Effect of Surface Properties on Nanoparticle–Cell Inte

Small 6, 12-21 DOI: 10.1002/smll.200901158

Citation Report

#	Article	IF	CITATIONS
1	Health Risks of Nanotechnology. EURO-NanoTox-Letters, 2009, 1, 1-18.	1.0	3
2	The Possible Side-Effects Of Iron Oxide Nanoparticles On Cell Functionality. , 2010, , .		1
3	Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. Nanoscale, 2010, 2, 1962.	2.8	134
4	Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5, 213-230.	6.2	606
5	Chitosanâ€based gene delivery vectors targeted to the peripheral nervous system. Journal of Biomedical Materials Research - Part A, 2010, 95A, 801-810.	2.1	25
6	Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications. Advanced Functional Materials, 2010, 20, 3684-3694.	7.8	216
8	Nanoparticleâ€Mediated Delivery of Bleomycin. Angewandte Chemie - International Edition, 2010, 49, 8897-8901.	7.2	40
9	Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. International Journal of Pharmaceutics, 2010, 396, 156-165.	2.6	62
10	Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for α-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement. Biosensors and Bioelectronics, 2010, 25, 2657-2662.	5.3	105
11	The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles. Small, 2010, 6, 2246-2249.	5.2	232
12	Surface Properties Dictate Uptake, Distribution, Excretion, and Toxicity of Nanoparticles in Fish. Small, 2010, 6, 2261-2265.	5.2	113
13	Shapeâ€Dependent Cytotoxicity and Proinflammatory Response of Poly(3,4â€ethylenedioxythiophene) Nanomaterials. Small, 2010, 6, 872-879.	5.2	66
14	From Small Ideas…. Small, 2010, 6, 3-4.	5.2	3
15	Magnetic Resonance Imaging of the Inner Ear in Meniere's Disease. Otolaryngologic Clinics of North America, 2010, 43, 1059-1080.	0.5	77
16	Microglial Response to Gold Nanoparticles. ACS Nano, 2010, 4, 2595-2606.	7.3	263
17	Gold nanorods for platinum based prodrug delivery. Chemical Communications, 2010, 46, 8424.	2.2	94
18	Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles. ACS Nano, 2010, 4, 7151-7160.	7.3	417
19	Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano, 2010, 4, 5321-5331.	7.3	581

TION RE

#	Article	IF	CITATIONS
20	Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010, 10, 2543-2548.	4.5	537
21	In vitro Cytotoxic Evaluation of Metallic and Magnetic DNA-Templated Nanostructures. ACS Applied Materials & Interfaces, 2010, 2, 1407-1413.	4.0	12
22	Interactions Between Giant Unilamellar Vesicles and Charged Coreâ^'Shell Magnetic Nanoparticles. Langmuir, 2010, 26, 16025-16030.	1.6	63
23	Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry. ACS Nano, 2010, 4, 35-42.	7.3	150
24	Maximization of Loading and Stability of ssDNA:Iron Oxide Nanoparticle Complexes Formed through Electrostatic Interaction. Langmuir, 2010, 26, 18293-18299.	1.6	18
25	Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2010, 2, 1870.	2.8	504
26	Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery, 2010, 7, 753-763.	2.4	437
27	Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano, 2010, 4, 5421-5429.	7.3	571
28	Unexpected Toxicity of Monolayer Protected Gold Clusters Eliminated by PEG-Thiol Place Exchange Reactions. Chemical Research in Toxicology, 2010, 23, 1608-1616.	1.7	58
29	Assessing iron oxide nanoparticle toxicity <i>in vitro</i> : current status and future prospects. Nanomedicine, 2010, 5, 1261-1275.	1.7	127
30	Electrophoretic Mobilities of PEGylated Gold NPs. Journal of the American Chemical Society, 2010, 132, 15624-15631.	6.6	88
31	One-Dimensional Protein-Based Nanoparticles Induce Lipid Bilayer Disruption: Carbon Nanotube Conjugates and Amyloid Fibrils. Langmuir, 2010, 26, 17256-17259.	1.6	41
32	Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silicaâ^'Titania Hollow Nanoparticles Based on Size and Surface Functionality. ACS Nano, 2010, 4, 5301-5313.	7.3	229
33	Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. Journal of Materials Chemistry, 2010, 20, 8064.	6.7	98
34	The effect of PAMAM G6 dendrimers on the structure of lipid vesicles. Physical Chemistry Chemical Physics, 2010, 12, 12267.	1.3	27
35	Single-step bifunctional coating for selectively conjugable nanoparticles. Nanoscale, 2010, 2, 2783.	2.8	28
36	Synthesis of cationic quantum dots via a two-step ligand exchange process. Chemical Communications, 2011, 47, 3069.	2.2	32
37	Hollow chitosan–silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. Journal of Materials Chemistry, 2011, 21, 3147.	6.7	26

#	Article	IF	CITATIONS
38	Lipid Bilayer Templated Gold Nanoparticles Nanoring Formation Using Zirconium Ion Coordination Chemistry. Langmuir, 2011, 27, 9484-9489.	1.6	12
39	Permeation of nanocrystals across lipid membranes. Molecular Physics, 2011, 109, 1511-1526.	0.8	33
40	Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Physical Chemistry Chemical Physics, 2011, 13, 13268.	1.3	31
41	Facile fabrication of uniform golf-ball-shaped microparticles from various polymers. Soft Matter, 2011, 7, 10874.	1.2	37
42	Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter, 2011, 7, 9104.	1.2	99
43	Size-dependent endocytosis of single gold nanoparticles. Chemical Communications, 2011, 47, 8091.	2.2	89
44	Investigation of noble metal nanoparticleζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Analyst, The, 2011, 136, 3478-3486.	1.7	30
45	Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells. ACS Nano, 2011, 5, 4909-4918.	7.3	85
46	Polymer-Coated NaYF ₄ :Yb ³⁺ , Er ³⁺ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging. ACS Nano, 2011, 5, 7838-7847.	7.3	258
47	Nonspecific Adsorption of Charged Quantum Dots on Supported Zwitterionic Lipid Bilayers: Real-Time Monitoring by Quartz Crystal Microbalance with Dissipation. Langmuir, 2011, 27, 2528-2535.	1.6	56
48	Probing Intracellular Biomarkers and Mediators of Cell Activation Using Nanosensors and Bioorthogonal Chemistry. ACS Nano, 2011, 5, 3204-3213.	7.3	67
49	Single-Step Biofriendly Synthesis of Surface Modifiable, Near-Spherical Gold Nanoparticles for Applications in Biological Detection and Catalysis. Langmuir, 2011, 27, 5549-5554.	1.6	30
50	De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Biomacromolecules, 2011, 12, 2327-2334.	2.6	52
51	Cellular Uptake and Fate of PEGylated Gold Nanoparticles Is Dependent on Both Cell-Penetration Peptides and Particle Size. ACS Nano, 2011, 5, 6434-6448.	7.3	381
52	Uptake of Gold Nanoparticles in Healthy and Tumor Cells Visualized by Nonlinear Optical Microscopy. Journal of Physical Chemistry B, 2011, 115, 5008-5016.	1.2	32
53	Single Particle Orientation and Rotation Tracking Discloses Distinctive Rotational Dynamics of Drug Delivery Vectors on Live Cell Membranes. Journal of the American Chemical Society, 2011, 133, 5720-5723.	6.6	96
54	Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano, 2011, 5, 9074-9081.	7.3	131
55	Cellular interactions of therapeutically delivered nanoparticles. Expert Opinion on Drug Delivery, 2011, 8, 141-151.	2.4	88

#	Article	IF	CITATIONS
56	Intracellular Targeting of PLGA Nanoparticles Encapsulating Antigenic Peptide to the Endoplasmic Reticulum of Dendritic Cells and Its Effect on Antigen Cross-Presentation <i>in Vitro</i> . Molecular Pharmaceutics, 2011, 8, 1266-1275.	2.3	93
57	Intracellular Protein Target Detection by Quantum Dots Optimized for Live Cell Imaging. Bioconjugate Chemistry, 2011, 22, 1576-1586.	1.8	49
58	Facile Synthesis of Size-Controlled Silver Nanoparticles Using Plant Tannin Grafted Collagen Fiber As Reductant and Stabilizer for Microwave Absorption Application in the Whole Ku Band. Journal of Physical Chemistry C, 2011, 115, 23688-23694.	1.5	66
59	Design and development of quantum dots and other nanoparticles based cellular imaging probe. Physical Chemistry Chemical Physics, 2011, 13, 385-396.	1.3	71
60	A biophysical perspective of understanding nanoparticles at large. Physical Chemistry Chemical Physics, 2011, 13, 7273.	1.3	63
61	Characterization of Nanoparticles in Biological Environments. , 2011, , 329-339.		8
62	Interaction of Densely Polymer-Coated Gold Nanoparticles with Epithelial Caco-2 Monolayers. Biomacromolecules, 2011, 12, 1339-1348.	2.6	56
63	Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. MedChemComm, 2011, 2, 421.	3.5	37
64	Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy. Nano Letters, 2011, 11, 1733-1738.	4.5	157
65	Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nature Communications, 2011, 2, 438.	5.8	159
66	Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale, 2011, 3, 3291.	2.8	121
67	Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale, 2011, 3, 429-434.	2.8	209
68	Disruption of Supported Lipid Bilayers by Semihydrophobic Nanoparticles. Journal of the American Chemical Society, 2011, 133, 10983-10989.	6.6	86
69	Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale, 2011, 3, 2028.	2.8	96
70	Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 2011, 101, 117-125.	1.9	151
71	Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 361-373.	1.1	408
72	SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomedical Optics Express, 2011, 2, 1946.	1.5	30
73	Nanoparticle-based monitoring of cell therapy. Nanotechnology, 2011, 22, 494001.	1.3	74

#	Article	IF	CITATIONS
74	Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells. Toxicology Letters, 2011, 205, 163-172.	0.4	59
75	Nanocompounds of iron and zinc: their potential in nutrition. Nanoscale, 2011, 3, 2390.	2.8	50
76	Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis. ACS Nano, 2011, 5, 7155-7167.	7.3	749
77	Chitosanâ^'Cholesterol-Based Cellular Delivery of Anionic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 137-144.	1.5	24
78	Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA. Journal of Physical Chemistry C, 2011, 115, 599-606.	1.5	30
79	Short-Chain PEG Mixed Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts. ACS Nano, 2011, 5, 3577-3584.	7.3	104
80	Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery. Therapeutic Delivery, 2011, 2, 493-521.	1.2	49
81	Comprehensive screening of octopus amphiphiles as DNA activators in lipid bilayers: implications on transport, sensing and cellular uptake. Organic and Biomolecular Chemistry, 2011, 9, 2641.	1.5	26
82	DNA Damage in Embryonic Stem Cells Caused by Nanodiamonds. ACS Nano, 2011, 5, 2376-2384.	7.3	153
83	Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Transactions, 2011, 40, 6315.	1.6	243
84	Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. International Journal of Nanomedicine, 2011, 6, 535.	3.3	49
85	Different Capacity of Monocyte Subsets to Phagocytose Iron-Oxide Nanoparticles. PLoS ONE, 2011, 6, e25197.	1.1	38
86	Nanoparticle-based delivery for the treatment of inner ear disorders. Current Opinion in Otolaryngology and Head and Neck Surgery, 2011, 19, 388-396.	0.8	26
88	The Role of Patterned Hydrophilic Domains in Nanoparticle-Membrane Interactions. Current Nanoscience, 2011, 7, 690-698.	0.7	14
89	Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy. Journal of Microscopy, 2011, 244, 187-193.	0.8	10
90	The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotechnology, 2011, 6, 385-391.	15.6	637
91	Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 580-587.	1.7	196
92	Emerging nanomaterials for targeting subcellular organelles. Nano Today, 2011, 6, 478-492.	6.2	129

#	Article	IF	CITATIONS
93	Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecologic Oncology, 2011, 120, 393-403.	0.6	57
94	Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials, 2011, 32, 9515-9524.	5.7	76
95	Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces. Biomacromolecules, 2011, 12, 1058-1066.	2.6	73
96	Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6, 446-465.	6.2	581
97	Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, 2011, 3, 2819.	2.8	360
98	The bench scientist's perspective on the unique considerations in nanoparticle regulation. Journal of Nanoparticle Research, 2011, 13, 1389-1400.	0.8	6
99	Nanomaterials in biological environment: a review of computer modelling studies. European Biophysics Journal, 2011, 40, 103-115.	1.2	108
100	Cytotoxic effects of iron oxide nanoparticles and implications for safety in cellÂlabelling. Biomaterials, 2011, 32, 195-205.	5.7	285
101	The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials, 2011, 32, 1748-1758.	5.7	34
102	Hierarchical nanoengineered surfaces for enhanced cytoadhesion and drug delivery. Biomaterials, 2011, 32, 3499-3506.	5.7	36
103	Drug delivery to the testis: current status and potential pathways for the development of novel therapeutics. Drug Delivery and Translational Research, 2011, 1, 351-60.	3.0	6
104	Uptake and fate of surface modified silica nanoparticles in head and neck squamous cell carcinoma. Journal of Nanobiotechnology, 2011, 9, 32.	4.2	37
105	Wellâ€defined succinylated chitosanâ€ <i>O</i> â€poly(oligo(ethylene glycol)methacrylate) for pHâ€reversible shielding of cationic nanocarriers. Journal of Polymer Science Part A, 2011, 49, 3595-3603.	2.5	13
106	Synthesis and characterization of positively charged, aluminaâ€coated silica/polystyrene hybrid nanoparticles via pickering miniemulsion polymerization. Journal of Polymer Science Part A, 2011, 49, 4735-4746.	2.5	32
107	Effective Gene Silencing by Multilayered siRNA oated Gold Nanoparticles. Small, 2011, 7, 364-370.	5.2	109
108	Artificial Surfaceâ€Modified Si ₃ N ₄ Nanopores for Single Surfaceâ€Modified Gold Nanoparticle Scanning. Small, 2011, 7, 455-459.	5.2	31
109	Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small, 2011, 7, 1322-1337.	5.2	975
110	More Effective Nanomedicines through Particle Design. Small, 2011, 7, 1919-1931.	5.2	403

#	Article	IF	CITATIONS
111	Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Bioâ€macromolecules. Small, 2011, 7, 1903-1918.	5.2	83
112	Polymer Nanoneedleâ€Mediated Intracellular Drug Delivery. Small, 2011, 7, 2094-2100.	5.2	67
113	Detection of Nanoparticle Endocytosis Using Magnetoâ€Photoacoustic Imaging. Small, 2011, 7, 2858-2862.	5.2	22
114	Peptideâ€mediated cancer targeting of nanoconjugates. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 269-281.	3.3	55
115	Polymer Brushes Showing Nonâ€Fouling in Blood Plasma Challenge the Currently Accepted Design of Protein Resistant Surfaces. Macromolecular Rapid Communications, 2011, 32, 952-957.	2.0	184
116	Nanogel Star Polymer Architectures: A Nanoparticle Platform for Modular Programmable Macromolecular Selfâ€Assembly, Intercellular Transport, and Dualâ€Mode Cargo Delivery. Advanced Materials, 2011, 23, 4509-4515.	11.1	45
117	Magnetic Nanocarriers with Tunable pH Dependence for Controlled Loading and Release of Cationic and Anionic Payloads. Advanced Materials, 2011, 23, 5645-5650.	11.1	46
118	MRI of inducible Pâ€selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR in Biomedicine, 2011, 24, 413-424.	1.6	53
122	Resettable, Multiâ€Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 4103-4107.	7.2	229
123	Programming the Cellular Uptake of Physiologically Stable Peptide–Gold Nanoparticle Hybrids with Single Amino Acids. Angewandte Chemie - International Edition, 2011, 50, 9643-9646.	7.2	50
124	Oligonucleotide Delivery by Cellâ€Penetrating "Striped―Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 12312-12315.	7.2	71
125	Liposomal cerasome: a nanohybrid of liposome and silica. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 569-574.	0.8	10
126	Design, Synthesis and Characterization of a New Anionic Cellâ€Penetrating Peptide: SAP(E). ChemBioChem, 2011, 12, 896-903.	1.3	66
127	Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosensors and Bioelectronics, 2011, 26, 1908-1912.	5.3	149
128	Polymeric nanocapsules ultra stable in complex biological media. Colloids and Surfaces B: Biointerfaces, 2011, 83, 376-381.	2.5	39
129	Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials, 2011, 32, 2141-2148.	5.7	125
130	Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6, 176-185.	6.2	1,063
131	A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging. Nanotechnology, 2011, 22, 295104.	1.3	19

#	Article	IF	CITATIONS
132	Endocytosis of Environmental and Engineered Micro―and Nanosized Particles. , 2011, 1, 1159-1174.		16
133	Cellular binding of nanoparticles in the presence of serum proteins. Chemical Communications, 2011, 47, 466-468.	2.2	59
134	Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and <i>In Vitro</i> Assessment. Journal of Drug Delivery, 2012, 2012, 1-8.	2.5	86
135	A novel platform for pulmonary and cardiovascular toxicological characterization of inhaled engineered nanomaterials. Nanotoxicology, 2012, 6, 680-690.	1.6	51
136	Quantum Dots in Biomedical Research. , 2012, , .		10
137	Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response. Journal of the Royal Society Interface, 2012, 9, 3397-3410.	1.5	38
138	Facile synthesis of fluorescent gold nanoclusters and their application in cellular imaging. Proceedings of SPIE, 2012, , .	0.8	6
139	Characterization techniques for nanoparticulate carriers. , 2012, , 87-121.		4
140	Role of surface ligands in nanoparticle permeation through a model membrane: a coarse-grained molecular dynamics simulations study. Molecular Physics, 2012, 110, 2181-2195.	0.8	33
141	Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?. Astrobiology, 2012, 12, 785-798.	1.5	25
142	Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects. Nanoscale, 2012, 4, 3365.	2.8	63
143	Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Applied Physics Letters, 2012, 100, 13703-137034.	1.5	54
144	Binding of carbon nanotube to BMP receptor 2 enhances cell differentiation and inhibits apoptosis via regulating bHLH transcription factors. Cell Death and Disease, 2012, 3, e308-e308.	2.7	26
145	Cytotoxicity of Gold Nanoparticles Prepared by Ultrasonic Spray Pyrolysis. Journal of Biomaterials Applications, 2012, 26, 595-612.	1.2	27
146	Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. International Journal of Nanomedicine, 2012, 7, 5653.	3.3	54
147	The Influence of Different Metal-Chelators on the Biological Profile of Nanoparticles for Gallium-68 Based Molecular Imaging. Journal of Nano Research, 2012, 20, 21-31.	0.8	1
148	Co-delivery Strategies Based on Multifunctional Nanocarriers for Cancer Therapy. Current Drug Metabolism, 2012, 13, 1087-1096.	0.7	24
149	Interaction of (â^')-Epigallocatechin Gallate and Silver Colloid with Bovine Serum Albumin. Applied Spectroscopy, 2012, 66, 75-81.	1.2	2

TION

#	Article	IF	CITATIONS
150	Cooperative Effect in Receptor-Mediated Endocytosis of Multiple Nanoparticles. ACS Nano, 2012, 6, 3196-3205.	7.3	186
151	Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle–Biomembrane Interaction. Langmuir, 2012, 28, 12831-12837.	1.6	90
152	Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specificÂsurface-coating peptides. Nature Materials, 2012, 11, 817-826.	13.3	158
153	Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology, 2013, 7, 1168-1178.	1.6	53
154	Cellular Binding and Internalization of Functionalized Silicon Nanowires. Nano Letters, 2012, 12, 1002-1006.	4.5	37
155	Europium-Doped TiO ₂ Hollow Nanoshells: Two-Photon Imaging of Cell Binding. Chemistry of Materials, 2012, 24, 4222-4230.	3.2	45
156	Optical Sensing of Small lons with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	3.2	60
157	Engineering Nanomaterials for Biomedical Applications Requires Understanding the Nano-Bio Interface: A Perspective. Journal of Physical Chemistry Letters, 2012, 3, 3149-3158.	2.1	98
158	Selectivity of Ligand-Receptor Interactions between Nanoparticle and Cell Surfaces. Physical Review Letters, 2012, 109, 238102.	2.9	44
159	Extracellular Biosynthesis of Silver Nanoparticles Using Fungi Penicillium diversum and Their Antimicrobial Activity Studies. BioNanoScience, 2012, 2, 316-321.	1.5	50
160	Mechanism of supported bilayer formation of zwitterionic lipids on SiO2 nanoparticles and structure of the stable colloids. RSC Advances, 2012, 2, 11336.	1.7	14
161	Water-soluble gold nanoparticles stabilized with cationic phosphonium thiolate ligands. RSC Advances, 2012, 2, 10345.	1.7	19
162	Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Advances, 2012, 2, 3025.	1.7	54
163	Nanoparticle Surface Charge Mediates the Cellular Receptors Used by Protein–Nanoparticle Complexes. Journal of Physical Chemistry B, 2012, 116, 8901-8907.	1.2	127
164	Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochemical Journal, 2012, 441, 813-821.	1.7	186
165	Hydrodynamic Size-Dependent Cellular Uptake of Aqueous QDs Probed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 12125-12132.	1.2	37
166	Effects of Embedded Carbon Nanotube on Properties of Biomembrane. Journal of Physical Chemistry B, 2012, 116, 5391-5397.	1.2	12
167	Surface Charge Dependent Nanoparticle Disruption and Deposition of Lipid Bilayer Assemblies. Langmuir, 2012, 28, 17396-17403.	1.6	37

#	Article	IF	Citations
168	Lanthanide-Based NMR: A Tool To Investigate Component Distribution in Mixed-Monolayer-Protected Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7200-7203.	6.6	44
170	Effective Surface Charge Density Determines the Electrostatic Attraction between Nanoparticles and Cells. Journal of Physical Chemistry C, 2012, 116, 4993-4998.	1.5	75
171	Formation of Nano-Bio-Complex as Nanomaterials Dispersed in a Biological Solution for Understanding Nanobiological Interactions. Scientific Reports, 2012, 2, 406.	1.6	76
172	Toxicity of nanomaterials. Chemical Society Reviews, 2012, 41, 2323-2343.	18.7	1,221
173	Applications of Colloidal Inorganic Nanoparticles: From MedicineÂtoÂEnergy. Journal of the American Chemical Society, 2012, 134, 15607-15620.	6.6	388
174	The Early Life of Gold Nanorods: Temporal Separation of Anisotropic and Isotropic Growth Modes. Journal of Cluster Science, 2012, 23, 799-809.	1.7	15
175	Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	59
176	The gold–sulfur interface at the nanoscale. Nature Chemistry, 2012, 4, 443-455.	6.6	1,418
177	Surfaces Resistant to Fouling from Biological Fluids: Towards Bioactive Surfaces for Real Applications. Macromolecular Bioscience, 2012, 12, 1413-1422.	2.1	85
178	Surface Interactions Affect the Toxicity of Engineered Metal Oxide Nanoparticles toward <i>Paramecium</i> . Chemical Research in Toxicology, 2012, 25, 1675-1681.	1.7	48
179	Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery. Soft Matter, 2012, 8, 11557.	1.2	60
180	Simple colorimetric DNA detection based on hairpin assembly reaction and target-catalytic circuits for signal amplification. Analytical Biochemistry, 2012, 429, 99-102.	1.1	46
181	Cationic core–shell liponanoparticles for ocular gene delivery. Biomaterials, 2012, 33, 7621-7630.	5.7	61
182	Functional ionic liquids induced the formation of mitochondria targeted fluorescent core–shell ellipsoidal nanoparticles with anticancer properties. Colloids and Surfaces B: Biointerfaces, 2012, 98, 91-96.	2.5	14
183	Fluorescenceâ€Tagged Gold Nanoparticles for Rapidly Characterizing the Sizeâ€Đependent Biodistribution in Tumor Models. Advanced Healthcare Materials, 2012, 1, 714-721.	3.9	92
184	A Highly Entangled Polymeric Nanoconstruct Assembled by siRNA and its Reductionâ€Triggered siRNA Release for Gene Silencing. Small, 2012, 8, 3209-3219.	5.2	27
185	A New Approach to Assess Gold Nanoparticle Uptake by Mammalian Cells: Combining Optical Darkâ€Field and Transmission Electron Microscopy. Small, 2012, 8, 3683-3690.	5.2	63
186	Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution. Nanoscale Research Letters, 2012, 7, 151.	3.1	56

#	Article	IF	CITATIONS
187	Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7, 358.	3.1	61
188	Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine, 2012, 7, 39-53.	1.7	42
189	Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. International Journal of Nanomedicine, 2012, 7, 1399.	3.3	49
190	In vitro biological effects of magnetic nanoparticles. Science Bulletin, 2012, 57, 3972-3978.	1.7	24
191	Polyaspartamide Derivative Nanoparticles with Tunable Surface Charge Achieve Highly Efficient Cellular Uptake and Low Cytotoxicity. Langmuir, 2012, 28, 11310-11318.	1.6	22
192	Temperature Effect on the Aggregation Kinetics of CeO2 Nanoparticles in Monovalent and Divalent Electrolytes. , 2012, 02, .		3
193	Genome-Wide Bacterial Toxicity Screening Uncovers the Mechanisms of Toxicity of a Cationic Polystyrene Nanomaterial. Environmental Science & Technology, 2012, 46, 2398-2405.	4.6	54
194	Cellular Uptake of Gold Nanoparticles Bearing HIV gp120 Oligomannosides. Bioconjugate Chemistry, 2012, 23, 814-825.	1.8	88
195	Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012, 84, 4321-4326.	3.2	40
196	Nano- and Biotechniques for Electronic Device Packaging. , 2012, , 49-76.		1
197	EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine, 2012, 7, 1895-1906.	1.7	112
198	High-Speed Imaging of Rab Family Small GTPases Reveals Rare Events in Nanoparticle Trafficking in Living Cells. ACS Nano, 2012, 6, 1513-1521.	7.3	118
199	Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine, 2012, 7, 835.	3.3	124
200	Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano, 2012, 6, 1251-1259.	7.3	313
201	Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano, 2012, 6, 4796-4805.	7.3	53
202	Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry, 2012, 3, 2920.	1.9	33
203	Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 2012, 41, 1867-1891.	18.7	535
204	Challenges in drug delivery to the brain: Nature is against us. Journal of Controlled Release, 2012, 164, 145-155.	4.8	132

#	Article	IF	CITATIONS
205	Microenvironments and different nanoparticle dynamics in living cells revealed by a standard nanoparticle. Journal of Controlled Release, 2012, 163, 315-321.	4.8	14
206	Enhanced protein-mediated binding between oligonucleotide–gold nanoparticle composites and cell surfaces: co-transport of proteins and composites. Journal of Materials Chemistry, 2012, 22, 25036.	6.7	12
207	Nanoparticle Hydrophobicity Dictates Immune Response. Journal of the American Chemical Society, 2012, 134, 3965-3967.	6.6	418
208	Nanoclusters of Iron Oxide: Effect of Core Composition on Structure, Biocompatibility, and Cell Labeling Efficacy. Bioconjugate Chemistry, 2012, 23, 941-950.	1.8	13
209	Methods for Understanding the Interaction Between Nanoparticles and Cells. Methods in Molecular Biology, 2012, 926, 33-56.	0.4	6
210	Interactions between Janus particles and membranes. Nanoscale, 2012, 4, 1116-1122.	2.8	110
211	Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups. Journal of Materials Chemistry, 2012, 22, 25463.	6.7	16
212	Gold Branched Nanoparticles for Cellular Treatments. Journal of Physical Chemistry C, 2012, 116, 18407-18418.	1.5	46
213	Size-Dependent Partitioning of Nano/Microparticles Mediated by Membrane Lateral Heterogeneity. Journal of the American Chemical Society, 2012, 134, 13990-13996.	6.6	56
214	Minimalism in Radiation Synthesis of Biomedical Functional Nanogels. Biomacromolecules, 2012, 13, 1805-1817.	2.6	40
215	Noninvasive assessment of magnetic nanoparticle–cancer cell interactions. Integrative Biology (United Kingdom), 2012, 4, 1283-1288.	0.6	22
216	Atomistic Simulations of Functional Au ₁₄₄ (SR) ₆₀ Gold Nanoparticles in Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 9805-9815.	1.5	94
217	The interaction of GSSG modified magnetic nanoparticles with SPC-A1 cells in vitro. Science Bulletin, 2012, 57, 3525-3531.	1.7	5
218	Facile Preparation of Cationic Gold Nanoparticle-Bioconjugates for Cell Penetration and Nuclear Targeting. ACS Nano, 2012, 6, 7692-7702.	7.3	100
219	Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano, 2012, 6, 1230-1238.	7.3	264
220	Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation. Molecules, 2012, 17, 13221-13234.	1.7	41
221	Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes. Langmuir, 2012, 28, 16318-16326.	1.6	135
222	Routes of nanoparticle uptake into mammalian organisms, their biocompatibility and cellular effects. Biology Bulletin Reviews, 2012, 2, 279-289.	0.3	3

ARTICLE IF CITATIONS # Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. PLoS ONE, 2012, 7, 223 1.1 80 e40685. Effect of Pullulan Nanoparticle Surface Charges on HSA Complexation and Drug Release Behavior of 224 1.1 24 HSA-Bound Nanoparticles. PLoS ONE, 2012, 7, e49304. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma 225 3.3 18 cell proliferation. International Journal of Nanomedicine, 2012, 7, 3295. EphA2 Targeted Doxorubicin Stealth Liposomes as a Therapy System for Choroidal Neovascularization 34 in Rats. , 2012, 53, 7348. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic 227 3.3 90 surfactants. International Journal of Nanomedicine, 2012, 7, 3547. Primary Investigation of the Preparation of Nanoparticles by Precipitation. Molecules, 2012, 17, 11067-11078. 1.7 Novel Nano Drug Systems for Cardiovascular Applications. Recent Patents on Biomedical Engineering, 229 0.5 1 2012, 5, 3-13. Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by 230 3.3 human colon cells. International Journal of Nanomedicine, 2012, 7, 1275. Effect of Protein Adsorption on the Fluorescence of Ultrasmall Gold Nanoclusters. Small, 2012, 8, 231 5.2 159 661-665. Formation of Lipid Sheaths around Nanoparticleâ€Supported Lipid Bilayers. Small, 2012, 8, 1740-1751. 5.2 How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human 233 5.2 180 Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230. The Interplay of Monolayer Structure and Serum Protein Interactions on the Cellular Uptake of Gold 234 5.2 Nanoparticlés. Small, 2012, 8, 2659-2663. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly 235 1.3 9 light scattering media. Nanotechnology, 2012, 23, 155501. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical 18.7 974 Society Reviews, 2012, 41, 2885. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical 237 18.7 725 Society Reviews, 2012, 41, 2943. Surface functionalization of nanoparticles for nanomedicine. Chemical Society Reviews, 2012, 41, 2539. 651 Mechanisms of cellular adaptation to quantum dots â€" the role of glutathione and transcription 239 1.6 45 factor EB. Nanotoxicology, 2012, 6, 249-262. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter, 2012, 240 1.2 221 8, 4849.

