The mitochondria-targeted anti-oxidant mitoquinone d study of hepatitis C patients

Liver International 30, 1019-1026 DOI: 10.1111/j.1478-3231.2010.02250.x

Citation Report

#	Article	IF	CITATIONS
1	Prevention of diabetic nephropathy in Ins2+/â^AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochemical Journal, 2010, 432, 9-19.	1.7	189
2	NecroX as a novel class of mitochondrial reactive oxygen species and ONOOâ^ scavenger. Archives of Pharmacal Research, 2010, 33, 1813-1823.	2.7	73
3	Animal and human studies with the mitochondriaâ€ŧargeted antioxidant MitoQ. Annals of the New York Academy of Sciences, 2010, 1201, 96-103.	1.8	428
5	Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1009-1017.	1.1	101
6	Role of Drp1, a Key Mitochondrial Fission Protein, in Neuropathic Pain. Journal of Neuroscience, 2011, 31, 11404-11410.	1.7	79
7	Mitochondria-targeted Antioxidants Protect Pancreatic β-cells against Oxidative Stress and Improve Insulin Secretion in Glucotoxicity and Glucolipotoxicity. Cellular Physiology and Biochemistry, 2011, 28, 873-886.	1.1	101
8	Antioxidants as therapeutic agents for liver disease. Liver International, 2011, 31, 1432-1448.	1.9	179
9	Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	1.3	100
10	Mitochondria-Targeted Small Molecule Therapeutics and Probes. Antioxidants and Redox Signaling, 2011, 15, 3021-3038.	2.5	344
11	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	2.5	48
11	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163.	2.5 3.6	48 98
	Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro		
12	Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163. Mechanisms of hepatic fibrogenesis. Bailliere's Best Practice and Research in Clinical	3.6	98
12 13	 Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163. Mechanisms of hepatic fibrogenesis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 195-206. Hepatitis C Virus, Oxidative Stress and Steatosis: Current Status and Perspectives. Current Molecular 	3.6 1.0	98 772
12 13 14	 Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163. Mechanisms of hepatic fibrogenesis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 195-206. Hepatitis C Virus, Oxidative Stress and Steatosis: Current Status and Perspectives. Current Molecular Medicine, 2011, 11, 373-390. OSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Human Molecular 	3.6 1.0 0.6	98 772 24
12 13 14 15	 Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163. Mechanisms of hepatic fibrogenesis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 195-206. Hepatitis C Virus, Oxidative Stress and Steatosis: Current Status and Perspectives. Current Molecular Medicine, 2011, 11, 373-390. CSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Human Molecular Genetics, 2011, 20, 2745-2759. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 	3.6 1.0 0.6 1.4	98 772 24 46
12 13 14 15 16	 Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935. Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163. Mechanisms of hepatic fibrogenesis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 195-206. Hepatitis C Virus, Oxidative Stress and Steatosis: Current Status and Perspectives. Current Molecular Medicine, 2011, 11, 373-390. GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Human Molecular Genetics, 2011, 20, 2745-2759. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 682-692. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American Journal of Physiology - Heart and 	3.6 1.0 0.6 1.4 1.3	 98 772 24 46 66

#	Article	IF	CITATIONS
20	Protection Against Oxidative Stress and $\hat{a} \in \infty$ IGF-I Deficiency Conditions $\hat{a} \in 0$, 0, , .		3
21	Mitochondrial Free Radicals, Antioxidants, Nutrient Substances, and Chronic Hepatitis C. , 2012, , .		1
23	A Mitochondria-Targeted Macrocyclic Mn(II) Superoxide Dismutase Mimetic. Chemistry and Biology, 2012, 19, 1237-1246.	6.2	50
24	New tricks from an old dog: Mitochondrial redox signaling in cellular inflammation. Seminars in Immunology, 2012, 24, 384-392.	2.7	53
25	Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia–reperfusion: Therapeutic potential of mitochondrially targeted antioxidants. Free Radical Biology and Medicine, 2012, 53, 1123-1138.	1.3	111
26	Mitochondrial pharmacology. Trends in Pharmacological Sciences, 2012, 33, 341-352.	4.0	430
27	Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants and Redox Signaling, 2012, 16, 1492-1526.	2.5	247
28	Diabetes Mellitus and Myocardial Mitochondrial Dysfunction. Heart Failure Clinics, 2012, 8, 551-561.	1.0	15
29	Evolving Concepts of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Disease. Current Atherosclerosis Reports, 2012, 14, 476-483.	2.0	102
30	Systems biology of antioxidants. Clinical Science, 2012, 123, 173-192.	1.8	34
31	Metabolic syndrome and mitochondrial dysfunction: insights from preclinical studies with a mitochondrially targeted antioxidant. Free Radical Biology and Medicine, 2012, 52, 838-840.	1.3	17
32	Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radical Biology and Medicine, 2012, 52, 1135-1150.	1.3	65
33	Oxidative stress, antiâ€oxidant therapies and chronic kidney disease. Nephrology, 2012, 17, 311-321.	0.7	387
34	Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes. Journal of Receptor and Signal Transduction Research, 2013, 33, 304-312.	1.3	19
35	P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3458-3465.	1.1	21
36	A Selective Mitochondrial-Targeted Chlorambucil with Remarkable Cytotoxicity in Breast and Pancreatic Cancers. Journal of Medicinal Chemistry, 2013, 56, 9170-9179.	2.9	130
37	Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radical Biology and Medicine, 2013, 65, 1047-1059.	1.3	65
38	Exploiting endobiotic metabolic pathways to target xenobiotic antioxidants to mitochondria. Mitochondrion, 2013, 13, 454-463.	1.6	5

