Life cycle energy analysis of buildings: An overview

Energy and Buildings 42, 1592-1600 DOI: 10.1016/j.enbuild.2010.05.007

Citation Report

#	Article	IF	CITATIONS
1	Materials Selection for Green Buildings: which Tools for Engineers and Architects?. Procedia Engineering, 2011, 21, 883-890.	1.2	85
2	Towards a more holistic approach to reducing the energy demand of dwellings. Procedia Engineering, 2011, 21, 1033-1041.	1.2	39
3	Retrofitting of Energy Habitability in Social Housing: A Case Study in a Mediterranean Climate. Buildings, 2011, 1, 4-15.	1.4	14
4	Embodied energy and CO2 in UK dimension stone. Resources, Conservation and Recycling, 2011, 55, 1265-1273.	5.3	48
5	Basic actions to improve energy efficiency in commercial buildings in operation. Energy and Buildings, 2011, 43, 3106-3111.	3.1	53
6	Recycling value of building materials in building assessment systems. Energy and Buildings, 2011, 43, 3181-3188.	3.1	71
7	Assessment of Portuguese thermal building legislation in an energetic and environmental perspective. Energy and Buildings, 2011, 43, 3729-3735.	3.1	8
8	Longitudinal prediction of the operational energy use of buildings. Building and Environment, 2011, 46, 1670-1680.	3.0	55
9	Decisions on recycling: Construction stakeholders' decisions regarding recycled mineral construction materials. Resources, Conservation and Recycling, 2011, 55, 1039-1050.	5.3	54
10	GAA-Based Decision Approach for Hospital Building Renovation Management. Advanced Materials Research, 0, 403-408, 5265-5272.	0.3	0
11	SELECTION OF FACADE'S ALTERNATIVES OF COMMERCIAL AND PUBLIC BUILDINGS BASED ON MULTIPLE CRITERIA / KOMERCINÄ–S IR VIEÅOSIOS PASKIRTIES PASTATŲ FASADO ALTERNATYVŲ DAUGIAKRITERINÄ– ATR International Journal of Strategic Property Management, 2011, 15, 189-203.	ANOKSA.	84
12	Analysis of energy and carbon flows in the future Norwegian dwelling stock. Building Research and Information, 2012, 40, 123-139.	2.0	39
13	Towards a 2000 Watt society – assessing building-specific saving potentials of the Swiss residential building stock. International Journal of Sustainable Building Technology and Urban Development, 2012, 3, 43-49.	1.0	9
14	Automated Benchmarking and Monitoring of an Earthmoving Operation's Carbon Footprint Using Video Cameras and a Greenhouse Gas Estimation Model. , 2012, , .		8
15	Energy End-Use: Buildings. , 0, , 649-760.		57
16	Life cycle approach in evaluating energy performance of residential buildings in Indian context. Energy and Buildings, 2012, 54, 259-265.	3.1	62
17	Towards a comprehensive life cycle energy analysis framework for residential buildings. Energy and Buildings, 2012, 55, 592-600.	3.1	124
18	Building energy models and assessment systems at the district and city scales: a review. Building Research and Information, 2012, 40, 518-526.	2.0	53

ARTICLE IF CITATIONS # Developing an LCA methodology to account for the environmental benefits of design for 19 3.0 122 deconstruction. Building and Environment, 2012, 57, 387-395. Exergy Analysis of Energy Use during Building Life Cycle., 2012, , . Life cycle assessment of a single-family residence built to either conventional- or passive house 21 3.1117 standard. Energy and Buildings, 2012, 54, 470-479. The embodied energy and emissions of a high-rise education building: A quantification using 3.1 process-based hybrid life cycle inventory model. Energy and Buildings, 2012, 55, 790-798. Energy Costs of Energy Savings in Buildings: A Review. Sustainability, 2012, 4, 1711-1732. 23 1.6 9 The life-cycle assessment of a single-storey retail building in Canada. Building and Environment, 2012, 49, 212-226. 3.0 87 Life cycle energy analysis of a residential building with different envelopes and climates in Indian 25 5.1 92 context. Applied Energy, 2012, 89, 193-202. Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a 5.1 26 century home – The REEP House. Ápplied Energy, 2012, 93, 24-32. Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A 27 5.1 62 highlight on the manufacturing phase. Applied Energy, 2012, 92, 534-544. Carbon footprints of heating oil and LPG heating systems. Environmental Impact Assessment Review, 4.4 14 2012, 35, 11-22. Energy and carbon emission payback analysis for energy-efficient retrofitting in buildingsâ€"Overhang 29 3.174 shading option. Energy and Buildings, 2012, 44, 94-103. LCA of low-energy flats using the Eco-indicator 99 method: Impact of insulation materials. Energy and 3.1 Buildings, 2012, 47, 68-73. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact $\mathbf{31}$ 3.1 190 assessment methods. Energy and Buildings, 2012, 47, 572-583. Analysing the life cycle greenhouse gas emission and energy consumption of a multi-storied commercial building in Singapore from an extended system boundary perspective. Energy and Buildings, 2012, 51, 6-14. 3.1 84 Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and 33 8.2 343 Sustainable Energy Reviews, 2012, 16, 3730-3743. Promoting win–win situations in climate change mitigation, local environmental quality and development in Asian cities through co-benefits. Journal of Cleaner Production, 2013, 58, 1-6. 35 An audit of life cycle energy analyses of buildings. Habitat International, 2013, 39, 43-54. 2.339 Overview on life cycle methodologies and economic feasibility forÂnZEBs. Building and Environment, 2013, 67, 211-216.

#	Article	IF	CITATIONS
37	A method and tool for â€~cradle to grave' embodied carbon and energy impacts of UK buildings in compliance with the new TC350 standards. Energy and Buildings, 2013, 66, 514-523.	3.1	137
38	Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews, 2013, 26, 379-388.	8.2	386
39	Affordable construction towards sustainable buildings: review on embodied energy in building materials. Current Opinion in Environmental Sustainability, 2013, 5, 229-236.	3.1	47
40	An information driven hybrid evolutionary algorithm for optimal design of a Net Zero Energy House. Solar Energy, 2013, 96, 128-139.	2.9	31
41	Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings, 2013, 66, 232-245.	3.1	400
42	Analysing co-benefits of the energy conservation and carbon reduction in China's large commercial buildings. Journal of Cleaner Production, 2013, 58, 112-120.	4.6	49
43	LCA case study. Part 1: cradle-to-grave environmental footprint analysis of composites and stainless steel I-beams. International Journal of Life Cycle Assessment, 2013, 18, 208-217.	2.2	26
44	Life cycle carbon dioxide assessment tool for buildings in the schematic design phase. Energy and Buildings, 2013, 61, 275-287.	3.1	80
45	Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits. Renewable and Sustainable Energy Reviews, 2013, 27, 283-293.	8.2	134
46	Refurbishment decision support tools: A review from a Portuguese user's perspective. Construction and Building Materials, 2013, 49, 425-447.	3.2	24
47	A life cycle energy analysis of social housing in Brazil: Case study for the program "MY HOUSE MY LIFE― Energy and Buildings, 2013, 57, 95-102.	3.1	83
48	Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 2013, 64, 73-89.	3.1	258
49	A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 2013, 20, 45-56.	8.2	85
50	Life Cycle Assessment of a passive house in a seismic temperate zone. Energy and Buildings, 2013, 64, 463-472.	3.1	73
51	Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects. Energy Policy, 2013, 62, 1453-1460.	4.2	66
52	Energy certification of existing office buildings: Analysis of two case studies and qualitative reflection. Sustainable Cities and Society, 2013, 9, 81-95.	5.1	11
53	LCE analysis of buildings – Taking the step towards Net Zero Energy Buildings. Energy and Buildings, 2013, 62, 381-391.	3.1	81
54	Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings, 2013, 59, 82-103.	3.1	785

#	Article	IF	CITATIONS
55	On-site energy management challenges and opportunities: a contractor's perspective. Building Research and Information, 2013, 41, 450-468.	2.0	18
56	A comprehensive assessment of the life cycle energy demand of passive houses. Applied Energy, 2013, 112, 23-34.	5.1	200
57	Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme. Applied Energy, 2013, 111, 505-514.	5.1	89
58	Product Life Trade-Offs: What If Products Fail Early?. Environmental Science & Technology, 2013, 47, 130123132543006.	4.6	16
59	Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management. , 2013, , .		1
60	Disaster Resilience and Sustainable Design: Quantifying the Benefits of a Holistic Design Approach. , 2013, , .		12
61	Energy Consumption Analysis of Animation-Park in Sino-Singapore Tianjin Eco-City. Applied Mechanics and Materials, 0, 316-317, 176-180.	0.2	2
62	Assessing the Potential for Reducing Life-Cycle Environmental Impacts through Transit-Oriented Development Infill along Existing Light Rail in Phoenix. Journal of Planning Education and Research, 2013, 33, 395-410.	1.5	40
63	A Materials Life Cycle Assessment of a Net-Zero Energy Building. Energies, 2013, 6, 1125-1141.	1.6	83
64	Sustainable construction: life cycle energy analysis of construction on sloping sites for residential buildings. Construction Management and Economics, 2013, 31, 254-265.	1.8	21
65	Retrofit versus new-build house using life-cycle assessment. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 122-137.	0.4	18
66	The relationship between material service life and the life cycle energy of contemporary residential buildings in Australia. Architectural Science Review, 2013, 56, 252-261.	1.1	25
67	A Fuzzy Logic Enhanced Environmental Protection Education Model for Policies Decision Support in Green Community Development. Scientific World Journal, The, 2013, 2013, 1-8.	0.8	5
68	Material Efficiency of Building Construction. Buildings, 2014, 4, 266-294.	1.4	86
69	Buildings. , 2015, , 671-738.		13
70	The importance of embodied energy in carbon footprint assessment. Structural Survey, 2014, 32, 49-60.	1.0	51
71	Life Cycle Assessment of an Apartment Building: Comparison of an Attributional and Consequential Approach. Energy Procedia, 2014, 62, 132-140.	1.8	21
72	Post-occupancy life cycle energy assessment of a residential building in Australia. Architectural Science Review, 2014, 57, 114-124.	1.1	40

#	Article	IF	CITATIONS
73	An assessment framework for analyzing the embodied carbon impacts of residential buildings in China. Energy and Buildings, 2014, 85, 400-409.	3.1	54
74	Sustainable housing: Emergy evaluation of an off-grid residence. Energy and Buildings, 2014, 85, 287-292.	3.1	17
75	Use of recycled products in UK construction industry: An empirical investigation into critical impediments and strategies for improvement. Resources, Conservation and Recycling, 2014, 93, 23-31.	5.3	93
76	Promoting low carbon sustainability through benchmarking the energy performance in public buildings in China. Urban Climate, 2014, 10, 92-104.	2.4	12
77	Smart-ECO Buildings towards 2020/2030. SpringerBriefs in Applied Sciences and Technology, 2014, , .	0.2	2
78	Development of a Carbon Emission Calculations System for Optimizing Building Plan Based on the LCA Framework. Mathematical Problems in Engineering, 2014, 2014, 1-13.	0.6	21
79	Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 2014, 29, 394-416.	8.2	941
80	The assessment of building energy efficiency in China rural society: Developing a new theoretical construct. Technology in Society, 2014, 38, 130-138.	4.8	7
81	Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark. Energy Policy, 2014, 68, 294-305.	4.2	27
82	A life-cycle cost analysis of the passive house "POLITEHNICA―from Bucharest. Energy and Buildings, 2014, 80, 542-555.	3.1	35
83	Characterization of CO2 emissions during construction of reservoir embankment elevation in South Korea. International Journal of Life Cycle Assessment, 2014, 19, 42-51.	2.2	7
84	Energy performance of buildings: The evaluation of design and construction measures concerning building energy efficiency in Iran. Energy and Buildings, 2014, 75, 456-464.	3.1	36
85	Data mining in building automation system for improving building operational performance. Energy and Buildings, 2014, 75, 109-118.	3.1	210
86	Thermodynamic investigation of building integrated energy efficiency for building retrofit. Energy and Buildings, 2014, 77, 139-148.	3.1	14
87	The convergence of life cycle assessment and nearly zero-energy buildings: The case of Germany. Energy and Buildings, 2014, 76, 551-557.	3.1	83
88	Minimising the life cycle energy of buildings: Review and analysis. Building and Environment, 2014, 73, 106-114.	3.0	159
89	A decision-making LCA for energy refurbishment of buildings: Conditions of comfort. Energy and Buildings, 2014, 70, 333-342.	3.1	62
90	Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon. Energy and Buildings, 2014, 69, 344-353.	3.1	108

#	Article	IF	CITATIONS
91	Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Building and Environment, 2014, 72, 223-231.	3.0	144
92	Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 2014, 68, 254-269.	3.1	137
93	Improving the renewable energy mix in a building toward the nearly zero energy status. Energy and Buildings, 2014, 68, 72-78.	3.1	63
94	Development of power system designs for a net zero energy house. Energy and Buildings, 2014, 73, 120-129.	3.1	36
95	Energy life-cycle approach in Net zero energy buildings balance: Operation and embodied energy of an Italian case study. Energy and Buildings, 2014, 72, 371-381.	3.1	156
96	Life cycle assessment (LCA) of sustainable building materials: an overview. , 2014, , 38-62.		34
97	A methodology for identifying the influence of design variations on building energy performance. Journal of Building Performance Simulation, 2014, 7, 411-426.	1.0	28
98	Life Cycle Impact Assessment of masonry system as inner walls: A case study in Brazil. Construction and Building Materials, 2014, 70, 141-147.	3.2	39
99	Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality. Environmental Science & Technology, 2014, 48, 7651-7659.	4.6	31
100	A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Building and Environment, 2014, 82, 526-535.	3.0	77
101	Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to enhance energy efficiency and level of service. Energy and Buildings, 2014, 82, 222-236.	3.1	36
102	Life cycle analysis of a building-integrated solar thermal collector, based on embodied energy and embodied carbon methodologies. Energy and Buildings, 2014, 84, 378-387.	3.1	60
103	Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy and Buildings, 2014, 82, 378-384.	3.1	37
104	Cost-optimum analysis of building fabric renovation in a Swedish multi-story residential building. Energy and Buildings, 2014, 84, 662-673.	3.1	55
105	Comparing the midpoint and endpoint approaches based on ReCiPe—a study of commercial buildings in Hong Kong. International Journal of Life Cycle Assessment, 2014, 19, 1409-1423.	2.2	121
106	Moving towards an Egyptian national life cycle inventory database. International Journal of Life Cycle Assessment, 2014, 19, 1551-1558.	2.2	16
107	Embodied Energy Assessment and Comparisons for a Residential Building Using Conventional and Alternative Materials in Indian Context. Journal of the Institution of Engineers (India): Series A, 2014, 95, 117-127.	0.6	10
108	Reducing the total life cycle energy demand of recent residential buildings in Lebanon. Energy, 2014, 74, 618-637.	4.5	80

