A first prospective randomized controlled trial to decreate atmospheric argon plasma on chronic wounds in patient

British Journal of Dermatology 163, 78-82 DOI: 10.1111/j.1365-2133.2010.09744.x

Citation Report

#	Article	IF	CITATIONS
2	Plasma medicine: possible applications in dermatology. JDDG - Journal of the German Society of Dermatology, 2010, 8, 968-976.	0.4	165
3	Campus PlasmaMed - From basic research to clinical proof. , 2010, , .		0
4	Cold atmospheric plasma for clinical purposes - promising results in patients and future applications. , 2011, , .		0
5	Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal Physics D: Applied Physics, 2011, 44, 013002.	1.3	599
6	Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Journal of Medical Microbiology, 2011, 60, 75-83.	0.7	293
7	Effects of cold atmospheric plasmas on adenoviruses in solution. Journal Physics D: Applied Physics, 2011, 44, 505201.	1.3	128
8	Sub-60 °C atmospheric helium–water plasma jets: modes, electron heating and downstream reaction chemistry. Journal Physics D: Applied Physics, 2011, 44, 345203.	1.3	26
9	Plasmas meet nanoparticles—where synergies can advance the frontier of medicine. Journal Physics D: Applied Physics, 2011, 44, 174018.	1.3	101
10	Stimulation of wound healing by helium atmospheric pressure plasma treatment. Journal Physics D: Applied Physics, 2011, 44, 105204.	1.3	182
11	The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicology in Vitro, 2011, 25, 530-537.	1.1	43
12	Campus PlasmaMed—From Basic Research to Clinical Proof. IEEE Transactions on Plasma Science, 2011, 39, 1015-1025.	0.6	31
13	Live Pig Skin Tissue and Wound Toxicity of Cold Plasma Treatment. Plasma Medicine, 2011, 1, 93-108.	0.2	42
14	Cold Plasma Sterilization of Open Wounds: Live Rat Model. Plasma Medicine, 2011, 1, 109-114.	0.2	18
15	Removing Biofilms from Microstructured Titanium Ex Vivo: A Novel Approach Using Atmospheric Plasma Technology. PLoS ONE, 2011, 6, e25893.	1.1	80
16	A key inactivation factor of HeLa cell viability by a plasma flow. Journal Physics D: Applied Physics, 2011, 44, 372001.	1.3	78
17	Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology, 2011, 25, 1-11.	1.3	342
18	Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma. New Journal of Physics, 2011, 13, 053025.	1.2	52
19	Cold Atmospheric Plasma. Archives of Dermatology, 2011, 147, 388.	1.7	88

	Ci	tation Report	
#	Article	IF	CITATIONS
20	Skin Disinfection by Plasma-Tissue Interaction: Comparison of the Effectivity of Tissue-Tolerable Plasma and a Standard Antiseptic. Skin Pharmacology and Physiology, 2011, 24, 284-288.	1.1	64
21	Test for bacterial resistance build-up against plasma treatment. New Journal of Physics, 2012, 14, 073037.	1.2	65
22	The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New Journal of Physics, 2012, 14, 103028.	1.2	161
23	Wound healing modeling: investigating ambient gas plasma treatment efficacy. Journal Physics D: Applied Physics, 2012, 45, 445201.	1.3	14
24	Multiphysics modeling of gas plasma-based wound healing process. , 2012, , .		0
25	Experimental Recovery of CO ₂ -Laser Skin Lesions by Plasma Stimulation. The American Journal of Cosmetic Surgery, 2012, 29, 52-56.	0.1	85
26	New Nonthermal Atmospheric-Pressure Plasma Sources for Decontamination of Human Extremities. IEEE Transactions on Plasma Science, 2012, 40, 2963-2969.	0.6	37
27	Hydrogen-Peroxide-Enhanced Nonthermal Plasma Effluent for Biomedical Applications. IEEE Transactions on Plasma Science, 2012, 40, 1984-1991.	0.6	45
28	The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal Physics D: Applied Physics, 2012, 45, 263001.	1.3	1,170
29	Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest. Applied and Environmental Microbiology, 2012, 78, 5077-5082.	1.4	303
30	Cold DC-Operated Air Plasma Jet for the Inactivation of Infectious Microorganisms. IEEE Transactions on Plasma Science, 2012, 40, 3007-3026.	0.6	50
31	Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology, 2012, 217, 628-633.	0.8	49
32	Non-thermal argon plasma is bactericidal for the intracellular bacterial pathogen Chlamydia trachomatis. Journal of Medical Microbiology, 2012, 61, 793-799.	0.7	30
33	Plasma Processes and Plasma Sources in Medicine. Contributions To Plasma Physics, 2012, 52, 644-65	54. 0.5	120
34	Plasma Health Care ―Old Problems, New Solutions. Contributions To Plasma Physics, 2012, 52, 655-	-663. 0.5	20
35	Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasmaâ€induced changes in lipid composition. Experimental Dermatology, 2012, 21, 921-925.	1.4	51
36	Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures. Plasma Sources Science and Technology, 2012, 21, 034012.	1.3	68
37	Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Science and Technology, 2012, 21, 043001.	1.3	285

#	Article	IF	CITATIONS
38	Dose-dependent killing of leukemia cells by low-temperature plasma. Journal Physics D: Applied Physics, 2012, 45, 422002.	1.3	112
39	Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma. Cell Biology International, 2012, 36, 1217-1222.	1.4	64
40	Targeting the cancer cell cycle by cold atmospheric plasma. Scientific Reports, 2012, 2, 636.	1.6	200
42	Comparison of the Antiseptic Efficacy of Tissue-Tolerable Plasma and an Octenidine Hydrochloride-Based Wound Antiseptic on Human Skin. Skin Pharmacology and Physiology, 2012, 25, 100-106.	1.1	48
43	Plasma Medicine in Dermatology: Basic Antimicrobial Efficacy Testing as Prerequisite to Clinical Plasma Therapy. Plasma Medicine, 2012, 2, 33-69.	0.2	27
44	Bacterial Inactivation in Liquids Using Multi-Gas Plasmas. Plasma Medicine, 2012, 2, 237-247.	0.2	29
45	Reasons Why We Need Cold Atmospheric Plasmas in Bacteria-Related Diseases in Medicine. Plasma Medicine, 2012, 2, 85-96.	0.2	6
46	Plasma-based wound healing. , 2012, , 239-260.		4
47	Cold Atmospheric Plasma for Surface Disinfection. Plasma Processes and Polymers, 2012, 9, 585-589.	1.6	37
48	In Vitro Susceptibility of Important Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Processes and Polymers, 2012, 9, 380-389.	1.6	90
49	Complex Responses of Microorganisms as a Community to a Flowing Atmospheric Plasma. Plasma Processes and Polymers, 2012, 9, 597-611.	1.6	28
50	Disinfection Through Different Textiles Using Lowâ€Temperature Atmospheric Pressure Plasma. Plasma Processes and Polymers, 2012, 9, 792-798.	1.6	14
51	Guiding of Reactive Plasma Species by Microâ€Channels. Plasma Processes and Polymers, 2012, 9, 1001-1005.	1.6	1
52	Optimizing the distance for bacterial treatment using surface micro-discharge plasma. New Journal of Physics, 2012, 14, 023058.	1.2	16
53	Inactivation of bacterial opportunistic skin pathogens by nonthermal DC-operated afterglow atmospheric plasma. Letters in Applied Microbiology, 2012, 54, 126-132.	1.0	29
54	Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. JDDG - Journal of the German Society of Dermatology, 2012, 10, 509-515.	0.4	56
55	Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. Journal of Hospital Infection, 2012, 81, 177-183.	1.4	173
56	Successful and safe use of 2â€∫min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. British Journal of Dermatology, 2012, 167, 404-410.	1.4	394

#	Article	IF	CITATIONS
57	ROS implication in a new antitumor strategy based on nonâ€ŧhermal plasma. International Journal of Cancer, 2012, 130, 2185-2194.	2.3	520
58	A randomized twoâ€sided placeboâ€controlled study on the efficacy and safety of atmospheric nonâ€thermal argon plasma for pruritus. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 324-331.	1.3	71
59	Plasma Medicine. , 2013, , 359-413.		4
60	Non-thermal plasma—More than five years of clinical experience. Clinical Plasma Medicine, 2013, 1, 19-23.	3.2	96
61	Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clinical Plasma Medicine, 2013, 1, 30-35.	3.2	117
62	Nonequilibrium Plasmaâ€Activated Antimicrobial Solutions are Broad‧pectrum and Retain their Efficacies for Extended Period of Time. Plasma Processes and Polymers, 2013, 10, 544-555.	1.6	107
63	In vivo skin treatment using two portable plasma devices: Comparison of a direct and an indirect cold atmospheric plasma treatment. Clinical Plasma Medicine, 2013, 1, 35-39.	3.2	24
64	Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 753, 23-28.	0.9	77
65	Variable radio-frequency cold atmospheric He + O ₂ discharges: from electron-heating mechanism to reactive species delivery. Journal Physics D: Applied Physics, 2013, 46, 415201.	1.3	15
66	Effects of cold atmospheric plasma on mucosal tissue culture. Journal Physics D: Applied Physics, 2013, 46, 045401.	1.3	22
67	Antibacterial plasma at safe levels for skin cells. Journal Physics D: Applied Physics, 2013, 46, 422001.	1.3	11
68	Perspectives of endoscopic plasma applications. Clinical Plasma Medicine, 2013, 1, 8-16.	3.2	96
69	Inactivation Effect of Argon Atmospheric Pressure Lowâ€ <scp>T</scp> emperature Plasma Jet on Murine Melanoma Cells. Plasma Processes and Polymers, 2013, 10, 808-816.	1.6	9
70	Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiology, 2013, 8, 1097-1106.	1.0	38
71	Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clinical Plasma Medicine, 2013, 1, 25-30.	3.2	162
72	Antimicrobial Synergy Between Ambientâ€ <scp>G</scp> as Plasma and <scp>UVA</scp> Treatment of Aqueous Solution. Plasma Processes and Polymers, 2013, 10, 1051-1060.	1.6	23
73	Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clinical Plasma Medicine, 2013, 1, 36-44.	3.2	61
74	Effect of Discharge Parameters and Surface Characteristics on Ambientâ€Gas Plasma Disinfection. Plasma Processes and Polymers, 2013, 10, 69-76.	1.6	45