#	Article	IF	CITATIONS
39	Oxidative stress and hepatitis C virus. Virology Journal, 2013, 10, 251.	1.4	121
40	Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Medicine, 2013, 11, 178.	2.3	153
41	Coâ€enzyme Q ₁₀ and idebenone use in Friedreich's ataxia. Journal of Neurochemistry, 2013, 126, 125-141.	2.1	97
42	Radiosynthesis of 11-[¹⁸ F]fluoroundecyltriphenylphosphonium (MitoF) as a potential mitochondria-specific positron emission tomography radiotracer. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 717-721.	0.5	6
43	Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pK a: implications for the design of mitochondrial probes and therapies. Journal of Bioenergetics and Biomembranes, 2013, 45, 165-173.	1.0	52
44	Mitochondria as a Therapeutic Target in Heart Failure. Journal of the American College of Cardiology, 2013, 61, 599-610.	1.2	283
45	Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnology Advances, 2013, 31, 563-592.	6.0	107
46	Hepatitis C Virus-Induced Mitochondrial Dysfunctions. Viruses, 2013, 5, 954-980.	1.5	59
47	The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 174-182.	1.8	115
48	Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. Journal of Orthopaedic Research, 2013, 31, 191-196.	1.2	53
49	Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochemical Society Transactions, 2013, 41, 127-133.	1.6	46
50	Mitochondria and Endothelial Function. Circulation Research, 2013, 112, 1171-1188.	2.0	379
51	Mechanismâ€based antioxidant therapies promise to prevent diabetic complications?. Journal of Diabetes Investigation, 2013, 4, 105-107.	1.1	9
52	Emerging drugs for non-alcoholic steatohepatitis. Expert Opinion on Emerging Drugs, 2013, 18, 279-290.	1.0	13
53	Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	1.9	27
54	Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World Journal of Gastroenterology, 2014, 20, 2785.	1.4	8
55	Targeting mitochondria for cardioprotection: examining the benefit for patients. Future Cardiology, 2014, 10, 255-272.	0.5	34
56	Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. Journal of Hypertension, 2014, 32, 555-564.	0.3	45

# 57	ARTICLE Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biology, 2014, 3, 109-123.	IF 3.9	Citations 98
58	Sepsis-induced Cardiac Mitochondrial Damage and Potential Therapeutic Interventions in the Elderly. , 2014, 5, 137-49.		14
59	Mitochondria-targeted antioxidants for treatment of Parkinson's disease: Preclinical and clinical outcomes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1282-1294.	1.8	268
60	Enhanced cytotoxicity to cancer cells by mitochondria-targeting MWCNTs containing platinum(IV) prodrug of cisplatin. Biomaterials, 2014, 35, 748-759.	5.7	101
61	Mitochondrial Targeting of Antioxidants. , 2014, , 323-354.		2
62	Mitochondriaâ€ŧargeted antioxidant (MitoQ) ameliorates ageâ€related arterial endothelial dysfunction in mice. Journal of Physiology, 2014, 592, 2549-2561.	1.3	185
63	Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radical Biology and Medicine, 2014, 72, 267-284.	1.3	75
64	Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Molecular and Cellular Neurosciences, 2014, 63, 13-23.	1.0	52
65	Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance. Gastroenterology, 2014, 147, 765-783.e4.	0.6	587
66	The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radical Research, 2014, 48, 1232-1246.	1.5	58
67	Advances in Development of Rechargeable Mitochondrial Antioxidants. Progress in Molecular Biology and Translational Science, 2014, 127, 251-265.	0.9	21
68	Mitochondrial oxidative stress in aging and healthspan. Longevity & Healthspan, 2014, 3, 6.	6.7	354
69	Molecular Vehicles for Mitochondrial Chemical Biology and Drug Delivery. ACS Chemical Biology, 2014, 9, 323-333.	1.6	128
70	Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 2014, 94, 909-950.	13.1	3,274
71	Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World Journal of Gastroenterology, 2014, 20, 7260.	1.4	290
73	A mitochondria-targeted derivative of ascorbate: MitoC. Free Radical Biology and Medicine, 2015, 89, 668-678.	1.3	54
74	Cardiopulmonary Bypass and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-8.	1.9	119
75	Unifying Mechanism of Antiviral Drug Action Based on Electron Transfer and Reactive Oxygen Species. ACS Symposium Series, 2015, , 221-235.	0.5	0

