Eosinophils in health and disease: the <i>LIAR</i> hypo

Clinical and Experimental Allergy 40, 563-575 DOI: 10.1111/j.1365-2222.2010.03484.x

Citation Report

#	Article	IF	CITATIONS
1	What's new in asthma pathophysiology and immunopathology?. Expert Review of Respiratory Medicine, 2010, 4, 605-629.	2.5	26
2	Ultrastructural Descriptions of Heterotypic Aggregation between Eosinophils and Tumor Cells in Human Gastric Carcinomas. Ultrastructural Pathology, 2011, 35, 145-149.	0.9	33
3	Eosinophils Contribute to IL-4 Production and Shape the T-Helper Cytokine Profile and Inflammatory Response in Pulmonary Cryptococcosis. American Journal of Pathology, 2011, 179, 733-744.	3.8	63
4	The evolution of the Th2 immune responses and its relationships with parasitic diseases and allergy. Biomedica, 2011, 32, .	0.7	2
6	Asthma: a simple concept but in reality a complex disease. European Journal of Clinical Investigation, 2011, 41, 1339-1352.	3.4	61
7	Diversity and dialogue in immunity to helminths. Nature Reviews Immunology, 2011, 11, 375-388.	22.7	697
8	Update on clinical and immunological features of eosinophilic gastrointestinal diseases. Current Opinion in Gastroenterology, 2011, 27, 515-522.	2.3	33
9	The biological paths of IL-1 family members IL-18 and IL-33. Journal of Leukocyte Biology, 2010, 89, 383-392.	3.3	107
10	Targeting Eosinophil Biology in Asthma Therapy. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 667-674.	2.9	57
11	Eosinophils: Offenders or General Bystanders in Allergic Airway Disease and Pulmonary Immunity?. Journal of Innate Immunity, 2011, 3, 113-119.	3.8	35
12	Immunobiology of Intestinal Eosinophils – A Dogma in the Changing?. Journal of Innate Immunity, 2011, 3, 565-576.	3.8	11
13	Eosinophils Regulate Dendritic Cells and Th2 Pulmonary Immune Responses following Allergen Provocation. Journal of Immunology, 2011, 187, 6059-6068.	0.8	114
14	Human versus mouse eosinophils: "That which we call an eosinophil, by any other name would stain as red― Journal of Allergy and Clinical Immunology, 2012, 130, 572-584.	2.9	165
15	Involvement of eosinophils in the anti-tumor response. Cancer Immunology, Immunotherapy, 2012, 61, 1527-1534.	4.2	103
16	Chronic Allergic-like Inflammation in the Tumor Stroma of Human Gastric Carcinomas: An Ultrastructural Study. Ultrastructural Pathology, 2012, 36, 139-144.	0.9	8
17	The expanding role(s) of eosinophils in health and disease. Blood, 2012, 120, 3882-3890.	1.4	173
18	Workshop report from the National Institutes of Health Taskforce on the Research Needs of Eosinophil-Associated Diseases (TREAD). Journal of Allergy and Clinical Immunology, 2012, 130, 587-596.	2.9	54
19	Therapeutic Strategies for Harnessing Human Eosinophils in Allergic Inflammation, Hypereosinophilic Disorders, and Cancer. Current Allergy and Asthma Reports, 2012, 12, 402-412.	5.3	20

#	Article	IF	CITATIONS
20	Molecular and clinical rationale for therapeutic targeting of interleukinâ€5 and its receptor. Clinical and Experimental Allergy, 2012, 42, 712-737.	2.9	177
21	HyperAcute Vaccines. , 2013, , 497-516.		Ο
22	Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Research and Treatment, 2013, 139, 477-488.	2.5	46
23	Interaction between allergy and innate immunity: model for eosinophil regulation of epithelial cell interferon expression. Annals of Allergy, Asthma and Immunology, 2013, 111, 25-31.e1.	1.0	33
24	Functional Defense Mechanisms of the Nasal Respiratory Epithelium. , 2013, , 27-45.		0
25	The Tumor Microenvironment: Characterization, Redox Considerations, and Novel Approaches for Reactive Oxygen Species-Targeted Gene Therapy. Antioxidants and Redox Signaling, 2013, 19, 854-895.	5.4	97
26	Targeting eosinophils in allergy, inflammation and beyond. Nature Reviews Drug Discovery, 2013, 12, 117-129.	46.4	391
27	Emerging Concepts. , 2013, , 607-641.		0
28	Eosinophils in Human Disease. , 2013, , 431-536.		2
29	The Evolutionary Origins and Presence of Eosinophils in Extant Species. , 2013, , 13-18.		2
30	Eosinophilopoiesis. , 2013, , 73-119.		3
31	Eosinophil Trafficking. , 2013, , 121-166.		3
32	Eosinophil Secretory Functions. , 2013, , 229-275.		1
33	Helicobacter Pylori HP(2–20) Induces Eosinophil Activation and Accumulation in Superficial Gastric Mucosa and Stimulates VEGF-α and TGF-β Release by Interacting with Formyl-Peptide Receptors. International Journal of Immunopathology and Pharmacology, 2013, 26, 647-662.	2.1	17
34	Hypereosinophilia-associated Diseases and the Therapeutic Agents in Development. Hanyang Medical Reviews, 2013, 33, 65.	0.4	1
35	Integrin Activation States and Eosinophil Recruitment in Asthma. Frontiers in Pharmacology, 2013, 4, 33.	3.5	46
36	Eosinophilic Inflammation in Allergic Asthma. Frontiers in Pharmacology, 2013, 4, 46.	3.5	136
37	Loss of Hypoxia-Inducible Factor 2 Alpha in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury. Toxicological Sciences, 2014, 137, 447-457.	3.1	15