#	Article	IF	CITATIONS
75	Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Current Applied Physics, 2013, 13, 1420-1425.	1.1	143
76	Accelerated Mice Skin Acute Wound Healing In Vivo by Combined Treatment of Argon and Helium Plasma Needle. Archives of Medical Research, 2013, 44, 169-177.	1.5	81
77	Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment. Journal of Applied Physics, 2013, 113, .	1.1	13
78	Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 2013, 20, .	0.7	396
79	Plasmas for medicine. Physics Reports, 2013, 530, 291-320.	10.3	763
80	Antimicrobial strategies centered around reactive oxygen species $\hat{a} \in \hat{a}$ bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiology Reviews, 2013, 37, 955-989.	3.9	785
81	Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT). Journal of Dermatological Science, 2013, 70, 173-181.	1.0	65
82	Cold atmospheric plasma devices for medical issues. Expert Review of Medical Devices, 2013, 10, 367-377.	1.4	166
83	Atmospheric pressure plasma jet—Living tissue interface: Electrical, optical, and spectral characterization. Journal of Applied Physics, 2013, 113, .	1.1	31
84	Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radical Research, 2013, 47, 577-592.	1.5	81
85	Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix. Journal Physics D: Applied Physics, 2013, 46, 185401.	1.3	36
86	Mathematical model of gas plasma applied to chronic wounds. Physics of Plasmas, 2013, 20, .	0.7	19
87	Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes and New Infections, 2013, 1, 41-43.	0.8	42
88	Impact of Electrode Design, Supply Voltage and Interelectrode Distance on Safety Aspects and Characteristics of a Medical DBD Plasma Source. Contributions To Plasma Physics, 2013, 53, 623-638.	0.5	21
89	Randomized placeboâ€controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair and Regeneration, 2013, 21, 800-807.	1.5	126
90	Bacteriological pathogen spectrum of chronic leg ulcers: Results of a multicenter trial in dermatologic wound care centers differentiated by regions. JDDG - Journal of the German Society of Dermatology, 2013, 11, 1057-1063.	0.4	36
91	Comparison of Biological Effects on Human Keratinocytes Using Different Plasma Treatment Regimes. Plasma Medicine, 2013, 3, 57-69.	0.2	12
92	Restoration of Sensitivity in Chemo — Resistant Glioma Cells by Cold Atmospheric Plasma. PLoS ONE, 2013, 8, e64498.	1.1	182

# 93	ARTICLE Review of Major Directions in Non-Equilibrium Atmospheric Plasma Treatments in Medical, Biological, and Bioengineering Applications. Plasma Medicine, 2013, 3, 175-243.	IF 0.2	Citations
94	Viability of Human Blood Leukocytes Compared with Their Respective Cell Lines after Plasma Treatment. Plasma Medicine, 2013, 3, 71-80.	0.2	55
95	Experimental Evidences on Synergy of Gas Discharge Agents in Bactericidal Activity of Nonthermal Plasma. Plasma Medicine, 2013, 3, 137-152.	0.2	1
96	Cold Plasma Therapy. , 2014, , 343-367.		3
97	Nonthermal Plasma Induces Apoptosis in ATC Cells: Involvement of JNK and p38 MAPK-Dependent ROS. Yonsei Medical Journal, 2014, 55, 1640.	0.9	22
98	Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomolecules and Therapeutics, 2014, 22, 477-490.	1.1	329
99	Tempo-spatially Resolved Ozone Characteristics During Single-electrode Dielectric Barrier Discharge (SE-DBD) Operation against Metal and Porcine Skin Surfaces. Plasma Medicine, 2014, 4, 67-77.	0.2	10
100	Non-thermal plasma treatment induces MAPK signaling in human monocytes. Open Chemistry, 2015, 13, .	1.0	18
101	Control of Polymicrobial Biofilms: Recent Trends. Springer Series on Biofilms, 2014, , 327-358.	0.0	0
102	A â€~tissue model' to study the plasma delivery of reactive oxygen species. Journal Physics D: Applied Physics, 2014, 47, 152002.	1.3	103
103	Low Temperature Plasma: A Novel Focal Therapy for Localized Prostate Cancer?. BioMed Research International, 2014, 2014, 1-15.	0.9	41
104	Recent Developments in Topical Wound Therapy: Impact of Antimicrobiological Changes and Rebalancing the Wound Milieu. BioMed Research International, 2014, 2014, 1-8.	0.9	15
105	Surface Processing Using Cold Atmospheric Pressure Plasmas. , 2014, , 171-185.		3
106	Efficacy of Low Temperature Plasma against SCaBER Cancer Cells. Plasma Processes and Polymers, 2014, 11, 1150-1155.	1.6	41
107	Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 2014, 21, .	0.7	311
108	Plasma Processes and Polymers Special Issue on: Plasma and Cancer. Plasma Processes and Polymers, 2014, 11, 1118-1119.	1.6	7
109	A randomized controlled phase IIb wound healing trial of cutaneous leishmaniasis ulcers with 0.045% pharmaceutical chlorite (DAC N-055) with and without bipolar high frequency electro-cauterization versus intralesional antimony in Afghanistan. BMC Infectious Diseases, 2014, 14, 619.	1.3	15
110	Localized plasma irradiation through a micronozzle for individual cell treatment. Japanese Journal of Applied Physics, 2014, 53, 11RB03.	0.8	8

#	Article	IF	CITATIONS
111	Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialization and wound contraction. Clinical Plasma Medicine, 2014, 2, 28-35.	3.2	77
112	Antimicrobial Impact of Cold Atmospheric Pressure Plasma on Medical Critical Yeasts and Bacteria Cultures. Skin Pharmacology and Physiology, 2014, 27, 25-35.	1.1	47
113	In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Processes and Polymers, 2014, 11, 175-183.	1.6	103
114	Plasma Applications: A Dermatological View. Contributions To Plasma Physics, 2014, 54, 118-130.	0.5	70
115	Clinical Plasma Medicine: State and Perspectives of <i>in Vivo</i> Application of Cold Atmospheric Plasma. Contributions To Plasma Physics, 2014, 54, 104-117.	0.5	209
116	A Model of Plasma-Biofilm and Plasma-Tissue Interactions at Ambient Pressure. Plasma Chemistry and Plasma Processing, 2014, 34, 403-441.	1.1	158
117	Plasmid DNA damage induced by helium atmospheric pressure plasma jet. European Physical Journal D, 2014, 68, 1.	0.6	29
118	Redox-Based Assay for Assessment of Biological Impact of Plasma Treatment. Plasma Processes and Polymers, 2014, 11, 655-663.	1.6	52
119	Fundamental properties of a touchable high-power pulsed microplasma jet and its application as a desorption/ionization source for ambient mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 522-528.	0.7	24
120	Cold atmospheric plasma – A new technology for spacecraft component decontamination. Planetary and Space Science, 2014, 90, 60-71.	0.9	29
121	Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Applied Physics Letters, 2014, 105, .	1.5	53
122	From Killing Bacteria to Destroying Cancer Cells: 20 Years of Plasma Medicine. Plasma Processes and Polymers, 2014, 11, 1138-1141.	1.6	117
123	Plasma induced DNA damage: Comparison with the effects of ionizing radiation. Applied Physics Letters, 2014, 105, 124101.	1.5	30
124	Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature. Journal Physics D: Applied Physics, 2014, 47, 445402.	1.3	11
125	Inactivation of Microorganisms Using Cold Atmospheric Pressure Plasma with Different Temporal Discharge Characteristics. Plasma Processes and Polymers, 2014, 11, 910-920.	1.6	14
126	Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?. Journal of Hospital Infection, 2014, 88, 59-65.	1.4	96
127	Randomized placebo-controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster. Clinical Plasma Medicine, 2014, 2, 50-55.	3.2	52
128	Decontamination of Nosocomial Bacteria IncludingClostridium difficileSpores on Dry Inanimate Surface by Cold Atmospheric Plasma. Plasma Processes and Polymers, 2014, 11, 974-984.	1.6	17

#	Article	IF	CITATIONS
129	Treatment with low-temperature atmospheric pressure plasma enhances cutaneous delivery of epidermal growth factor by regulating E-cadherin-mediated cell junctions. Archives of Dermatological Research, 2014, 306, 635-643.	1.1	48
130	Preliminary evaluation of novel skin closure of Pfannenstiel incisions using cold helium plasma and chitosan films. Journal of Maternal-Fetal and Neonatal Medicine, 2014, 27, 1637-1642.	0.7	2
132	Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biology International, 2014, 38, 412-425.	1.4	78
133	Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal Physics D: Applied Physics, 2014, 47, 362001.	1.3	42
134	Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: A pilot study. Clinical Plasma Medicine, 2014, 2, 22-27.	3.2	32
135	The German experiment: Health care without female or Jewish doctors. International Journal of Women's Dermatology, 2015, 1, 108-110.	1.1	3
136	Phase resolved analysis of the homogeneity of a diffuse dielectric barrier discharge. Journal Physics D: Applied Physics, 2015, 48, 375202.	1.3	6
137	Plasma Processes and Cancer – Special Topical Cluster of the 2 nd IWPCT Meeting. Plasma Processes and Polymers, 2015, 12, 1336-1337.	1.6	2
139	Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue. Applied Physics Letters, 2015, 107, .	1.5	58
140	The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells. Journal Physics D: Applied Physics, 2015, 48, 495401.	1.3	16
142	Combined antibacterial effects of tissueâ€ŧolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. Journal of Biophotonics, 2015, 8, 382-391.	1.1	68
143	Characterizations of damages of DNA caused by plasma treatment and reactive species formed thereby. Polymers for Advanced Technologies, 2015, 26, 762-770.	1.6	5
144	Cold Physical Plasmas in the Field of Hygiene—Relevance, Significance, and Future Applications. Plasma Processes and Polymers, 2015, 12, 1410-1422.	1.6	45
145	Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing. BioMed Research International, 2015, 2015, 1-17.	0.9	38
146	Effects of Cold Atmospheric Plasma (CAP) on ß-Defensins, Inflammatory Cytokines, and Apoptosis-Related Molecules in Keratinocytes In Vitro and In Vivo. PLoS ONE, 2015, 10, e0120041.	1.1	98
147	In Vitro and In Vivo Analysis of Hydrogen Peroxide-Enhanced Plasma-Induced Effluent for Infection and Contamination Mitigation at Research and Medical Facilities. Plasma Medicine, 2015, 5, 109-123.	0.2	2
148	Investigating effects of atmospheric-pressure plasma on the process of wound healing. Biointerphases, 2015, 10, 029504.	0.6	35
149	Portable microwave air plasma device for wound healing. Plasma Sources Science and Technology, 2015, 24, 035020.	1.3	39