#	Article	IF	CITATIONS
109	Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344, 1109-1113.	6.0	925
110	How to evaluate performance of net zero energy building – A literature research. Energy, 2014, 71, 1-16.	4.5	251
111	System boundaries of zero carbon buildings. Renewable and Sustainable Energy Reviews, 2014, 37, 424-434.	8.2	98
112	A case study on life cycle energy use of residential building in Southern India. Energy and Buildings, 2014, 80, 247-259.	3.1	96
113	Design of a multipurpose "zero energy consumption―building according to European Directive 2010/31/EU: Life cycle assessment. Energy and Buildings, 2014, 80, 585-597.	3.1	28
114	An integrated optimisation method for residential building design: A case study in Spain. Energy and Buildings, 2014, 80, 158-168.	3.1	24
115	Comparison of energy-based indicators used in life cycle assessment tools for buildings. Building and Environment, 2014, 79, 138-151.	3.0	63
116	Briefing: Delivering buildings and infrastructure towards zero carbon. Infrastructure Asset Management, 2014, 1, 60-65.	1.2	2
117	A 6D CAD Model for the Automatic Assessment of Building Sustainability. International Journal of Advanced Robotic Systems, 2014, 11, 131.	1.3	25
118	Comparison of Environmental and Energy Performance of Exterior Walls. Energy Procedia, 2015, 78, 231-236.	1.8	12
119	Carbon Emission of Energy Efficient Residential Building. Procedia Engineering, 2015, 121, 1096-1102.	1.2	12
120	Life Cycle Energy Analysis of Eight Residential Houses in Brisbane, Australia. Procedia Engineering, 2015, 121, 653-661.	1.2	14
121	Optimizing structural roof form for life-cycle energy efficiency. Energy and Buildings, 2015, 104, 336-349.	3.1	38
122	Integrated Evaluation of Co2eq Emission and Thermal Dynamic Simulation for Different Façade Solutions for a Typical Office Building. Energy Procedia, 2015, 78, 3216-3221.	1.8	11
124	Comprehensive Analysis of the Built Environment through the Introduction of Induced Impacts via Transportation. Transportation Research Record, 2015, 2500, 67-74.	1.0	3
125	Life Cycle Energy and Cost Analysis of Thin Flooring Panels with Enhanced Thermal Efficiency. Journal of Asian Architecture and Building Engineering, 2015, 14, 167-173.	1.2	3
126	Analysis of energy performance of university campus buildings using statistical and energy modeling approaches. , 2015, , .		7
127	Carbon Emission Assessment for Super Tall Buildings with Viscoelastic Coupling Dampers. IABSE Symposium Report, 2015, , .	0.0	0

#	Article	IF	CITATIONS
128	A Sustainable Structural Design method to analyse structural and environmental performances of a building. , 2015, , .		0
129	A Critical Overview of Net Zero Energy Buildings and Fuzzy Cognitive Maps. International Journal of Monitoring and Surveillance Technologies Research, 2015, 3, 20-43.	0.3	5
130	Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings. Challenges, 2015, 6, 98-116.	0.9	10
131	Towards a More Sustainable Building Stock: Optimizing a Flemish Dwelling Using a Life Cycle Approach. Buildings, 2015, 5, 424-448.	1.4	14
132	Grand Challenges in Sustainable Design and Construction. Frontiers in Built Environment, 2015, 1, .	1.2	5
133	Integrating Simplified and Full Life Cycle Approaches in Decision Making for Building Energy Refurbishment: Benefits and Barriers. Buildings, 2015, 5, 354-380.	1.4	61
134	Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings. Buildings, 2015, 5, 581-596.	1.4	3
135	Pathways to Low Carbon Building: Reflection on the Special Issue. Buildings, 2015, 5, 751-758.	1.4	2
136	Life-Cycle Energy Implications of Downtown High-Rise vs. Suburban Low-Rise Living: An Overview and Quantitative Case Study for Chicago. Buildings, 2015, 5, 1003-1024.	1.4	32
137	Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects. Buildings, 2015, 5, 1156-1170.	1.4	25
138	Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings. Sustainability, 2015, 7, 6854-6871.	1.6	23
139	Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing. Sustainability, 2015, 7, 7866-7883.	1.6	42
140	Assessment of Passive vs. Active Strategies for a School Building Design. Sustainability, 2015, 7, 15136-15151.	1.6	14
141	Case Study of Carbon Emissions from a Building's Life Cycle Based on BIM and Ecotect. Advances in Materials Science and Engineering, 2015, 2015, 1-15.	1.0	22
142	An overall methodology to define reference values for building sustainability parameters. Energy and Buildings, 2015, 88, 413-427.	3.1	42
143	A program-level management system for the life cycle environmental and economic assessment of complex building projects. Environmental Impact Assessment Review, 2015, 54, 9-21.	4.4	28
144	Comparative Analysis on the Calculation Method for Building Operational Energy Consumption. Advanced Materials Research, 2015, 1092-1093, 1601-1606.	0.3	1
145	Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy and Buildings, 2015, 97, 146-154.	3.1	35

#	Article	IF	CITATIONS
146	The significance of various factors for GHG emissions of buildings. International Journal of Sustainable Engineering, 2015, 8, 317-330.	1.9	17
147	Measuring office fit-out changes to determine recurring embodied energy in building life cycle assessment. Facilities, 2015, 33, 262-274.	0.8	12
148	Energy efficiency index as an indicator for measuring building energy performance: A review. Renewable and Sustainable Energy Reviews, 2015, 44, 1-11.	8.2	170
149	Energy analysis of the built environment—A review and outlook. Renewable and Sustainable Energy Reviews, 2015, 44, 149-158.	8.2	166
150	Building service life and its effect on the life cycle embodied energy of buildings. Energy, 2015, 79, 140-148.	4.5	148
151	Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Building and Environment, 2015, 86, 89-97.	3.0	111
152	A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 2015, 143, 395-413.	5.1	589
153	Embodied Energy of Construction Materials: Integrating Human and Capital Energy into an IO-Based Hybrid Model. Environmental Science & Technology, 2015, 49, 1936-1945.	4.6	59
154	Experimental testing of engineered masonry infill walls for post-earthquake structural damage control. Bulletin of Earthquake Engineering, 2015, 13, 2029-2049.	2.3	70
155	The contribution of structural design to green building rating systems: An industry perspective and comparison of life cycle energy considerations. Sustainable Cities and Society, 2015, 16, 39-48.	5.1	31
156	Carbon Emission Assessment for Steel Structure Based on Lean Construction Process. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 79, 401-416.	2.0	24
157	Strategies for reducing poor indoor air quality and adverse temperature exposure in Delhi's households: A multi-objective assessment. Building Services Engineering Research and Technology, 2015, 36, 230-246.	0.9	5
158	Life cycle energy (LCEA) and carbon dioxide emissions (LCCO2A) assessment of two residential buildings in Gaziantep, Turkey. Energy and Buildings, 2015, 102, 417-431.	3.1	142
159	Earth-block versus sandcrete-block houses. , 2015, , 481-514.		6
160	Life cycle energy balance of residential buildings: A case study on hypothetical building models in Finland. Energy and Buildings, 2015, 105, 154-164.	3.1	49
161	Social problems of green buildings: From the humanistic needs to social acceptance. Renewable and Sustainable Energy Reviews, 2015, 51, 1594-1609.	8.2	155
162	Net energy analysis of a solar combi system with Seasonal Thermal Energy Store. Applied Energy, 2015, 147, 611-616.	5.1	43
163	Environmental Impact of Buildings—What Matters?. Environmental Science & Technology, 2015, 49, 9832-9841.	4.6	87

CITATION	Report

#	Article	IF	CITATIONS
164	Comparative analysis of energy related performance and construction cost of the external walls in high-rise residential buildings. Energy and Buildings, 2015, 99, 67-74.	3.1	18
165	Multi-criteria approach to passive space design in buildings: Impact of courtyard spaces on public buildings in cold climates. Building and Environment, 2015, 89, 295-307.	3.0	39
166	Analysis of material solutions for design of construction details of foundation, wall and floor for energy and environmental impacts. Clean Technologies and Environmental Policy, 2015, 17, 1323-1332.	2.1	25
167	China's energy consumption in the building sector: A life cycle approach. Energy and Buildings, 2015, 94, 240-251.	3.1	168
168	A life cycle assessment model for evaluating the environmental impacts of building construction in Hong Kong. Building and Environment, 2015, 89, 183-191.	3.0	124
169	The effect of material selection on life cycle energy balance: A case study on a hypothetical building model in Finland. Building and Environment, 2015, 89, 192-202.	3.0	60
170	Economic and environmental savings of structural buildings refurbishment with demolition and reconstruction - A Portuguese benchmarking. Journal of Building Engineering, 2015, 3, 114-126.	1.6	51
171	An Integrated BIM-Based Framework for the Energy Assessment of Building Upstream Flow. , 2015, , .		3
172	Life cycle energy analysis of museum buildings: A case study of museums in Hangzhou. Energy and Buildings, 2015, 109, 127-134.	3.1	15
173	Embodied Carbon Based Integrated Optimal Seismic Design for Super Tall Buildings with Viscoelastic Coupling Dampers. Procedia Engineering, 2015, 118, 223-231.	1.2	4
174	A comparative study of the environmental impact of Swedish residential buildings with vacuum insulation panels. Energy and Buildings, 2015, 109, 183-194.	3.1	49
175	Expanding the use of life-cycle assessment to capture induced impacts in the built environment. Building and Environment, 2015, 94, 403-416.	3.0	35
176	Embodied and operational energy in buildings on 20 Norwegian dairy farms – Introducing the building construction approach to agriculture. Energy and Buildings, 2015, 108, 330-345.	3.1	9
177	New Life of the Building Materials- Recycle, Reuse and Recovery. Energy Procedia, 2015, 75, 2884-2891.	1.8	43
178	Visualization of energy and water consumption and GHG emissions: A case study of a Canadian University Campus. Energy and Buildings, 2015, 109, 334-352.	3.1	31
179	Carbon footprint assessment of a typical low rise office building in Malaysia using building information modelling (BIM). International Journal of Sustainable Building Technology and Urban Development, 2015, 6, 157-172.	1.0	40
180	Saving potential for embodied energy and CO ₂ emissions from building elements: A case study. Journal of Building Physics, 2015, 39, 261-284.	1.2	12
181	Modeling and Simulation-based Analysis for Large Scale Campus Chilled Water Networks. , 2015, , .		2

ARTICLE IF CITATIONS # Passive energy strategies in the retrofitting of the residential sector: A practical case study in dry hot 182 3.0 23 climate. Building Simulation, 2015, 8, 593-602. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy and 3.1 124 Buildings, 2015, 93, 295-302. Life cycle assessment and data envelopment analysis approach for the selection of building 184 components according to their environmental impact efficiency: a case study for external walls. 4.6 57 Journal of Cleaner Production, 2015, 87, 707-716. Exploring the critical factors and appropriate polices for reducing energy consumption of China's 24 urban civil building sector. Journal of Cleaner Production, 2015, 103, 446-454. Strategies of building stock renovation for ageing society. Journal of Cleaner Production, 2015, 88, 186 4.6 42 349-357. Incorporating sustainable development principles into building design: a review from a structural perspective including case study. Structural Design of Tall and Special Buildings, 2015, 24, 421-439. Assessing the environmental impact of data centres part 2: Building environmental assessment 188 3.0 36 methods and life cycle assessment. Building and Environment, 2015, 93, 395-405. Life cycle assessment and life cycle cost implication of residential buildingsâ€"A review. Renewable and 8.2 199 Sustainable Energy Reviews, 2015, 42, 129-140. 190 Net-zero buildings: incorporating embodied impacts. Building Research and Information, 2015, 43, 62-81. 2.0 91 Carbon emission analysis of a residential building in China through life cycle assessment. Frontiers of 3.3 Environmental Science and Engineering, 2016, 10, 150-158. Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic 192 1.6 1 Effect for Building Applications. Energies, 2016, 9, 926. Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the 1.6 Choice of Housing Typologies and Construction Process in Špain. Sustainability, 2016, 8, 287. Future trends for solar energy useÂin nearly zero energy buildings., 2016, 547-569. 194 5 Optimal Decision Model for Sustainable Hospital Building Renovationâ€"A Case Study of a Vacant School Building Converting into a Community Public Hospital. International Journal of Environmental Research and Public Health, 2016, 13, 630. 1.2 Life Cycle Assessment of Flat Roof Technologies for Office Buildings in Israel. Sustainability, 2016, 8, 196 1.6 15 54. Establishing environmental benchmarks to determine the environmental performance of elementary 3.1 school buildings using LCA. Energy and Buildings, 2016, 127, 818-829. 198 Impact of Urban Density and Building Height on Energy Use in Cities. Energy Procedia, 2016, 96, 800-814. 1.8 96 Exploring the CO2-Impact for Building Height; A Study on Technical Building Installations. Energy 199 1.8 Procedia, 2016, 96, 5-16.

#		IF	CITATIONS
# 200	An Analysis of Problems with Current Indicators for Evaluating Carbon Performance in the Construction Industry. Procedia Engineering, 2016, 164, 425-431.	1.2	3
201	Morphology Parameters Quantitative Research of Multi-storey Office Building Design in Harbin, China. Procedia Engineering, 2016, 169, 359-366.	1.2	0
202	CO2 emission reduction effects of an innovative composite precast concrete structure applied to heavy loaded and long span buildings. Energy and Buildings, 2016, 126, 36-43.	3.1	21
203	Directionally selective shading control in maritime sub-tropical and temperate climates: Life cycle energy implications for office buildings. Building and Environment, 2016, 104, 275-285.	3.0	15
204	The Assessment of Municipal Services: Environmental Efficiency of Buildings Construction. Lecture Notes in Business Information Processing, 2016, , 237-250.	0.8	0
205	Technique for quantification of embodied carbon footprint of construction projects using probabilistic emission factor estimators. Journal of Cleaner Production, 2016, 119, 135-151.	4.6	26
206	Energy Efficiency of Buildings: The Aspect of Embodied Energy. Energy Technology, 2016, 4, 31-43.	1.8	25
207	The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 2016, 124, 153-163.	3.1	90
208	Significance of mobility in the life-cycle assessment of buildings. Building Research and Information, 2016, 44, 376-393.	2.0	26
209	Achieving environmentally friendly building envelope for Western Australia's housing sector: A life cycle assessment approach. International Journal of Sustainable Built Environment, 2016, 5, 210-224.	3.2	30
210	Environmental impact assessment of the Egyptian cement industry based on a life-cycle assessment approach: a comparative study between Egyptian and Swiss plants. Clean Technologies and Environmental Policy, 2016, 18, 1053-1068.	2.1	22
211	Energy use and maintenance costs of upmarket hotels. International Journal of Hospitality Management, 2016, 56, 33-43.	5.3	16
212	Renewable Energy and Sustainable Technologies for Building and Environmental Applications. , 2016, , .		6
213	Life Cycle Analysis of Building Materials. , 2016, , 187-204.		2
214	Embodied greenhouse gas emissions from PV systems in Norwegian residential Zero Emission Pilot Buildings. Solar Energy, 2016, 133, 155-171.	2.9	55
215	Cork as a building material: a review. European Journal of Wood and Wood Products, 2016, 74, 775-791.	1.3	67
216	Evaluation of energy consumption during production and construction of concrete and steel frames of residential buildings. Energy and Buildings, 2016, 130, 244-252.	3.1	42
217	Analysis and evaluation of a new renewable energy based integrated system for residential applications. Energy and Buildings, 2016, 128, 900-910.	3.1	40

#	Article	IF	CITATIONS
218	Economic assessments of passive thermal rehabilitations of dwellings in Mediterranean climate. Energy and Buildings, 2016, 128, 772-784.	3.1	13
219	Comparative life-cycle energy analysis of a new and an existing house: The significance of occupant's habits, building systems and embodied energy. Sustainable Cities and Society, 2016, 26, 507-518.	5.1	56
220	Factors affecting the embodied carbon footprint potential—Assessment of conventional Malaysian housing habitat. , 2016, , 187-192.		0
221	Greenhouse gas considerations in rail infrastructure in the UK. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2016, 169, 171-180.	0.4	9
222	Are sustainable buildings healthy? An investigation of lifecycle relationship between building sustainability and its environmental health impacts. World Journal of Science Technology and Sustainable Development, 2016, 13, 190-204.	2.0	3
223	Assessing the energy intensity of peri -urbanisation: A master plan approach. Energy and Buildings, 2016, 128, 540-552.	3.1	6
224	The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings. Energy, 2016, 116, 1158-1171.	4.5	76
225	Carbon Lock-In: Types, Causes, and Policy Implications. Annual Review of Environment and Resources, 2016, 41, 425-452.	5.6	632
226	Energy Cost-Efficient Rehabilitation Measures for the Portuguese Residential Buildings Constructed in the 1960–1990 Period. Building Pathology and Rehabilitation, 2016, , 23-42.	0.1	4
227	Evaluating the life cycle energy benefits of energy efficiency regulations for buildings. Renewable and Sustainable Energy Reviews, 2016, 63, 435-451.	8.2	92
228	Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach. Clean Technologies and Environmental Policy, 2016, 18, 2579-2590.	2.1	33
229	Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 2016, 105, 267-282.	3.0	274
230	Assessing the impact of energy management initiatives on the energy usage during the construction phase of an educational building project in Ireland. Construction Management and Economics, 2016, 34, 46-60.	1.8	12
231	LCA databases focused on construction materials: A review. Renewable and Sustainable Energy Reviews, 2016, 58, 565-573.	8.2	207
232	Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 2016, 59, 352-378.	8.2	73
233	Life cycle assessment of low-rise office building with different structure–envelope configurations. Canadian Journal of Civil Engineering, 2016, 43, 193-200.	0.7	12
234	Technical and economical assessment of energy-saving roof and wall construction in Thailand. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2016, 39, 1-11.	0.6	58
235	Design model for analysis of relationships among CO 2 emissions, cost, and structural parameters in green building construction with composite columns. Energy and Buildings, 2016, 118, 301-315.	3.1	26