#	Article	IF	CITATIONS
38	CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunology, 2014, 7, 292-303.	6.0	29
39	Probing the immune and healing response of murine intestinal mucosa by time-lapse 2-photon microscopy of laser-induced lesions with real-time dosimetry. Biomedical Optics Express, 2014, 5, 3521.	2.9	9
40	Reâ€defining the unique roles for eosinophils in allergic respiratory inflammation. Clinical and Experimental Allergy, 2014, 44, 1119-1136.	2.9	62
41	Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 315-327.	5.7	53
42	Interleukinâ€33 requires <scp>CMRF</scp> 35â€like moleculeâ€1 expression for induction of myeloid cell activation. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 719-729.	5.7	23
43	Environmental Exposures and Airway Inflammation in Young Thoroughbred Horses. Journal of Veterinary Internal Medicine, 2014, 28, 918-924.	1.6	57
44	Anti-IL5 therapy for asthma and beyond. World Allergy Organization Journal, 2014, 7, 32.	3.5	68
45	Eosinophil Cytokines, Chemokines, and Growth Factors: Emerging Roles in Immunity. Frontiers in Immunology, 2014, 5, 570.	4.8	250
46	Eosinophils Promote Generation and Maintenance of Immunoglobulin-A-Expressing Plasma Cells and Contribute to Gut Immune Homeostasis. Immunity, 2014, 40, 582-593.	14.3	254
47	Changing roles of eosinophils in health and disease. Annals of Allergy, Asthma and Immunology, 2014, 113, 3-8.	1.0	73
48	Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5–induced eosinophil development. Nature Immunology, 2014, 15, 36-44.	14.5	56
49	Roles and Regulation of Gastrointestinal Eosinophils in Immunity and Disease. Journal of Immunology, 2014, 193, 999-1005.	0.8	118
50	Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nature Reviews Rheumatology, 2014, 10, 474-483.	8.0	126
51	Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model. International Journal for Parasitology, 2014, 44, 637-646.	3.1	36
52	Predicting response to bacillus Calmette-Guérin (BCG) in patients with carcinoma in situ of the bladder. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 45.e23-45.e30.	1.6	50
53	Novel CLC3 transcript variants in blood eosinophils and increased CLC3 expression in nasal lavage and blood eosinophils of asthmatics. Immunity, Inflammation and Disease, 2014, 2, 205-213.	2.7	2
54	Differential activation of airway eosinophils induces <scp>IL</scp> â€13â€mediated allergic Th2 pulmonary responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1148-1159.	5.7	47
55	Childhood Esophagitis Changes in 30 Years at 1 Center. Journal of Pediatric Gastroenterology and Nutrition, 2015, 61, 538-540.	1.8	1