#	Article	IF	CITATIONS
150	Plasma Thorns: Atmospheric Pressure Nonâ€Thermal Plasma Source for Dentistry Applications. Plasma Processes and Polymers, 2015, 12, 1069-1074.	1.6	10
151	Head and neck cancer treatment and physical plasma. Clinical Plasma Medicine, 2015, 3, 17-23.	3.2	173
152	Investigation of the antimicrobial activity at safe levels for eukaryotic cells of a low power atmospheric pressure inductively coupled plasma source. Biointerphases, 2015, 10, 029519.	0.6	13
153	Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New Journal of Physics, 2015, 17, 103005.	1.2	37
154	Characterisation of a Simple Nonâ€Thermal Atmospheric Pressure Plasma Source for Biomedical Research Applications. Contributions To Plasma Physics, 2015, 55, 337-346.	0.5	5
155	Skin and wound decontamination of multidrugâ€resistant bacteria by cold atmospheric plasma coagulation. JDDG - Journal of the German Society of Dermatology, 2015, 13, 143-149.	0.4	74
156	A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology Research, 2015, 12, 225-235.	1.2	209
157	Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways. Journal of Biological Chemistry, 2015, 290, 6731-6750.	1.6	116
158	Low-Temperature Plasma Jet for Biomedical Applications: A Review. IEEE Transactions on Plasma Science, 2015, 43, 703-712.	0.6	152
159	Capillary plasma jet: A low volume plasma source for life science applications. Applied Physics Letters, 2015, 106, .	1.5	30
160	Evaluation of Cold Plasma Treatment and Safety in Disinfecting 3-week Root Canal Enterococcus faecalis Biofilm InÂVitro. Journal of Endodontics, 2015, 41, 1325-1330.	1.4	59
161	Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach. Journal Physics D: Applied Physics, 2015, 48, 275203.	1.3	32
162	Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review. International Journal of Molecular Sciences, 2015, 16, 2971-3016.	1.8	140
163	Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments. Biointerphases, 2015, 10, 029507.	0.6	18
164	Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition. Journal Physics D: Applied Physics, 2015, 48, 202001.	1.3	83
165	Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine. Journal Physics D: Applied Physics, 2015, 48, 155202.	1.3	30
166	Antimicrobial Efficacy of a Historical High-Frequency Plasma Apparatus in Comparison With 2 Modern, Cold Atmospheric Pressure Plasma Devices. Surgical Innovation, 2015, 22, 394-400.	0.4	17
167	Novel method to improve transdermal drug delivery by atmospheric microplasma irradiation. Biointerphases, 2015, 10, 029517.	0.6	40

#	Article	IF	CITATIONS
169	Investigation of air-DBD effects on biological liquids for in vitro studies on eukaryotic cells. Clinical Plasma Medicine, 2015, 3, 62-71.	3.2	11
170	Effects of nonâ€equilibrium plasma in the treatment of ligatureâ€induced periâ€implantitis. Journal of Clinical Periodontology, 2015, 42, 478-487.	2.3	28
171	Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: A pilot study. Journal of Wound Care, 2015, 24, 196-203.	0.5	134
172	The topical use of non-thermal dielectric barrier discharge (DBD): Nitric oxide related effects on human skin. Nitric Oxide - Biology and Chemistry, 2015, 44, 52-60.	1.2	80
173	Alleviation of chronic venous leg ulcers with a handâ€held dielectric barrier discharge plasma generator (PlasmaDerm [®] <scp>VU</scp> â€2010): results of a monocentric, twoâ€armed, open, prospective, randomized and controlled trial (<scp>NCT</scp> 01415622). Journal of the European Academy of Dermatology and Venereology, 2015, 29, 148-155.	1.3	208
174	A μsâ€Pulsed Dielectric Barrier Discharge Source: Physical Characterization and Biological Effects on Human Skin Fibroblasts. Plasma Processes and Polymers, 2016, 13, 775-787.	1.6	21
175	Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts. Plasma Science and Technology, 2016, 18, 353-359.	0.7	24
176	Treatment of Ribonucleoside Solution With Atmosphericâ€Pressure Plasma. Plasma Processes and Polymers, 2016, 13, 429-437.	1.6	19
177	Plasma will…. British Journal of Dermatology, 2016, 174, 486-487.	1.4	1
178	Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clinical and Experimental Dermatology, 2016, 41, 202-209.	0.6	89
179	Adjuvant antifungal therapy using tissue tolerable plasma on oral mucosa and removable dentures in oral candidiasis patients: a randomised doubleâ€blinded splitâ€mouth pilot study. Mycoses, 2016, 59, 467-475.	1.8	21
180	How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Applied Physics Letters, 2016, 109, .	1.5	25
181	Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects. Scientific Reports, 2016, 6, 36282.	1.6	167
182	Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma. Applied Physics Express, 2016, 9, 096201.	1.1	10
183	Development of plasma-on-chip: Plasma treatment for individual cells cultured in media. Japanese Journal of Applied Physics, 2016, 55, 01AF01.	0.8	14
184	Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma. Archives of Biochemistry and Biophysics, 2016, 605, 11-18.	1.4	12
185	Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces. Bioelectrochemistry, 2016, 112, 106-111.	2.4	9
186	The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochemical and Biophysical Research Communications, 2016, 473, 1125-1132.	1.0	49

# 187	ARTICLE Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Advances in Therapy, 2016, 33, 894-909.	IF 1.3	CITATIONS
188	Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection. Archives of Biochemistry and Biophysics, 2016, 605, 59-66.	1.4	43
189	The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects. Clinical Plasma Medicine, 2016, 4, 1-8.	3.2	48
190	Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage. European Physical Journal D, 2016, 70, 1.	0.6	16
191	Mechanism of bacteria inactivation by an atmospheric pressure plasma jet. , 2016, , .		1
192	How to produce an NO <i>_x</i> - instead of O <i>_x</i> -based chemistry with a cold atmospheric plasma jet. Plasma Processes and Polymers, 2016, 13, 1120-1127.	1.6	69
193	Plasmabehandlung von Wunden. , 2016, , 73-89.		9
194	The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosisâ€resistance to nonâ€thermal plasma therapy. Pathology International, 2016, 66, 245-259.	0.6	90
195	Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2016, 13, 1089-1105.	1.6	39
196	Plasmabehandlung von Ulzera. , 2016, , 63-71.		5
198	Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. Journal of Cranio-Maxillo-Facial Surgery, 2016, 44, 1445-1452.	0.7	103
199	Non-thermal plasma prevents progression of endometriosis in mice. Free Radical Research, 2016, 50, 1131-1139.	1.5	13
200	How to assess the plasma delivery of RONS into tissue fluid and tissue. Journal Physics D: Applied Physics, 2016, 49, 304005.	1.3	81
201	Non-thermal atmospheric pressure dielectric barrier discharge plasma source construction and investigation on the effect of grid on wound healing application. Clinical Plasma Medicine, 2016, 4, 56-64.	3.2	8
202	Dose- and Time-Dependent Cellular Effects of Cold Atmospheric Pressure Plasma Evaluated in 3D Skin Models. Skin Pharmacology and Physiology, 2016, 29, 257-265.	1.1	34
203	Niedertemperaturplasma: Eigenschaften, Wirkungen und GerÄtetechnik. , 2016, , 33-45.		1
205	A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms. Journal Physics D: Applied Physics, 2016, 49, 364003.	1.3	6
206	Palliative Plasmabehandlung von Kopf-Hals-Tumoren und kurative Konzepte. , 2016, , 99-109.		1

