Green roofs; building energy savings and the potential f

Energy and Buildings 42, 1582-1591

DOI: 10.1016/j.enbuild.2010.05.004

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of energy saving potential of green roofs in sub-tropical regions. , 2011, , .		0
2	Design guideline for sustainable green roof system. , 2011, , .		7
3	Integrating sciences to sustain urban ecosystem services. Progress in Physical Geography, 2011, 35, 653-669.	3.2	144
4	A Study on Passive Cooling Methods by Evaporation and Solar Reflection on Rooftops in a Temperate Climate Region. Journal of Asian Architecture and Building Engineering, 2011, 10, 227-234.	2.0	2
5	Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews, 2011, 15, 3617-3631.	16.4	925
6	Seasonal heat flux properties of an extensive green roof in a Midwestern U.S. climate. Energy and Buildings, 2011, 43, 3548-3557.	6.7	119
7	Green roofs as a means of pollution abatement. Environmental Pollution, 2011, 159, 2100-2110.	7.5	462
8	Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 2011, 159, 2119-2126.	7.5	537
9	Assessment of green roof thermal behavior: A coupled heat and mass transfer model. Building and Environment, 2011, 46, 2624-2631.	6.9	147
10	Theoretical evaluation of thermal and energy performance of tropical green roofs. Energy, 2011, 36, 3590-3598.	8.8	76
11	An updated and expanded set of thermal property data for green roof growing media. Energy and Buildings, 2011, 43, 2298-2303.	6.7	83
12	Zero carbon buildings refurbishment––A Hierarchical pathway. Renewable and Sustainable Energy Reviews, 2011, 15, 3229-3236.	16.4	167
13	Energy-Saving Potential of Building Envelope Designs in Residential Houses in Taiwan. Energies, 2011, 4, 2061-2076.	3.1	49
14	Safe Design Suggestions for Vegetated Roofs. Journal of Construction Engineering and Management - ASCE, 2012, 138, 999-1003.	3.8	32
15	Potential Retrofitting of Existing Campus Buildings to Green Buildings. Applied Mechanics and Materials, 0, 178-181, 42-45.	0.2	16
16	Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species. Urban Forestry and Urban Greening, 2012, 11, 465-476.	5. 3	42
17	Energy consumption characteristics of the elementary schools in South Korea. Energy and Buildings, 2012, 54, 480-489.	6.7	33
18	Exploring the building energy impacts of green roof design decisions – a modeling study of buildings in four distinct climates. Journal of Building Physics, 2012, 35, 372-391.	2.4	119

#	Article	IF	CITATIONS
19	Economic and Environmental Evaluation Model for Selecting the Optimum Design of Green Roof Systems in Elementary Schools. Environmental Science & Environmental Science & 2012, 46, 8475-8483.	10.0	76
20	Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resources, Conservation and Recycling, 2012, 64, 49-55.	10.8	62
21	Energy saving and environmental resources potentials: Toward new methods of building design. Building and Environment, 2012, 58, 199-207.	6.9	24
22	Solar heat flux reduction through roof using porous insulation layer. Energy Procedia, 2012, 30, 446-451.	1.8	2
23	Green roofs as passive system for energy savings when using rubber crumbs as drainage layer. Energy Procedia, 2012, 30, 452-460.	1.8	20
24	Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renewable and Sustainable Energy Reviews, 2012, 16, 6239-6261.	16.4	64
25	Green roof yearly performance: A case study in a highly insulated building under temperate climate. Energy and Buildings, 2012, 55, 439-451.	6.7	93
26	Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques. Journal of Academic Librarianship, 2012, 38, 115-122.	2.3	8
27	A decision support model for reducing electric energy consumption in elementary school facilities. Applied Energy, 2012, 95, 253-266.	10.1	74
28	Case study: Energy savings from solar window film in two commercial buildings in Shanghai. Energy and Buildings, 2012, 45, 132-140.	6.7	87
29	Dynamic U-value estimation and energy simulation for green roofs. Energy and Buildings, 2012, 45, 240-249.	6.7	58
30	The energy consumption performance of roof lawn gardens in Thailand. Renewable Energy, 2012, 40, 98-103.	8.9	34
31	A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 2012, 43, 157-164.	8.9	378
32	Potential benefits of plant diversity on vegetated roofs: A literature review. Journal of Environmental Management, 2012, 106, 85-92.	7.8	163
33	From the â€~urban heat island' to the â€~green island'? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat International, 2013, 39, 25-35.	5.8	98
34	Brown/biodiverse roofs: a conservation action for threatened brownfields to support urban biodiversity. Landscape and Ecological Engineering, 2013, 9, 299-304.	1.5	27
35	Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software. Energy and Buildings, 2013, 61, 100-107.	6.7	71
36	Assessing practical measures to reduce urban heat: Green and cool roofs. Building and Environment, 2013, 70, 266-276.	6.9	178