#	Article	IF	CITATIONS
56	The past, present, and future of monoclonal antibodies to IL-5 and eosinophilic asthma: a review. Journal of Asthma and Allergy, 2015, 8, 125.	3.4	34
57	High Fat Diet Causes Depletion of Intestinal Eosinophils Associated with Intestinal Permeability. PLoS ONE, 2015, 10, e0122195.	2.5	97
59	CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. Journal of Leukocyte Biology, 2015, 98, 467-477.	3.3	41
60	Clinical phenotypes of asthma should link up with disease mechanisms. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 56-62.	2.3	26
61	Immune dysregulation in the functional gastrointestinal disorders. European Journal of Clinical Investigation, 2015, 45, 1350-1359.	3.4	75
62	Eosinophils. , 2016, , 334-344.		1
63	Eosinophilic bioactivities in severe asthma. World Allergy Organization Journal, 2016, 9, 21.	3.5	66
64	Phenotypic plasticity and targeting of <scp>S</scp> iglecâ€ <scp>F</scp> ^{high} <scp>CD</scp> 11c ^{low} eosinophils to the airway in a murine model of asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2016. 71. 267-271.	5.7	71
65	Emerging Roles for Eosinophils in the Tumor Microenvironment. Trends in Cancer, 2016, 2, 664-675.	7.4	87
66	The safety of monoclonal antibodies in asthma. Expert Opinion on Drug Safety, 2016, 15, 1087-1095.	2.4	8
67	Eosinophils, probiotics, and the microbiome. Journal of Leukocyte Biology, 2016, 100, 881-888.	3.3	38
68	Eosinophil peroxidase activates cells by HER2 receptor engagement and \hat{l}^21 -integrin clustering with downstream MAPK cell signaling. Clinical Immunology, 2016, 171, 1-11.	3.2	6
69	Cyclophilin D regulates necrosis, but not apoptosis, of murine eosinophils. American Journal of Physiology - Renal Physiology, 2016, 310, G609-G617.	3.4	9
70	Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women's Health Study. Modern Pathology, 2016, 29, 516-527.	5.5	65
71	Eosinophils: important players in humoral immunity. Clinical and Experimental Immunology, 2015, 183, 57-64.	2.6	71
72	Histopathological comparisons of <scp><i>S</i></scp> <i>taphylococcus aureus</i> and <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> experimental infected porcine burn wounds. Wound Repair and Regeneration, 2017, 25, 541-549.	3.0	42
73	Dendritic cells, macrophages, NK and CD8+ T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virology Journal, 2017, 14, 37.	3.4	33
74	Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. Journal of Allergy and Clinical Immunology, 2017, 139, 1752-1761.	2.9	127

#	ARTICLE	IF	CITATIONS
75	Frontline Science: Eosinophil-deficient MBP-1 and EPX double-knockout mice link pulmonary remodeling and airway dysfunction with type 2 inflammation. Journal of Leukocyte Biology, 2017, 102, 589-599.	3.3	15
76	Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. Journal of Experimental Medicine, 2017, 214, 2121-2138.	8.5	78
77	Caspofungin Increases Fungal Chitin and Eosinophil and γÎ′ T Cell–Dependent Pathology in Invasive Aspergillosis. Journal of Immunology, 2017, 199, 624-632.	0.8	19
78	In Memory and Celebration: Dr. James J. Lee. Clinical and Experimental Allergy, 2017, 47, 980-981.	2.9	0
79	Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. Journal of Immunology, 2017, 198, 3214-3226.	0.8	133
80	Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1321-1332.	5.6	33
81	Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 331-357.	22.4	348
82	Mouse Eosinophils: Identification, Isolation, and Functional Analysis. Current Protocols in Immunology, 2017, 119, 14.43.1-14.43.22.	3.6	11
83	The relationship between lung function and the clinical and histopathological features in Chinese patients with nasal polyps. Journal of Laryngology and Otology, 2017, 131, 880-888.	0.8	3
84	CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Scientific Reports, 2017, 7, 5922.	3.3	24
85	Transcriptome profiling of mouse colonic eosinophils reveals a key role for eosinophils in the induction of s100a8 and s100a9 in mucosal healing. Scientific Reports, 2017, 7, 7117.	3.3	18
86	SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. Journal of Leukocyte Biology, 2017, 101, 321-328.	3.3	66
87	Eosinophil Cytokines in Allergy. , 2017, , 173-218.		14
88	The Biology of Eosinophils and Their Role in Asthma. Frontiers in Medicine, 2017, 4, 93.	2.6	250
89	Glycobiology of Eosinophilic Inflammation: Contributions of Siglecs, Glycans, and Other Glycan-Binding Proteins. Frontiers in Medicine, 2017, 4, 116.	2.6	24
90	Ozone-induced eosinophil recruitment to airways is altered by antigen sensitization and tumor necrosis factor-l± blockade. Physiological Reports, 2017, 5, e13538.	1.7	9
91	<i>Alternaria alternata</i> challenge at the nasal mucosa results in eosinophilic inflammation and increased susceptibility to influenza virus infection. Clinical and Experimental Allergy, 2018, 48, 691-702.	2.9	11
92	The eosinophil. Annals of Allergy, Asthma and Immunology, 2018, 121, 150-155.	1.0	49