#	Article	IF	CITATIONS
207	Plasma processes and polymers third special issue on plasma and cancer. Plasma Processes and Polymers, 2016, 13, 1142-1143.	1.6	1
208	Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Scientific Reports, 2016, 6, 19144.	1.6	94
209	Development of a Chronic Wound Healing Device1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.4	0
210	Surface air plasma-induced cell death and cytokine release of human keratinocytes in the context of psoriasis. British Journal of Dermatology, 2016, 174, 542-552.	1.4	67
211	Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells. Archives of Biochemistry and Biophysics, 2016, 605, 109-116.	1.4	24
212	Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: An <i>in-vitro</i> -study. Journal of Biophotonics, 2016, 9, 637-644.	1.1	23
213	Applications of Low-Temperature Plasmas. Graduate Texts in Physics, 2016, , 413-440.	0.1	2
214	GFP Transduction Into HeLa Cells Using Atmospheric-Pressure Helium Plasma Jet. IEEE Transactions on Plasma Science, 2016, 44, 1137-1143.	0.6	0
215	Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study. Clinical Oral Investigations, 2016, 20, 2429-2435.	1.4	10
216	The plasma jet kINPen – A powerful tool for wound healing. Clinical Plasma Medicine, 2016, 4, 19-28.	3.2	303
217	In vitro susceptibility of methicillin-resistant and methicillin-susceptible strains of Staphylococcus aureus to two different cold atmospheric plasma sources. Infection, 2016, 44, 531-537.	2.3	23
218	Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation. Archives of Biochemistry and Biophysics, 2016, 605, 86-94.	1.4	34
219	Towards the understanding of non-thermal air plasma action: effects on bacteria and fibroblasts. RSC Advances, 2016, 6, 25286-25292.	1.7	13
220	Nanomechanical and surface properties of rMSCs post-exposure to CAP treated UHMWPE wear particles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 723-734.	1.7	8
221	A new flexible DBD device for treating infected wounds: <i>in vitro</i> and <i>ex vivo</i> evaluation and comparison with a RF argon plasma jet. Journal Physics D: Applied Physics, 2016, 49, 044001.	1.3	32
222	Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound. Biosystems and Biorobotics, 2016, , 357-385.	0.2	6
223	Electrical and optical properties of a gradient microplasma for microfluidic chips. Plasma Processes and Polymers, 2017, 14, 1600194.	1.6	2
224	The influence of electrode configuration on light emission profiles and electrical characteristics of an atmospheric-pressure plasma jet. Journal Physics D: Applied Physics, 2017, 50, 145202.	1.3	30

#	Article	IF	CITATIONS
225	Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale. Journal of Physical Chemistry C, 2017, 121, 5787-5799.	1.5	18
226	Cold Atmospheric Plasma Treatment of Infected Skin Tissue: Evaluation of Sterility, Viability, and Integrity. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1, 275-279.	2.7	17
227	Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radical Biology and Medicine, 2017, 108, 610-626.	1.3	180
228	Oxidative Stress. Annual Review of Biochemistry, 2017, 86, 715-748.	5.0	2,180
229	Intracellular-molecular changes in plasma-irradiated budding yeast cells studied using multiplex coherent anti-Stokes Raman scattering microscopy. Physical Chemistry Chemical Physics, 2017, 19, 13438-13442.	1.3	7
230	Cold atmospheric plasma discharged in water and its potential use in cancer therapy. Journal Physics D: Applied Physics, 2017, 50, 015208.	1.3	47
231	Argon gas plasma to decontaminate and extend shelf life of milk. Plasma Processes and Polymers, 2017, 14, 1600242.	1.6	19
232	The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells. Journal Physics D: Applied Physics, 2017, 50, 274001.	1.3	21
233	Microwave Plasma Generation With Resonance Frequency Tracking and Power Regulation. IEEE Transactions on Plasma Science, 2017, 45, 925-931.	0.6	2
234	Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environmental and Molecular Mutagenesis, 2017, 58, 172-177.	0.9	51
235	The German experiment: health care without female or Jewish doctors. International Journal of Women's Dermatology, 2017, 3, S18-S20.	1.1	1
236	Non-thermal air plasma promotes the healing of acute skin wounds in rats. Scientific Reports, 2017, 7, 45183.	1.6	90
237	Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells. Scientific Reports, 2017, 7, 41953.	1.6	8
238	Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor. Journal Physics D: Applied Physics, 2017, 50, 03LT02.	1.3	36
239	Suitability of thermal plasmas for large-area bacteria inactivation on temperature-sensitive surfaces – first results with Geobacillus stearothermophilus spores. Journal of Physics: Conference Series, 2017, 825, 012017.	0.3	6
240	Investigation of blood coagulation effect of nonthermal multigas plasma jet inÂvitro and inÂvivo. Journal of Surgical Research, 2017, 219, 302-309.	0.8	42
241	Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations. Plasma Sources Science and Technology, 2017, 26, 115004.	1.3	27
242	Hyperspectral imaging for in vivo monitoring of cold atmospheric plasma effects on microcirculation in treatment of head and neck cancer and wound healing. Clinical Plasma Medicine, 2017, 7-8, 52-57.	3.2	40

#	Article	IF	CITATIONS
243	Benefits of applying low-temperature plasma treatment to wound care and hemostasis from the viewpoints of physics and pathology. Journal Physics D: Applied Physics, 2017, 50, 503001.	1.3	25
244	The feasibility of cold atmospheric plasma in the treatment of complicated wounds in cranio-maxillo-facial surgery. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 1724-1730.	0.7	10
245	Self-consistent plasma chemistry model for surface microdischarge in humid air including effects of ohmic heating and gas flow. Plasma Sources Science and Technology, 2017, 26, 105007.	1.3	6
246	A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma. European Physical Journal: Special Topics, 2017, 226, 2901-2910.	1.2	5
247	Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics, 2017, 122, .	1.1	226
248	A micro cell wagon for individual treatment using non-thermal atmospheric pressure plasma. , 2017, , .		1
249	Cold atmospheric pressure plasmas exhibit antimicrobial properties against critical bacteria and yeast species. Journal of Wound Care, 2017, 26, 462-468.	0.5	14
250	Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device?. Journal of Wound Care, 2017, 26, 470-475.	0.5	12
251	Non-thermal atmospheric plasma ameliorates imiquimod-induced psoriasis-like skin inflammation in mice through inhibition of immune responses and up-regulation of PD-L1 expression. Scientific Reports, 2017, 7, 15564.	1.6	31
252	Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, 4, .	5.5	72
253	Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Scientific Reports, 2017, 7, 4562.	1.6	169
254	State of the art in medical applications using non-thermal atmospheric pressure plasma. Reviews of Modern Plasma Physics, 2017, 1, 1.	2.2	90
255	Mechanisms of Plasma Medicine: Coupling Plasma Physics, Biochemistry, and Biology. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1, 281-292.	2.7	73
256	Plasma medicine—current state of research and medical application. Plasma Physics and Controlled Fusion, 2017, 59, 014031.	0.9	350
257	Contribution of hydrogen peroxide to nonâ€ŧhermal atmospheric pressure plasma induced A549 lung cancer cell damage. Plasma Processes and Polymers, 2017, 14, 1600162.	1.6	32
258	Environmental Applications, Food and Biomass Processing by Pulsed Electric Fields. , 2017, , 389-476.		9
259	A cold plasma jet accelerates wound healing in a murine model of fullâ€thickness skin wounds. Experimental Dermatology, 2017, 26, 156-162.	1.4	181
260	Treatment of Wound Healing Disorders of Radial Forearm Free Flap Donor Sites Using Cold Atmospheric Plasma: A Proof of Concept. Journal of Oral and Maxillofacial Surgery, 2017, 75, 429-435.	0.5	45

#	Article	IF	CITATIONS
261	Virucide properties of cold atmospheric plasma for future clinical applications. Journal of Medical Virology, 2017, 89, 952-959.	2.5	40
262	Medical Applications. , 2017, , 275-388.		2
263	In vitro killing of mycobacteria by low temperature atmospheric pressure plasma and dielectric barrier discharge plasma for treatment of tuberculosis. Clinical Plasma Medicine, 2017, 5-6, 1-7.	3.2	14
264	Hybrid and Fluid Modeling of Ion Activation Energy and Reactive Fluxes to Particulates Suspended in Air and Residing on Surfaces. Plasma Processes and Polymers, 2017, 14, 1600165.	1.6	2
265	Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension. High Voltage, 2017, 2, 188-199.	2.7	35
266	Low temperature plasma equipment applied on surgical hemostasis and wound healings. Journal of Clinical Biochemistry and Nutrition, 2017, 60, 25-28.	0.6	44
267	Computational Fluid Dynamics Analysis of Cold Plasma Plume Mixing with Blood Using Level Set Method Coupled with Heat Transfer. Applied Sciences (Switzerland), 2017, 7, 578.	1.3	8
268	Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma. Frontiers in Cellular and Infection Microbiology, 2017, 7, 43.	1.8	47
269	Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization. Journal of Clinical Biochemistry and Nutrition, 2017, 60, 3-11.	0.6	40
270	Mass Spectrometry Analysis of the Real-Time Transport of Plasma-Generated Ionic Species Through an Agarose Tissue Model Target. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 317-323.	0.1	3
271	Nontarget Biomolecules Alter Macromolecular Changes Induced by Bactericidal Low–Temperature Plasma. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 121-128.	2.7	20
272	Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water. Plasma Science and Technology, 2018, 20, 044003.	0.7	33
273	Effects of Low Temperature Plasmas on Proteins. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 229-234.	2.7	6
274	Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clinical Plasma Medicine, 2018, 9, 24-33.	3.2	52
275	Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 2018, 20, 6845-6859.	1.3	112
276	Consensus on Wound Antisepsis: Update 2018. Skin Pharmacology and Physiology, 2018, 31, 28-58.	1.1	200
277	Cold atmospheric plasma-modulated phorbol 12-myristate 13-acetate-induced differentiation of U937 cells to macrophage-like cells. Free Radical Research, 2018, 52, 212-222.	1.5	5
278	Palliative Treatment of Head and Neck Cancer. , 2018, , 185-195.		2