#	Article	IF	CITATIONS
236	A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China. Energy and Buildings, 2016, 119, 323-330.	3.1	76
237	Lifecycle Environmental Performance of Natural-Hazard Mitigation for Buildings. Journal of Performance of Constructed Facilities, 2016, 30, .	1.0	32
238	Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends. Renewable and Sustainable Energy Reviews, 2016, 58, 1647-1663.	8.2	62
239	The effect of carbon reduction regulations on contractors' awareness and behaviors in China's building sector. Journal of Cleaner Production, 2016, 113, 93-101.	4.6	39
240	The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision. Energy Policy, 2016, 91, 329-340.	4.2	27
241	Environmental feasibility of heritage buildings rehabilitation. Renewable and Sustainable Energy Reviews, 2016, 58, 235-249.	8.2	64
242	Life-cycle assessment and cost analysis of residential buildings in South East of Turkey: part 2—a case study. International Journal of Life Cycle Assessment, 2016, 21, 925-942.	2.2	35
243	EPBD cost-optimal methodology: Application to the thermal rehabilitation of the building envelope of a Portuguese residential reference building. Energy and Buildings, 2016, 111, 12-25.	3.1	56
244	Calculation of a building's life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, 2016, 112, 453-465.	4.6	274
245	Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings. Applied Energy, 2016, 161, 445-464.	5.1	105
246	Embodied and operational energy of urban residential buildings in India. Energy and Buildings, 2016, 110, 211-219.	3.1	97
247	Tool for life cycle analysis of facade-systems for industrial buildings. Journal of Cleaner Production, 2016, 130, 260-272.	4.6	45
248	Mapping product knowledge to life cycle inventory bounds: a case study of steel manufacturing. Journal of Cleaner Production, 2016, 113, 557-564.	4.6	15
249	Green hospital design: integrating quality function deployment and end-user demands. Journal of Cleaner Production, 2016, 112, 903-913.	4.6	67
250	Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study. Journal of Cleaner Production, 2016, 112, 532-541.	4.6	105
251	Energy and carbon performance evaluation for buildings and urban precincts: review and a new modelling concept. Journal of Cleaner Production, 2017, 163, 24-35.	4.6	27
252	Sustainable buildings for healthier cities: assessing the co-benefits of green buildings in Japan. Journal of Cleaner Production, 2017, 163, S68-S78.	4.6	139
253	Environmental impact trade-offs in building envelope retrofit strategies. International Journal of Life Cycle Assessment, 2017, 22, 557-570.	2.2	29

#	Article	IF	CITATIONS
254	Life cycle energy and costs of sprawling and compact neighborhoods. International Journal of Life Cycle Assessment, 2017, 22, 618-627.	2.2	12
255	Life-cycle assessment of post-disaster temporary housing. Building Research and Information, 2017, 45, 524-538.	2.0	39
256	Potential benefits and environmental life cycle assessment of equipping buildings in dense cities for struvite production from source-separated human urine. Journal of Cleaner Production, 2017, 143, 288-302.	4.6	19
257	Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK. Energy and Buildings, 2017, 139, 547-568.	3.1	66
258	Evaluation of measures to improve residential energy policies considering occupant characteristics. Energy Strategy Reviews, 2017, 15, 33-43.	3.3	3
259	Lifecycle Cost Analysis of Flat Roofs of Buildings. Journal of Construction Engineering and Management - ASCE, 2017, 143, .	2.0	25
260	State of the art on the development of cool coatings for buildings and cities. Solar Energy, 2017, 144, 660-680.	2.9	170
261	Life cycle analysis of energy consumption and CO2 emissions from a typical large office building in Tianjin, China. Building and Environment, 2017, 117, 36-48.	3.0	56
262	Life Cycle Assessment of building stocks from urban to transnational scales: A review. Renewable and Sustainable Energy Reviews, 2017, 74, 316-332.	8.2	125
263	Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, 2017, 140, 68-80.	3.1	237
264	Environmental benefits of renewable building materials: A case study in Taiwan. Energy and Buildings, 2017, 140, 236-244.	3.1	16
266	Lifetime Distribution of Buildings Decided by Economic Situation at Demolition: D-based Lifetime Distribution. Procedia CIRP, 2017, 61, 146-151.	1.0	9
267	Energy performance of an exhibition hall in a life cycle perspective: embodied energy, operational energy and retrofit strategies. Energy Efficiency, 2017, 10, 1343-1364.	1.3	7
268	Embodied Energy and Nearly Zero Energy Buildings: A Review in Residential Buildings. Procedia Environmental Sciences, 2017, 38, 554-561.	1.3	46
269	Energy retrofits in historic and traditional buildings: A review of problems and methods. Renewable and Sustainable Energy Reviews, 2017, 77, 748-759.	8.2	209
270	A mathematical model for predicting the carbon sequestration potential of ordinary portland cement (OPC) concrete. Construction and Building Materials, 2017, 147, 417-427.	3.2	37
271	On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings. Science of the Total Environment, 2017, 596-597, 405-416.	3.9	39
272	Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy and Buildings, 2017, 151, 107-120.	3.1	29

#	Article	IF	CITATIONS
273	Life Cycle Energy Assessment of a Multi-storey Residential Building. Journal of the Institution of Engineers (India): Series A, 2017, 98, 155-162.	0.6	6
274	Influence of envelope insulation materials on building energy consumption. Frontiers in Energy, 2017, 11, 575-581.	1.2	10
275	A dynamic life cycle carbon emission assessment on green and non-green buildings in China. Energy and Buildings, 2017, 149, 272-281.	3.1	84
276	Life cycle building impact of a Middle Eastern residential neighborhood. Energy, 2017, 134, 336-348.	4.5	20
277	Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 2017, 79, 390-413.	8.2	185
278	Quantifying and mapping embodied environmental requirements of urban building stocks. Building and Environment, 2017, 114, 187-202.	3.0	150
279	Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 2017, 144, 33-47.	4.6	135
280	Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects. Energy and Buildings, 2017, 136, 12-25.	3.1	62
281	Improving sustainable office building operation by using historical data and linear models to predict energy usage. Sustainable Cities and Society, 2017, 29, 107-117.	5.1	29
282	Improving the Life Cycle Energy Performance of Apartment Units through Façade Design. Procedia Engineering, 2017, 196, 1003-1010.	1.2	8
283	Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 2017, 1, 1700074.	2.7	110
284	A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy and Buildings, 2017, 156, 293-305.	3.1	78
285	Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 2017, 14, 115-126.	1.6	177
286	Quantifying the recurring nature of fitout to assist LCA studies in office buildings. International Journal of Building Pathology and Adaptation, 2017, 35, 233-246.	0.7	2
287	Decision-making based on network visualization applied to building life cycle optimization. Sustainable Cities and Society, 2017, 35, 565-573.	5.1	19
288	A review of research on embodied energy of buildings using bibliometric analysis. Energy and Buildings, 2017, 155, 172-184.	3.1	69
289	The energy efficiency and carbon footprint of temporary homes: a case study from Japan. International Journal of Disaster Resilience in the Built Environment, 2017, 8, 326-343.	0.7	6
290	The Impact of Different Insulation Options on the Life Cycle Energy Demands of a Hypothetical Residential Building. Procedia Engineering, 2017, 180, 128-135.	1.2	7

#	Article	IF	Citations
291	Decent housing in the developing world: Reducing life-cycle energy requirements. Energy and Buildings, 2017, 152, 629-642.	3.1	25
292	Strategies for reducing greenhouse gas emissions from residential sector by proposing new building structures in hot and humid climatic conditions. Building and Environment, 2017, 124, 357-368.	3.0	40
293	Entangling carbon lock-in: India's coal constituency. Crime, Law and Social Change, 2017, 68, 529-546.	0.7	7
294	Multi-performance retrofits to commercial buildings in seismic zones. Journal of Structural Integrity and Maintenance, 2017, 2, 133-142.	0.7	6
295	Implementation of predictive control in a commercial building energy management system using neural networks. Energy and Buildings, 2017, 151, 511-519.	3.1	49
296	Accounting for the Carbon Sequestration Potential of Reinforced Concrete in a Whole-Building Life-Cycle Assessment. , 2017, , .		0
297	A life cycle approach to optimizing carbon footprint and costs of a residential building. Building and Environment, 2017, 123, 146-162.	3.0	74
298	Environmental impact comparison of a ventilated and a non-ventilated building-integrated photovoltaic rooftop design in the Netherlands: Electricity output, energy payback time, and land claim. Solar Energy, 2017, 155, 304-313.	2.9	11
299	Evaluation of green building rating tools based on existing green building achievement in Indonesia using Life Cycle Assessment Method. AIP Conference Proceedings, 2017, , .	0.3	5
300	Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 2017, 67, 811-825.	8.2	178
301	Critical factors of low-carbon building development in China's urban area. Journal of Cleaner Production, 2017, 142, 3075-3082.	4.6	65
302	Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 2017, 140, 1037-1048.	4.6	52
303	The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 2017, 68, 333-359.	8.2	721
304	Life cycle assessment in yacht industry: A case study of comparison between hand lay-up and vacuum infusion. Journal of Cleaner Production, 2017, 142, 3822-3833.	4.6	60
305	A nZEB housing structure derived from end of life containers: Energy, lighting and life cycle assessment. Building Simulation, 2017, 10, 165-181.	3.0	19
306	Potential life cycle energy savings through a transition from typical to energy plus households: A case study from Thailand. Energy and Buildings, 2017, 134, 295-305.	3.1	12
307	Building energy efficiency: A research branch made of paradoxes. Renewable and Sustainable Energy Reviews, 2017, 69, 1064-1076.	8.2	56
308	Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, 2017, 135, 286-301.	3.1	287

#	Article	IF	CITATIONS
309	Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 2017, 67, 408-416.	8.2	351
310	Operational Energy Comparison of Concrete and Foamed Geopolymer Based Housing Envelopes. , 2017, ,		0
311	Simulating total embodied energy of building products through BIM. , 2017, , .		2
313	Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China. Sustainability, 2017, 9, 292.	1.6	34
314	Sustainable Materialisation of Responsive Architecture. Sustainability, 2017, 9, 435.	1.6	54
315	Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 2017, 9, 1864.	1.6	55
316	Estimation and Minimization of Embodied Carbon of Buildings: A Review. Buildings, 2017, 7, 5.	1.4	114
317	Towards a Platform of Investigative Tools for Biomimicry as a New Approach for Energy-Efficient Building Design. Buildings, 2017, 7, 19.	1.4	21
318	China Building Energy Consumption: Definitions and Measures from an Operational Perspective. Energies, 2017, 10, 582.	1.6	15
319	The Effect of Embodied Impact on the Cost-Optimal Levels of Nearly Zero Energy Buildings: A Case Study of a Residential Building in Thessaloniki, Greece. Energies, 2017, 10, 740.	1.6	20
320	Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas. Energies, 2017, 10, 2158.	1.6	13
321	Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants. Water Intelligence Online, 2017, 16, 9781780406312.	0.3	9
322	Buildings Life Cycle Assessment. , 2017, , 275-290.		4
323	Life-Cycle Energy Assessment in Buildings: Framework, Approaches, and Case Studies. , 2017, , 113-136.		12
324	Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada. Sustainability, 2017, 9, 663.	1.6	2
325	The environmental impacts of foamed concrete production and exploitation. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012029.	0.3	12
326	Operational vs. Embodied Energy: a Case for Wood Construction. Drvna Industrija, 2017, 68, 163-172.	0.3	10
327	A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability, 2017, 9, 1426.	1.6	69

#	Article	IF	CITATIONS
328	Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate. Sustainability, 2017, 9, 1451.	1.6	29
329	Green and Gray: New Ideologies of Nature in Urban Sustainability Policy. Annals of the American Association of Geographers, 2018, 108, 1038-1056.	1.5	91
330	Life cycle energy of high-rise office buildings in Hong Kong. Energy and Buildings, 2018, 167, 152-164.	3.1	38
331	Energy savings through implementation of a multi-state Time Control Program (TCP) in demand-controlled ventilation of commercial buildings. Energy and Buildings, 2018, 164, 33-47.	3.1	6
332	Research and Applications of Data Mining Techniques for Improving Building Operational Performance. Current Sustainable/Renewable Energy Reports, 2018, 5, 181-188.	1.2	9
333	Fired-Clay Bricks Incorporating Biosolids: Comparative Life-Cycle Assessment. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	24
334	A framework for the integrated optimisation of the life cycle greenhouse gas emissions and cost of buildings. Energy and Buildings, 2018, 171, 155-167.	3.1	32
335	A BIM based tool for assessing embodied energy for buildings. Energy and Buildings, 2018, 170, 1-14.	3.1	97
336	Life cycle energy analysis of a metro station building envelope through computer based simulation. Sustainable Cities and Society, 2018, 39, 135-143.	5.1	11
337	Carbon and Cost Hotspots: An Embodied Carbon Management Approach During Early Stages of Design. , 2018, , 247-262.		2
338	Design options for an ageing New Zealand population: A life cycle energy (LCE) analysis. Energy and Buildings, 2018, 166, 1-22.	3.1	2
339	Building-information-modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. Journal of Cleaner Production, 2018, 183, 729-743.	4.6	149
340	Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering, 2018, 19, 139-156.	0.8	15
341	Roles of wind and solar energy in China's power sector: Implications of intermittency constraints. Applied Energy, 2018, 213, 22-30.	5.1	124
342	Embodied Carbon in Buildings. , 2018, , .		19
343	Analysing methodological choices in calculations of embodied energy and GHG emissions from buildings. Energy and Buildings, 2018, 158, 1487-1498.	3.1	61
344	Normalising and assessing carbon emissions in the building sector: A review on the embodied CO 2 emissions of residential buildings. Building and Environment, 2018, 130, 212-226.	3.0	134
345	The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 2018, 164, 14-20.	3.1	19

#	Article	IF	CITATIONS
346	Minimizing environmental impacts of timber products through the production process "From Sawmill to Final Products― Environmental Systems Research, 2018, 7, .	1.5	49
347	Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 2018, 139, 58-68.	3.0	99
348	Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 2018, 192, 411-420.	4.6	53
349	Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency. Renewable and Sustainable Energy Reviews, 2018, 90, 742-756.	8.2	92
350	German and Norwegian policy approach to residential buildings' energy efficiency—a comparative assessment. Energy Efficiency, 2018, 11, 1375-1395.	1.3	26
351	A hybrid life cycle assessment of embodied energy and carbon emissions from conventional and industrialised building systems in Malaysia. Energy and Buildings, 2018, 167, 253-268.	3.1	43
352	Life cycle assessment: a multi-scenario case study of a low-energy industrial building in Thailand. Energy and Buildings, 2018, 168, 191-200.	3.1	33
353	Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements. Energy and Buildings, 2018, 167, 301-311.	3.1	38
354	Teardown Index: Impact of property values on carbon dioxide emissions of single family housing in Vancouver. Energy and Buildings, 2018, 170, 95-106.	3.1	10
355	Aesthetic perception of photovoltaic integration within new proposals for ecological architecture. Sustainable Cities and Society, 2018, 39, 203-214.	5.1	48
356	Embodied energy of buildings: A review of data, methods, challenges, and research trends. Energy and Buildings, 2018, 168, 225-235.	3.1	127
357	Strategies for optimizing the environmental profile of dwellings in a Belgian context: A consequential versus an attributional approach. Journal of Cleaner Production, 2018, 173, 235-244.	4.6	21
358	Life Cycle Assessment of embodied and operational energy for a passive housing block in Austria. Renewable and Sustainable Energy Reviews, 2018, 82, 1774-1786.	8.2	39
359	Scrutinising embodied carbon in buildings: The next performance gap made manifest. Renewable and Sustainable Energy Reviews, 2018, 81, 2431-2442.	8.2	114
360	Abatement cost of embodied emissions of a residential building in Sweden. Energy and Buildings, 2018, 158, 595-604.	3.1	14
361	Recurrent carbon footprint assessment and forecasting for conventional housing in tropical regions: A Malaysian case study. Environmental Progress and Sustainable Energy, 2018, 37, 839-849.	1.3	1
362	LCA of Buildings and the Built Environment. , 2018, , 695-722.		12
363	The life cycle carbon footprint of refurbished and new buildings – A systematic review of case studies. Renewable and Sustainable Energy Reviews, 2018, 81, 231-241.	8.2	70