#	Article	IF	CITATIONS
241	Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 2012, 41, 2971.	18.7	1,469
242	Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4, 1871-1880.	2.8	1,067
243	Adsorption and Disruption of Lipid Bilayers by Nanoscale Protein Aggregates. Langmuir, 2012, 28, 3887-3895.	1.6	32
244	A Facile Synthesis of PEG-Coated Magnetite (Fe ₃ O ₄) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Applied Materials & Interfaces, 2012, 4, 142-149.	4.0	200
245	Biomimetic monolayer-protected gold nanoparticles for immunorecognition. Nanoscale, 2012, 4, 3843.	2.8	22
246	A Strategy in The Design of Micellar Shape for Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 214-224.	3.9	44
247	DNA "Nanolamps― "Clicked―DNA Conjugates with Photon Upconverting Nanoparticles as Highly Emissive Biomaterial. ChemPlusChem, 2012, 77, 129-134.	1.3	21
248	Surface-structure-regulated penetration of nanoparticles across a cell membrane. Nanoscale, 2012, 4, 3768.	2.8	172
249	Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	26
250	Approaching the Asymptote: Obstacles and Opportunities for Nanomedicine in Cardiovascular Disease. Current Atherosclerosis Reports, 2012, 14, 247-253.	2.0	6
251	Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Archives of Toxicology, 2012, 86, 685-700.	1.9	159
252	Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomaterialia, 2012, 8, 1221-1229.	4.1	104
253	Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomaterialia, 2012, 8, 2047-2055.	4.1	151
254	Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere, 2012, 87, 1388-1394.	4.2	157
255	Mitoxantrone-loaded zeolite beta nanoparticles: Preparation, physico-chemical characterization and biological evaluation. Journal of Colloid and Interface Science, 2012, 365, 33-40.	5.0	30
256	Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials, 2012, 33, 1948-1958.	5.7	59
257	Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-l-lysine. Biomaterials, 2012, 33, 2361-2371.	5.7	45
258	Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33, 5798-5802.	5.7	163

#	Article	IF	CITATIONS
259	Designing the nanoparticle–biomolecule interface for "targeting and therapeutic delivery― Journal of Controlled Release, 2012, 161, 164-174.	4.8	344
260	Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling. Journal of Hazardous Materials, 2012, 209-210, 264-270.	6.5	81
261	Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 2012, 24, 1504-1534.	11.1	2,326
262	The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-749.	7.6	330
263	Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 2013, 11, 26.	4.2	799
264	Immobilization of Enzymes and Cells. Methods in Molecular Biology, 2013, , .	0.4	54
265	Design and Characterization of Functional Nanoparticles for Enhanced Bio-performance. Methods in Molecular Biology, 2013, 1051, 165-207.	0.4	1
266	Handling of Iron Oxide and Silver Nanoparticles by Astrocytes. Neurochemical Research, 2013, 38, 227-239.	1.6	54
267	Influence of geometric nanoparticle rotation on cellular internalization process. Nanoscale, 2013, 5, 7998.	2.8	37
268	Synthesis, characterization and in vitro studies of celecoxib-loaded poly(ortho ester) nanoparticles targeted for intraocular drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 112, 474-482.	2.5	23
269	Scanning Probe Microscopy of Nanocomposite Membranes and Dynamic Organization. Advanced Functional Materials, 2013, 23, 2576-2591.	7.8	5
270	Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2215-2222.	1.4	19
272	Nanodiamond internalization in cells and the cell uptake mechanism. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	73
273	Bioengineered nanoparticles for <scp>siRNA</scp> delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 449-468.	3.3	42
274	Exposure of single-walled carbon nanotubes impairs the functions of primarily cultured murine peritoneal macrophages. Nanotoxicology, 2013, 7, 1028-1042.	1.6	34
275	Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials, 2013, 34, 3858-3869.	5.7	158
276	Synthesis and characterization of stable dicarboxylic pegylated magnetite nanoparticles. Materials Letters, 2013, 100, 266-270.	1.3	19
277	Ligand-Mediated Short-Range Attraction Drives Aggregation of Charged Monolayer-Protected Gold Nanoparticles. Langmuir, 2013, 29, 8788-8798.	1.6	48

#	Article	IF	CITATIONS
278	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	4.8	141
279	Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale, 2013, 5, 3723.	2.8	127
280	Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. Journal of Materials Chemistry B, 2013, 1, 4225.	2.9	46
281	Effect of Particle Diameter and Surface Composition on the Spontaneous Fusion of Monolayer-Protected Gold Nanoparticles with Lipid Bilayers. Nano Letters, 2013, 13, 4060-4067.	4.5	236
282	An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrology, 2013, 14, 96.	0.8	105
283	Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, 2013, , .	0.6	58
284	Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release. Nanoscale, 2013, 5, 11464.	2.8	33
285	Relationship between physico-chemical properties of magnetic fluids and their heating capacity. International Journal of Hyperthermia, 2013, 29, 768-776.	1.1	53
286	Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter, 2013, 9, 7592.	1.2	57
287	Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine, 2013, 8, 951-968.	1.7	37
288	Characterization and cellular interaction of fluorescent-labeled PHEMA nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 78-84.	1.9	5
289	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	5.7	116
290	Trimethyl and carboxymethyl chitosan carriers for bio-active polymer–inorganic nanocomposites. Carbohydrate Polymers, 2013, 91, 58-67.	5.1	33
291	The effect of ligand composition on the inÂvivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials, 2013, 34, 8370-8381.	5.7	33
292	Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 2013, 142-143, 431-440.	1.9	220
293	Different cell responses induced by exposure to maghemite nanoparticles. Nanoscale, 2013, 5, 11428.	2.8	44
294	The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. Nanoscale, 2013, 5, 12140.	2.8	30
295	Controlling the Fate of Protein Corona by Tuning Surface Properties of Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 3747-3752.	2.1	50

#		IF	CITATIONS
π 297	A Detailed Investigation on the Interactions between Magnetic Nanoparticles and Cell Membrane Models, ACS Applied Materials & amp: Interfaces, 2013, 5, 13063-13068.	4.0	31
298	Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Particle and Fibre Toxicology, 2013, 10, 47.	2.8	53
299	Structural modulation of the biological activity of gold nanoparticles functionalized with a carbonic anhydrase inhibitor. European Physical Journal E, 2013, 36, 48.	0.7	10
300	Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles <i>in Vivo</i> . ACS Nano, 2013, 7, 9384-9395.	7.3	549
301	Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale, 2013, 5, 11400.	2.8	97
302	Translocation of a Charged Nanoparticle Through a Fluidic Nanochannel: The Interplay of Nanoparticle and Ions. Journal of Physical Chemistry B, 2013, 117, 11772-11779.	1.2	11
303	Interactions and visualization of bio-mimetic membrane detachment at smooth and nano-rough gold electrode surfaces. Soft Matter, 2013, 9, 5231.	1.2	16
304	Characterizing the Lateral Friction of Nanoparticles on Onâ€Chip Integrated Black Lipid Membranes. Small, 2013, 9, 876-884.	5.2	10
305	Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomaterials Science, 2013, 1, 265-275.	2.6	43
306	Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge. Nanotechnology, 2013, 24, 185101.	1.3	7
307	The holistic 3M modality of drug delivery nanosystems for cancer therapy. Nanoscale, 2013, 5, 845.	2.8	19
308	Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. Nanoscale, 2013, 5, 143-146.	2.8	66
309	Functionalization of quantum dots with multidentate zwitterionic ligands: impact on cellular interactions and cytotoxicity. Journal of Materials Chemistry B, 2013, 1, 6137.	2.9	29
310	Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells. Polymer Chemistry, 2013, 4, 4103.	1.9	29
311	The Vitreous Humor As a Barrier to Nanoparticle Distribution. Journal of Ocular Pharmacology and Therapeutics, 2013, 29, 143-150.	0.6	57
312	Matrix metalloproteinase-triggered denuding of engineered gold nanoparticles for selective cell uptake. Journal of Materials Chemistry B, 2013, 1, 2341.	2.9	16
313	An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction. Nanoscale, 2013, 5, 9888.	2.8	51
314	Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. Journal of Materials Chemistry B, 2013, 1, 5218.	2.9	20

# 315	ARTICLE Health and Ecosystem Risks of Graphene. Chemical Reviews, 2013, 113, 3815-3835.	IF 23.0	Citations 325
316	Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Human and Experimental Toxicology, 2013, 32, 153-166.	1.1	63
317	Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. Journal of Materials Chemistry B, 2013, 1, 1421.	2.9	36
318	Surfaceâ€enhanced Raman scattering imaging using noble metal nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 180-189.	3.3	30
319	Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Analytical and Bioanalytical Chemistry, 2013, 405, 451-465.	1.9	70
320	PEG-Stabilized Core–Shell Nanoparticles: Impact of Linear <i>versus</i> Dendritic Polymer Shell Architecture on Colloidal Properties and the Reversibility of Temperature-Induced Aggregation. ACS Nano, 2013, 7, 316-329.	7.3	176
321	Sub-100 nm biodegradable nanoparticles:in vitrorelease features and toxicity testing in 2D and 3D cell cultures. Nanotechnology, 2013, 24, 045101.	1.3	23
322	Fate and Health Impact of Inorganic Manufactured Nanoparticles. , 2013, , 245-267.		2
323	Modulation of G protein-coupled adenosine receptors by strategically functionalized agonists and antagonists immobilized on gold nanoparticles. Purinergic Signalling, 2013, 9, 183-198.	1.1	10
324	The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface. Accounts of Chemical Research, 2013, 46, 650-661.	7.6	293
325	Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chemical Reviews, 2013, 113, 1877-1903.	23.0	187
326	Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale, 2013, 5, 1537.	2.8	126
329	Quantitative Analysis of the Fate of Gold Nanocages Inâ€Vitro and Inâ€Vivo after Uptake by U87â€MG Tumor Cells. Angewandte Chemie - International Edition, 2013, 52, 1152-1155.	7.2	25
330	Spatial Charge Configuration Regulates Nanoparticle Transport and Binding Behavior Inâ€Vivo. Angewandte Chemie - International Edition, 2013, 52, 1414-1419.	7.2	81
331	Design maps for cellular uptake of gene nanovectors by computer simulation. Biomaterials, 2013, 34, 8401-8407.	5.7	40
332	The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials, 2013, 34, 6082-6098.	5.7	193
333	Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere, 2013, 93, 1194-1200.	4.2	35
334	Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: Studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 104, 40-47.	2.5	61

		CITATION REPORT		
#	Article		IF	CITATIONS
335	Targeting and delivery of platinum-based anticancer drugs. Chemical Society Reviews,	2013, 42, 202-224.	18.7	588
336	Influence of Serum Supplemented Cell Culture Medium on Colloidal Stability of Polyme Oxide and Polystyrene Nanoparticles With Impact on Cell Interactions In Vitro. IEEE Tra Magnetics, 2013, 49, 402-407.	er Coated Iron Insactions on	1.2	10
337	Microglia Response and In Vivo Therapeutic Potential of Methylprednisolone‣oaded Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	Dendrimer	5.2	91
338	Imaging Inward and Outward Trafficking of Gold Nanoparticles in Whole Animals. ACS 2431-2442.	Nano, 2013, 7,	7.3	63
339	Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells Biomolecular Chemistry, 2013, 11, 2258-2265.	Organic and	1.5	15
340	Maltoheptaose promotes nanoparticle internalization by Escherichia coli. Chemical Co 2013, 49, 3034.	mmunications,	2.2	48
341	Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. Physical Chemical Physics, 2013, 15, 2282-2290.	Chemistry	1.3	68
342	Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano, 2	.013, 7, 932-942.	7.3	89
343	Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanopar Nanotoxicology, 2013, 7, 71-84.	ticles.	1.6	56
344	Lactoferrin-modified PEC-co-PCL nanoparticles for enhanced brain delivery ofÂNAP pep intranasal administration. Biomaterials, 2013, 34, 3870-3881.	tide following	5.7	167
345	Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stabili biocompatibility and cell interactions. Nanoscale, 2013, 5, 3982.	ty,	2.8	83
346	Magnetic nanoparticles: Essential factors for sustainable environmental applications. V Research, 2013, 47, 2613-2632.	Vater	5.3	731
347	A short circulating peptide nanofiber as a carrier for tumoral delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 449-457.		1.7	28
348	Citrate-Capped Silver Nanoparticles Showing Good Bactericidal Effect against Both Pla Sessile Bacteria and a Low Cytotoxicity to Osteoblastic Cells. ACS Applied Materials &a 2013, 5, 3149-3159.	nktonic and mp; Interfaces,	4.0	105
349	Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nat 5, 5017.	10scale, 2013,	2.8	33
350	Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sig Charge. ACS Nano, 2013, 7, 3253-3263.	n of the Net	7.3	477
351	Small fluorescent nanoparticles at the nano–bio interface. Materials Today, 2013, 16	5, 58-66.	8.3	91
352	Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft M 4969.	atter, 2013, 9,	1.2	96

#	Article	IF	CITATIONS
353	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	7.8	72
354	Dendrimer Nanoparticles for Ocular Drug Delivery. Journal of Ocular Pharmacology and Therapeutics, 2013, 29, 151-165.	0.6	96
355	Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomaterialia, 2013, 9, 4734-4743.	4.1	69
356	Poly(ortho ester) Nanoparticle-Based Targeted Intraocular Therapy for Controlled Release of Hydrophilic Molecules. Molecular Pharmaceutics, 2013, 10, 701-708.	2.3	26
357	Interactions of engineered nanomaterials in physiological media and implications for <i>in vitro</i> dosimetry. Nanotoxicology, 2013, 7, 417-431.	1.6	190
358	Nanoparticles, Immunomodulation and Vaccine Delivery. Frontiers in Nanobiomedical Research, 2013, , 449-475.	0.1	7
359	Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale, 2013, 5, 4870.	2.8	161
360	Size-Dependent Stability of Water-Solubilized CdTe Quantum Dots and Their Uptake Mechanism by Live HeLa Cells. ACS Applied Materials & Interfaces, 2013, 5, 1190-1196.	4.0	29
361	Penetration of polymer-grafted nanoparticles through a lipid bilayer. Soft Matter, 2013, 9, 5594.	1.2	7
362	Homogeneous Hydrophobic–Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes. Journal of Physical Chemistry Letters, 2013, 4, 1907-1912.	2.1	67
363	Uptake Kinetics and Nanotoxicity of Silica Nanoparticles Are Cell Type Dependent. Small, 2013, 9, 3970-3980.	5.2	111
364	Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano–Bio Interactions. Small, 2013, 9, 1573-1584.	5.2	176
365	Membrane potential mediates the cellular binding of nanoparticles. Nanoscale, 2013, 5, 5879.	2.8	52
366	Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small, 2013, 9, 1521-1532.	5.2	694
367	Alkyl Imidazolium Ionic-Liquid-Mediated Formation of Gold Particle Superstructures. Langmuir, 2013, 29, 7186-7194.	1.6	20
368	Ethylenediamine-Assisted Ligand Exchange and Phase Transfer of Oleophilic Quantum Dots: Stripping of Original Ligands and Preservation of Photoluminescence. Chemistry of Materials, 2013, 25, 2193-2201.	3.2	57
369	Biomimetic non-fouling surfaces: extending the concepts. Journal of Materials Chemistry B, 2013, 1, 2859.	2.9	76
370	Magnetic Bioactive and Biodegradable Hollow Fe-Doped Hydroxyapatite Coated Poly(<scp>l</scp> -lactic) Acid Micro-nanospheres. Chemistry of Materials, 2013, 25, 2610-2617.	3.2	70

#	Article	IF	CITATIONS
371	Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection. PLoS ONE, 2013, 8, e58431.	1.1	67
372	In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 257-263.	1.7	165
373	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	1.6	183
374	The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 315-357.	0.6	2
375	Intracellular SERS Nanoprobes For Distinction Of Different Neuronal Cell Types. Nano Letters, 2013, 13, 2463-2470.	4.5	140
376	Folate-conjugated cross-linked magnetic nanoparticles as potential magnetic resonance probes for in vivo cancer imaging. Journal of Materials Chemistry B, 2013, 1, 3035.	2.9	30
377	Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environmental Toxicology and Pharmacology, 2013, 36, 451-462.	2.0	157
378	Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine, 2013, 8, 995-1011.	1.7	52
379	Biomedical. Interface Science and Technology, 2013, 19, 385-427.	1.6	2
380	Detection of circulating tumor cells <i>via</i> an X-ray imaging technique. Journal of Synchrotron Radiation, 2013, 20, 324-331.	1.0	7
381	A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes. Journal of Colloid and Interface Science, 2013, 391, 158-167.	5.0	33
382	Effect of Al2O3 nanoparticles on bacterial membrane amphiphilic biomolecules. Colloids and Surfaces B: Biointerfaces, 2013, 102, 292-299.	2.5	9
383	Nucleolin Targeting AS1411 Modified Protein Nanoparticle for Antitumor Drugs Delivery. Molecular Pharmaceutics, 2013, 10, 3555-3563.	2.3	110
384	The Effect of the Hydrophilic/Hydrophobic Ratio of Polymeric Micelles on their Endocytosis Pathways into Cells. Macromolecular Bioscience, 2013, 13, 789-798.	2.1	41
385	The Profile of Payload Release from Gold Nanoparticles Modified with a BODIPY®/PEG Mixed Monolayer. Journal of Nano Research, 2013, 25, 16-30.	0.8	7
386	Synthesis of Nanobioconjugates with a Controlled Average Number of Biomolecules between 1 and 100 per Nanoparticle and Observation of Multivalency Dependent Interaction with Proteins and Cells. Langmuir, 2013, 29, 13917-13924.	1.6	32
387	Structure of Mixed-Monolayer-Protected Nanoparticles in Aqueous Salt Solution from Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2013, 117, 20104-20115.	1.5	63
200	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug	4.0	45

#	Article	IF	CITATIONS
389	Controlling Cellular Uptake of Nanoparticles with pH-Sensitive Polymers. Scientific Reports, 2013, 3, 2804.	1.6	73
390	Surface Functionality of Nanoparticles Determines Cellular Uptake Mechanisms in Mammalian Cells. Small, 2013, 9, 300-305.	5.2	165
391	siRNA Transfection with Calcium Phosphate Nanoparticles Stabilized with PEGylated Chelators. Advanced Healthcare Materials, 2013, 2, 134-144.	3.9	57
392	Enhanced Therapeutic Efficacy of iRGD-Conjugated Crosslinked Multilayer Liposomes for Drug Delivery. BioMed Research International, 2013, 2013, 1-11.	0.9	42
393	Interaction between Dipolar Lipid Headgroups and Charged Nanoparticles Mediated by Water Dipoles and Ions. International Journal of Molecular Sciences, 2013, 14, 15312-15329.	1.8	33
394	Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. European Journal of Nanomedicine, 2013, 5, .	0.6	43
395	Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. Journal of Materials Chemistry B, 2013, 1, 4297.	2.9	26
396	Nanomedicine—Biological Warfare at the Cellular Level. Frontiers of Nanoscience, 2013, 5, 1-26.	0.3	1
397	Poly(<scp>L</scp> â€aspartamide)â€ <scp>B</scp> ased Reductionâ€ <scp>S</scp> ensitive Micelles as Nanocarriers to Improve Doxorubicin Content in Cell Nuclei and to Enhance Antitumor Activity. Macromolecular Bioscience, 2013, 13, 1036-1047.	2.1	21
398	Poly(ethylene glycol)-Functionalized Photocurable Silsesquioxane as an Antibiofouling Material for Nanostructure-Based Biomedical Applications. Japanese Journal of Applied Physics, 2013, 52, 06GG01.	0.8	1
399	Engineered nanomaterial interactions with bilayer lipid membranes: screening platforms to assess nanoparticle toxicity. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 52.	0.1	17
400	Penetration of Gold Nanoparticle into Model Biological Membrane : MD Simulation Study. Journal of the Society of Powder Technology, Japan, 2013, 50, 485-494.	0.0	4
401	Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection. International Journal of Nanomedicine, 2013, 8, 555.	3.3	52
402	Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. International Journal of Nanomedicine, 2013, 8, 919.	3.3	39
403	Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer. Lung Cancer: Targets and Therapy, 2013, 4, 71.	1.3	8
404	In VitroPermeation of Micronized and Nanonized Alaptide from Semisolid Formulations. Scientific World Journal, The, 2013, 2013, 1-8.	0.8	12
405	Endocytosis, Intracellular Traffic and Fate of Cell Penetrating Peptide Based Conjugates and Nanoparticles. Current Pharmaceutical Design, 2013, 19, 2878-2894.	0.9	84
406	A Colloidal Singularity Reveals the Crucial Role of Colloidal Stability for Nanomaterials In-Vitro Toxicity Testing: nZVI-Microalgae Colloidal System as a Case Study. PLoS ONE, 2014, 9, e109645.	1.1	28

#	Article	IF	CITATIONS
407	Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems. Nanomaterials, 2014, 4, 372-407.	1.9	44
408	Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles. International Journal of Nanomedicine, 2014, 9, 3677.	3.3	13
409	Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflammation and Regeneration, 2014, 34, 045-055.	1.5	19
410	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	1.5	130
411	Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport. International Journal of Nanomedicine, 2014, 9, 2849.	3.3	35
412	Rapid Screening of Mupirocin Skin Permeation Modification by Micronized and Nanonized Alaptide. ADMET and DMPK, 2014, 2, .	1.1	1
413	Functional semiconducting silicon nanowires for cellular binding and internalization. , 2014, , 89-103.		0
414	Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncology, 2014, 10, 401-415.	1.1	51
415	Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bulletin, 2014, 39, 227-237.	1.7	50
416	Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology, 2014, 8, 138-148.	1.6	37
417	Uptake of imatinib-loaded polyelectrolyte complexes by BCR-ABL ⁺ cells: a long-acting drug-delivery strategy for targeting oncoprotein activity. Nanomedicine, 2014, 9, 2087-2098.	1.7	10
418	Peapodâ€Type Nanocomposites through the In Situ Growth of Gold Nanoparticles within Preformed Hexaniobate Nanoscrolls. Angewandte Chemie - International Edition, 2014, 53, 4614-4617.	7.2	30
419	Amphiphilic block copolymer poly(2-methacryloyloxyethyl phosphorylcholine) and poly(trimethylene) Tj ETQq0 0 C 883-894.) rgBT /Ov 0.3	erlock 10 Tf 3
420	Binary self-assembled monolayers modified Au nanoparticles as carriers in biological applications. Biointerphases, 2014, 9, 041005.	0.6	4
421	Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanomedicine and Nanotoxicology, 2014, , 201-227.	0.1	17
422	Inhalation of Silver Nanomaterials—Seeing the Risks. International Journal of Molecular Sciences, 2014, 15, 23936-23974.	1.8	49
423	Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: Size, Shape, Crystal Phases, and Surface Coating. International Journal of Molecular Sciences, 2014, 15, 22258-22278.	1.8	105
424	New evidence for TiO 2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues. Colloids and Surfaces B: Biointerfaces, 2014, 123, 593-599.	2.5	45

#	Article	IF	CITATIONS
425	Synthesis and Physicochemical Characterization of Mesoporous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mtext>S</mml:mtext><mml:mtext>i</mml:mtext><mml:msub><mml:mrow><mml:mtext>OJournal of Nanomaterials, 2014, 2014, 1-12.</mml:mtext></mml:mrow></mml:msub></mml:math 	ml:mtext>	
426	Membrane Partitioning of Anionic, Ligand-Coated Nanoparticles Is Accompanied by Ligand Snorkeling, Local Disordering, and Cholesterol Depletion. PLoS Computational Biology, 2014, 10, e1003917.	1.5	59
427	Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. BioMed Research International, 2014, 2014, 1-8.	0.9	524
428	Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis. BioMed Research International, 2014, 2014, 1-14.	0.9	149
429	The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles. Journal of Nanoparticle Research, 2014, 16, 2761.	0.8	22
430	Discrete nanoparticles induce loss of <i>Legionella pneumophila</i> biofilms from surfaces. Nanotoxicology, 2014, 8, 477-484.	1.6	17
431	Timeâ€dependent bioaccumulation of distinct rodâ€type TiO ₂ nanoparticles: Comparison by crystalline phase. Journal of Applied Toxicology, 2014, 34, 1265-1270.	1.4	9
432	Cationic Polymer Nanoparticles for Drug and Gene Delivery. RSC Polymer Chemistry Series, 2014, , 268-295.	0.1	1
433	Nano-Oncologicals. Advances in Delivery Science and Technology, 2014, , .	0.4	7
434	"Smart―Surface Capsules for Delivery Devices. Advanced Materials Interfaces, 2014, 1, 1400237.	1.9	31
435	Preparation of Biodegradable Peptide Nanospheres with Hetero PEG Brush Surfaces. Macromolecular Bioscience, 2014, 14, 142-150.	2.1	14
436	Nanoprobes Visualizing Gliomas by Crossing the Blood Brain Tumor Barrier. Small, 2014, 10, 426-440.	5.2	60
437	How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation. Physical Review E, 2014, 90, 052701.	0.8	14
438	Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Advances, 0, , .	1.7	24
439	Gold nanoparticles with different amino acid surfaces: Serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 123, 900-906.	2.5	57
440	Bioactivity of nanosilver in Caenorhabditis elegans : Effects of size, coat, and shape. Toxicology Reports, 2014, 1, 923-944.	1.6	24
441	Optimizing the underlying parameters for protein-nanoparticle interaction: advancement in theoretical simulation. Nanotechnology Reviews, 2014, 3, .	2.6	9
442	Influence of gold nanoparticle architecture on in vitro bioimaging and cellular uptake. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	9

#	Article	IF	Citations
443	Barriers to drug delivery in solid tumors. Tissue Barriers, 2014, 2, e29528.	1.6	236
444	Nanoparticles: Cellular Uptake and Cytotoxicity. Advances in Experimental Medicine and Biology, 2014, 811, 73-91.	0.8	116
445	The physicochemical basis of the biological activity and pharmacological properties of the antiviral agent Panavir. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq0 0 0 rgl	3Tq Q verlo	ck210 Tf 50 6
446	Use of Engineered Nanoparticle-Based Fluorescence Methods for Live-Cell Phenomena. , 2014, , 153-169.		2
447	Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2014, 2, 48.	1.8	319
448	Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes. International Journal of Nanomedicine, 2014, 9, 1559.	3.3	41
449	The Significance of Nanoparticles in Medicine and Their Potential Application in Asthma. , 2014, , 247-275.		3
450	Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8131-8141.	2.9	43
451	Polymeric Nanocarriers for Cancer Therapy. Advances in Delivery Science and Technology, 2014, , 67-94.	0.4	1
452	Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 279-290.	1.3	16
453	Biomembrane disruption by silica-core nanoparticles: Effect of surface functional group measured using a tethered bilayer lipid membrane. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 429-437.	1.4	27
454	25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for Biomedicine. Advanced Materials, 2014, 26, 359-370.	11.1	105
455	SWCNTs induced autophagic cell death in human bronchial epithelial cells. Toxicology in Vitro, 2014, 28, 442-450.	1.1	39
456	Influence of nanoparticle–membrane electrostatic interactions on membrane fluidity and bending elasticity. Chemistry and Physics of Lipids, 2014, 178, 52-62.	1.5	34
457	The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials, 2014, 35, 3467-3479.	5.7	119
458	Influence of the titania nanotubes dimensions on adsorption of collagen: An experimental and computational study. Materials Science and Engineering C, 2014, 34, 410-416.	3.8	23
459	Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation. Vaccine, 2014, 32, 3664-3669.	1.7	27
460	Enhanced Tumor Accumulation of Subâ€2 nm Gold Nanoclusters for Cancer Radiation Therapy. Advanced Healthcare Materials, 2014, 3, 133-141.	3.9	309

#	Article	IF	CITATIONS
461	Nanowire pellicles for eukaryotic cells: nanowire coating and interaction with cells. Nanomedicine, 2014, 9, 1171-1180.	1.7	2
462	Clinical Nanomedicine: A Solution to the Chemotherapy Conundrum in Pediatric Leukemia Therapy. Clinical Pharmacology and Therapeutics, 2014, 95, 168-178.	2.3	38
463	Effects of the physicochemical properties of titanium dioxide nanoparticles, commonly used as sun protection agents, on microvascular endothelial cells. Journal of Nanoparticle Research, 2014, 16, 2130.	0.8	23
464	Alpha-Fe2O3 elicits diameter-dependent effects during exposure to an in vitro model of the human placenta. Cell Biology and Toxicology, 2014, 30, 31-53.	2.4	26
465	Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 2014, 12, 5.	4.2	1,030
466	Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Current Opinion in Colloid and Interface Science, 2014, 19, 49-55.	3.4	45
467	Electrochemical control of specific adhesion between amine-functionalized polymers and noble metal electrode interfaces. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 362-369.	0.8	10
468	Challenges associated to magnetic separation of nanomaterials at low field gradient. Separation and Purification Technology, 2014, 123, 171-174.	3.9	64
469	Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell. International Journal of Energy Research, 2014, 38, 70-77.	2.2	70
470	Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environmental Toxicology and Chemistry, 2014, 33, 481-492.	2.2	322
471	Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 733-743.	1.7	101
472	Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids and Surfaces B: Biointerfaces, 2014, 117, 216-224.	2.5	89
473	Rational evaluation of the utilization of PEG-PEI copolymers for the facilitation of silica nanoparticulate systems in biomedical applications. Journal of Colloid and Interface Science, 2014, 418, 300-310.	5.0	38
474	Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Materials Science and Engineering C, 2014, 42, 70-77.	3.8	108
475	Tuning Polarity of Polyphenylene Dendrimers by Patched Surface Amphiphilicity—Precise Control over Size, Shape, and Polarity. Macromolecular Rapid Communications, 2014, 35, 152-160.	2.0	21
476	Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances, 2014, 32, 679-692.	6.0	62
477	Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. Russian Chemical Reviews, 2014, 83, 299-322.	2.5	42
479	Metabolizable Bi ₂ Se ₃ Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. Advanced Functional Materials, 2014, 24, 1718-1729.	7.8	226

#	Article	IF	CITATIONS
480	Amphiphilic modification and asymmetric silica encapsulation of hydrophobic Au–Fe ₃ O ₄ dumbbell nanoparticles. Chemical Communications, 2014, 50, 174-176.	2.2	35
481	Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014, 35, 2391-2400.	5.7	211
482	Nanotechnology meets 3D in vitro models: Tissue engineered tumors and cancer therapies. Materials Science and Engineering C, 2014, 34, 270-279.	3.8	50
483	Nanotoxicology. Nanomedicine and Nanotoxicology, 2014, , .	0.1	20
484	Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomaterialia, 2014, 10, 831-842.	4.1	64
485	Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces. Polymer Chemistry, 2014, 5, 2768-2773.	1.9	14
486	Size Dependent Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 1836-1842.	1.5	216
487	Supramolecular Functionalization and Concomitant Enhancement in Properties of Au ₂₅ Clusters. ACS Nano, 2014, 8, 139-152.	7.3	94
488	Probing mechanical principles of cell–nanomaterial interactions. Journal of the Mechanics and Physics of Solids, 2014, 62, 312-339.	2.3	61
489	Uptake of Engineered Gold Nanoparticles into Mammalian Cells. Chemical Reviews, 2014, 114, 1258-1288.	23.0	253
490	Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environmental Pollution, 2014, 185, 219-227.	3.7	115
491	Computer simulation studies on the interactions between nanoparticles and cell membrane. Science China Chemistry, 2014, 57, 1662-1671.	4.2	19
492	Toxicity of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, , 207-254.	0.7	9
493	Ligands influence a carbon nanotube penetration through a lipid bilayer. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
494	Quantum Dots: Applications in Biology. Methods in Molecular Biology, 2014, , .	0.4	7
495	Polyacrylic Acid-Coated Iron Oxide Nanoparticles for Targeting Drug Resistance in Mycobacteria. Langmuir, 2014, 30, 15266-15276.	1.6	76
496	Comparative and Mechanistic Genotoxicity Assessment of Nanomaterials via a Quantitative Toxicogenomics Approach across Multiple Species. Environmental Science & Technology, 2014, 48, 12937-12945.	4.6	71
497	Hybrid inverse opals for regulating cell adhesion and orientation. Nanoscale, 2014, 6, 10650-10656.	2.8	33

#	Article	IF	CITATIONS
498	Bio-inspired nanotadpoles with component-specific functionality. Journal of Materials Chemistry B, 2014, 2, 6462-6466.	2.9	3
499	Orange and blue luminescence emission to track functionalized porous silicon microparticles inside the cells of the human immune system. Journal of Materials Chemistry B, 2014, 2, 6345.	2.9	12
500	In vitro dosimetry of agglomerates. Nanoscale, 2014, 6, 7325-7331.	2.8	33
501	Contact Angles of Microellipsoids at Fluid Interfaces. Langmuir, 2014, 30, 4289-4300.	1.6	56
502	Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chemical Science, 2014, 5, 1232.	3.7	36
503	Sheet-type titania, but not P25, induced paraptosis accompanying apoptosis in murine alveolar macrophage cells. Toxicology Letters, 2014, 230, 69-79.	0.4	13
504	Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers. Soft Matter, 2014, 10, 648-658.	1.2	58
505	PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection. Journal of Materials Chemistry B, 2014, 2, 2725.	2.9	9
506	Micelles consisting of choline phosphate-bearing Calix[4]arene lipids. Soft Matter, 2014, 10, 8216-8223.	1.2	30
507	Bio-inspired Janus gold nanoclusters with lipid and amino acid functional capping ligands: micro-voltammetry and in situ electron transfer in a biogenic environment. RSC Advances, 2014, 4, 29463.	1.7	13
508	Interaction between functionalized gold nanoparticles in physiological saline. Physical Chemistry Chemical Physics, 2014, 16, 3909.	1.3	18
509	Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to <i>Daphnia magna</i> . Environmental Science: Nano, 2014, 1, 260-270.	2.2	143
510	Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2942-2947.	3.3	174
511	Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nature Communications, 2014, 5, 4482.	5.8	183
512	Multicolour fluorescence cell imaging based on conjugated polymers. RSC Advances, 2014, 4, 3924-3928.	1.7	7
513	Nanoconjugation: a materials approach to enhance epidermal growth factor induced apoptosis. Biomaterials Science, 2014, 2, 156-166.	2.6	19
514	Poly β-Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Analytical Chemistry, 2014, 86, 11440-11450.	3.2	48
515	Rare earth nanoprobes for functional biomolecular imaging and theranostics. Journal of Materials Chemistry B, 2014, 2, 2958-2973.	2.9	68

#	Article	IF	CITATIONS
516	Fusion of Ligand-Coated Nanoparticles with Lipid Bilayers: Effect of Ligand Flexibility. Journal of Physical Chemistry A, 2014, 118, 5848-5856.	1.1	43
517	Comb-Like Oligoaminoethane Carriers: Change in Topology Improves pDNA Delivery. Bioconjugate Chemistry, 2014, 25, 251-261.	1.8	34
518	Dithiol-PEG-PDLLA Micelles: Preparation and Evaluation as Potential Topical Ocular Delivery Vehicle. Biomacromolecules, 2014, 15, 1346-1354.	2.6	44
519	Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 2014, 9, 457-477.	6.2	169
520	Secondary Structure of Corona Proteins Determines the Cell Surface Receptors Used by Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 14017-14026.	1.2	188
521	Interaction of biofunctionalized gold nanoparticles with model phospholipid membranes. Colloid and Polymer Science, 2014, 292, 2715-2725.	1.0	25
522	Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale, 2014, 6, 5791-5798.	2.8	95
523	Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. Journal of Materials Chemistry B, 2014, 2, 2060.	2.9	211
524	Design of Asymmetric Particles Containing a Charged Interior and a Neutral Surface Charge: Comparative Study on <i>in Vivo</i> Circulation of Polyelectrolyte Microgels. Journal of the American Chemical Society, 2014, 136, 9947-9952.	6.6	46
525	A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane. Soft Matter, 2014, 10, 6844.	1.2	34
526	Aerosol-Based Fabrication of Modified Chitosans and Their Application for Gene Transfection. ACS Applied Materials & Interfaces, 2014, 6, 4597-4602.	4.0	6
527	Surface Tailoring of Nanoparticles via Mixedâ€Charge Monolayers and Their Biomedical Applications. Small, 2014, 10, 4230-4242.	5.2	47
528	A multicolor fluorescent peptide–nanoparticle scaffold: real time uptake and distribution in neuronal cells. New Journal of Chemistry, 2014, 38, 2739.	1.4	3
529	A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites. Biomaterials, 2014, 35, 8261-8272.	5.7	15
530	Scavenger receptor-recognized and enzyme-responsive nanoprobe for fluorescent labeling of lysosomes in live cells. Biomaterials, 2014, 35, 7870-7880.	5.7	18
531	Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle–cell interaction. Nanoscale, 2014, 6, 10297-10306.	2.8	42
532	In Vitro Interaction of Polyelectrolyte Nanocapsules with Model Cells. Langmuir, 2014, 30, 1100-1107.	1.6	32
533	Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicology in Vitro, 2014, 28, 1402-1412.	1.1	89

#	Article	IF	CITATIONS
534	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	5.7	127
535	Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials, 2014, 35, 8703-8710.	5.7	105
536	Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration. Nano Letters, 2014, 14, 83-88.	4.5	191
537	Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano–Bio Interface Perspective. Advanced Healthcare Materials, 2014, 3, 957-976.	3.9	39
538	Cooperative entry of nanoparticles into the cell. Journal of the Mechanics and Physics of Solids, 2014, 73, 151-165.	2.3	29
539	Transient extracellular application of gold nanostars increases hippocampal neuronal activity. Journal of Nanobiotechnology, 2014, 12, 31.	4.2	21
540	Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale, 2014, 6, 11462-11472.	2.8	92
541	7Be-recoil radiolabelling of industrially manufactured silica nanoparticles. Journal of Nanoparticle Research, 2014, 16, 2574.	0.8	10
542	Anti-inflammatory drug releasing absorbable surgical sutures using poly(lactic-co-glycolic acid) particle carriers. Polymer Bulletin, 2014, 71, 1933-1946.	1.7	25
543	Effects of nanoparticle surface ligands on protein adsorption and subsequent cytotoxicity. Biomaterials Science, 2014, 2, 493-501.	2.6	13
544	Protein Coronas on Gold Nanorods Passivated with Amphiphilic Ligands Affect Cytotoxicity and Cellular Response to Penicillin/Streptomycin. ACS Nano, 2014, 8, 4608-4620.	7.3	55
545	Co-delivery of doxorubicin and RNA using pH-sensitive poly (β-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials, 2014, 35, 6047-6059.	5.7	113
546	Antibody Modified Porous Silicon Microparticles for the Selective Capture of Cells. Bioconjugate Chemistry, 2014, 25, 1282-1289.	1.8	24
547	Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction. Langmuir, 2014, 30, 8167-8176.	1.6	33
548	Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano, 2014, 8, 6986-6997.	7.3	57
549	Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	269
550	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Research, 2014, 7, 805-815.	5.8	88
551	An integrated approach for the in vitro dosimetry of engineered nanomaterials. Particle and Fibre Toxicology, 2014, 11, 20.	2.8	184

ARTICLE IF CITATIONS Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal 552 4.0 94 Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2014, 6, 5657-5668. Magnetoâ€Plasmonic Auâ€Fe Alloy Nanoparticles Designed for Multimodal SERSâ€MRIâ€CT Imaging. Small, 2014, 5.2 156 10, 2476-2486. Focusing on charge-surface interfacial effects to enhance the laser properties of dye-doped 554 0.6 3 nanoparticles. Laser Physics Letters, 2014, 11, 015901. Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomaterials Science, 2014, 2, 1244. Anionic nanoparticles based on Span 80 as low-cost, simple and efficient non-viral gene-transfection 556 2.6 17 systems. International Journal of Pharmaceutics, 2014, 476, 23-30. Biocompatibility of porous silicon for biomedical applications., 2014, , 129-181. Comparative cytotoxicity studies of carbon-encapsulated iron nanoparticles in murine glioma cells. 558 2.5 20 Colloids and Surfaces B: Biointerfaces, 2014, 117, 135-143. Gold nanoparticles explore cells: Cellular uptake and their use as intracellular probes. Methods, 1.9 2014, 68, 354-363. A systems toxicology approach to the surface functionality control of graphene–cell interactions. 560 5.7 239 Biomaterials, 2014, 35, 1109-1127. Surface engineering of nanoparticles for therapeutic applications. Polymer Journal, 2014, 46, 460-468. 1.3 Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across 562 105 5.7intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179. Texture and Phase Recognition Analysis of Î²-NaYF₄ Nanocrystals. Journal of Physical 1.5 Chemistry C, 2014, 118, 11404-11408. Molecular mechanisms and physiology of disease., 2014,,. 564 1 Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low 5.7 power density photodynamicAtherapy. Biomaterials, 2014, 35, 7058-7067. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via 566 5.761 zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35, 7488-7500. Stabilization and Characterization of Iron Oxide Superparamagnetic Core-Shell Nanoparticles for Biomedical Applications., 2014,, 355-387. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose 568 1.7 117 intravenous administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1757-1766. Liposome Supported Metal Oxide Nanoparticles: Interaction Mechanism, Light Controlled Content 569 5.2 Release, and Intracellular Delivery. Small, 2014, 10, 3927-3931.