#	Article	IF	CITATIONS
37	Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 2013, 67, 26-33.	6.9	71
38	Vegetation development over four years on two green roofs in the UK. Urban Forestry and Urban Greening, 2013, 12, 98-108.	5. 3	89
39	Reduction of the urban cooling effects of an intensive green roof due to vegetation damage. Urban Climate, 2013, 3, 40-55.	5.7	79
40	Green and cool roofs' urban heat island mitigation potential in European climates for office buildings under free floating conditions. Solar Energy, 2013, 95, 118-130.	6.1	149
41	Variations in photovoltaic performance due to climate and low-slope roof choice. Energy and Buildings, 2013, 64, 493-502.	6.7	40
42	Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?. Applied Energy, 2013, 104, 845-859.	10.1	226
43	Wetlands are an effective green roof system. Building and Environment, 2013, 66, 141-147.	6.9	42
44	Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renewable and Sustainable Energy Reviews, 2013, 25, 1-17.	16.4	309
45	Development and application of a building energy performance metric for green roof systems. Energy and Buildings, 2013, 60, 262-269.	6.7	66
46	A review of energy aspects of green roofs. Renewable and Sustainable Energy Reviews, 2013, 23, 155-168.	16.4	227
47	Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a Mediterranean coastal climate. Energy and Buildings, 2013, 63, 1-14.	6.7	91
48	Optimization of passive solar design strategies: A review. Renewable and Sustainable Energy Reviews, 2013, 25, 177-196.	16.4	187
49	Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environmental Pollution, 2013, 181, 257-261.	7.5	68
50	Relationship between indoor environmental quality and building envelopes covered by plants: a review of the literature. International Journal of Environment and Sustainable Development, 2013, 12, 361.	0.3	0
52	Effectiveness of an intensive green roof in a sub-tropical region. Building Services Engineering Research and Technology, 2013, 34, 417-432.	1.8	6
53	The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB. Geoscientific Model Development, 2013, 6, 1941-1960.	3.6	34
54	Investigation of thermal benefits of an extensive green roof in Istanbul climate. Scientific Research and Essays, 2013, 8, 623-632.	0.4	6
55	Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model. Sustainability, 2014, 6, 7013-7029.	3.2	101

#	Article	IF	CITATIONS
56	A Framework for Assessment of the Influence of China's Urban Underground Space Developments on the Urban Microclimate. Sustainability, 2014, 6, 8536-8566.	3.2	19
57	Thermal Efficiency for Low Cost Houses using Translucent Water-Based Acrylic Paint. Mediterranean Journal of Social Sciences, 2014, , .	0.2	0
58	Thermal Behavior of Green Roof in Reunion Island: Contribution Towards a Net Zero Building. Energy Procedia, 2014, 57, 1908-1921.	1.8	7
59	The Retrofit of Existing Buildings Through the Exploitation of the Green Roofs – A Simulation Study. Energy Procedia, 2014, 62, 52-61.	1.8	33
60	Demand Evaluation and a Design Approach Transforming Duplex Housing into Green Building. Advanced Materials Research, 2014, 1073-1076, 1299-1304.	0.3	0
61	Coping with drought: the experience of water sensitive urban design (WSUD) in the George Municipality. Water S A, 2014, 41, 1.	0.4	12
62	To Promote Sustainable Urban Development - Advantage Study of Roof Greening. Applied Mechanics and Materials, 0, 641-642, 612-615.	0.2	1
63	Energy efficiency in commercial buildings: capturing added-value of retrofit. Journal of Property Investment and Finance, 2014, 32, 396-414.	1.4	17
64	Energy-efficient retrofit of an unconditioned institute building. Architectural Science Review, 2014, 57, 49-62.	2.2	4
65	Urban carbon governance and the transition toward low-carbon urbanism: review of a global phenomenon. Carbon Management, 2014, 5, 269-283.	2.4	33
66	Comparative study of project management and critical success factors of greening new and existing buildings in Singapore. Structural Survey, 2014, 32, 413-433.	1.0	58
67	Sustainability performance assessment of green roof systems using fuzzy-analytical hierarchy process (FAHP). International Journal of Sustainable Building Technology and Urban Development, 2014, 5, 260-276.	1.0	12
68	The assessment of building energy efficiency in China rural society: Developing a new theoretical construct. Technology in Society, 2014, 38, 130-138.	9.4	7
69	Air-conditioning energy consumption due to green roofs with different building thermal insulation. Applied Energy, 2014, 128, 49-59.	10.1	100
70	Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings. Applied Energy, 2014, 114, 273-282.	10.1	81
71	To irrigate or not to irrigate: Analysis of green roof performance via a vertically-resolved hygrothermal model. Building and Environment, 2014, 73, 127-137.	6.9	59
72	Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 2014, 103, 682-703.	6.1	1,172
73	A combined experimental and simulation method for appraising the energy performance of green roofs in Ningbo's Chinese climate. Building Simulation, 2014, 7, 13-20.	5.6	10