#	Article	IF	CITATIONS
279	Application in Veterinary Medicine. , 2018, , 283-297.		2
280	Plasma Sources for Biomedical Applications. , 2018, , 23-41.		9
281	Relevant Plasma Parameters for Certification. , 2018, , 43-70.		3
282	Antimicrobial Activity of Plasma. , 2018, , 113-125.		6
283	Treatment of Ulcerations and Wounds. , 2018, , 127-149.		2
284	Cold atmospheric-pressure plasma induces DNA–protein crosslinks through protein oxidation. Free Radical Research, 2018, 52, 783-798.	1.5	40
285	Side effects in cold plasma treatment of advanced oral cancer—Clinical data and biological interpretation. Clinical Plasma Medicine, 2018, 10, 9-15.	3.2	42
286	Argon Cold Plasma–A Novel Tool to Treat Therapy-resistant Corneal Infections. American Journal of Ophthalmology, 2018, 190, 150-163.	1.7	24
287	Low temperature plasma induced apoptosis in CNEâ€⊋Z cells through endoplasmic reticulum stress and mitochondrial dysfunction pathways. Plasma Processes and Polymers, 2018, 15, 1600249.	1.6	7
288	Signal amplification by tumor cells: Clue to the understanding of the antitumor effects of cold atmospheric plasma and plasma-activated medium. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 87-98.	2.7	27
289	Aqueous Reactive Oxygen Species Induced by HeÂ+ÂO2 Plasmas: Chemistry Pathways and Dosage Control Approaches. Plasma Chemistry and Plasma Processing, 2018, 38, 89-105.	1.1	22
290	Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. Journal of Dermatological Science, 2018, 89, 181-190.	1.0	98
291	Glioblastoma Cell Lines Display Different Sensitivities to Plasma-Activated Medium. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 99-102.	2.7	3
292	Effects of Airflow on Atmospheric Pressure Surface Dielectric Barrier Discharge. , 2018, , .		1
293	Production of active species in an argon microwave plasma torch. Journal Physics D: Applied Physics, 2018, 51, 464004.	1.3	16
294	Comparison of the bactericidal effect of cold atmospheric pressure plasma (CAPP), antimicrobial photodynamic therapy (aPDT), and polihexanide (PHX) in a novel wet surface model to mimic oral cavity application. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 2197-2202.	0.7	14
295	Surface treatment with non-thermal humid argon plasma as a treatment for allergic contact dermatitis in a mouse model. Clinical Plasma Medicine, 2018, 12, 10-16.	3.2	8
296	Wound healing using plasma modified collagen. Clinical Plasma Medicine, 2018, 12, 23-32.	3.2	19

#	Article	IF	CITATIONS
297	Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing. Antioxidants, 2018, 7, 146.	2.2	44
298	Treatment of Infected Wounds in the Age of Antimicrobial Resistance: Contemporary Alternative Therapeutic Options. Plastic and Reconstructive Surgery, 2018, 142, 1082-1092.	0.7	14
299	Evaluation of the effectiveness of kINPen Med plasma jet and bioactive agent therapy in a rat model of wound healing. Biointerphases, 2018, 13, 051002.	0.6	10
300	Experimental study on bacteria disinfection using a pulsed cold plasma jet with helium/oxygen mixed gas. Plasma Science and Technology, 2018, 20, 115503.	0.7	9
301	Chemical kinetics in an atmospheric pressure helium plasma containing humidity. Physical Chemistry Chemical Physics, 2018, 20, 24263-24286.	1.3	62
302	Cold Atmospheric Pressure Plasmas (CAPs) for Skin Wound Healing. , 2018, , .		9
303	Understanding plasma biofilm interactions for controlling infection and virulence. Journal Physics D: Applied Physics, 2018, 51, 263001.	1.3	16
304	Cold atmospheric Plasma Jet-Generated Oxidized Derivatives of Tryptophan and Their Selective Effects on Murine Melanoma and Fibroblast Cells. Plasma Chemistry and Plasma Processing, 2018, 38, 919-936.	1.1	10
305	Safety implications of plasma-induced effects in living cells – a review of <i>in vitro</i> and <i>in vivo</i> findings. Biological Chemistry, 2018, 400, 3-17.	1.2	42
306	Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 537.	1.5	41
307	Physical plasma and leukocytes – immune or reactive?. Biological Chemistry, 2018, 400, 63-75.	1.2	35
308	Plasma Medicine: A Brief Introduction. Plasma, 2018, 1, 47-60.	0.7	142
309	The Emerging Role of Gas Plasma in Oncotherapy. Trends in Biotechnology, 2018, 36, 1183-1198.	4.9	89
310	Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell International, 2018, 18, 42.	1.8	16
311	Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Processes and Polymers, 2018, 15, 1800022.	1.6	26
312	Side Effect Management. , 2018, , 301-318.		0
313	Hyperspectral imaging: innovative diagnostics to visualize hemodynamic effects of cold plasma in wound therapy. Biomedizinische Technik, 2018, 63, 603-608.	0.9	27
315	Selected Settings of Clinical Plasma Treatment. , 2018, , 213-251.		1

#	Article	IF	CITATIONS
316	Plasma Medicine. , 2018, , 455-539.		1
317	Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Scientific Reports, 2018, 8, 12214.	1.6	82
318	Non-thermal plasma reduces periodontitis-induced alveolar bone loss in rats. Biochemical and Biophysical Research Communications, 2018, 503, 2040-2046.	1.0	16
319	Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radical Biology and Medicine, 2018, 124, 275-287.	1.3	127
320	Quantitative assessment of cold atmospheric plasma antiâ€cancer efficacy in tripleâ€negative breast cancers. Plasma Processes and Polymers, 2018, 15, 1800052.	1.6	22
321	Non-thermal plasma induces immunogenic cell death <i>in vivo</i> in murine CT26 colorectal tumors. Oncolmmunology, 2018, 7, e1484978.	2.1	111
322	Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radical Biology and Medicine, 2018, 124, 205-213.	1.3	92
323	Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biological Chemistry, 2018, 400, 111-122.	1.2	32
324	White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, 2019, 16, 1800033.	1.6	123
325	Discharge Plasma-Activated Saline Protects Against Abdominal Sepsis by Promoting Bacterial Clearance. Shock, 2019, 52, 92-101.	1.0	14
326	Reactive Oxygen Species in Plasma Medical Science (PAM and Cancer Therapy). , 2019, , 249-318.		1
327	Application of Plasma to Humans (Blood Coagulation and Regenerative Medicine). , 2019, , 319-384.		1
328	Safety and Standardization Toward Clinical Applications. , 2019, , 385-418.		0
329	Promotion of Wound Healing of Genetic Diabetic Mice Treated by a Cold Atmospheric Plasma Jet. IEEE Transactions on Plasma Science, 2019, 47, 4848-4860.	0.6	19
330	Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe(II)-dependent manner. Journal of Clinical Biochemistry and Nutrition, 2019, 65, 8-15.	0.6	38
331	Eradication of methicillin-resistantStaphylococcus aureusbiofilms by surface discharge plasmas with various working gases. Journal Physics D: Applied Physics, 2019, 52, 425202.	1.3	15
332	Progress and perspectives in dry processes for emerging multidisciplinary applications: how can we improve our use of dry processes?. Japanese Journal of Applied Physics, 2019, 58, SE0803.	0.8	4
333	Plasma Medicine: A Field of Applied Redox Biology. In Vivo, 2019, 33, 1011-1026.	0.6	189

#	Article	IF	CITATIONS
334	Antimicrobial effects of microwaveâ€induced plasma torch (MiniMIP) treatment on <i>Candida albicans</i> biofilms. Microbial Biotechnology, 2019, 12, 1034-1048.	2.0	18
335	Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. Journal of Pathology, 2019, 249, 368-380.	2.1	65
336	Plasma skincare device based on floating electrode dielectric barrier discharge. Plasma Science and Technology, 2019, 21, 125403.	0.7	13
337	ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-29.	1.9	168
338	Molecular Effects and Tissue Penetration Depth of Physical Plasma in Human Mucosa Analyzed by Contact- and Marker-Independent Raman Microspectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 42885-42895.	4.0	24
339	1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications. Plasma, 2019, 2, 360-368.	0.7	6
340	Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo. Microbial Pathogenesis, 2019, 136, 103679.	1.3	3
341	Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Scientific Reports, 2019, 9, 13657.	1.6	48
342	Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	227
343	Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Scientific Reports, 2019, 9, 13510.	1.6	12
344	Increase of Power Efficiency in Coaxial Transmission Line Resonator by Using a Spacer to Compensate for Plasma Impedance. IEEE Transactions on Plasma Science, 2019, 47, 4606-4612.	0.6	4
345	Cold atmospheric plasma ameliorates imiquimod-induced psoriasiform dermatitis in mice by mediating antiproliferative effects. Free Radical Research, 2019, 53, 269-280.	1.5	28
346	Pharmacotherapy for onychomycosis: new and emerging treatments. Expert Opinion on Pharmacotherapy, 2019, 20, 725-735.	0.9	26
347	The diagnosis of infection in chronic leg ulcers: A narrative review on clinical practice. International Wound Journal, 2019, 16, 601-620.	1.3	18
348	Modeling OH transport phenomena in cold plasma discharges using the level set method. Plasma Science and Technology, 2019, 21, 055403.	0.7	4
349	Cold Argon Plasma as Adjuvant Tumour Therapy on Progressive Head and Neck Cancer: A Preclinical Study. Applied Sciences (Switzerland), 2019, 9, 2061.	1.3	29
350	A Source of Low-Temperature Nonequilibrium Argon Plasma. Instruments and Experimental Techniques, 2019, 62, 432-435.	0.1	3
351	Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. European Polymer Journal, 2019, 118, 561-577.	2.6	25