ARTICLE IF CITATIONS Quantification of gold nanoparticle cell uptake under controlled biological conditions and 570 1.7 66 adequate resolution. Nanomedicine, 2014, 9, 607-621. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. International Journal of Nanomedicine, 2014, 9, 1065. 571 3.3 54 Growth characteristics of different heart cells on novel nanopatch substrate during electrical 572 0.4 7 stimulation. Bio-Medical Materials and Engineering, 2014, 24, 2101-2107. A Cancer-Recognizing Polymeric Pho<u>tosensitizer Based on the Tumor Extracellular pH Response of</u> Conjugated Polymers for Targeted Cancer Photodynamic Therapy. Macromolecular Bioscience, 2014, 14, 1688-1695. Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical 575 0.8 38 applications. Open Material Sciences, 2014, 1, . Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties. Journal of Pharmaceutical Sciences, 2015, 104, 1.6 3943-3951. The Internal Structure of Macroporous Membranes and Transport of Surface-Modified Nanoparticles. 577 0.2 3 Microscopy and Microanalysis, 2015, 21, 936-945. Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and 579 3.4 66 manipulation. Microsystems and Nanoengineering, 2015, 1, . Under-water adhesion of rigid spheres on soft, charged surfaces. Journal of Applied Physics, 2015, 118, 580 1.1 3 195306. The Optimized Fabrication of Nanobubbles as Ultrasound Contrast Agents for Tumor Imaging. 1.6 108 Scientific Reports, 2015, 5, 13725. 99mTc-phytate as a diagnostic probe for assessing inflammatory reaction in malignant tumors. 582 0.5 10 Nuclear Medicine Communications, 2015, 36, 1042-1048. Multifunctional Silica Nanoparticles for Covalent Immobilization of Highly Sensitive Proteins. 11.1 64 Advanced Materials, 2015, 27, 7945-7950. Ovarian Cancer Immunotherapy Using PDâ€L1 siRNA Targeted Delivery from Folic Acidâ€Functionalized 584 Polyethylenimine: Strategies to Enhance T Cell Killing. Advanced Healthcare Materials, 2015, 4, 3.9 140 1180-1189. Measuring Binding Kinetics of Antibody onjugated Gold Nanoparticles with Intact Cells. Small, 2015, 5.2 11, 3782-3788. Fluorescence lifeâ€time imaging and steady state polarization for examining binding of fluorophores to 586 1.1 17 gold nanoparticles. Journal of Biophotonics, 2015, 8, 944-951. COMPARISON OF PHYSICAL AND MORPHOLOGICAL PROPERTIES OF MANDURA BHASMA AND IRON OXIDE 587 NANOPARTICLES. International Journal of Research in Ayurveda and Pharmacy, 2015, 6, 788-792. Impact of multivalent charge presentation on peptideâ€"nanoparticle aggregation. Beilstein Journal of 588 1.38 Organic Chemistry, 2015, 11, 792-803. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with 589 nanocarriers to maximize tumor target efficiency. International Journal of Nanomedicine, 2015, 10, 3.3 3989.

#	Article	IF	CITATIONS
590	The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines, 2015, 3, 894-929.	2.1	22
591	Investigation of cellular responses upon interaction with silver nanoparticles. International Journal of Nanomedicine, 2015, 10 Spec Iss, 191.	3.3	11
592	Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. International Journal of Environmental Research and Public Health, 2015, 12, 13435-13454.	1.2	52
593	Small Wonders—The Use of Nanoparticles for Delivering Antigen. Vaccines, 2015, 3, 638-661.	2.1	27
594	Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology, 2015, 4, 664-696.	1.3	53
595	Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells. International Journal of Molecular Sciences, 2015, 16, 23482-23516.	1.8	59
596	Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials, 2015, 5, 1351-1365.	1.9	228
597	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	1.9	297
598	Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Frontiers in Neuroscience, 2015, 9, 480.	1.4	30
599	Inorganic Nanoparticles for Theranostic Applications: State of the Art Review and Main Future Perspectives. , 2015, , .		0
600	Central nervous system toxicity of metallic nanoparticles. International Journal of Nanomedicine, 2015, 10, 4321.	3.3	97
601	Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types <i>In V.itro</i> . Current Topics in Medicinal Chemistry, 2015, 15, 1914-1929.	1.0	190
602	Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles. Theranostics, 2015, 5, 357-370.	4.6	148
603	Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles. International Journal of Nanomedicine, 2015, 10, 1449.	3.3	32
604	Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. International Journal of Nanomedicine, 2015, 10, 371.	3.3	55
605	Smart Biodecorated Hybrid Nanoparticles. Current Bionanotechnology, 2015, 1, 60-78.	0.6	1
606	Biodirected Synthesis and Nanostructural Characterization of Anisotropic Gold Nanoparticles. Langmuir, 2015, 31, 3527-3536.	1.6	26
607	Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. Molecular Pharmaceutics, 2015, 12, 2237-2244.	2.3	72

ARTICLE IF CITATIONS Self-assembled targeted folate-conjugated eight-arm-polyethylene glycol–betulinic acid nanoparticles 608 2.9 47 for co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2015, 3, 3754-3766. 609 Plasmonic Nanostructures for Biomedical and Sensing Applications., 2015, 133-173. Ocular biocompatibility evaluation of POSS nanomaterials for biomedical material applications. RSC 610 1.7 28 Advances, 2015, 5, 53782-53788. Superparamagnetic Iron Oxide Nanoparticle Micelles Stabilized by Recombinant Oleosin for Targeted Magnetic Resonance Imaging. Small, 2015, 11, 1409-1413. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Archives of 612 1.9 24 Toxicology, 2015, 89, 1771-1782. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environmental Science and Pollution Research, 2015, 22, 13212-13224. Mass Spectrometry of Nanoparticles is Different. Journal of the American Society for Mass 614 1.2 10 Spectrometry, 2015, 26, 1259-1265. Nanotoxicity., 2015, , 13-28. Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. 616 1.7 33 Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 815-824. Aptamer-Functionalized Nanoparticles as "Smart Bombsâ€i The Unrealized Potential for Personalized 1.7 Medicine and Targeted Cancer Treatment. Targeted Oncology, 2015, 10, 467-485. A New Interleukin-13 Amino-Coated Gadolinium Metallofullerene Nanoparticle for Targeted MRI 618 6.6 76 Detection of Glioblastoma Tumor Cells. Journal of the American Chemical Society, 2015, 137, 7881-7888. Lineage-related and particle size-dependent cytotoxicity of chitosan nanoparticles on mouse bone marrow-derived hematopoietic stem and progenitor cells. Food and Chemical Toxicology, 2015, 85, 1.8 31-44. Antimicrobial activity of gold nanoparticles (AuNPs) on deterioration of archeological gilded painted 620 1.0 4 cartonnage, late period, Šaqqara, Egypt.. Geomicrobiology Journal, 0, , 00-00. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with 4.2 29 dextrin for in vivo and in vitro imaging application. Journal of Nanobiotechnology, 2015, 13, 83. Near-Field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and 622 2.7 10 Forces. Journal of Lightwave Technology, 2015, 33, 3494-3502. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution. Environmental Science & amp; Technology, 2015, 49, 14546-14553. Transformations that affect fate, form and bioavailability of inorganic nanoparticles in aquatic 624 0.7 29 sediments. Environmental Chemistry, 2015, 12, 627. "Single-―and "multi-core―FePt nanoparticles: from controlled synthesis via zwitterionic and silica bio-functionalization to MRI applications. Journal of Nanoparticle Research, 2015, 17, 1.

#	Article	IF	CITATIONS
626	Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	42
627	An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation. Biophysical Journal, 2015, 109, 2246-2258.	0.2	12
628	Nanotechnology applications in hematological malignancies (Review). Oncology Reports, 2015, 34, 1097-1105.	1.2	14
629	Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery. Carbohydrate Polymers, 2015, 121, 10-17.	5.1	24
630	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	6.6	190
631	The effect of nanoparticle size on endocytosis dynamics depends on membrane–nanoparticle interaction. Molecular Simulation, 2015, 41, 531-537.	0.9	10
632	Nanoparticle-based technologies for retinal gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 353-367.	2.0	76
633	Inhibition of MDR1 gene expression and enhancing cellular uptake forÂeffective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials, 2015, 48, 147-160.	5.7	87
634	Contact angle and adsorption energies of nanoparticles at the air–liquid interface determined by neutron reflectivity and molecular dynamics. Nanoscale, 2015, 7, 5665-5673.	2.8	47
635	Polyelectrolyte nanocomplex formation of heparin-photosensitizer conjugate with polymeric scavenger for photodynamic therapy. Carbohydrate Polymers, 2015, 121, 122-131.	5.1	6
636	Understanding nanoparticle cellular entry: A physicochemical perspective. Advances in Colloid and Interface Science, 2015, 218, 48-68.	7.0	289
637	A reduction-dissociable PEG-b-PGAH-b-PEI triblock copolymer as a vehicle for targeted co-delivery of doxorubicin and P-gp siRNA. Polymer Chemistry, 2015, 6, 2445-2456.	1.9	19
638	Surface Chemistry of Photoluminescent F8BT Conjugated Polymer Nanoparticles Determines Protein Corona Formation and Internalization by Phagocytic Cells. Biomacromolecules, 2015, 16, 733-742.	2.6	36
639	Cellular binding of nanoparticles disrupts the membrane potential. RSC Advances, 2015, 5, 13660-13666.	1.7	67
640	Toxicology Considerations in Nanomedicine. , 2015, , 239-261.		1
641	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164
642	Effects of 2,3-dimercaptosuccinic acid modified Fe ₂ O ₃ nanoparticles on microstructure and biological activity of cardiomyocytes. RSC Advances, 2015, 5, 19493-19501.	1.7	11
643	(Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chemical Reviews, 2015, 115, 2109-2135.	23.0	429
	CHAI	ION REPORT	
-----	--	------------	-----------
#	Article	IF	CITATIONS
644	Advances in studies of nanoparticle–biomembrane interactions. Nanomedicine, 2015, 10, 121-141.	1.7	31
645	Alpha‣ynuclein Amyloid Oligomers Act as Multivalent Nanoparticles to Cause Hemifusion in Negatively Charged Vesicles. Small, 2015, 11, 2257-2262.	5.2	11
646	Reversibly Extracellular pH Controlled Cellular Uptake and Photothermal Therapy by PEGylated Mixed-Charge Gold Nanostars. Small, 2015, 11, 1801-1810.	5.2	74
647	Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 252-263.	1.9	56
648	Biodegradable nanoparticles designed for drug delivery: The number of nanoparticles impacts on cytotoxicity. Toxicology in Vitro, 2015, 29, 1268-1274.	1.1	49
649	Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cellular and Molecular Life Sciences, 2015, 72, 367-381.	2.4	49
650	pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis. Journal of Controlled Release, 2015, 205, 134-143.	4.8	47
651	A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 2015, 14, 239-247.	21.5	373
652	Aptamer density dependent cellular uptake of lipid-capped polymer nanoparticles for polyvalent targeted delivery of vinorelbine to cancer cells. RSC Advances, 2015, 5, 16931-16939.	1.7	38
653	Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage. Journal of Materials Chemistry B, 2015, 3, 2043-2055.	2.9	37
654	Experimental modulation and computational model of nano-hydrophobicity. Biomaterials, 2015, 52, 312-317.	5.7	37
655	The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells. Jom, 2015, 67, 804-810.	0.9	20
656	No king without a crown – impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine, 2015, 10, 503-519.	1.7	101
657	Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum. ACS Applied Materials & Interfaces, 2015, 7, 13821-13833.	4.0	60
658	Cooperative Transmembrane Penetration of Nanoparticles. Scientific Reports, 2015, 5, 10525.	1.6	51
659	Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. Nanoscale, 2015, 7, 11420-11432.	2.8	51
660	Using nano-QSAR to determine the most responsible factor(s) in gold nanoparticle exocytosis. RSC Advances, 2015, 5, 57030-57037.	1.7	33
661	Functionalization of Platinum Complexes for Biomedical Applications. Accounts of Chemical Research, 2015, 48, 2622-2631.	7.6	235

#	Article	IF	CITATIONS
662	Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery. Applied Surface Science, 2015, 356, 1282-1288.	3.1	27
663	Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles. Langmuir, 2015, 31, 9198-9204.	1.6	63
664	Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today, 2015, 10, 677-680.	6.2	70
665	Molecular analysis of interactions between a PAMAM dendrimer–paclitaxel conjugate and a biomembrane. Physical Chemistry Chemical Physics, 2015, 17, 29507-29517.	1.3	16
666	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	7.3	96
667	Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. International Journal of Biological Macromolecules, 2015, 81, 31-40.	3.6	39
668	Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environmental Science: Nano, 2015, 2, 615-629.	2.2	38
669	Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells. PLoS Neglected Tropical Diseases, 2015, 9, e0003735.	1.3	21
670	Gold nanoparticles and vaccine development. Expert Review of Vaccines, 2015, 14, 1197-1211.	2.0	69
671	From Nanotechnology to Nanoengineering. , 2015, , 79-178.		7
671 672	From Nanotechnology to Nanoengineering. , 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838.	2,2	7 34
671 672 673	From Nanotechnology to Nanoengineering. , 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176.	2.2	7 34 9
671 672 673 674	From Nanotechnology to Nanoengineering., 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Critical Reviews in Toxicology, 2015, 45, 837-872.	2.2 0.9 1.9	7 34 9 134
 671 672 673 674 675 	From Nanotechnology to Nanoengineering. , 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Critical Reviews in Toxicology, 2015, 45, 837-872. Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167.	2.2 0.9 1.9 4.8	7 34 9 134 26
 671 672 673 674 675 676 	From Nanotechnology to Nanoengineering., 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Critical Reviews in Toxicology, 2015, 45, 837-872. Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discussions, 2015, 178, 383-394.	2.2 0.9 1.9 4.8 1.6	7 34 9 134 26 25
 671 672 673 674 675 676 677 	From Nanotechnology to Nanoengineering., 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176. Nanomaterial translocationâ€"the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organsâ€"a review. Critical Reviews in Toxicology, 2015, 45, 837-872. Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discussions, 2015, 178, 383-394. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Advances, 2015, 5, 60254-60263.	2.2 0.9 1.9 4.8 1.6	 7 34 9 134 26 25 30
 671 672 673 674 675 676 677 678 	From Nanotechnology to Nanoengineering., 2015, , 79-178. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles. Chemical Communications, 2015, 51, 12835-12838. Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity. Toxicology Research, 2015, 4, 169-176. Nanomaterial translocationâ€"the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organsâ€"a review. Critical Reviews in Toxicology, 2015, 45, 837-872. Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discussions, 2015, 178, 383-394. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Advances, 2015, 5, 60254-60263. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nature Nanotechnology, 2015, 10, 817-823.	2.2 0.9 1.9 4.8 1.6 1.7 15.6	7 34 9 134 26 25 25 30 493

#	Article	IF	CITATIONS
680	Targeting B16 tumorsin vivowith peptide-conjugated gold nanoparticles. Nanotechnology, 2015, 26, 285101.	1.3	34
681	Targeted polymeric nanoparticles for cancer gene therapy. Journal of Drug Targeting, 2015, 23, 627-641.	2.1	41
682	A Peptide-Coated Gold Nanocluster Exhibits Unique Behavior in Protein Activity Inhibition. Journal of the American Chemical Society, 2015, 137, 8412-8418.	6.6	79
683	Exosomes: potential model for complement-stealth delivery systems. European Journal of Nanomedicine, 2015, 7, .	0.6	10
684	Monolayers of poly-l-lysine on mica – Electrokinetic characteristics. Journal of Colloid and Interface Science, 2015, 456, 116-124.	5.0	32
685	Do poly(epsilon-caprolactone) lipid-core nanocapsules induce oxidative or inflammatory damage after in vivo subchronic treatment?. Toxicology Research, 2015, 4, 994-1005.	0.9	10
686	Diels–Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability. Nanoscale, 2015, 7, 9238-9251.	2.8	26
687	A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: Synthesis and characterization. Measurement: Journal of the International Measurement Confederation, 2015, 70, 179-187.	2.5	15
688	Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale, 2015, 7, 8233-8260.	2.8	90
689	Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	25
690	Synthesis of non-fouling poly[N-(2-hydroxypropyl)methacrylamide] brushes by photoinduced SET-LRP. Polymer Chemistry, 2015, 6, 4210-4220.	1.9	59
691	Computer investigations of influences of molar fraction and acyl chain length of lipids on the nanoparticle–biomembrane interactions. RSC Advances, 2015, 5, 11049-11057.	1.7	2
692	An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. Journal of Hazardous Materials, 2015, 298, 270-281.	6.5	14
693	Surface modification and local orientations of surface molecules in nanotherapeutics. Journal of Controlled Release, 2015, 207, 131-142.	4.8	42
694	A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. Journal of Materials Chemistry B, 2015, 3, 4831-4842.	2.9	43
695	Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology, 2016, 10, 1-11.	1.6	52
696	Characterization of interaction of magnetic nanoparticles with breast cancer cells. Journal of Nanobiotechnology, 2015, 13, 16.	4.2	99
697	Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death. Toxicology in Vitro, 2015, 29, 819-827.	1.1	35

#	Article	IF	CITATIONS
698	Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biology International, 2015, 39, 881-890.	1.4	416
699	Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing. Analyst, The, 2015, 140, 3929-3934.	1.7	19
700	Assembly of Selective Biomimetic Surface on an Electrode Surface: A Design of Nano–Bio Interface for Biosensing. Analytical Chemistry, 2015, 87, 5683-5689.	3.2	30
701	Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge. Asian-Australasian Journal of Animal Sciences, 2015, 28, 420-427.	2.4	43
702	Molecular interactions between gold nanoparticles and model cell membranes. Physical Chemistry Chemical Physics, 2015, 17, 9873-9884.	1.3	31
703	Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 439-447.	2.5	106
704	Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. Journal of Materials Chemistry B, 2015, 3, 2842-2852.	2.9	17
705	Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments – An indication for the catalytic nature of their interactions. Nanotoxicology, 2015, 9, 1059-1066.	1.6	28
706	Multifunctional nanoparticles for use in theranostic applications. Drug Delivery and Translational Research, 2015, 5, 295-309.	3.0	85
707	Hexanoyl-Chitosan-PEG Copolymer Coated Iron Oxide Nanoparticles for Hydrophobic Drug Delivery. ACS Macro Letters, 2015, 4, 403-407.	2.3	44
708	Molecular modeling of interaction between lipid monolayer and graphene nanosheets: implications for pulmonary nanotoxicity and pulmonary drug delivery. RSC Advances, 2015, 5, 30092-30106.	1.7	27
709	The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano, 2015, 9, 9986-9993.	7.3	328
710	Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	28
712	Evaluation of Biodistribution of Functionalized Magnetic Core/Carbon-Shell Nanoparticles in Systemic Method of Administration. Bulletin of Experimental Biology and Medicine, 2015, 159, 498-501.	0.3	3
713	Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine, 2015, 10, 2931-2952.	1.7	70
714	Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?. Nanotechnology, 2015, 26, 382001.	1.3	11
715	Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties. International Journal of Pharmaceutics, 2015, 496, 922-930.	2.6	6
716	Toward a Synthetic View of the Therapeutic Use of Cerium Oxide Nanoparticles for the Treatment of Neurodegenerative Diseases. ACS Symposium Series, 2015, , 431-461.	0.5	1

#	Article	IF	CITATIONS
717	Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. ACS Applied Materials & amp; Interfaces, 2015, 7, 24915-24925.	4.0	31
718	Charging and discharging of single colloidal particles at oil/water interfaces. Scientific Reports, 2014, 4, 4778.	1.6	20
719	Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging. ACS Nano, 2015, 9, 8718-8728.	7.3	41
720	Biomimetic particles as therapeutics. Trends in Biotechnology, 2015, 33, 514-524.	4.9	93
721	Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 206-217.	2.0	21
722	Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomaterialia, 2015, 28, 149-159.	4.1	67
723	Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. Journal of Controlled Release, 2015, 219, 488-499.	4.8	58
724	Design of liposomal formulations for cell targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 514-526.	2.5	126
725	A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	28
726	pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomaterials Science and Engineering, 2015, 1, 1096-1103.	2.6	107
727	Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS Applied Materials & Interfaces, 2015, 7, 24218-24228.	4.0	39
728	A Stable Lipid/TiO ₂ Interface with Headgroup-Inversed Phosphocholine and a Comparison with SiO ₂ . Journal of the American Chemical Society, 2015, 137, 11736-11742.	6.6	61
729	Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes. Physical Chemistry Chemical Physics, 2015, 17, 24238-24247.	1.3	21
730	Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. Journal of Materials Chemistry B, 2015, 3, 7372-7376.	2.9	26
731	Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging. Photoacoustics, 2015, 3, 107-113.	4.4	6
732	Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environmental Science: Nano, 2015, 2, 429-439.	2.2	68
733	Drug delivery and innovative pharmaceutical development in mimicking the red blood cell membrane. Reviews in Chemical Engineering, 2015, 31, .	2.3	5
734	In vivo biodistribution and toxicity of Gd ₂ O ₃ :Eu ³⁺ nanotubes in mice after intraperitoneal injection. RSC Advances, 2015, 5, 73601-73611.	1.7	12

#	Article	IF	CITATIONS
735	Protein surface labeling reactivity of N-hydroxysuccinimide esters conjugated to Fe3O4@SiO2 magnetic nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
736	Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. NeuroToxicology, 2015, 51, 27-37.	1.4	37
737	Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 127-136.	1.7	57
738	Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. Journal of Materials Chemistry B, 2015, 3, 7724-7733.	2.9	120
739	Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine, 2015, 10, 2781-2794.	1.7	52
740	Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting. Therapeutic Delivery, 2015, 6, 307-321.	1.2	43
741	Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition. Nanoscale, 2015, 7, 15599-15604.	2.8	49
742	Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs. ACS Nano, 2015, 9, 9859-9867.	7.3	98
743	TiO2-nanoparticles shield HPEKs against ZnO-induced genotoxicity. Materials and Design, 2015, 88, 41-50.	3.3	5
744	A simple method of growing silver chloride nanocubes on silver nanowires. Nanotechnology, 2015, 26, 381002.	1.3	3
745	A pH sensitive co-delivery system of siRNA and doxorubicin for pulmonary administration to B16F10 metastatic lung cancer. RSC Advances, 2015, 5, 103380-103385.	1.7	22
746	Nanoparticles as drug carriers: current issues with <i>in vitro</i> testing. Nanomedicine, 2015, 10, 3213-3230.	1.7	19
747	Nanopolymersomes as potential carriers for rifampicin pulmonary delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1017-1025.	2.5	33
748	Noncovalent Polymerâ€Gatekeeper in Mesoporous Silica Nanoparticles as a Targeted Drug Delivery Platform. Advanced Functional Materials, 2015, 25, 957-965.	7.8	130
749	Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry. Nanoscale, 2015, 7, 1349-1362.	2.8	28
750	Silver nanoparticles – wolves in sheep's clothing?. Toxicology Research, 2015, 4, 563-575.	0.9	116
751	Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 2015, 27, 1443-1451.	1.5	101
752	Infectious Diseases: Need for Targeted Drug Delivery. Advances in Delivery Science and Technology, 2015, , 113-148.	0.4	8

#	Article	IF	CITATIONS
753	Physical and Biophysical Characteristics of Nanoparticles: Potential Impact on Targeted Drug Delivery. Advances in Delivery Science and Technology, 2015, , 649-666.	0.4	1
754	Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 671-679.	1.7	70
755	Betaine conjugated cationic pullulan as effective gene carrier. International Journal of Biological Macromolecules, 2015, 72, 819-826.	3.6	13
756	Coupled delivery of imatinib mesylate and doxorubicin with nanoscaled polymeric vectors for a sustained downregulation of BCR-ABL in chronic myeloid leukemia. Biomaterials Science, 2015, 3, 361-372.	2.6	10
757	The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomaterialia, 2015, 11, 381-392.	4.1	91
758	Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. MedChemComm, 2015, 6, 212-221.	3.5	15
759	Effect of surface coating on the biocompatibility and <i>in vivo</i> MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology, 2015, 9, 825-834.	1.6	36
760	Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display. Scientific Reports, 2014, 4, 3564.	1.6	201
761	Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery. Small, 2015, 11, 1055-1071.	5.2	232
762	Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. Journal of Applied Toxicology, 2015, 35, 581-592.	1.4	122
763	Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 67-75.	1.4	13
764	Metallic Nanostructures. , 2015, , .		24
765	Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture. Soft Matter, 2015, 11, 456-465.	1.2	32
766	Nanobubble–Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials, 2015, 37, 279-288.	5.7	151
767	Assessment of the developmental toxicity of nanoparticles in an <i>ex vivo</i> 3D model, the murine limb bud culture system. Nanotoxicology, 2015, 9, 780-791.	1.6	2
768	Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids. Journal of Magnetism and Magnetic Materials, 2015, 380, 27-33.	1.0	28
769	The importance of nanoparticle shape in cancer drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 129-142.	2.4	455
770	Molecularly engineered graphene surfaces for sensing applications: A review. Analytica Chimica Acta, 2015, 859, 1-19.	2.6	192

		REPORT	
#	Article	IF	CITATIONS
771	The biosafety of lanthanide upconversion nanomaterials. Chemical Society Reviews, 2015, 44, 1509-1525.	18.7	262
772	Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015, 9, 181-189.	1.6	159
773	Upconverting nanoparticles: assessing the toxicity. Chemical Society Reviews, 2015, 44, 1561-1584.	18.7	520
774	Nanoparticle characterization based on STM and STS. Chemical Society Reviews, 2015, 44, 970-987.	18.7	82
775	Synthesis of ZnO Nanosphere for Picomolar Level Detection of Bovine Serum Albumin. IEEE Transactions on Nanobioscience, 2015, 14, 129-137.	2.2	20
776	The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways. International Journal of Nanomedicine, 2016, Volume 11, 4595-4607.	3.3	7
777	A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnology, Science and Applications, 2016, Volume 9, 29-45.	4.6	35
778	Characterization of 99mTc-Resveratrol as a Cancer Targeting Radiopharmaceutical: An In Vitro study. Journal of Carcinogenesis & Mutagenesis, 2016, 07, .	0.3	2
779	TiO2 Nanostructures in Biomedicine. Advances in Biomembranes and Lipid Self-Assembly, 2016, , 163-207.	0.3	4
780	Synthesis and Characterization of Nontoxic Hollow Iron Oxide (α-Fe2O3) Nanoparticles Using a Simple Hydrothermal Strategy. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	6
781	Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity. OncoTargets and Therapy, 2016, Volume 9, 5531-5543.	1.0	21
782	Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. International Journal of Nanomedicine, 2016, Volume 11, 3597-3605.	3.3	82
783	Characteristics of Carbon Material Formation on SBA-15 and Ni-SBA-15 Templates by Acetylene Decomposition and Their Bioactivity Effects. Materials, 2016, 9, 350.	1.3	6
784	Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine. Molecules, 2016, 21, 365.	1.7	56
785	Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles. Nanomaterials, 2016, 6, 165.	1.9	35
786	Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers, 2016, 8, 99.	2.0	36
787	Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues. PLoS ONE, 2016, 11, e0161610.	1.1	42
788	D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System. PLoS ONE, 2016, 11, e0151344.	1.1	39

#	Article	IF	CITATIONS
789	The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field. PLoS ONE, 2016, 11, e0158135.	1.1	26
790	Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment. International Journal of Nanomedicine, 2016, Volume 11, 6547-6559.	3.3	144
791	Fluorescence and electron microscopy to visualize the intracellular fate of nanoparticles for drug delivery. European Journal of Histochemistry, 2016, 60, 2640.	0.6	53
792	Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. International Journal of Nanomedicine, 2016, Volume 11, 5149-5161.	3.3	15
793	From micro- to nanostructured implantable device for local anesthetic delivery. International Journal of Nanomedicine, 2016, 11, 2695.	3.3	19
794	Loading and Delivery Characteristics of Binary Mixed Polymer Brushâ€Grafted Silica Nanoparticles. Macromolecular Chemistry and Physics, 2016, 217, 1767-1776.	1.1	9
795	Lysozyme binding ability toward psychoactive stimulant drugs: Modulatory effect of colloidal metal nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 146, 514-522.	2.5	12
796	Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles. Journal of Innovative Optical Health Sciences, 2016, 09, 1642003.	0.5	11
797	Controlling the Nanoscale Rotational Behaviors of Nanoparticles on the Cell Membranes: A Computational Model. Small, 2016, 12, 1140-1146.	5.2	26
798	What is the role of curvature on the properties of nanomaterials for biomedical applications?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 334-354.	3.3	33
799	SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells. Journal of Biophotonics, 2016, 9, 683-693.	1.1	12
800	Striped gold nanoparticles: New insights from molecular dynamics simulations. Journal of Chemical Physics, 2016, 144, 244710.	1.2	12
801	Biocatalytic Synthesis of Phospholipids and Their Application as Coating Agents for CaCO ₃ Nano-crystals: Characterization and Intracellular Localization Analysis. ChemistrySelect, 2016, 1, 6507-6514.	0.7	15
802	Assessing Exposure of Fullerenes/Functionalized Fullerenes from Water: Risk, Challenges, and Knowledge Gaps. Exposure and Health, 2016, 8, 177-192.	2.8	2
803	Toxicological Aspects of Polymer Nanoparticles. , 2016, , 521-550.		1
804	Evaluating the Interactions Between Proteins and Components of the Immune System with Polymer Nanoparticles. , 2016, , 221-289.		0
805	Metabolic response of SH-SY5Y cells to gold nanoparticles by NMR-based metabolomics analyses. Biomedical Physics and Engineering Express, 2016, 2, 045003.	0.6	4
806	Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction. Journal of Applied Physics, 2016, 120, .	1.1	13

#	Article	IF	CITATIONS
807	Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells. Biomaterials, 2016, 93, 38-47.	5.7	32
808	Surface Chemistry Controls Magnetism in Cobalt Nanoclusters. Journal of Physical Chemistry C, 2016, 120, 20822-20827.	1.5	10
809	MPQ-cytometry: a magnetism-based method for quantification of nanoparticle–cell interactions. Nanoscale, 2016, 8, 12764-12772.	2.8	48
810	Scalable and Environmentally Benign Process for Smart Textile Nanofinishing. ACS Applied Materials & Interfaces, 2016, 8, 14756-14765.	4.0	39
811	Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials, 2016, 17, 33-41.	1.4	39
812	Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties. Nanotoxicology, 2016, 10, 780-793.	1.6	13
813	Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 14339-14348.	4.0	29
814	Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials, 2016, 89, 38-55.	5.7	63
815	Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial–Cell Interactions. ACS Applied Materials & Interfaces, 2016, 8, 6935-6943.	4.0	26
816	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. Molecular Cancer Therapeutics, 2016, 15, 670-679.	1.9	68
817	Imaging of Biological Cells Using Luminescent Silver Nanoparticles. Nanoscale Research Letters, 2016, 11, 30.	3.1	49
818	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	5.7	72
819	Optimization, Production, and Characterization of a CpG-Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen. Bioconjugate Chemistry, 2016, 27, 1293-1304.	1.8	10
820	Gold Nanoparticle (AuNP)-Based Surface-Enhanced Raman Scattering (SERS) Probe of Leukemic Lymphocytes. Plasmonics, 2016, 11, 1361-1368.	1.8	26
821	Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)—based micelles and mechanisms of uptake in colon carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2016, 144, 257-264.	2.5	16
822	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	4.8	168
823	Some new nano-sized Cr(III), Fe(II), Co(II), and Ni(II) complexes incorporating 2-((E)-(pyridine-2-ylimino)methyl)napthalen-1-ol ligand: Structural characterization, electrochemical, antioxidant, antimicrobial, antiviral assessment and DNA interaction. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 18-31.	1.7	124
824	Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Progress in Materials Science, 2016, 83, 152-190.	16.0	135