#	Article	IF	CITATIONS
76	Mitochondria: a new therapeutic target in chronic kidney disease. Nutrition and Metabolism, 2015, 12, 49.	1.3	96
77	The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. American Journal of Physiology - Renal Physiology, 2015, 308, F1155-F1166.	1.3	35
78	Fetal programming of chronic kidney disease: the role of maternal smoking, mitochondrial dysfunction, and epigenetic modfification. American Journal of Physiology - Renal Physiology, 2015, 308, F1189-F1196.	1.3	29
79	Mitochondrial delivery of Coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. Journal of Controlled Release, 2015, 213, 86-95.	4.8	83
80	Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biology, 2015, 5, 163-168.	3.9	159
81	ALSUntangled No. 29: MitoQ. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 427-429.	1.1	1
82	Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron, 2015, 71, 8444-8453.	1.0	32
83	Antioxidant Approach to the Therapy of Chronic Liver Diseases. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 389-413.	0.4	1
84	The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. Journal of Heart and Lung Transplantation, 2015, 34, 1471-1480.	0.3	78
85	Mitochondriaâ€ŧargeted antioxidants. FASEB Journal, 2015, 29, 4766-4771.	0.2	309
85 86	Mitochondriaâ€ŧargeted antioxidants. FASEB Journal, 2015, 29, 4766-4771. Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466.	0.2	309 15
	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015,		
86	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative	1.1	15
86 87	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury.	1.1 1.9	15 56
86 87 88	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and	1.1 1.9 1.9	15 56 90
86 87 88 89	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity. PLoS ONE, 2016, 11, e0168283. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. Journal of	1.1 1.9 1.9 1.1	15 56 90 56
86 87 88 89 90	Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Platelets, 2015, 26, 459-466. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity. PLoS ONE, 2016, 11, e0168283. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. Journal of Cellular Physiology, 2016, 231, 2570-2581.	1.1 1.9 1.9 1.1 2.0	15 56 90 56 428

#	Article	IF	CITATIONS
94	Effect of Potassium Bromate on the Liver of Adult Male Albino Rat and A Possible Protective Role of Vitamin C: Histological, Immunohistochemical, and Biochemical Study. Anatomical Record, 2016, 299, 1256-1269.	0.8	20
95	Mitochondriaâ€specific antioxidant supplementation does not influence endurance exercise trainingâ€induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. Journal of Physiology, 2016, 594, 7005-7014.	1.3	48
96	Reply: Clial mitochondropathy in infantile neuroaxonal dystrophy: pathophysiological and therapeutic implications. Brain, 2016, 139, e68-e68.	3.7	0
97	A sensitive LC-MS/MS method for the quantification of urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) including pediatric reference interval. Clinica Chimica Acta, 2016, 460, 128-134.	0.5	13
98	Understanding and preventing mitochondrial oxidative damage. Biochemical Society Transactions, 2016, 44, 1219-1226.	1.6	129
99	Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Molecular Medicine, 2016, 8, 247-267.	3.3	110
100	Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. Journal of Biological Chemistry, 2016, 291, 4356-4373.	1.6	66
101	Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine, 2016, 22, 146-153.	15.2	1,088
102	Recent progress towards an effective treatment of amyotrophic lateral sclerosis using the SOD1 mouse model in a preclinical setting. European Journal of Medicinal Chemistry, 2016, 121, 918-925.	2.6	14
103	Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. Neuropsychopharmacology, 2016, 41, 1751-1758.	2.8	35
104	Mitochondrial Quality Control as a Therapeutic Target. Pharmacological Reviews, 2016, 68, 20-48.	7.1	225
105	Mitochondria as a target for neuroprotection: implications for Alzheimer´s disease. Expert Review of Neurotherapeutics, 2017, 17, 77-91.	1.4	24
106	Neuroprotective Efficacy of Mitochondrial Antioxidant MitoQ in Suppressing Peroxynitrite-Mediated Mitochondrial Dysfunction Inflicted by Lead Toxicity in the Rat Brain. Neurotoxicity Research, 2017, 31, 358-372.	1.3	36
107	Mitochondrial energetics and calcium coupling in the heart. Journal of Physiology, 2017, 595, 3753-3763.	1.3	67
108	Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nature Medicine, 2017, 23, 327-336.	15.2	251
109	Role of Integrative Medicine in Liver Transplantation. , 2017, , 535-546.		0
110	PGC-1α (Peroxisome Proliferator–Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension, 2017, 70, 166-173.	1.3	41
111	Mitochondriaâ€targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver International. 2017. 37. 1002-1012.	1.9	42