#	Article	IF	CITATIONS
352	Dispersion of OH Radicals in Applications Related to Fear-Free Dentistry Using Cold Plasma. Applied Sciences (Switzerland), 2019, 9, 2119.	1.3	8
353	Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Physical Chemistry Chemical Physics, 2019, 21, 12881-12894.	1.3	55
354	Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-21.	1.9	9
355	Acinetobacter baumannii Deactivation by Means of DBD-Based Helium Plasma Jet. Plasma, 2019, 2, 77-90.	0.7	22
356	Effects of PAM on select normal and cancerous epithelial cells. Plasma Research Express, 2019, 1, 025010.	0.4	7
357	Plasma-activated solution alters the morphological dynamics of supported lipid bilayers observed by high-speed atomic force microscopy. Applied Physics Express, 2019, 12, 066001.	1.1	3
358	The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet. Applied Physics Letters, 2019, 114, .	1.5	69
359	Implementing TIMERS: the race against hard-to-heal wounds. Journal of Wound Care, 2019, 28, S1-S50.	0.5	142
360	Ar plasma jet generation and its application for water and surface sterilization. E3S Web of Conferences, 2019, 78, 02020.	0.2	1
361	A measurement method for determining the correlation between the amount of haemolysis and the electric current in lowâ€ŧemperature plasma treatment. Plasma Processes and Polymers, 2019, 16, 1800142.	1.6	0
362	High bacterial inactivation on the aqueous brass surface for clinical trials by cold atmospheric plasma. Review of Scientific Instruments, 2019, 90, 104105.	0.6	0
363	Parameters Affecting the Antimicrobial Properties of Cold Atmospheric Plasma Jet. Journal of Clinical Medicine, 2019, 8, 1930.	1.0	22
364	Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS ONE, 2019, 14, e0223925.	1.1	39
365	Source of a Volume Plasma Jet Based on a Low-Current Nonstationary Discharge. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1407-1409.	0.1	2
366	Endoscopic Hemostasis in Porcine Gastrointestinal Tract Using CO2 Low-Temperature Plasma Jet. Journal of Surgical Research, 2019, 234, 334-342.	0.8	20
367	Cold Physical Plasma Modulates p53 and Mitogen-Activated Protein Kinase Signaling in Keratinocytes. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	44
368	Systematic diagnostics of the electrical, optical, and physicochemical characteristics of low-temperature atmospheric-pressure helium plasma sources. Journal Physics D: Applied Physics, 2019, 52, 165202.	1.3	21
369	Argon Mitigates Impaired Wound Healing Process and Enhances Wound Healing In Vitro and In Vivo. Theranostics, 2019, 9, 477-490.	4.6	21

#	Article	IF	CITATIONS
370	Effects and safety of atmospheric lowâ€ŧemperature plasma on bacterial reduction in chronic wounds and wound size reduction: A systematic review and metaâ€analysis. International Wound Journal, 2019, 16, 103-111.	1.3	61
371	Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: Toward the era of mesothelioma prevention. Free Radical Biology and Medicine, 2019, 133, 206-215.	1.3	80
372	Effect of cold plasma on periodontal wound healing—an in vitro study. Clinical Oral Investigations, 2019, 23, 1941-1950.	1.4	41
373	Interactive dressings and their role in moist wound management. , 2019, , 105-134.		28
374	Microbial inactivation in model tissues treated by surface discharge plasma. Journal Physics D: Applied Physics, 2020, 53, 015205.	1.3	5
375	Activation of the Normal Human Skin Cells by a Portable Dielectric Barrier Discharge-Based Reaction-Discharge System of a Defined Gas Temperature. Plasma Chemistry and Plasma Processing, 2020, 40, 79-97.	1.1	17
376	Evaluation of efficacy of non-thermal atmospheric pressure plasma in treatment of periodontitis: a randomized controlled clinical trial. Clinical Oral Investigations, 2020, 24, 3133-3145.	1.4	23
377	The impact of the carrier gas composition of non-thermal atmospheric pressure plasma jet for bacteria sterilization. AIP Advances, 2020, 10, .	0.6	21
378	The Latest Time Point of Retreatment (LTPR) as a Novel Method to Determine Antibacterial Effects for Binary Use of Cold Atmospheric Plasma and Conventional Agents. Frontiers in Microbiology, 2020, 11,	1.5	4
	576500.		
379	576500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0.	784311 4 rgB1	- /®verlock 1
379 380	576500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101.	784314 rgBT 0.4	- /Øverlock 1 13
379 380 382	 576500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. 	78431 4 rgBT 0.4 2.0	7 /@verlock 1 13 32
379 380 382 383	 576500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27, . 	7843114 rgBT 0.4 2.0 0.7	- /@verlock 1 13 32 94
379 380 382 383	 S76500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27, . Cold atmospheric plasma treatment on failed finger perforator flap: A case report. Clinical Plasma Medicine, 2020, 19-20, 100105. 	7843114 rgBT 0.4 2.0 0.7 3.2	- /@verlock 1 13 32 94 4
 379 380 382 383 384 386 	 S76500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27, . Cold atmospheric plasma treatment on failed finger perforator flap: A case report. Clinical Plasma Medicine, 2020, 19-20, 100105. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. Journal of Diabetes and Metabolic Disorders, 2020, 19, 895-905. 	784314 rgB1 0.4 2.0 0.7 3.2 0.8	 Øverlock 1 13 32 94 4 26
379 380 382 383 383 384	 S76500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Cenerated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27, . Cold atmospheric plasma treatment on failed finger perforator flap: A case report. Clinical Plasma Medicine, 2020, 19-20, 100105. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. Journal of Diabetes and Metabolic Disorders, 2020, 19, 895-905. Plasmaâ€onâ€Chip : device for nonâ€thermal atmospheric pressure plasma irradiation to single cells. Electronics and Communications in Japan, 2020, 103, 43-48. 	784314 rgB1 0.4 2.0 0.7 3.2 0.8 0.3	 C /@verlock 1 13 32 94 4 26 3
 379 380 382 383 384 386 387 388 	 576500. Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic) Tj ETQq1 1 0. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1094-1101. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 683. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27, . Cold atmospheric plasma treatment on failed finger perforator flap: A case report. Clinical Plasma Medicine, 2020, 19-20, 100105. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. Journal of Diabetes and Metabolic Disorders, 2020, 19, 895-905. PlasmaâConâCChip : device for nonâ€thermal atmospheric pressure plasma irradiation to single cells. Electronics and Communications in Japan, 2020, 103, 43-48. Plasma medicine: Opportunities for nanotechnology in a digital age. Plasma Processes and Polymers, 2020, 17, e200097. 	784314 rgBT 0.4 2.0 0.7 3.2 0.8 0.3 1.6	 C /Overlock 1 13 32 94 4 26 3 35

#	Article	IF	CITATIONS
390	Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. Applied Sciences (Switzerland), 2020, 10, 6898.	1.3	52
391	Wound healing: cellular mechanisms and pathological outcomes. Open Biology, 2020, 10, 200223.	1.5	546
392	Emission of Ultraviolet Radiation from 220 to 280 NM by a Cold Physical Plasma Generating Device. Health Physics, 2020, 119, 153-159.	0.3	1
393	Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective. International Journal of Molecular Sciences, 2020, 21, 6226.	1.8	17
394	Plasma Diagnosis and Biomedical Application Using Linear Microwave Atmospheric- Pressure Plasma Generator. IEEE Transactions on Plasma Science, 2020, 48, 3054-3060.	0.6	6
395	Physical plasma therapy accelerates wound reâ€epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts. Journal of Pathology, 2020, 252, 451-464.	2.1	18
396	Safety and bactericidal efficacy of cold atmospheric plasma generated by a flexible surface Dielectric Barrier Discharge device against Pseudomonas aeruginosa in vitro and in vivo. Annals of Clinical Microbiology and Antimicrobials, 2020, 19, 37.	1.7	25
397	A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers. Scientific Reports, 2020, 10, 18683.	1.6	10
398	Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	6
399	Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. International Journal of Molecular Sciences, 2020, 21, 7988.	1.8	15
400	Onychomycosis: Novel strategies for treatment. Journal of Drug Delivery Science and Technology, 2020, 57, 101774.	1.4	21
401	Jet propulsion by microwave air plasma in the atmosphere. AIP Advances, 2020, 10, .	0.6	9
402	Uncovering the inactivation kinetics of <i>Escherichia coli</i> in saline by atmospheric DBD plasma using ATR FTâ€IR. Plasma Processes and Polymers, 2020, 17, 1900197.	1.6	18
403	Plasma medical oncology: Immunological interpretation of head and neck squamous cell carcinoma. Plasma Processes and Polymers, 2020, 17, 1900258.	1.6	19
404	Non-thermal plasma accelerates the healing process of peripheral nerve crush injury in rats. International Journal of Medical Sciences, 2020, 17, 1112-1120.	1.1	8
405	Applications of atmospheric pressure plasma in microbial inactivation and cancer therapy: a brief review. Plasma Science and Technology, 2020, 22, 103001.	0.7	24
406	Dielectric barrier discharge plasma treatment affects stability, metal ion coordination, and enzyme activity of bacterial superoxide dismutases. Plasma Processes and Polymers, 2020, 17, 2000019.	1.6	4
407	The efficacy and safety of cold atmospheric plasma as a novel therapy for diabetic wound in vitro and in vivo. International Wound Journal, 2020, 17, 851-863.	1.3	26