#	Article	IF	CITATIONS
825	In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale, 2016, 8, 10706-10713.	2.8	56
826	Nanoparticles and mesenchymal stem cells: a win-win alliance for anticancer drug delivery. RSC Advances, 2016, 6, 36910-36922.	1.7	10
827	Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an <i>in vitro</i> study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells. Expert Opinion on Drug Delivery, 2016, 13, 1075-1081.	2.4	17
828	Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications. Langmuir, 2016, 32, 4393-4404.	1.6	88
829	Nanoparticle-Based Modulation of the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 305-326.	3.3	75
830	Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polymer Chemistry, 2016, 7, 3857-3863.	1.9	26
831	Use of compositional and combinatorial nanomaterial libraries for biological studies. Science Bulletin, 2016, 61, 755-771.	4.3	12
832	Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins. Drug Delivery and Translational Research, 2016, 6, 365-379.	3.0	91
833	Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydrate Polymers, 2016, 146, 445-454.	5.1	56
834	Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. Journal of Magnetism and Magnetic Materials, 2016, 413, 65-75.	1.0	16
835	Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface. Langmuir, 2016, 32, 4909-4916.	1.6	6
836	Diversity of TiO2 nanopowders' characteristics relevant to toxicity testing. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	6
837	Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells. Journal of Fluorescence, 2016, 26, 1239-1248.	1.3	6
838	Efficient Cellular Entry of (r-x-r)-Type Carbamate–Plasmid DNA Complexes and Its Implication for Noninvasive Topical DNA Delivery to Skin. Molecular Pharmaceutics, 2016, 13, 1779-1790.	2.3	7
839	A novel In Vitro Model for Studying Nanoparticle Interactions with the Small Intestine. EURO-NanoTox-Letters, 2016, 6, 1-14.	1.0	8
840	Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Applied Materials & Interfaces, 2016, 8, 25444-25453.	4.0	127
841	Structural Changes to Lipid Bilayers and Their Surrounding Water upon Interaction with Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 21399-21409.	1.5	19
842	Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide. Bioconjugate Chemistry, 2016, 27, 2558-2574.	1.8	25

#	Article	IF	CITATIONS
843	Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer. ChemPhysChem, 2016, 17, 3504-3514.	1.0	9
844	Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1, 334-343.	1.6	41
845	Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Letters, 2016, 5, 1059-1064.	2.3	112
846	Unraveling the Complex Behavior of AgNPs Driving NP-Cell Interactions and Toxicity to Algal Cells. Environmental Science & Technology, 2016, 50, 12455-12463.	4.6	34
847	Manipulating Cellular Interactions of Poly(glycidyl methacrylate) Nanoparticles Using Mixed Polymer Brushes. ACS Macro Letters, 2016, 5, 1132-1136.	2.3	4
848	The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomaterials Science, 2016, 4, 1646-1654.	2.6	38
849	Multisensitive drug-loaded polyurethane/polyurea nanocapsules with pH-synchronized shell cationization and redox-triggered release. Polymer Chemistry, 2016, 7, 6457-6466.	1.9	15
850	Functionalized Graphene Oxide Based Nanocarrier for Tumorâ€Targeted Combination Therapy to Elicit Enhanced Cytotoxicity against Breast Cancer Cells <i>In Vitro</i> . ChemistrySelect, 2016, 1, 4845-4855.	0.7	3
851	Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles. Langmuir, 2016, 32, 12559-12567.	1.6	74
852	Computer Simulation and Modeling Techniques in the Study of Nanoparticle-Membrane Interactions. Annual Reports in Computational Chemistry, 2016, , 159-200.	0.9	4
853	Enhancing intracranial delivery of clinically relevant non-viral gene vectors. RSC Advances, 2016, 6, 41665-41674.	1.7	10
854	Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles. Journal of Pharmaceutical Sciences, 2016, 105, 3172-3182.	1.6	30
855	Dose enhancement and cytotoxicity of gold nanoparticles in colon cancer cells when irradiated with kilo―and megaâ€voltage radiation. Bioengineering and Translational Medicine, 2016, 1, 94-102.	3.9	24
856	Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Materials Science and Engineering C, 2016, 69, 1335-1344.	3.8	49
857	Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells. ACS Biomaterials Science and Engineering, 2016, 2, 1540-1545.	2.6	4
858	Particle detachment from fluid interfaces: theory vs. experiments. Soft Matter, 2016, 12, 7632-7643.	1.2	45
859	k-space image correlation to probe the intracellular dynamics of gold nanoparticles. Journal of Instrumentation, 2016, 11, C04018-C04018.	0.5	0
860	Influence of Structural Features on the Cellular Uptake Behavior of Non-Targeted Polyester-Based Nanocarriers. Macromolecular Bioscience, 2016, 16, 1643-1652.	2.1	9

#	ARTICLE	IF	CITATIONS
861	Nanometric emulsions encapsulating solid particles as alternative carriers for intracellular delivery. Nanomedicine, 2016, 11, 2059-2072.	1.7	5
862	Expanding Small Pore Size of the Bimodal Catalyst with Surfactant and Its Application in Slurry-phase Fischer-Tropsch Synthesis. ChemistrySelect, 2016, 1, 778-783.	0.7	2
863	Redox Interactions Between Nanomaterials and Biological Systems. , 2016, , 187-206.		1
864	Photoluminescent nanoplatforms in biomedical applications. Advances in Physics: X, 2016, 1, 194-225.	1.5	18
865	Surface Chemistry of Gold Nanorods. Langmuir, 2016, 32, 9905-9921.	1.6	156
866	Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo. Journal of Colloid and Interface Science, 2016, 483, 201-210.	5.0	45
867	Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer. ACS Omega, 2016, 1, 234-243.	1.6	62
868	Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. Journal of Colloid and Interface Science, 2016, 483, 343-352.	5.0	73
869	Polymeric micelles for <i>MCL-1</i> gene silencing in breast tumors following systemic administration. Nanomedicine, 2016, 11, 2319-2339.	1.7	16
870	Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS Nano, 2016, 10, 11548-11560.	7.3	88
871	Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine, 2016, 11, 3185-3203.	1.7	87
872	Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Scientific Reports, 2016, 6, 24298.	1.6	31
873	Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Research, 2016, 9, 3463-3477.	5.8	61
874	Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Experimental Parasitology, 2016, 170, 184-192.	0.5	56
875	Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–graphene nanocomposites. RSC Advances, 2016, 6, 88751-88761.	1.7	47
876	Interactions of chitosan and its derivatives with cells (review). Applied Biochemistry and Microbiology, 2016, 52, 465-470.	0.3	7
877	Molecular Interactions between Gold Nanoparticles and Model Cell Membranes: A Study of Nanoparticle Surface Charge Effect. Journal of Physical Chemistry C, 2016, 120, 22718-22729.	1.5	21
879	Deprotonation and protonation of humic acids as a strategy for the technological development of pH-responsive nanoparticles with fungicidal potential. New Biotechnology, 2016, 33, 773-780.	2.4	16

ARTICLE IF CITATIONS A micropatterning approach to study the influence of actin cytoskeletal organization on polystyrene 880 1.7 3 nanoparticle uptake by BeWo cells. RSC Advances, 2016, 6, 72827-72835. Polymeric Nanoparticles for Cryobiological Applications. Frontiers in Nanobiomedical Research, 2016, 0.1 , 277-300. Tumorâ€Microenvironmentâ€Adaptive Nanoparticles Codeliver Paclitaxel and siRNA to Inhibit Growth and 882 7.8 81 Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 6033-6046. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb3+,Er3+ upconversion nanoparticles. Acta Biomaterialia, 2016, 42, 199-208. Tuning the architectural integrity of high-performance magneto-fluorescent core-shell 884 5.0 17 nanoassemblies in cancer cells. Journal of Colloid and Interface Science, 2016, 479, 139-149. Assessing the Intracellular Integrity of Phosphineâ€Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling. Advanced Healthcare Materials, 2016, 5, 3118-3128. 885 886 Adsorption of Nanoceria by Phosphocholine Liposomes. Langmuir, 2016, 32, 13276-13283. 1.6 26 Albumin hybrid nanoparticles loaded with tyrosine kinase A inhibitor GNF-5837 for targeted inhibition 887 2.6 of breast cancer cell growth and invasion. International Journal of Pharmaceutics, 2016, 515, 527-534. 888 Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today, 2016, 11, 817-832. 6.2 205 Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. 1.6 139 Scientific Reports, 2016, 6, 21170. Small gold nanocomposites obtained in reverse micelles as nanoreactors. Effect of surfactant, 890 optical properties and activity against Pseudomonas aeruginosa. New Journal of Chemistry, 2016, 40, 1.4 9 10432-10439. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proceedings 891 3.3 124 of the National Academy of Sciences of the United States of America, 2016, 113, 13318-13323. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by 892 1.6 11 altering cellular internalization of nanoparticle. Scientific Reports, 2016, 6, 27748. Ultrabright organic fluorescent microparticles for in vivo tracing applications. Journal of Materials Chemistry B, 2016, 4, 7226-7232. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: protein corona as a 894 1.7 63 critical determinant. Nanomedicine, 2016, 11, 2889-2902. Nanomedicines for renal disease: current status and future applications. Nature Reviews Nephrology, 179 2016, 12, 738-753. 896 Noble Metal Nanoparticles to Probe and Alter Biological Phenomena., 2016, 103-149. 1 Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a 897 99 phospholipid bilayer. Science Advances, 2016, 2, e1600261.

#	Article	IF	CITATIONS
898	Current Challenges in the Commercialization of Nanocolloids. , 2016, , 427-463.		0
900	Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 123-131.	2.0	31
901	Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake. Nanoscale Research Letters, 2016, 11, 66.	3.1	24
902	Cellular Response of Therapeutic Nanoparticles. , 2016, , 153-172.		1
903	Enhanced Cellular Uptake of Bowl-like Microcapsules. ACS Applied Materials & Interfaces, 2016, 8, 11210-11214.	4.0	49
904	An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods in Molecular Biology, 2016, 1427, 363-415.	0.4	31
905	Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. , 2016, , .		10
906	A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chemical Communications, 2016, 52, 8553-8556.	2.2	85
907	Quantitative Differentiation of Cell Surface-Bound and Internalized Cationic Gold Nanoparticles Using Mass Spectrometry. ACS Nano, 2016, 10, 6731-6736.	7.3	33
908	Dual-Functionalized Theranostic Nanocarriers. ACS Applied Materials & Interfaces, 2016, 8, 14740-14746.	4.0	7
909	Auditory and Vestibular Research. Methods in Molecular Biology, 2016, , .	0.4	8
910	Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density. Biomacromolecules, 2016, 17, 1757-1765.	2.6	75
911	Size-Resolved Source Emission Rates of Indoor Ultrafine Particles Considering Coagulation. Environmental Science & Technology, 2016, 50, 10031-10038.	4.6	30
912	Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes. ACS Applied Materials & Interfaces, 2016, 8, 16604-16611.	4.0	36
913	Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2061-2069.	1.7	24
914	Managing Risk in Nanotechnology. Innovation, Technology and Knowledge Management, 2016, , .	0.4	1
915	CS/PAA@TPGS/PLGA nanoparticles with intracellular pH-sensitive sequential release for delivering drug to the nucleus of MDR cells. Colloids and Surfaces B: Biointerfaces, 2016, 145, 716-727.	2.5	20
916	Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opinion on Drug Delivery, 2016, 13, 1475-1487.	2.4	30

#	ARTICLE	lF	CITATIONS
917	for bimodal treatment of breast cancer. Colloids and Surfaces B: Biointerfaces, 2016, 145, 878-890.	2.5	25
918	Physicochemical properties of core–shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2149-2160.	1.7	22
919	The responses of immune cells to iron oxide nanoparticles. Journal of Applied Toxicology, 2016, 36, 543-553.	1.4	30
920	Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 2016, 12, 360-370.	5.2	47
921	The role of surface functionalization of silica nanoparticles for bioimaging. Journal of Innovative Optical Health Sciences, 2016, 09, 1630005.	0.5	29
922	Environmental risk induced by TiO2 dispersions in waters and sediments: a case study. Environmental Geochemistry and Health, 2016, 38, 73-84.	1.8	2
923	Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology, 2016, 10, 257-278.	1.6	492
924	Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience (Switzerland), 2016, 6, 983-990.	1.6	127
925	Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice. Toxicological Sciences, 2016, 150, 454-472.	1.4	102
926	Effect of iron oxide nanoparticles on the permeability properties of Sf21Âcells. Cryobiology, 2016, 72, 21-26.	0.3	5
927	Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 140, 28-39.	2.5	75
928	Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. Nanomedicine, 2016, 11, 345-358.	1.7	2
929	Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1409-1419.	1.7	20
930	Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomaterialia, 2016, 33, 264-274.	4.1	74
931	Facile Peptides Functionalization of Lanthanide-Based Nanocrystals through Phosphorylation Tethering for Efficient <i>in Vivo</i> NIR-to-NIR Bioimaging. Analytical Chemistry, 2016, 88, 1930-1936.	3.2	27
932	Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 2016, 286, 640-662.	6.6	612
933	Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chemical Society Reviews, 2016, 45, 690-714.	18.7	154
934	Effect of surface properties on liposomal siRNA delivery. Biomaterials, 2016, 79, 56-68.	5.7	175

#	Article	IF	Citations
935	Antimicrobial Activity of Gold Nanoparticles (AuNPs) on Deterioration of Archeological Gilded Painted Cartonnage, Late Period, Saqqara, Egypt. Geomicrobiology Journal, 2016, 33, 1-8.	1.0	5
936	Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon, 2016, 104, 78-89.	5.4	31
937	Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice. Bioconjugate Chemistry, 2016, 27, 1153-1164.	1.8	31
938	Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking. Nanoscale, 2016, 8, 7711-7722.	2.8	23
939	Chitosan hybrid nanoparticles as a theranostic platform for targeted doxorubicin/VEGF shRNA co-delivery and dual-modality fluorescence imaging. RSC Advances, 2016, 6, 29685-29696.	1.7	19
940	Engineering Nanomaterials to Address Cell-Mediated Inflammation in Atherosclerosis. Regenerative Engineering and Translational Medicine, 2016, 2, 37-50.	1.6	39
941	Imaging Characterization of Cluster-Induced Morphological Changes of a Model Cell Membrane. Journal of Physical Chemistry C, 2016, 120, 15640-15647.	1.5	18
942	Core–Shell Electrospun Fibers Encapsulating Chromophores or Luminescent Proteins for Microscopically Controlled Molecular Release. Molecular Pharmaceutics, 2016, 13, 729-736.	2.3	25
943	The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Progress in Polymer Science, 2016, 57, 153-178.	11.8	47
944	Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism. Nano Letters, 2016, 16, 1161-1172.	4.5	213
945	In Situ Phototriggered Disulfide-Cross-Link Nanoparticles for Drug Delivery. ACS Macro Letters, 2016, 5, 301-305.	2.3	13
946	Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Langmuir, 2016, 32, 1601-1610.	1.6	19
947	C ₆₀ fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale, 2016, 8, 4134-4144.	2.8	60
948	Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots. Journal of Materials Chemistry B, 2016, 4, 834-843.	2.9	44
949	Electrostatic Titrations Reveal Surface Compositions of Mixed, On-Nanoparticle Monolayers Comprising Positively and Negatively Charged Ligands. Journal of Physical Chemistry C, 2016, 120, 4139-4144.	1.5	28
950	Role of the capping agent in the interaction of hydrophilic Ag nanoparticles with DMPC as a model biomembrane. Environmental Science: Nano, 2016, 3, 462-472.	2.2	22
951	Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nature Nanotechnology, 2016, 11, 479-486.	15.6	393
952	Non-covalent decoration of carbon dots with folic acid via a polymer-assisted strategy for fast and targeted cancer cell fluorescence imaging. Sensors and Actuators B: Chemical, 2016, 230, 714-720.	4.0	54

#	Article	IF	CITATIONS
953	Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation. Environmental Science and Pollution Research, 2016, 23, 4660-4669.	2.7	39
954	Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives. Trends in Biotechnology, 2016, 34, 440-449.	4.9	28
955	Nanoparticles, Immunomodulation and Vaccine Delivery. Frontiers in Nanobiomedical Research, 2016, , 101-127.	0.1	0
956	Routes to the preparation of mixed monolayers of fluorinated and hydrogenated alkanethiolates grafted on the surface of gold nanoparticles. Faraday Discussions, 2016, 191, 527-543.	1.6	19
957	Probing suitable therapeutic nanoparticles for controlled drug delivery and diagnostic reproductive health biomarker development. Materials Science and Engineering C, 2016, 61, 235-245.	3.8	10
958	Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors. ACS Applied Materials & Interfaces, 2016, 8, 936-944.	4.0	17
959	Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 853-869.	1.7	89
960	Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale, 2016, 8, 5526-5536.	2.8	120
961	Effects of shear stress on the cellular distribution of polystyrene nanoparticles in a biomimetic microfluidic system. Journal of Drug Delivery Science and Technology, 2016, 31, 130-136.	1.4	22
962	New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials. Environmental Science & amp; Technology, 2016, 50, 961-969.	4.6	89
963	Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. Colloids and Surfaces B: Biointerfaces, 2016, 140, 204-212.	2.5	46
964	Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 317-332.	1.7	145
965	An in vitro study of mucoadhesion and biocompatibility of polymer coated liposomes on HT29-MTX mucus-producing cells. International Journal of Pharmaceutics, 2016, 498, 225-233.	2.6	47
966	Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy. International Journal of Pharmaceutics, 2016, 497, 255-267.	2.6	16
967	Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials, 2016, 77, 243-254.	5.7	68
968	Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity. Bioconjugate Chemistry, 2016, 27, 414-426.	1.8	43
969	Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomaterialia, 2016, 30, 49-61.	4.1	81
970	Assessment of liposome disruption to quantify drug delivery in vitro. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 163-167.	1.4	9

		CITATION REPORT		
#	Article		IF	Citations
971	QCM-D study of nanoparticle interactions. Advances in Colloid and Interface Science, 20)16, 233, 94-114.	7.0	145
972	Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effect cell membranes. Science of the Total Environment, 2016, 542, 36-43.	rts on model	3.9	20
973	Curcumin Nanoparticles Attenuate Production of Pro-inflammatory Markers in Lipopolysaccharide-Induced Macrophages. Pharmaceutical Research, 2016, 33, 315-327		1.7	16
974	Formation of supported lipid bilayers containing phase-segregated domains and their in gold nanoparticles. Environmental Science: Nano, 2016, 3, 45-55.	teraction with	2.2	68
975	<i>In vivo</i> pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loade based on l± -tocopherol succinate-modified chitosan. Drug Delivery, 2016, 23, 2	d micelles 651-2660.	2.5	18
976	Biological potential of nanomaterials strongly depends on the suspension media: experion on the effects of fullerene C60 on membranes. Protoplasma, 2016, 253, 175-184.	mental data	1.0	1
977	Impact of particle elasticity on particle-based drug delivery systems. Advanced Drug Del 2017, 108, 51-67.	very Reviews,	6.6	302
978	Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic d slurry. Energy Conversion and Management, 2017, 141, 108-119.	gestion of	4.4	152
979	SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technolog	y, 2017, , .	0.2	2
980	Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerent nanomaterials: Potential implications in ROS associated degenerative disorders. Biochin Biophysica Acta - General Subjects, 2017, 1861, 802-813.	e hica Et	1.1	118
981	Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesen cells. Journal of Materials Chemistry B, 2017, 5, 1353-1362.	chymal stem	2.9	36
982	Proton-sensing transistor systems for detecting ion leakage from plasma membranes ur stimuli. Acta Biomaterialia, 2017, 50, 502-509.	ider chemical	4.1	14
983	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enl antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	nanced	5.7	296
984	Enriching Nanoparticles <i>via</i> Acoustofluidics. ACS Nano, 2017, 11, 603-612.		7.3	142
985	Recent advances in green nanoparticulate systems for drug delivery: efficient delivery ar concern. Nanomedicine, 2017, 12, 357-385.	ıd safety	1.7	119
986	Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanob Applied Physics Letters, 2017, 110, .	ubbles.	1.5	21
987	Biomedical applications of nanotechnology. Biophysical Reviews, 2017, 9, 79-89.		1.5	280
988	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nano Functional Materials, 2017, 27, 1604508.	ocrystals. Advanced	7.8	42

#	Article	IF	CITATIONS
989	SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-44.	0.2	3
990	A biomaterial approach to cell reprogramming and differentiation. Journal of Materials Chemistry B, 2017, 5, 2375-2389.	2.9	25
991	Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles. Nanotechnology, 2017, 28, 175101.	1.3	16
992	Tailoring Cellular Uptake and Fluorescence of Poly(2-oxazoline)-Based Nanogels. Bioconjugate Chemistry, 2017, 28, 1229-1235.	1.8	14
993	Polymer Nanoparticle Engineering for Podocyte Repair: From in Vitro Models to New Nanotherapeutics in Kidney Diseases. ACS Omega, 2017, 2, 599-610.	1.6	30
994	Upconversion fluorescent and X-ray-sensitive bifunctional nanoprobes for assessing the penetrability of inorganic nanoparticles in the digestive system. MedChemComm, 2017, 8, 1053-1062.	3.5	2
995	PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nature Communications, 2017, 8, 14537.	5.8	157
996	Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles. Journal of Biomaterials Applications, 2017, 31, 1087-1096.	1.2	7
997	Structural Dependence of the Effects of Polyoxometalates on Liposome Collapse Activity. Chemistry Letters, 2017, 46, 533-535.	0.7	14
998	External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Progress in Materials Science, 2017, 87, 140-220.	16.0	275
999	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology, 2017, 1530, 13-37.	0.4	11
1000	Synthesis, Characterization, and Antimicrobial Activity of Nearâ€IR Photoactive Functionalized Gold Multibranched Nanoparticles. ChemistryOpen, 2017, 6, 254-260.	0.9	23
1001	Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering: Building Blocks for Liquid Marbles and Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 7648-7657.	4.0	20
1002	Biomimetic shear stress and nanoparticulate drug delivery. Journal of Pharmaceutical Investigation, 2017, 47, 133-139.	2.7	9
1003	Interference of single walled carbon nanotubes (SWCNT) in the measurement of lipid peroxidation in aquatic organisms through TBARS assay. Ecotoxicology and Environmental Safety, 2017, 140, 103-108.	2.9	18
1004	The common, different and unique effects of metallic engineered nanomaterials: an analytic perspective. Clean Technologies and Environmental Policy, 2017, 19, 1487-1507.	2.1	0
1005	Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Materials Science and Engineering C, 2017, 75, 16-24.	3.8	79
1006	Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 15022-15030.	4.0	53

#	Article	IF	CITATIONS
1007	The generation of compartmentalized nanoparticles containing siRNA and cisplatin using a multi-needle electrohydrodynamic strategy. Nanoscale, 2017, 9, 5975-5985.	2.8	15
1008	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	0.7	1,184
1009	Photoacoustic flow cytometry for nanomaterial research. Photoacoustics, 2017, 6, 16-25.	4.4	20
1010	Analyticalâ€Based Methodologies for Examining the In Vitro Absorption, Distribution, Metabolism, and Elimination (ADME) of Silver Nanoparticles. Small, 2017, 13, 1603093.	5.2	8
1011	Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids and Surfaces B: Biointerfaces, 2017, 155, 530-537.	2.5	79
1012	pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18462-18473.	4.0	375
1013	A smart gene delivery platform: Cationic oligomer. European Journal of Pharmaceutical Sciences, 2017, 105, 33-40.	1.9	10
1014	Effects of silver nanowire length and exposure route on cytotoxicity to earthworms. Environmental Science and Pollution Research, 2017, 24, 14516-14524.	2.7	13
1015	Targeting and Internalization of Liposomes by Bladder Tumor Cells Using a Fibronectin Attachment Protein-Derived Peptide–Lipopolymer Conjugate. Bioconjugate Chemistry, 2017, 28, 1481-1490.	1.8	14
1016	Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 2017, 10, 773-782.	1.3	77
1017	Nanotoxicity in Systemic Circulation and Wound Healing. Chemical Research in Toxicology, 2017, 30, 1253-1274.	1.7	48
1018	Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes. ACS Nano, 2017, 11, 5489-5499.	7.3	57
1019	Stimuliâ€Responsive Polymeric Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700030.	2.0	79
1020	Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosensors and Bioelectronics, 2017, 96, 300-307.	5.3	144
1021	Preferential accumulation of gold nanorods into human skin hair follicles: Effect of nanoparticle surface chemistry. Journal of Colloid and Interface Science, 2017, 503, 95-102.	5.0	54
1022	Intracellular accumulation and immunological responses of lipid modified magnetic iron nanoparticles in mouse antigen processing cells. Biomaterials Science, 2017, 5, 1603-1611.	2.6	9
1023	Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation. Biomaterials Science, 2017, 5, 1596-1602.	2.6	21
1024	Improved Stability and Enhanced Oral Bioavailability of Atorvastatin Loaded Stearic Acid Modified Gelatin Nanoparticles. Pharmaceutical Research, 2017, 34, 1505-1516.	1.7	27

		CITATION REP	PORT	
#	Article		IF	CITATIONS
1025	Ligand density quantification on colloidal inorganic nanoparticles. Analyst, The, 2017, 142	, 11-29.	1.7	83
1026	Development and characterisation of disulfiram-loaded PLGA nanoparticles for the treatment non-small cell lung cancer. European Journal of Pharmaceutics and Biopharmaceutics, 201 224-233.	ent of 7, 112,	2.0	50
1027	Single step poly(l -Lysine) microgel synthesis, characterization and biocompatibility tests. 2017, 121, 46-54.	Polymer,	1.8	16
1028	Bone tissue regenerative medicine via bioactive nanomaterials. , 2017, , 769-792.			3
1029	Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. Journal of Materials Chemistry B, 2017, 5, 4190-4197.		2.9	34
1030	Shedding light on zwitterionic magnetic nanoparticles: limitations for in vivo applications. Nanoscale, 2017, 9, 8176-8184.		2.8	26
1031	Study of a novel vehicle developed for enhancing the efficacy of radiation therapy. Cerami International, 2017, 43, S789-S796.	CS	2.3	9
1032	Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene ther Nanotechnology, 2017, 28, 285101.	apy.	1.3	11
1033	Advanced Photoacoustic Imaging Applications of Nearâ€Infrared Absorbing Organic Nano Small, 2017, 13, 1700710.	particles.	5.2	238
1034	Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting i autophagy-mediated apoptotic cell death. Free Radical Biology and Medicine, 2017, 110, 4	nto +2-53.	1.3	75
1035	Extra- and intra-cellular fate of nanocarriers under dynamic interactions with biology. Nanc 2017, 14, 84-99.	Today,	6.2	42
1036	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytoco Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	mpatible	2.6	100
1037	Nanomaterials engineering for drug delivery: a hybridization approach. Journal of Materials Chemistry B, 2017, 5, 3995-4018.		2.9	96
1038	Tuning the Properties of Polymer Capsules for Cellular Interactions. Bioconjugate Chemist 1859-1866.	y, 2017, 28,	1.8	20
1039	Functionalized materials for multistage platforms in the oral delivery of biopharmaceutical Progress in Materials Science, 2017, 89, 306-344.	S.	16.0	56
1040	Effect of Alkylation on the Cellular Uptake of Polyethylene Glycol-Coated Gold Nanoparticl Nano, 2017, 11, 6085-6101.	es. ACS	7.3	48
1041	The effect of the protein corona on the interaction between nanoparticles and lipid bilayer of Colloid and Interface Science, 2017, 504, 741-750.	s. Journal	5.0	44
1042	Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicol Vitro, 2017, 43, 29-39.	bgy in	1.1	25

#	Article	IF	CITATIONS
1043	Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. International Journal of Pharmaceutics, 2017, 533, 480-487.	2.6	26
1044	Activated Surface Chargeâ€Reversal Manganese Oxide Nanocubes with High Surfaceâ€toâ€Volume Ratio for Accurate Magnetic Resonance Tumor Imaging. Advanced Functional Materials, 2017, 27, 1700978.	7.8	53
1045	Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications. Archives of Toxicology, 2017, 91, 3271-3286.	1.9	45
1046	Influence of Cubosome Surface Architecture on Its Cellular Uptake Mechanism. Langmuir, 2017, 33, 3509-3516.	1.6	36
1047	PEGylated Anionic Magnetofluorescent Nanoassemblies: Impact of Their Interface Structure on Magnetic Resonance Imaging Contrast and Cellular Uptake. ACS Applied Materials & Interfaces, 2017, 9, 14242-14257.	4.0	13
1048	Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Scientific Reports, 2017, 7, 45663.	1.6	51
1049	Barium Hexaferrite Magnetic Fluid: Preparation, Characterization and the In Vitro Identification of Cytotoxicity and Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 818-826.	1.9	5
1050	Ecotoxic effects of paclitaxel-loaded nanotherapeutics on freshwater algae, Raphidocelis subcapitata and Chlamydomonas reinhardtii. Environmental Science: Nano, 2017, 4, 1077-1085.	2.2	7
1051	Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135.	16.0	84
1052	Electrostatically driven resonance energy transfer in "cationic―biocompatible indium phosphide quantum dots. Chemical Science, 2017, 8, 3879-3884.	3.7	55
1053	Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. Journal of Biomedical Nanotechnology, 2017, 13, 155-166.	0.5	35
1054	Protein corona and nanoparticles: how can we investigate on?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1467.	3.3	93
1055	Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Advances in Colloid and Interface Science, 2017, 249, 374-385.	7.0	30
1056	Nanosalina: A Tale of Saline-Loving Algae from the Lake's Agony to Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 11528-11536.	4.0	8
1057	Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Scientific Reports, 2017, 7, 44718.	1.6	48
1058	Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. Materials Science and Engineering C, 2017, 76, 659-672.	3.8	38
1059	Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy, 2017, 120, 842-853.	4.5	210
1060	Self-immolative polymers as novel pH-responsive gate keepers for drug delivery. RSC Advances, 2017, 7, 132-136.	1.7	50

		CITATION REPORT		
#	Article		IF	CITATIONS
1061	Biomedical Applications of Metalâ€Encapsulated Fullerene Nanoparticles. Small, 2017,	, 13, 1603152.	5.2	69
1062	Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tu Acta Biomaterialia, 2017, 50, 534-545.	mor therapy.	4.1	61
1063	Insight into the interactions between nanoparticles and cells. Biomaterials Science, 20	17, 5, 173-189.	2.6	78
1064	Neutron Reflectometry reveals the interaction between functionalized SPIONs and the lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2017, 151, 76-87.	surface of	2.5	33
1065	Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes Biomaterials Science and Engineering, 2017, 3, 249-259.	and Cells. ACS	2.6	38
1066	Engineered Hydrogels for Local and Sustained Delivery of RNAâ€Interference Therapies Healthcare Materials, 2017, 6, 1601041.	s. Advanced	3.9	79
1067	Charged polyhedral oligomeric silsesquioxanes trigger in vitro METosis via both oxidati autophagy. Life Sciences, 2017, 190, 58-67.	ve stress and	2.0	4
1068	Peptide Brush Polymers and Nanoparticles with Enzyme-Regulated Structure and Char or Evading Macrophage Cell Uptake. ACS Nano, 2017, 11, 9877-9888.	ge for Inducing	7.3	45
1069	Iron oxide nanoparticles with different polymer coatings for photothermal therapy. Jou Nanoparticle Research, 2017, 19, 1.	rnal of	0.8	28
1070	Evaluating Single-Cell DNA Damage Induced by Enhanced Radiation on a Gold Nanofilr Applied Materials & Interfaces, 2017, 9, 36525-36532.	n Patch. ACS	4.0	4
1071	Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration L Image. Annals of Biomedical Engineering, 2017, 45, 2857-2866.	Ising a Single CT	1.3	22
1072	Assessment of Ferrous Glycinate Liposome Absorption Using <i>in Situ</i> Single-Pass Model. International Journal of Food Engineering, 2017, 13, .	Perfusion	0.7	0
1073	Cancer nanomedicine: from PDGF targeted drug delivery. MedChemComm, 2017, 8, 20	055-2059.	3.5	16
1074	Tuning the Multifunctionality of Iron Oxide Nanoparticles Using Self-Assembled Mixed Bioconjugate Chemistry, 2017, 28, 2729-2736.	Lipid Layers.	1.8	6
1075	Preparation of gelatin/epigallocatechin gallate self-assembly nanoparticles for transder delivery. Journal of Polymer Research, 2017, 24, 1.	mal drug	1.2	12
1076	Continuous wave laser for tailoring the photoluminescence of silicon nanoparticles pro laser ablation in liquid. Journal of Applied Physics, 2017, 122, 113107.	oduced by	1.1	6
1077	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Nove Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Letters, 2017	Strategy for 7, 17, 6790-6801.	4.5	143
1078	Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide N against Human Clioblastoma Cells. ACS Applied Materials & Interfaces, 2017, 9, 3	lanoparticles 9283-39302.	4.0	44

#	Article	IF	CITATIONS
1079	Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?. Food and Chemical Toxicology, 2017, 109, 797-811.	1.8	108
1080	Mammalian cell defence mechanisms against the cytotoxicity of NaYF ₄ :(Er,Yb,Gd) nanoparticles. Nanoscale, 2017, 9, 14259-14271.	2.8	18
1081	The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophysical Reviews, 2017, 9, 683-698.	1.5	38
1082	Fattigation-platform nanoparticles using apo-transferrin stearic acid as a core for receptor-oriented cancer targeting. Colloids and Surfaces B: Biointerfaces, 2017, 159, 571-579.	2.5	21
1083	The Weak Link: Optimization of the Ligand–Nanoparticle Interface To Enhance Cancer Cell Targeting by Polymer Micelles. Nano Letters, 2017, 17, 5995-6005.	4.5	15
1084	Mussel-Inspired Polydopamine Coating on Tobacco Mosaic Virus: One-Dimensional Hybrid Nanofibers for Gold Nanoparticle Growth. Langmuir, 2017, 33, 9866-9872.	1.6	14
1085	An experimental and computational framework for engineering multifunctional nanoparticles: designing selective anticancer therapies. Nanoscale, 2017, 9, 13760-13771.	2.8	11
1086	The effect of a high frequency electromagnetic field in the microwave range on red blood cells. Scientific Reports, 2017, 7, 10798.	1.6	17
1087	Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose, 2017, 24, 4235-4252.	2.4	20
1088	Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids and Surfaces B: Biointerfaces, 2017, 160, 254-264.	2.5	54
1089	Organocatalyzed Photoâ€Atom Transfer Radical Polymerization of Methacrylic Acid in Continuous Flow and Surface Grafting. Macromolecular Rapid Communications, 2017, 38, 1700423.	2.0	39
1090	Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Seminars in Immunology, 2017, 34, 3-24.	2.7	66
1091	Self-assembled composite microparticles with surface protrudent porphyrin nanoparticles enhance cellular uptake and photodynamic therapy. Materials Horizons, 2017, 4, 1135-1144.	6.4	16
1092	Chargeâ€Neutral, Stable, Nonâ€Cytotoxic, Nearâ€Infrared SnS Aqueous Quantum Dots for High Signalâ€toâ€Noiseâ€Ratio Biomedical Imaging. ChemistrySelect, 2017, 2, 7332-7339.	0.7	5
1093	Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Advances, 2017, 7, 42159-42167.	1.7	111
1094	Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. Journal of Controlled Release, 2017, 264, 247-275.	4.8	179
1095	Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials, 2017, 29, 6578-6595.	3.2	99
1096	Solvent effect in the synthesis of hydrophobic drugâ€loaded polymer nanoparticles. IET Nanobiotechnology, 2017, 11, 443-447.	1.9	7

