matter. Physical Review Letters, 2014, 113, 336 2.9 27 071303. Reâ€examining astrophysical constraints on the dark matter model. Annalen Der Physik, 2014, 526, 0.9 294-308. The flat density profiles of massive, and relaxed galaxy clusters. Journal of Cosmology and 338 1.9 21 Astroparticle Physics, 2014, 2014, 019-019. The impact of galaxy formation on the total mass, mass profile and abundance of haloes. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2641-2658. 1.6 Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 108-1010 MÂ. 340 59 1.6 Monthly Notices of the Royal Astronomical Society, 2014, 441, 2717-2724. NONBARYONIC DARK MATTER IN COSMOLOGY. International Journal of Modern Physics D, 2014, 23, 341 83 1430005. The mass and angular momentum distribution of simulated massive early-type galaxies to large radii. 342 1.6 68 Monthly Notices of the Royal Astronomical Society, 2014, 438, 2701-2715. DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES. Astrophysical Journal Letters, 343 2014, 789, L17.

<u> </u>			<u> </u>
(† 17	ΓΑΤΙ	ION	REDUBL
<u> </u>			

#	Article	IF	CITATIONS
344	Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1576-1592.	1.6	53
345	Dynamical signatures of a ♭CDM-halo and the distribution of the baryons in M 33. Astronomy and Astrophysics, 2014, 572, A23.	2.1	60
346	Giant monopoles as a dark matter candidate. Journal of Physics: Conference Series, 2014, 496, 012023.	0.3	3
347	The ATLAS3D project – XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3357-3387.	1.6	257
348	Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 449, 917-932.	1.6	174
349	STRUCTURAL PROPERTIES OF NON-SPHERICAL DARK HALOS IN MILKY WAY AND ANDROMEDA DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2015, 810, 22.	1.6	27
350	Light Dark Matter from Forbidden Channels. Physical Review Letters, 2015, 115, 061301.	2.9	131
351	EVIDENCE FOR EARLY FILAMENTARY ACCRETION FROM THE ANDROMEDA GALAXY'S THIN PLANE OF SATELLITES. Astrophysical Journal, 2015, 809, 49.	1.6	37
352	Is there a "too big to fail―problem in the field?. Astronomy and Astrophysics, 2015, 574, A113.	2.1	186
353	The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4223-4237.	1.6	26
354	Growing galaxies via superbubble-driven accretion flows. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3593-3609.	1.6	15
355	Forged in fire: cusps, cores and baryons in low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2092-2106.	1.6	291
356	The distribution of dark and luminous matter inferred from extended rotation curves. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2566-2593.	1.6	26
357	Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2087-2111.	1.6	221
358	The evolution of disc galaxies with and without classical bulges since z â^¼ 1. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2-16.	1.6	15
359	A lower fragmentation mass scale in high-redshift galaxies and its implications on giant clumps: a systematic numerical study. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2491-2515.	1.6	67
360	HIGH-RESOLUTION MASS MODELS OF DWARF GALAXIES FROM LITTLE THINGS. Astronomical Journal, 2015, 149, 180.	1.9	313
361	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118

#	Article	IF	Citations
362	Subdominant Dark Matter sterile neutrino resonant production in the light of PLANCK. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 066-066.	1.9	1
363	UGC 7639: A Dwarf Galaxy in the Canes Venatici I Cloud. Advances in Astronomy, 2015, 2015, 1-10.	0.5	4
364	Angular momentum evolution for galaxies in a $\hat{ m b}$ -CDM scenario. Astronomy and Astrophysics, 2015, 584, A43.	2.1	51
365	The post-infall evolution of a satellite galaxy. Astronomy and Astrophysics, 2015, 582, A23.	2.1	15
366	Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results. Astronomy and Astrophysics, 2015, 579, A9.	2.1	18
367	Building gas rings and rejuvenating S0 galaxies through minor mergers. Astronomy and Astrophysics, 2015, 575, A16.	2.1	35
368	A KILOPARSEC-SCALE NUCLEAR STELLAR DISK IN THE MILKY WAY AS A POSSIBLE EXPLANATION OF THE HIGH VELOCITY PEAKS IN THE GALACTIC BULGE. Astrophysical Journal Letters, 2015, 812, L16.	3.0	24
369	Environment, morphology, and stellar populations of bulgeless low surface-brightness galaxies. Astronomy and Astrophysics, 2015, 579, A57.	2.1	10
370	EVOLUTION OF A DWARF SATELLITE GALAXY EMBEDDED IN A SCALAR FIELD DARK MATTER HALO. Astrophysical Journal, 2015, 810, 99.	1.6	18
371	The Argo simulation – I. Quenching of massive galaxies at high redshift as a result of cosmological starvation. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1939-1956.	1.6	88
372	Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions. Journal of High Energy Physics, 2015, 2015, 1.	1.6	66
373	Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1868-1874.	1.6	117
374	The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2448-2465.	1.6	22
375	Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2015, 449, 987-1003.	1.6	139
376	Abundance of field galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1798-1810.	1.6	91
377	ON THE PERSISTENCE OF TWO SMALL-SCALE PROBLEMS IN $\hat{ ho}$ CDM. Astrophysical Journal, 2015, 815, 19.	1.6	76
378	The link between mass distribution and starbursts in dwarf galaxiesâ~ Monthly Notices of the Royal Astronomical Society, 2015, 450, 3886-3892.	1.6	12
379	Outer and inner mass distributions of the irregular galaxies UGC 4284 and UGC 11861: constraining the baryonic content through stellar population synthesis studies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 353-371.	1.6	5

#	Article	IF	CITATIONS
380	HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES. Astrophysical Journal, 2015, 815, 85.	1.6	15
381	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 521-554.	1.6	2,549
382	THE DEGENERACY OF M33 MASS MODELING AND ITS PHYSICAL IMPLICATIONS. Astrophysical Journal, 2015, 800, 15.	1.6	8
383	Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 449, L90-L94.	1.2	25
384	The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3650-3665.	1.6	302
385	The stability of stellar discs in Milky Way-sized dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2367-2387.	1.6	42
386	Faint dwarfs as a test of DM models: WDM versus CDM. Monthly Notices of the Royal Astronomical Society, 2015, 448, 792-803.	1.6	76
387	Simulating realistic disc galaxies with a novel sub-resolution ISM model. Monthly Notices of the Royal Astronomical Society, 2015, 447, 178-201.	1.6	55
388	Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2900-2921.	1.6	125
389	The non-thermal superbubble in IC 10: the generation of cosmic ray electrons caught in the act. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L1-L5.	1.2	22
390	Black hole evolution $\hat{a} \in I$. Supernova-regulated black hole growth. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1502-1518.	1.6	165
391	All about baryons: revisiting SIDM predictions at small halo masses. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1468-1479.	1.6	79
392	The Argo simulation – II. The early build-up of the Hubble sequence. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1957-1972.	1.6	44
393	Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1140-1162.	1.6	58
394	Made-to-measure dark matter haloes, elliptical galaxies and dwarf galaxies in action coordinates. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1360-1371.	1.6	29
395	Physical Models of Galaxy Formation in a Cosmological Framework. Annual Review of Astronomy and Astrophysics, 2015, 53, 51-113.	8.1	960
396	ON THE INTERPLAY BETWEEN STAR FORMATION AND FEEDBACK IN GALAXY FORMATION SIMULATIONS. Astrophysical Journal, 2015, 804, 18.	1.6	180
397	Supernova feedback in an inhomogeneous interstellar medium. Monthly Notices of the Royal Astronomical Society, 2015, 450, 504-522.	1.6	216