#	ARTICLE	IF	CITATIONS
74	Towards greening the U.S. residential building stock: A system dynamics approach. Building and Environment, 2014, 78, 68-80.	6.9	121
75	Big meter data analysis of the energy efficiency potential in Stockholm's building stock. Energy and Buildings, 2014, 78, 153-164.	6.7	55
76	Energy saving performance of green vegetation on LEED certified buildings. Energy and Buildings, 2014, 75, 281-289.	6.7	74
77	Building energy efficiency in China rural areas: Situation, drawbacks, challenges, corresponding measures and policies. Sustainable Cities and Society, 2014, 11, 7-15.	10.4	68
78	Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 2014, 51, 151-162.	7.2	180
79	State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, 2014, 115, 411-428.	10.1	562
80	Application research of ECOTECT in residential estate planning. Energy and Buildings, 2014, 72, 195-202.	6.7	69
81	A survey of district heating systems in the heating regions of northern China. Energy, 2014, 77, 909-925.	8.8	40
82	Probabilistic prediction of green roof energy performance under parameter uncertainty. Energy, 2014, 77, 667-674.	8.8	25
83	Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 2014, 146, 107-115.	7.8	585
84	Responses of morphology and drought tolerance of Sedum lineare to watering regime in green roof system: A root perspective. Urban Forestry and Urban Greening, 2014, 13, 682-688.	5.3	17
85	Influence of rainfall on the noise shielding by a green roof. Building and Environment, 2014, 82, 1-8.	6.9	15
86	Snow depth and vegetation type affect green roof thermal performance in winter. Energy and Buildings, 2014, 84, 299-307.	6.7	45
87	Species interactions in green roof vegetation suggest complementary planting mixtures. Landscape and Urban Planning, 2014, 130, 125-133.	7.5	45
88	Comfort and energy savings with active green roofs. Energy and Buildings, 2014, 82, 492-504.	6.7	138
89	Effect of substrate depth on 18 non-succulent herbaceous perennials for extensive green roofs in a region with a dry spring. Ecological Engineering, 2014, 71, 490-500.	3.6	15
90	Runoff and vegetation stress of green roofs under different climate change scenarios. Landscape and Urban Planning, 2014, 122, 68-77.	7.5	61
91	Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Building and Environment, 2014, 77, 88-100.	6.9	161

#	Article	IF	CITATIONS
92	The impact of mosses on the growth of neighbouring vascular plants, substrate temperature and evapotranspiration on an extensive green roof. Urban Ecosystems, 2014, 17, 1119-1133.	2.4	25
93	Green roofs as passive system for energy savings in buildings during the cooling period: use of rubber crumbs as drainage layer. Energy Efficiency, 2014, 7, 841-849.	2.8	34
94	Thermal analysis of roofs with thermal insulation layer and reflective coatings in subtropical and equatorial climate regions in Brazil. Energy and Buildings, 2014, 84, 466-474.	6.7	41
95	Heat-sink effect and indoor warming imposed by tropical extensive green roof. Ecological Engineering, 2014, 62, 1-12.	3.6	37
96	Passive warming of indoor space induced by tropical green roof in winter. Energy, 2014, 68, 272-282.	8.8	31
97	Combining terrestrial laser scanning and computational fluid dynamics for the study of the urban thermal environment. Sustainable Cities and Society, 2014, 13, 207-216.	10.4	36
98	Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Solar Energy, 2014, 103, 108-124.	6.1	105
99	Building thermal-insulation effect on ambient and indoor thermal performance of green roofs. Ecological Engineering, 2014, 69, 265-275.	3.6	28
100	Importance of different components of green roof substrate on plant growth and physiological performance. Urban Forestry and Urban Greening, 2014, 13, 507-516.	5.3	83
101	Developing resilient green roofs in a dry climate. Science of the Total Environment, 2014, 490, 579-589.	8.0	31
102	The growth and survival of plants in urban green roofs in a dry climate. Science of the Total Environment, 2014, 476-477, 288-297.	8.0	65
103	Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values, 2014, 31, 33-51.	3.0	397
104	Peak Electric Load Relief in Northern Manhattan. SAGE Open, 2014, 4, 215824401454648.	1.7	1
105	INVESTIGATING THE ENVIRONMENTAL IMPACTS OF GREEN ROOF INSTALLATION. Jurnal Teknologi (Sciences) Tj E	TQq1 10.	.784314 rg
106	Comparison of Green Roof Model Predictions with Experimental Data. Energy Research Journal, 2015, 6, 15-24.	0.8	1
107	Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar. Buildings, 2015, 5, 497-520.	3.1	32
108	Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil. Sustainability, 2015, 7, 1081-1098.	3.2	35
109	Experimental Heat Transfer Study on Green Roofs in a Semiarid Climate during Summer. Journal of Construction Engineering, 2015, 2015, 1-15.	0.9	24