#	Article	IF	CITATIONS
408	Preliminary Results of a New Treatment Strategy for Relapsed Left Ventricular Assist Device–Specific Infections. Annals of Thoracic Surgery, 2020, 110, 1302-1307.	0.7	3
409	Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Scientific Reports, 2020, 10, 10440.	1.6	69
410	Trans-Mucosal Efficacy of Non-Thermal Plasma Treatment on Cervical Cancer Tissue and Human Cervix Uteri by a Next Generation Electrosurgical Argon Plasma Device. Cancers, 2020, 12, 267.	1.7	24
411	Effect of electrical conductivity of water on plasma-driven gas flow by needle-water discharge at atmospheric pressure. Journal of Electrostatics, 2020, 104, 103422.	1.0	5
414	Evaluation of the bactericidal effect of cold atmospheric pressure plasma on contaminated human bone: an in vitro study. British Journal of Oral and Maxillofacial Surgery, 2020, 58, 329-333.	0.4	4
415	Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant <i>Pseudomonas aeruginosa</i> . Future Microbiology, 2020, 15, 115-125.	1.0	17
416	The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro. Odontology / the Society of the Nippon Dental University, 2020, 108, 607-616.	0.9	31
417	On a heavy path – determining cold plasma-derived short-lived species chemistry using isotopic labelling. RSC Advances, 2020, 10, 11598-11607.	1.7	31
418	Long-Term Risk Assessment for Medical Application of Cold Atmospheric Pressure Plasma. Diagnostics, 2020, 10, 210.	1.3	35
419	Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. International Journal of Molecular Sciences, 2020, 21, 2932.	1.8	174
420	Kinetics Analysis of the Reactions between Peroxynitric Acid and Amino Acids. Chemical Research in Toxicology, 2020, 33, 1633-1643.	1.7	5
421	Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications. Frontiers in Physics, 2020, 8, .	1.0	137
422	Kinetics of Bacterial Inactivation by Peroxynitric Acid in the Presence of Organic Contaminants. Applied and Environmental Microbiology, 2021, 87, .	1.4	9
423	Hyperspectral Imaging of Wounds Reveals Augmented Tissue Oxygenation Following Cold Physical Plasma Treatment <i>in Vivo</i> . IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 412-419.	2.7	23
424	Cold atmospheric plasma applications in dermatology: A systematic review. Journal of Biophotonics, 2021, 14, e202000415.	1.1	29
425	Cold atmospheric plasma selectively induces G ₀ /G ₁ cell cycle arrest and apoptosis in AR-independent prostate cancer cells. Journal of Cancer, 2021, 12, 5977-5986.	1.2	32
426	Exploration of a Novel SDBD Platform: The Plasma Thread and Mesh. , 2021, , .		0
427	Tiny Cold Atmospheric Plasma Jet for Biomedical Applications. Processes, 2021, 9, 249.	1.3	12

#	Article	IF	CITATIONS
428	Effectiveness of various therapy methods for microbial eczema in children. Klinicheskaya Dermatologiya I Venerologiya, 2021, 20, 151.	0.0	1
429	A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications. European Physical Journal D, 2021, 75, 1.	0.6	53
430	A Brief Note on the History of the Dielectric Barrier Discharge and Its Application for Biological Decontamination. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 121-125.	2.7	7
431	Ammonia synthesis by atmospheric-pressure plasma jet at room temperature. Journal of Advanced Science, 2021, 33, n/a.	0.1	0
432	Atmospheric Pressure Plasma Therapy for Wound Healing and Disinfection: A Review. , 2021, , 621-641.		1
433	Antibacterial and safety tests of a flexible cold atmospheric plasma device for the stimulation of wound healing. Applied Microbiology and Biotechnology, 2021, 105, 2057-2070.	1.7	24
434	Multimodal treatment combining cold atmospheric plasma and acidic fibroblast growth factor for multiâ€ŧissue regeneration. FASEB Journal, 2021, 35, e21442.	0.2	8
435	Plasma bioscience and its application to medicine. AAPPS Bulletin, 2021, 31, 1.	2.7	22
436	State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVIDâ€19?. Plasma Processes and Polymers, 2021, 18, e2000215.	1.6	19
437	Development and Characterization of a Non-Thermal Plasma Source for Therapeutic Treatments. IEEE Transactions on Biomedical Engineering, 2021, 68, 1467-1476.	2.5	5
438	Brain cell proliferation in adult rats after irradiation with nonequilibrium atmospheric pressure plasma. Applied Physics Express, 2021, 14, 067002.	1.1	4
439	Plasma-activated interfaces for biomedical engineering. Bioactive Materials, 2021, 6, 2134-2143.	8.6	17
440	Plasmaâ€activated Ringer's lactate solution inhibits the cellular respiratory system in HeLa cells. Plasma Processes and Polymers, 2021, 18, 2100056.	1.6	9
441	Plasma-Activated Water Promotes Wound Healing by Regulating Inflammatory Responses. Biophysica, 2021, 1, 297-310.	0.6	12
442	A novel <scp>atmosphericâ€pressure</scp> air plasma jet for wound healing. International Wound Journal, 2022, 19, 538-552.	1.3	7
443	Prospective, comparative clinical pilot study of cold atmospheric plasma device in the treatment of atopic dermatitis. Scientific Reports, 2021, 11, 14461.	1.6	7
444	Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration. International Journal of Molecular Sciences, 2021, 22, 9199.	1.8	8
445	Cold Atmospheric Plasma (CAP) Technology and Applications. Synthesis Lectures on Mechanical Engineering, 2021, 6, i-191.	0.1	3

#	Article	IF	CITATIONS
446	Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo. Life, 2021, 11, 828.	1.1	0
447	Effect of the controlledâ€atmosphere helium plasma jet on chemical modification of glycated enzymatic protein. Contributions To Plasma Physics, 0, , e202100115.	0.5	1
448	The current and advanced therapeutic modalities for wound healing management. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1883-1899.	0.8	9
449	Non-thermal atmospheric pressure plasma activates Wnt/β-catenin signaling in dermal papilla cells. Scientific Reports, 2021, 11, 16125.	1.6	9
450	Promotion of the Wound Healing of <i>in vivo</i> Rabbit Wound Infected With Methicillin-Resistant <i>Staphylococcus aureus</i> Treated by a Cold Atmospheric Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49, 2329-2339.	0.6	6
451	Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model. Scientific Reports, 2021, 11, 16091.	1.6	5
452	Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine. Molecules, 2021, 26, 5682.	1.7	16
453	Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines, 2021, 9, 1259.	1.4	20
454	Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus. Micromachines, 2021, 12, 1103.	1.4	2
455	Investigation of a non-thermal atmospheric pressure plasma jet in contact with liquids using fast imaging. Plasma Sources Science and Technology, 2021, 30, 095015.	1.3	6
456	Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis. Clinical Oral Investigations, 2021, 25, 6949-6959.	1.4	1
457	Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biology, 2021, 46, 102116.	3.9	65
458	The repetitive application of cold atmospheric plasma (CAP) improves microcirculation parameters in chronic wounds. Microvascular Research, 2021, 138, 104220.	1.1	6
459	The Resistive Barrier Discharge: A Brief Review of the Device and Its Biomedical Applications. Plasma, 2021, 4, 75-80.	0.7	3
460	Applications thérapeutiques des plasmas froids atmosphériques. , 2013, , 17-22.	0.1	3
461	Characterization of an RF-driven argon plasma at atmospheric pressure using broadband absorption and optical emission spectroscopy. Journal of Applied Physics, 2020, 128, .	1.1	14
462	The role of humidity and UV-C emission in the inactivation of B. subtilis spores during atmospheric-pressure dielectric barrier discharge treatment. Journal Physics D: Applied Physics, 2020, 53, 295201.	1.3	14
463	On cold atmospheric-pressure plasma jet induced DNA damage in cells. Journal Physics D: Applied Physics, 2021, 54, 035203.	1.3	17

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
464	Selective cytotoxic effect of non-thermal micro-DBD plasma. Physical Biology, 2016, 13, 056001.	0.8	12
465	Cold atmospheric plasma as antiviral therapy – effect on human herpes simplex virus type 1. Journal of General Virology, 2020, 101, 208-215.	1.3	24
466	Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo. PLoS ONE, 2013, 8, e79325.	1.1	265
467	Cold Atmospheric Plasma: A Promising Complementary Therapy for Squamous Head and Neck Cancer. PLoS ONE, 2015, 10, e0141827.	1.1	54
468	The use of low-temperature atmospheric plasma in dermatology. Klinicheskaya Dermatologiya I Venerologiya, 2017, 16, 4.	0.0	5
469	On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hygiene and Infection Control, 2015, 10, Doc08.	0.2	11
470	The State of Research on Antimicrobial Activity of Cold Plasma. Polish Journal of Microbiology, 2019, 68, 153-164.	0.6	52
471	Wound treatment by low-temperature atmospheric plasmas and issues in plasma engineering for plasma medicine. Japanese Journal of Applied Physics, 2020, 59, 120501.	0.8	16
472	Effects of In-vivo Application of Cold Atmospheric Plasma on Corneal Wound Healing in New Zealand White Rabbits. International Journal of Ophthalmic Pathology, 2013, 02, .	0.1	7
473	Application of Cold Atmospheric Plasma (CAP) in Cancer Therapy: A Review. International Journal of Cancer Management, 2017, 10, .	0.2	8
474	The evaluation of efficacy of atmospheric pressure plasma in diabetic ulcers healing: A randomized clinical trial. Dermatologic Therapy, 2021, 34, e15169.	0.8	6
475	Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing. Applied Sciences (Switzerland), 2021, 11, 9598.	1.3	46
476	The Anti-Fibrotic Effect of Cold Atmospheric Plasma on Localized Scleroderma In Vitro and In Vivo. Biomedicines, 2021, 9, 1545.	1.4	8
477	Surface and Thin Film Analysis. , 2012, , 269-298.		0
479	Preliminary Evaluation of the Effects of Cold Atmospheric Plasma Application Rate on the Proliferation Behavior of Keratinocytes In Vitro Measured Using CK-5, CK-10, CK-14, Ki-67 and p53 Expression. Journal of Biomedical Engineering and Medical Devices, 2016, 01, .	0.1	0
482	Ästhetische Plasmamedizin. , 2018, , 423-429.		0
483	Other Solutions to Achieve Desired Wound Healing Characteristics. Springer Briefs in Molecular Science, 2018, , 61-73.	0.1	0
484	Minimalinvasive Maßnahmen. , 2019, , 31-84.		0