#	Article	IF	CITATIONS
398	Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3291-3310.	1.6	81
399	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3548-3563.	1.6	201
400	THE 21-SPONGE H i ABSORPTION SURVEY. I. TECHNIQUES AND INITIAL RESULTS. Astrophysical Journal, 2015, 804, 89.	1.6	60
401	THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. I. HYDRODYNAMIC INTERACTIONS WITH RADIATIVE COOLING. Astrophysical Journal, 2015, 805, 158.	1.6	167
402	THE ENERGETICS OF CUSP DESTRUCTION. Astrophysical Journal, 2015, 806, 229.	1.6	26
403	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. III. CHARACTERIZING QUENCHING IN LOW-MASS GALAXIES. Astrophysical Journal, 2015, 804, 136.	1.6	84
404	Cold dark matter: Controversies on small scales. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12249-12255.	3.3	286
405	Baryon effects on the internal structure of $\rm \hat{b}CDM$ haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1247-1267.	1.6	302
406	The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2981-3001.	1.6	260
407	The nature of the Diffuse Gamma-Ray Background. Physics Reports, 2015, 598, 1-58.	10.3	93
408	THE PHYSICAL NATURE OF THE COSMIC ACCRETION OF BARYONS AND DARK MATTER INTO HALOS AND THEIR GALAXIES. Astrophysical Journal, 2015, 808, 40.	1.6	46
409	From discs to bulges: effect of mergers on the morphology of galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4347-4360.	1.6	27
410	Baryonic and dark matter distribution in cosmological simulations of spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1353-1369.	1.6	52
411	Study of the nature of dark matter in halos of dwarf galaxies. Astrophysics and Space Science, 2015, 358, 1.	0.5	1
412	THREE-DIMENSIONAL HYDRODYNAMICAL SIMULATIONS OF THE SUPERNOVAE-DRIVEN GAS LOSS IN THE DWARF SPHEROIDAL GALAXY URSA MINOR. Astrophysical Journal, 2015, 805, 109.	1.6	21
413	Strongly coupled dark energy cosmologies: preserving ♭CDM success and easing low-scale problems – II. Cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1371-1378.	1.6	26
414	THE SHAPE OF LITTLE THINGS DWARF GALAXIES DDO 46 AND DDO 168: UNDERSTANDING THE STELLAR AND GAS KINEMATICS. Astronomical Journal, 2015, 149, 196.	1.9	11
415	THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES. Astrophysical Journal, 2015, 803, 71.	1.6	77

#	Article	IF	CITATIONS
416	THE RINGS SURVEY. I. H <i>α</i> AND H i VELOCITY MAPS OF GALAXY NGC 2280. Astronomical Journal, 2015, 149, 116.	1.9	6
417	Galactic rotation curves, the baryon-to-dark-halo-mass relation and space–time scale invariance. Monthly Notices of the Royal Astronomical Society, 2015, 446, 330-344.	1.6	67
418	ASSESSING ASTROPHYSICAL UNCERTAINTIES IN DIRECT DETECTION WITH GALAXY SIMULATIONS. Astrophysical Journal, 2016, 831, 93.	1.6	42
419	THE NEXT GENERATION VIRGO CLUSTER SURVEY. VII. THE INTRINSIC SHAPES OF LOW-LUMINOSITY GALAXIES IN THE CORE OF THE VIRGO CLUSTER, AND A COMPARISON WITH THE LOCAL GROUP. Astrophysical Journal, 2016, 820, 69.	1.6	40
420	THE COS-HALOS SURVEY: ORIGINS OF THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM OF STAR-FORMING GALAXIES. Astrophysical Journal, 2016, 833, 54.	1.6	141
421	Asymmetric mass models of disk galaxies. Astronomy and Astrophysics, 2016, 588, A48.	2.1	14
422	Dark influences. Astronomy and Astrophysics, 2016, 587, A24.	2.1	17
423	Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles. Galaxies, 2016, 4, 74.	1.1	2
424	An assessment of the "too big to fail―problem for field dwarf galaxies in view of baryonic feedback effects. Astronomy and Astrophysics, 2016, 591, A58.	2.1	46
425	NONUNIVERSAL STAR FORMATION EFFICIENCY IN TURBULENT ISM. Astrophysical Journal, 2016, 826, 200.	1.6	92
426	THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS. Astrophysical Journal, 2016, 824, 79.	1.6	96
427	Dark influences. Astronomy and Astrophysics, 2016, 595, A56.	2.1	18
428	Stellar and gaseous disc structures in cosmological galaxy equilibrium models. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3168-3180.	1.6	15
429	BAR INSTABILITY IN DISK–HALO SYSTEMS. Astrophysical Journal, 2016, 819, 92.	1.6	42
430	Examining early-type galaxy scaling relations using simple dynamical models. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1364-1374.	1.6	1
431	Black hole starvation and bulge evolution in a Milky Way-like galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2603-2617.	1.6	35
432	Dark matter cores all the way down. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2573-2590.	1.6	217
433	SWIFT COALESCENCE OF SUPERMASSIVE BLACK HOLES IN COSMOLOGICAL MERGERS OF MASSIVE GALAXIES. Astrophysical Journal, 2016, 828, 73.	1.6	69

#	Article	IF	CITATIONS
434	Gravitational and mass distribution effects on stationary superwinds. Monthly Notices of the Royal Astronomical Society, 2016, 463, 84-101.	1.6	1
435	TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL. Astrophysical Journal Letters, 2016, 827, L15.	3.0	16
436	Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3628-3645.	1.6	145
437	CONSTRAINING WARM DARK MATTER MASS WITH COSMIC REIONIZATION AND GRAVITATIONAL WAVES. Astrophysical Journal, 2016, 829, 29.	1.6	12
438	ANGULAR MOMENTUM REGULATES ATOMIC GAS FRACTIONS OF GALACTIC DISKS. Astrophysical Journal Letters, 2016, 824, L26.	3.0	62
439	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST HαÂMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7Â< zÂ<Â1.5. Astrophysical Journal, 2016, 828, 27.	1.6	166
440	FINDING THE CENTER: AN ANALYSIS OF THE TILTED RING MODEL FITS TO THE INNER AND OUTER PARTS OF SIX DWARF GALAXIES. Astronomical Journal, 2016, 152, 15.	1.9	2
441	Cosmic Dawn (CoDa): the first radiation-hydrodynamics simulation of reionization and galaxy formation in the Local Universe. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1462-1485.	1.6	163
442	SURVIVAL OF PURE DISK GALAXIES OVER THE LAST 8 BILLION YEARS. Astrophysical Journal Letters, 2016, 820, L4.	3.0	15
443	Cosmological galaxy evolution with superbubble feedback – II. The limits of supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1431-1445.	1.6	45
444	COSMIC REIONIZATION ON COMPUTERS. ULTRAVIOLET CONTINUUM SLOPES AND DUST OPACITIES IN HIGH REDSHIFT GALAXIES. Astrophysical Journal, 2016, 820, 133.	1.6	9
445	Strongly time-variable ultraviolet metal-line emission from the circum-galactic medium of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 463, 120-133.	1.6	15
446	THE EVOLUTION OF DWARF GALAXY SATELLITES WITH DIFFERENT DARK MATTER DENSITY PROFILES IN THE ERISMOD SIMULATIONS. I. THE EARLY INFALLS. Astrophysical Journal, 2016, 818, 193.	1.6	18
447	THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES. Astrophysical Journal, 2016, 819, 101.	1.6	19
448	BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES. Astrophysical Journal, 2016, 820, 131.	1.6	205
449	THE RELATION BETWEEN STELLAR AND DYNAMICAL SURFACE DENSITIES IN THE CENTRAL REGIONS OF DISK GALAXIES. Astrophysical Journal Letters, 2016, 827, L19.	3.0	81
450	Bursty star formation feedback and cooling outflows. Monthly Notices of the Royal Astronomical Society, 2016, 462, 994-1001.	1.6	6
451	NIHAO project II: halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 663-680.	1.6	54