#	Article	IF	Citations
364	An attributional life cycle assessment for an Italian residential multifamily building. Environmental Technology (United Kingdom), 2018, 39, 3033-3045.	1.2	6
365	A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy and Buildings, 2018, 158, 1613-1624.	3.1	35
366	The potential for cool roofs to improve the energy efficiency of single storey warehouse-type retail buildings in Australia: A simulation case study. Energy and Buildings, 2018, 158, 1393-1403.	3.1	46
367	Environmental impacts reduction potential through a PV based transition from typical to energy plus houses in Thailand: A life cycle perspective. Sustainable Cities and Society, 2018, 37, 307-322.	5.1	8
368	An exploration of the relationship between improvements in energy efficiency and life-cycle energy and carbon emissions using the BIRDS low-energy residential database. Energy and Buildings, 2018, 160, 19-33.	3.1	35
369	A review on contemporary computational programs for Building's life-cycle energy consumption and greenhouse-gas emissions assessment: An empirical study in Australia. Journal of Cleaner Production, 2018, 172, 4220-4230.	4.6	37
370	Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review. Energy and Buildings, 2018, 159, 296-308.	3.1	146
371	Characterization and application of a natural polymer obtained from Hydrangea macrophylla as a thermal insulation biomaterial. Composites Part B: Engineering, 2018, 132, 10-16.	5.9	28
372	Carbon footprint of block prepared with recycled aggregate: a case study in China. IOP Conference Series: Materials Science and Engineering, 0, 431, 032009.	0.3	4
373	Comparison of the Applied Measures on the Simulated Scenarios for the Sustainable Building Construction through Carbon Footprint Emissions—Case Study of Building Construction in Serbia. Sustainability, 2018, 10, 4688.	1.6	4
374	Chapter 18 Re-Valuing Construction Materials and Components Through Design for Disassembly. , 2018, , 309-321.		8
375	An Investigation into the Role of the Building Structure on Energy Use & CO2 Emissions over the Life Cycle of a Medium-Rise Residential Building. IFAC-PapersOnLine, 2018, 51, 60-65.	0.5	6
376	A Structured Managerial Model for the Decision Making Process for Enhancing Building Sustainability in all Life Cycle Phases. Procedia, Social and Behavioral Sciences, 2018, 238, 442-451.	0.5	0
378	Multi-Objective Analysis for the Optimization of a High Performance Slab-on- Ground Floor in a Warm Climate. Energies, 2018, 11, 2988.	1.6	1
379	The embodied CO2e of sustainable energy technologies used in buildings: A review article. Energy and Buildings, 2018, 181, 50-61.	3.1	35
380	Recent Developments in Life Cycle Assessment and Service Life Prediction: A Review. , 2018, , .		2
382	Critical Success Factors (CSFs) for the Adaptive Reuse of Industrial Buildings in Hong Kong. International Journal of Environmental Research and Public Health, 2018, 15, 1546.	1.2	36
383	A PMV-PPD model based study of thermal comfort in Low-Income Group house in Chhattisgarh. MATEC Web of Conferences, 2018, 172, 06006.	0.1	5

#	Article	IF	CITATIONS
384	A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements. Sustainability, 2018, 10, 2748.	1.6	20
385	Sustainability metrics for commercial buildings in Sweden. Property Management, 2018, 36, 521-543.	0.4	4
386	Investigating the Relationship between Construction Supply Chain Integration and Sustainable Use of Material: Evidence from China. Sustainability, 2018, 10, 3581.	1.6	17
387	Proposed Model of Sustainable Construction Skills for Engineers in Chile. Sustainability, 2018, 10, 3093.	1.6	24
388	Life Cycle Thinking–Based Selection of Building Facades. Journal of Architectural Engineering, 2018, 24, .	0.8	16
389	Benchmarks for environmental impact of housing in Europe: Definition of archetypes and LCA of the residential building stock. Building and Environment, 2018, 145, 260-275.	3.0	107
390	Pathways toward zero-carbon electricity required for climate stabilization. Applied Energy, 2018, 225, 884-901.	5.1	47
391	Embodied life cycle assessment comparison of single family residential houses considering the 1970s transition in construction industry: Atlanta case study. Building and Environment, 2018, 140, 55-67.	3.0	13
392	Energy efficiency of residential buildings in the U.S.: Improvement potential beyond IECC. Building and Environment, 2018, 142, 278-287.	3.0	19
394	Comparing environmental burdens, economic costs and thermal resistance of different materials for exterior building walls. Journal of Cleaner Production, 2018, 197, 1508-1520.	4.6	19
395	Energy use and height in office buildings. Building Research and Information, 2018, 46, 845-863.	2.0	53
396	Life Cycle Energy and Carbon Analysis of Single Family Residential Buildings: Atlanta Case Study. , 2018, , .		1
397	Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings. Building and Environment, 2018, 143, 421-430.	3.0	65
398	Delving the environmental impact of roundwood production from poplar plantations. Science of the Total Environment, 2018, 645, 646-654.	3.9	7
399	Balanced Evaluation of Structural and Environmental Performances in Building Design. Buildings, 2018, 8, 52.	1.4	32
400	Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 2018, 196, 698-713.	4.6	48
401	Building Robust Housing Sector Policy Using the Ecological Footprint. Resources, 2018, 7, 24.	1.6	9
402	Benchmarking the Life-Cycle Environmental Performance of Buildings. Sustainability, 2018, 10, 1454.	1.6	19

#	Article	IF	CITATIONS
403	Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches. Sustainability, 2018, 10, 2020.	1.6	65
404	Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability, 2018, 10, 1359.	1.6	35
405	Life cycle assessment data structure for building information modelling. Journal of Cleaner Production, 2018, 199, 193-204.	4.6	42
406	The environmental and economic impact of structural optimization. Structural and Multidisciplinary Optimization, 2018, 58, 1751-1768.	1.7	33
407	Discovering gradual patterns in building operations for improving building energy efficiency. Applied Energy, 2018, 224, 116-123.	5.1	43
408	Techno-economic analysis of light weight concrete block development from polyisocyanurate foam waste. Resources, Conservation and Recycling, 2018, 138, 313-325.	5.3	10
409	Life cycle assessment of grocery, perishable, and general merchandise multi-facility distribution center networks. Energy and Buildings, 2018, 174, 388-401.	3.1	18
410	Life cycle analysis of strengthening concrete beams with FRP. , 2018, , 673-721.		19
411	BIM-based investigation of total energy consumption in delivering building products. Advanced Engineering Informatics, 2018, 38, 370-380.	4.0	19
412	Embodied Carbon and Cost Analysis to Identify the Most Appropriate Wall Materials for Buildings: Whole Life Cycle Approach. , 2018, , .		2
413	How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal of Cleaner Production, 2018, 201, 556-569.	4.6	151
414	Life cycle assessment (LCA) of double-skin façade (DSF) system with fiber-reinforced concrete for sustainable and energy-efficient buildings in the tropics. Building and Environment, 2018, 142, 327-341.	3.0	48
415	Data-Driven, Multi-metric, and Time-Varying (DMT) Building Energy Benchmarking Using Smart Meter Data. Lecture Notes in Computer Science, 2018, , 568-593.	1.0	10
416	Life cycle energy analysis of a low-cost house in India. International Journal of Construction Education and Research, 2019, 15, 256-275.	1.1	14
417	Systematic embodied carbon assessment and reduction of prefabricated high-rise public residential buildings in Hong Kong. Journal of Cleaner Production, 2019, 238, 117791.	4.6	62
418	"Deconstruction programming for adaptive reuse of buildings― Automation in Construction, 2019, 107, 102921.	4.8	45
419	Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study. Building and Environment, 2019, 163, 106332.	3.0	39
420	Life cycle energy assessment of university buildings in tropical climate. Journal of Cleaner Production, 2019, 239, 117930.	4.6	22

#	Article	IF	Citations
421	Regionalized inventory data in LCA of public housing: A comparison between two conventional typologies in southern Brazil. Journal of Cleaner Production, 2019, 238, 117869.	4.6	30
422	An Overview of Climate Change and Building Energy: Performance, Responses and Uncertainties. Buildings, 2019, 9, 166.	1.4	21
423	A review of life cycle assessment of buildings using a systematic approach. Building and Environment, 2019, 162, 106290.	3.0	148
424	Bio-Waste Thermal Insulation Panel for Sustainable Building Construction in Steady and Unsteady-State Conditions. Materials, 2019, 12, 2004.	1.3	13
425	Analysis and benchmarking of carbon emissions of commercial buildings. Energy and Buildings, 2019, 199, 445-454.	3.1	17
426	Comparison of regression models for estimation of carbon emissions during building's lifecycle using designing factors: a case study of residential buildings in Tianjin, China. Energy and Buildings, 2019, 204, 109519.	3.1	30
427	Life Cycle Energy Assessment of a School Building under Envelope Retrofit: An Approach towards Environmental Impact Reduction. E3S Web of Conferences, 2019, 111, 03028.	0.2	2
428	Climate change impact on energy balance of net-zero energy buildings in typical climate regions of China. E3S Web of Conferences, 2019, 111, 04004.	0.2	0
429	Evaluation of low-impact modular housing using energy optimization and life cycle analysis. Energy, Ecology and Environment, 2019, 4, 286-299.	1.9	9
430	A review of the limitations of life cycle energy analysis for the design of fabric first low-energy domestic retrofits. Energy and Buildings, 2019, 203, 109447.	3.1	14
431	Roles of the reference service life (RSL) of buildings and the RSL of building components in the environmental impacts of buildings. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012146.	0.2	5
432	Strategies for Simultaneous Embodied Energy and Operational Energy Reductions in Buildings during the Design Stage. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012063.	0.2	1
433	Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 2019, 150, 104410.	5.3	30
434	Explaining Spatial Variations in Residential Energy Usage Intensity in Chicago: The Role of Urban Form and Geomorphometry. Journal of Planning Education and Research, 2023, 43, 317-331.	1.5	12
435	Materials life cycle assessment of a living building. Procedia CIRP, 2019, 80, 458-463.	1.0	13
436	Environmental and economic implications of energy efficiency in new residential buildings: A multi-criteria selection approach. Energy Strategy Reviews, 2019, 26, 100412.	3.3	42
437	Scientometric of Nearly Zero Energy Building Research: A Systematic Review from the Perspective of Co-Citation Analysis. Journal of Thermal Science, 2019, 28, 1104-1114.	0.9	5
438	Data- and stakeholder management framework for the implementation of BIM-based Material Passports. Journal of Building Engineering, 2019, 23, 341-350.	1.6	54

#	Article	IF	CITATIONS
439	Assessment of the Life Cycle Energy Efficiency of a Primary School Building in Turkey. Applied Mechanics and Materials, 0, 887, 335-343.	0.2	1
440	The effect of standardization of industries on life cycle embodied energy of residential buildings in Iran. Energy Efficiency, 2019, 12, 1529-1545.	1.3	4
441	Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. Journal of Cleaner Production, 2019, 217, 787-797.	4.6	92
442	Life Cycle Energy Consumption of Buildings; Embodied + Operational. , 2019, , 123-144.		16
443	Exploring the pathway from zero-energy to zero-emission building solutions: A case study of a Norwegian office building. Energy and Buildings, 2019, 188-189, 84-97.	3.1	55
444	Characterizing Flexoelectricity in Composite Material Using the Element-Free Galerkin Method. Energies, 2019, 12, 271.	1.6	13
445	Optimizing the energy consumption in a residential building at different climate zones: Towards sustainable decision making. Journal of Cleaner Production, 2019, 233, 634-649.	4.6	35
446	Barriers to "green operation―of commercial office buildings. Facilities, 2019, 37, 1048-1065.	0.8	17
447	Comparison of solar thermal and solar electric space heating and cooling systems for buildings in different climatic regions. Solar Energy, 2019, 188, 545-560.	2.9	54
448	Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 2019, 161, 106218.	3.0	80
449	Comparative assessment of insulated concrete wall technologies and wood-frame walls in residential buildings: a multi-criteria analysis of hygrothermal performance, cost, and environmental footprints. Advances in Building Energy Research, 2021, 15, 466-498.	1.1	11
450	Digital Concrete: A Review. Cement and Concrete Research, 2019, 123, 105780.	4.6	310
451	Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Applied Energy, 2019, 250, 1366-1382.	5.1	123
452	Mass flow controlled district heating with an extract air heat pump in apartment buildings: A practical concept study. Applied Thermal Engineering, 2019, 157, 113745.	3.0	7
453	Life cycle assessment of a wooden single-family house in Sweden. Applied Energy, 2019, 251, 113253.	5.1	64
454	Estimating city-level energy consumption of residential buildings: A life-cycle dynamic simulation model. Journal of Environmental Management, 2019, 240, 451-462.	3.8	29
455	Conducting Life Cycle Assessments (LCAs) to Determine Carbon Payback: A Case Study of a Highly Energy-Efficient House in Rural Alaska. Energies, 2019, 12, 1732.	1.6	9
456	Continuous-time Bayesian calibration of energy models using BIM and energy data. Energy and Buildings, 2019, 194, 177-190.	3.1	42

#	Article	IF	CITATIONS
457	Operational carbon footprint prediction model for conventional tropical housing: a Malaysian prospective. International Journal of Environmental Science and Technology, 2019, 16, 7817-7826.	1.8	17
459	Earthen Dwellings and Structures. Springer Transactions in Civil and Environmental Engineering, 2019, , .	0.3	13
460	Gate-controlled VO ₂ phase transition for high-performance smart windows. Science Advances, 2019, 5, eaav6815.	4.7	160
461	Assessment of Energy Saving Potential by Replacing Conventional Materials by Cross Laminated Timber (CLT)—A Case Study of Office Buildings in China. Applied Sciences (Switzerland), 2019, 9, 858.	1.3	17
462	Cradle-to-Site Carbon Emissions Assessment of Prefabricated Rebar Cages for High-Rise Buildings in China. Sustainability, 2019, 11, 42.	1.6	12
463	Challenges in, and the development of, building energy saving techniques, illustrated with the example of an air source heat pump. Thermal Science and Engineering Progress, 2019, 10, 337-356.	1.3	54
464	Environmental assessment of cost optimized structural systems in tall buildings. Journal of Building Engineering, 2019, 24, 100730.	1.6	27
465	Indoor Air Quality Regulation Through the Usage of Eco-Efficient Plasters. Springer Transactions in Civil and Environmental Engineering, 2019, , 383-394.	0.3	0
466	Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 2019, 14, 043004.	2.2	225
467	Scenario and Strategy towards Energy Efficiency in Malaysia: A Review. MATEC Web of Conferences, 2019, 266, 02012.	0.1	5
468	Challenges in evaluating strategies for reducing a building's environmental impact through Integrated Design. Building and Environment, 2019, 155, 34-46.	3.0	32
469	A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia. Journal of Cleaner Production, 2019, 225, 541-553.	4.6	98
470	Changing significance of embodied energy: A comparative study of material specifications and building energy sources. Journal of Building Engineering, 2019, 23, 324-333.	1.6	41
471	Estimating the diffusion of rooftop PVs: A real estate economics perspective. Energy, 2019, 172, 1087-1097.	4.5	24
472	Deep learning-based feature engineering methods for improved building energy prediction. Applied Energy, 2019, 240, 35-45.	5.1	180
473	A multi-criteria lifecycle assessment framework for evaluating building systems design. Journal of Building Engineering, 2019, 23, 388-402.	1.6	13
474	Revisiting the role of professionals in designing buildings with low embodied and operational energy. Built Environment Project and Asset Management, 2019, 10, 110-123.	0.9	2
475	Biodesign as an innovative tool to decrease construction induced carbon emissions in the environment. International Journal of Clobal Warming, 2019, 19, 127.	0.2	4