#	Article	IF	CITATIONS
110	Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climates. Modern Applied Science, 2015, 9, 208.	0.6	5
111	Diurnal and partitioned heat-flux patterns of coupled green-building roof systems. Renewable Energy, 2015, 81, 262-274.	8.9	15
112	Experimental and theoretical study on the effect of window films on building energy consumption. Energy and Buildings, 2015, 102, 129-138.	6.7	72
113	Climates and Microclimates: Challenges for Extensive Green Roof Design in Hot Climates. Ecological Studies, 2015, , 63-80.	1.2	11
114	Plant cover and floristic composition effect on thermal behaviour ofÂextensive green roofs. Building and Environment, 2015, 92, 305-316.	6.9	79
115	Technical considerations in green roof retrofit for stormwater attenuation in the Central Business District. Structural Survey, 2015, 33, 36-51.	1.0	18
116	Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India. Journal of the Institution of Engineers (India): Series A, 2015, 96, 277-284.	1.2	5
117	Influence of Plant and Substrate Characteristics of Vegetated Roofs on a Supermarket Energy Performance Located in a Semiarid Climate. Energy Procedia, 2015, 78, 1171-1176.	1.8	22
118	Thermal Performance Study of Extensive Green Roof in Shanghai District: A Case Study of Lightweight Building in Winter. Procedia Engineering, 2015, 121, 1597-1604.	1.2	7
119	Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 2015, 22, 65-85.	4.7	119
120	The "Warm Houses―program: Insulating existing buildings through compulsory retrofits. Sustainable Energy Technologies and Assessments, 2015, 9, 63-67.	2.7	13
121	Comparative study of the thermal performance of the novel green (planting) roofs against other existing roofs. Sustainable Cities and Society, 2015, 16, 1-12.	10.4	42
122	Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosystems, 2015, 18, 419-430.	2.4	56
123	Greenwall classification and critical design-management assessments. Ecological Engineering, 2015, 77, 348-362.	3.6	53
124	The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 2015, 45, 610-623.	16.4	245
125	Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems, 2015, 30, 43-54.	1.8	251
126	Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs. Renewable Energy, 2015, 80, 595-603.	8.9	71
127	Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Building and Environment, 2015, 92, 713-723.	6.9	37

#	ARTICLE	IF	CITATIONS
128	Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecological Engineering, 2015, 82, 66-80.	3.6	97
129	Total U.S. cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking. Solar Energy, 2015, 117, 89-98.	6.1	23
130	Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators. Building and Environment, 2015, 93, 376-384.	6.9	45
131	Influence of plant coverage on the total green roof energy balance and building energy consumption. Energy and Buildings, 2015, 103, 1-13.	6.7	67
132	Assessing climate-adaptation effect of extensive tropical green roofs in cities. Landscape and Urban Planning, 2015, 138, 54-70.	7.5	90
133	The joint influence of albedo and insulation on roof performance: An observational study. Energy and Buildings, 2015, 93, 249-258.	6.7	36
134	Experimental study of altitude and orientation effects on heat transfer over polystyrene insulation material. Journal of Thermal Analysis and Calorimetry, 2015, 122, 281-293.	3.6	20
135	Environmental Benefits of Retrofitting Green Roofs to a City Block. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	11
136	Technical and economic analysis of green roofs to reduce building cooling needs., 2015,, 349-378.		3
137	Influence of vegetation damage on urban cooling effects. , 2015, , 325-347.		1
138	Cool green roofs for reducing building cooling needs. , 2015, , 307-324.		1
139	Quality assessment of harvested rainwater from green roofs under tropical climate. Desalination and Water Treatment, 0, , 1-8.	1.0	8
140	A multi-criteria methodology for comparing the energy and environmental behavior of cool, green and traditional roofs. Building and Environment, 2015, 90, 71-81.	6.9	117
141	Regenerative Design of Existing Buildings for Net-Zero Energy Use. Procedia Engineering, 2015, 118, 72-80.	1.2	39
142	Do eco-districts support the regional growth of cleantech firms? Notes from Stockholm. Cities, 2015, 49, 113-120.	5.6	6
143	Effects of varying organic matter content on the development of green roof vegetation: A six year experiment. Ecological Engineering, 2015, 82, 301-310.	3.6	22
144	Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 669-679.	16.4	107
145	Green roofs in Mediterranean areas – Survey and maintenance planning. Building and Environment, 2015, 94, 131-143.	6.9	31