#	Article	IF	CITATIONS
112	The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 2017, 11, 297-311.	3.9	383
113	Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Research Reviews, 2017, 37, 94-116.	5.0	64
114	Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. Journal of Medicinal Chemistry, 2017, 60, 7084-7098.	2.9	47
115	Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Scientific Reports, 2017, 7, 6842.	1.6	30
116	Therapeutic targeting of the mitochondrial reactive oxygen species engine prevents portal hypertension and hepatic fibrogenesis. Liver International, 2017, 37, 963-965.	1.9	1
117	Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews, 2017, 117, 10043-10120.	23.0	1,051
118	Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Current Heart Failure Reports, 2017, 14, 338-349.	1.3	67
119	Mitochondria-targeted nutraceuticals in sports medicine: a new perspective. Research in Sports Medicine, 2017, 25, 91-100.	0.7	7
120	Mitochondriaâ€Targeted Antioxidant Mitoquinone Reduces Cisplatinâ€Induced Ototoxicity in Guinea Pigs. Otolaryngology - Head and Neck Surgery, 2017, 156, 543-548.	1.1	20
121	Immunopathogenesis of Autoimmune Liver Damage. Handbook of Systemic Autoimmune Diseases, 2017, 13, 19-48.	0.1	3
122	Molecular Mechanism Underlying the Actions of Antioxidant Molecules in Digestive Disorders. , 2017, , 197-216.		5
123	Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 2017, 16, 120.	2.7	303
124	Mitochondrial Dynamics in Neurodegenerative Diseases. Advances in Neurotoxicology, 2017, , 211-246.	0.7	3
125	Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity. IScience, 2018, 3, 192-207.	1.9	40
126	Modulation of allergic responses by mitochondrial STAT3 inhibitors. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2160-2171.	2.7	18
127	Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults. Hypertension, 2018, 71, 1056-1063.	1.3	280
128	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2018, 51, 1701024.	3.1	64
129	Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. The Lancet Gastroenterology and Hepatology, 2018, 3, 192-202.	3.7	75

#	Article	IF	CITATIONS
130	MitoQ supplementation prevent long-term impact of maternal smoking on renal development, oxidative stress and mitochondrial density in male mice offspring. Scientific Reports, 2018, 8, 6631.	1.6	36
131	Mitochondriaâ€targeted esculetin inhibits PAIâ€1 levels by modulating STAT3 activation and miRâ€19b via SIRT3: Role in acute coronary artery syndrome. Journal of Cellular Physiology, 2018, 233, 214-225.	2.0	26
132	Evaluation of Mitoquinone for Protecting Against Amikacin-Induced Ototoxicity in Guinea Pigs. Otology and Neurotology, 2018, 39, 111-118.	0.7	12
133	Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biology, 2018, 14, 626-636.	3.9	59
134	Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Military Medical Research, 2018, 5, 41.	1.9	56
135	Mitochondrial targeting as a novel therapy for stroke. Brain Circulation, 2018, 4, 84.	0.7	50
136	Emerging Therapies: What's on the Horizon?. , 2018, , 317-332.		0
137	Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. American Journal of Pathology, 2018, 188, 2704-2716.	1.9	65
138	Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 2018, 17, 865-886.	21.5	508
139	Operation of mitochondrial machinery in viral infection-induced immune responses. Biochemical Pharmacology, 2018, 156, 348-356.	2.0	10
140	Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharmaceutica Sinica B, 2018, 8, 862-880.	5.7	184
141	Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Biogerontology, 2018, 19, 271-286.	2.0	15
142	Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. International Journal of Molecular Sciences, 2018, 19, 2127.	1.8	18
143	Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes, 2018, 9, 165.	1.0	40
144	Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically?. Biochemical Society Transactions, 2018, 46, 891-909.	1.6	131
145	Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Reviews of Physiology, Biochemistry and Pharmacology, 2018, 175, 71-102.	0.9	163
146	Mitochondria-Targeted Antioxidants and Skeletal Muscle Function. Antioxidants, 2018, 7, 107.	2.2	22
147	Platelet mitochondrial dysfunction and mitochondria-targeted quinone-and hydroquinone-derivatives: Review on new strategy of antiplatelet activity. Biochemical Pharmacology, 2018, 156, 215-222.	2.0	17