#	Article	IF	CITATIONS
485	Extreme Organismen und Transspermie. , 2019, , 115-192.		0
487	Improvement of Post-inflammatory Hyperpigmentation, Subsequent to Cold Atmospheric Plasma Treatment, in a Patient with Atopic Dermatitis. Medical Lasers, 2020, 9, 187-189.	0.2	0
488	The Future Therapy of Renal Cell Carcinoma? Non-Invasive Physical Plasma as an Innovative Oncological Therapy Modality. Journal of Cancer Therapy, 2021, 12, 602-610.	0.1	1
489	<i>Plasma-on-Chip</i> : Device for Non-thermal Atmospheric Pressure Plasma Irradiation to Single Cells. IEEJ Transactions on Electronics, Information and Systems, 2020, 140, 452-456.	0.1	0
490	Cold Atmospheric Pressure Plasma Technology for Biomedical Application. , 0, , .		3
491	A Prospective, Randomised, Controlled, Split-Face Clinical Trial to Assess the Safety and the Efficacy of Cold Atmospheric Plasma in the Treatment of Acne Vulgaris. Applied Sciences (Switzerland), 2021, 11, 11181.	1.3	2
492	Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.	2.7	64
493	Effect of Atmospheric-pressure Plasma Jet on Normal and Tumor Cells in vitro. , 2020, , .		0
494	Decontamination of Aniline and Malathion on Material Surface by Array Cold Atmospheric Pressure Plasma Jet: Mechanism and Decontamination Pathways. SSRN Electronic Journal, 0, , .	0.4	0
495	Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Materials Today Bio, 2022, 13, 100200.	2.6	29
496	Aberrant Expressional Profiling of Small RNA by Cold Atmospheric Plasma Treatment in Human Chronic Myeloid Leukemia Cells. Frontiers in Genetics, 2021, 12, 809658.	1.1	5
497	Decontamination of aniline and malathion on material surface by array cold atmospheric pressure plasma jet: Mechanism and decontamination pathways. Journal of Environmental Chemical Engineering, 2022, 10, 107383.	3.3	5
498	Cold Plasma Treatment for Chronic Wounds. , 2022, , 141-160.		1
501	How Safe is Plasma Treatment in Clinical Applications?. , 2022, , 99-126.		1
504	How Does Cold Plasma Work in Medicine?. , 2022, , 63-86.		3
505	Effect of Cold Atmospheric Plasma (CAP) on Osteogenic Differentiation Potential of Human Osteoblasts. International Journal of Molecular Sciences, 2022, 23, 2503.	1.8	7
506	Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: a multicenter, randomized, non-inferiority trial. Scientific Reports, 2022, 12, 3645.	1.6	12
507	Foundations of plasmas for medical applications. Plasma Sources Science and Technology, 2022, 31, 054002.	1.3	43

#	Article	IF	CITATIONS
508	Nonâ€invasive physical plasma (NIPP) treatment of a hedgehog with head injury: A novel therapy in veterinary medicine. Veterinary Record Case Reports, 2022, 10, .	0.1	1
509	A single application of cold atmospheric plasma (CAP) improves blood flow parameters in chronic wounds. Microcirculation, 2022, , e12754.	1.0	2
510	Cold atmospheric plasma delivery for biomedical applications. Materials Today, 2022, 54, 153-188.	8.3	35
511	The influence of a second ground electrode on hydrogen peroxide production from an atmospheric pressure argon plasma jet and correlation to antibacterial efficacy and mammalian cell cytotoxicity. Journal Physics D: Applied Physics, 2022, 55, 125207.	1.3	13
513	Treatment of Fungal-Infected Diabetic Wounds with Low Temperature Plasma. Biomedicines, 2022, 10, 27.	1.4	8
514	Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications. Applied Sciences (Switzerland), 2022, 12, 3800.	1.3	3
518	Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Applied Sciences (Switzerland), 2022, 12, 4405.	1.3	14
519	Cold atmospheric plasma for addressing the COVIDâ€19 pandemic. Plasma Processes and Polymers, 2022, 19, e2200012.	1.6	9
520	No-ozone cold plasma can kill oral pathogenic microbes in H2O2-dependent and independent manner. Scientific Reports, 2022, 12, 7597.	1.6	9
521	Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discovery Today, 2022, 27, 2425-2439.	3.2	12
522	Histopathological study of using Fetal caprine acellular dermal matrix alone and in combination with Non-thermal plasma in healing of full-thickness acute skin wounds in bucks. International Journal of Health Sciences, 0, , 8784-8806.	0.0	1
526	Perspectives and Advances of Nonthermal Plasma Technology in Cancers. IEEE Transactions on Plasma Science, 2022, 50, 2489-2515.	0.6	2
527	A van der Waals force-based adhesion study of stem cells exposed to cold atmospheric plasma jets. Scientific Reports, 2022, 12, .	1.6	2
528	Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Frontiers in Oncology, 0, 12, .	1.3	8
529	Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sciences Review, 2022, 4, 100037.	0.6	20
530	The potential of gas plasma technology for targeting breast cancer. Clinical and Translational Medicine, 2022, 12, .	1.7	9
531	Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 2022, 11, 2439.	1.8	57
532	A conical assembly of six plasma jets for biomedical applications. Applied Physics Letters, 2022, 121, .	1.5	7

#	Article	IF	CITATIONS
533	Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants, 2022, 11, 1592.	2.2	9
534	Design and experimental study of plasma device for accurate contour scanning. Vacuum, 2022, 205, 111442.	1.6	0
535	Cold Plasma TherapyÂas a Physical Antibiofilm Approach. Springer Series on Biofilms, 2022, , 225-261.	0.0	0
536	Tolerance effect of a shock-free atmospheric plasma on human skin. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	1
537	Non-thermal plasma directly accelerates neuronal proliferation by stimulating axon formation. Scientific Reports, 2022, 12, .	1.6	2
538	Non-invasive physical plasma as an innovative physical approach for the oncological therapy of skeletal sarcomas. Journal of Radiology and Oncology, 2022, 6, 018-021.	0.2	0
539	Nonthermal Atmospheric Pressure Plasma Technology in Dermatology. SKIN the Journal of Cutaneous Medicine, 2022, 6, 365-373.	0.1	0
540	Efficacy and safety of the innovative cold atmosphericâ€pressure plasma technology in the treatment of keloid: A randomized controlled trial. Journal of Cosmetic Dermatology, 2022, 21, 6788-6797.	0.8	1
541	The efficacy and safety of the innovative cold <scp>atmosphericâ€pressure</scp> plasma technology in the treatment of striae distensae: A randomized controlled trial. Journal of Cosmetic Dermatology, 2022, 21, 6805-6814.	0.8	1
542	Efficacy of Cold Atmospheric Plasma Therapy on Chronic Wounds: An Updated Systematic Review and Meta-Analysis of RCTs. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-9.	0.7	6
543	Low Temperature Plasma Jet Affects Acute Skin Wounds in Diabetic Mice Through Reactive Components. International Journal of Lower Extremity Wounds, 0, , 153473462211395.	0.6	1
544	New Wound Management of Driveline Infections with Cold Atmospheric Plasma. Journal of Cardiovascular Development and Disease, 2022, 9, 405.	0.8	0
545	General parametric dependence of atmospheric pressure argon plasmas. Journal of the Korean Physical Society, 0, , .	0.3	0
547	Argon Humidification Exacerbates Antimicrobial and Anti-MRSA kINPen Plasma Activity. Life, 2023, 13, 257.	1.1	2
548	Effect of cold atmospheric microwave plasma (CAMP) on wound healing in canine keratinocytes. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	6
549	Enrichment of Bone Tissue with Antibacterially Effective Amounts of Nitric Oxide Derivatives by Treatment with Dielectric Barrier Discharge Plasmas Optimized for Nitrogen Oxide Chemistry. Biomedicines, 2023, 11, 244.	1.4	1
550	Microperfusion cell culture system for promoted cell growth using non-thermal atmospheric pressure plasma exposure. Japanese Journal of Applied Physics, 2023, 62, SG1043.	0.8	0
551	Contrasting the characteristics of atmospheric pressure plasma jets operated with single and double dielectric material: physicochemical characteristics and application to bacterial killing. Journal Physics D: Applied Physics, 2023, 56, 085205.	1.3	2

#	Article	IF	CITATIONS
552	Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells. Cancers, 2023, 15, 1064.	1.7	3
553	Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma. Cancers, 2023, 15, 1073.	1.7	2
554	TNF-α Expression and New Epithelial Thickness in the Skin of Mice (Mus musculus) Infected MRSA by Medical Plasma Treatment. Plasma Medicine, 2022, 12, 45-56.	0.2	0
557	Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sensors, 2023, 8, 974-993.	4.0	4
558	Exposure of low-temperature plasma after vaccination in tongue promotes systemic IgM induction against spike protein of SARS-CoV-2. Free Radical Research, 2023, 57, 30-37.	1.5	0
559	Correlation of plasma generated long-lived reactive species in aqueous and gas phases with different feeding gases. Plasma Sources Science and Technology, 2023, 32, 045015.	1.3	3
560	Plasma Devices for Cosmetic and Aesthetic Treatment. Topics in Applied Physics, 2023, , 229-256.	0.4	0
561	Clinical Studies on Cold Gas Plasma Applications: The Autonomous Patient and Getting Informed Consent for Treatment and Clinical Studies. Topics in Applied Physics, 2023, , 257-270.	0.4	0
562	Cold Atmospheric Plasma Inhibits Lipogenesis and Proliferation of Human Sebocytes and Decreases Sebum Production in Human Facial Skin. Dermatologic Therapy, 2023, 2023, 1-9.	0.8	0
563	Do diabetes-related foot ulcer wound fluid measures have clinical utility as biomarkers for healing? A systematic review. Journal of Wound Care, 2023, 32, xlvii-lxii.	0.5	0
564	NGHIÊN CỨU TÀ DỤG PHá»I HỢP CỦA PLASMA LáºNH TRONG ÄlỀU TRỊ NHIỄM KHUáº`N Váº3⁄4T Nam, 2023, 525, .	Má»" NÃ	"NG THÀNH

589	Systematik der physikalischen Wundtherapien. , 2024, , 283-298.	0
590	Microbial Biofilms and the Role of Biotechnology as a Solution. , 2024, , 187-240.	0

Microbial Biofilms and the Role of Biotechnology as a Solution. , 2024, , 187-240. 590