#	Article	IF	Citations
146	Microclimatic effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy and Buildings, 2015, 88, 214-228.	6.7	74
147	A critical analysis of factors affecting photovoltaic-green roof performance. Renewable and Sustainable Energy Reviews, 2015, 43, 264-280.	16.4	58
148	Effects of recycled aggregate growth substrate on green roof vegetation development: A six year experiment. Landscape and Urban Planning, 2015, 135, 22-31.	7.5	66
149	Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 2015, 86, 74-85.	6.7	52
150	Effect of substrate depth on initial growth and drought tolerance of Sedum lineare in extensive green roof system. Ecological Engineering, 2015, 74, 408-414.	3.6	24
151	Analysis of thermal effects of vegetated envelopes: Integration of a validated model in a building energy simulation program. Energy and Buildings, 2015, 86, 93-103.	6.7	92
152	Numerical study of the impact of vegetation coverings on sound levels and time decays in a canyon street model. Science of the Total Environment, 2015, 502, 22-30.	8.0	20
153	Review of sustainability in buildings. Sustainable Cities and Society, 2015, 14, 171-177.	10.4	31
154	Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings, 2016, 6, 48.	3.1	22
156	Thermal Storage Systems Assessment for Energy Sustainability in Housing Units. Sustainability, 2016, 8, 413.	3.2	0
157	The Energy Impact in Buildings of Vegetative Solutions for Extensive Green Roofs in Temperate Climates. Buildings, 2016, 6, 33.	3.1	13
158	An Insight into the Commercial Viability of Green Roofs in Australia. Sustainability, 2016, 8, 603.	3.2	16
159	A HYDRUS model for irrigation management of green roofs with a water storage layer. Ecological Engineering, 2016, 95, 399-408.	3.6	42
160	Phylogenetic ecology and the greening of cities. Journal of Applied Ecology, 2016, 53, 1470-1476.	4.0	29
161	Air temperature cooling by extensive green roofs in Toronto Canada. Ecological Engineering, 2016, 95, 36-42.	3.6	56
162	Renewable energy sources-integrated refurbishment approach for low-rise residential prefabricated building in Belgrade, Serbia. Indoor and Built Environment, 2016, 25, 1016-1023.	2.8	11
163	Minimax Analysis of Economic and Energy Efficiencies of Heat-Supply Pipelines. Journal of Engineering Physics and Thermophysics, 2016, 89, 1401-1409.	0.6	1
164	Influence of Green Roofs on Early Morning Mixing Layer Depths in Mexico City. Journal of Solar Energy Engineering, Transactions of the ASME, 2016, 138, .	1.8	6