#	Article	IF	CITATIONS
148	Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Reports, 2018, 19, .	2.0	74
149	Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatric Nephrology, 2019, 34, 1167-1174.	0.9	56
150	Mitochondria-Targeted Drugs. Current Molecular Pharmacology, 2019, 12, 202-214.	0.7	118
151	Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Reviews in Medical Virology, 2019, 29, e2075.	3.9	16
152	Pharmacological Protection of Kidney Grafts from Cold Perfusion-Induced Injury. BioMed Research International, 2019, 2019, 1-8.	0.9	8
153	Anxiety and Brain Mitochondria: A Bidirectional Crosstalk. Trends in Neurosciences, 2019, 42, 573-588.	4.2	96
154	Subversion of Host Cell Mitochondria by RSV to Favor Virus Production is Dependent on Inhibition of Mitochondrial Complex I and ROS Generation. Cells, 2019, 8, 1417.	1.8	28
155	Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 135, 160-171.	0.9	13
156	A novel role of glutathione S-transferase A3 in inhibiting hepatic stellate cell activation and rat hepatic fibrosis. Journal of Translational Medicine, 2019, 17, 280.	1.8	19
157	Multifunctional radical quenchers as potential therapeutic agents for the treatment of mitochondrial dysfunction. Future Medicinal Chemistry, 2019, 11, 1605-1624.	1.1	1
158	Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biology, 2019, 17, e2006552.	2.6	43
159	The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1192-1200.	1.8	21
160	Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants, 2019, 8, 109.	2.2	61
161	NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. Phytomedicine, 2019, 64, 152925.	2.3	94
162	Surface Modification of Nanoparticles for Targeted Drug Delivery. , 2019, , .		27
163	Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation, 2019, 139, 1435-1450.	1.6	143
164	Mitophagy could fight Parkinson's disease through antioxidant action. Reviews in the Neurosciences, 2019, 30, 729-742.	1.4	6
165	Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. International Journal of Molecular Sciences, 2019, 20, 1700.	1.8	11

#	Article	IF	CITATIONS
166	Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxidants and Redox Signaling, 2019, 31, 134-152.	2.5	19
167	Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biology, 2019, 21, 101100.	3.9	80
168	Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews, 2019, 99, 311-379.	13.1	323
169	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	2.3	37
170	Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochemical Pharmacology, 2019, 160, 34-45.	2.0	50
171	New opportunities for targeting redox dysregulation in cardiovascular disease. Cardiovascular Research, 2020, 116, 532-544.	1.8	30
172	Drug Development for the Therapy ofÂMitochondrial Diseases. Trends in Molecular Medicine, 2020, 26, 40-57.	3.5	64
173	Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Molecular Aspects of Medicine, 2020, 71, 100840.	2.7	25
174	Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. American Journal of Physiology - Renal Physiology, 2020, 318, G298-G304.	1.6	42
175	Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases. Journal of Innate Immunity, 2020, 12, 31-46.	1.8	58
176	Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. JACC: CardioOncology, 2020, 2, 475-488.	1.7	33
177	Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Frontiers in Physiology, 2020, 11, 1054.	1.3	5
178	Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants, 2020, 9, 1142.	2.2	20
179	Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-29.	1.9	77
180	Mitochondrial Targeting of Probes and Therapeutics to the Powerhouse of the Cell. Bioconjugate Chemistry, 2020, 31, 2650-2667.	1.8	27
181	Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine, 2020, 57, 102884.	2.7	148
182	Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. International Journal of Molecular Sciences, 2020, 21, 6192.	1.8	24
183	Mitochondrial-targeted ubiquinone: A potential treatment for COVID-19. Medical Hypotheses, 2020, 144, 110161.	0.8	22