#	Article	IF	CITATIONS
476	Significance of whole life embodied energy and embodied carbon of wall materials compared to their initial/maintenance costs. International Journal of Construction Management, 2019, , 1-14.	2.2	2
477	Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study. Materials, 2019, 12, 3194.	1.3	41
478	The Environmental Consequences Concerning the Use of Timber in the Built Environment. Frontiers in Built Environment, 2019, 5, .	1.2	21
479	Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects. Sustainability, 2019, 11, 6274.	1.6	59
480	Assessment of deep recurrent neural network-based strategies for short-term building energy predictions. Applied Energy, 2019, 236, 700-710.	5.1	220
481	LCA modelling for Zero Emission Neighbourhoods in early stage planning. Building and Environment, 2019, 149, 379-389.	3.0	48
482	A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning. Applied Energy, 2019, 235, 1551-1560.	5.1	103
483	Building Envelope. , 2019, , 295-439.		6
484	BIM-based energy consumption assessment of the on-site construction of building structural systems. Built Environment Project and Asset Management, 2019, 9, 2-14.	0.9	14
485	Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 14-25.	8.2	115
486	Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 2019, 210, 1496-1506.	4.6	63
487	Case study of the upgrade of an existing office building for low energy consumption and low carbon emissions. Energy and Buildings, 2019, 183, 151-160.	3.1	47
488	Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighbourhood dwellings. Journal of Building Engineering, 2019, 21, 158-172.	1.6	27
489	Ecological Footprint Reduction of Building Envelope in a Tropical Climate. Journal of the Institution of Engineers (India): Series A, 2019, 100, 41-48.	0.6	5
490	A production line-based carbon emission assessment model for prefabricated components in China. Journal of Cleaner Production, 2019, 209, 30-39.	4.6	60
491	Ecological footprint reduction of built envelope in India. Journal of Building Engineering, 2019, 21, 278-286.	1.6	12
492	Life Cycle Ecological Footprint Assessment of an Academic Building. Journal of the Institution of Engineers (India): Series A, 2019, 100, 97-110.	0.6	18
493	Energy or carbon? Exploring the relative size of universal zero carbon and zero energy design spaces. Building Services Engineering Research and Technology, 2019, 40, 319-339.	0.9	7

#	Article	IF	CITATIONS
494	Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 2019, 101, 329-345.	8.2	215
495	Smart Materials Selection for Thermal Energy Efficient Architecture. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2019, 89, 11-21.	0.8	5
496	Tracking Construction Material over Space and Time: Prospective and Geoâ€referenced Modeling of Building Stocks and Construction Material Flows. Journal of Industrial Ecology, 2019, 23, 253-267.	2.8	111
497	Embodied and operational energy of rural dwellings in India. International Journal of Sustainable Energy, 2019, 38, 227-237.	1.3	7
498	Life Cycle Assessment in Buildings: An Overview of Methodological Approach. , 2020, , 462-475.		0
499	Interaction of life-cycle phases in a probabilistic life-cycle framework for civil infrastructure system sustainability. Sustainable and Resilient Infrastructure, 2020, 5, 289-310.	1.7	9
500	A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs). Sustainable Cities and Society, 2020, 52, 101869.	5.1	142
501	Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame. Journal of Cleaner Production, 2020, 242, 118567.	4.6	16
502	Embodied Carbon Reduction Strategies for Buildings. Lecture Notes in Civil Engineering, 2020, , 295-308.	0.3	6
503	Using Construction and Demolition Waste Materials as Construction Materials for a New Building. , 2020, , 330-344.		1
504	A study of life cycle assessment in two old neighbourhoods in Belgium. Sustainable Cities and Society, 2020, 52, 101744.	5.1	8
505	Data-Driven Modeling for Sustainable Engineering. Lecture Notes in Networks and Systems, 2020, , .	0.5	0
506	A Framework for Integrating Sustainability Estimation with Concepts of Rules of Building Measurement. Lecture Notes in Networks and Systems, 2020, , 175-185.	0.5	0
507	Carbon Footprints. Environmental Footprints and Eco-design of Products and Processes, 2020, , .	0.7	3
508	Software for Calculation of Carbon Footprint for Residential Buildings. Environmental Footprints and Eco-design of Products and Processes, 2020, , 55-79.	0.7	3
509	Review on carbon emissions of commercial buildings. Renewable and Sustainable Energy Reviews, 2020, 119, 109545.	8.2	78
510	Comparative life cycle analysis of façade passive systems in the Mediterranean: Comfort, energy, and carbon. Renewable Energy, 2020, 149, 347-360.	4.3	2
511	The role of cement service-life on the efficient use of resources. Environmental Research Letters, 2020, 15, 024004.	2.2	28

#	Article	IF	CITATIONS
512	Embodied energy data implications for optimal specification of building envelopes. Building Research and Information, 2020, 48, 429-445.	2.0	22
513	Assessment of absolute environmental sustainability in the built environment. Building and Environment, 2020, 171, 106633.	3.0	36
514	Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends. Sustainability, 2020, 12, 351.	1.6	20
515	Simulation platform of human-environment systems for water environment carrying capacity research. Journal of Cleaner Production, 2020, 250, 119577.	4.6	14
516	Life cycle energy assessment and economic feasibility of stormwater harvested from pervious pavements. Water Research, 2020, 170, 115322.	5.3	17
517	Life-cycle environmental assessment of energy-retrofit strategies on a campus scale. Building Research and Information, 2020, 48, 659-680.	2.0	16
518	Dynamic life cycle assessment modelling of a NZEB building. Energy, 2020, 191, 116489.	4.5	58
519	Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 2020, 258, 114107.	5.1	457
520	A practical fractional numerical optimization method for designing economically and environmentally friendly super-tall buildings. Applied Mathematical Modelling, 2020, 79, 934-953.	2.2	4
521	Uncertainty Analysis of Life Cycle Energy Assessment in Early Stages of Design. Energy and Buildings, 2020, 208, 109635.	3.1	25
522	Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 2020, 209, 109968.	2.6	15
523	Are Short Food Supply Chains More Environmentally Sustainable than Long Chains? A Life Cycle Assessment (LCA) of the Eco-Efficiency of Food Chains in Selected EU Countries. Energies, 2020, 13, 4853.	1.6	39
524	A simulation-based investigation of sustainability aspects of 3D printed structures. Journal of Building Engineering, 2020, 32, 101735.	1.6	10
525	Generalized additive models: An efficient method for short-term energy prediction in office buildings. Energy, 2020, 213, 118834.	4.5	19
526	Carbon reduction strategies for the built environment in a tropical city. , 2020, , 145-162.		1
527	Assessing the impact of resource efficiency on selected case studies in Ireland. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2020, 173, 107-118.	0.9	2
528	Wood buildings as a climate solution. Developments in the Built Environment, 2020, 4, 100030.	2.0	39
529	A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. Energy and Buildings, 2020, 225, 110323.	3.1	80

#	Article	IF	CITATIONS
530	Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach. Energies, 2020, 13, 3298.	1.6	6
531	Internationalization trends of carbon emission linkages: A case study on the construction sector. Journal of Cleaner Production, 2020, 270, 122433.	4.6	28
532	Embodied energy and life-cycle greenhouse gas of conventional and the resilient nest house. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012034.	0.2	0
533	Potential of the Residual Fibers of Pisum Sativum (PS), for use in a Development of a Thermal Insulator Material. IOP Conference Series: Earth and Environmental Science, 2020, 503, 012084.	0.2	3
534	BIM and LCA Integration: A Systematic Literature Review. Sustainability, 2020, 12, 5534.	1.6	93
535	A Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings. Sustainability, 2020, 12, 5730.	1.6	14
536	Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete. Materials Today: Proceedings, 2020, 31, 354-359.	0.9	17
537	Housing, health and energy: a characterisation of risks and priorities across Delhi's diverse settlements. Cities and Health, 2021, 5, 298-319.	1.6	2
538	A new method for calculating the embodied carbon emissions from buildings in schematic design: Taking "building element―as basic unit. Building and Environment, 2020, 185, 107306.	3.0	40
539	Performance-Based Building Design of High-Rise Residential Buildings in Indonesia. Sustainability, 2020, 12, 7103.	1.6	8
540	Advances Toward a Net-Zero Global Building Sector. Annual Review of Environment and Resources, 2020, 45, 227-269.	5.6	86
541	Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool. Sustainability, 2020, 12, 6745.	1.6	12
542	A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019. Renewable and Sustainable Energy Reviews, 2020, 134, 110372.	8.2	35
543	Developing a building performance score model for assessing the sustainability of buildings. Smart and Sustainable Built Environment, 2022, 11, 143-161.	2.2	8
544	Using The Glass and Rubber waste as Sustainable Materials to Prepare Foamed Concrete with Improved Properties. IOP Conference Series: Materials Science and Engineering, 2020, 881, 012188.	0.3	2
545	The effect of awareness, knowledge and cost on intention to adopt green building practices. International Journal of Environment and Sustainable Development, 2020, 19, 33.	0.2	6
546	The challenge of integrating Life Cycle Assessment in the building design process – a systematic literature review of BIM-LCA workflows. IOP Conference Series: Earth and Environmental Science, 2020, 588, 032024.	0.2	8
547	Literature Review on Energy Consumption in Road Construction Projects. Journal of Physics: Conference Series, 2020, 1625, 012034.	0.3	1

#	Article	IF	CITATIONS
548	Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study. Energies, 2020, 13, 6228.	1.6	9
549	Carnegie Libraries of Britain: Assets or Liabilities? Managing Altering Agendas of Energy Efficiency for Early 20th Century Heritage. Public Library Quarterly, 2022, 41, 43-82.	0.9	1
550	Embodied and Operational Energy Analysis of Passive House–Inspired High-Performance Residential Building Envelopes. Journal of Architectural Engineering, 2020, 26, .	0.8	15
551	A conceptual tool for environmentally benign design: development and evaluation of a "proof of concept― Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2020, 34, 30-44.	0.7	6
552	Two decades of eco-efficiency research: a bibliometric analysis. Environmental Sustainability, 2020, 3, 155-168.	1.4	7
553	A modelling framework for the diffusion of low carbon energy performance contracts. Energy Efficiency, 2020, 13, 767-788.	1.3	4
554	Development of building driven-energy payback time for energy transition of building with renewable energy systems. Applied Energy, 2020, 271, 115162.	5.1	21
555	Embodied and operational energy and carbon emissions of passive building in HSCW zone in China: A case study. Energy and Buildings, 2020, 222, 110090.	3.1	37
556	Visualizing the research of embodied energy and environmental impact research in the building and construction field: A bibliometric analysis. Developments in the Built Environment, 2020, 3, 100010.	2.0	20
557	On mass quantities of gravity frames in building structures. Journal of Building Engineering, 2020, 31, 101426.	1.6	8
558	Comparative study of embodied energy of affordable houses made using GFRG and conventional building technologies in India. Energy and Buildings, 2020, 223, 110138.	3.1	21
559	Evaluating the use of polymers in residential buildings: Case study of a single storey detached house in New Zealand. Journal of Building Engineering, 2020, 32, 101517.	1.6	7
560	Integration of life cycle cost analysis and energy simulation for building energy-efficient strategies assessment. Sustainable Cities and Society, 2020, 61, 102293.	5.1	55
561	Life Cycle Assessment of Community-Based Sewer Mining: Integrated Heat Recovery and Fit-For-Purpose Water Reuse. Environments - MDPI, 2020, 7, 36.	1.5	5
562	Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland. Sustainability, 2020, 12, 5041.	1.6	21
563	Embodied Energy Optimization of Steel-Concrete Composite Beams using a Genetic Algorithm. Procedia Manufacturing, 2020, 44, 417-424.	1.9	6
564	Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach. Sustainability, 2020, 12, 3914.	1.6	7
565	Evaluation Model and Strategy for Selecting Carbon Reduction Technology for Campus Buildings in Primary and Middle Schools in the Yangtze River Delta Region, China. Sustainability, 2020, 12, 534.	1.6	1

#	ARTICLE	IF	Citations
566	Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China. Sustainability, 2020, 12, 1566.	1.6	21
567	Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy and Buildings, 2020, 219, 109917.	3.1	101
568	Decision Support Systems in Construction: A Bibliometric Analysis. Buildings, 2020, 10, 108.	1.4	17
569	Towards Sustainable Neighborhoods in Europe: Mitigating 12 Environmental Impacts by Successively Applying 8 Scenarios. Atmosphere, 2020, 11, 603.	1.0	5
570	Assessment of energy and emission performance of a green scientific research building in Beijing, China. Energy and Buildings, 2020, 224, 110248.	3.1	13
571	Integrating embodied impact into the context of EPBD recast: An assessment on the cost-optimal levels of nZEBs. Energy and Buildings, 2020, 215, 109863.	3.1	18
572	Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse. Renewable Energy, 2020, 156, 696-709.	4.3	28
573	Comparative study of measurement and verification (M&V) baseline models for quantifying energy savings in building renovations. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012057.	0.2	2
574	Evaluation of the Environmental Performance of Residential Building Envelope Components. Energies, 2020, 13, 174.	1.6	17
575	Multi-objective interior design optimization method based on sustainability concepts for post-disaster temporary housing units. Building and Environment, 2020, 173, 106742.	3.0	26
576	Modular approach to multi-objective environmental optimization of buildings. Automation in Construction, 2020, 111, 103044.	4.8	88
577	Quantitative approach for evaluating the building design features impact on cooling energy consumption in hot climates. Energy and Buildings, 2020, 211, 109802.	3.1	26
578	Life cycle energy minimization of autonomous buildings. Journal of Building Engineering, 2020, 30, 101229.	1.6	16
579	Life cycle embodied energy analysis of RC structures considering chloride-induced corrosion in seismic regions. Structures, 2020, 25, 839-848.	1.7	6
580	Life Cycle Environmental and Cost Performance of Prefabricated Buildings. Sustainability, 2020, 12, 2609.	1.6	42
581	Assessment on Embodied Energy of Non-Load Bearing Walls for Office Buildings. Buildings, 2020, 10, 79.	1.4	6
582	A Feasibility Analysis of The Refurbishment Investments in The Italian Residential Market. Sustainability, 2020, 12, 2503.	1.6	13
583	Quantification of Greenhouse Gas Emissions from Wood-Plastic Recycled Composite (WPRC) and Verification of the Effect of Reducing Emissions through Multiple Recycling. Sustainability, 2020, 12, 2449.	1.6	3