#	Article	IF	CITATIONS
165	Green Control of Microclimate in Buildings. Agriculture and Agricultural Science Procedia, 2016, 8, 576-582.	0.6	23
166	Automated 3D Model Reconstruction to Support Energy-efficiency. Procedia Engineering, 2016, 145, 571-578.	1.2	4
167	Electric energy storage design decision method for demand responsive buildings. Energy and Buildings, 2016, 126, 139-145.	6.7	12
168	Storm water retention and actual evapotranspiration performances of experimental green roofs in French oceanic climate. European Journal of Environmental and Civil Engineering, 2016, 20, 344-362.	2.1	22
171	Real-time temperature monitoring for Traditional gravel ballasted and Extensive green roofs: A Lebanese case study. Energy and Buildings, 2016, 133, 197-205.	6.7	13
172	Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 2016, 133, 834-842.	6.7	337
173	Probabilistic private cost-benefit analysis for green roof installation: A Monte Carlo simulation approach. Urban Forestry and Urban Greening, 2016, 20, 317-327.	5.3	51
174	Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183, 1428-1440.	10.1	86
175	Reduction of temperatures and temperature fluctuations by hydroponic green roofs in a subtropical urban climate. Energy and Buildings, 2016, 129, 174-185.	6.7	18
176	The suitability of crushed porcelain and foamed glass as alternatives to heat-expanded shale in green roof substrates: An assessment of plant growth, substrate moisture, and thermal regulation. Ecological Engineering, 2016, 94, 244-254.	3.6	20
177	Economic assessments of passive thermal rehabilitations of dwellings in Mediterranean climate. Energy and Buildings, 2016, 128, 772-784.	6.7	13
178	Determinants of household carbon emissions: Pathway toward eco-community in Beijing. Habitat International, 2016, 57, 175-186.	5.8	33
179	Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion. Journal of Micromechanics and Microengineering, 2016, 26, 124012.	2.6	13
180	Steady-state and transient thermal measurements of green roof substrates. Energy and Buildings, 2016, 131, 123-131.	6.7	34
181	Heat flux and seasonal thermal performance of an extensive green roof. Building and Environment, 2016, 107, 235-244.	6.9	43
182	The adoption of green roofs for the retrofitting of existing buildings in the Mediterranean climate. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 116-129.	1.0	41
183	Roof cooling by direct evaporation from a porous layer. Energy and Buildings, 2016, 127, 521-528.	6.7	31
184	Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustainable Cities and Society, 2016, 27, 106-115.	10.4	178

#	Article	IF	CITATIONS
185	Applying artificial intelligence modeling to optimize green roof irrigation. Energy and Buildings, 2016, 127, 360-369.	6.7	58
186	Potential for improving green roof performance through artificial irrigation. , 2016, , .		3
187	Drought versus heat: What's the major constraint on Mediterranean green roof plants?. Science of the Total Environment, 2016, 566-567, 753-760.	8.0	35
188	Green roofs energy performance in Mediterranean climate. Energy and Buildings, 2016, 116, 318-325.	6.7	146
189	The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 2016, 121, 217-229.	6.7	235
190	A review of underground building towards thermal energy efficiency and sustainable development. Renewable and Sustainable Energy Reviews, 2016, 60, 692-713.	16.4	64
191	Urban versus conventional agriculture, taxonomy of resource profiles: a review. Agronomy for Sustainable Development, 2016, 36, 1.	5. 3	107
192	An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption. Applied Energy, 2016, 169, 682-695.	10.1	85
193	Sensitivity analysis of a green roof. International Journal of Green Energy, 2016, 13, 260-266.	3.8	5
194	Modeling green wall interactions with street canyons for building energy simulation in urban context. Urban Climate, 2016, 16, 75-85.	5.7	49
195	The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry and Urban Greening, 2016, 15, 89-102.	5 . 3	142
196	The impacts of applying typical and aesthetically–thermally optimized TiO2 pigmented coatings on cooling and heating load demands of a typical residential building in various climates of Iran. Energy and Buildings, 2016, 113, 99-111.	6.7	23
197	A composite cool colored tile for sloped roofs with high  equivalent' solar reflectance. Energy and Buildings, 2016, 114, 221-226.	6.7	28
198	Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy, 2016, 50, 38-47.	5.6	186
199	Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, 2016, 85, 1106-1115.	8.9	157
200	Sustainability of Rooftop Technologies in Cold Climates: Comparative Life Cycle Assessment of White Roofs, Green Roofs, and Photovoltaic Panels. Journal of Industrial Ecology, 2016, 20, 249-262.	5.5	35
201	Increasing green roof plant drought tolerance through substrate modification and the use of water retention gels. Urban Water Journal, 2017, 14, 551-560.	2.1	23
202	Evaluating the impact of green roof evapotranspiration on annual building energy performance. International Journal of Green Energy, 2017, 14, 479-489.	3.8	40