#	Article	IF	CITATIONS
184	Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health?. Frontiers in Endocrinology, 2020, 11, 655.	1.5	71
185	Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Science Advances, 2020, 6, eabb1929.	4.7	41
186	Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	1.9	70
187	Loss of Mitochondrial Control Impacts Renal Health. Frontiers in Pharmacology, 2020, 11, 543973.	1.6	25
188	Riding the tiger – physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 592-661.	2.3	56
189	Rapamycinâ€mediated mouse lifespan extension: Lateâ€life dosage regimes with sexâ€specific effects. Aging Cell, 2020, 19, e13269.	3.0	49
190	Bioavailability of Coenzyme Q10: An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants, 2020, 9, 386.	2.2	59
191	MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. European Journal of Applied Physiology, 2020, 120, 1657-1669.	1.2	30
192	TPP-based mitocans: a potent strategy for anticancer drug design. RSC Medicinal Chemistry, 2020, 11, 858-875.	1.7	28
193	Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiological Reviews, 2020, 100, 1527-1594.	13.1	30
194	Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke. Translational Stroke Research, 2020, 11, 1214-1228.	2.3	36
195	Systemic effects of mitochondrial stress. EMBO Reports, 2020, 21, e50094.	2.0	54
196	The mitochondriaâ€ŧargeted antiâ€oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance. Cell Proliferation, 2020, 53, e12779.	2.4	94
197	Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. Circulation Research, 2020, 126, 280-293.	2.0	224
198	Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants. International Journal of Radiation Biology, 2020, 97, 1-8.	1.0	9
199	Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 â€`long-haulers'?. Chronic Diseases and Translational Medicine, 2021, 7, 14-26.	0.9	55
200	Decreased IDO1-dependent tryptophan metabolism in aged lung during influenza. European Respiratory Journal, 2021, 57, 2000443.	3.1	7
201	Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prevention Research, 2021, 14, 285-306.	0.7	45

#	Article	IF	CITATIONS
202	Therapeutic targeting of cardiolipin composition in injury and disease using TPP-conjugated compounds. , 2021, , 451-476.		1
203	Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants, 2021, 10, 236.	2.2	32
204	Regulatory effect of mitoQ on the mtROS‑NLRP3 inflammasome pathway in leptin‑pretreated BEAS‑2 cells. Experimental and Therapeutic Medicine, 2021, 21, 466.	0.8	12
205	Mitochondria antioxidant protection against cardiovascular dysfunction programmed by earlyâ€onset gestational hypoxia. FASEB Journal, 2021, 35, e21446.	0.2	11
206	Metabolic Shifts as the Hallmark of Most Common Diseases: The Quest for the Underlying Unity. International Journal of Molecular Sciences, 2021, 22, 3972.	1.8	8
207	Mitochondrial dysfunction and mitochondrion-targeted therapeutics in liver diseases. Journal of Drug Targeting, 2021, 29, 1080-1093.	2.1	13
208	Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies?. International Journal of Molecular Sciences, 2021, 22, 5375.	1.8	59
209	Reactive oxygen species as potential antiviral targets. Reviews in Medical Virology, 2022, 32, .	3.9	21
210	Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia–reperfusion injury in kidney transplantation models. British Journal of Surgery, 2021, 108, 1072-1081.	0.1	15
211	Anthracycline chemotherapyâ€mediated vascular dysfunction as a model of accelerated vascular aging. Aging and Cancer, 2021, 2, 45-69.	0.5	14
212	Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. Journal of Thrombosis and Haemostasis, 2021, 19, 2256-2262.	1.9	13
213	Redox signaling in heart failure and therapeutic implications. Free Radical Biology and Medicine, 2021, 171, 345-364.	1.3	26
214	Emerging cellular-based therapies in carbon monoxide poisoning. American Journal of Physiology - Cell Physiology, 2021, 321, C269-C275.	2.1	3
215	Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. Journal of the International Society of Sports Nutrition, 2021, 18, 58.	1.7	14
216	Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells, 2021, 10, 2563.	1.8	12
218	Mitoquinol mesylate alleviates oxidative damage in cirrhotic and advanced hepatocellular carcinogenic rats through mitochondrial protection and antioxidative effects. Advances in Redox Research, 2021, 3, 100014.	0.9	2
219	Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods in Molecular Biology, 2021, 2310, 201-246.	0.4	11
220	Triphenylphosphonium (TPP)â€Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem, 2020, 15, 404-410.	1.6	48