#	Article	IF	CITATIONS
452	Zooming in on major mergers: dense, starbursting gas in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2418-2430.	1.6	84
453	Galaxy and Mass Assembly (GAMA): the stellar mass budget of galaxy spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4336-4348.	1.6	49
454	On the dark matter haloes inner structure and galaxy morphology. Astrophysics and Space Science, 2016, 361, 1.	0.5	12
455	Role of cosmic rays in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2016, 456, 582-601.	1.6	75
456	The APOSTLE simulations: solutions to the Local Group's cosmic puzzles. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1931-1943.	1.6	453
457	Resonant sterile neutrino dark matter in the local and high- <i>z</i> Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1489-1504.	1.6	51
458	Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4408-4427.	1.6	25
459	The mass discrepancy acceleration relation in a $\hat{\rm b}$ CDM context. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L127-L131.	1.2	77
460	GARROTXA COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES: GENERAL PROPERTIES, HOT-GAS DISTRIBUTION, AND MISSING BARYONS. Astrophysical Journal, 2016, 824, 94.	1.6	23
461	The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model. Astrophysics and Space Science, 2016, 361, 1.	0.5	42
462	The distribution of atomic hydrogen in eagle galaxies: morphologies, profiles, and H i holes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1115-1136.	1.6	117
463	Cosmological simulations of dwarf galaxies with cosmic ray feedback. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3335-3344.	1.6	20
464	Simulated Ĵ›CDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4348-4365.	1.6	35
465	Vertical disc heating in Milky Way-sized galaxies in a cosmological context. Monthly Notices of the Royal Astronomical Society, 2016, 459, 199-219.	1.6	132
466	Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions. Monthly Notices of the Royal Astronomical Society, 2016, 461, 710-727.	1.6	57
467	From cusps to cores: a stochastic model. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1745-1759.	1.6	32
468	ℤsub>2SIMP dark matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 006-006.	1.9	99
469	IN-N-OUT: THE GAS CYCLE FROM DWARFS TO SPIRAL GALAXIES. Astrophysical Journal, 2016, 824, 57.	1.6	161

#	Article	IF	CITATIONS
470	COLD DARK MATTER SUBSTRUCTURES IN EARLY-TYPE GALAXY HALOS. Astrophysical Journal, 2016, 824, 144.	1.6	38
471	THE EXTENDED STELLAR COMPONENT OF GALAXIES THE NATURE OF DARK MATTER. Astrophysical Journal, 2016, 825, 31.	1.6	6
472	SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2016, 817, 84.	1.6	56
473	NIHAO V: too big does not fail – reconciling the conflict between ΛCDM predictions and the circular velocities of nearby field galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L74-L78.	1.2	60
474	NIHAO – IV: core creation and destruction in dark matter density profiles across cosmic time. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3542-3552.	1.6	201
475	A steep slope and small scatter for the high-mass end of the L–σ relation at <i>z</i> â^¼ 0.55. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3265-3281.	1.6	14
476	Andromeda IV, a solitary gasâ€rich dwarf galaxy. Astronomische Nachrichten, 2016, 337, 306-314.	0.6	7
477	A matter of measurement: rotation velocities and the velocity function of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3841-3847.	1.6	20
478	A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields – I. The kinematic phase. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1722-1738.	1.6	72
479	DIFFUSE CORONAE IN COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES. Astrophysical Journal, 2016, 819, 21.	1.6	26
480	Extragalactic HI surveys. Astronomy and Astrophysics Review, 2016, 24, 1.	9.1	42
481	Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4442-4451.	1.6	37
482	The distribution of mass components in simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 455, 476-483.	1.6	53
483	An estimate of the DM profile in the Galactic bulge region. Physics of the Dark Universe, 2017, 15, 90-95.	1.8	20
484	A White Paper on keV sterile neutrino Dark Matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 025-025.	1.9	256
485	One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophysical Journal, 2017, 836, 152.	1.6	279
486	Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy–Halo Connection. Astrophysical Journal, 2017, 835, 289.	1.6	34
487	Ultralight scalars as cosmological dark matter. Physical Review D, 2017, 95, .	1.6	1,055

#	Article	IF	CITATIONS
488	Scalar field dark matter in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3135-3149.	1.6	19
489	The Impact of Galactic Winds on the Angular Momentum of Disk Galaxies in the Illustris Simulation. Astrophysical Journal, 2017, 841, 16.	1.6	45
490	The SLUGGS survey: dark matter fractions at large radii and assembly epochs of early-type galaxies from globular cluster kinematics. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3949-3964.	1.6	45
491	Cosmological Structure Formation. , 0, , 136-160.		0
492	Theoretical Challenges in Galaxy Formation. Annual Review of Astronomy and Astrophysics, 2017, 55, 59-109.	8.1	443
493	Testing core creation in hydrodynamical simulations using the HI kinematics of field dwarfs. Astronomy and Astrophysics, 2017, 601, A1.	2.1	9
494	Lectures on Dark Matter Physics. , 2017, , .		76
495	The effects of host galaxy properties on merging compact binaries detectable by LIGO. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2831-2839.	1.6	42
496	Collapse in self-gravitating turbulent fluids. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1316-1335.	1.6	35
497	Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3108-3120.	1.6	96
498	Angular momentum evolution of galaxies in EAGLE. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3850-3870.	1.6	126
499	A statistical investigation of the mass discrepancy–acceleration relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4160-4175.	1.6	77
500	The dawn of FIMP Dark Matter: A review of models and constraints. International Journal of Modern Physics A, 2017, 32, 1730023.	0.5	336
501	Evidence against cuspy dark matter haloes in large galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2410-2426.	1.6	26
502	Growth of First Galaxies: Impacts of Star Formation and Stellar Feedback. Astrophysical Journal, 2017, 846, 30.	1.6	28
503	Simply split strongly interacting massive particles. Physical Review D, 2017, 95, .	1.6	49
504	The HI content of isolated ultra-diffuse galaxies: A sign of multiple formation mechanisms?. Astronomy and Astrophysics, 2017, 601, L10.	2.1	57
505	A Universal Angular Momentum Profile for Dark Matter Halos. Astrophysical Journal, 2017, 844, 86.	1.6	9

#	Article	IF	CITATIONS
506	Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles. Chinese Astronomy and Astrophysics, 2017, 41, 149-181.	0.1	1
507	A rumble in the dark: signatures of self-interacting dark matter in supermassive black hole dynamics and galaxy density profiles. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2845-2854.	1.6	36
508	The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4077-4092.	1.6	30
509	Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites. Astrophysical Journal, 2017, 845, 17.	1.6	9
510	The Populations of Carina. II. Chemical Enrichment [*] . Astrophysical Journal, Supplement Series, 2017, 230, 28.	3.0	34
511	On the Dearth of Ultra-faint Extremely Metal-poor Galaxies. Astrophysical Journal, 2017, 835, 159.	1.6	15
512	The zÂâ^¼Â6 Luminosity Function Fainter than â^'15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties. Astrophysical Journal, 2017, 843, 129.	1.6	201
513	NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L1-L6.	1.2	185
514	Rotation curve fitting and its fatal attraction to cores in realistically simulated galaxy observations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 63-87.	1.6	42
515	(Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 88-104.	1.6	169
516	Snap, crackle, pop: sub-grid supernova feedback in AMR simulations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 11-33.	1.6	66
517	Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ĥCDM scaling relations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1648-1668.	1.6	81
518	The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1121-1139.	1.6	185
519	Recovering the mass profile and orbit anisotropy of mock dwarf galaxies with Schwarzschild modelling. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3959-3969.	1.6	16
520	Too small to succeed: the difficulty of sustaining star formation in low-mass haloes. Monthly Notices of the Royal Astronomical Society, 2017, 468, 451-468.	1.6	2
521	Young and turbulent: the early life of massive galaxy progenitors. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4080-4100.	1.6	27
522	Shaken and stirred: the Milky Way's dark substructures. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4383-4400.	1.6	99
523	Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4491-4500.	1.6	3