#	Article	IF	Citations
203	Impact of soil and water retention characteristics on green roof thermal performance. Energy and Buildings, 2017, 152, 830-842.	6.7	30
204	A review on house design with energy saving system in the UK. Renewable and Sustainable Energy Reviews, 2017, 71, 29-52.	16.4	16
205	Heterogeneous model for heat transfer in Green Roof Systems. Energy and Buildings, 2017, 139, 205-213.	6.7	13
206	Green roofs in temperate climate cities in Europe – An analysis of key decision factors. Urban Forestry and Urban Greening, 2017, 21, 224-234.	5.3	82
207	Sound insulation of lightweight extensive green roofs. Building and Environment, 2017, 116, 130-139.	6.9	28
208	A neighbourhood-scale estimate for the cooling potential of green roofs. Urban Climate, 2017, 20, 33-45.	5.7	14
209	Sustainable Building and Built Environments to Mitigate Climate Change in the Tropics. , 2017, , .		3
210	Energy-saving analysis for the Modern Wing of the Art Institute of Chicago and green city strategies. Renewable and Sustainable Energy Reviews, 2017, 73, 714-729.	16.4	5
211	Promoting green buildings: Do <scp>C</scp> hinese consumers care about green building enhancements?. International Journal of Consumer Studies, 2017, 41, 545-557.	11.6	30
212	Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy, 2017, 129, 138-147.	8.8	106
213	Effect of substrate depth, vegetation type, and season on green roof thermal properties. Energy and Buildings, 2017, 145, 174-187.	6.7	73
214	Optimizing angles of rooftop photovoltaics, ratios of solar to vegetated roof systems, and economic benefits, in Portland, Oregon, USA. Environment Systems and Decisions, 2017, 37, 320-331.	3.4	5
215	Does Compost Selection Impact Green Roof Substrate Performance? Measuring Physical Properties, Plant Development, and Runoff Water Quality. Compost Science and Utilization, 2017, 25, 231-241.	1.2	11
216	Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 2017, 162, 71-86.	4.1	611
217	Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 2017, 21, 1-26.	5.7	92
218	Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making. Journal of Cleaner Production, 2017, 142, 2046-2059.	9.3	82
219	Tenants' Decision to or not to Lease Green & Non-green Buildings: A Conceptual Framework. Procedia Engineering, 2017, 180, 1551-1557.	1.2	3
220	An examination of factors affecting healthy building: An empirical study in east China. Journal of Cleaner Production, 2017, 162, 1266-1274.	9.3	23

#	Article	IF	CITATIONS
221	Investigation on the cooling performance of a green roof with a radiant cooling system. Energy and Buildings, 2017, 149, 26-37.	6.7	21
222	Evaluating the Thermal Performance of Retrofitted Lightweight Green Roofs and Walls in Sydney and Rio de Janeiro. Procedia Engineering, 2017, 180, 231-240.	1.2	20
223	Estimation and projection of institutional building electricity consumption. Energy and Buildings, 2017, 143, 43-52.	6.7	7
224	Thermal diffusivity measurement of Phyllostachys edulis (Moso bamboo) by the flash method. Holzforschung, 2017, 71, 349-354.	1.9	4
225	Substrates for cultivating herbaceous perennial plants in extensive green roofs. Ecological Engineering, 2017, 102, 662-669.	3.6	15
226	Programmable Kiriâ€Kirigami Metamaterials. Advanced Materials, 2017, 29, 1604262.	21.0	211
227	Application of mixed-mode research paradigms to the building sector: A review and case study towards decarbonising the built and natural environment. Sustainable Cities and Society, 2017, 35, 692-714.	10.4	18
228	Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy and Buildings, 2017, 156, 218-224.	6.7	95
229	Energy in buildingsâ€"Policy, materials and solutions. MRS Energy & Sustainability, 2017, 4, 1.	3.0	19
230	Sedum â€"Annual plant interactions on green roofs: Facilitation, competition and exclusion. Ecological Engineering, 2017, 108, 318-329.	3.6	27
231	Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. Theory and Practice of Urban Sustainability Transitions, 2017, , 15-27.	1.9	39
232	Study on heat fluxes of green roofs based on an improved heat and mass transfer model. Energy and Buildings, 2017, 152, 175-184.	6.7	24
233	Retrofitted green roofs and walls and improvements in thermal comfort. AIP Conference Proceedings, 2017, , .	0.4	6
234	On a solar reflective ceramic based glaze for asphalt shingle. Ceramics International, 2017, 43, 14710-14717.	4.8	2
235	Sustainable roof selection: Environmental and contextual factors to be considered in choosing a vegetated roof or rooftop solar photovoltaic system. Sustainable Cities and Society, 2017, 35, 241-249.	10.4	25
236	Green roof evolution through exemplars: Germinal prototypes to modern variants. Sustainable Cities and Society, 2017, 35, 69-82.	10.4	28
237	Resource Efficiency and Waste Avoidance. Urban Agriculture, 2017, , 263-276.	0.5	1
239	Multi-performance retrofits to commercial buildings in seismic zones. Journal of Structural Integrity and Maintenance, 2017, 2, 133-142.	1.5	6