#	Article	IF	CITATIONS
584	Embodied and Operational CO2 Emissions of the Elementary School Buildings in Different Climate Zones. KSCE Journal of Civil Engineering, 2020, 24, 1037-1048.	0.9	6
585	Assessing energy and emissions savings for space conditioning, materials and transportation for a high-density mixed-use building. Journal of Building Engineering, 2020, 31, 101386.	1.6	6
586	Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 2020, 12, 2767.	1.6	31
587	Genetic Algorithm for Embodied Energy Optimisation of Steel-Concrete Composite Beams. Sustainability, 2020, 12, 3102.	1.6	8
588	Explore the application of reinforced learning to support decision making during the design phase in the construction industry. Procedia Manufacturing, 2020, 42, 181-187.	1.9	4
589	Sustainable and affordable prefab housing systems with minimal whole life energy use. Energy and Buildings, 2020, 220, 110030.	3.1	13
590	Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 2020, 266, 114848.	5.1	427
591	Assessment of the global warming potential associated with the construction process of healthcare centres. Journal of Building Physics, 2021, 44, 309-325.	1.2	5
592	Sustainability and wood constructions: a review of green building rating systems and life-cycle assessment methods from a South African and developing world perspective. Advances in Building Energy Research, 2021, 15, 67-86.	1.1	7
593	Are green cities sustainable? A degrowth critique of sustainable urban development in Copenhagen. European Planning Studies, 2021, 29, 1272-1289.	1.6	25
594	Building information modelling application for developing sustainable building (Multi criteria) Tj ETQq0 0 0 rgBT /	Oyerlock I	10,Tf 50 342
595	Circularity indicator for residential buildings: Addressing the gap between embodied impacts and design aspects. Resources, Conservation and Recycling, 2021, 164, 105120.	5.3	69
596	The interaction between humans and buildings for energy efficiency: A critical review. Energy Research and Social Science, 2021, 71, 101828.	3.0	92
597	Measurement of embodied carbon and energy of HVAC facilities in healthcare centers. Journal of Cleaner Production, 2021, 289, 125151.	4.6	20
599	What leads to variations in the results of life-cycle energy assessment? An evidence-based framework for residential buildings. Energy and Built Environment, 2021, 2, 392-405.	2.9	18
600	An Index of Completeness (IoC) of life cycle assessment: Implementation in the building sector. Journal of Cleaner Production, 2021, 283, 124672.	4.6	7
601	Influencing Factors of Energy Consumption in Construction: Contractorâ \in Ms Perspectives. , 2021, , .		0
602	Progress in sustainable structural engineering: a review. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	9

#	Article	IF	CITATIONS
603	Application of life cycle carbon assessment for a sustainable building design: a case study in the UK. International Journal of Green Energy, 2021, 18, 351-362.	2.1	13
604	Life Cycle Assessment of a Residential Building During Planning Stage to Forecast Its Environmental Impact. International Journal of Social Ecology and Sustainable Development, 2021, 12, 131-149.	0.1	2
605	Ecological Footprint of the Life Cycle of Buildings. Environmental Footprints and Eco-design of Products and Processes, 2021, , 1-39.	0.7	3
606	Life Cycle Energy Analysis of Vertical Greenery System (VGS) in Tropical Climate. , 2021, , 1785-1799.		0
607	Life Cycle Thinking and Environmental Assessment of Energy Systems from Supply and Demand Perspectives. Green Energy and Technology, 2021, , 107-126.	0.4	1
608	On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues. Energies, 2021, 14, 1276.	1.6	11
609	Embodied Energy Optimization of Buttressed Earth-Retaining Walls with Hybrid Simulated Annealing. Applied Sciences (Switzerland), 2021, 11, 1800.	1.3	15
610	Adaptive reuse in neglected industrial buildings (Industrial buildings in the Iraqi Ministry of Oil). Journal of Physics: Conference Series, 2021, 1773, 012040.	0.3	0
611	LCA and scenario analysis of a Norwegian net-zero GHG emission neighbourhood: The importance of mobility and surplus energy from PV technologies. Building and Environment, 2021, 189, 107528.	3.0	33
612	Quantifying energy consumptioneandogreenhouse gass emissions of construction projects: A case study of Semarang -Bawen road project. IOP Conference Series: Materials Science and Engineering, 2021, 1072, 012070.	0.3	0
613	Polystyrene Waste in Panels for Thermal Retrofitting of Historical Buildings: Experimental Study. Energies, 2021, 14, 1844.	1.6	2
614	A decision support tool for building design: An integrated generative design, optimisation and life cycle performance approach. International Journal of Architectural Computing, 2021, 19, 401-430.	0.9	10
615	A LCA-based Optimization Method of Green Ecological Building Envelopes: A Case Study in China. IOP Conference Series: Earth and Environmental Science, 2021, 696, 012023.	0.2	2
616	An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. Journal of Cleaner Production, 2021, 289, 125622.	4.6	67
617	Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives. Sustainability, 2021, 13, 3401.	1.6	26
618	Assessing the life cycle study of alternative earth-retaining walls from an environmental and economic viewpoint. Environmental Science and Pollution Research, 2021, 28, 37387-37399.	2.7	5
619	A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 2021, 9, .	1.2	105
620	Sustainability in the construction industry: A systematic review of the literature. Journal of Cleaner Production, 2021, 289, 125730.	4.6	108

#	Article	IF	CITATIONS
621	STUDY OF EMBODIED ENERGY IN HEALTHCARE CENTER CONSTRUCTION. Journal of Civil Engineering and Management, 2021, 27, 260-267.	1.9	2
622	The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Current Opinion in Environmental Sustainability, 2021, 49, 164-189.	3.1	49
623	Rethinking the concept of building energy rating system in Australia: a pathway to life-cycle net-zero energy building design. Architectural Science Review, 2022, 65, 42-56.	1.1	13
624	Developing an Energy Benchmark for Residential Buildings in Jordan. , 2021, , .		5
625	Economic vs environmental isocost and isoperformance curves for the seismic and energy improvement of buildings considering Life Cycle Assessment. Engineering Structures, 2021, 233, 111923.	2.6	15
626	Life cycle energy (LCE) on project life cycle (PLC): a literature review. IOP Conference Series: Earth and Environmental Science, 2021, 724, 012057.	0.2	0
627	CIB - UTILITY BASED SYSTEMS FRAMEWORK FOR EXISTING RESIDENTIAL BUILDING. Journal of Asian Architecture and Building Engineering, 2022, 21, 755-765.	1.2	1
628	Water, energy, and carbon dioxide footprints of the construction sector: A case study on developed and developing economies. Water Research, 2021, 194, 116935.	5.3	35
629	Sustainable Building Design: Energy Analysis of a Residential Building using AutodeskRevit. , 2021, , .		12
630	Contribution of energy efficiency standards to life-cycle carbon footprint reduction in public buildings in Chile. Energy and Buildings, 2021, 236, 110797.	3.1	23
631	Implementing Circular Economy Strategies in Buildings—From Theory to Practice. Applied System Innovation, 2021, 4, 26.	2.7	39
632	Assessment of setting characteristics, water absorption, thermal performance and compressive strength of energy-efficient phase change material (PCM)–ashcrete blocks. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	4
633	Aplicação da metodologia de avaliação do ciclo de vida energético a uma residência em Belém-PA. Paranoá: Cadernos De Arquitetura E Urbanismo, 2021, , .	0.1	0
634	A Comprehensive Framework for Standardising System Boundary Definition in Life Cycle Energy Assessments. Buildings, 2021, 11, 230.	1.4	11
635	Embodied Energy Analysis of Building Materials in Thailand: The Quantification and Guideline using Input-Output Analysis Method. , 2021, , .		0
636	The impact of thermal mass and insulation of building structure on energy efficiency. Energy and Buildings, 2021, 241, 110954.	3.1	22
637	Embodied Energy and Embodied GWP of Windows: A Critical Review. Energies, 2021, 14, 3788.	1.6	14
638	Design and feasibility analysis of a solar PV array installation during the construction of high-rise residential buildings. Journal of Energy Systems, 0, , 60-79.	0.8	1

#	Article	IF	CITATIONS
639	Embodied Energy and Embodied Carbon Consumption Analysis of 36-Type Simple House Building Materials. Teknik, 2021, 42, 160-168.	0.1	1
640	Component-level embodied carbon database for landscape hard works in Taiwan. Environment, Development and Sustainability, 2022, 24, 4918-4941.	2.7	3
641	Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden. Renewable and Sustainable Energy Reviews, 2021, 145, 111077.	8.2	29
642	Energy Efficiency Strategies in the Social Housing Sector: Dynamic Considerations and Policies. Journal of Management in Engineering - ASCE, 2021, 37, .	2.6	11
643	Integration of Emergy Analysis with Building Information Modeling. Sustainability, 2021, 13, 7990.	1.6	16
644	EVALUATION OF COST-OPTIMAL RETROFIT INVESTMENT IN BUILDINGS: THE CASE OF BRAGANÇA FIRE STATION, PORTUGAL. International Journal of Strategic Property Management, 2021, 25, 369-381.	0.8	4
645	The life cycle impact of refurbishment packages on residential buildings with different initial thermal conditions. Journal of Housing and the Built Environment, 0, , 1.	0.9	1
646	Comparative Life Cycle Analysis of Concrete and Composite Bridges Varying Steel Recycling Ratio. Materials, 2021, 14, 4218.	1.3	10
647	A review on zero energy buildings – Pros and cons. Energy and Built Environment, 2023, 4, 25-38.	2.9	46
648	Environmental life cycle assessment based on the retrofitting of a twentieth-century heritage building in Spain, with electricity decarbonization scenarios. Building Research and Information, 2021, 49, 859-877.	2.0	3
649	Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies. Renewable and Sustainable Energy Reviews, 2021, 144, 110957.	8.2	31
650	Framework for Assessing Urban Energy Sustainability. Sustainability, 2021, 13, 9306.	1.6	2
651	Embodied Carbon in Construction and Its Ecological Implications. , 2022, , 275-295.		1
652	Are low-income mass housing envelops energy efficient and comfortable? A multi-objective evaluation in warm-humid climate. Energy and Buildings, 2021, 245, 111055.	3.1	14
654	Net zero energy barns for industrial egg production: An effective sustainable intensification strategy?. Journal of Cleaner Production, 2021, 316, 128014.	4.6	8
655	An Integrated Method to Evaluate Sustainability for Vulnerable Buildings Addressing Life Cycle Embodied Impacts and Resource Use. Sustainability, 2021, 13, 10204.	1.6	2
656	The impacts of restoration and reconstruction of a heritage building on life cycle energy consumption and related carbon dioxide emissions. Energy and Buildings, 2021, 253, 111507.	3.1	22
657	Reduction of Embodied Energy and Construction Cost of Affordable Houses through Efficient Architectural Design: A Case Study in Indian Scenario. Advances in Civil Engineering, 2021, 2021, 1-11.	0.4	5

	Сітаті	on Report	
#	Article	IF	CITATIONS
658	The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
659	Comprehensive parameters for the definition of nearly zero energy and cost optimal levels considering the life cycle energy and thermal comfort of school buildings. Energy and Buildings, 2021, 253, 111487.	3.1	11
660	Relational pre-impact assessment of conventional housing features and carbon footprint for achieving sustainable built environment. Environment, Development and Sustainability, 0, , 1.	2.7	1
661	Environmental considerations for structural design of flat plate buildings – Significance of and interrelation between different design variables. Journal of Cleaner Production, 2021, 315, 128123.	4.6	6
662	A comparative life cycle assessment between green walls and green facades in the Mediterranean continental climate. Energy and Buildings, 2021, 249, 111236.	3.1	19
663	Mapping the scientific research of the life cycle assessment in the construction industry: A scientometric analysis. Building and Environment, 2021, 204, 108086.	3.0	21
664	A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Building and Environment, 2021, 204, 108162.	3.0	32
665	Calculation method and model of carbon sequestration by urban buildings: An example from Shenyang. Journal of Cleaner Production, 2021, 317, 128450.	4.6	7
666	Embodied carbon in commercial office buildings: Lessons learned from Sri Lanka. Journal of Building Engineering, 2021, 42, 102441.	1.6	5
667	Time, Cost, and Energy Consumption Analysis on Construction Optimization in High-Rise Buildings. Journal of Construction Engineering and Management - ASCE, 2021, 147, .	2.0	6
668	Adopting an integrated building energy simulation and life cycle assessment framework for the optimisation of facades and fenestration in building envelopes. Journal of Building Engineering, 2021, 43, 103138.	1.6	13
669	A framework for a multi-source, data-driven building energy management toolkit. Energy and Buildings, 2021, 250, 111255.	3.1	10
670	Regional variation of greenhouse gas mitigation strategies for the United States building sector. Applied Energy, 2021, 302, 117527.	5.1	12
671	A life cycle study of insulation in a case study building with a focus on the effect of the national energy profile. Journal of Building Engineering, 2021, 43, 103178.	1.6	5
672	Transfer learning-based strategies for fault diagnosis in building energy systems. Energy and Buildings, 2021, 250, 111256.	3.1	61
673	Life cycle cost and life cycle energy in zero-energy building by multi-objective optimization. Energy Reports, 2021, 7, 5612-5626.	2.5	30
674	Service life of building envelopes: A critical literature review. Journal of Building Engineering, 2021, 44, 102646.	1.6	23
675	Thermochromic VO2 films with periodic meshes for smart windows: Analysis of optical properties. Optics Communications, 2021, 500, 127330.	1.0	6

~	_	
CITATI		эт
CHAH	NLPU	C I -

#	Article	IF	CITATIONS
676	Assessment of environmental performance in building construction sites: Data envelopment analysis and Tobit model approach. Journal of Building Engineering, 2021, 44, 102994.	1.6	9
677	Life cycle assessment of interior partition walls: Comparison between functionality requirements and best environmental performance. Journal of Building Engineering, 2021, 44, 102978.	1.6	8
678	k-Nearest patterns for electrical demand forecasting in residential and small commercial buildings. Energy and Buildings, 2021, 253, 111396.	3.1	9
679	Analyzing energy consumption patterns of an educational building through data mining. Journal of Building Engineering, 2021, 44, 103385.	1.6	10
680	A Model for the Assessment of the Water Footprint of Gardens that Include Sustainable Urban Drainage Systems (SUDS). Environmental Footprints and Eco-design of Products and Processes, 2021, , 61-102.	0.7	2
681	Life cycle energy assessment and carbon dioxide emissions of wall systems for rural houses. Ambiente ConstruÃdo, 2021, 21, 37-50.	0.2	2
682	Built Environment Life Cycle Process and Climate Change. , 2013, , 61-97.		3
683	Outlining a New Collaborative Business Model as a Result of the Green Building Information Modelling Impact in the AEC Supply Chain. IFIP Advances in Information and Communication Technology, 2019, , 405-417.	0.5	4
685	Uncertainty Assessment of Comparative Design Stage Embodied Carbon Assessments. , 2018, , 51-76.		3
686	Multiplier Effect: High Performance Construction Assemblies and Urban Density in US Housing. Springer Environmental Science and Engineering, 2013, , 183-206.	0.1	2
687	A Whole Life Cycle Group Decision-Making Framework for Sustainability Evaluation of Major Infrastructure Projects. , 2018, , 129-140.		3
688	Characterization of Carbon Emissions from the Construction Activities: A Case Study of Shenzhen, China. , 2018, , 451-459.		1
689	Analysis of embodied energy and product lifespan: the potential embodied power sustainability indicator. Clean Technologies and Environmental Policy, 2020, 22, 1055-1068.	2.1	4
690	Life cycle assessment of energy efficient buildings. Energy Reports, 2020, 6, 270-285.	2.5	18
691	Review of 50†years of EU energy efficiency policies for buildings. Energy and Buildings, 2020, 225, 110322.	3.1	265
692	Evaluating the impact of operating energy reduction measures on embodied energy. Energy and Buildings, 2020, 226, 110340.	3.1	29
693	Analysis of the embodied carbon dioxide in the building sector: A case of China. Journal of Cleaner Production, 2020, 269, 122438.	4.6	73
694	Environmental, economic and energy life cycle assessment "from cradle to cradle―(3E-C2C) of flat roofs. Journal of Building Engineering, 2020, 32, 101436.	1.6	10