ARTICLE IF CITATIONS # Simplified galaxy formation with mesh-less hydrodynamics. Monthly Notices of the Royal 524 9 1.6 Astronomical Society, 2017, 470, 1673-1686. On the Dark Matter Column Density in Haloes. Astronomy Reports, 2017, 61, 1003-1014. 0.2 A small-scale dynamo in feedback-dominated galaxies – II. The saturation phase and the final magnetic 526 1.6 43 configuration. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2674-2686. SIDM on fire: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2945-2954. How to Reconcile the Observed Velocity Function of Galaxies with Theory. Astrophysical Journal, 528 1.6 46 2017, 850, 97. Jeans analysis for dwarf spheroidal galaxies in wave dark matter. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1338-1348. 529 1.6 A unified model for age–velocity dispersion relations in Local Group galaxies: disentangling ISM 530 turbulence and latent dynamical heating. Monthly Notices of the Royal Astronomical Society, 2017, 1.6 25 472, 1879-1896. The predicted luminous satellite populations around SMC- and LMC-mass galaxies $\hat{a} \in$ a missing satellite problem around the LMC?. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1060-1073. 531 1.6 The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. 532 293 1.6 Monthly Notices of the Royal Astronomical Society, 0, , stx071. The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies. 1.6 Monthly Notices of the Royal Astronomical Society, 0, , stx029. Angular momentum content in gas-rich dwarf galaxies. Monthly Notices of the Royal Astronomical 534 1.6 16 Society, 2017, 467, 3856-3863. Small Scale Problems of the \hat{b} CDM Model: A Short Review. Galaxies, 2017, 5, 17. 1.1 186 Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics. 536 0.5 190 Advances in High Energy Physics, 2017, 2017, 1-43. Diversity of dwarf galaxy IR-submm emission patterns: CLUES from hydrodynamical simulations. 2.1 Astronomy and Astrophysics, 2017, 603, A4. Spreading out and staying sharp â€" creating diverse rotation curves via baryonic and self-interaction 538 109 1.6 effects. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2283-2295. Testing baryon-induced core formation in \hat{V} CDM: A comparison of the DC14 and coreNFW dark matter halo models on galaxy rotation curves. Astronomy and Astrophysics, 2017, 605, A55. Dark-agesÂReionizationÂ&ÂGalaxyÂFormationÂSimulationÂVIII. Suppressed growth of dark matter halos 540 1.6 4 during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 0, , stx083. How stellar feedback simultaneously regulates star formation and drives outflows. Monthly Notices 541 1.6 of the Royal Astronomical Society, 2017, 465, 1682-1698.

	Article	IF	CITATIONS
542	A summary of the CETUP* 2016 dark matter workshop discussion sessions. AIP Conference Proceedings, 2017, , .	0.3	0
543	Testing galaxy formation models with galaxy stellar mass functions. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3256-3270.	1.6	13
544	Mass content of UGCÂ6446 and UGCÂ7524 through H i rotation curves: deriving the stellar discs from stellar population synthesis models. Monthly Notices of the Royal Astronomical Society, 2017, 468, 180-195.	1.6	4
545	Formation of Andromeda II via a gas-rich major merger and an interaction with M31. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2717-2729.	1.6	15
546	MultiDark-Galaxies: data release and first results. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5206-5231.	1.6	60
547	Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3124-3136.	1.6	35
548	Recent progress in simulating galaxy formation from the largest to the smallest scales. Nature Astronomy, 2018, 2, 368-373.	4.2	8
549	Effective description of dark matter self-interactions in small dark matter haloesâ~ Monthly Notices of the Royal Astronomical Society, 2018, 474, 388-399.	1.6	23
550	New dissipation mechanisms from multilevel dark matter scattering. Physical Review D, 2018, 97, .	1.6	13
551	Darb matter celf-interactions and small scale structure. Division Deports, 2018, 730, 1-57		
		10.3	617
552	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636.	10.3 1.6	617
552 553	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636.	10.3 1.6 1.6	617 12 4
552 553 554	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. Modified dark matter: Relating dark energy, dark matter and baryonic matter. International Journal of Modern Physics D, 2018, 27, 1830001.	10.3 1.6 1.6 0.9	617 12 4 15
552 553 554 555	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 473, 498-512. Modified dark matter: Relating dark energy, dark matter and baryonic matter. International Journal of Modern Physics D, 2018, 27, 1830001. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L106-L110.	10.3 1.6 1.6 0.9 1.2	617 12 4 15 71
552 553 554 555	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 473, 498-512. Modified dark matter: Relating dark energy, dark matter and baryonic matter. International Journal of Modern Physics D, 2018, 27, 1830001. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L106-L110. The SELCIFS data challenge: generating synthetic observationsof CALIFA galaxies from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 917-931.	10.3 1.6 1.6 0.9 1.2 1.6	617 12 4 15 71 15
552 553 554 555 556	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 473, 498-512. Modified dark matter: Relating dark energy, dark matter and baryonic matter. International Journal of Modern Physics D, 2018, 27, 1830001. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L106-L110. The SELGIFS data challenge: generating synthetic observationsof CALIFA galaxies from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 917-931. Resolution of the small scale structure issues with dissipative dark matter from multiple standard model sectors. Physical Review D, 2018, 98, .	10.3 1.6 1.6 0.9 1.2 1.6 1.6	 617 12 4 15 71 15 3
552 553 554 555 556 557	Cosmic clocks: a tight radius–velocity relationship for H i-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1624-1636. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles. Monthly Notices of the Royal Astronomical Society, 2018, 473, 498-512. Modified dark matter: Relating dark energy, dark matter and baryonic matter. International Journal of Modern Physics D, 2018, 27, 1830001. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L106-L110. The SELCIFS data challenge: generating synthetic observations of CALIFA galaxies from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 917-931. Resolution of the small scale structure issues with dissipative dark matter from multiple standard model sectors. Physical Review D, 2018, 98, . Magnetic field evolution in dwarf and Magellanic-type galaxies. Astronomy and Astrophysics, 2018, 611, A7.	10.3 1.6 1.6 0.9 1.2 1.6 1.6 2.1	 617 12 4 15 71 15 3 4

#	Article	IF	CITATIONS
560	Angular Momentum Evolution of Galaxies: the Perspective of Hydrodynamical Simulations. Proceedings of the International Astronomical Union, 2018, 14, 208-214.	0.0	1
561	Deviations from hydrostatic equilibrium in the circumgalactic medium: spinning hot haloes and accelerating flows. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2963-2975.	1.6	54
562	A Study of Two Diffuse Dwarf Galaxies in the Field. Astrophysical Journal, 2018, 866, 112.	1.6	33
563	Preferential Accretion in the Supermassive Black Holes of Milky Way-size Galaxies Due to Direct Feeding by Satellites. Astrophysical Journal, 2018, 860, 20.	1.6	5
564	A Headless Tadpole Galaxy: The High Gas-phase Metallicity of the Ultra-diffuse Galaxy UGC 2162. Astrophysical Journal, 2018, 869, 40.	1.6	4
565	Energy transfer from baryons to dark matter as a unified solution to small-scale structure issues of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi><mml:mi>CDM</mml:mi></mml:math> model. Physical Review D, 2018, 98	1.6	12
566	Gaseous wakes and dynamical friction: mass-losing and mass-gaining perturbers. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4863-4876.	1.6	1
567	Structural and dynamical properties of galaxies in a hierarchical Universe: sizes and specific angular momenta. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1376-1400.	1.6	32
568	Early galaxy formation and its large-scale effects. Physics Reports, 2018, 780-782, 1-64.	10.3	273
569	The effect of non-sphericity on mass and anisotropy measurements in dSph galaxies with Schwarzschild method. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2918-2930.	1.6	10
570	Testing the Breathing Mode in Intermediate-mass Galaxies and Its Predicted Star Formation Rate-size Anti-correlation [*] . Astrophysical Journal Letters, 2018, 866, L21.	3.0	6
571	Gravitationally bound Bose condensates with rotation. Physical Review D, 2018, 97, .	1.6	19
572	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	1.6	676
573	On the early evolution of Local Group dwarf galaxy types: star formation and supernova feedback. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1514-1527.	1.6	20
574	The origin of ultra diffuse galaxies: stellar feedback and quenching. Monthly Notices of the Royal Astronomical Society, 2018, 478, 906-925.	1.6	125
575	Prediction of Supernova Rates in Known Galaxy–Galaxy Strong-lens Systems. Astrophysical Journal, 2018, 864, 91.	1.6	21
576	Formation of LISA Black Hole Binaries in Merging Dwarf Galaxies: The Imprint of Dark Matter. Astrophysical Journal Letters, 2018, 864, L19.	3.0	33
577	NIHAO – XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4392-4403.	1.6	52