#	Article	IF	CITATIONS
93	Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Journal of Leukocyte Biology, 2018, 104, 69-83.	3.3	34
94	Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. Journal of Leukocyte Biology, 2018, 104, 95-108.	3.3	102
95	Eosinophil and airway nerve interactions in asthma. Journal of Leukocyte Biology, 2018, 104, 61-67.	3.3	68
96	Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. Journal of Investigative Dermatology, 2018, 138, 1032-1043.	0.7	65
97	FACS isolation of live mouse eosinophils at high purity via a protocol that does not target Siglec F. Journal of Immunological Methods, 2018, 454, 27-31.	1.4	9
98	ICAM-1 upregulation is not required for retinoic acid-induced human eosinophil survival. Immunology Letters, 2018, 196, 68-73.	2.5	3
99	ICOS protects against mortality from acute lung injury through activation of IL-5+ ILC2s. Mucosal Immunology, 2018, 11, 61-70.	6.0	23
100	Eosinophils: The unsung heroes in cancer?. Oncolmmunology, 2018, 7, e1393134.	4.6	184
101	Eosinophil persistence in vivo and sustained viability ex vivo in response to respiratory challenge with fungal allergens. Clinical and Experimental Allergy, 2018, 48, 29-38.	2.9	13
102	S13â€Extracellular vesicle miRNA: a mechanism for chronic airway inflammation and macrophage dysfunction in COPD. , 2018, , .		1
103	Baseline Gastrointestinal Eosinophilia Is Common in Oral Immunotherapy Subjects With IgE-Mediated Peanut Allergy. Frontiers in Immunology, 2018, 9, 2624.	4.8	49
104	Shall We Focus on the Eosinophil to Guide Treatment with Systemic Corticosteroids during Acute Exacerbations of COPD?: PRO. Medical Sciences (Basel, Switzerland), 2018, 6, 74.	2.9	7
105	Eosinophils: Friends or Foes?. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1439-1444.	3.8	51
106	Eosinophils from Physiology to Disease: A Comprehensive Review. BioMed Research International, 2018, 2018, 1-28.	1.9	182
107	Blood and Sputum Eosinophils as a Biomarker for Selecting and Adjusting Asthma Medication. , 2018, , 59-67.		0
108	Use of biomarkers to identify phenotypes and endotypes of severe asthma. Annals of Allergy, Asthma and Immunology, 2018, 121, 414-420.	1.0	51
109	Eosinophils can more than kill. Journal of Experimental Medicine, 2018, 215, 1967-1969.	8.5	16
110	Vesicle-associated membrane protein 7-mediated eosinophil degranulation promotes allergic airway inflammation in mice. Communications Biology, 2018, 1, 83.	4.4	18

#	Article	IF	CITATIONS
111	Matrix protein tenascin-C expands and reversibly blocks maturation of murine eosinophil progenitors. Journal of Allergy and Clinical Immunology, 2018, 142, 695-698.e4.	2.9	9
112	A case of coxsackie virus-induced acute generalized exanthematous pustulosis with unique periadnexal eosinophilic infiltration. Dermatologica Sinica, 2018, 36, 113-114.	0.5	1
113	Contributions of innate type 2 inflammation to adipose function. Journal of Lipid Research, 2019, 60, 1698-1709.	4.2	30
114	Expression of IL-5 receptor alpha by murine and human lung neutrophils. PLoS ONE, 2019, 14, e0221113.	2.5	32
115	The Role of Innate Leukocytes during Influenza Virus Infection. Journal of Immunology Research, 2019, 2019, 1-17.	2.2	69
116	Activated Eosinophils Exert Antitumorigenic Activities in Colorectal Cancer. Cancer Immunology Research, 2019, 7, 388-400.	3.4	113
117	Eosinophils: Nemeses of Pulmonary Pathogens?. Current Allergy and Asthma Reports, 2019, 19, 36.	5.3	24
118	Eosinophils and Respiratory Viruses. Viral Immunology, 2019, 32, 198-207.	1.3	72
119	Eosinophils Do Not Drive Acute Muscle Pathology in the mdx Mouse Model of Duchenne Muscular Dystrophy. Journal of Immunology, 2019, 203, 476-484.	0.8	14
120	Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. Journal of Immunology, 2019, 203, 520-531.	0.8	8
121	Eosinophils in anti-neutrophil cytoplasmic antibody associated vasculitis. BMC Rheumatology, 2019, 3, 9.	1.6	13
122	Eosinophil-derived IL-13 promotes emphysema. European Respiratory Journal, 2019, 53, 1801291.	6.7	47
123	Peroxidasin and eosinophil peroxidase, but not myeloperoxidase, contribute to renal fibrosis in the murine unilateral ureteral obstruction model. American Journal of Physiology - Renal Physiology, 2019, 316, F360-F371.	2.7	25
124	Eosinophil-Associated Innate IL-17 Response Promotes Aspergillus fumigatus Lung Pathology. Frontiers in Cellular and Infection Microbiology, 2018, 8, 453.	3.9	22
125	Frontline Science: Cytokine-mediated developmental phenotype of mouse eosinophils: IL-5-associated expression of the Ly6G/Gr1 surface Ag. Journal of Leukocyte Biology, 2020, 107, 367-377.	3.3	13
126	Deciphering the role of eosinophils in solid organ transplantation. American Journal of Transplantation, 2020, 20, 924-930.	4.7	11
128	Approach to Patients with Eosinophilia. Medical Clinics of North America, 2020, 104, 1-14.	2.5	40
129	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	2.1	65