#	Article	IF	Citations
695	A comparative study of thermal and fuel performance of an energy-efficient building in different climate regions of Turkey. Sustainable Cities and Society, 2020, 59, 102163.	5.1	12
696	Modulation of VO2 metal-insulator transition by co-doping of hydrogen and oxygen vacancy. Solar Energy Materials and Solar Cells, 2020, 212, 110562.	3.0	12
697	Life-Cycle Energy Analysis of a Modular/Off-Site Building School. American Journal of Civil Engineering and Architecture, 2013, 1, 59-63.	0.1	13
698	Emergy-Simulation Based Building Retrofit. KIEAE Journal, 2014, 14, 5-13.	0.1	1
699	The Effect of Awareness, Knowledge and Cost on Intention to Adopt Green Building Practices. International Journal of Environment and Sustainable Development, 2019, 1, 1.	0.2	1
700	Energy-related conditions and envelope properties for sustainable buildings. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 697-707.	0.8	3
701	Life cycle carbon emission assessment of a multi-purpose university building: A case study of Sri Lanka. Frontiers of Engineering Management, 2018, .	3.3	9
704	Energia incorporada em habitações de interesse social na fase de pré-uso: o caso do programa Minha Casa Minha Vida no Brasil. Oculum Ensaios, 2014, 11, 39.	0.0	4
705	GIS-based Life Cycle Assessment of urban building stocks retrofitting- a bottom-up framework applied to Luxembourg. , 0, , .		8
706	A Building energy simulation methodology to validate energy balance and comfort in zero energy buildings. Journal of Energy Systems, 2019, 3, 168-182.	0.8	7
707	Improved Embodied Energy and Carbon Accounting: Recommendations for Industry and Policy. Athens Journal of Î e chnology & Engineering, 2015, 2, 9-24.	0.2	2
708	Life Cycle GHG Emissions of Residential Buildings in Humid Subtropical and Tropical Climates: Systematic Review and Analysis. Buildings, 2021, 11, 6.	1.4	11
709	Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions. International Journal of Environmental Research and Public Health, 2021, 18, 122.	1.2	11
710	Life Cycle Assessment: A Strategic Tool for Sustainable Development Decisions. , 0, , .		1
711	Energy efficient measure to upgrade a multistory residential in a nZEB. AIMS Energy, 2017, 5, 601-624.	1.1	19
712	Análisis del ciclo de vida de un edificio con estructura de madera contralaminada en Granada-España. Informes De La Construccion, 2019, 71, 289.	0.1	6
713	THERMAL PERFORMANCE OF PANELS WITH HIGH DENSITY, RANDOMLY ORIENTED STRAW BALES. Journal of Green Building, 2018, 13, 31-55.	0.4	7
714	INFLUENCING PARAMETERS OF THE LIFE CYCLE COST-ENERGY RELATIONSHIP OF BUILDINGS. Journal of Green Building, 2018, 13, 103-121.	0.4	13

#	Article	IF	CITATIONS
715	Towards Zero Energy Buildings (ZEB). Advances in Environmental Engineering and Green Technologies Book Series, 0, , 93-111.	0.3	3
716	Estimation of Building's Life Cycle Carbon Emissions Based on Life Cycle Assessment and Building Information Modeling: A Case Study of a Hospital Building in China. Journal of Geoscience and Environment Protection, 2019, 07, 147-165.	0.2	19
717	Energy and Emission Reduction Potential for Bank ATM Units in India. Open Journal of Energy Efficiency, 2016, 05, 107-120.	0.6	3
718	Thermal Load Reduction with Green Building Envelope. Open Journal of Energy Efficiency, 2017, 06, 112-127.	0.6	4
719	Creation of Zero CO ₂ Emissions Residential Buildings due to Operating and Embodied Energy Use on the Island of Crete, Greece. Open Journal of Energy Efficiency, 2017, 06, 141-154.	0.6	5
720	Natures Buildings as Trees: Biologically Inspired Glass as an Energy System. Optics and Photonics Journal, 2015, 05, 136-150.	0.3	7
721	LCA as comparative tool for concrete columns and glulam columns. Journal of Sustainable Architecture and Civil Engineering, 2015, 11, .	0.3	4
722	Reconstruction of administrative buildings of the 70's: The possibility of energy modernization. Journal of Applied Engineering Science, 2014, 12, 37-44.	0.4	59
723	Evaluation of Life Cycle Energy Consumption and CO2Emission of Elementary School of Buildings. Korean Journal of Construction Engineering and Management, 2016, 17, 52-60.	0.1	2
724	Optimization of Building Energy Performance through Passive Design Strategies. British Journal of Applied Science & Technology, 2016, 13, 1-16.	0.2	34
725	Factors influencing the life-cycle GHG emissions of Brazilian office buildings. Buildings and Cities, 2021, 2, 856-873.	1.1	0
726	A Review of the Research on the Life Cycle Energy of Buildings Using Science Mapping. , 2021, , 451-467.		0
727	Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale. Sustainability, 2021, 13, 11554.	1.6	9
728	A Staged Approach for Energy Retrofitting an Old Service Building: A Cost-Optimal Assessment. Energies, 2021, 14, 6929.	1.6	4
729	Analyzing the environmental sustainability of primary schools' facades within the scope of life cycle assessment in Turkey and recommendations for improvement. Smart and Sustainable Built Environment, 2021, ahead-of-print, .	2.2	0
731	Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept. SSRN Electronic Journal, 0, , .	0.4	2
733	Life Cycle Assessment of Energy Systems in Complex Buildings. Green Energy and Technology, 2013, , 215-235.	0.4	0
734	Building Life Cycle Energy Consumption Estimation Based on the Work Breakdown Structure. , 2013, , 887-893.		0

#	Article	IF	CITATIONS
736	Life-cycle Oriented Renovation Strategies for Social Housing Stock. Organization, Technology and Management in Construction, 2013, 5, 881-891.	0.5	2
737	Holistic Design Applying Innovative Technologies. SpringerBriefs in Applied Sciences and Technology, 2014, , 13-36.	0.2	1
739	The Green School. Advances in Educational Marketing, Administration, and Leadership Book Series, 2015, , 243-257.	0.1	0
740	Embodied Energy and CO2 Associated with Buildings by Using Input and Output Table in Japan. Journal of Civil Engineering and Architecture, 2015, 9, .	0.0	1
741	Transition to sustainable city: an integrated design approach for transformative districts – a proposal for replicability. WIT Transactions on Ecology and the Environment, 2015, , .	0.0	1
742	Creation of Zero CO ₂ Emissions School Buildings Due to Energy Use in Crete-Greece. Open Journal of Energy Efficiency, 2016, 05, 12-18.	0.6	1
743	Sustainable Technologies for Cutting down Energy Requirements for Lighting and Air Conditioning in Buildings. Journal of Advances in Mechanical Engineering and Science, 2016, 2, 31-41.	0.1	1
744	BIM na avaliação do ciclo de vida de edificações: revisão da literatura e estudo comparativo. PARC: Pesquisa Em Arquitetura E Construção, 2016, 7, 89.	0.3	4
745	Influence of Choice of Structural System & In-Fill Masonry on the Embodied Energy & Cost of a Low-Rise Residential Urban-Building Indian Case Study. Open Journal of Energy Efficiency, 2017, 06, 41-60.	0.6	1
746	Definition and Frameworks on a Life-Cycle Negative Growth Rate for Energy and Carbon in an Academic Campus. World Sustainability Series, 2017, , 325-339.	0.3	0
747	WpÅ,yw dziaÅ,aÅ,, termomodernizacyjnych doprowadzajÄcych do standardu nZEB na wartość emisji CO2eq v cyklu życia budynku. MateriaÅ y Budowlane, 2017, 1, 46-49.	^w o.o	0
750	Life-Cycle Assessment of the Energy Code for Office Buildings Using the Prescriptive Approach in Israel. , 2017, , .		0
751	The Assessment of Energy of Residential Building of District Korkuteli/ANTALYA. Lecture Notes in Civil Engineering, 2018, , 13-25.	0.3	0
753	Assessment of Energy Performance of Buildings Constructed in Different Regions of Turkey According to European Specification. Journal of Polytechnic, 0, , .	0.4	0
754	Feasibility Studies for Developing Energy Efficient Building in the Juet Campus Using Solar and Biomass Energy. Current World Environment Journal, 2018, 13, 424-433.	0.2	0
755	The Green School. , 2019, , 71-87.		0
756	A Critical Overview of Net Zero Energy Buildings and Fuzzy Cognitive Maps. , 2019, , 537-559.		0
757	Investigating the Level of Sustainability in Off-Site Construction. Smart Innovation, Systems and Technologies, 2019, , 101-110.	0.5	0

#	Article	IF	CITATIONS
758	Análisis del ciclo de vida de un edificio residencial en Colombia. Inventum IngenierÃa, TecnologÃa E Investigación, 2019, 14, 3-14.	0.0	0
759	Green Photocatalyst for Diverge Applications. Environmental Chemistry for A Sustainable World, 2020, , 1-18.	0.3	1
760	Use of an Object-Oriented System for Optimizing Life Cycle Embodied Energy and Life Cycle Material Cost of Shopping Centres. Smart Innovation, Systems and Technologies, 2020, , 247-257.	0.5	0
761	Avaliação preliminar comparativa de materiais utilizados para construção de Habitações de Interesse Social na Costa do Cacau, BA. Gaia Scientia, 2020, 14, .	0.0	0
762	Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study. Sustainability, 2021, 13, 11949.	1.6	16
763	A framework for dynamic life cycle sustainability assessment and policy analysis of built environment through a system dynamics approach. Sustainable Cities and Society, 2022, 76, 103521.	5.1	36
764	An LCA methodolody for assessing the environmental impacts of building components before and after refurbishment. Journal of Cleaner Production, 2021, 327, 129527.	4.6	19
765	Sustainability of Shallow Geothermal Energy for Building Air-Conditioning. Energies, 2021, 14, 7058.	1.6	5
766	Experiencing Life Cycle Assessment in Indian Additive Manufacturing Industries: Needs, Challenges and Solutions. Lecture Notes in Mechanical Engineering, 2022, , 67-77.	0.3	0
767	Possibilities of Creating Net Zero Carbon Emissions Prisons in the Island of Crete, Greece. Open Journal of Energy Efficiency, 2020, 09, 81-93.	0.6	0
768	Energy Simulation and Life Cycle Cost Analysis for Designing Energy Efficient Commercial Buildings in Pakistan. Lecture Notes in Civil Engineering, 2020, , 1079-1086.	0.3	0
769	An Urban Strategy for Adaptive Reuse: Learning from Industrial Heritage in Barcelona. Smart Innovation, Systems and Technologies, 2021, , 455-466.	0.5	0
770	Avaliação do Ciclo de Vida de diferentes envoltórias para habitações de interesse social em Florianópolis. Ambiente ConstruÃdo, 2020, 20, 123-141.	0.2	2
771	Life cycle assessment of a residential building in Egypt: A case study. IOP Conference Series: Materials Science and Engineering, 2020, 974, 012028.	0.3	7
772	A Stochastic Formulation to Assess the Environmental Impact of the Life-Cycle of Engineering Systems. Journal of Structural Engineering, 2022, 148, .	1.7	4
773	Embodied energy and carbon emissions of building materials in China. Building and Environment, 2022, 207, 108434.	3.0	61
774	IoT Based Climate Control Systems Diffusion in Intelligent Buildings - A System Dynamics Model. IFIP Advances in Information and Communication Technology, 2020, , 673-684.	0.5	1
775	Teardown Index. Impact of Meat Consumption on Health and Environmental Sustainability, 2020, , 64-101.	0.4	0

#	Article	IF	CITATIONS
776	The Embodied Impact of Existing Building Stock. Impact of Meat Consumption on Health and Environmental Sustainability, 2020, , 1-31.	0.4	0
777	ANALYSING THE GAP BETWEEN PREDICTED AND ACTUAL OPERATIONAL ENERGY CONSUMPTION IN BUILDINGS: A REVIEW. , 2021, , .		1
778	Revealing the Contribution of Informal Settlements to Climate Change Mitigation in Latin America: A Case Study of Isidro Fabela, Mexico City. Sustainability, 2021, 13, 12108.	1.6	3
779	Predicting Embodied Carbon and Cost Effectiveness of Post-Tensioned Slabs Using Novel Hybrid Firefly ANN. Sustainability, 2021, 13, 12319.	1.6	5
780	Environmental Performances of a Cubic Modular Steel Structure: A Solution for a Sustainable Development in the Construction Sector. Sustainability, 2021, 13, 12062.	1.6	7
781	Evaluating the importance of the embodied impacts of wall assemblies in the context of a low environmental impact energy mix. Building and Environment, 2022, 207, 108534.	3.0	8
782	Towards Zero Energy Buildings (ZEB). , 0, , 1742-1761.		2
786	ENERGY EMBODIED IN, AND TRANSMITTED THROUGH, WALLS OF DIFFERENT TYPES WHEN ACCOUNTING FOR THE DYNAMIC EFFECTS OF THERMAL MASS. Journal of Green Building, 2020, 15, 43-66.	0.4	5
789	Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: Simulations and experiments. Applied Energy, 2022, 307, 118127.	5.1	18
790	Competency Gaps of Employees in the Construction Sector in Terms of the Requirements of a Low-Carbon Economy. Polish and Czech Case. Energies, 2021, 14, 7868.	1.6	0
791	Improving the energy efficiency of an office building by applying a thermal comfort model. Journal of Physics: Conference Series, 2021, 2069, 012172.	0.3	1
793	Building-integrated greenhouses raise energy co-benefits through active ventilation systems. Building and Environment, 2022, 208, 108585.	3.0	13
794	BIM-based LCA as a comprehensive method for the refurbishment of existing dwellings considering environmental compatibility, energy efficiency, and profitability: A case study in China. Journal of Building Engineering, 2022, 46, 103852.	1.6	14
795	Whole-building life-cycle analysis with a new GREET® tool: Embodied greenhouse gas emissions and payback period of a LEED-Certified library. Building and Environment, 2022, 209, 108664.	3.0	16
796	Science mapping analysis of embodied energy in the construction industry. Energy Reports, 2022, 8, 1362-1376.	2.5	25
797	Life Cycle Carbon Footprint Assessments, Case Study of Malaysian Housing Sector. Environmental and Climate Technologies, 2021, 25, 1003-1017.	0.5	3
798	Application of life cycle assessment (LCA) methodology and economic evaluation for construction and demolition waste: a Colombian case study. Earth Sciences Research Journal, 2021, 25, 341-351.	0.4	2
799	A data mining research on office building energy pattern based on time-series energy consumption data. Energy and Buildings, 2022, 259, 111888.	3.1	16

#	Article	IF	CITATIONS
800	Investigate the carbon footprints of three intermediate flooring systems: Cross-laminated timber, solid concrete, and hollow-core precast concrete. Journal of Applied Engineering Science, 2022, 20, 377-385.	0.4	7
801	Government Performance Evaluation in the Context of Carbon Neutrality: Energy-Saving of New Residential Building Projects. Sustainability, 2022, 14, 1274.	1.6	4
802	Quantitative Study on the Life-Cycle Carbon Emissions of a Nearly Zero Energy Building in the Severe Cold Zones of China. Sustainability, 2022, 14, 1448.	1.6	7
803	A holistic environmental and economic design optimization of low carbon buildings considering climate change and confounding factors. Science of the Total Environment, 2022, 821, 153442.	3.9	19
804	A Sustainable approach to reduce Embodied and Operational Cooling Energy for an Elevated Metro Rail Station of Ahmedabad, India, using Building Information Modelling (BIM) and Factor Comparison Method. Journal of the Institution of Engineers (India): Series A, 2022, 103, 115-128.	0.6	3
805	Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 2022, 65, 1.	1.7	10
806	Reflections on the Environmental Impact of 'Vegetarian' Buildings, and on the Reliability of Databases. , 0, , .		2
807	Life cycle energy analysis of a green building in Vietnam. IOP Conference Series: Materials Science and Engineering, 2022, 1212, 012004.	0.3	0
808	Making a case for sustainable building materials to promote carbon neutrality in Indian scenario. Clean Technologies and Environmental Policy, 2022, 24, 1609-1617.	2.1	8
809	Coalash as Sustainable Material for Low Energy Building. , 0, , .		0
810	Multi-objective 4E analysis for a building integrated photovoltaic thermal double skin Façade system. Solar Energy, 2022, 233, 408-420.	2.9	35
811	Initial or recurring embodied energy: Importance in Indian affordable housing. Journal of Building Engineering, 2022, 49, 104072.	1.6	3
812	A dual-mode laser-textured ice-phobic slippery surface: low-voltage-powered switching transmissivity and wettability for thermal management. Nanoscale, 2022, 14, 4474-4483.	2.8	8
813	Sustainability motivation factors and their impacts: the case of Palandöken Winter Tourism Center, Erzurum. Environmental Science and Pollution Research, 2022, 29, 44678-44692.	2.7	3
814	Uncertainties in whole-building life cycle assessment: A systematic review. Journal of Building Engineering, 2022, 50, 104191.	1.6	13
817	A COMPARATIVE LIFE CYCLE ANALYSIS OF NEAR-ZERO ENERGY BUILDINGS WITH A FOCUS ON ENVELOPE INSULATION. Journal of Green Building, 2022, 17, 225-245.	0.4	2
819	A COMPARATIVE LIFE CYCLE ANALYSIS OF NEAR-ZERO ENERGY BUILDINGS WITH A FOCUS ON ENVELOPE INSULATION. Journal of Green Building, 2022, 17, 225-245.	0.4	0
820	The Evolution of Life Cycle Assessment Approach: A Review of Past and Future Prospects. IOP Conference Series: Earth and Environmental Science, 2022, 992, 012002.	0.2	3