#	Article	IF	CITATIONS
578	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	1.6	131
579	Reconstructing the gravitational field of the local Universe. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3152-3161.	1.6	33
580	A possible formation scenario for dwarf spheroidal galaxies – III. Adding star formation histories to the fiducial model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5015-5025.	1.6	4
581	Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight) Tj ETQq1 1 0.78- 1447-1468.	4314 rgBT 1.6	- /Overlock 59
582	Bulgeless galaxies in the COSMOS field: environment and star formation evolution at zÂ<Â1. Monthly Notices of the Royal Astronomical Society, 2018, 475, 735-747.	1.6	8
583	Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5385-5397.	1.6	36
584	Another baryon miracle? Testing solutions to the â€~missing dwarfs' problem. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4825-4840.	1.6	10
585	Revisiting the Stellar Mass–Angular Momentum–Morphology Relation: Extension to Higher Bulge Fraction and the Effect of Bulge Type. Astrophysical Journal, 2018, 860, 37.	1.6	22
586	The RINGS Survey. III. Medium-resolution Hα Fabry–Pérot Kinematic Data Set. Astronomical Journal, 2018, 155, 123.	1.9	3
587	Gravitational probes of dark matter physics. Physics Reports, 2018, 761, 1-60.	10.3	87
588	On the Dwarf Galaxy Rotation Curve Diversity Problem. Galaxies, 2018, 6, 67.	1.1	6
589	Sowing Black Hole Seeds: Direct Collapse Black Hole Formation with Realistic Lyman–Werner Radiation in Cosmological Simulations. Astrophysical Journal, 2018, 861, 39.	1.6	21
590	How Galaxies Form Stars: The Connection between Local and Global Star Formation in Galaxy Simulations. Astrophysical Journal, 2018, 861, 4.	1.6	66
591	Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics. Monthly Notices of the Royal Astronomical Society, 2018, 478, 302-331.	1.6	69
592	Structural properties of faint low-surface-brightness galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4657-4668.	1.6	11
593	Galaxy Zoo: constraining the origin of spiral arms. Monthly Notices of the Royal Astronomical Society, 2018, 478, 932-949.	1.6	15
594	The three phases of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3994-4009.	1.6	68
595	The route to massive black hole formation via merger-driven direct collapse: a review. Reports on Progress in Physics, 2019, 82, 016901.	8.1	55

#	Article	IF	CITATIONS
596	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	1.6	109
597	Baryon-induced dark matter cores in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2387-2404.	1.6	78
598	Correlations in the matter distribution in CLASH galaxy clusters. Physics of the Dark Universe, 2019, 26, 100342.	1.8	8
599	Clues to the nature of dark matter from first galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 487-496.	1.6	2
600	Dark Matter Haloes and Subhaloes. Galaxies, 2019, 7, 81.	1.1	74
601	Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 962-977.	1.6	54
602	A Closer Look at Bursty Star Formation with L _{Hα} and L _{UV} Distributions. Astrophysical Journal, 2019, 881, 71.	1.6	62
603	The haloes and environments of nearby galaxies (HERON) – I. Imaging, sample characteristics, and envelope diameters. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1539-1569.	1.6	28
604	The Lyman-α forest as a diagnostic of the nature of the dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3456-3471.	1.6	45
605	Emission from the circumgalactic medium: from cosmological zoom-in simulations to multiwavelength observables. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2417-2438.	1.6	24
606	Discovery of Strongly Inverted Metallicity Gradients in Dwarf Galaxies at zÂâ^¼Â2. Astrophysical Journal, 2019, 882, 94.	1.6	42
607	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits. Astrophysical Journal, 2019, 880, 91.	1.6	76
608	Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5538-5550.	1.6	21
609	Constraints on chameleon f(R)-gravity from galaxy rotation curves of the SPARC sample. Monthly Notices of the Royal Astronomical Society, 2019, 489, 771-787.	1.6	17
610	Implementing Dust Shielding as a Criteria for Star Formation. Astrophysical Journal, 2019, 871, 213.	1.6	6
611	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4790-4804.	1.6	62
612	How nucleation and luminosity shape faint dwarf galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L1-L5.	1.2	19
613	Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback. Astrophysical Journal, 2019, 878, 84.	1.6	68

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
614	On the Origin of Star–Gas Counterrotation in Low-mass Galaxies. Astrophysical Journal, 2019, 878, 143	. 1.6	37
615	Formation of disc galaxies around zÂâ^¼Â2. Monthly Notices of the Royal Astronomical Society, 2019, 48 1795-1807.	87, 1. 6	9
616	Simulations of core formation for frequent dark matter self-interactions. Monthly Notices of the Royal Astronomical Society, 2019, 487, 354-363.	1.6	16
617	NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1314-1341.	1.6	93
618	Dancing in the Dark: Uncertainty in Ultrafaint Dwarf Galaxy Predictions from Cosmological Simulations. Astrophysical Journal, 2019, 874, 40.	1.6	45
619	NIHAO XX: the impact of the star formation threshold on the cusp–core transformation of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 655-671.	1.6	46
620	Fast and energetic AGN-driven outflows in simulated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2047-2066.	1.6	41
621	The Formation of Compact Elliptical Galaxies in the Vicinity of a Massive Galaxy: The Role of Ram-pressure Confinement. Astrophysical Journal, 2019, 875, 58.	1.6	21
622	A constant characteristic volume density of dark matter haloes from SPARC rotation curve fits. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5106-5124.	1.6	28
623	The Parallelism between Galaxy Clusters and Early-type Galaxies. I. The Light and Mass Profiles. Astrophysical Journal, 2019, 875, 103.	1.6	7
624	An observational test for star formation prescriptions in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1481-1487.	1.6	23
625	Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3317-3333.	1.6	27
626	The formation and evolution of low-surface-brightness galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 485, 796-818.	1.6	80
627	The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 869-891.	1.6	67
628	What Sets the Slope of the Molecular Kennicutt–Schmidt Relation?. Astrophysical Journal, 2019, 870, 79.	1.6	18
629	Formation of globular clusters with multiple stellar populations from massive gas clumps in high-z gas-rich dwarf galaxies. Astronomy and Astrophysics, 2019, 622, A53.	2.1	17
630	Extreme chemical abundance ratio suggesting an exotic origin for an ultradiffuse galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3425-3433.	1.6	43
631	Inner dark matter distribution of the Cosmic Horseshoe (J1148+1930) with gravitational lensing and dynamics. Astronomy and Astrophysics, 2019, 631, A40.	2.1	15