#	Article	IF	CITATIONS
130	A new dawn for eosinophils in the tumour microenvironment. Nature Reviews Cancer, 2020, 20, 594-607.	28.4	164
131	Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms, 2020, 8, 1808.	3.6	13
132	Littermate-Controlled Experiments Reveal Eosinophils Are Not Essential for Maintaining Steady-State IgA and Demonstrate the Influence of Rearing Conditions on Antibody Phenotypes in Eosinophil-Deficient Mice. Frontiers in Immunology, 2020, 11, 557960.	4.8	13
133	Peripheral Blood Eosinophilia Is Associated with Poor Outcome Post-Lung Transplantation. Cells, 2020, 9, 2516.	4.1	15
134	Eosinophilic Colitis and Clostridioides difficile Sepsis With Rapid Remission After Antimicrobial Treatment; A Rare Coincidence and Its Pathogenic Implications. Frontiers in Medicine, 2020, 7, 328.	2.6	1
135	Immune cells as tumor drug delivery vehicles. Journal of Controlled Release, 2020, 327, 70-87.	9.9	53
136	Eosinophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 1-28.	1.6	20
137	Daikenchuto attenuates visceral pain and suppresses eosinophil infiltration in inflammatory bowel disease in murine models. JCH Open, 2020, 4, 1146-1154.	1.6	10
138	Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Frontiers in Immunology, 2020, 11, 603295.	4.8	16
139	"NETs and EETs, a Whole Web of Mess― Microorganisms, 2020, 8, 1925.	3.6	16
140	Influenza A virus directly modulates mouse eosinophil responses. Journal of Leukocyte Biology, 2020, 108, 151-168.	3.3	23
141	Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells. Cell Communication and Signaling, 2020, 18, 95.	6.5	15
142	Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link?. Journal of Leukocyte Biology, 2020, 108, 93-103.	3.3	33
143	The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunology, 2020, 13, 574-583.	6.0	58
144	Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Scientific Reports, 2020, 10, 4425.	3.3	18
145	Eosinophils of the horse: Part II: Eosinophils in clinical diseases. Equine Veterinary Education, 2020, 32, 590-602.	0.6	8
146	Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab. Drug Safety, 2020, 43, 409-425.	3.2	47
147	Intravital imaging of eosinophils: Unwrapping the enigma. Journal of Leukocyte Biology, 2020, 108, 83-91.	3.3	3

#	Article	IF	CITATIONS
148	EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1495-1505.	1.9	14
149	Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Frontiers in Immunology, 2020, 11, 155.	4.8	36
150	Eosinophils and Purinergic Signaling in Health and Disease. Frontiers in Immunology, 2020, 11, 1339.	4.8	11
151	The blood cells in NSCLC and the changes after RFA. International Journal of Hyperthermia, 2020, 37, 753-762.	2.5	1
152	Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Frontiers in Immunology, 2020, 11, 3.	4.8	51
153	Inflammatory mechanisms linking maternal and childhood asthma. Journal of Leukocyte Biology, 2020, 108, 113-121.	3.3	30
154	Contributions of Eosinophils to Human Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 179-209.	22.4	144
155	Eosinophilic Vasculitis. Current Rheumatology Reports, 2020, 22, 5.	4.7	11
156	Eosinopenia is associated with greater severity in patients with coronavirus disease 2019. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 562-564.	5.7	35
157	How to approach adult patients with asymptomatic esophageal eosinophilia. Ecological Management and Restoration, 2021, 34, .	0.4	9
158	Assessment of Lung Eosinophils In Situ Using Immunohistological Staining. Methods in Molecular Biology, 2021, 2223, 237-266.	0.9	2
159	The role of eosinophils in sepsis and acute respiratory distress syndrome: a scoping review. Canadian Journal of Anaesthesia, 2021, 68, 715-726.	1.6	18
160	Eosinophils in the Field of Nasal Polyposis: Towards a Better Understanding of Biologic Therapies. Clinical Reviews in Allergy and Immunology, 2022, 62, 90-102.	6.5	15
161	Differential expression of Triggering Receptor Expressed on Myeloid cells 2 (<i>Trem2</i>) in tissue eosinophils. Journal of Leukocyte Biology, 2021, 110, 679-691.	3.3	2
162	Eosinophilic gastrointestinal disorders and allergen immunotherapy: Lights and shadows. Pediatric Allergy and Immunology, 2021, 32, 814-823.	2.6	13
163	Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza a Virus Infection in C57BL/6 Mice. Cells, 2021, 10, 509.	4.1	14
164	Shades of white: new insights into tissueâ€resident leukocyte heterogeneity. FEBS Journal, 2022, 289, 308-318.	4.7	4
165	Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin–Kallikrein System in Severe COVID-19. Viruses, 2021, 13, 309.	3.3	35