#	Article	IF	CITATIONS
821	A Review of the Environmental Impact of Buildings with an Emphasis on Performance Assessment Tools and Their Incorporation of LCA. Advances in Civil Engineering, 2022, 2022, 1-22.	0.4	1
822	Quantitative research on embodied carbon emissions in the design stage: a case study from an educational building in China. Journal of Asian Architecture and Building Engineering, 2022, 21, 1182-1192.	1.2	11
823	A Comparison of Traditional and Contemporary Social Houses in Catarmarca (Argentina). Comfort Conditions and Life Cycle Assessment. Sustainable Cities and Society, 2022, 82, 103891.	5.1	5
824	Integrated life cycle assessment of a southern European house addressing different design, construction solutions, operational patterns, and heating systems. Energy Reports, 2022, 8, 526-532.	2.5	5
825	Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment. Energies, 2021, 14, 8356.	1.6	3
826	Blockchain Technology in Life Cycle Assessment—New Research Trends. Energies, 2021, 14, 8292.	1.6	6
827	Measurement of China's Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method. Sustainability, 2022, 14, 4587.	1.6	6
828	An Aggregated Embodied and Operational Energy Approach. , 0, , .		0
829	Time to do More: Realisation of Life-Cycle Net-Zero Energy Buildings. , 2022, , .		1
831	An integrated approach of building information modelling and life cycle assessment (BIM-LCA) for gas and solar water heating systems. International Journal of Construction Management, 2023, 23, 2452-2468.	2.2	2
832	Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 2022, 14, 5186.	1.6	7
833	Review of Heliodon Developments and Computational Tools for Building Shadow Analysis. Buildings, 2022, 12, 627.	1.4	3
834	A multi-objective evaluation for envelope refurbishments with electrochromic glazing. Results in Engineering, 2022, 14, 100417.	2.2	2
835	Shedding light on the efforts into the rehabilitation of a major culprit of carbon emissions: A scientometric analysis of net-zero in the built environment sector. Energy and Buildings, 2022, 266, 112119.	3.1	3
836	Review of global research advances towards net-zero emissions buildings. Energy and Buildings, 2022, 266, 112142.	3.1	42
837	Exploratory and Multi-objective Decision-making Methods for Retrofit Planning Processes. International Journal of Digital Innovation in the Built Environment, 2022, 11, 0-0.	0.1	0
839	Greening Construction Transport as a Sustainability Enabler for New Zealand: A Research Framework. Frontiers in Built Environment, 2022, 8, .	1.2	4
840	Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe. Sustainability, 2022, 14, 6521.	1.6	0

#	Article	IF	Citations
841	Impact of Window Frames on Annual Energy Consumption of Residential Buildings and Its Contribution to CO2 Emission Reductions at the City Scale. Energies, 2022, 15, 3692.	1.6	2
842	Energy-Efficient Solutions Depending on Building Forms Design with Tilted South and North Facades. Buildings, 2022, 12, 753.	1.4	3
844	Public Policy and Incentives for Socially Responsible New Business Models in Market-Driven Real Estate to Build Green Projects. Sustainability, 2022, 14, 7071.	1.6	6
845	Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review. Renewable and Sustainable Energy Reviews, 2022, 167, 112636.	8.2	15
846	Sputtering Flexible VO ₂ Films for Effective Thermal Modulation. ACS Applied Materials & Interfaces, 2022, 14, 28105-28113.	4.0	17
847	Plastic composites as sustainable building materials: A thermal and mechanical exploration. Construction and Building Materials, 2022, 344, 128083.	3.2	8
848	A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings. Energy Policy, 2022, 168, 112920.	4.2	30
849	Sustainable Building Design Development Knowledge Map: A Visual Analysis Using CiteSpace. Buildings, 2022, 12, 969.	1.4	7
850	Towards a self-tuned data analytics-based process for an automatic context-aware detection and diagnosis of anomalies in building energy consumption timeseries. Energy and Buildings, 2022, 270, 112302.	3.1	6
851	A systematic review of green construction research using scientometrics methods. Journal of Cleaner Production, 2022, 366, 132710.	4.6	16
852	Review and Outlook of Self-Sensing, Self-Healing, Piezoelectric Pozzolans, and Piezoelectric Fibers in "Smart―Engineered Cementitious Composites (ECC). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2023, 47, 639-662.	1.0	3
853	Evaluating the environmental impacts of conventional and modular buildings in absolute measures: A case study across different geographical contexts. Building and Environment, 2022, 223, 109509.	3.0	6
854	Environmental impact assessment of demolition of a building in India-A case study. Annals of Civil and Environmental Engineering, 2022, 6, 042-049.	0.1	1
855	Challenges and way forward towards best practices of energy efficient building in Malaysia. Energy, 2022, 259, 124839.	4.5	10
856	Framework for standardising carbon neutrality in building projects. Journal of Cleaner Production, 2022, 373, 133858.	4.6	20
857	Estimating the use of materials and their CHG emissions in the German building sector. Cleaner Environmental Systems, 2022, 7, 100095.	2.2	1
858	Eco-efficient Rehabilitation of Façades to Improve the Energy Performance of Buildings. Case Study in Seville, Spain. , 2022, , 53-80.		0
859	The Research Development of Construction Carbon Emissions: A Visual Literature Review by Citespace. , 2022, , 480-488.		0

#	Article	IF	CITATIONS
860	Factor systems simulation at all phases of an energy-efficient project life cycle. AIP Conference Proceedings, 2022, , .	0.3	4
861	Bibliometric analysis of zero energy building research, challenges and solutions. Solar Energy, 2022, 244, 414-433.	2.9	10
862	The Mechanical and Environmental Performance of Fiber-Reinforced Polymers in Concrete Structures: Opportunities, Challenges and Future Directions. Buildings, 2022, 12, 1417.	1.4	12
863	Fungal Mycelium Bio-Composite Acts as a CO ₂ -Sink Building Material with Low Embodied Energy. ACS Sustainable Chemistry and Engineering, 2022, 10, 12099-12106.	3.2	26
864	Impact of insulation materials and wall types of reference buildings on building energy efficiency with three methods in A‡orum city. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 1009-1027.	0.5	1
865	An Evaluation Model of Carbon Emission Reduction Effect of Prefabricated Buildings Based on Cloud Model from the Perspective of Construction Supply Chain. Buildings, 2022, 12, 1534.	1.4	7
866	Integrating construction and demolition waste impact categories into building energy optimization through a conceptual sustainability-oriented model. Journal of Cleaner Production, 2022, 378, 134543.	4.6	2
867	Sustainable Schools: Their Passive Systems to Provide Comfort with Natural Means as an Educational Example for Pupils and Their Parents. Innovative Renewable Energy, 2022, , 1-24.	0.2	0
868	Buildings Life Cycle Assessment. , 2022, , .		0
869	A Comprehensive Study on Integrating Clustering with Regression for Short-Term Forecasting of Building Energy Consumption: Case Study of a Green Building. Buildings, 2022, 12, 1701.	1.4	3
870	Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 12820.	1.2	19
871	Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability, 2022, 14, 13121.	1.6	25
872	Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Archives of Computational Methods in Engineering, 2023, 30, 1081-1110.	6.0	52
873	Fiberglass as a Novel Building Material: A Life Cycle Assessment of a Pilot House. Architecture, 2022, 2, 690-710.	0.6	1
874	BIM-based approach for the integrated assessment of life cycle carbon emission intensity and life cycle costs. Building and Environment, 2022, 226, 109691.	3.0	23
875	Urban Energy Lifecycle: An Analytical Framework To Evaluate The Embodied Energy Use Of Urban Developments. , 2013, , .		1
876	Pursuing Energy Saving and Thermal Comfort With a Human-Driven DRL Approach. IEEE Transactions on Human-Machine Systems, 2023, 53, 707-719.	2.5	2
877	Research on influences of wall design on embodied and operating energy consumption: A case study of temporary building in China. Energy and Buildings, 2023, 278, 112628.	3.1	4

#	Article	IF	CITATIONS
878	Design criteria for the integration of active solar technologies in the historic built environment: Taxonomy of international recommendations. Energy and Buildings, 2023, 278, 112651.	3.1	23
879	A Stochastic Formulation to Evaluate the Sustainability of Structural Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2023, 9, .	1.1	0
880	A novel mathematical multi-criteria decision-making model for optimizing life cycle energy and cost in construction projects planning. Architectural Engineering and Design Management, 0, , 1-14.	1.2	1
881	Life Cycle Assessment of Embodied Carbon in Buildings: Background, Approaches and Advancements. Buildings, 2022, 12, 1944.	1.4	15
882	Evaluation of Carbon Footprint of the Renovation of Urban Spaces. Environmental Footprints and Eco-design of Products and Processes, 2022, , 79-111.	0.7	2
883	Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique. Buildings, 2022, 12, 2000.	1.4	1
884	Environmental and economic optimization and prioritization tool-kit for residential building renovation strategies with life cycle approach. Building and Environment, 2023, 228, 109813.	3.0	8
885	Assessment of embodied energy of masonry building materials in Hassan, India. Materials Today: Proceedings, 2022, , .	0.9	0
886	What we learn is what we earn from sustainable and circular construction. Journal of Cleaner Production, 2023, 382, 135183.	4.6	5
887	A look at residential building stock in the United States - mapping life cycle embodied carbon emissions and other environmental impact. Sustainable Cities and Society, 2023, 89, 104333.	5.1	7
888	Energy efficiency in shared buildings: Quantification of the potential at multiple scales. Energy Reports, 2023, 9, 84-95.	2.5	4
889	Increasing the Efficiency of HVAC Systems using Schedule-Based Control. , 2022, , .		0
890	The Potential of Structurally Insulated Panels (SIPs) to Supply Net Zero Carbon Housing. Buildings, 2022, 12, 2081.	1.4	0
891	Smart windows passively driven by greenhouse effect. Applied Physics Letters, 2022, 121, 214103.	1.5	0
892	Comparison of the Carbon Payback Period (CPP) of Different Variants of Insulation Materials and Existing External Walls in Selected European Countries. Energies, 2023, 16, 113.	1.6	4
893	Smart Building Management System (SBMS) for Commercial Buildings—Key Attributes and Usage Intentions from Building Professionals' Perspective. Sustainability, 2023, 15, 80.	1.6	1
894	Dynamic life cycle assessment of the recurring embodied emissions from interior walls: Cradle to grave assessment. Journal of Building Engineering, 2023, 65, 105794.	1.6	4
895	Characterization of a Thermal Insulating Material Based on a Wheat Straw and Recycled Paper Cellulose to Be Applied in Buildings by Blowing Method. Sustainability, 2023, 15, 58.	1.6	8

#	Article	IF	CITATIONS
896	Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 2023, 9, 100123.	6.6	57
897	Carbon Dioxide Emissions Specific to Concrete Production in Cold Regions. ACI Materials Journal, 2023, 120, .	0.3	0
898	The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary. Resources, 2023, 12, 15.	1.6	2
899	Toward a lowâ€carbon and circular building sector: Building strategies and urbanization pathways for the Netherlands. Journal of Industrial Ecology, 2023, 27, 535-547.	2.8	2
900	Comparação económica e ambiental entre a reabilitação do Palácio Condes de Murça e uma construção nova equivalente. , 2022, , 14-30.		0
901	Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal. Energies, 2023, 16, 378.	1.6	1
902	Predictions of Energy Consumption of Buildings' Life Cycle to Mitigate the Effects of Climate Change with a Focus on Energy Efficiency. , 2022, , .		0
903	Integrated mathematical optimisation approach for the tower crane hook routing problem to satisfy material demand requests on-site. Advanced Engineering Informatics, 2023, 55, 101885.	4.0	3
904	Upcycling agricultural and plastic waste for sustainable construction: a review. Environmental Technology Reviews, 2023, 12, 37-59.	2.1	2
905	Sustainability Assessment and Benchmarking Framework for Buildings Using a System Dynamics Modeling and Simulation Approach. Journal of Computing in Civil Engineering, 2023, 37, .	2.5	2
906	Energia embutida: análise dos impactos do retrofit de um edifÃcio comercial no ciclo de vida energético. , 0, , .		0
907	Avaliação de carbono incorporado em edificações: um panorama da produção técnico-cientÃfica brasileira entre 2010 e 2020. , 0, , .		0
909	Comparing energy profiles of different building types by determining their sensitivities. Architectural Engineering and Design Management, 0, , 1-22.	1.2	0
910	Development and life cycle cost analysis of a solar hybrid HVAC system for use in buildings in tropical climates. Sustainable Energy Technologies and Assessments, 2023, 57, 103143.	1.7	0
912	Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil. Sustainability, 2023, 15, 1408.	1.6	11
913	Deep learning models for building window-openings detection in heating season. Building and Environment, 2023, 231, 110019.	3.0	5
914	A System Dynamics Simulation-Based Sustainability Benchmarking. , 2022, , .		0
915	Î'n integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool. Applied Energy, 2023, 334, 120710.	5.1	13

#	Article	IF	CITATIONS
916	A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability, 2023, 15, 3128.	1.6	10
917	Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry. Energies, 2023, 16, 1846.	1.6	10
918	The future of the sustainable green architecture through technology. HBRC Journal, 2023, 19, 33-62.	0.2	1
919	Simplified Guidelines for Retrofitting Scenarios in the European Countries. Energies, 2023, 16, 2408.	1.6	3
920	Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review. Buildings, 2023, 13, 677.	1.4	2
921	Effect of incorporating Expanded polystyrene beads on Thermophysical, mechanical properties and life cycle analysis of lightweight earth blocks. Construction and Building Materials, 2023, 375, 130948.	3.2	5
922	A review of approaches and applications in building stock energy and indoor environment modelling. Building Services Engineering Research and Technology, 2023, 44, 333-354.	0.9	10
923	COMPARISON OF LEED CERTIFIED GREEN OFFICES IN GREEN BUILDING PRODUCTION. Mühendislik Bilimleri Ve Tasarım Dergisi, 2023, 11, 264-278.	0.1	1
924	Life cycle energy analysis of houses incorporating conventional and alternative masonry units. Architectural Engineering and Design Management, 0, , 1-21.	1.2	0
925	Life cycle energy assessments of conventional building: A systematic review. Materials Today: Proceedings, 2023, , .	0.9	1
935	Review of Urban Building Types and Their Energy Use and Carbon Emissions in Life-Cycle Analyses from Low- and Middle-Income Countries. Environmental Science & Technology, 0, , .	4.6	0
937	How Can Decarbonisation Alternatives Be Prioritised to Achieve Carbon Neutrality in Building Projects?. , 2023, , .		0
939	Theory of experiment planning in the construction of energy-efficient facilities. AIP Conference Proceedings, 2023, , .	0.3	0
946	Chapter 10: Sustainable Construction: The Cutting Edge and Emerging Challenges. , 2016, , .		1
955	Life Cycle Carbon Emission Assessment of Prefabricated Buildings: A Case Study in Nantong, China. , 2023, , 1262-1277.		0
959	Embodied Energy Analysis of Different Types of Wall Insulating Materials Used in Buildings. Lecture Notes in Civil Engineering, 2024, , 217-226.	0.3	0
992	Evaluation of the Internal Temperature and Hours of Thermal Discomfort Produced by Sunshine: Study of a Hot Dry Climate. Lecture Notes in Networks and Systems, 2024, , 205-219.	0.5	0