#	Article	IF	CITATIONS
1097	Bioâ€nano interface and environment: A critical review. Environmental Toxicology and Chemistry, 2017, 36, 3181-3193.	2.2	96
1098	Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustainable Chemistry and Engineering, 2017, 5, 8241-8249.	3.2	276
1099	Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact, 2017, 8, 59-72.	2.4	55
1100	Reversible Monolayer–Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior. Langmuir, 2017, 33, 7538-7547.	1.6	7
1101	Design and characterization of hydrogel nanoparticles with tunable network characteristics for sustained release of a VEGF-mimetic peptide. Biomaterials Science, 2017, 5, 2079-2092.	2.6	14
1102	Drug‣oaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	5.2	82
1103	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	1.9	87
1104	Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: Optimization, in vitro characterization and stability assessment. Journal of Molecular Liquids, 2017, 242, 382-394.	2.3	49
1105	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
1106	Role of Surface Hydrophobicity of Dicationic Amphiphile-Stabilized Gold Nanoparticles on A549 Lung Cancer Cells. ACS Omega, 2017, 2, 3527-3538.	1.6	28
1107	Shape-dependent cellular toxicity on renal epithelial cells and stone risk of calcium oxalate dihydrate crystals. Scientific Reports, 2017, 7, 7250.	1.6	23
1108	Enhanced cellular uptake of iron oxide nanoparticles modified with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. RSC Advances, 2017, 7, 38001-38007.	1.7	9
1109	Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. NPG Asia Materials, 2017, 9, e422-e422.	3.8	29
1110	Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS Applied Materials & Interfaces, 2017, 9, 31526-31542.	4.0	92
1112	Development of Fuzzylogic model to predict the effects of ZnO nanoparticles on methane production from simulated landfill. Journal of Environmental Chemical Engineering, 2017, 5, 5944-5953.	3.3	8
1113	Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study. Langmuir, 2017, 33, 14480-14489.	1.6	29
1114	Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology. Journal of Physical Chemistry B, 2017, 121, 11333-11343.	1.2	14
1115	Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. ACS Applied Materials & Interfaces, 2017, 9, 42577-42588.	4.0	25

	Сітатіо	n Report	
#	Article	IF	Citations
1116	Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food and Chemical Toxicology, 2017, 107, 349-361.	1.8	55
1117	Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorganic and Medicinal Chemistry, 2017, 25, 4487-4496.	1.4	52
1118	A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Critical Reviews in Toxicology, 2017, 47, 771-814.	1.9	54
1119	Toxicity of Nanoparticles: Etiology and Mechanisms. , 2017, , 511-546.		28
1120	Efficient Receptor Mediated siRNA Delivery in Vitro by Folic Acid Targeted Pentablock Copolymer-Based Micelleplexes. Biomacromolecules, 2017, 18, 2654-2662.	2.6	18
1121	Critical Size for Bulk-to-Discrete Transition in 2D Aliphatic Layers: Abrupt Size Effect Observed via Calorimetry and Solid-State13C NMR. Journal of Physical Chemistry C, 2017, 121, 13916-13929.	1.5	3
1122	Anchored but not internalized: shape dependent endocytosis of nanodiamond. Scientific Reports, 2017, 7, 46462.	1.6	31
1123	Modeling uptake of nanoparticles in multiple human cells using structure–activity relationships and intercellular uptake correlations. Nanotoxicology, 2017, 11, 20-30.	1.6	19
1124	Nanoâ€īiO ₂ penetration of oral mucosa: <i>in vitro</i> analysis using 3D organotypic human buccal mucosa models. Journal of Oral Pathology and Medicine, 2017, 46, 214-222.	1.4	14
1125	Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent. Bioconjugate Chemistry, 2017, 28, 161-170.	1.8	20
1126	Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells. Micron, 2017, 92, 25-31.	1.1	40
1127	Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Science of the Total Environment, 2017, 574, 771-780.	3.9	46
1128	One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction. Zeitschrift Fur Physikalische Chemie, 2017, 231, 7-18.	1.4	4
1129	Application of isothermal titration calorimetry in evaluation of protein–nanoparticle interactions. Journal of Thermal Analysis and Calorimetry, 2017, 127, 605-613.	2.0	25
1130	Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona. Materials Science and Engineering C, 2017, 70, 889-896.	3.8	145
1131	Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. International Journal of Radiation Biology, 2017, 93, 214-221.	1.0	23
1132	Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale, 2017, 9, 1040-1048.	2.8	50
1133	Self-fluorescent drug delivery vector based on genipin-crosslinked polyethylenimine conjugated globin nanoparticle. Materials Science and Engineering C, 2017, 71, 17-24.	3.8	18

#	Article	IF	CITATIONS
1134	Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells. European Biophysics Journal, 2017, 46, 433-444.	1.2	11
1135	<i>In vitro</i> genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis, 2017, 32, 117-126.	1.0	93
1136	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
1137	Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 3394-3402.	1.2	39
1138	Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions. Applied Physics Letters, 2017, 111, .	1.5	10
1139	Polyanhydride micelles with diverse morphologies for shape-regulated cellular internalization and blood circulation. International Journal of Energy Production and Management, 2017, 4, 149-157.	1.9	8
1140	Safety and regulatory issues ofÂnanocapsules. , 2017, , 545-590.		4
1141	Synthesis, Characterization, and Toxicity Evaluation of Dextran-Coated Iron Oxide Nanoparticles. Metals, 2017, 7, 63.	1.0	24
1142	Continuous delivery of propranolol from liposomes-in-microspheres significantly inhibits infantile hemangioma growth. International Journal of Nanomedicine, 2017, Volume 12, 6923-6936.	3.3	21
1143	Augmented Anticancer Effects of Cantharidin with Liposomal Encapsulation: In Vitro and In Vivo Evaluation. Molecules, 2017, 22, 1052.	1.7	13
1144	Nanotechnology in Drug Discovery and Development. , 2017, , 264-295.		12
1145	Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. International Journal of Molecular Sciences, 2017, 18, 709.	1.8	73
1146	Nanomedicine Strategies to Target Tumor-Associated Macrophages. International Journal of Molecular Sciences, 2017, 18, 979.	1.8	79
1147	Evaluation of iron transport from ferrous glycinate liposomes using Caco-2 cell model. African Health Sciences, 2017, 17, 933.	0.3	6
1148	The Method of Coating Fe3O4 with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured in Vitro. Journal of AOAC INTERNATIONAL, 2017, 100, 905-915.	0.7	3
1149	Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles. Frontiers in Immunology, 2017, 8, 69.	2.2	32
1150	Plant Explants Grown on Medium Supplemented with Fe ₃ O ₄ Nanoparticles Have a Significant Increase in Embryogenesis. Journal of Nanomaterials, 2017, 2017, 1-11.	1.5	18
1151	Design and Characterization of Endostatin-Loaded Nanoparticles for In Vitro Antiangiogenesis in Squamous Cell Carcinoma. Journal of Nanomaterials, 2017, 2017, 1-17.	1.5	7

#	Article	IF	CITATIONS
1152	Parallel comparative studies on toxicity of quantum dots synthesized and surface engineered with different methods in vitro and in vivo. International Journal of Nanomedicine, 2017, Volume 12, 5135-5148.	3.3	11
1153	4.30 Nanomaterials for Drug Delivery to the Brain. , 2017, , 549-570.		0
1154	3.21 Characterization of Nanoparticles in Biological Environments â~†. , 2017, , 467-481.		1
1155	Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS ONE, 2017, 12, e0177987.	1.1	47
1156	Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles. Journal of Nanobiotechnology, 2017, 15, 50.	4.2	15
1157	T-Time: A data repository of T cell and calcium release-activated calcium channel activation imagery. BMC Research Notes, 2017, 10, 408.	0.6	0
1158	Evaluation techniques. , 2017, , 211-232.		10
1159	Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein Journal of Nanotechnology, 2017, 8, 1457-1468.	1.5	38
1160	Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics, 2017, 7, 9-22.	4.6	31
1161	Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. Journal of Controlled Release, 2018, 275, 92-106.	4.8	24
1162	Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery. ACS Applied Materials & Interfaces, 2018, 10, 9916-9928.	4.0	113
1163	Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy. Journal of Microencapsulation, 2018, 35, 149-164.	1.2	9
1164	A hematoporphyrin and indocyanine green co-delivery system with NIR triggered-controllable photoactivities for photodynamic therapy. Dyes and Pigments, 2018, 154, 8-20.	2.0	15
1165	Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1513.	3.3	146
1166	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	6.4	81
1167	Quantification of C ₆₀ -induced membrane disruption using a quartz crystal microbalance. RSC Advances, 2018, 8, 9841-9849.	1.7	12
1168	Gold Nanoparticles: Synthesis, Optical Properties, and Application. Inorganic Materials: Applied Research, 2018, 9, 134-140.	0.1	35
1169	Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. International Journal of Pharmaceutics, 2018, 542, 47-55.	2.6	45

#	Article	IF	CITATIONS
1170	Nanoparticle–cell interactions induced apoptosis: a case study with nanoconjugated epidermal growth factor. Nanoscale, 2018, 10, 6712-6723.	2.8	14
1171	lonic structure around polarizable metal nanoparticles in aqueous electrolytes. Soft Matter, 2018, 14, 4053-4063.	1.2	19
1172	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews, 2018, 47, 4198-4232.	18.7	201
1173	"Precipitation on Nanoparticles†Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 7023-7027.	7.2	17
1174	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. Chemistry of Materials, 2018, 30, 2800-2808.	3.2	115
1175	Selfâ€assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. Journal of Biomedical Materials Research - Part A, 2018, 106, 2048-2058.	2.1	22
1176	An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 432-442.	2.0	16
1177	Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.	0.6	23
1178	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	4.6	32
1179	Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery. Nanomedicine, 2018, 13, 703-715.	1.7	48
1180	Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews, 2018, 118, 4946-4980.	23.0	1,241
1181	Biogenic selenium nanoparticles synthesized by <i>Stenotrophomonas maltophilia</i> Se <scp>ITE</scp> 02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microbial Biotechnology, 2018, 11, 1037-1047.	2.0	30
1182	Surface enthalpy driven size focussing trends: Predictive modelling for digestive ripening of spherical particles. Applied Surface Science, 2018, 448, 248-253.	3.1	5
1183	Imaging Nano–Bio Interactions in the Kidney: Toward a Better Understanding of Nanoparticle Clearance. Angewandte Chemie - International Edition, 2018, 57, 3008-3010.	7.2	81
1184	Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 2018, 168, 50-59.	2.5	47
1185	Nanoparticles-Caused Oxidative Imbalance. Advances in Experimental Medicine and Biology, 2018, 1048, 85-98.	0.8	23
1186	Toxicity Assessment in the Nanoparticle Era. Advances in Experimental Medicine and Biology, 2018, 1048, 1-19.	0.8	54
1187	Chitosan-silver nanoparticles as an approach to control bacterial proliferation, spores and antibiotic-resistant bacteria. Biomedical Physics and Engineering Express, 2018, 4, 035011.	0.6	6

#	Article	IF	CITATIONS
1188	<i>Ex Vivo</i> Detection of Circulating Tumor Cells from Whole Blood by Direct Nanoparticle Visualization. ACS Nano, 2018, 12, 1902-1909.	7.3	30
1189	<i>In-silico</i> design of nanoparticles for transdermal drug delivery application. Nanoscale, 2018, 10, 4940-4951.	2.8	43
1190	Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape. Nano Research, 2018, 11, 4278-4292.	5.8	29
1191	Ligand mediated evolution of size dependent magnetism in cobalt nanoclusters. Physical Chemistry Chemical Physics, 2018, 20, 4563-4570.	1.3	7
1192	Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study. Journal of Chemical Physics, 2018, 148, 044705.	1.2	4
1194	In Vivo Pharmacokinetics of Magnetic Nanoparticles. Methods in Molecular Biology, 2018, 1718, 409-419.	0.4	18
1195	Combined systems of different antibiotics with nano-CuO against <i>Escherichia coli</i> and the mechanisms involved. Nanomedicine, 2018, 13, 339-351.	1.7	18
1196	Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine, 2018, 13, 255-268.	1.7	9
1197	Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human tripleâ€negative breast cancer cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 1753-1764.	2.1	33
1198	Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells. Nanoscale, 2018, 10, 4019-4027.	2.8	15
1199	The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules. Macromolecular Bioscience, 2018, 18, 1700309.	2.1	11
1200	Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles. Journal of Physical Chemistry B, 2018, 122, 171-180.	1.2	45
1201	Nanoparticle–membrane interactions. Journal of Experimental Nanoscience, 2018, 13, 62-81.	1.3	137
1202	A d-Peptide Ligand of Integrins for Simultaneously Targeting Angiogenic Blood Vasculature and Glioma Cells. Molecular Pharmaceutics, 2018, 15, 592-601.	2.3	14
1203	Surface coating affects uptake of silver nanoparticles in neural stem cells. Journal of Trace Elements in Medicine and Biology, 2018, 50, 684-692.	1.5	27
1204	Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 2018, 9, 259-272.	1.9	294
1205	Magneto-Fluorescent Yolk–Shell Nanoparticles. Chemistry of Materials, 2018, 30, 775-780.	3.2	42
1206	Nanoparticle. Series in Bioengineering, 2018, , 1-36.	0.3	3

#	Article	IF	CITATIONS
1207	Effect of ZnONP Surface Defects on Cytotoxic and Antimicrobial Propensities. Series in Bioengineering, 2018, , 91-110.	0.3	1
1208	Fabrication and characterization of polymer eramic nanocomposites containing drug loaded modified halloysite nanotubes. Journal of Biomedical Materials Research - Part A, 2018, 106, 1276-1287.	2.1	18
1209	Plasma Synthesis of Carbon-Based Nanocarriers for Linker-Free Immobilization of Bioactive Cargo. ACS Applied Nano Materials, 2018, 1, 580-594.	2.4	20
1210	Nanoparticle–Cell Interaction: A Cell Mechanics Perspective. Advanced Materials, 2018, 30, e1704463.	11.1	94
1211	Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge. Nanoscale, 2018, 10, 2481-2491.	2.8	46
1212	Nanoparticles considered as mixtures for toxicological research. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 1-20.	2.9	17
1213	Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymerâ€Based Nanoparticles. Advanced Materials, 2018, 30, 1703704.	11.1	67
1214	Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture. Materials Science and Engineering C, 2018, 85, 170-181.	3.8	22
1215	Synthesis, stability, and in vitro oral cancer cell toxicity of human serum albumin stabilised gold nanoflowers. IET Nanobiotechnology, 2018, 12, 292-297.	1.9	3
1216	Detachment of ligands from nanoparticle surface under flow and endothelial cell contact: Assessment using microfluidic devices. Bioengineering and Translational Medicine, 2018, 3, 148-155.	3.9	16
1217	Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. Journal of Physical Chemistry B, 2018, 122, 5820-5834.	1.2	36
1218	Bildgebung von Nanoâ€Bioâ€Interaktionen in der Niere: Für ein besseres Verstädnis der Nanopartikelâ€Clearance. Angewandte Chemie, 2018, 130, 3060-3062.	1.6	0
1219	Near infrared lowâ€level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. Journal of Biophotonics, 2018, 11, e201800025.	1.1	37
1220	Structural organization of lipid-functionalized-Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 168, 2-9.	2.5	21
1221	Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid and Polymer Science, 2018, 296, 951-960.	1.0	3
1222	Programmed â€`triple-mode' anti-tumor therapy: Improving peritoneal retention, tumor penetration and activatable drug release properties for effective inhibition of peritoneal carcinomatosis. Biomaterials, 2018, 169, 45-60.	5.7	15
1223	Diatoms as potential "green―nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications. MRS Communications, 2018, 8, 322-331.	0.8	15
1224	Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles. , 2018, , 181-221.		5

#	Article	IF	CITATIONS
1225	<i>In vitro</i> and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants. Nanoscale, 2018, 10, 6539-6548.	2.8	36
1226	Effects of Nanoprobe Morphology on Cellular Binding and Inflammatory Responses: Hyaluronan-Conjugated Magnetic Nanoworms for Magnetic Resonance Imaging of Atherosclerotic Plaques. ACS Applied Materials & Interfaces, 2018, 10, 11495-11507.	4.0	29
1227	Hierarchical Nanoassemblies-Assisted Combinational Delivery of Cytotoxic Protein and Antibiotic for Cancer Treatment. Nano Letters, 2018, 18, 2294-2303.	4.5	71
1228	Cells on hierarchically-structured platforms hosting functionalized nanoparticles. Biomaterials Science, 2018, 6, 1469-1479.	2.6	4
1229	Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 2018, 58, 297-317.	5.4	269
1230	Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids and Surfaces B: Biointerfaces, 2018, 161, 183-191.	2.5	31
1231	Fluorescent magnetic nanoparticles as minimally-invasive multi-functional theranostic platform for fluorescence imaging, MRI and magnetic hyperthermia. Materials Chemistry and Physics, 2018, 204, 388-396.	2.0	15
1232	Nanostructured chitosan composites for cancer therapy: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 879-888.	1.8	3
1233	Near infrared dye-conjugated oxidative stress amplifying polymer micelles for dual imaging and synergistic anticancer phototherapy. Biomaterials, 2018, 154, 48-59.	5.7	60
1234	Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. Journal of Materials Chemistry B, 2018, 6, 9-24.	2.9	50
1235	Nextâ€Generation Magnetic Nanocomposites: Cytotoxic and Genotoxic Effects of Coated and Uncoated Ferric Cobalt Boron (FeCoB) Nanoparticles <i>In Vitro</i> . Basic and Clinical Pharmacology and Toxicology, 2018, 122, 355-363.	1.2	12
1236	Recent Advances in the Generation of Antibody–Nanomaterial Conjugates. Advanced Healthcare Materials, 2018, 7, 1700607.	3.9	88
1237	Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjugate Chemistry, 2018, 29, 657-671.	1.8	60
1238	Controllable mullite bismuth ferrite micro/nanostructures with multifarious catalytic activities for switchable/hybrid catalytic degradation processes. Journal of Colloid and Interface Science, 2018, 509, 502-514.	5.0	20
1239	Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnology Letters, 2018, 40, 237-248.	1.1	40
1240	Highly functional ellipsoidal block copolymer nanoparticles: a generalized approach to nanostructured chemical ordering in phase separated colloidal particles. Polymer Chemistry, 2018, 9, 1638-1649.	1.9	38
1241	Mono-fullerenols modulating cell stiffness by perturbing actin bundling. Nanoscale, 2018, 10, 1750-1758.	2.8	14
1242	Intracellularly Actuated Quantum Dot–Peptide–Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway. Bioconjugate Chemistry, 2018, 29, 136-148.	1.8	44

#	Article	IF	CITATIONS
1243	Molecular dynamics and density functional study of the structure of hairy particles at a hard wall. Journal of Molecular Liquids, 2018, 270, 191-202.	2.3	1
1244	PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. Journal of Alloys and Compounds, 2018, 737, 347-355.	2.8	53
1245	Gold Nanoparticles Inducing Osteogenic Differentiation of Stem Cells: A Review. Journal of Cluster Science, 2018, 29, 1-7.	1.7	26
1246	Development, characterization, antioxidant and hepatoprotective properties of poly(ƕcaprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. International Journal of Biological Macromolecules, 2018, 110, 185-196.	3.6	33
1247	Displaying biofunctionality on materials through templated self-assembly. , 2018, , 341-370.		2
1248	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	11.1	415
1249	New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles. Current Medicinal Chemistry, 2018, 25, 540-555.	1.2	52
1250	Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. Nanoscale, 2018, 10, 22420-22428.	2.8	10
1251	Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. Nanoscale, 2018, 10, 23027-23036.	2.8	16
1252	Artificial lipid membrane: surface modification and effect in taste sensing. IOP Conference Series: Materials Science and Engineering, 2018, 360, 012039.	0.3	4
1253	APPLICATION OF NANOSTRUCTURES IN ANTIMICROBIAL THERAPY. International Journal of Applied Pharmaceutics, 2018, 10, 11.	0.3	7
1254	Nanomedicine for anticancer and antimicrobial treatment: an overview. IET Nanobiotechnology, 2018, 12, 1009-1017.	1.9	10
1255	1. Size and shape control of metal nanoparticles in millifluidic reactors. , 2018, , 1-48.		0
1256	Influence of size and surface capping on photoluminescence and cytotoxicity of gold nanoparticles. Journal of Nanoparticle Research, 2018, 20, 305.	0.8	23
1257	Quantification of Lipid Corona Formation on Colloidal Nanoparticles from Lipid Vesicles. Analytical Chemistry, 2018, 90, 14387-14394.	3.2	41
1258	Nano-bio Interactions and Ecotoxicity in Aquatic Environment: Plenty of Room at the Bottom but Tyranny at the Top!. , 2018, , 19-36.		4
1259	Enhanced nanoparticle delivery exploiting tumour-responsive formulations. Cancer Nanotechnology, 2018, 9, 10.	1.9	30
1260	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	3.1	872

#	Article	IF	CITATIONS
1261	Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. International Journal of Nanomedicine, 2018, Volume 13, 8269-8279.	3.3	21
1262	Experimental Determination of Particle Size-Dependent Surface Charge Density for Silica Nanospheres. Journal of Physical Chemistry C, 2018, 122, 23764-23771.	1.5	33
1263	NanoDCFHâ€DA: A Silicaâ€based Nanostructured Fluorogenic Probe for the Detection of Reactive Oxygen Species. Photochemistry and Photobiology, 2018, 94, 1143-1150.	1.3	20
1264	Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomaterialia, 2018, 80, 278-287.	4.1	75
1265	Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology. ACS Applied Materials & Interfaces, 2018, 10, 34886-34904.	4.0	42
1266	Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes. Langmuir, 2018, 34, 12583-12589.	1.6	32
1267	Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. Environmental Science: Nano, 2018, 5, 2473-2481.	2.2	19
1268	Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoils. Journal of the American Chemical Society, 2018, 140, 14211-14216.	6.6	41
1269	Nanoparticle Vaccines Against Infectious Diseases. Frontiers in Immunology, 2018, 9, 2224.	2.2	347
1270	Gold Nanoparticles Biosynthesized and Functionalized Using a Hydroxylated Tetraterpenoid Trigger Gene Expression Changes and Apoptosis in Cancer Cells. ACS Applied Materials & Interfaces, 2018, 10, 37353-37363.	4.0	35
1271	Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings. Biomimetics, 2018, 3, 2.	1.5	7
1272	Chirality Inversion on the Carbon Dot Surface via Covalent Surface Conjugation of Cyclic α-Amino Acid Capping Agents. Bioconjugate Chemistry, 2018, 29, 3913-3922.	1.8	30
1273	New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 271-290.	0.8	4
1274	Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. International Journal of Pharmaceutics, 2018, 552, 443-452.	2.6	31
1275	Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjugate Chemistry, 2018, 29, 3691-3704.	1.8	5
1276	Rational Ligand Design To Improve Agrochemical Delivery Efficiency and Advance Agriculture Sustainability. ACS Sustainable Chemistry and Engineering, 2018, 6, 13599-13610.	3.2	37
1277	Nano-delivery of Food-Derived Biomolecules: An Overview. , 2018, , 447-470.		5
1278	Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomaterialia, 2018, 82, 184-196.	4.1	49

#	Article	IF	CITATIONS
1279	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	4.0	58
1280	Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Scientific Reports, 2018, 8, 14766.	1.6	49
1281	Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers, 2018, 10, 1078.	2.0	119
1282	Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol. International Journal of Pharmaceutics, 2018, 553, 120-131.	2.6	19
1283	Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. International Journal of Nanomedicine, 2018, Volume 13, 5865-5886.	3.3	29
1284	Phospholipid Bilayer Softening Due to Hydrophobic Gold Nanoparticle Inclusions. Langmuir, 2018, 34, 13416-13425.	1.6	21
1285	Highly Dispersed Fullerenols Hamper Osteoclast Ruffled Border Formation by Perturbing Ca ²⁺ Bundles. Small, 2018, 14, e1802549.	5.2	9
1286	Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Scientific Reports, 2018, 8, 12557.	1.6	43
1287	Effect of surface coverage and chemistry on self-assembly of monolayer protected gold nanoparticles: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2018, 20, 25883-25891.	1.3	23
1288	Conformations of Poly- <scp>l</scp> -lysine Molecules in Electrolyte Solutions: Modeling and Experimental Measurements. Journal of Physical Chemistry C, 2018, 122, 23180-23190.	1.5	23
1289	Beyond Global Charge: Role of Amine Bulkiness and Protein Fingerprint on Nanoparticle–Cell Interaction. Small, 2018, 14, e1802088.	5.2	15
1290	Surface characterization of nanoparticles using near-field light scattering. Beilstein Journal of Nanotechnology, 2018, 9, 1228-1238.	1.5	6
1291	Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. International Journal of Biological Macromolecules, 2018, 120, 775-782.	3.6	101
1292	Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules, 2018, 19, 4084-4097.	2.6	20
1293	Interaction of green nanoparticles with cells and organs. , 2018, , 185-237.		3
1294	Direct Permeation of Nanoparticles across Cell Membrane: A Review. KONA Powder and Particle Journal, 2018, 35, 49-65.	0.9	51
1295	Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. Bioconjugate Chemistry, 2018, 29, 1841-1846.	1.8	26
1296	Nanotechnology in the agrofood industry. Journal of Food Engineering, 2018, 238, 1-11.	2.7	54
#	Article	IF	CITATIONS
------	---	-----	-----------
1297	Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico. Nanoscale, 2018, 10, 11670-11678.	2.8	16
1298	Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. Nanoscale, 2018, 10, 11969-11979.	2.8	37
1300	Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. Journal of Controlled Release, 2018, 281, 139-177.	4.8	377
1301	Effect of drug amlodipine on the charged lipid bilayer cell membranes DMPS and DMPS + DMPC: a molecular dynamics simulation study. European Biophysics Journal, 2018, 47, 939-950.	1.2	6

Coprecipitation Method of Synthesis, Characterization, and Cytotoxicity of Pr3+:LaF3 (CPr $\hat{a} \in \infty$ = $\hat{a} \in \infty$ 3, 7, 12, 20,) Ti ETQq0 0 rgBT /0 rgBT

1303	Singlet Oxygen Generating Properties of Different Sizes of Charged Graphene Quantum Dot Nanoconjugates with a Positively Charged Phthalocyanine. Journal of Fluorescence, 2018, 28, 827-838.	1.3	11
1304	Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs. Nanomedicine, 2018, 13, 1463-1480.	1.7	33
1305	Cytotoxicity investigations of biogenic tellurium nanorods towards PC12 cell line. IET Nanobiotechnology, 2018, 12, 1144-1149.	1.9	5
1306	RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 3263-3278.	3.3	24
1307	Promoting Inter-/Intra- Cellular Process of Nanomedicine through its Physicochemical Properties Optimization. Current Drug Metabolism, 2018, 19, 75-82.	0.7	5
1308	Nontoxic silver nanocluster-induced folding, fibrillation, and aggregation of blood plasma proteins. International Journal of Biological Macromolecules, 2018, 119, 838-848.	3.6	10
1309	Peptide-based vaccines. , 2018, , 327-358.		28
1310	Enhancing Passive Transport of Micro/Nano Particles into Cells by Oxidized Carbon Black. ACS Omega, 2018, 3, 6833-6840.	1.6	5
1311	Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. International Journal of Molecular Sciences, 2018, 19, 195.	1.8	332
1312	"Nano-Ginseng―for Enhanced Cytotoxicity AGAINST Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 627.	1.8	19
1313	Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles. Materials, 2018, 11, 301.	1.3	27
1314	Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery. Materials, 2018, 11, 623.	1.3	19
1315	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC) Tj ETQq1 1 0.7843	314.ggBT /	Overlock 1

ARTICLE IF CITATIONS Nanotechnology in Drug Delivery Systems. SpringerBriefs in Applied Sciences and Technology, 2018, 1316 0.2 0 43-51. Inorganic nanoparticles and the microbiome. Nano Research, 2018, 11, 4936-4954. 5.8 Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. 1318 5.7 82 Biomaterials, 2018, 180, 240-252. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today, 2018, 21, 106-125. Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We 1320 2.7 8 Striking Home?. Nanotheranostics, 2018, 2, 320-346. A Review of Biomaterials and Their Applications in Drug Delivery. SpringerBriefs in Applied Sciences 0.2 and Technology, 2018, , . Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer 1322 1.8 25 Theranostics. Frontiers in Chemistry, 2018, 6, 127. The correlation between multiple variable factors and the autocatalytic properties of cerium oxide 1.4 nanoparticles based on cell viability. New Journal of Chemistry, 2018, 42, 9975-9986. 1324 Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53. 5.7 125 Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short 4.2 elastin-like polypeptides. Journal of Nanobiotechnology, 2018, 16, 15. ZrO2 nanoparticles: An industrially viable, efficient and recyclable catalyst for synthesis of 1326 25 1.6 pharmaceutically significant xanthene derivatives. Vacuum, 2018, 157, 9-16. Recent Progress of Nano-drug Delivery System for Liver Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry, 2018, 17, 1884-1897. Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to 1328 2.6 26 colorectal cancer cells. International Journal of Pharmaceutics, 2018, 549, 397-403. Effect of number of positive charges on the photophysical and photodynamic therapy activities of quarternary benzothiazole substituted zinc phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 253-260. 16 Visualization of inflammation in a mouse model based on near-infrared persistent luminescence 1330 1.5 12 nanoparticles. Journal of Luminescence, 2018, 204, 520-527. Development of quantum dot-based biosensors: principles and applications. Journal of Materials 119 Chemistry B, 2018, 6, 6173-6190. The Application of Nanomaterials in Stem Cell Therapy for Some Neurological Diseases. Current Drug 1332 1.0 23 Targets, 2018, 19, 279-298. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials, 2018, 8, 634.

