Updated estimate of carbon balance on Russian territor

Tellus, Series B: Chemical and Physical Meteorology 62, 497 DOI: 10.1111/j.1600-0889.2010.00467.x

Citation Report

#	Article	IF	CITATIONS
1	Impact of plant species on the formation of carbon and nitrogen stock in soils under semi-desert conditions. European Journal of Forest Research, 2012, 131, 1717-1726.	2.5	5
2	Dynamics of carbon balance components in fallow arable lands on the Valdai Upland. Russian Journal of Ecology, 2012, 43, 373-377.	0.9	8
3	An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences, 2012, 9, 5323-5340.	3.3	113
4	Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone. Eurasian Soil Science, 2013, 46, 935-947.	1.6	23
5	The impacts of fires and clear-cuts on the carbon balance of Russian forests. Contemporary Problems of Ecology, 2013, 6, 714-726.	0.7	7
6	Carbon in Canada's boreal forest — A synthesis. Environmental Reviews, 2013, 21, 260-292.	4.5	230
7	Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO ₂ measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1100-1122.	3.3	49
8	Self-restoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma, 2013, 207-208, 221-233.	5.1	58
9	Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern taiga of European Russia. Environmental Research Letters, 2013, 8, 045028.	5.2	19
10	Aircraft and tower measurements of CO ₂ concentration in the planetary boundary layer and the lower free troposphere over southern taiga in West Siberia: Longâ€ŧerm records from 2002 to 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9489-9498.	3.3	36
11	Carbon cost of collective farming collapse in Russia. Global Change Biology, 2014, 20, 938-947.	9.5	104
12	Changes in soil carbon stock after cropland conversion to grassland in Russian temperate zone: measurements versus model simulation. Nutrient Cycling in Agroecosystems, 2014, 98, 97-106.	2.2	13
13	Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia. Catena, 2015, 129, 18-29.	5.0	61
14	Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan. Catena, 2015, 133, 461-466.	5.0	70
15	Current state of the carbon budget and the capacity of Russian soils for carbon sequestration. Eurasian Soil Science, 2015, 48, 923-933.	1.6	18
16	Self-restoration of post-agrogenic soils of Calcisol–Solonetz complex: Soil development, carbon stock dynamics of carbon pools. Geoderma, 2015, 237-238, 117-128.	5.1	23
17	Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 2016, 566-567, 428-435.	8.0	66
18	Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment – A chronosequence study. Plant and Soil, 2016, 401, 185-196.	3.7	58

CITATION REPORT

#	Article	IF	CITATIONS
19	Tamm Review: Observed and projected climate change impacts on Russia's forests and its carbon balance. Forest Ecology and Management, 2016, 361, 432-444.	3.2	104
20	Soil carbon sequestration due to post‣oviet cropland abandonment: estimates from a largeâ€scale soil organic carbon field inventory. Global Change Biology, 2017, 23, 3729-3741.	9.5	56
21	Impact of Siberian observations on the optimization of surface CO ₂ flux. Atmospheric Chemistry and Physics, 2017, 17, 2881-2899.	4.9	17
22	Influence of high-latitude warming and land-use changes in the early 20th century northern Eurasian CO ₂ sink. Environmental Research Letters, 2018, 13, 065014.	5.2	3
23	Soil Respiration and Biogenic Carbon Dioxide Sink in the Territory of Russia: An Analytical Review. Eurasian Soil Science, 2018, 51, 599-612.	1.6	23
24	Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems. Geoderma, 2019, 354, 113882.	5.1	50
25	Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nature Communications, 2019, 10, 3024.	12.8	49
26	Soil-Biogeochemical Aspects of Arable Farming in the Russian Federation. Eurasian Soil Science, 2019, 52, 94-104.	1.6	20
27	Recovery of organic matter and microbial biomass after abandonment of degraded agricultural soils: the influence of climate. Land Degradation and Development, 2019, 30, 1861-1874.	3.9	32
28	Analysis of the Diurnal, Weekly, and Seasonal Cycles and Annual Trends in Atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016. Atmosphere, 2019, 10, 689.	2.3	17
29	Ecosystem Dynamics After Abandonment of Rice Paddy Fields: Does Alien Plant Invasion Enhance Carbon Storage?. Ecosystems, 2020, 23, 617-629.	3.4	10
30	Design and evaluation of CO ₂ observation network to optimize surface CO ₂ fluxes in Asia using observation system simulation experiments. Atmospheric Chemistry and Physics, 2020, 20, 5175-5195.	4.9	7
31	Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Regional Environmental Change, 2021, 21, 1.	2.9	9
33	Biogenic Carbon Balance in the Territory of the Russian Federation for 1992–2017. Paleontological Journal, 2020, 54, 810-818.	0.5	1
34	Assessing ecosystem services of abandoned agricultural lands: a case study in the forested zone of European Russia. One Ecosystem, 0, 7, .	0.0	3
35	Impact of Agricultural Abandonment on Soil Organic Carbon: The Case of <scp>Semi‣teppe</scp> Rangeland in Central Iran. Land Degradation and Development, 0, , .	3.9	0
36	Factors of Territorial Differentiation of the Agricultural Landscape and Prospects for the Preservation of Steppes in Belgorod Oblast. Arid Ecosystems, 2022, 12, 131-141.	0.8	0
37	Biological Activity of Urban Soils: Spatial Variability and Control Factors. Eurasian Soil Science, 2022, 55, 1082-1094.	1.6	3

#	Article	IF	CITATIONS
38	ECONOMIC EVALUATION OF PROJECT MEASURES AIMED AT REDUCING EMISSIONS OF GREENHOUSE GASES AND INCREASING THEIR ABSORPTION IN THE FORESTS OF RUSSIA. Actual Directions of Scientific Researches of the XXI Century Theory and Practice, 2022, 10, 108-125.	0.2	1
39	Field-Layer Vegetation and Water Table Level as a Proxy of CO2 Exchange in the West Siberian Boreal Bog. Land, 2023, 12, 566.	2.9	2
40	Soil Carbon Sequestration: Facts and Challenges (Analytical Review). Biology Bulletin Reviews, 2022, 12, S109-S122.	0.9	1
41	Estimation of Carbon Balance in Steppe Ecosystems of Russia. Izvestiya - Atmospheric and Oceanic Physics, 2023, 59, 63-77.	0.9	1
42	Possibility of Using Zoning of Fallow Vegetation by Vegetation Indices to Assess Organic Matter Accumulation in Postagrogenic Soils. Eurasian Soil Science, 2023, 56, 1130-1138.	1.6	0
43	Heterotrophic Soil Respiration Response to the Summer Precipitation Regime and Different Depths of Snow Cover in a Temperate Continental Climate. Eurasian Soil Science, 2023, 56, 1667-1682.	1.6	1
44	Study in a long-term laboratory experiment of the potential susceptibility to mineralization of organic matter in post-agrogenic light gray soils. Agrarian Science, 2024, , 97-101.	0.3	0