#	Article	IF	CITATIONS
221	Surface Modification of Nanocarriers for Specific Cell Targeting for Better Therapeutic Effect. , 2019, , 355-368.		2
222	Mitochondria-Targeted Antioxidants for the Treatment of Cardiovascular Disorders. Advances in Experimental Medicine and Biology, 2017, 982, 621-646.	0.8	18
223	Reactive Oxygen Species (ROS) and Liver Disease Therapy. , 2014, , 1809-1838.		1
224	Mitochondrial-targeted ubiquinone alleviates concanavalin A-induced hepatitis via immune modulation. International Immunopharmacology, 2020, 84, 106518.	1.7	9
225	Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochemical Society Transactions, 2019, 47, 1461-1469.	1.6	21
226	Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clinical Science, 2020, 134, 1491-1519.	1.8	31
227	Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Human Reproduction, 2021, 36, 771-784.	0.4	54
228	Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- <i>lpr</i> mice. Lupus Science and Medicine, 2020, 7, e000387.	1.1	54
229	Mitochondrial-Targeted Decyl-Triphenylphosphonium Enhances 2-Deoxy-D-Glucose Mediated Oxidative Stress and Clonogenic Killing of Multiple Myeloma Cells. PLoS ONE, 2016, 11, e0167323.	1.1	14
230	Shutting Down the Furnace: Preferential Killing of Cancer Cells with Mitochondrial-Targeting Molecules. Current Medicinal Chemistry, 2015, 22, 2438-2457.	1.2	9
231	Mitochondrial Biogenesis: Regulation By Endogenous Gases During Inflammation and Organ Stress. Current Pharmaceutical Design, 2014, 20, 5653-5662.	0.9	38
232	Mitochondrial dysfunction in cholestatic liver diseases. Frontiers in Bioscience - Elite, 2012, E4, 2233.	0.9	20
233	Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22, 1497.	1.4	47
234	Complementary and alternative medications in hepatitis C infection. World Journal of Hepatology, 2014, 6, 9.	0.8	7
235	Oxidative stress modulation in hepatitis C virus infected cells. World Journal of Hepatology, 2015, 7, 2880.	0.8	45
236	Oxidative Stress and Benefits of Antioxidant Agents in Acute and Chronic Hepatitis. Hepatitis Monthly, 2012, 12, 160-167.	0.1	36
237	Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention. Annual Review of Physiology, 2022, 84, 435-459.	5.6	40
238	The effect of mitochondria-targeted antioxidant MitoQ10 on redox signaling pathway components in PCOS mouse model. Archives of Gynecology and Obstetrics, 2022, 305, 985-994.	0.8	4

#	Article	IF	CITATIONS
239	Mitochondria as a Cellular Hub in Infection and Inflammation. International Journal of Molecular Sciences, 2021, 22, 11338.	1.8	98
240	Cardioprotective Effects of Mitochondrial-Targeted Antioxidants in Myocardial Ischemia/Reperfusion (I/R) Injury. , 2013, , .		0
241	The Near Future of HCV Treatment: Supplementary Treatments against Oxidative Stress will be still useful?. Journal of Biomolecular Research & Therapeutics, 2014, 03, .	0.2	0
242	Synthesis and Characterization of 4-Thiobutyl-triphenylphosphonium-pantetheine, a Pantetheine Derivative. American Chemical Science Journal, 2014, 4, 676-686.	0.2	0
243	Mitocodria: de la célula al clÃnica, caso de la sepsis. Archivos De Medicina, 2015, 14, 285-296.	0.1	0
244	Role of Integrative Medicine in Liver Transplantation. , 2015, , 1-13.		0
245	Role of Integrative Medicine in Liver Transplantation. , 2016, , 1-13.		0
246	New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Current Neuropharmacology, 2022, 20, 1278-1296.	1.4	23
247	Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems. Toxicological Research, 2022, 38, 275-291.	1.1	0
248	The MARVEL trial: a phase 2b randomised placebo-controlled trial of oral MitoQ in moderate ulcerative colitis. Immunotherapy Advances, 2021, 1, .	1.2	6
250	The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 14-27.	0.8	45
251	Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials, 2022, 7, 355-371.	23.3	63
252	Mitoquinone Inactivates Mitochondrial Chaperone TRAP1 by Blocking the Client Binding Site. Journal of the American Chemical Society, 2021, 143, 19684-19696.	6.6	12
253	Impaired Redox Homeostasis and Cardiovascular Aging. Healthy Ageing and Longevity, 2022, , 65-86.	0.2	0
254	Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells. Toxicological Research, 2022, 38, 331-343.	1.1	6
255	Interplay between mitochondrial reactive oxygen species, oxidative stress and hypoxic adaptation in facioscapulohumeral muscular dystrophy: Metabolic stress as potential therapeutic target. Redox Biology, 2022, 51, 102251.	3.9	31
256	Mitoquinone Helps Combat the Neurological, Cognitive, and Molecular Consequences of Open Head Traumatic Brain Injury at Chronic Time Point. Biomedicines, 2022, 10, 250.	1.4	10
257	Mitochondria as Therapeutic Targets in Heart Failure. Current Heart Failure Reports, 2022, 19, 27-37.	1.3	23