#	Article	IF	CITATIONS
1334	Biodegradable nanoparticles bearing amine groups as a strategy to alter surface features, biological identity and accumulation in a lung metastasis model. Journal of Materials Chemistry B, 2018, 6, 5922-5930.	2.9	4
1335	Size and shape control of metal nanoparticles in millifluidic reactors. Physical Sciences Reviews, 2018, 3, .	0.8	1
1336	Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. Langmuir, 2018, 34, 10793-10805.	1.6	24
1337	RAFT Emulsion Polymerization as a Platform to Generate Wellâ€Defined Biocompatible Latex Nanoparticles. Macromolecular Bioscience, 2018, 18, e1800213.	2.1	22
1338	Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Nanomedicine, 2018, 13, 1753-1772.	1.7	39
1339	Nanoplastics impaired oyster free living stages, gametes and embryos. Environmental Pollution, 2018, 242, 1226-1235.	3.7	192
1340	Potential applications of engineered nanoparticles in medicine and biology: an update. Journal of Biological Inorganic Chemistry, 2018, 23, 1185-1204.	1.1	118
1341	Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis, 2018, 123, 505-526.	1.3	265
1342	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539
1343	Engineered nanomaterials for their applications in theragnostics. Journal of Industrial and Engineering Chemistry, 2018, 66, 20-28.	2.9	10
1344	"Precipitation on Nanoparticles― Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles. Angewandte Chemie, 2018, 130, 7141-7145.	1.6	6
1345	Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicology and Environmental Safety, 2018, 161, 245-250.	2.9	41
1346	Nanotechnology-based drug delivery systems. , 2018, , 39-79.		12
1347	Understanding Toxicity of Nanomaterials in the Environment: Crucial Tread for Controlling the Production, Processing, and Assessing the Risk. , 2018, , 467-500.		1
1348	Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomaterials Science and Engineering, 2018, 4, 2237-2275.	2.6	217
1349	Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity. Environmental Pollution, 2018, 241, 701-709.	3.7	2
1350	Combined toxicity of graphene oxide and wastewater to the green alga <i>Chlamydomonas reinhardtii</i> . Environmental Science: Nano, 2018, 5, 1729-1744.	2.2	41
1351	Core–shell nanoparticles as a drug delivery platform for tumor targeting. , 2018, , 387-448.		8

	Сітатіо	n Report	
# 1352	ARTICLE Antineoplastic activity of mitomycin C formulated in nanoemulsions-based essential oils on HeLa cervical cancer cells. Chemico-Biological Interactions. 2018. 291. 72-80	IF 1.7	Citations
1353	Curation of datasets, assessment of their quality and completeness, and nanoSAR classification model development for metallic nanoparticles. Environmental Science: Nano, 2018, 5, 1902-1910.	2.2	30
1354	Cell and organ drug targeting. , 2018, , 1-66.		4
1355	Naturally Occurring and Synthetic Mesoporous Nanosilica: Multimodal Applications in Frontier Areas of Science. International Journal of Nanoscience, 2019, 18, 1850027.	0.4	3
1356	The Photophysics of Polythiophene Nanoparticles for Biological Applications. ChemBioChem, 2019, 20, 532-536.	1.3	11
1357	Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8+ T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes. Journal of Nanobiotechnology, 2019, 17, 87.	4.2	28
1358	Realâ€Time Quantification of Cell Internalization Kinetics by Functionalized Bioluminescent Nanoprobes. Advanced Materials, 2019, 31, e1902469.	11.1	10
1359	Multidisciplinary Role of Mesoporous Silica Nanoparticles in Brain Regeneration and Cancers: From Crossing the Blood–Brain Barrier to Treatment. Particle and Particle Systems Characterization, 2019, 36, 1900195.	1.2	45
1360	Virus oncolÃticos: un arma contra el cáncer. Revista Facultad De Medicina, 2019, 67, 331-324.	0.0	0
1361	Enantiopure polythiophene nanoparticles. Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity. RSC Advances, 2019, 9, 23036-23044.	1.7	15
1362	<p>Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes</p> . International Journal of Nanomedicine, 2019, Volume 14, 5911-5924.	3.3	29
1363	Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	11
1364	Understanding the Influence of a Bifunctional Polyethylene Glycol Derivative in Protein Corona Formation around Iron Oxide Nanoparticles. Materials, 2019, 12, 2218.	1.3	23
1365	<p>Curcumin-loaded nanostructured lipid carriers prepared using Peceolâ,,¢ and olive oil in photodynamic therapy: development and application in breast cancer cell line</p> . International Journal of Nanomedicine, 2019, Volume 14, 5073-5085.	3.3	57
1366	Synthesis and Characterization of Amphiphilic Gold Nanoparticles. Journal of Visualized Experiments, 2019, , .	0.2	5
1367	Protein Adsorption: A Feasible Method for Nanoparticle Functionalization?. Materials, 2019, 12, 1991.	1.3	63
1368	Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	9
1369	Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 2019, 6, 23.	6.3	445

#	Article	IF	CITATIONS
1370	Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. Journal of Controlled Release, 2019, 309, 94-105.	4.8	98
1371	Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production. Reviews in Environmental Science and Biotechnology, 2019, 18, 525-541.	3.9	40
1372	Probing the interaction of carbonaceous dots with transferrin and albumin: Impact on the protein structure and non-synergetic metal release. Journal of Molecular Liquids, 2019, 292, 111460.	2.3	10
1373	Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. Journal of Colloid and Interface Science, 2019, 555, 82-93.	5.0	30
1374	Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 2019, 11, 14937-14951.	2.8	138
1375	Plasmonic Detection of Glucose in Serum Based on Biocatalytic Shape-Altering of Gold Nanostars. Biosensors, 2019, 9, 83.	2.3	8
1376	Phytosomes with Persimmon (Diospyros kaki L.) Extract: Preparation and Preliminary Demonstration of In Vivo Tolerability. Pharmaceutics, 2019, 11, 296.	2.0	29
1377	Novel Thioacetal-Bridged Hollow Mesoporous Organosilica Nanoparticles with ROS-Responsive Biodegradability for Smart Drug Delivery. Nano, 2019, 14, 1950141.	0.5	3
1378	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337.	11.1	130
1379	<p>Fabrication Of Gold Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA</p> . International Journal of Nanomedicine, 2019, Volume 14, 8399-8408.	3.3	12
1380	Charge tunable chitosan/PLA microspheres for potential biomedical application. Materials Research Express, 2019, 6, 125403.	0.8	6
1381	Surface-adaptive nanoparticles with near-infrared aggregation-induced emission for image-guided tumor resection. Science China Life Sciences, 2019, 62, 1472-1480.	2.3	6
1382	Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models. Journal of Physical Chemistry B, 2019, 123, 10547-10561.	1.2	26
1383	Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. Biomacromolecules, 2019, 20, 4407-4418.	2.6	26
1384	Polyethylenimine–DNA Ratio Strongly Affects Their Nanoparticle Formation: A Large-Scale Coarse-Grained Molecular Dynamics Study. Journal of Physical Chemistry B, 2019, 123, 9629-9640.	1.2	14
1385	<p>Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel</p> . International Journal of Nanomedicine, 2019, Volume 14, 6249-6268.	3.3	42
1386	Nanoscale systems for local drug delivery. Nano Today, 2019, 28, 100765.	6.2	46
1387	Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. Nanomaterials, 2019, 9, 1195.	1.9	64

#	Article	IF	CITATIONS
1388	Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Chemical Engineering Research and Design, 2019, 130, 238-249.	2.7	186
1389	Theory of active particle penetration through a planar elastic membrane. New Journal of Physics, 2019, 21, 083014.	1.2	9
1390	Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environmental Sciences Europe, 2019, 31, .	2.6	59
1391	Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin <i>Paracentrotus lividus</i> coelomic fluid highlights potential drivers of toxicity. Environmental Science: Nano, 2019, 6, 2937-2947.	2.2	24
1392	Assessment of cytotoxicity of metal oxide nanoparticles on the basis of fundamental physical–chemical parameters: a robust approach to grouping. Environmental Science: Nano, 2019, 6, 3102-3112.	2.2	15
1393	Theranostic Nanostructures for Ovarian Cancer. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 305-371.	1.2	5
1394	Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials, 2019, 9, 1248.	1.9	30
1395	Magnetic nanotechnology for circulating tumor biomarkers screening: Rational design, microfluidics integration and applications. Biomicrofluidics, 2019, 13, .	1.2	19
1396	Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review. Molecules, 2019, 24, 3254.	1.7	39
1397	Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. Journal of Tissue Engineering, 2019, 10, 204173141987752.	2.3	64
1398	Folate-decorated, endostatin-loaded, nanoparticles for anti-proliferative chemotherapy in esophaegeal squamous cell carcinoma. Biomedicine and Pharmacotherapy, 2019, 119, 109450.	2.5	13
1399	Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. TrAC - Trends in Analytical Chemistry, 2019, 120, 115646.	5.8	65
1400	Label-free Detection of Breast Cancer Cells Using a Fiber-optic Grating Sensor Functionalized with Halloysite Nanotubes. , 2019, , .		1
1401	Tracing upconversion nanoparticle penetration in human skin. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110480.	2.5	14
1402	In Vitro Genotoxicity of Polystyrene Nanoparticles on the Human Fibroblast Hs27 Cell Line. Nanomaterials, 2019, 9, 1299.	1.9	124
1403	<p>Biological Activity Of miRNA-27a Using Peptide-based Drug Delivery Systems</p> . International Journal of Nanomedicine, 2019, Volume 14, 7795-7808.	3.3	16
1404	Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. Nanomaterials, 2019, 9, 1365.	1.9	186
1405	Anti-Inflammatory Effect of Cherry Extract Loaded in Polymeric Nanoparticles: Relevance of Particle Internalization in Endothelial Cells. Pharmaceutics, 2019, 11, 500.	2.0	18

#	Article	IF	CITATIONS
1406	Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. Nanoscale, 2019, 11, 2767-2778.	2.8	33
1407	Anticancer effect of novel platinum nanocomposite beads on oral squamous cell carcinoma cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2281-2287.	1.6	8
1408	Gene Therapy for Inherited Retinal Degeneration. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 79-97.	0.6	22
1409	Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Frontiers in Immunology, 2018, 9, 3074.	2.2	27
1410	Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences, 2019, 20, 162.	1.8	143
1411	Surface Coverage-Regulated Cellular Interaction of Ultrasmall Luminescent Gold Nanoparticles. ACS Nano, 2019, 13, 1893-1899.	7.3	22
1412	Coatings on mammalian cells: interfacing cells with their environment. Journal of Biological Engineering, 2019, 13, 5.	2.0	24
1413	Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study. PLoS ONE, 2019, 14, e0209492.	1.1	31
1414	Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells. Nanomedicine, 2019, 14, 301-316.	1.7	17
1415	Micro/Nanomachines: from Functionalization to Sensing and Removal. Advanced Materials Technologies, 2019, 4, 1800636.	3.0	79
1416	Sustained and Prolonged Delivery of Protein Therapeutics from Two-Dimensional Nanosilicates. ACS Applied Materials & Interfaces, 2019, 11, 6741-6750.	4.0	54
1417	T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. Journal of Nanobiotechnology, 2019, 17, 14.	4.2	54
1418	"Ultramixing― A Simple and Effective Method To Obtain Controlled and Stable Dispersions of Graphene Oxide in Cell Culture Media. ACS Applied Materials & Interfaces, 2019, 11, 7695-7702.	4.0	33
1419	Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomaterials Science, 2019, 7, 1411-1421.	2.6	16
1420	Polymeric "Clickase―Accelerates the Copper Click Reaction of Small Molecules, Proteins, and Cells. Journal of the American Chemical Society, 2019, 141, 9693-9700.	6.6	84
1421	Drug Targeting Strategies Based on Charge Dependent Uptake of Nanoparticles into Cancer Cells. Journal of Pharmacy and Pharmaceutical Sciences, 2019, 22, 191-220.	0.9	43
1422	<p>A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity</p> . International Journal of Nanomedicine, 2019, Volume 14, 3629-3644.	3.3	6
1423	Long-term biodistribution and toxicity of curcumin capped iron oxide nanoparticles after single-dose administration in mice. Life Sciences, 2019, 230, 76-83.	2.0	33

#	Article	IF	CITATIONS
1424	Succinylated β-Lactoglobuline-Functionalized Multiwalled Carbon Nanotubes with Improved Colloidal Stability and Biocompatibility. ACS Biomaterials Science and Engineering, 2019, 5, 3361-3372.	2.6	17
1425	Microbial Nanobionics. Nanotechnology in the Life Sciences, 2019, , .	0.4	7
1426	Chitosan capped ZnO nanoparticles with cell specific apoptosis induction through P53 activation and G2/M arrest in breast cancer cells – In vitro approaches. International Journal of Biological Macromolecules, 2019, 136, 686-696.	3.6	20
1427	Sensing Soil Microbes and Interactions: How Can Nanomaterials Help?. Nanotechnology in the Life Sciences, 2019, , 213-236.	0.4	8
1428	Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Applied Materials & Interfaces, 2019, 11, 23822-23831.	4.0	29
1429	Nose-to-brain delivery of hyaluronate – FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. Journal of Controlled Release, 2019, 307, 76-89.	4.8	19
1430	Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics. , 2019, , 179-216.		5
1431	Effect of Ni-Ferrite and Ni-Co-Ferrite nanostructures on biogas production from anaerobic digestion. Fuel, 2019, 254, 115673.	3.4	36
1432	Tumor-Specific Silencing of Tissue Factor Suppresses Metastasis and Prevents Cancer-Associated Hypercoagulability. Nano Letters, 2019, 19, 4721-4730.	4.5	48
1433	Poisonous Caterpillar-Inspired Chitosan Nanofiber Enabling Dual Photothermal and Photodynamic Tumor Ablation. Pharmaceutics, 2019, 11, 258.	2.0	18
1434	Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells. Materials Science and Engineering C, 2019, 103, 109807.	3.8	20
1435	Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Frontiers in Chemistry, 2019, 7, 343.	1.8	84
1436	A universal discoidal nanoplatform for the intracellular delivery of PNAs. Nanoscale, 2019, 11, 12517-12529.	2.8	24
1437	Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 2019, 6, 1900572.	1.9	276
1438	Characterization of the physical and chemical properties of engineered nanomaterials. , 2019, , 31-57.		0
1439	Nanoscale Lipophilic Prodrugs of Dexamethasone with Enhanced Pharmacokinetics. Molecular Pharmaceutics, 2019, 16, 2999-3010.	2.3	19
1440	Redox-Responsive and Dual-Targeting Hyaluronic Acid–Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Molecular Pharmaceutics, 2019, 16, 3133-3144.	2.3	25
1441	Materials Design in Digital Era: Challenges and Opportunities. Transactions of the Indian Institute of Metals, 2019, 72, 2199-2208.	0.7	1

#	Article	IF	CITATIONS
1442	A Multidisciplinary Approach toward High Throughput Label-Free Cytotoxicity Monitoring of Superparamagnetic Iron Oxide Nanoparticles. Bioengineering, 2019, 6, 52.	1.6	5
1443	A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 2019, 55, 6964-6996.	2.2	263
1444	Toxicity of differently sized and charged silver nanoparticles to yeast <i>Saccharomyces cerevisiae</i> BY4741: a nano-biointeraction perspective. Nanotoxicology, 2019, 13, 1041-1059.	1.6	26
1445	Internalization and subcellular transport mechanisms of different curcumin loaded nanocarriers across Caco-2 cell model. Journal of Drug Delivery Science and Technology, 2019, 52, 660-669.	1.4	7
1446	Toxicity of microwave-assisted biosynthesized zinc nanoparticles in mice: a preliminary study. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1846-1858.	1.9	14
1447	Ormosils loaded with SiO ₂ nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation. Nanotechnology, 2019, 30, 345701.	1.3	24
1448	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	5.2	57
1449	Impact of Various Metallic Oxide Nanoparticles on Ethanol Production by Saccharomyces cerevisiae BY4743: Screening, Kinetic Study and Validation on Potato Waste. Catalysis Letters, 2019, 149, 2015-2031.	1.4	33
1450	Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. Soft Matter, 2019, 15, 4498-4507.	1.2	3
1451	Ion controlled passive nanoparticle uptake in lipid vesicles in theory and experiment. Journal Physics D: Applied Physics, 2019, 52, 294001.	1.3	3
1452	Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 755-771.	1.4	67
1453	Polystyrene microbeads modulate the energy metabolism of the marine diatom Chaetoceros neogracile. Environmental Pollution, 2019, 251, 363-371.	3.7	83
1454	Anionic nanoparticle-lipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption. RSC Advances, 2019, 9, 13992-13997.	1.7	17
1455	Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 17157-17166.	4.0	20
1456	Arginine-rich Peptide Coated PLGA Nanoparticles Enhance Polymeric Delivery of Antisense HIF1α-oligonucleotide to Fully Differentiated Stiff Adipocytes. Toxicology and Environmental Health Sciences, 2019, 11, 1-10.	1.1	3
1457	Exploring the cell–protein–mineral interfaces: Interplay of silica (nano)rods@collagen biocomposites with human dermal fibroblasts. Materials Today Bio, 2019, 1, 100004.	2.6	7
1458	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticleâ€Based Exoskeletons. Advanced Materials, 2019, 31, e1900545.	11.1	96
1459	Nanoparticles and the control of oral biofilms. , 2019, , 243-275.		3

		CITATION REI	PORT	
#	Article		IF	CITATIONS
1460	A multifunctional AIEgen with high cell-penetrating ability for intracellular fluorescence ass imaging and drug delivery. Materials Chemistry Frontiers, 2019, 3, 1151-1158.	ays,	3.2	13
1461	Facile synthesis and direct characterization of surface-charge-controlled magnetic iron oxi- nanoparticles and their role in gene transfection in human leukemic T cell. Applied Surface 2019, 483, 1069-1080.	de Science,	3.1	15
1462	Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanop platform: Enrichment of the human heart phosphoproteome. Nano Research, 2019, 12, 14	roteomics 173-1481.	5.8	22
1463	Multifunctional Superparamagnetic Stiff Nanoreservoirs for Blood Brain Barrier Applicatior Nanomaterials, 2019, 9, 449.	IS.	1.9	16
1464	Surface Modification of Nanoparticles for Targeted Drug Delivery. , 2019, , .			27
1465	Radio-sensitization efficacy of gold nanoparticles in inhalational nanomedicine and the advorgent of nano-detachment due to coating inactivation. Physica Medica, 2019, 60, 7-13.	verse effect	0.4	13
1466	Biological Effects of Green-Synthesized Metal Nanoparticles: A Mechanistic View of Antiba Activity and Cytotoxicity. Environmental Chemistry for A Sustainable World, 2019, , 145-1	cterial 71.	0.3	20
1467	Engineering of Targeted Nanoparticles by Using Self-Assembled Biointegrated Block Copol , 451-466.	ymers. , 2019,		2
1468	Antileishmanial activity and immune modulatory effects of benzoxonium chloride and its e forms in niosome on Leishmania tropica. Journal of Parasitic Diseases, 2019, 43, 406-415.	ntrapped	0.4	7
1469	Super-pH-Sensitive Mesoporous Silica Nanoparticle-Based Drug Delivery System for Effecti Combination Cancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 1878-1	ve 886.	2.6	46
1470	Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chemical 2019, 10, 3994-4003.	Science,	3.7	32
1471	Biconcave Carbon Nanodisks for Enhanced Drug Accumulation and Chemoâ€₽hototherma Therapy. Advanced Healthcare Materials, 2019, 8, 1801505.	al Tumor	3.9	25
1472	ReaxFF MD Simulations of Peptide-Grafted Gold Nanoparticles. Langmuir, 2019, 35, 5029-	5036.	1.6	21
1473	Assessing occupational risk in designs of production processes of nano-materials. Nanolm 14, 100149.	pact, 2019,	2.4	14
1474	Immunomodulation and cellular response to biomaterials: the overriding role of neutrophil healing. Materials Horizons, 2019, 6, 1122-1137.	s in	6.4	47
1475	Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low l power on N719 dye and Rhodamine-B. MRS Advances, 2019, 4, 723-731.	aser	0.5	4
1476	Macrophages-Mediated Delivery of Small Gold Nanorods for Tumor Hypoxia Photoacoustic and Enhanced Photothermal Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 1	: Imaging 5251-15261.	4.0	71
1477	Magnetic Stimuli-Responsive Cobalt Ferrite Nanoparticle as Theranostic agents for Targete Current Nanomaterials, 2019, 3, 160-167.	ed Delivery.	0.2	1

ARTICLE IF CITATIONS Particulate systems of PLA and its copolymers., 2019,, 349-380. 1 1478 Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 2019, 88, 102925. 1479 961 Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Molecular Pharmaceutics, 2019, 16, 1480 2.337 2430-2444. Amorphous Silica Nanoparticles Obtained by Laser Ablation Induce Inflammatory Response in Human 1481 Lung Fibroblasts. Materials, 2019, 12, 1026. Enhanced Delivery of Plasmid DNA to Skeletal Muscle Cells using a DLC8-Binding Peptide and 1482 2.3 15 ASSLNIA-Modified PAMAM Dendrimer. Molecular Pharmaceutics, 2019, 16, 2376-2384. Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Research, 2019, 12, 889-896. 5.8 Combinational Effects of Active Targeting, Shape, and Enhanced Permeability and Retention for Cancer 1484 4.0 83 Theranostic Nanocarriers. ACS Applied Materials & amp; Interfaces, 2019, 11, 10505-10519. Invertebrate Models for Hyperthermia: What We Learned From Caenorhabditis elegans and Hydra 1485 vulgaris., 2019,, 229-264. Preparation of Targeted Lignin–Based Hollow Nanoparticles for the Delivery of Doxorubicin. 1486 1.9 60 Nanomaterials, 2019, 9, 188. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Applied Microbiology and Biotechnology, 2019, 103, 1487 1.7 2913-2935. Surface Chemistry-Mediated Near-Infrared Emission of Small Coinage Metal Nanoparticles. Accounts 1488 7.6 63 of Chemical Research, 2019, 52, 695-703. Electrostatics and Interactions of an Ionizable Silica Nanoparticle Approaching a Plasma Membrane. 1489 1.6 Langmuir, 2019, 35, 4171-4181. Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature 1490 2.3 11 Toward Prodrug-Nanomedicine Design. Molecular Pharmaceutics, 2019, 16, 1573-1585. Non-spherical micro- and nanoparticles in nanomedicine. Materials Horizons, 2019, 6, 1094-1121. 1491 6.4 Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein 1492 1.8 96 Corona. Bioconjugate Chemistry, 2019, 30, 1067-1076. Rapid Aerobic Inactivation and Facile Removal of <i>Escherichia coli</i> with Amorphous Zero-Valent Iron Microspheres: Indispensable Roles of Reactive Oxygen Species and Iron Corrosion Products. 1493 Environmental Science & amp; Technology, 2019, 53, 3707-3717. Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate. 1494 7.3 41 ACS Nano, 2019, 13, 2870-2878. Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons. Laser and 4.4 Photonics Reviews, 2019, 13, 1800227.

#	Article	IF	CITATIONS
1496	NanoModeler: A Webserver for Molecular Simulations and Engineering of Nanoparticles. Journal of Chemical Theory and Computation, 2019, 15, 2022-2032.	2.3	26
1497	Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria – a critical review. Nanotoxicology, 2019, 13, 392-428.	1.6	43
1498	Biological barriers to cancer drug delivery, efficacy and cancer models. , 2019, , 359-423.		1
1499	Nanoparticles characterization using the CAM assay. The Enzymes, 2019, 46, 129-160.	0.7	10
1500	Optical Studies of Nanodiamond-Tissue Interaction: Skin Penetration and Localization. Materials, 2019, 12, 3762.	1.3	12
1501	Predicting <i>in situ</i> nanoparticle behavior using multiple particle tracking and artificial neural networks. Nanoscale, 2019, 11, 22515-22530.	2.8	19
1502	<p>Ciprofloxacin Functionalized Biogenic Gold Nanoflowers as Nanoantibiotics Against Pathogenic Bacterial Strains</p> . International Journal of Nanomedicine, 2019, Volume 14, 9905-9916.	3.3	38
1503	Interfacial Effect of Hydration Structures of Hydroxyapatite Nanoparticle Films on Protein Adsorption and Cell Adhesion States. ACS Applied Bio Materials, 2019, 2, 5559-5567.	2.3	4
1504	Nanotechnology for Agriculture: Crop Production & amp; Protection. , 2019, , .		12
1505	Cytotoxicity-Related Bioeffects Induced by Nanoparticles: The Role of Surface Chemistry. Frontiers in Bioengineering and Biotechnology, 2019, 7, 414.	2.0	76
1506	Adsorption of charged anisotropic nanoparticles at oil–water interfaces. Nanoscale Advances, 2019, 1, 4308-4312.	2.2	50
1507	Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chemical Science, 2019, 10, 10900-10910.	3.7	23
1508	Unraveling Polymeric Nanoparticles Cell Uptake Pathways: Two Decades Working to Understand Nanoparticles Journey to Improve Gene Therapy. Advances in Experimental Medicine and Biology, 2019, 1288, 117-138.	0.8	8
1509	Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 176, 507-512.	2.5	34
1510	Quantitative Analysis of the Correlation between Cell Size and Cellular Uptake of Particles. Biophysical Journal, 2019, 116, 347-359.	0.2	18
1511	Glucose targeted therapy against liver hepatocellular carcinoma: In vivo study. Journal of Drug Delivery Science and Technology, 2019, 49, 502-512.	1.4	7
1512	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	23.0	299
1513	Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. Journal of Drug Targeting, 2019, 27, 646-658.	2.1	21

#	Article	IF	CITATIONS
1514	Disruption of artificial lipid bilayers in the presence of transition metal oxide and rare earth metal oxide nanoparticles. Journal Physics D: Applied Physics, 2019, 52, 044002.	1.3	6
1515	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Advanced Functional Materials, 2019, 29, 1806087.	7.8	21
1516	Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials, 2019, 192, 500-509.	5.7	64
1517	Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine and Pharmacotherapy, 2019, 109, 1100-1111.	2.5	357
1518	Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2019, 17, 849-865.	8.3	204
1519	Biodistribution and Cellular Interaction of Hybrid Nanostructures. , 2019, , 63-86.		4
1520	On the effect of ligand shell heterogeneity on nanoparticle/protein binding thermodynamics. Colloids and Surfaces B: Biointerfaces, 2019, 174, 367-373.	2.5	29
1521	Realâ€Time Detection of Nanoparticles Interaction with Lipid Membranes Using an Integrated Acoustical and Electrical Multimode Biosensor. Particle and Particle Systems Characterization, 2019, 36, 1800370.	1.2	2
1522	Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system. Nano Research, 2019, 12, 365-373.	5.8	4
1523	Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 2019, 359, 684-705.	6.6	159
1524	Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape, Capping Ligand, and Biological Corona. ACS Omega, 2019, 4, 242-256.	1.6	186
1525	Multi-Modal Nano Particle Labeling of Neurons. Frontiers in Neuroscience, 2019, 13, 12.	1.4	7
1526	Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 2019, 7, 4.	2.0	47
1528	Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews, 2019, 143, 3-21.	6.6	276
1529	Reversible Aggregation and Dispersion of Particles at a Liquid–Liquid Interface Using Space Charge Injection. Advanced Materials Interfaces, 2019, 6, 1801920.	1.9	5
1530	Antioxidant polymer-modified maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 517-526.	1.0	4
1531	Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: Emulsions, liposomes and aqueous lecithin dispersions (WLDs). European Journal of Pharmaceutical Sciences, 2019, 127, 92-101.	1.9	20
1532	Analytical nanometrological approach for screening and confirmation of titanium dioxide nano/micro-particles in sugary samples based on Raman spectroscopy – Capillary electrophoresis. Analytica Chimica Acta, 2019, 1050, 169-175.	2.6	20

#	Article	IF	CITATIONS
1533	Molecular bionics – engineering biomaterials at the molecular level using biological principles. Biomaterials, 2019, 192, 26-50.	5.7	35
1534	Radiolabeled Molecular Imaging Probes for the In Vivo Evaluation of Cellulose Nanocrystals for Biomedical Applications. Biomacromolecules, 2019, 20, 674-683.	2.6	32
1535	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	4.5	84
1536	Suppression of Gold Nanoparticle Aggregation on Lipid Membranes Using Nanosized Liposomes To Increase Steric Hindrance. Langmuir, 2019, 35, 229-236.	1.6	8
1537	Control of Intra- <i>versus</i> Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS Nano, 2019, 13, 229-235.	7.3	61
1538	Phosphateâ€Loaded Hydrogel Nanoparticles for Sepsis Prevention Prepared via Inverse Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2019, 13, 1800066.	0.9	12
1539	Targeting central nervous system pathologies with nanomedicines. Journal of Drug Targeting, 2019, 27, 542-554.	2.1	16
1540	Non-Viral Delivery To Enable Genome Editing. Trends in Biotechnology, 2019, 37, 281-293.	4.9	86
1541	Designing heparan sulfate-based biocompatible polymers and their application for intracellular stimuli-sensitive drug delivery. Materials Science and Engineering C, 2019, 94, 465-476.	3.8	4
1542	Homeopathy Seen as Personalised Nanomedicine. Homeopathy, 2019, 108, 066-070.	0.5	10
1543	Protein-based nanoparticles in cancer vaccine development. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 164-174.	1.7	127
1544	Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering - Part A, 2019, 25, 91-112.	1.6	68
1545	Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environmental Science and Pollution Research, 2020, 27, 19151-19168.	2.7	198
1546	Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. Journal of Drug Targeting, 2020, 28, 92-101.	2.1	53
1547	Cancerâ€Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. Advanced Materials, 2020, 32, e1901081.	11.1	146
1548	Redox-responsive biocompatible nanocarriers based on novel heparosan polysaccharides for intracellular anticancer drug delivery. Asian Journal of Pharmaceutical Sciences, 2020, 15, 83-94.	4.3	13
1549	Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. Materials Science and Engineering C, 2020, 106, 110179.	3.8	15
1550	Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid–Photosensitizer Conjugates for Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 2-9.	2.3	33

#	Article	IF	CITATIONS
1551	Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials, 2020, 226, 119406.	5.7	30
1552	Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. Journal of Cluster Science, 2020, 31, 499-506.	1.7	60
1553	The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots. Diamond and Related Materials, 2020, 101, 107617.	1.8	20
1554	Synthesis, characterization, and in vitro toxicity evaluation of upconversion luminescence NaLuF ₄ :Yb ³⁺ /Tm ³⁺ nanoparticles suitable for medical applications. Journal of the Chinese Chemical Society, 2020, 67, 720-731.	0.8	8
1555	Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology, 2020, 72, 1-22.	0.7	20
1556	Enhanced Antitumor Efficacy and Imaging Application of Photosensitizer-Formulated Paclitaxel. ACS Applied Materials & Interfaces, 2020, 12, 4221-4230.	4.0	13
1557	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	2.2	79
1558	Superparamagnetic nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 354-367.	2.9	135
1559	Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 2020, 320, 45-62.	4.8	180
1560	A Multifunction Lipid-Based CRISPR-Cas13a Genetic Circuit Delivery System for Bladder Cancer Gene Therapy. ACS Synthetic Biology, 2020, 9, 343-355.	1.9	31
1561	Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe ₃ O ₄ hollow nanospheres/graphene composites. Journal of Materials Chemistry C, 2020, 8, 2913-2926.	2.7	61
1562	Luminescent gold nanoclusters for <i>in vivo</i> tumor imaging. Analyst, The, 2020, 145, 348-363.	1.7	41
1563	Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horizons, 2020, 5, 294-307.	4.1	49
1564	Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe. Nano Letters, 2020, 20, 1054-1066.	4.5	17
1565	Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. Journal of Controlled Release, 2020, 319, 46-62.	4.8	84
1566	Design and Optimization of PLGA Particles to Deliver Immunomodulatory Drugs for the Prevention of Skin Allograft Rejection. Immunological Investigations, 2020, 49, 840-857.	1.0	11
1567	Amyloid aggregation at solid-liquid interfaces: Perspectives of studies using model surfaces. Applied Surface Science, 2020, 506, 144991.	3.1	21
1568	Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine, 2020, 15, 303-318.	1.7	84

#	Article	IF	CITATIONS
1569	Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy, 2020, 191, 116580.	4.5	25
1570	Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology, 2020, 31, 132002.	1.3	90
1571	An Organometallic Strategy for Assembling Atomically Precise Hybrid Nanomaterials. Journal of the American Chemical Society, 2020, 142, 327-334.	6.6	55
1572	Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. , 2020, , 223-242.		7
1573	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	2.1	32
1574	Mixedâ€charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1600.	3.3	5
1575	Cytotoxicity Analysis of Morphologically Different Sol-Gel-Synthesized MgO Nanoparticles and Their In Vitro Insulin Resistance Reversal Ability in Adipose cells. Applied Biochemistry and Biotechnology, 2020, 190, 1385-1410.	1.4	9
1576	Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Nanomedicine, 2020, 15, 145-161.	1.7	21
1577	Radial aggregation of proteins prevails over axial aggregation on membrane tubes. Nanoscale, 2020, 12, 3029-3037.	2.8	1
1578	Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. Nanomaterials, 2020, 10, 1898.	1.9	30
1579	Changing surface properties of artificial lipid membranes at the interface with biopolymer coated gold nanoparticles under normal and redox conditions. Biophysical Chemistry, 2020, 267, 106465.	1.5	3
1580	Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine, 2020, 38, 6814-6825.	1.7	14
1581	Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. Nanoscale, 2020, 12, 20326-20336.	2.8	15
1582	Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy. Journal of Nanomaterials, 2020, 2020, 1-18.	1.5	8
1583	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	3.6	46
1584	Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications, 2020, 25, 101692.	0.9	131
1585	Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations. Biophysical Chemistry, 2020, 266, 106457.	1.5	12
1586	Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. International Journal of Biological Macromolecules, 2020, 165, 970-984.	3.6	24

#	Article	IF	Citations
1587	Wound-healing potential of curcumin loaded lignin nanoparticles. Journal of Drug Delivery Science and Technology, 2020, 60, 102020.	1.4	47
1588	Nanostructured functionalized magnetic platforms for the sustained delivery of cisplatin: Synthesis, characterization and in vitro cytotoxicity evaluation. Journal of Inorganic Biochemistry, 2020, 213, 111258.	1.5	14
1589	Barriers for Tumor Drug Delivery. , 2020, , 5-26.		1
1590	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery <i>via</i> Competing Supramolecular Interactions. ACS Nano, 2020, 14, 12972-12981.	7.3	56
1591	Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nature Communications, 2020, 11, 3638.	5.8	62
1592	One-/Two-Photon Excited Cell Membrane Imaging and Tracking by a Photoactive Nanocage. ACS Applied Materials & Interfaces, 2020, 12, 35873-35881.	4.0	15
1593	Au-Coated Ni80Fe20 Submicron Magnetic Nanodisks: Interactions With Tumor Cells. Frontiers in Nanotechnology, 2020, 2, .	2.4	2
1594	Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. Nanomaterials, 2020, 10, 1353.	1.9	20
1595	Optimization of fluorescence and surface adsorption of citric acid/ethanolamine carbon nanoparticles for subsurface tracers. Carbon, 2020, 169, 395-402.	5.4	7
1596	Structure-controlled zwitterionic nanocapsules with thermal-responsiveness. Nanotechnology, 2020, 31, 425710.	1.3	4
1597	Nanoformulation approach for improved stability and efficiency of lactoperoxidase. Preparative Biochemistry and Biotechnology, 2021, 51, 1-13.	1.0	9
1598	Morphological and constituent viral-mimicking self-assembled nanoparticles promote cellular uptake and improve cancer therapeutic efficiency in vivo. Giant, 2020, 3, 100026.	2.5	5
1599	BC@DNA-Mn ₃ (PO ₄) ₂ Nanozyme for Real-Time Detection of Superoxide from Living Cells. Analytical Chemistry, 2020, 92, 15927-15935.	3.2	18
1600	A simple desolvation method for production of cationic albumin nanoparticles with improved drug loading and cell uptake. Journal of Drug Delivery Science and Technology, 2020, 60, 101931.	1.4	8
1601	Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. Nanomaterials, 2020, 10, 1536.	1.9	20
1602	Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry. Nanoscale, 2020, 12, 15743-15751.	2.8	51
1603	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	7.3	144
1604	Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials, 2020, 10, 1390.	1.9	24

#	Article	IF	CITATIONS
1605	New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. Small, 2020, 16, e2001588.	5.2	33
1606	Stiffness of HIVâ€1 Mimicking Polymer Nanoparticles Modulates Gangliosideâ€Mediated Cellular Uptake and Trafficking. Advanced Science, 2020, 7, 2000649.	5.6	26
1607	Real time monitoring of interactions of gold nanoparticles with supported phospholipid lipid layers. Journal of Electroanalytical Chemistry, 2020, 872, 114302.	1.9	5
1608	Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Advances, 2020, 2, 3734-3763.	2.2	29
1609	Phospholipid-mimicking cell-penetrating polymers: principles and applications. Journal of Materials Chemistry B, 2020, 8, 7633-7641.	2.9	18
1610	Cold nanoparticles–biomembrane interactions: From fundamental to simulation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111312.	2.5	40
1611	Impact of the Physicochemical Features of TiO ₂ Nanoparticles on Their <i>In Vitro</i> Toxicity. Chemical Research in Toxicology, 2020, 33, 2324-2337.	1.7	33
1612	Altering model cell membranes by means of localized magnetic heating. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111315.	2.5	2
1613	Bi-functional nature of nanoceria: pro-drug and drug-carrier potentiality towards receptor-mediated targeting of doxorubicin. New Journal of Chemistry, 2020, 44, 17013-17026.	1.4	9
1614	Fabrication and Characterization of Non-spherical Polymeric Particles. Journal of Pharmaceutical Innovation, 2021, 16, 747-758.	1.1	4
1615	Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnology and Applied Biochemistry, 2020, , .	1.4	6
1616	Exploring Diffusion and Cellular Uptake: Charged Gold Nanoparticles in an in Vitro Breast Cancer Model. ACS Applied Bio Materials, 2020, 3, 6992-7002.	2.3	21
1617	Synergistic Chemo-Photothermal Antibacterial Effects of Polyelectrolyte-Functionalized Gold Nanomaterials. ACS Applied Bio Materials, 2020, 3, 7168-7177.	2.3	6
1618	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	2.8	23
1619	Bilayerâ€mediated assembly of cationic nanoparticles adsorbed to lipid bilayers: Insights from molecular simulations. AICHE Journal, 2020, 66, e16993.	1.8	1
1620	Improving Tumor Retention of Effector Cells in Adoptive Cell Transfer Therapies by Magnetic Targeting. Pharmaceutics, 2020, 12, 812.	2.0	14
1621	Cationic dynamic covalent polymers for gene transfection. Journal of Materials Chemistry B, 2020, 8, 9385-9403.	2.9	24
1622	Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 2020, 25, 3760.	1.7	66

#	Article	IF	CITATIONS
1623	The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 947.	2.0	30
1624	Nonendocytic Cell Delivery of Quantum Dot Using Arginine-Terminated Gold Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 11827-11834.	1.2	5
1625	Investigation on the Interactions between Self-Assembled β-Sheet Peptide Nanofibers and Model Cell Membranes. International Journal of Molecular Sciences, 2020, 21, 9518.	1.8	0
1626	Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4766-4773.	2.0	17
1627	Porous Carbon Microparticles as Vehicles for the Intracellular Delivery of Molecules. Frontiers in Chemistry, 2020, 8, 576175.	1.8	5
1628	Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. International Journal of Molecular Sciences, 2020, 21, 8019.	1.8	109
1629	Assessment of the Theranostic Potential of Gold Nanostars—A Multimodal Imaging and Photothermal Treatment Study. Nanomaterials, 2020, 10, 2112.	1.9	10
1630	Intracellular pH-responsive polymeric micelle for simultaneous chemotherapy and MR imaging of hepatocellular carcinoma. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	18
1631	Intracellular uptake of and sensing with SERS-active hybrid exosomes: insight into a role of metal nanoparticles. Nanomedicine, 2020, 15, 913-926.	1.7	15
1632	Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. Journal of Physical Chemistry B, 2020, 124, 4466-4475.	1.2	12
1633	Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions. Journal of the American Chemical Society, 2020, 142, 10814-10823.	6.6	45
1634	Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	32
1635	Clinical implications of metals-based drug-delivery systems. , 2020, , 237-258.		0
1636	Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomaterialia, 2020, 112, 182-189.	4.1	7
1637	Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 5323-5333.	1.2	21
1638	Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel, 2020, 277, 118234.	3.4	84
1639	Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Materials Science and Engineering C, 2020, 115, 111094.	3.8	11
1640	Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. International Journal of Pharmaceutics, 2020, 584, 119468.	2.6	32