#	Article	IF	CITATIONS
166	Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Science Translational Medicine, 2021, 13, .	12.4	31
167	Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells, 2021, 10, 426.	4.1	19
168	A tribute to eosinophils from a comparative and evolutionary perspective. Journal of Allergy and Clinical Immunology, 2021, 147, 1115-1116.	2.9	7
169	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	6.1	36
170	More than neutrophils: Lin(+)Ly6G(+)IL-5Rα(+) multipotent myeloid cells (MMCs) are dominant in normal murine bone marrow and retain capacity to differentiate into eosinophils and monocytes. Journal of Leukocyte Biology, 2021, 111, 113-122.	3.3	10
171	Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annual Review of Immunology, 2021, 39, 719-757.	21.8	69
172	Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. International Journal of Molecular Sciences, 2021, 22, 4356.	4.1	7
173	Initiation and Pathogenesis of Severe Asthma with Fungal Sensitization. Cells, 2021, 10, 913.	4.1	14
174	Mepolizumab asthma treatment failure due to refractory airway eosinophilia, which responded to benralizumab. Respirology Case Reports, 2021, 9, e00743.	0.6	3
175	Lessons learned from targeting eosinophils in human disease. Seminars in Immunopathology, 2021, 43, 459-475.	6.1	10
176	Beyond II-5: Metabolic Reprogramming and Stromal Support Are Prerequisite for Generation and Survival of Long-Lived Eosinophil. Cells, 2021, 10, 815.	4.1	5
177	The twilight zone: plasticity and mixed ontogeny of neutrophil and eosinophil granulocyte subsets. Seminars in Immunopathology, 2021, 43, 337-346.	6.1	10
179	Bidirectional crosstalk between eosinophils and esophageal epithelial cells regulates inflammatory and remodeling processes. Mucosal Immunology, 2021, 14, 1133-1143.	6.0	15
180	Gastrointestinal Eosinophil Responses in a Longitudinal, Randomized Trial of Peanut Oral Immunotherapy. Clinical Gastroenterology and Hepatology, 2021, 19, 1151-1159.e14.	4.4	41
181	An Unexpected Line of Defense: Hepatoprotective Eosinophils in Ischemiaâ€Reperfusion Injury. Hepatology, 2021, 74, 2888-2890.	7.3	1
182	Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine, 2021, 39, 3590-3601.	3.8	2
183	Eosinophils and helminth infection: protective or pathogenic?. Seminars in Immunopathology, 2021, 43, 363-381.	6.1	19
184	Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Experimental and Molecular Medicine, 2021, 53, 1036-1045.	7.7	7