#	Article	IF	CITATIONS
632	NIHAO-UHD: The properties of MW-like stellar disks in high resolution cosmological simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	53
633	The angular momentum of disc galaxies at <i>z</i> = 1 . Astronomy and Astrophysics, 2019, 621, L6.	2.1	22
634	Merger induced clump formation in distant infrared luminous starburst galaxies. Astronomy and Astrophysics, 2019, 632, A98.	2.1	19
635	The Dark Matter Distributions in Low-mass Disk Galaxies. II. The Inner Density Profiles. Astrophysical Journal, 2019, 887, 94.	1.6	19
636	Galactic Winds in Low-mass Galaxies. Astrophysical Journal, 2019, 886, 74.	1.6	57
637	Search for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>γ</mml:mi></mml:math> -ray emission from dark matter particle interactions from the Andromeda and Triangulum galaxies with the Fermi Large Area Telescope. Physical Review D, 2019. 99	1.6	23
638	A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4523-4542.	1.6	42
639	A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 8-21.	1.6	28
640	Systematizing the effective theory of self-interacting dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	17
641	The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2786-2810.	1.6	56
642	On the Dark Matter Profile Mass Dependence. Astronomy Reports, 2020, 64, 547-555.	0.2	1
643	Dark matter cores and cusps in spiral galaxies and their explanations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	1.9	45
644	Self-interacting dark matter without prejudice. Physical Review D, 2020, 101, .	1.6	18
645	Calibration of a star formation and feedback model for cosmological simulations with enzo. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5203-5219.	1.6	11
646	Formation of the large nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4386-4395.	1.6	33
647	A dark matter profile to model diverse feedback-induced core sizes of $\hat{\mathbf{b}}$ CDM haloes. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2393-2417.	1.6	71
648	The principle of maximum entropy explains the cores observed in the mass distribution of dwarf galaxies. Astronomy and Astrophysics, 2020, 642, L14.	2.1	9
649	Active galactic nucleus and dwarf galaxy gas kinematics. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4562-4576.	1.6	8

#	Article	IF	CITATIONS
650	Stellar angular momentum distribution linked to galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5421-5438.	1.6	4
651	The Dekel-Zhao profile: a mass-dependent dark-matter density profile with flexible inner slope and analytic potential, velocity dispersion, and lensing properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2912-2933.	1.6	25
652	Self-Interacting Dark Matter and the Origin of Ultradiffuse Galaxies NGC1052-DF2 and -DF4. Physical Review Letters, 2020, 125, 111105.	2.9	23
653	Relaxation times for Bose-Einstein condensation in axion miniclusters. Physical Review D, 2020, 102, .	1.6	27
654	Deep+ wide lensing surveys can measure the dark matter halos of dwarf galaxies. Physics of the Dark Universe, 2020, 30, 100719.	1.8	5
655	Accurate mass estimates from the proper motions of dispersion-supported galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5825-5837.	1.6	8
657	Theory Variant TO: The Foundational Postulates. , 2020, , 54-81.		0
658	The Methodology of Scientific Research Programs. , 2020, , 20-42.		0
659	The Milgromian Research Program. , 2020, , 43-53.		0
660	Theory Variant T2: A Relativistic Theory. , 2020, , 117-180.		0
661	Theory Variant T3: A Modified Hard Core. , 2020, , 181-203.		0
663	Summary / Final Thoughts. , 2020, , 223-236.		0
665	Constraint on the mass of fuzzy dark matter from the rotation curve of the MilkyÂWay. Physical Review D, 2020, 101, .	1.6	9
666	Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.	1.6	26
667	Fingerprint matching of beyond-WIMP dark matter: neural network approach. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	1.9	3
668	Chemodynamics of barred galaxies in cosmological simulations: On the Milky Way's quiescent merger history and <i>in-situ</i> bulge. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5936-5960.	1.6	72
669	The universal acceleration scale from stellar feedback. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L127-L132.	1.2	9
670	Multiple chemodynamic stellar populations of the UrsaÂMinor dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3022-3040.	1.6	31

#	Article	IF	CITATIONS
671	Investigation of two colliding solitonic cores in fuzzy dark matter models. Physical Review D, 2020, 101, .	1.6	16
672	Globular cluster ejection, infall, and the host dark matter halo of the Pegasus dwarf galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5102-5120.	1.6	11
673	Global simulations of galactic discs: violent feedback from clustered supernovae during bursts of star formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 79-95.	1.6	17
674	Numerical convergence of hydrodynamical simulations of galaxy formation: the abundance and internal structure of galaxies and their cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2926-2951.	1.6	24
675	On the absence of a universal surface density, and a maximum Newtonian acceleration in dark matter haloes: Consequences for MOND. Physics of the Dark Universe, 2020, 28, 100468.	1.8	22
676	The Epistemology of Science. , 2020, , 1-19.		0
677	Theory Variant T1: A Non-relativistic Lagrangian. , 2020, , 82-116.		0
678	A tight correlation between the enclosed gravitational mass and hot gas mass in galaxy clusters at intermediate radii. Physics of the Dark Universe, 2020, 28, 100478.	1.8	4
679	The radial acceleration relation in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5865-5869.	1.6	23
680	The formation of isolated ultradiffuse galaxies in <scp>romulus25</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 502, 5370-5389.	1.6	45
681	Velocity-dependent self-interacting dark matter from groups and clusters of galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024-024.	1.9	50
682	Metamorphosis of a Dwarf Halo Density Profile under Dark Matter Decay. Astrophysical Journal, 2021, 906, 86.	1.6	1
683	Inside out and upside-down: The roles of gas cooling and dynamical heating in shaping the stellar age–velocity relation. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1815-1827.	1.6	36
684	A hierarchical clustering method for quantifying satellite abundance. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4976-4991.	1.6	0
685	Quenching Timescales of Dwarf Satellites around Milky Way–mass Hosts. Astrophysical Journal, 2021, 909, 139.	1.6	35
686	A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3568-3591.	1.6	37
687	A Cuspy Dark Matter Halo. Astrophysical Journal, 2021, 909, 20.	1.6	20
688	Fountains and storms: the effects of AGN feedback and mergers on the evolution of the intracluster medium in the <scp>romulusc</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3922-3937.	1.6	16

#	Article	IF	CITATIONS
689	X-ray shapes of elliptical galaxies and implications for self-interacting dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 020.	1.9	7
690	Pericentric passage-driven star formation in satellite galaxies and their hosts: CLUES from local group simulations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 531-545.	1.6	23
691	Stellar-to-Halo Mass Ratio and Dark Matter Profiles. Astronomy Reports, 2021, 65, 529-542.	0.2	0
692	SMBH seeds from dissipative dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	1.9	12
693	The baryon cycle of Seven Dwarfs with superbubble feedback. Astronomy and Astrophysics, 2021, 655, A22.	2.1	8
694	Dissipative dark matter on FIRE – I. Structural and kinematic properties of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4421-4445.	1.6	18
695	Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3882-3915.	1.6	48
696	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	1.6	56
697	Spatial Decorrelation of Young Stars and Dense Gas as a Probe of the Star Formation–Feedback Cycle in Galaxies. Astrophysical Journal, 2021, 918, 13.	1.6	18
698	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208.	0.6	3
698 699	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matter–baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847.	0.6	3
698 699 700	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matter–baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1.	0.6 1.8 9.1	3 1 150
698 699 700	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matter–baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1. A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDGs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1.	0.6 1.8 9.1 3.0	3 1 150 7
 698 699 700 701 702 	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matter–baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1. A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDCs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1. Resolved Neutral Outflow from a Lensed Dusty Star-forming Galaxy at z = 2.09. Astrophysical Journal, 2021, 919, 5.	0.6 1.8 9.1 3.0	3 1 150 7
 698 699 700 701 702 703 	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matter–baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1. A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDGs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1. Resolved Neutral Outflow from a Lensed Dusty Star-forming Galaxy at z = 2.09. Astrophysical Journal, 2021, 919, 5. The impact of pre-supernova feedback and its dependence on environment. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5425-5448.	0.6 1.8 9.1 3.0 1.6	3 1 150 7 7 21
 698 699 700 701 702 703 704 	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matterâ€"baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1. A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDCs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1. Resolved Neutral Outflow from a Lensed Dusty Star-forming Galaxy at z = 2.09. Astrophysical Journal, 2021, 919, 5. The impact of pre-supernova feedback and its dependence on environment. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5425-5448. Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations. Astrophysical Journal, 2021, 906, 96.	0.6 1.8 9.1 3.0 1.6 1.6	3 1 150 7 7 21
 698 699 700 701 702 703 704 705 	Cosmological realism. Studies in History and Philosophy of Science Part A, 2021, 88, 193-208. Cluster density slopes from dark matterâ€"baryons energy transfer. Physics of the Dark Universe, 2021, 33, 100847. Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1. A Shallow Dark Matter Halo in Ultra-diffuse Galaxy AGC 242019: Are UDGs Structurally Similar to Low-surface-brightness Galaxies?. Astrophysical Journal Letters, 2021, 919, L1. Resolved Neutral Outflow from a Lensed Dusty Star-forming Galaxy at z = 2.09. Astrophysical Journal, 2021, 919, 5. The impact of pre-supernova feedback and its dependence on environment. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5425-5448. Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations. Astrophysical Journal, 2021, 906, 96. LYRA I: Simulating the multi-phase ISM of a dwarf galaxy with variable energy supernovae from individual stars. Monthly Notices of the Royal Astronomical Society, 0, , .	0.6 1.8 9.1 3.0 1.6 1.6 1.6	3 1 150 7 7 21 88