#	Article	IF	CITATIONS
1641	Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment. Frontiers in Environmental Science, 2020, 8, .	1.5	60
1642	Tubulinâ€Based Nanotubes as Delivery Platform for Microtubuleâ€Targeting Agents. Advanced Materials, 2020, 32, 2002902.	11.1	11
1643	Nanoparticles' properties modify cell type-dependent distribution in immune cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102244.	1.7	4
1644	Doxorubicin Imprinted Photoluminescent Polymer as a pH-Responsive Nanocarrier. ACS Applied Bio Materials, 2020, 3, 4168-4178.	2.3	26
1645	Glycogen Synthase Kinase 3β Inhibitor Delivered by Chitosan Nanocapsules Promotes Safe, Fast, and Efficient Activation of Wnt Signaling <i>In Vivo</i> . ACS Biomaterials Science and Engineering, 2020, 6, 2893-2903.	2.6	7
1646	Use of nanoparticulate systems to salvage the myocardium. , 2020, , 89-111.		Ο
1647	Combining surface chemistry modification and <i>in situ</i> small-angle scattering characterization to understand and optimize the biological behavior of nanomedicines. Journal of Materials Chemistry B, 2020, 8, 6438-6450.	2.9	4
1648	Dual-Targeting Nanoparticle-Mediated Gene Therapy Strategy for Hepatocellular Carcinoma by Delivering Small Interfering RNA. Frontiers in Bioengineering and Biotechnology, 2020, 8, 512.	2.0	16
1649	The employment of a conformal polydopamine thin layer reduces the cytotoxicity of silver nanoparticles. Turkish Journal of Zoology, 2020, 44, 126-133.	0.4	11
1650	Metatranscriptomic Insights Into the Response of River Biofilm Communities to Ionic and Nano-Zinc Oxide Exposures. Frontiers in Microbiology, 2020, 11, 267.	1.5	8
1651	Analysing the nanoparticle-protein corona for potential molecular target identification. Journal of Controlled Release, 2020, 322, 122-136.	4.8	33
1652	Multifunctional Thymoquinone-Capped Iron Oxide Nanoparticles for Combined Chemo-Photothermal Therapy of Cancer. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2125-2131.	0.8	12
1653	Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. Journal of Physical Chemistry Letters, 2020, 11, 2363-2368.	2.1	26
1654	Low Toxicity, High Resolution, and Red Tissue Imaging in the Vivo of Yb/Tm/GZO@SiO ₂ Core–Shell Upconversion Nanoparticles. ACS Omega, 2020, 5, 5346-5355.	1.6	12
1655	Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 2020, 7, .	1.2	119
1656	A Correlative Imaging Study of in vivo and ex vivo Biodistribution of Solid Lipid Nanoparticles. International Journal of Nanomedicine, 2020, Volume 15, 1745-1758.	3.3	14
1657	Selfâ€assembling of <i>Shewanella</i> @ <scp>rGO</scp> @Pd bionanohybrid for synergistic bioâ€abiotic removal of Cr(<scp>VI</scp>). Journal of Chemical Technology and Biotechnology, 2020, 95, 2222-2228.	1.6	9
1658	A Novel Approach for Non-Invasive Lung Imaging and Targeting Lung Immune Cells. International Journal of Molecular Sciences, 2020, 21, 1613.	1.8	12

#	Article	IF	CITATIONS
1659	Nasal delivery nanoparticles. , 2020, , 89-101.		0
1660	Cellular response to nanobiomaterials. , 2020, , 473-504.		2
1661	Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency?. Nanoscale, 2020, 12, 14911-14918.	2.8	19
1662	Shear Stress-Dependent Targeting Efficiency Using Self-Assembled Gelatin–Oleic Nanoparticles in a Biomimetic Microfluidic System. Pharmaceutics, 2020, 12, 555.	2.0	16
1663	Strategies for High Grafting Efficiency of Functional Ligands to Lipid Nanoemulsions for RGD-Mediated Targeting of Tumor Cells <i>In Vitro</i> . ACS Applied Bio Materials, 2020, 3, 5067-5079.	2.3	3
1664	Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. Journal of Controlled Release, 2020, 326, 192-202.	4.8	28
1665	A custom-made functionalization method to control the biological identity of nanomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102268.	1.7	7
1666	Ultrasound-mediated delivery enhances therapeutic efficacy of MMP sensitive liposomes. Journal of Controlled Release, 2020, 325, 121-134.	4.8	27
1667	Near-infrared templated fluorescent probe for nitroxyl: Selective and sensitive turn-on detection in living cells. Sensors and Actuators B: Chemical, 2020, 310, 127839.	4.0	18
1668	The High Permeability of Nanocarriers Crossing the Enterocyte Layer by Regulation of the Surface Zonal Pattern. Molecules, 2020, 25, 919.	1.7	7
1669	Epitope Molecularly Imprinted Polymer Nanoparticles for Chemo-/Photodynamic Synergistic Cancer Therapy Guided by Targeted Fluorescence Imaging. ACS Applied Materials & Interfaces, 2020, 12, 13360-13370.	4.0	63
1670	Dissecting Particle Uptake Heterogeneity in a Cell Population Using Bayesian Analysis. Biophysical Journal, 2020, 118, 1526-1536.	0.2	2
1671	Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Nanoscale, 2020, 12, 6318-6333.	2.8	53
1672	Anisotropic protein diffusion on nanosurface. Nanoscale, 2020, 12, 5209-5216.	2.8	15
1673	High-throughput electrochemical sensing platform for screening nanomaterial–biomembrane interactions. Review of Scientific Instruments, 2020, 91, 025002.	0.6	9
1674	Effect of protein corona on nanoparticle–plasma membrane and nanoparticle–biomimetic membrane interactions. Environmental Science: Nano, 2020, 7, 963-974.	2.2	20
1675	Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. International Journal of Biological Macromolecules, 2020, 151, 136-158.	3.6	18
1676	Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology, 2020, , .	0.1	3

#	Article	IF	CITATIONS
1677	Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomedicine and Pharmacotherapy, 2020, 125, 109561.	2.5	83
1678	Genotoxicity and Cytotoxicity of Gold Nanoparticles In Vitro: Role of Surface Functionalization and Particle Size. Nanomaterials, 2020, 10, 271.	1.9	46
1679	Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae. Chemosphere, 2020, 247, 125936.	4.2	33
1680	Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano, 2020, 14, 2224-2237.	7.3	64
1681	Using NMR Spectroscopy To Measure Protein Binding Capacity on Gold Nanoparticles. Journal of Chemical Education, 2020, 97, 820-824.	1.1	6
1682	Colorectal cancer stem cells: a review of targeted drug delivery by gold nanoparticles. RSC Advances, 2020, 10, 973-985.	1.7	34
1683	Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega, 2020, 5, 1987-1996.	1.6	71
1684	Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. Journal of Physical Chemistry B, 2020, 124, 742-750.	1.2	7
1685	Solid lipid nanoparticles enhance the resistance of oat-derived peptides that inhibit dipeptidyl peptidase IV in simulated gastrointestinal fluids. Journal of Functional Foods, 2020, 65, 103773.	1.6	24
1686	Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 230.	1.8	16
1687	Revealing Molecular-Level Interaction between a Polymeric Drug and Model Membrane Via Sum Frequency Generation and Microfluidics. Langmuir, 2020, 36, 1615-1622.	1.6	9
1688	Nanoparticle translocation across the lung surfactant film regulated by grafting polymers. Nanoscale, 2020, 12, 3931-3940.	2.8	18
1689	Ampicillin-mediated functionalized gold nanoparticles against ampicillin-resistant bacteria: strategy, preparation and interaction studies. Nanotechnology, 2020, 31, 215604.	1.3	28
1690	In vitro assessment of antimicrobial, antibiofilm and larvicidal activities of bioactive nickel metal organic framework. Journal of Drug Delivery Science and Technology, 2020, 56, 101560.	1.4	28
1691	Immunostimulatory materials. , 2020, , 471-497.		0
1692	Interaction of lignin-derived dimer and eugenol-functionalized silica nanoparticles with supported lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111028.	2.5	18
1693	Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release, 2020, 322, 64-80.	4.8	37
1694	Photoreactive nanogels as versatile polymer networks with tunable in situ drug release kinetics. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103755.	1.5	8

#	Article	IF	CITATIONS
1695	A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity. Bioconjugate Chemistry, 2020, 31, 1077-1087.	1.8	15
1696	Potassium Ferrite as Heterogeneous Photo-Fenton Catalyst for Highly Efficient Dye Degradation. Catalysts, 2020, 10, 293.	1.6	16
1697	Liposome Drug Delivery System across Endothelial Plasma Membrane: Role of Distance between Endothelial Cells and Blood Flow Rate. Molecules, 2020, 25, 1875.	1.7	9
1698	Nanoparticles Mimicking Viral Cell Recognition Strategies Are Superior Transporters into Mesangial Cells. Advanced Science, 2020, 7, 1903204.	5.6	23
1699	A modified and simplified method for purification of gold nanoparticles. MethodsX, 2020, 7, 100896.	0.7	4
1700	Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@PDA superparticles. Journal of Nanobiotechnology, 2020, 18, 64.	4.2	15
1701	Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. Materials Science and Engineering C, 2020, 113, 110969.	3.8	28
1702	Safety Assessment of Nanomaterials for Antimicrobial Applications. Chemical Research in Toxicology, 2020, 33, 1082-1109.	1.7	33
1703	Schwann Cell Migration through Magnetic Actuation Mediated by Fluorescent–Magnetic Bifunctional Fe ₃ O ₄ ·Rhodamine 6G@Polydopamine Superparticles. ACS Chemical Neuroscience, 2020, 11, 1359-1370.	1.7	5
1704	Possible Mechanisms of Liver Injury Induced by Cadmium Sulfide Nanoparticles in Rat. Biological Trace Element Research, 2021, 199, 216-226.	1.9	11
1705	Nanoparticleâ€mediated doubleâ€stranded RNA delivery system: A promising approach for sustainable pest management. Insect Science, 2021, 28, 21-34.	1.5	121
1706	Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 328-337.	1.8	11
1708	Biomedical nanoparticle design: What we can learn from viruses. Journal of Controlled Release, 2021, 329, 552-569.	4.8	41
1709	Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. Journal of Controlled Release, 2021, 329, 624-644.	4.8	66
1710	Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2021, 310, 110593.	2.2	17
1711	Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. Journal of Colloid and Interface Science, 2021, 582, 364-375.	5.0	61
1712	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioactive Materials, 2021, 6, 941-950.	8.6	60
1713	Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosanâ€Based Nanocarriers. Macromolecular Bioscience, 2021, 21, e2000312.	2.1	19

#	Article	IF	CITATIONS
1714	Nanovaccine based on self-assembling nonstructural protein 1 boosts antibody responses to Zika virus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102334.	1.7	7
1715	Synthesis, structural properties, biosafety and applications of chiral mesoporous silica nanostructures. Chemical Engineering Journal, 2021, 421, 127862.	6.6	18
1716	Erlotinib entrapped in cholesterol-depleting cyclodextrin nanoparticles shows improved antitumoral efficacy in 3D spheroid tumors of the lung and the liver. Journal of Drug Targeting, 2021, 29, 439-453.	2.1	14
1718	Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chemical Research in Toxicology, 2021, 34, 24-46.	1.7	59
1720	Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. Journal of Controlled Release, 2021, 329, 1090-1101.	4.8	41
1721	Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules, 2021, 22, 190-200.	2.6	20
1722	Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. Advanced Therapeutics, 2021, 4, 2000147.	1.6	2
1723	pH-Mediated nanoparticle dynamics in hydrogel nanocomposites. Soft Matter, 2021, 17, 2765-2774.	1.2	9
1724	Interaction of nanoparticles with soil. , 2021, , 101-132.		8
1725	Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opinion on Drug Delivery, 2021, 18, 1-13.	2.4	20
1726	Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. Ecotoxicology and Environmental Safety, 2021, 208, 111662.	2.9	55
1727	Platinum-based chemotherapy <i>via</i> nanocarriers and co-delivery of multiple drugs. Biomaterials Science, 2021, 9, 6023-6036.	2.6	19
1728	Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1351-1363.	2.9	36
1729	Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications. Bioprocess and Biosystems Engineering, 2021, 44, 841-854.	1.7	31
1730	Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. Soft Matter, 2021, 17, 1963-1974.	1.2	4
1731	Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS Applied Bio Materials, 2021, 4, 559-570.	2.3	20
1732	A sensitive and rapid detection of glutathione based on a fluorescence-enhanced "turn-on―strategy. Journal of Materials Chemistry B, 2021, 9, 3563-3572.	2.9	15
1733	Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes. Scientific Reports, 2021, 11, 1256.	1.6	20

#	ARTICLE	IF	CITATIONS
1734	Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems. , 2021, , 635-659.		0
1735	Health and safety hazards of nanomaterials. , 2021, , 223-240.		2
1736	Sound methods for the synthesis of nanoparticles from biological molecules. Nanoscale Advances, 2021, 3, 4907-4917.	2.2	8
1737	Self-assembled anionic and cationic Au nanoparticles with Au nanoclusters for the exploration of different biological responsiveness in cancer therapy. Nanoscale Advances, 2021, 3, 2812-2821.	2.2	9
1738	Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery. Environmental Science and Pollution Research, 2021, 28, 25316-25326.	2.7	3
1739	Molecular Modelling Guided Modulation of Molecular Shape and Charge for Design of Smart Self-Assembled Polymeric Drug Transporters. Pharmaceutics, 2021, 13, 141.	2.0	8
1740	Organic nanocarriers for targeted delivery of anticancer agents. , 2021, , 467-497.		1
1741	Nanomaterials and Nanocoatings for Alternative Antimicrobial Therapy. , 2021, , 2603-2619.		0
1742	Mechanisms of Genotoxicity and Oxidative Stress Induced by Engineered Nanoparticles in Plants. , 2021, , 151-197.		1
1743	PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. Journal of Physical Chemistry B, 2021, 125, 1196-1206.	1.2	8
1744	NaYbF ₄ @NaYF ₄ Nanoparticles: Controlled Shell Growth and Shape-Dependent Cellular Uptake. ACS Applied Materials & Interfaces, 2021, 13, 2327-2335.	4.0	22
1745	The distribution of the iron oxide nanoparticles modified with polyethylene glycol in rat brains. Materials Chemistry and Physics, 2021, 260, 124108.	2.0	3
1746	Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. International Journal of Environmental Research and Public Health, 2021, 18, 1758.	1.2	35
1748	Superficial Characteristics and Functionalization Effectiveness of Non-Toxic Glutathione-Capped Magnetic, Fluorescent, Metallic and Hybrid Nanoparticles for Biomedical Applications. Metals, 2021, 11, 383.	1.0	4
1749	Combined Chemo-photothermal Therapy of Metastatic Mammary Adenocarcinoma Using Curcumin-Coated Iron Oxide Nanoparticles. BioNanoScience, 2021, 11, 447-453.	1.5	5
1750	Therapeutic Efficacy and Biodistribution of Paclitaxel-Bound Amphiphilic Cyclodextrin Nanoparticles: Analyses in 3D Tumor Culture and Tumor-Bearing Animals In Vivo. Nanomaterials, 2021, 11, 515.	1.9	10
1751	Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Delivery and Translational Research, 2021, 11, 598-607.	3.0	9
1752	Cellular Uptake, Organelle Enrichment, and <i>In Vitro</i> Antioxidation of Fullerene Derivatives, Mediated by Surface Charge. Langmuir, 2021, 37, 2740-2748.	1.6	9

#	Article	IF	CITATIONS
1753	Adsorption Kinetics of Oppositely Charged Hard and Soft Nanoparticles with Phospholipid Membranes. Langmuir, 2021, 37, 2800-2809.	1.6	4
1754	Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile. Biotechnology Reports (Amsterdam, Netherlands), 2021, 29, e00585.	2.1	28
1755	Nanomedicine in Cancer Clinics: Are We There Yet?. Current Pathobiology Reports, 2021, 9, 43-55.	1.6	15
1756	Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study. International Journal of Nanomedicine, 2021, Volume 16, 1977-1992.	3.3	10
1757	Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies. Pharmaceutics, 2021, 13, 367.	2.0	11
1758	Development of a New Polymeric Nanocarrier Dedicated to Controlled Clozapine Delivery at the Dopamine D2-Serotonin 5-HT1A Heteromers. Polymers, 2021, 13, 1000.	2.0	3
1760	Chemically Engineered Immune Cellâ€Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. Advanced Science, 2021, 8, 2002499.	5.6	42
1761	Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Experimental Eye Research, 2021, 204, 108423.	1.2	23
1762	Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160, 100-124.	2.0	15
1763	Highly Bright and Photostable Two-Dimensional Nanomaterials Assembled from Sequence-Defined Peptoids. , 2021, 3, 420-427.		16
1764	Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chemical Engineering Science, 2021, 232, 116343.	1.9	1
1765	Overview Of Physicochemical And Surface Properties Of Nanoparticles For Engineering Applications. IOP Conference Series: Earth and Environmental Science, 2021, 665, 012049.	0.2	1
1766	Gold-Based Nanoplataform for the Treatment of Anaplastic Thyroid Carcinoma: A Step Forward. Cancers, 2021, 13, 1242.	1.7	18
1767	The Toxicity of Polystyrene-Based Nanoparticles in <i>Saccharomyces cerevisiae</i> Is Associated with Nanoparticle Charge and Uptake Mechanism. Chemical Research in Toxicology, 2021, 34, 1055-1068.	1.7	6
1768	Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. Langmuir, 2021, 37, 3550-3562.	1.6	3
1769	Advances in nano-biomaterials and their applications in biomedicine. Emerging Topics in Life Sciences, 2021, 5, 169-176.	1.1	17
1770	Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. ACS Applied Materials & Interfaces, 2021, 13, 18077-18088.	4.0	49
1771	Interwoven MOF-Coated Janus Cells as a Novel Carrier of Toxic Proteins. ACS Applied Materials & amp; Interfaces, 2021, 13, 18545-18553.	4.0	19

#	Article	IF	CITATIONS
1772	Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111609.	2.5	37
1773	Nanotoxicity: The Dark Side of Nanoformulations. Current Nanotoxicity and Prevention, 2021, 1, 6-25.	0.0	5
1774	Comprehensive Evaluation of the Toxicity and Biosafety of Plasma Polymerized Nanoparticles. Nanomaterials, 2021, 11, 1176.	1.9	6
1775	Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. Nanomaterials, 2021, 11, 1001.	1.9	13
1777	Anti-fouling nano-Ag/SiO2 ormosil treatments for building materials: The role of cell-surface interactions on toxicity and bioreceptivity. Progress in Organic Coatings, 2021, 153, 106120.	1.9	13
1778	Characterizing nanoplasticsâ€induced stress and its SERS fingerprint in an intestinal membrane model. Nano Select, 2021, 2, 1707-1722.	1.9	1
1779	Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomedical Materials (Bristol), 2021, 16, 042010.	1.7	14
1780	Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines, 2021, 9, 508.	1.4	6
1781	The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods. International Journal of Nanomedicine, 2021, Volume 16, 3407-3427.	3.3	0
1782	New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics, 2021, 13, 757.	2.0	19
1783	Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Review of Anti-Infective Therapy, 2021, 19, 1299-1323.	2.0	29
1784	Preclinical models and technologies to advance nanovaccine development. Advanced Drug Delivery Reviews, 2021, 172, 148-182.	6.6	18
1785	BSA-drug-ZnO-PEI conjugates interaction with glycans of gp60 endothelial cell receptor protein for targeted drug delivery: a comprehensive spectroscopic study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9253-9269.	2.0	2
1786	Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. Applied Sciences (Switzerland), 2021, 11, 5122.	1.3	12
1787	Effects of surface functionalization with alkylalkoxysilanes on the structure, visible light photoactivity and biocidal performance of Ag-TiO2 nanoparticles. Powder Technology, 2021, 383, 381-395.	2.1	11
1788	Interdependency of influential parameters in therapeutic nanomedicine. Expert Opinion on Drug Delivery, 2021, 18, 1379-1394.	2.4	8
1789	Ultrafine Particles Emitted through Routine Operation of a Hairdryer. Environmental Science & Technology, 2021, 55, 8554-8560.	4.6	2
1790	Influence of Surface Ligand Molecular Structure on Phospholipid Membrane Disruption by Cationic Nanoparticles. Langmuir, 2021, 37, 7600-7610.	1.6	6

#	Article	IF	CITATIONS
1791	The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging—A Review. International Journal of Molecular Sciences, 2021, 22, 6229.	1.8	17
1792	Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. International Journal of Nanomedicine, 2021, Volume 16, 3741-3754.	3.3	20
1793	Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111710.	2.5	13
1794	Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics, 2021, 13, 901.	2.0	7
1795	The promising antischistosomal activity of oleic acid-loaded polymeric nanocapsules for oral administration. Journal of Drug Delivery Science and Technology, 2021, 63, 102429.	1.4	6
1796	Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes. Biomacromolecules, 2021, 22, 3416-3430.	2.6	9
1797	Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers. Communications Chemistry, 2021, 4, .	2.0	8
1798	Effect of synthetic route in particle size distribution of zinc oxide, silver and carbon nanoparticles and its role in controlling phytopathogenic fungus Alternaria solani. Archives of Phytopathology and Plant Protection, 0, , 1-14.	0.6	2
1799	Magnetic Nanoparticles in Targeted Drug Delivery: a Review. Journal of Superconductivity and Novel Magnetism, 2021, 34, 1709-1735.	0.8	100
1800	Surface modification of silica nanoparticles by hexarhenium anionic cluster complexes for pH-sensing and staining of cell nuclei. Journal of Colloid and Interface Science, 2021, 594, 759-769.	5.0	9
1801	Thermodynamic Insights into Protein Adsorption on Supramolecular Assemblies of π-Amphiphiles. Journal of Physical Chemistry B, 2021, 125, 8981-8988.	1.2	5
1802	Optimizing Active Tumor Targeting Biocompatible Polymers for Efficient Systemic Delivery of Adenovirus. Cells, 2021, 10, 1896.	1.8	4
1804	Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Accounts of Chemical Research, 2021, 54, 2916-2927.	7.6	24
1805	Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. ACS Applied Materials & Interfaces, 2021, 13, 39076-39087.	4.0	23
1806	CYTOTOXIC PROPERTIES OF NANOSTRUCTURES BASED ON ALUMINUM OXIDE AND HYDROXIDE PHASES IN RELATION TO TUMOR CELLS. Siberian Journal of Oncology, 2021, 20, 73-83.	0.1	0
1807	Magnetic nanoparticle behavior evaluation on cardiac tissue contractility through Langendorff rat heart technique as a nanotoxicology parameter. Applied Nanoscience (Switzerland), 2021, 11, 2383-2396.	1.6	3
1808	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	2.3	9
1809	Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. International Journal of Pharmaceutics, 2021, 605, 120835.	2.6	48

#	Article	IF	CITATIONS
1810	Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design?. International Journal of Molecular Sciences, 2021, 22, 8347.	1.8	9
1811	Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications. International Journal of Nanomedicine, 2021, Volume 16, 6097-6113.	3.3	54
1812	Enhanced Biomechanically Mediated "Phagocytosis―in Detached Tumor Cells. Biomedicines, 2021, 9, 947.	1.4	1
1813	Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Research, 2021, 201, 117319.	5.3	103
1814	Size-Selective Sub-micrometer-Particle Confinement Utilizing Ionic Entropy-Directed Trapping in Inscribed Nanovoid Patterns. ACS Nano, 2021, 15, 14185-14192.	7.3	4
1815	ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. Journal of Drug Delivery Science and Technology, 2021, 64, 102599.	1.4	21
1816	Incorporating polymers within a singleâ€crystal: From heterogeneous structure to multiple functions. Journal of Polymer Science, 2022, 60, 1151-1173.	2.0	16
1817	Effect of amino acid composition of e lastinâ€like polypeptide nanoparticles on nonspecific protein adsorption, macrophage cell viability and phagocytosis. Biopolymers, 2021, , e23468.	1.2	2
1818	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	2.1	12
1819	Stimuli-responsive graphene oxide and methotrexate-loaded magnetic nanoparticles for breast cancer-targeted therapy. Nanomedicine, 2021, 16, 2155-2174.	1.7	14
1820	Raman spectroscopy and silver nanoparticles for efficient detection of membrane proteins in living cells. Nanotechnology, 2021, 32, 495101.	1.3	2
1821	Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. Nanoscale Research Letters, 2021, 16, 143.	3.1	6
1822	Examining the Transient Dark State in Protein-Quantum Dot Interaction by Relaxation-Based Solution NMR. Journal of Physical Chemistry B, 2021, 125, 10119-10125.	1.2	1
1823	New insights into controlling the twin structure of magnetic iron oxide nanoparticles. Applied Materials Today, 2021, 24, 101084.	2.3	9
1824	Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. IScience, 2021, 24, 102952.	1.9	17
1825	Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co. Nanomaterials, 2021, 11, 2465.	1.9	1
1826	Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111854.	2.5	5
1827	Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads. ACS Biomaterials Science and Engineering, 2022, 8, 4123-4131.	2.6	7

#	Article	IF	CITATIONS
1828	Growth and site-specific organization of micron-scale biomolecular devices on living mammalian cells. Nature Communications, 2021, 12, 5729.	5.8	6
1829	Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. International Journal of Nanomedicine, 2021, Volume 16, 6719-6747.	3.3	19
1830	One-step elaboration of Janus polymeric nanoparticles: A comparative study of different emulsification processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127059.	2.3	3
1831	Evaluation of europium-based carbon nanocomposites as bioimaging probes: Preparation, NMR relaxivities, binding effects over plasma proteins and cytotoxic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127250.	2.3	2
1832	Efficient tyrosinase nano-inhibitor based on carbon dots behaving as a gathering of hydrophobic cores and key chemical group. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112006.	2.5	1
1833	Graphene quantum dots-crosslinked gelatin via the efficient Ugi four-component reaction: Safe photoluminescent implantable carriers for the pH-responsive delivery of doxorubicin. Materialia, 2021, 20, 101233.	1.3	8
1834	Functional silicon nanowires for cellular binding and internalization. , 2022, , 111-136.		1
1835	Biopolymer-based nanofilms: Utility and toxicity. , 2021, , 353-385.		1
1836	Improving the sensitivity of <i>T</i> ₁ contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics, 2021, 11, 6966-6982.	4.6	16
1837	Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens, 2021, 10, 36.	1.2	17
1838	Application of nanotechnology toward improved production of sustainable bioenergy. , 2021, , 445-479.		7
1839	Ionic liquids as capping agents of silver nanoparticles. Part II: Antimicrobial and cytotoxic study. Green Processing and Synthesis, 2021, 10, 585-593.	1.3	11
1840	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€Immunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	7.8	61
1841	Intracellular Delivery: An Overview. AAPS Advances in the Pharmaceutical Sciences Series, 2019, , 3-41.	0.2	5
1842	Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications. Nanomedicine and Nanotoxicology, 2020, , 57-102.	0.1	6
1843	Microscopy-Based High-Throughput Analysis of Cells Interacting with Nanostructures. , 2016, , 99-115.		1
1844	In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory markers of premature-senescent hydrogen peroxide-induced dermal fibroblasts. Lasers in Medical Science, 2019, 34, 1333-1343.	1.0	25
1845	In vivo serum enabled production of ultrafine nanotherapeutics for cancer treatment. Materials Today, 2020, 38, 10-23.	8.3	6

#	Article	IF	CITATIONS
1846	Impact of Cross-Linker Valency on Gold Nanoparticle Aggregate Formation and Cellular Uptake. Langmuir, 2017, 33, 14358-14365.	1.6	5
1847	A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. Soft Matter, 2020, 16, 1678-1691.	1.2	15
1849	Charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona. Biointerphases, 2017, 12, 02D402.	0.6	10
1850	NMR Relaxometry at Quantification of the Captured Magnetic Nanoparticles by Cells. Physics of Metals and Metallography, 2019, 120, 1341-1346.	0.3	4
1851	Carbon Dots: Highlight on Their Synthesis, Properties and Applications in Tumor Imaging and Therapy. Nanoscience and Nanotechnology Letters, 2017, 9, 1827-1848.	0.4	5
1852	The Safety of Nanomaterials on Molecular and Cellular Scale. , 2017, , 629-662.		1
1853	Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells. PLoS ONE, 2014, 9, e108055.	1.1	34
1854	Magnetic hybrid materials interact with biological matrices. ChemistrySelect, 2022, 7, 1443-1500.	0.7	1
1855	Iron Oxide Nanoparticles: An Insight into their Biomedical Applications. Current Medicinal Chemistry, 2015, 22, 1808-1828.	1.2	24
1856	Nanosafety: Towards Safer Nanoparticles by Design. Current Medicinal Chemistry, 2018, 25, 4587-4601.	1.2	19
1857	Functional Nanoparticles and their Interactions with Mesenchymal Stem Cells. Current Pharmaceutical Design, 2017, 23, 3814-3832.	0.9	13
1858	Current Status and Challenges in Rotigotine Delivery. Current Pharmaceutical Design, 2020, 26, 2222-2232.	0.9	7
1859	Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems. Current Drug Targets, 2015, 16, 528-541.	1.0	15
1860	Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics?. Current Drug Targets, 2020, 21, 807-818.	1.0	4
1861	Oxidative stress in microorganisms exposed to iron nanoparticles. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	3
1862	The Cytotoxicity of Dextran-coated Iron Oxide Nanoparticles on Hela and MCF-7 Cancerous Cell Lines. Iranian Journal of Toxicology, 2017, 11, 31-36.	0.1	7
1863	Variably Sized and Multi-Colored Silica-Nanoparticles Characterized by Fluorescence Correlation Methods for Cellular Dynamics. Materials, 2021, 14, 19.	1.3	5
1864	Influence of Interactions on the Translocation of Nanoparticles Across Biomembranes. Sheng Wu Wu Li Hsueh Bao, 2011, 27, 433-442.	0.1	1

#	Article	IF	CITATIONS
1865	Synergistic Effect of Reductase and Keratinase for Facile Synthesis of Protein-Coated Gold Nanoparticles. Journal of Microbiology and Biotechnology, 2015, 25, 612-619.	0.9	23
1866	Lipid Nanocarriers for Intracellular Delivery. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 129-156.	0.3	1
1867	PLGA-loaded nanomedicines in melanoma treatment: Future prospect for efficient drug delivery. Indian Journal of Medical Research, 2016, 144, 181.	0.4	13
1868	Hemocompatibility and Biomedical Potential of Poly(Gallic Acid) Coated Iron Oxide Nanoparticles for Theranostic Use. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	8
1869	Advances in Neurotherapeutic Delivery Technologies. , 0, , .		2
1870	Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension. Journal of Biomaterials and Nanobiotechnology, 2015, 06, 213-224.	1.0	25
1871	Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environmental Engineering Research, 2022, 27, 200484-0.	1.5	57
1872	How to control fluorescent labeling of metal oxide nanoparticles for artefact-free live cell microscopy. Nanotoxicology, 2021, 15, 1102-1123.	1.6	2
1873	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. Journal of Physical Chemistry Letters, 2021, 12, 9882-9887.	2.1	5
1874	Modular fluorescent nanoparticle DNA probes for detection of peptides and proteins. Scientific Reports, 2021, 11, 19921.	1.6	9
1875	Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials, 2022, 12, 214-245.	8.6	45
1876	Shell–Matrix Interaction in Nanoparticle-Imprinted Matrices: Implications for Selective Nanoparticle Detection and Separation. ACS Applied Nano Materials, 2021, 4, 10819-10827.	2.4	10
1877	Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AICHE Journal, 2022, 68, e17507.	1.8	6
1878	Safety Evaluation of Nanotechnology Products. Pharmaceutics, 2021, 13, 1615.	2.0	18
1879	A Comparative Antibacterial, Antioxidant, and Antineoplastic Potential of Rauwolfia serpentina (L.) Leaf Extract with Its Biologically Synthesized Gold Nanoparticles (R-AuNPs). Plants, 2021, 10, 2278.	1.6	18
1880	About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line. Nanomaterials, 2021, 11, 2733.	1.9	1
1881	Cell membrane-coated nanoparticles for immunotherapy. Chinese Chemical Letters, 2022, 33, 1673-1680.	4.8	27
1882	Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers. Langmuir, 2021, 37, 12365-12376.	1.6	3

#	Article	IF	CITATIONS
1885	Current Advances in Self-Assembly RNAi Nanoparticles Ka-To Shum, Jiehua Zhou, and John J. Rossi. , 2013, , 563-576.		0
1886	Basics for the Preparation of Quantum Dots and Their Interactions with Living Cells. Methods in Molecular Biology, 2014, 1199, 165-175.	0.4	0
1888	Macrophages and Epithelial Cells Differently Respond to Palladium Nanoparticles. Micro and Nanosystems, 2014, 6, 133-141.	0.3	1
1889	Noble Metal Nanomaterials. , 2015, , 101-113.		0
1891	In vitro study of NCs/dyes complexes accumulation and dyes release kinetics in rat hepatocytes. Functional Materials, 2015, 22, 199-206.	0.4	1
1892	Biological Impact of Membranous Nanostructures. , 2015, , 401-464.		0
1894	Electron Microscopy Documents the Microorganisms' Biodestructive Action on Polyurethane and the Production, Internalization and Vesicular Trafficking of Nanoparticles. British Journal of Applied Science & Technology, 2016, 12, 1-19.	0.2	2
1895	A Bayesian Regression Methodology for Correlating Noisy Hazard and Structural Alert Parameters of Nanomaterials. Innovation, Technology and Knowledge Management, 2016, , 197-218.	0.4	0
1896	Immunotherapy and Vaccines. , 2016, , 441-464.		0
1897	The Safety of Nanomaterials on Molecular and Cellular Scale. Advanced Materials and Technologies, 2017, , 629-662.	0.4	0
1898	Nano–bio interactions. Journal of Indian Prosthodontic Society, The, 2018, 18, 187.	0.3	0
1899	ϴ ͵ ϴ͵ϴ͵ϟϿͺϿʹϿʹϟϴ;ϴϠʹϟϴ϶ϴϿʹϟϿ϶ϴϿʹϨϿʹϿϿʹϨϿʹϿϿʹϨϿʹϿϿʹϿϿʹϿ;Ͽ;Ͽ;Ͽ;Ͽ;Ͽ;Ͽ;Ͽ;Ͽ	лœÐᡗÑ,Ñ"∜	орм [.]
1900	Lipidoid iron oxide nanoparticles are a platform for nucleic acid delivery to the liver. Bulletin of Russian State Medical University, 2019, , 40-48.	0.3	0
1901	Ligand-functionalized nanocarrier-based active drugs targeting for liver cancer therapy. , 2019, , 79-106.		1
1902	Nanotechnology: A Novel Strategy Against Plant Pathogens. , 2019, , 153-170.		2
1903	Impact of citrate- and chitosan-capped gold nanoparticles on the liver of Swiss albino mice: Histological and cyto-genotoxic study. Cellular and Molecular Biology, 2019, 65, 9-23.	0.3	2
1904	Factors Influencing the Manifestation of Toxicity and Danger of Nanomaterials. Innovative Biosystems and Bioengineering, 2020, 4, 75-88.	0.2	4
1905	Preparation of Conductive Silver Films from Electrophoretic Concentrates Stabilized with Sorbitan Monooleate and Sodium Bis(2-Ethylhexyl)Sulfosuccinate in n-Decane. Colloid Journal, 2020, 82, 295-302.	0.5	1