#	Article	IF	CITATIONS
185	Eosinophils and Bacteria, the Beginning of a Story. International Journal of Molecular Sciences, 2021, 22, 8004.	4.1	18
186	Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS ONE, 2021, 16, e0255997.	2.5	5
187	Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle?. International Journal of Molecular Sciences, 2021, 22, 8921.	4.1	6
188	Prognostic assessment of different methods for eosinophils detection in oral tongue cancer. Journal of Oral Pathology and Medicine, 2021, , .	2.7	2
189	Reduction/elimination of blood eosinophils in severe asthma: should there be a safety consideration?. Expert Opinion on Biological Therapy, 2022, 22, 377-384.	3.1	3
190	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	38
191	Local Allergic Inflammation in Chronic Rhinosinusitis With Nasal Polyps Could Influence on Disease Severity and Olfaction. Journal of Rhinology, 2021, 28, 147-152.	0.2	1
193	Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity?. International Journal of Molecular Sciences, 2021, 22, 10150.	4.1	17
194	From DREAM to REALITIâ€A and beyond: Mepolizumab for the treatment of eosinophilâ€driven diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 778-797.	5.7	25
195	Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Veterinary Journal, 2021, 276, 105741.	1.7	5
196	Molecular Biology of Eosinophils: Introduction. Methods in Molecular Biology, 2021, 2241, 1-14.	0.9	2
197	Analysis of Mouse Eosinophil Migration and Killing of Tumor Cells. Methods in Molecular Biology, 2021, 2241, 89-97.	0.9	1
198	Eosinophil Overview: Structure, Biological Properties, and Key Functions. Methods in Molecular Biology, 2014, 1178, 1-12.	0.9	17
199	Biology of Eosinophils. , 2014, , 265-279.		5
200	Nebulized Lidocaine Prevents Airway Inflammation, Peribronchial Fibrosis, and Mucus Production in a Murine Model of Asthma. Anesthesiology, 2012, 117, 580-591.	2.5	41
203	Eosinophils promote inducible NOS–mediated lung allograft acceptance. JCl Insight, 2017, 2, .	5.0	22
204	Lung-resident eosinophils represent a distinct regulatory eosinophil subset. Journal of Clinical Investigation, 2016, 126, 3279-3295.	8.2	373
205	White Blood Cell Subtypes Are Associated with a Greater Long-Term Risk of Death after Acute Myocardial Infarction. Texas Heart Institute Journal, 2017, 44, 176-188.	0.3	32

#	Article	IF	Citations
206	Tumour-associated tissue eosinophilia (TATE) in oral squamous cell carcinoma: a comprehensive review. Histology and Histopathology, 2021, 36, 113-122.	0.7	7
207	Urticaria as Symptom of Parasite Migration Through the Biological Barriers. The Open Allergy Journal, 2011, 4, 1-7.	0.5	7
208	Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World Journal of Gastroenterology, 2019, 25, 3503-3526.	3.3	63
209	Eosinophil Biology in the Pathogenesis of Eosinophilic Disorders. , 2012, , 39-70.		0
210	Gastrointestinal Mucosal Immunology. , 2014, , 1084-1094.		0
212	S14â \in Eosinophil activation status and CD62L expression in airways disease. , 2018, , .		Ο
213	Cell cannibalism in oral cancer. Journal of Cancer Research and Therapeutics, 2019, 15, 631-637.	0.9	6
215	Quantitative analysis of tumor-associated tissue eosinophils and tumor-associated blood eosinophils in oral squamous cell carcinoma. Journal of Oral and Maxillofacial Pathology, 2020, 24, 131.	0.6	3
216	Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Frontiers in Immunology, 2021, 12, 772004.	4.8	2
217	Isolation and characterization of eosinophils in bovine blood and small intestine. Veterinary Immunology and Immunopathology, 2021, 242, 110352.	1.2	Ο
219	Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology, 2021, 12, 833544.	3.5	28
220	Eosinophils as potential mediators of autoimmunity in eosinophilic lung disease. , 2022, , 219-237.		4
222	Molecular immunology and genomics: The future of multisystemic eosinophilic epitheliotropic disease. Equine Veterinary Education, 2022, 34, 514-517.	0.6	0
225	Future prospects of translational and clinical eosinophil research. , 2022, , 253-262.		1
226	An introduction to eosinophils and their biology. , 2022, , 1-18.		1
227	Recent advances of engineered and artificial drug delivery system towards solid tumor based on immune cells. Biomedical Materials (Bristol), 2022, 17, 022003.	3.3	4
228	The emerging roles of eosinophils: Implications for the targeted treatment of eosinophilic-associated inflammatory conditions. Current Research in Immunology, 2022, 3, 42-53.	2.8	38
229	The roles of eosinophils and interleukinâ€5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2022, 12, 1413-1423.	2.8	41