ARTICLE IF CITATIONS Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues. 707 1.0 44 Astrophysics and Space Science Library, 2016, , 431-477. Gas Accretion and Angular Momentum. Astrophysics and Space Science Library, 2017, , 249-270. 1.0 9 Outstanding Questions in Dwarf Galaxy Research. Thirty Years of Astronomical Discovery With UKIRT, 709 0.3 2 2012, , 3-21. The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies. Thirty Years of Astronomical 710 0.3 Discovery With UKIRT, 2012, , 47-54. Elliptical and Disk Galaxy Structure and Modern Scaling Laws., 2013, , 91-139. 711 71 Quantitative morphology of galaxies from the SDSS. Astronomy and Astrophysics, 2011, 530, A106. 2.1 Dark influences: imprints of dark satellites on dwarf galaxies. Astronomy and Astrophysics, 2015, 575, 714 2.1 15 A59. SCALAR: an AMR code to simulate axion-like dark matter models. Astronomy and Astrophysics, 2020, 2.1 641, A107. CLASH-VLT: a full dynamical reconstruction of the mass profile of Abell S1063 from 1 kpc out to the 716 2.1 27 virial radius. Astronomy and Astrophysics, 2020, 637, A34. ORBITING CIRCUMGALACTIC GAS AS A SIGNATURE OF COSMOLOGICAL ACCRETION. Astrophysical Journal, 1.6 154 2011, 738, 39. GALAXIES IN Î>CDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY-VELOCITY RELATION, BARYONIC 718 240 1.6 MASS-VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING. Astrophysical Journal, 2011, 742, 16. THE STAR FORMATION HISTORY OF LEO T FROM < i>HUBBLE SPACE TELESCOPE < /i>IMAGING. Astrophysical 719 49 Journal, 2012, 748, 88. DWARF GALAXY FORMATION WITH H₂-REGULATED STAR FORMATION. Astrophysical Journal, 720 1.6 105 2012, 749, 36. GAMMA-RAY SIGNAL FROM EARTH-MASS DARK MATTER MICROHALOS. Astrophysical Journal Letters, 2010, 723, L195-L200. NIHAO – XXV. Convergence in the cusp-core transformation of cold dark matter haloes at high star 722 23 1.6 formation thresholds. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2648-2661. Hydrodynamic simulations of an isolated star-forming gas cloud in the Virgo cluster. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5873-5890. The role of mergers and interactions in driving the evolution of dwarf galaxies over cosmic time. 724 1.6 36 Monthly Notices of the Royal Astronomical Society, 2020, 500, 4937-4957. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments. Physical Review D, 2017, 96, .

#	Article	IF	CITATIONS
726	Asymmetric dark matter: residual annihilations and self-interactions. SciPost Physics, 2018, 4, .	1.5	44
727	THE LOST DWARFS OF CENTAURUS A AND THE FORMATION OF ITS DARK GLOBULAR CLUSTERS. Astrophysical Journal, 2016, 832, 88.	1.6	7
728	BreakBRD Galaxies. I. Clobal Properties of Spiral Galaxies with Central Star Formation in Red Disks. Astrophysical Journal, 2020, 889, 188.	1.6	6
729	Variability of Massive Stars in M31 from the Palomar Transient Factory. Astrophysical Journal, 2020, 893, 11.	1.6	8
730	New Analytic Solutions for Galaxy Evolution. II. Wind Recycling, Galactic Fountains, and Late-type Galaxies. Astrophysical Journal, 2020, 897, 81.	1.6	14
731	Cosmic Reionization On Computers: The Galaxy–Halo Connection between 5Ââ‰ÂzÂâ‰Â10. Astrophysical Journal, 2020, 899, 137.	1.6	11
732	Intrinsic Morphology of Ultra-diffuse Galaxies. Astrophysical Journal, 2020, 899, 78.	1.6	13
733	Rotation Curves in z â^¼ 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophysical Journal, 2020, 902, 98.	1.6	55
734	Diversity of Dark Matter Density Profiles in the Galactic Dwarf Spheroidal Satellites. Astrophysical Journal, 2020, 904, 45.	1.6	46
735	The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals. Astrophysical Journal Letters, 2017, 836, L13.	3.0	32
736	The density profiles of dark matter halos in spiral galaxies. Natural Science, 2012, 04, 265-270.	0.2	6
737	Hints for a Gravitational Transition in Tully–Fisher Data. Universe, 2021, 7, 366.	0.9	21
738	Cold Particle Dark Matter. Symmetry, 2021, 13, 1945.	1.1	0
739	Behind the Mask: Resolving the Core–Cusp Problem in Spiral Galaxies. , 2010, , 373-378.		0
741	Alleviating the scaling problem of cosmological hydrodynamic simulations with HECA. , 2013, , .		0
742	Computational Astrophysics. , 2014, , 1-28.		0
743	Searching Dark Matter: The Quest for the Missing Mass. Springer Theses, 2015, , 9-75.	0.0	0
744	Modeling Physical Processes at Galactic Scales and Above. Saas-Fee Advanced Course, 2016, , 1-84.	1.1	0