		CITATION REPO	DRT	
#	ARTICLE Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targ	ا geted	F	CITATIONS
1700	drug delivery system for breast cancer therapy. Carbohydrate Polymers, 2022, 277, 118822.		,, , ,	07
1907	Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Critical Reviews in Biotechnology, 2022, 42, 1045-1060.	ן ן ב	5.1	3
1908	Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials, 2021, 11, 2888.	1	.9	15
1909	The curious cases of nanoparticle induced amyloidosis during protein corona formation and anti-amyloidogenic nanomaterials: Paradox or prejudice?. International Journal of Biological Macromolecules, 2021, 193, 1009-1020.	3	3.6	5
1910	Electroceuticals for neural regenerative nanomedicine. , 2020, , 213-257.			2
1911	Implications of surface coatings on engineered nanomaterials for environmental systems: statu challenges, and perspectives. , 2020, , 399-416.	s quo,		1
1912	Nanomechanical Insight of Pancreatic Cancer Cell Membrane during Receptor Mediated Endocy of Targeted Gold Nanoparticles. ACS Applied Bio Materials, 2021, 4, 984-994.	tosis 2	2.3	9
1913	Hierarchically organized MgO/Mg2Al(OH)7 nanostructures for antitumor therapy. AlP Conferen Proceedings, 2020, , .	ce ().3	0
1914	Nanotechnology in Preclinical Pharmacokinetics. , 2020, , 461-478.			1
1915	Nanotoxicity and regulatory aspects in musculoskeletal regeneration. , 2020, , 197-235.			0
1916	Interaction of Nanomaterials with Biological Systems. , 2020, , 61-78.			0
1918	Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle disper Materials Horizons, 2021, , .	sions.	5.4	3
1919	A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptak mechanisms. Journal of Molecular Liquids, 2022, 348, 118008.	'e 2	2.3	50
1920	Light-independent M1 macrophage polarization by photosensitizer-loaded protein corona on go nanorods. Nanomedicine, 2020, 15, 2329-2344.	bld 1	L .7	1
1923	Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection American Journal of Nuclear Medicine and Molecular Imaging, 2012, 2, 122-35.	, 1	1.0	24
1925	Nanoencapsulation for drug delivery. EXCLI Journal, 2014, 13, 265-86.	0).5	83
1928	Hydroxyapatite nanocrystals stimulate osteogenic differentiation in primary human aortic smoo muscle cells by activation of oxidative stress and the ERK pathway. International Journal of Clini and Experimental Pathology, 2017, 10, 7726-7733.	ith cal ().5	1
1929	Biological toxicity of nanoparticles. , 2022, , 603-628.			3

#	Article	IF	CITATIONS
1930	A signal processor made from DNA assembly and upconversion nanoparticle for pharmacokinetic study. Nano Today, 2022, 42, 101352.	6.2	18
1931	Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry, 2022, 23, 100606.	1.7	20
1932	Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy. Membranes, 2021, 11, 891.	1.4	1
1933	Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics. , 2022, , 177-207.		0
1934	Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin. Pharmaceutics, 2021, 13, 2030.	2.0	5
1935	Label-free methods of multiparametric surface plasmon resonance and MPQ-cytometry for quantitative real-time measurements of targeted magnetic nanoparticles complexation with living cancer cells. Materials Today Communications, 2021, 29, 102978.	0.9	7
1936	Enhanced gold nanoparticle-tumor cell recognition by albumin multilayer coating. OpenNano, 2022, 6, 100033.	1.8	9
1937	New facets of nanozyme activity of ceria: lipo- and phospholipoperoxidase-like behaviour of CeO ₂ nanoparticles. RSC Advances, 2021, 11, 35351-35360.	1.7	17
1938	Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model. Ultrasonics Sonochemistry, 2022, 82, 105903.	3.8	13
1939	Synergetic effect of silver nanoparticles and thiram on lipid bilayers. Journal of Molecular Liquids, 2022, 348, 118406.	2.3	2
1940	Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds: Effect of symmetry and charge. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102705.	1.3	6
1941	Current Trends in Engineered Gold Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 1-40.	0.4	3
1942	Experimental Evaluation and Modeling of Adsorption Phenomena of Nanoliposomes on Poly(dimethylsiloxane) Surfaces. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 1-5.	0.1	0
1943	Application Prospects for Synthetic Nanoparticles inÂOptogenetic Retinal Prosthetics. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 1333-1350.	0.2	1
1944	Exploring the potential of metal oxides for biomedical applications. , 2022, , 183-203.		2
1945	Silica-Supported Assemblage of Cull Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings, 2022, 12, 97.	1.2	9
1946	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake. SSRN Electronic Journal, 0, , .	0.4	0
1947	Paclitaxel Delivery by Cationic Gelatin Nanoparticles. ChemistrySelect, 2022, 7, .	0.7	5

#	Article	IF	CITATIONS	
1948	Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. Small, 2022, 18, e2105579.	5.2	34	
1949	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	19	
1950	Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regeneration Research, 2022, 17, 1717.	1.6	4	
1952	Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials, 2022, 282, 121404.	5.7	13	
1953	One-Step Aqueous Synthesis of Anionic and Cationic AgInS ₂ Quantum Dots and Their Utility in Improving the Efficacy of ALA-Based Photodynamic Therapy. Inorganic Chemistry, 2022, 61, 2846-2863.	1.9	14	
1954	Recent advances on chitosan as an adjuvant for vaccine delivery. International Journal of Biological Macromolecules, 2022, 200, 498-519.	3.6	41	
1955	Engineering surface patterns on nanoparticles: new insights into nano-bio interactions. Journal of Materials Chemistry B, 2022, 10, 2357-2383.	2.9	11	
1956	How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. Nanomaterials, 2022, 12, 552.	1.9	33	
1957	Heptamethine Cyanine–Based Application for Cancer Theranostics. Frontiers in Pharmacology, 2021, 12, 764654.	1.6	10	
1958	Nanosized Additives for Enhancing Storage Quality of Horticultural Produce. , 2022, , 289-329.		2	
1959	Polyurethane–polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(<scp>iii</scp>) metallodrugs. Inorganic Chemistry Frontiers, 2022, 9, 2123-2138.	3.0	11	
1960	Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. , 2022, , 261-272.		4	
1961	Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. Nanoscale, 2022, 14, 5884-5898.	2.8	2	
1962	The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. Soft Matter, 2022, 18, 3531-3545.	1.2	2	
1963	Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment. Pharmaceutical Research, 2022, 39, 1165-1180.	1.7	9	
1964	Carrier-Free Small Molecular Self-Assembly Based on Berberine and Curcumin Incorporated in Submicron Particles for Improving Antimicrobial Activity. ACS Applied Materials & Interfaces, 2022, 14, 10055-10067.	4.0	18	
1965	Defining Endocytic Pathways of Fucoidan-Coated PIBCA Nanoparticles from the Design of their Surface Architecture. Pharmaceutical Research, 2022, 39, 1135-1150.	1.7	7	
1966	Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. Coatings, 2022, 12, 358.	1.2	10	
		CITATION REPORT		
------	--	---------------------------------	-----	-----------
#	Article		IF	CITATIONS
1967	Physisorption of Poly(ethylene glycol) on Inorganic Nanoparticles. ACS Nano, 2022, 16, 66	34-6645.	7.3	14
1968	Helical Nonfouling Polypeptides for Biomedical Applications. Chinese Journal of Polymer Sc (English Edition), 2022, 40, 433-446.	tience	2.0	6
1969	Synergistic Entry of Individual Nanoparticles into Mammalian Cells Driven by Free Energy D Regulated by Their Sizes. ACS Nano, 2022, 16, 5885-5897.	ecline and	7.3	10
1970	Oral delivery of superoxide dismutase by lipid polymer hybrid nanoparticles for the treatme ulcerative colitis. Chinese Chemical Letters, 2022, 33, 4617-4622.	ent of	4.8	14
1971	Biomimetic development of chitosan and sodium alginateâ€based nanocomposites contai tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied B 2022, 110, 1942-1955.	ns zirconia for iomaterials,	1.6	4
1972	Methodological advances in the design of peptide-based vaccines. Drug Discovery Today, 2 1367-1380.	2022, 27,	3.2	10
1973	Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Revie International Journal of Molecular Sciences, 2022, 23, 3638.	?w.	1.8	4
1975	The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Frontiers in I Health, 2022, 4, 838590.	Digital	1.5	9
1976	The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. Environmental Research, 2022, 212, 113202.	ı	3.7	28
1977	Synthesis, properties, and multifarious applications of SiC nanoparticles: A review. Ceramic International, 2022, 48, 8882-8913.	CS	2.3	28
1978	A review of optical methods for ultrasensitive detection and characterization of nanopartic liquid media with a focus on the wide field surface plasmon microscopy. Analytica Chimica 1204, 339633.	:les in Acta, 2022,	2.6	17
1979	Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in they are transformed to their metal forms by bacteria?. Biological Research, 2022, 55, 17.	n the way	1.5	14
1980	Molecular Dynamics Characterization of Radiosensitizing Coated Gold Nanoparticles in Aq Environment. Journal of Physical Chemistry A, 2022, 126, 2170-2184.	ueous	1.1	2
1981	Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanoco Advances in Colloid and Interface Science, 2022, 302, 102638.	omplexes.	7.0	17
1982	Magnetic mesoporous silica nanoparticles as a theranostic approach for breast cancer: Loa release of the poorly soluble drug exemestane. International Journal of Pharmaceutics, 202 121711.	nding and 2, 619,	2.6	14
1983	Nanoparticles as stimulants for efficient generation of biofuels and renewables. Fuel, 2022 123724.	, 319,	3.4	11
1984	Relative Dye Adsorption Method for Determining the Hydrophobicity of Nanoparticles. Jou Physical Chemistry C, 2022, 126, 832-837.	rnal of	1.5	9
1985	Dynamic of Particulate Matter for Quotidian Aerosol Sources in Indoor Air. Atmosphere, 20	021, 12, 1682.	1.0	1

#	Article	IF	CITATIONS
1986	Gold Nanoparticles Augment N-Terminal Cleavage and Splicing Reactions in Mycobacterium tuberculosis SufB. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773303.	2.0	2
1987	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , .		0
1988	Active nanomotors surpass passive nanomedicines: current progress and challenges. Journal of Materials Chemistry B, 2022, 10, 7099-7107.	2.9	5
1989	Metal and metal oxide nanoparticles: synthesis, properties, and applications as nanomedicines for diabetes treatment. , 2022, , 111-142.		0
1990	Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 1183-1202.	2.4	24
1991	Nano toolbox in immune modulation and nanovaccines. Trends in Biotechnology, 2022, 40, 1195-1212.	4.9	31
1992	Nano-size dependent protein corona formation by SARS-CoV-2 Omicron spike protein over gold nano-colloid and reversible aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128967.	2.3	4
1994	A pilot study towards ranking occupational health risk factors emanating from engineered nanoparticles: review of a decade of literature. International Journal of Safety and Security Engineering, 2013, 3, 241-263.	0.5	1
2002	On-Surface Azide–Alkyne Cycloaddition Reaction: Does It Click with Ruthenium Catalysts?. Langmuir, 2022, 38, 5532-5541.	1.6	7
2003	Controlling the toxicity of antibiotics and metal nanoparticles by using polymers for the treatment of bacterial infection for medical applications. , 2022, , 271-283.		0
2004	Amphiphilic Poly-N-vinylpyrrolidone Nanoparticles as Carriers for Nonsteroidal, Anti-Inflammatory Drugs: Pharmacokinetic, Anti-Inflammatory, and Ulcerogenic Activity Study. Pharmaceutics, 2022, 14, 925.	2.0	12
2005	Effects of microsize on the biocompatibility of UiO67 from protein-adsorption behavior, hemocompatibility, and histological toxicity. Journal of Hazardous Materials, 2022, 435, 129042.	6.5	5
2006	Silica incorporated chitosan-sodium alginate nanocomposite scaffolds for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 537-549.	1.8	3
2007	Biosynthesis of folic acid appended PHBV modified copper oxide nanorods for pH sensitive drug release in targeted breast cancer therapy. International Journal of Pharmaceutics, 2022, 622, 121831.	2.6	19
2008	Toxicological Aspects of Iron Oxide Nanoparticles. Advances in Experimental Medicine and Biology, 2022, 1357, 303-350.	0.8	5
2009	Therapeutic implementation in arterial thrombosis with pulmonary administration of fucoidan microparticles containing acetylsalicylic acid. International Journal of Pharmaceutics, 2022, 622, 121841.	2.6	2
2010	Tumor microenvironment regulation - enhanced radio - immunotherapy. , 2022, 138, 212867.		5
2011	Metabolomics Reveals Size-Dependent Persistence and Reversibility of Silver Nanoparticles Toxicity in Freshwater Algae. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2012	Nanocrystals: A Deep Insight into Formulation Aspects, Stabilization Strategies, and Biomedical Applications. Recent Patents on Nanotechnology, 2023, 17, 307-326.	0.7	3
2013	"PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibodyâ€ŧ Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. Drug Design, Development and Therapy, 0, Volume 16, 1515-1530.	2.0	3
2014	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake In Vitro and In Vivo. Acta Biomaterialia, 2022, 147, 403-413.	4.1	11
2015	Coordinationâ€Driven Metalâ€Polyphenolic Nanoparticles toward Effective Anticancer Therapy. Advanced Healthcare Materials, 2022, 11, .	3.9	12
2016	Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta Biomaterialia, 2022, 148, 22-43.	4.1	39
2017	Fabrication and Characterization of Functionalized Multi-Wall Carbon Nanotubes Flexible Network Modified by a Layer of Polypyrrole Conductive Polymer and Metallic Nanoparticles. Nano Hybrids and Composites, 0, 36, 21-33.	0.8	1
2018	Multifunctional magnetic nanoparticles for MRI-guided co-delivery of erlotinib and L-asparaginase to ovarian cancer. Journal of Microencapsulation, 2022, 39, 394-408.	1.2	14
2019	Nanoâ€Ðrug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect, 2022, 7, .	0.7	5
2020	A different approach to immunochemotherapy for colon Cancer: Development of nanoplexes of cyclodextrins and Interleukin-2 loaded with 5-FU. International Journal of Pharmaceutics, 2022, 623, 121940.	2.6	10
2021	Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. International Journal of Biological Macromolecules, 2022, 214, 170-180.	3.6	20
2022	Tuning the immune system by nanoparticle–biomolecular corona. Nanoscale Advances, 2022, 4, 3300-3308.	2.2	8
2023	Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. Membranes, 2022, 12, 673.	1.4	5
2024	Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics, 2022, 14, 1358.	2.0	5
2025	Multiparametric cytotoxicity assessment: the effect of gold nanoparticle ligand functionalization on SKOV3 ovarian carcinoma cell death. Nanotoxicology, 2022, 16, 355-374.	1.6	1
2026	Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydrate Polymers, 2022, 295, 119875.	5.1	32
2027	Biological and intracellular fates of drug nanocrystals through different delivery routes: Recent development enabled by bioimaging and PK modeling. Advanced Drug Delivery Reviews, 2022, 188, 114466.	6.6	17
2028	Two quality and stability indicating imaged CIEF methods for mRNA vaccines. Electrophoresis, 0, , .	1.3	4
2029	Effect of surface charge density of a w/o/w emulsion on the brain targeting of levodopa in Rats for the treatment of Parkinson's Disease. Drug Delivery Letters, 2022, 12, .	0.2	0

#	Article	IF	CITATIONS
2030	Ligand-Based Surface Engineering of Lanthanide Nanoparticles for Bioapplications. , 2022, 4, 1815-1830.		12
2031	Concentration and composition of the protein corona as a function of incubation time and serum concentration: an automated approach to the protein corona. Analytical and Bioanalytical Chemistry, 2022, 414, 7265-7275.	1.9	8
2032	Hydrophobicity Regulates the Cellular Interaction of Cyanine5-Labeled Poly(3-hydroxypropionate)-Based Comb Polymers. Biomacromolecules, 2022, 23, 3560-3571.	2.6	2
2033	Fabrication of cell penetrating peptide labelled biodegradable poly(methacrylamide) nanoparticles for delivery of doxorubicin in HeLa cells. Materials Today Communications, 2022, 33, 104233.	0.9	1
2034	Bevacizumab encapsulation into PLGA nanoparticles functionalized with immunouteroglobin-1 as an innovative delivery system for atherosclerosis. International Journal of Biological Macromolecules, 2022, 221, 1618-1630.	3.6	8
2035	Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity. Chemical Papers, 2022, 76, 7313-7325.	1.0	19
2036	In vivo hypotensive effect of aminosilanol-based nanocomposites bearing antisense oligonucleotides. Journal of Drug Delivery Science and Technology, 2022, 75, 103612.	1.4	3
2037	In vivo toxicity and antibacterial assessment of Bi2Se3/GO/PVA nanocomposite synthesized via hydrothermal route. Materials Chemistry and Physics, 2022, 290, 126535.	2.0	1
2038	99mTc-labeled keratin gold-nanoparticles in a nephron-like microfluidic chip for photo-thermal therapy applications. Materials Today Advances, 2022, 16, 100286.	2.5	19
2039	Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. Nano Letters, 2022, 22, 7119-7128.	4.5	11
2040	Fluorescence enhancement of near infrared cell membrane probe by β-cyclodextrin supramolecular interaction. Dyes and Pigments, 2022, 207, 110693.	2.0	5
2041	Permeation of flavonoid loaded human serum albumin nanoparticles across model membrane bilayers. International Journal of Biological Macromolecules, 2022, 222, 385-394.	3.6	2
2042	The electrostatic confinement of aquated monocationic Gd(<scp>iii</scp>) complex-molecules within the inner core of porous silica nanoparticles creates a highly efficient <i>T</i> ₁ contrast agent for magnetic resonance imaging. Dalton Transactions, 2022, 51, 14138-14149.	1.6	0
2043	Nanoparticle-assisted oral delivery of small and large peptides. , 2022, , 131-166.		О
2044	Oral Docetaxel Delivery with Cationic Polymeric Core-Shell Nanocapsules ForÂGastrointestinal Cancers: In Vitro and in Vivo Evaluation. SSRN Electronic Journal, 0, , .	0.4	0
2045	Influence of cationic groups on the antibacterial behavior of cationic nano-sized hyperbranched polymers to enhance bacteria-infected wound healing. Nanoscale, 2022, 14, 12789-12803.	2.8	7
2046	QDs, Plant Diseases and Potential Risks. Nanotechnology in the Life Sciences, 2022, , 161-190.	0.4	0
2047	Green synthesis of biocompatible core–shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Advances, 2022, 12, 23845-23859.	1.7	14

		CITATION REPORT		
#	Article		IF	CITATIONS
2048	A Toxicologic Review of Quantum Dots: Recent Insights and Future Directions. , 2022,	, 67-90.		0
2050	Enhanced anticancer efficacy of primed natural killer cells <i>via</i> coacervate-mediate interleukin-15 delivery. Biomaterials Science, 2022, 10, 5968-5979.	ed exogenous	2.6	5
2051	Single and Combined Toxicity Effects of Zinc Oxide Nanoparticles: Uptake and Accumu Microalgae, Toxicity Mechanisms, and Their Fate in the Marine Environment. Water (Sv 2022, 14, 2669.	ılation in Marine witzerland),	1.2	7
2052	Recent Development of Biomaterials Combined with Mesenchymal Stem Cells as a Stra Regeneration. International Journal of Translational Medicine, 2022, 2, 456-481.	ategy in Cartilage	0.1	2
2053	Efficiency of magnetic immobilization for recombinant <i>Pichia pastoris</i> cells harv consecutive production cycles. Separation Science and Technology, 2023, 58, 420-434	esting over 4.	1.3	2
2055	Design principles of bioinspired interfaces for biomedical applications in therapeutics a Frontiers in Chemistry, 0, 10, .	nd imaging.	1.8	2
2056	Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes Discovery Today, 2023, 28, 103393.	. Drug	3.2	8
2057	Monovalent ion-mediated charge–charge interactions drive aggregation of surface-figold nanoparticles. Nanoscale, 2022, 14, 15181-15192.	unctionalized	2.8	3
2058	Lipid droplet formation and dynamics: tracking by time-resolved fluorescence imaging. Chemistry Frontiers, 2022, 6, 3691-3697.	Materials	3.2	4
2059	Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driver Mechanism. ACS Nano, 2022, 16, 18090-18100.	1 Interaction	7.3	11
2060	Thermally Activated Microstructural Evolution of PtIrCu Alloyed Nanorings: Insights fro Molecular Dynamics Simulations. ACS Omega, 2022, 7, 37436-37441.	'n	1.6	0
2061	The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportu International Journal of Environmental Research and Public Health, 2022, 19, 13748.	inities.	1.2	1
2062	Force-induced wrapping phase transition in activated cellular uptake. Physical Review E	2, 2022, 106, .	0.8	1
2063	Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fib and Bioelectronics, 2023, 220, 114867.	er. Biosensors	5.3	10
2064	Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. Langmuir, 2022, 38, 12711-12716.	1	1.6	1
2065	Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeu Journal of Molecular Liquids, 2022, 368, 120717.	tic drugs.	2.3	8
2066	Redox-responsive polyurethane-polyurea nanoparticles targeting to aortic endothelium atherosclerosis. IScience, 2022, 25, 105390.	ı and	1.9	3
2067	Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thio functionalized conjugated polymer. Dyes and Pigments, 2023, 208, 110818.		2.0	2

#	Article	IF	CITATIONS
2069	Effect of Cobalt Ferrite Nanoparticles in a Hydrophilic Shell on the Conductance of Bilayer Lipid Membrane. Membranes, 2022, 12, 1106.	1.4	2
2070	Surface Potentials of Mixtures Containing Oddly Charged Colloids. Coatings, 2022, 12, 1715.	1.2	0
2072	The role of dendritic cells in the immunomodulation to implanted biomaterials. International Journal of Oral Science, 2022, 14, .	3.6	11
2073	A mobile setup for simultaneous and <i>in situ</i> neutron reflectivity, infrared spectroscopy, and ellipsometry studies. Review of Scientific Instruments, 2022, 93, 114102.	0.6	0
2074	Synthesis, Spectral Characterization, Antioxidant, Antimicrobial and Anticancer Activities of New Binuclear Copper and Rhodium Complexes. ChemistrySelect, 2022, 7, .	0.7	1
2075	Mucus-penetrating nonviral gene vaccine processed in the epithelium for inducing advanced vaginal mucosal immune responses. Acta Pharmaceutica Sinica B, 2023, 13, 1287-1302.	5.7	4
2076	Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. Applied Nanoscience (Switzerland), 2023, 13, 4361-4393.	1.6	2
2077	Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Advanced Drug Delivery Reviews, 2022, 191, 114619.	6.6	22
2078	Doxorubicin imprinted magnetic polymethacrylamide as a pH-sensitive anticancer nanocarrier. Journal of Drug Delivery Science and Technology, 2023, 79, 103998.	1.4	4
2079	How does the polymer architecture and position of cationic charges affect cell viability?. Polymer Chemistry, 2023, 14, 303-317.	1.9	3
2080	Orally fed EGCG coronate food released TiO2 and enhanced penetrability into body organs via gut. , 2023, 144, 213205.		5
2081	Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Advances in Colloid and Interface Science, 2023, 311, 102826.	7.0	15
2082	The effect of biomolecular corona on adsorption onto and desorption from a model lipid membrane. Nanoscale, 2022, 15, 248-258.	2.8	4
2083	Biological activity of silver nanoparticles synthesized with Paenibacillus polymyxa exopolysaccharides. Enzyme and Microbial Technology, 2023, 164, 110174.	1.6	7
2084	Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics. Beilstein Journal of Nanotechnology, 0, 13, 1393-1407.	1.5	3
2085	Computational Study on the Regulatory Mechanism of Cell Membrane Wrapping on Liposomes by Embedded Bowl-like Nanostructures for Drug Delivery. ACS Applied Nano Materials, 2022, 5, 18337-18348.	2.4	3
2086	Potential of Surface Functionalized Nanomaterials in Innovative Drug Development: A Mini-review. Letters in Drug Design and Discovery, 2024, 21, 381-396.	0.4	0
2087	Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. , 2023, 5, 95-115.		21

#	Article	IF	Citations
2090	A cancer cell membrane coated, doxorubicin and microRNA co-encapsulated nanoplatform for colorectal cancer theranostics. Molecular Therapy - Oncolytics, 2023, 28, 182-196.	2.0	4
2091	Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. Science of the Total Environment, 2023, 864, 161181.	3.9	29
2092	The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Particle and Particle Systems Characterization, 2023, 40, .	1.2	10
2093	Nanomaterial Characterisation of Diluted Platina and Alcohol Control Samples. Homeopathy, 0, , .	0.5	1
2094	Real-time six-dimensional spatiotemporal tracking of single anisotropic nanoparticles in live cells by integrated multifunctional light-sheet nanoscopy. Mikrochimica Acta, 2023, 190, .	2.5	1
2095	A Cell-Penetrating Peptide Modified Cu2â^'xSe/Au Nanohybrid with Enhanced Efficacy for Combined Radio-Photothermal Therapy. Molecules, 2023, 28, 423.	1.7	4
2096	Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. European Journal of Pharmaceutical Sciences, 2023, 183, 106370.	1.9	9
2097	Investigation into the Photochemical Properties of Methylene Blue-Immobilized Hydroxyapatite Nanoparticles for Theranostic Application. ACS Applied Bio Materials, 2023, 6, 473-482.	2.3	0
2098	Thiolated Mesoporous Silica Nanoparticles as an Immunoadjuvant to Enhance Efficacy of Intravesical Chemotherapy for Bladder Cancer. Advanced Science, 2023, 10, .	5.6	8
2099	Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology, 2023, 80, 104163.	1.4	2
2100	Biological reaction mediated engineered AuNPs facilitated delivery encore the anticancer, antiglycation, and antidiabetic potential of garcinol. Journal of King Saud University - Science, 2023, 35, 102524.	1.6	2
2101	Green synthesized nanomaterials: structure and functions for biomedical applications. , 2023, , 165-186.		0
2102	Toxic risk assessment of engineered nanoparticles used in ink formulations. , 2023, , 159-194.		0
2103	Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411.	2.0	7
2104	Engineered liposomes as drug delivery and imaging agents. , 2023, , 75-108.		1
2105	Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. International Journal of Molecular Sciences, 2023, 24, 2496.	1.8	3
2106	A review on the synthesis of metal oxide nanomaterials by microwave induced solution combustion. RSC Advances, 2023, 13, 3265-3277.	1.7	4
2107	Mucus Penetration of Surface-Engineered Nanoparticles in Various pH Microenvironments. ACS Nano, 2023, 17, 2813-2828.	7.3	15

#	Article	IF	CITATIONS
2108	Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials, 2023, 13, 424.	1.9	24
2109	Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics. International Journal of Pharmaceutics, 2023, 639, 122951.	2.6	1
2110	Local generation and efficient evaluation of numerous drug combinations in a single sample. ELife, 0, 12, .	2.8	2
2111	Metabolomics reveals size-dependent persistence and reversibility of silver nanoparticles toxicity in freshwater algae. Aquatic Toxicology, 2023, 258, 106471.	1.9	2
2112	Development of red-luminescent hybrids as contrast agents for cell imaging: A correlation among surface, luminescence, and biological properties. Optical Materials, 2023, 139, 113759.	1.7	1
2113	Tumor vasculature vs tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano, 2023, 11, 100136.	1.8	4
2114	Roles of Nanoparticle Properties in Nanotechnology for Medical Therapeutics. , 0, 26, 474-479.		0
2115	Modulating the Surface Properties of Lithium Niobate Nanoparticles by Multifunctional Coatings Using Water-in-Oil Microemulsions. Nanomaterials, 2023, 13, 522.	1.9	0
2116	Overlooked Spherical Nanoparticles Exist in Plant Extracts: From Mechanism to Therapeutic Applications. ACS Applied Materials & amp; Interfaces, 2023, 15, 8854-8871.	4.0	2
2117	Tuning the Endocytosis of Hybrid Micelles through Spatial Regulation of Cationic Groups. ACS Applied Materials & Interfaces, 0, , .	4.0	1
2118	Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. Journal of Materials Chemistry B, 2023, 11, 2078-2094.	2.9	4
2119	NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. Journal of Chemical Theory and Computation, 2023, 19, 1582-1591.	2.3	4
2120	A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. , 2023, 18, .		16
2121	Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. Journal of Drug Delivery Science and Technology, 2023, 81, 104295.	1.4	10
2122	Silica Coated Bi2Se3 Topological Insulator Nanoparticles: An Alternative Route to Retain Their Optical Properties and Make Them Biocompatible. Nanomaterials, 2023, 13, 809.	1.9	2
2123	Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers, 2023, 15, 1123.	2.0	22
2124	Controlled Adsorption of Cellulose Nanofibrils on Fluid–Fluid Interfaces. Advanced Materials Interfaces, 2023, 10, .	1.9	0
2125	Methacrylate Cationic Nanoparticles Activity against Different Gram-Positive Bacteria. Antibiotics, 2023, 12, 533.	1.5	0

#	Article	IF	CITATIONS
2126	Review on Nanoparticles. International Journal of Advanced Research in Science, Communication and Technology, 0, , 298-306.	0.0	0
2127	MC3/SAINT-O-Somes, a novel liposomal delivery system for efficient and safe delivery of siRNA into endothelial cells. Journal of Liposome Research, 2023, 33, 328-337.	1.5	1
2128	Nanostructured system based on hydroxyapatite and curcumin: A promising candidate for osteosarcoma therapy. Ceramics International, 2023, 49, 19932-19949.	2.3	5
2129	Controlled synthesis of multifunctional dome-shaped micro- and nano-structures <i>via</i> a robust physical route for biological applications. Journal of Materials Chemistry B, 2023, 11, 7094-7102.	2.9	0
2130	A comprehensive and systemic review of ginsengâ€based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Medicinal Research Reviews, 2023, 43, 1374-1410.	5.0	3
2131	Engineering nanomaterial physical characteristics for cancer immunotherapy. , 2023, 1, 499-517.		11
2132	Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	3
2133	Preparation and Evaluation of Polyacrylate Microgels and Their Adjuvant Activities Using Ovalbumin as a Model Antigen. ChemistryOpen, 2023, 12, .	0.9	0
2134	Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors, 2023, 11, 218.	1.8	1
2135	Metalâ€based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm, 2023, 4, .	3.1	12
2136	Metallic Nanoparticles as Antibacterial Agents. , 2023, , 134-156.		0
2137	One–pot synthesis of gold nanoparticles using Pandanus amaryllifolius leaf extract and their antibacterial, antioxidant, anticancer, and ecotoxicity assessment. Biocatalysis and Agricultural Biotechnology, 2023, 50, 102695.	1.5	1
2138	Does the doping strategy of ferrite nanoparticles create a correlation between reactivity and toxicity?. Environmental Science: Nano, 0, , .	2.2	3
2139	Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. Advanced Materials, 2024, 36, .	11.1	2
2140	Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles. CheM, 2023, 9, 1562-1577.	5.8	2
2141	Development of a coarse-grained model for surface-functionalized gold nanoparticles: towards an accurate description of their aggregation behavior. Soft Matter, 2023, 19, 3290-3300.	1.2	1
2142	Biomimetic Boron Nitride Nanoparticles for Targeted Drug Delivery and Enhanced Antitumor Activity. Pharmaceutics, 2023, 15, 1269.	2.0	2
2143	Potential lifetime effects caused by cellular uptake of nanoplastics: A review. Environmental Pollution, 2023, 329, 121668.	3.7	3

	CITATION	Report	
# 2144	ARTICLE Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems. Advanced Clinical PharmacyÂ- Research, Development and Practical Applications, 2023, , 321-364.	IF 0.0	Citations
2147	Toxic risks of nanomaterials used in analytical chemistry. , 2023, , 335-364.		0
2150	Prospects of Safe Use of Nanomaterials in Biomedical Applications. , 2023, , 83-101.		1
2152	Nano-antimicrobial Materials: Alternative Antimicrobial Approach. , 2023, , 137-171.		0
2163	The emerging role of nanotechnology in ethanol production. , 2023, , 235-256.		1
2173	Surface-Modified Nanomaterials for Biogenic Applications. , 2023, , 101-135.		0
2174	Genotoxicity of the nanoparticles. , 2023, , 115-128.		2
2179	Material design for oral insulin delivery. , 2023, 1, .		0
2180	Biological synthesis of nanoparticles from selected medicinal plants. , 2024, , 47-59.		0
2187	Dumbbells, chains, and ribbons: anisotropic self-assembly of isotropic nanoparticles. Nanoscale, 0, , .	2.8	0
2188	Nanoparticles, nanocomposites, green/eco-composites, and hybrid composites and their applications in energy sectors. , 2023, , .		1
2189	Advances in bioactive nanoparticles for wound healing, tissue engineering and drug delivery. , 2023, , .		1
2206	Pharmacokinetics of IONPs. Nanomedicine and Nanotoxicology, 2023, , 67-113.	0.1	0
2214	Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. Nano-Micro Letters, 2024, 16, .	14.4	0
2225	Future Trends and Innovation in Nano Drug Delivery for Cancer Therapy, Application of siRNA (Nanoparticle-Based RNA) Therapy, Ultrasound Linked Nano-Cancer Therapeutics, and Application of Exosomes-Based Cancer Therapy. , 2023, , 197-251.		0
2227	Nanomaterials Prone Cell Leakiness: A Mechanistic Approach. Environmental Science and Engineering, 2024, , 277-291.	0.1	0
2230	Toxicity Issues of Nanoparticles in the Delivery of Phytoconstituents and Cosmeceuticals. , 2024, , 329-342.		0
2234	Multifunctional nanocarrier-mediated approaches and conventional therapies for effective treatment of cancer. , 2024, , 35-61.		0

ARTICLE

IF CITATIONS