#	Article	IF	CITATIONS
258	The Mitochondria-Targeting Agent MitoQ Improves Muscle Atrophy, Weakness and Oxidative Metabolism in C26 Tumor-Bearing Mice. Frontiers in Cell and Developmental Biology, 2022, 10, 861622.	1.8	15
259	MitoQ Prevents Human Breast Cancer Recurrence and Lung Metastasis in Mice. Cancers, 2022, 14, 1488.	1.7	11
260	Effect of mitochondrialâ€ŧargeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and metaâ€analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 2022, 24, 1047-1060.	2.2	11
261	Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotoxicity Research, 2022, , 1.	1.3	5
262	Mito-TIPTP Increases Mitochondrial Function by Repressing the Rubicon-p22phox Interaction in Colitis-Induced Mice. Antioxidants, 2021, 10, 1954.	2.2	6
263	Oxidative Stress and Ischemia/Reperfusion Injury in Kidney Transplantation: Focus on Ferroptosis, Mitophagy and New Antioxidants. Antioxidants, 2022, 11, 769.	2.2	32
265	Coenzyme Q10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule?. Nutrients, 2022, 14, 1811.	1.7	12
266	Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Advances in Redox Research, 2022, 5, 100037.	0.9	8
267	Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	24
268	Utilization of mitochondrial-targeted small molecules in protecting stored platelets against storage lesions. European Journal of Medicinal Chemistry Reports, 2022, 6, 100070.	0.6	4
269	Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. Journal of Biomaterials Applications, 0, , 088532822211116.	1.2	0
270	Mitochondria-targeted anti-oxidant AntiOxCIN4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biology, 2022, 55, 102400.	3.9	12
271	Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe mice. Atherosclerosis, 2022, 356, 28-40.	0.4	19
272	Promising Therapeutic Strategies Targeting Mitochondria in Kidney Diseases: From Small Molecules to Whole Mitochondria. Future Pharmacology, 2022, 2, 256-275.	0.6	0
273	Antioxidant Mitoquinone Alleviates Chronic Pancreatitis via Anti-Fibrotic and Antioxidant Effects. Journal of Inflammation Research, O, Volume 15, 4409-4420.	1.6	5
274	Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovascular Research, 2023, 119, 1105-1116.	1.8	16
275	Antioxidant mitoquinone ameliorates EtOH-LPS induced lung injury by inhibiting mitophagy and NLRP3 inflammasome activation. Frontiers in Immunology, 0, 13, .	2.2	4
276	Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Current Neuropharmacology, 2023, 21, 1165-1183.	1.4	7

#	Article	IF	CITATIONS
277	Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Frontiers in Physiology, 0, 13, .	1.3	9
278	Drugs to Modify Liver Fibrosis Progression and Regression. , 2022, , 201-218.		Ο
279	Flow Synthesis of Nature-Inspired Mitochondria-Targeted Phenolic Derivatives as Potential Neuroprotective Agents. Antioxidants, 2022, 11, 2160.	2.2	0
281	Inhibition of Mitochondrial Redox Signaling with MitoQ Prevents Metastasis of Human Pancreatic Cancer in Mice. Cancers, 2022, 14, 4918.	1.7	11
282	A Bench to Bedside Perspective on Anthracycline Chemotherapy-mediated Cardiovascular Dysfunction: Challenges and OpportunitiesA Symposium Review. Journal of Applied Physiology, 0, , .	1.2	0
283	Mitochondria-targeted antioxidants: coenzyme Q10, mito-Q and beyond. , 2023, , 255-302.		0
284	Mitoquinone mesylate attenuates pathological features of lean and obese allergic asthma in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L141-L153.	1.3	5
285	MitoQ Protects Ovarian Organoids against Oxidative Stress during Oogenesis and Folliculogenesis In Vitro. International Journal of Molecular Sciences, 2023, 24, 924.	1.8	4
286	Regulation of Synovial γδT Cell Ligand Expression by Mitochondrial Reactive Oxygen Species and Gasdermin-D. Journal of Immunology, 2023, 210, 61-71.	0.4	1
287	Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules, 2023, 28, 1057.	1.7	22
288	Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers, 2023, 15, 666.	1.7	13
289	Incorporating a Polyethyleneglycol Linker to Enhance the Hydrophilicity of Mitochondriaâ€Targeted Triphenylphosphonium Constructs. ChemBioChem, 2023, 24, .	1.3	3
290	Mitochondria in health, disease, and aging. Physiological Reviews, 2023, 103, 2349-2422.	13.1	56
291	Placental Mitochondrial Function and Dysfunction in Preeclampsia. International Journal of Molecular Sciences, 2023, 24, 4177.	1.8	11
292	The Importance of Appropriate Taurine Formulations to Target Mitochondria. , 2023, , 308-327.		0
293	Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology, 2024, 79, 482-501.	3.6	4
294	MitoQ ameliorates PM2.5-induced pulmonary fibrosis through regulating the mitochondria DNA homeostasis. Chemosphere, 2023, 330, 138745.	4.2	1
295	Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants, 2023, 12, 973.	2.2	3

ARTICLE

IF CITATIONS