MHC, mate choice and heterozygote advantage in a wild

Molecular Ecology

19, no-no

DOI: 10.1111/j.1365-294x.2010.04644.x

Citation Report

#	Article	IF	CITATIONS
1	The hidden benefits of sex: Evidence for MHCâ€associated mate choice in primate societies. BioEssays, 2010, 32, 940-948.	2.5	52
2	In the nose of the beholder: are olfactory influences on human mate choice driven by variation in immune system genes or sex hormone levels?. Experimental Biology and Medicine, 2010, 235, 1277-1281.	2.4	11
3	Can conservation-breeding programmes be improved by incorporating mate choice?. International Zoo Yearbook, 2011, 45, 203-212.	0.9	39
4	A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Animal Behaviour, 2011, 82, 1337-1345.	1.9	130
5	Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates. Frontiers in Zoology, 2011, 8, 9.	2.0	5
6	Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations. BMC Evolutionary Biology, 2011, 11, 48.	3.2	45
7	The dining etiquette of desert baboons: the roles of social bonds, kinship, and dominance in coâ€feeding networks. American Journal of Primatology, 2011, 73, 768-774.	1.7	87
8	Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 153-162.	2.6	42
9	Molecules and Mating: Positive Selection and Reproductive Behaviour in Primates. Advances in Experimental Medicine and Biology, 2012, 739, 218-236.	1.6	2
10	Sex-specific selection for MHC variability in Alpine chamois. BMC Evolutionary Biology, 2012, 12, 20.	3.2	22
11	Social and extra-pair mating in relation to major histocompatibility complex variation in common yellowthroats. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4778-4785.	2.6	33
12	Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4457-4463.	2.6	87
13	The Potential Effects of Social Interactions on Reproductive Efficiency of Stallions. Journal of Equine Veterinary Science, 2012, 32, 455-457.	0.9	14
14	Mutual mate choice in the potbellied seahorse (Hippocampus abdominalis). Behavioral Ecology, 2012, 23, 869-878.	2.2	26
15	MHC genotype predicts mate choice in the ringâ€necked pheasant <i>Phasianus colchicus</i> . Journal of Evolutionary Biology, 2012, 25, 1531-1542.	1.7	24
16	From parasite encounter to infection: Multipleâ€scale drivers of parasite richness in a wild social primate population. American Journal of Physical Anthropology, 2012, 147, 52-63.	2.1	43
17	<scp>MHC</scp> â€disassortative mate choice and inbreeding avoidance in a solitary primate. Molecular Ecology, 2013, 22, 4071-4086.	3.9	52
18	Forces shaping major histocompatibility complex evolution in two hyena species. Journal of Mammalogy, 2013, 94, 282-294.	1.3	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Paternal effects on access to resources in a promiscuous primate society. Behavioral Ecology, 2013, 24, 229-236.	2.2	65
20	Red Wolf (Canis rufus) Recovery: A Review with Suggestions for Future Research. Animals, 2013, 3, 722-744.	2.3	58
21	No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear. PLoS ONE, 2014, 9, e113414.	2.5	8
22	A quantitative review of <scp>MHC</scp> â€based mating preference: the role of diversity and dissimilarity. Molecular Ecology, 2014, 23, 5151-5163.	3.9	133
23	Sexual selection and the evolution of behavior, morphology, neuroanatomy and genes in humans and other primates. Neuroscience and Biobehavioral Reviews, 2014, 46, 579-590.	6.1	87
24	The Major Histocompatibility Complex and Primate Behavioral Ecology: New Tools and Future Questions. International Journal of Primatology, 2014, 35, 11-31.	1.9	8
25	Inbreeding Avoidance in Male Primates: A Response to Female Mate Choice?. Ethology, 2014, 120, 111-119.	1.1	12
26	Towards the nonâ€invasive assessment of MHC genotype in wild primates: Analysis of wild assamese macaque <i>MHCâ€DRB</i> from fecal samples. American Journal of Primatology, 2014, 76, 230-238.	1.7	6
27	Major histocompatibility complex and mate choice in the polygynous primate: the Sichuan snubâ€nosed monkey (<i>Rhinopithecus roxellana</i>). Integrative Zoology, 2014, 9, 598-612.	2.6	12
28	<scp>MHC</scp> class Ilâ€assortative mate choice in European badgers (<i>Meles meles</i>). Molecular Ecology, 2015, 24, 3138-3150.	3.9	40
29	Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates. Research and Reports in Biology, 0, , 73.	0.2	14
30	No evidence for <scp>MHC</scp> class lâ€based disassortative mating in a wild population of great tits. Journal of Evolutionary Biology, 2015, 28, 642-654.	1.7	19
31	On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3318-26.	7.1	52
32	Genetic variability of ten Chinese indigenous goats using MHC-linked microsatellite markers. Veterinary Immunology and Immunopathology, 2015, 167, 196-199.	1.2	4
33	HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics, 2016, 68, 401-416.	2.4	31
34	Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age. Behavioral Ecology, 2016, 27, 295-303.	2.2	7
35	Modeling the Importance of Sample Size in Relation to Error in MHC-Based Mate-Choice Studies on Natural Populations. Integrative and Comparative Biology, 2016, 56, 925-933.	2.0	12
36	Next-generation genotyping of hypervariable loci in many individuals of a non-model species: technical and theoretical implications. BMC Genomics, 2016, 17, 204.	2.8	21