#	Article	IF	CITATIONS
230	The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. Journal of Experimental Medicine, 2022, 219, .	8.5	22
231	Quantity and Distribution of Eosinophils in Esophageal Specimens of Adults: An Iranian Population-Based Study. Iranian Journal of Pathology, 2022, 17, 136-142.	0.5	1
232	Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. European Clinical Respiratory Journal, 2022, 9, 2040707.	1.5	5
233	Dietary L-Carnitine Affects Leukocyte Count and Function in Dairy Cows Around Parturition. Frontiers in Immunology, 2022, 13, 784046.	4.8	4
234	Selective cleavage of ncRNA and antiviral activity by RNase2/EDN in THP1-induced macrophages. Cellular and Molecular Life Sciences, 2022, 79, 209.	5.4	9
235	Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers, 2022, 14, 1681.	3.7	64
236	Adapting to their new home: Eosinophils remodel the gut architecture. Journal of Experimental Medicine, 2022, 219, .	8.5	0
237	Chronic eosinophilic granulomatous tenosynovitis in a Quarter Horse mare. Equine Veterinary Education, 2023, 35, .	0.6	1
238	Depleción de eosinófilos: muchas implicaciones en modelos múridos, pocas estudiadas en humanos. Medicina Y Laboratorio, 2022, 26, 141-157.	0.1	0
239	Solving the Conundrum of Eosinophils in Alloimmunity. Transplantation, 2022, 106, 1538-1547.	1.0	3
245	Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells, 2022, 11, 1644.	4.1	7
246	Eosinophils protect against acetaminophenâ€induced liver injury through cyclooxygenaseâ€mediated ILâ€4/ILâ€13 production. Hepatology, 2023, 77, 456-465.	7.3	10
247	Resolution of Inflammation after Skeletal Muscle Ischemia–Reperfusion Injury: A Focus on the Lipid Mediators Lipoxins, Resolvins, Protectins and Maresins. Antioxidants, 2022, 11, 1213.	5.1	4
250	An open microfluidic coculture model of fibroblasts and eosinophils to investigate mechanisms of airway inflammation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	2
251	Recent advances in understanding the role of eosinophils. Faculty Reviews, 0, 11, .	3.9	5
252	Innate lymphoid cells: More than just immune cells. Frontiers in Immunology, 0, 13, .	4.8	13
253	Differential regulation of Type 1 and Type 2 mouse eosinophil activation by apoptotic cells. Frontiers in Immunology, 0, 13, .	4.8	3
254	Eosinophilic and noneosinophilic asthma: Beyond severe asthma. , 2023, , 31-46.		0

#	Article	IF	CITATIONS
255	Eosinophils: A Friend or Foe in Human Health and Diseases. Kidney Diseases (Basel, Switzerland), 2023, 9, 26-38.	2.5	4
256	Eosinophilia in cancer and its regulation by sex hormones. Trends in Endocrinology and Metabolism, 2023, 34, 5-20.	7.1	6
257	Quality over quantity; eosinophil activation status will deepen the insight into eosinophilic diseases. Respiratory Medicine, 2023, 207, 107094.	2.9	6
258	Functional Defense Mechanisms of the Nasal Respiratory Epithelium. , 2023, , 41-59.		0
259	Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment. International Journal of Molecular Sciences, 2023, 24, 5716.	4.1	4
260	Eosinophil: A New Circulating Biomarker for Risk of Poor Outcome in Stroke Patients Undergoing Mechanical Thrombectomy. Clinical Interventions in Aging, 0, Volume 18, 523-531.	2.9	2
261	Eosinophils and Eosinophilic Disorders. , 2023, , 573-585.		0
262	French guidelines for the etiological workup of eosinophilia and the management of hypereosinophilic syndromes. Orphanet Journal of Rare Diseases, 2023, 18, .	2.7	4
264	Emerging functions of tissue-resident eosinophils. Journal of Experimental Medicine, 2023, 220, .	8.5	3
265	Eosinophils and tissue remodeling: Relevance to airway disease. Journal of Allergy and Clinical Immunology, 2023, 152, 841-857.	2.9	9
266	Eosinophils as potential biomarkers in respiratory viral infections. Frontiers in Immunology, 0, 14, .	4.8	7
267	Increased mucosal eosinophils in colonic diverticulosis and diverticular disease. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 1355-1364.	2.8	0
268	Development of Adaptive Immunity and Its Role in Lung Remodeling. Advances in Experimental Medicine and Biology, 2023, , 287-351.	1.6	0
269	Eosinophils—from cradle to grave. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 3077-3102.	5.7	5
270	Influenza breakthrough infection in vaccinated mice is characterized by non-pathological lung eosinophilia. Frontiers in Immunology, 0, 14, .	4.8	1
271	Exploiting innate immunity for cancer immunotherapy. Molecular Cancer, 2023, 22, .	19.2	6
272	Eosinophils in obesity and obesity-associated disorders. , 2023, 2, .		0
273	The Impact of Blood Morphological Parameters on Treatment Outcomes in Tennis Elbow Patients Receiving Platelet-Rich Plasma (PRP) Therapy: A Prospective Study. Journal of Clinical Medicine, 2024, 13, 77.	2.4	0

#	Article	IF	CITATIONS	
274	Nutrient-derived signals regulate eosinophil adaptation to the small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0	
275	Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. Journal of Leukocyte Biology, 0, , .	3.3	0	
276	Eosinophils preserve bone homeostasis by inhibiting excessive osteoclast formation and activity via eosinophil peroxidase. Nature Communications, 2024, 15, .	12.8	1	