Contrasting above-ground biomass balance in a Neotro

Journal of Vegetation Science 21, 672 DOI: 10.1111/j.1654-1103.2010.01175.x

Citation Report

#	Article	IF	CITATIONS
1	Modeling decay rates of dead wood in a neotropical forest. Oecologia, 2010, 164, 243-251.	0.9	57
2	Effects of Plot Size and Census Interval on Descriptors of Forest Structure and Dynamics. Biotropica, 2010, 42, 664-671.	0.8	57
3	Growth responses of neotropical trees to logging gaps. Journal of Applied Ecology, 2010, 47, 821-831.	1.9	72
4	Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 2011, 99, 1431-1440.	1.9	180
5	Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 2012, 23, 1191-1196.	1.1	148
6	A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 2012, 22, 572-583.	1.8	167
7	Water Availability Is the Main Climate Driver of Neotropical Tree Growth. PLoS ONE, 2012, 7, e34074.	1.1	78
8	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	2.7	365
9	Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 2013, 307, 219-225.	1.4	110
10	Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 2013, 4, 175-183.	2.2	116
11	Low mortality in tall tropical trees. Ecology, 2013, 94, 920-929.	1.5	34
12	The Response of Tropical Rainforest Dead Wood Respiration to Seasonal Drought. Ecosystems, 2013, 16, 1294-1309.	1.6	14
13	Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements. Biogeosciences, 2013, 10, 7307-7321.	1.3	33
14	Toward Trait-Based Mortality Models for Tropical Forests. PLoS ONE, 2013, 8, e63678.	1.1	24
15	Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Global Change Biology, 2014, 20, 979-991.	4.2	59
16	Spatial pattern of forest structure mediated by topography in a steep mountain basin in West Tanzawa, Japan. Journal of Forest Research, 2014, 19, 205-214.	0.7	4
17	Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome. PLoS ONE, 2015, 10, e0138456.	1.1	25
18	Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 2015, 25, 506-516.	1.8	68

ATION RE

CITATION REPORT

#	Article	IF	CITATIONS
19	Vulnerability of Commercial Tree Species to Water Stress in Logged Forests of the Guiana Shield. Forests, 2016, 7, 105.	0.9	14
20	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
21	Aboveground carbon storage in a freshwater swamp forest ecosystem in the Niger Delta. Carbon Management, 2016, 7, 137-148.	1.2	8
22	Disentangling the factors that contribute to variation in forest biomass increments in the mid-subtropical forests of China. Journal of Forestry Research, 2016, 27, 919-930.	1.7	11
23	Continuous soil carbon storage of old permanent pastures in Amazonia. Global Change Biology, 2017, 23, 3382-3392.	4.2	20
24	An individualâ€based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs, 2017, 87, 632-664.	2.4	40
25	Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences, 2017, 14, 4663-4690.	1.3	27
26	What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?. Agricultural and Forest Meteorology, 2018, 253-254, 114-123.	1.9	45
27	The limited contribution of large trees to annual biomass production in an oldâ€growth tropical forest. Ecological Applications, 2018, 28, 1273-1281.	1.8	14
28	Disturbance intensity is a stronger driver of biomass recovery than remaining treeâ€community attributes in a managed Amazonian forest. Journal of Applied Ecology, 2018, 55, 1647-1657.	1.9	33
29	A novel correction for biases in forest eddy covariance carbon balance. Agricultural and Forest Meteorology, 2018, 250-251, 90-101.	1.9	26
30	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	1.9	33
31	Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 2018, 430, 517-525.	1.4	17
32	Key drivers of ecosystem recovery after disturbance in a neotropical forest. Forest Ecosystems, 2018, 5, .	1.3	57
33	Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 2019, 25, 3767-3780.	4.2	33
34	Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape. PLoS ONE, 2019, 14, e0224896.	1.1	17
35	Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, 2019, 445, 96-109.	1.4	14
36	Towards rapid assessments of tree species diversity and structure in fragmented tropical forests: A review of perspectives offered by remotely-sensed and field-based data. Forest Ecology and Management, 2019, 432, 40-53.	1.4	30

#	Article	IF	CITATIONS
37	Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest. Forest Ecology and Management, 2019, 433, 528-534.	1.4	23
38	Above-ground woody biomass distribution in Amazonian floodplain forests: Effects of hydroperiod and substrate properties. Forest Ecology and Management, 2019, 432, 365-375.	1.4	13
39	Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 26, 1485-1498.	4.2	14
40	Lianas in silico, ecological insights from a model of structural parasitism. Ecological Modelling, 2020, 431, 109159.	1.2	2
41	Environmental dynamics of the JuruÃ _i watershed in the Amazon. Environment, Development and Sustainability, 2021, 23, 6769-6785.	2.7	6
42	Unveiling tree diversity and carbon density of homegarden in the Thodupuzha urban region of Kerala, India: a contribution towards urban sustainability. Tropical Ecology, 2021, 62, 508-524.	0.6	4
45	Prédire la structure des forêts tropicales humides calédoniennes: analyse texturale de la canopée sur des images Pléiades. Revue Francaise De Photogrammetrie Et De Teledetection, 2015, , 141-147.	0.2	2
46	Quantifier les dimensions des houppiers à l'aide d'images aériennes à haute résolution pour estimer l'accroissement diamétrique des arbres dans les forêts d'Afrique centrale. Bois Et Forets Des Tropiques, 0, 343, 67-81.	0.2	4
47	Annual Tropicalâ€Rainforest Productivity Through Two Decades: Complex Responses to Climatic Factors, [CO ₂] and Storm Damage. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006557.	1.3	2
48	Decadal forest dynamics in logged and unlogged sites at Uppangala, Western Ghats, India. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1

CITATION REPORT