CITATION REPORT

#	Article	IF	CITATIONS
37	Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating. Journal of Heredity, 2016, 107, 134-142.	2.4	13
38	An ecological role for assortative mating under infection?. Conservation Genetics, 2017, 18, 983-994.	1.5	6
39	Men's preferences for women's body odours are not associated with human leucocyte antigen. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171830.	2.6	15
40	Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ringâ€ŧailed lemurs (<i>Lemur catta</i>). Ecology and Evolution, 2017, 7, 7638-7649.	1.9	17
41	The inbreeding strategy of a solitary primate, <i>Microcebus murinus</i> . Journal of Evolutionary Biology, 2017, 30, 128-140.	1.7	2
42	Opportunity for female mate choice improves reproductive outcomes in the conservation breeding program of the eastern barred bandicoot (Perameles gunnii). Applied Animal Behaviour Science, 2018, 199, 67-74.	1.9	16
43	Genomic analysis of MHC-based mate choice in the monogamous California mouse. Behavioral Ecology, 2018, 29, 1167-1180.	2.2	9
44	High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evolutionary Biology, 2018, 18, 29.	3.2	18
45	Accumulating evidence suggests that men do not find body odours of human leucocyte antigen-dissimilar women more attractive. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180566.	2.6	7
46	No evidence for <scp>MHC</scp> â€based mate choice in wild giant pandas. Ecology and Evolution, 2018, 8, 8642-8651.	1.9	8
47	MHC-associated mate choice under competitive conditions in captive versus wild Tasmanian devils. Behavioral Ecology, 2019, 30, 1196-1204.	2.2	5
48	Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics, 2019, 71, 575-587.	2.4	15
49	Assigning alleles to different loci in amplifications of duplicated loci. Molecular Ecology Resources, 2019, 19, 1240-1253.	4.8	8
50	Reproductive Strategy Inferred from Major Histocompatibility Complex-Based Inter-Individual, Sperm-Egg, and Mother-Fetus Recognitions in Giant Pandas (Ailuropoda melanoleuca). Cells, 2019, 8, 257.	4.1	10
51	Sex and hatching order modulate the association between MHCâ€II diversity and fitness in earlyâ€Iife stages of a wild seabird. Molecular Ecology, 2020, 29, 3316-3329.	3.9	12
52	Genetic monogamy and mate choice in a pair-living primate. Scientific Reports, 2020, 10, 20328.	3.3	12
53	MHC-Based Mate Choice in Wild Golden Snub-Nosed Monkeys. Frontiers in Genetics, 2020, 11, 609414.	2.3	6
54		1.3	5

#	Article	IF	CITATIONS
55	Within-trio tests provide little support for post-copulatory selection on major histocompatibility complex haplotypes in a free-living population. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202862.	2.6	3
56	Birth timing generates reproductive trade-offs in a non-seasonal breeding primate. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210286.	2.6	8
57	Patterns of MHCâ€dependent sexual selection in a freeâ€living population of sheep. Molecular Ecology, 2021, 30, 6733-6742.	3.9	4
58	No postcopulatory selection against <scp>MHC</scp> â€homozygous offspring: Evidence from a pedigreed captive rhesus macaque colony. Molecular Ecology, 2017, 26, 3785-3793.	3.9	7
59	Disentangling the mechanisms of mate choice in a captive koala population. PeerJ, 2018, 6, e5438.	2.0	6
61	Immigrant males' knowledge influences baboon troop movements to reduce home range overlap and mating competition. Behavioral Ecology, 2022, 33, 398-407.	2.2	1
62	Review: Balancing Selection for Deleterious Alleles in Livestock. Frontiers in Genetics, 2021, 12, 761728.	2.3	5
63	Inbreeding Coefficient and Distance in MHC Genes of Parents as Predictors of Reproductive Success in Domestic Cat. Animals, 2022, 12, 165.	2.3	5
66	Relationship between genomeâ€wide and MHC class I and II genetic diversity and complementarity in a nonhuman primate. Ecology and Evolution, 2022, 12, .	1.9	1
67	Evaluation of Genetic Diversity and Parasite-Mediated Selection of MHC Class I Genes in Emberiza godlewskii (Passeriformes: Emberizidae). Diversity, 2022, 14, 925.	1.7	0
68	What mandrills leave behind: using fecal samples to characterize the major histocompatibility complex in a threatened primate. Conservation Genetics, 0, , .	1.5	0

CITATION REPORT