		CITATION REPORT	
#	Article	IF	Citations
746	An Introduction to Disk Evolution of Dwarf Galaxies. Springer Theses, 2016, , 1-19.	0.0	0
747	Blue Compact Dwarf Galaxies Formed Through Gravitational Torques. Springer Theses, 2016, , 115	i-133. 0.0	0
748	Stellar Disk Evolution of Nearby Dwarf Galaxies. Springer Theses, 2016, , 21-79.	0.0	0
749	The inner structure of dark matter haloes in the Hubble sequence. International Journal of Modern Physics D, 2016, 25, 1650093.	0.9	0
750	Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies. Kinematika Fizika Nebesnykh Tel, 2017, 33, 21-37.	0.1	1
751	Razor-Thin Discs and Swing Amplification. Springer Theses, 2017, , 113-160.	0.0	0
753	Angular Momentum Distribution in Galaxies and Inner Haloes Profile. Astronomy Reports, 2019, 63 971-989.	3, 0.2	1
754	Stellar profile independent determination of the dark matter distribution of the Fornax Local Grou dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2332-235	0 1.6	2
755	New and old probes of dark matter scenarios on galactic and sub-galactic scales. Journal of Physics Nuclear and Particle Physics, 0, , .	; C: 1.4	1
756	Physically Motivated Fit to Mass Surface Density Profiles Observed in Galaxies. Astrophysical Journ 2021, 921, 125.	al, 1.6	3
757	Inside-out star formation quenching and the need for a revision of bulge-disk decomposition conce for spiral galaxies. Astronomy and Astrophysics, 2022, 658, A74.	epts 2.1	9
758	The SIBELIUS Project: E Pluribus Unum. Monthly Notices of the Royal Astronomical Society, 2021, 1432-1446.	509, 1 .6	15
759	Why do black holes trace bulges (& central surface densities), instead of galaxies as a whole? Monthly Notices of the Royal Astronomical Society, 2021, 510, 630-638.	1.6	15
760	Negative and positive feedback from a supernova remnant with SHREC: a detailed study of the sho gas in IC443. Monthly Notices of the Royal Astronomical Society, 2022, 511, 953-963.	ocked 1.6	8
761	Dark matter in astrophysics/cosmology. SciPost Physics Lecture Notes, 0, , .	0.0	8
762	Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution. Nature Astronom 2022, 6, 35-47.	iy, 4.2	12
763	Numerical simulations of bar formation in the Local Group. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2423-2433.	1.6	4
764	Barions and $\hat{\mathbf{b}}$ CDM Model Problems. Astronomy Reports, 2022, 66, 102-115.	0.2	0

#	Article	IF	Citations
765	Structure and kinematics of tidally limited satellite galaxies in LCDM. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6001-6018.	1.6	19
766	Using artificial intelligence and real galaxy images to constrain parameters in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2135-2141.	1.6	1
767	H α morphologies of star clusters in 16 LEGUS galaxies: Constraints on H <scp>ii</scp> region evolutior time-scales. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1294-1316.	¹ 1.6	17
768	The Principle of Maximum Entropy and the Distribution of Mass in Galaxies. Universe, 2022, 8, 214.	0.9	6
769	LYRA – II. Cosmological dwarf galaxy formation with inhomogeneous Population III enrichment. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1372-1385.	1.6	17
770	Testing the Momentum-driven Supernova Feedback Paradigm in M31. Astrophysical Journal, 2022, 928, 54.	1.6	2
771	The Dawn of Disk Formation in a Milky Way-sized Galaxy Halo: Thin Stellar Disks at z > 4. Astrophysical Journal, 2022, 928, 106.	1.6	12
772	Review of Solutions to the Cusp-Core Problem of the \hat{b} CDM Model. Galaxies, 2021, 9, 123.	1.1	9
773	The Cusp–Core Problem in Gas-Poor Dwarf Spheroidal Galaxies. Galaxies, 2022, 10, 5.	1.1	9
774	Quantifying Scatter in Galaxy Formation at the Lowest Masses. Astrophysical Journal, 2021, 923, 35.	1.6	24
775	Testing the Relationship between Bursty Star Formation and Size Fluctuations of Local Dwarf Galaxies. Astrophysical Journal, 2021, 922, 217.	1.6	11
776	Observational constraints on stellar feedback in dwarf galaxies. Nature Astronomy, 2022, 6, 647-658.	4.2	19
777	A Mass Dependent Density Profile from Dwarfs to Clusters. Galaxies, 2022, 10, 69.	1.1	0
778	Spin transfer from dark matter to gas during halo formation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 437-450.	1.6	3
779	Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nature Astronomy, 2022, 6, 897-910.	4.2	55
780	Machine-guided exploration and calibration of astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 693-705.	1.6	1
781	Entropy-conserving Scheme for Modeling Nonthermal Energies in Fluid Dynamics Simulations. Astrophysical Journal, Supplement Series, 2022, 261, 16.	3.0	6
782	Redshift and stellar mass dependence of intrinsic shapes of disc-dominated galaxies from COSMOS observations below <i>z</i> Â= 1.0. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3603-3631.	1.6	1

	Сітаті	CITATION REPORT	
#	Article	IF	Citations
783	Testing multiflavored ultralight dark matter models with SPARC. Physical Review D, 2022, 106, .	1.6	7
784	Incorporating baryon-driven contraction of dark matter halos in rotation curve fits. Astronomy and Astrophysics, 2022, 665, A143.	2.1	2
785	Two can play at that game: constraining the role of supernova and AGN feedback in dwarf galaxies with cosmological zoom-in simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2112-2141.	1.6	24
786	Composite self-interacting dark matter and Higgs. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 833, 137369.	1.5	3
787	TangoSIDM: tantalizing models of self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3045-3063.	1.6	11
789	Ĵ·CDM with baryons versus MOND: The time evolution of the universal acceleration scale in the <i>Magneticum</i> simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 257-269.	1.6	4
790	Metallicity profiles of ultradiffuse galaxies in NIHAO simulations. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1545-1561.	1.6	1
791	The Turndown of the Baryonic Tully–Fisher Relation and Changing Baryon Fraction at Low Galaxy Masses. Astrophysical Journal, 2022, 940, 8.	1.6	6
792	The response of dark matter haloes to gas ejection: CuspCore II. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5356-5375.	1.6	3
793	z â^¼ 2–9 Galaxies Magnified by the Hubble Frontier Field Clusters. II. Luminosity Functions and Constraints on a Faint-end Turnover. Astrophysical Journal, 2022, 940, 55.	1.6	32
794	Star Formation History and Transition Epoch of Cluster Galaxies Based on the Horizon-AGN Simulation. Astrophysical Journal, 2022, 941, 5.	1.6	1
795	Probing galaxy evolution through Hi 21-cm emission and absorption: current status and prospects with square kilometre array. Journal of Astrophysics and Astronomy, 2022, 43, .	0.4	1
796	Shaken, but not expelled: Gentle baryonic feedback from nearby starburst dwarf galaxies. Astronomy and Astrophysics, 2023, 670, A92.	2.1	19
797	Reconstructing the extended structure of multiple sources strongly lensed by the ultra-massive elliptical galaxy SDSS J0100+1818. Astronomy and Astrophysics, 0, , .	2.1	1
798	Cosmic Reionization on Computers: Baryonic Effects on Halo Concentrations during the Epoch of Reionization. Astrophysical Journal, 2023, 942, 52.	1.6	0
799	Real and counterfeit cores: how feedback expands haloes and disrupts tracers of inner gravitational potential in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 520, 461-479.	1.6	4
800	A probabilistic deep learning model to distinguish cusps and cores in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4384-4396.	1.6	1
801	A Panchromatic Study of Massive Stars in the Extremely Metal-poor Local Group Dwarf Galaxy Leo A*. Astrophysical Journal, 2022, 941, 206.	1.6	3

	C	ITATION REPORT	ion Report	
#	Article	IF	CITATIONS	
802	Universal scaling laws and density slopes for dark matter haloes. Scientific Reports, 2023, 13, .	1.6	4	
803	SPARC HSBs, and LSBs, the surface density of dark matter haloes, and MOND. Physics of the Dark Universe, 2023, 40, 101203.	1.8	3	
804	Standard Model ofÂCosmology. Springer Theses, 2022, , 73-176.	0.0	0	
805	Molecular Outflows in z > 6 Unobscured QSO Hosts Driven by Star Formation. Astrophysical Journal, 2023, 944, 134.	1.6	4	
806	A possible signature of the influence of tidal perturbations in dwarf galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2012-2029.	1.6	3	
807	Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity, 2023, 26, .	8.2	107	
808	The hierarchical clustering method: abundance and properties of local satellite populations. Monthly Notices of the Royal Astronomical Society, 2023, 521, 6019-6033.	1.6	0	
809	SIMPly add a dark photon. Journal of High Energy Physics, 2023, 2023, .	1.6	0	