#	ARTICLE	IF	CITATIONS
240	Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban Forestry and Urban Greening, 2017, 28, 167-176.	5.3	138
241	Thermal behavior of green roofs under Nordic winter conditions. Building and Environment, 2017, 122, 206-214.	6.9	32
242	Case study investigation of the building physical properties of seven different green roof systems. Energy and Buildings, 2017, 151, 564-573.	6.7	29
243	Seasonal variability of temperature profiles of vegetative and traditional gravel-ballasted roofs: A case study for Lebanon. Energy and Buildings, 2017, 151, 358-364.	6.7	10
244	Water-to-air-heat exchanger and indirect evaporative cooling in buildings with green roofs. Energy and Buildings, 2017, 151, 406-417.	6.7	35
245	Relationship between Sustainable Technology and Building Age: Evidence from Australia. Procedia Engineering, 2017, 180, 1131-1138.	1.2	10
246	Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs. Science of the Total Environment, 2017, 603-604, 340-351.	8.0	44
247	Energy saving evaluation of passive systems for residential buildings in hot and dry regions. Renewable and Sustainable Energy Reviews, 2017, 68, 432-446.	16.4	75
248	Do green roofs cool the air?. Building and Environment, 2017, 111, 249-255.	6.9	84
249	Evaluation of wall surface temperatures in green facades. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2017, 170, 334-344.	0.7	14
250	The Economics of Climate Mitigation: Exploring the Relative Significance of the Incentives for and Barriers to Low-carbon Investment in Urban Areas. Urbanisation, 2017, 2, 38-58.	0.6	14
251	Simulation of Thin Green Roof for Summer in Seoul. International Journal of Air-Conditioning and Refrigeration, 2017, 25, 1750034.	0.7	1
252	Rooftop Urban Agriculture. Urban Agriculture, 2017, , .	0.5	27
253	A wedge strategy for mitigation of urban warming in future climate scenarios. Atmospheric Chemistry and Physics, 2017, 17, 9067-9080.	4.9	39
254	How to Construct Green Roofs on the Tops of Existing Buildings: A Case Study in Shanghai., 2017,,.		0
255	Thermal comfort and runoff water quality performance on green roofs in tropical conditions. , 2017, 1, 47-55.		7
256	Identifying and Prioritizing Green Building Parameters in the Implementation of Sustainable Development Management with an Energy Approach. , 2017, , .		0
257	Zero-Acreage Farming: Challenges and Opportunities for Urban Policies and Partnerships. Urban Agriculture, 2017, , 163-180.	0.5	0

#	Article	IF	CITATIONS
258	Role of extensive green roofs for healthy cities. Acta Horticulturae, 2017, , 33-42.	0.2	1
259	Applications of SuDS Techniques in Harvesting Stormwater for Landscape Irrigation Purposes: Issues and Considerations., 2017,,.		2
260	Study on application of concrete sandwich insulation material in library building insulation. IOP Conference Series: Materials Science and Engineering, 2017, 207, 012094.	0.6	1
261	Cost-Effective Energy Refurbishment of Prefabricated Buildings in Serbia. , 2017, , 455-487.		4
262	Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs. Materials, 2017, 10, 527.	2.9	20
263	Two-Stage Integer Programing Model for Building Retrofit Planning for Energy Saving in South Korea. Sustainability, 2017, 9, 2087.	3.2	6
264	Measurement of Thermal Properties of Growing Media for Green Roofs: Assessment of a Laboratory Procedure and Experimental Results. Buildings, 2017, 7, 99.	3.1	10
265	Cement blocks with EVA waste for extensive modular green roof: contribution of the components for thermal insulation. Revista IBRACON De Estruturas E Materiais, 2017, 10, 92-106.	0.6	4
266	Evaluating approaches for district-wide energy model calibration considering the Urban Heat Island effect. Applied Energy, 2018, 215, 31-40.	10.1	24
268	Thermal regulation capacity of a green roof system in the mediterranean region: The effects of vegetation and irrigation level. Energy and Buildings, 2018, 164, 226-238.	6.7	37
269	Life cycle analysis of a new modular greening system. Science of the Total Environment, 2018, 627, 1146-1153.	8.0	42
270	Energy Savings and Economic Impact of Green Roofs: A Pilot Study. Emerging Markets Finance and Trade, 2018, 54, 1778-1792.	3.1	7
271	A Global Geospatial Ecosystem Services Estimate of Urban Agriculture. Earth's Future, 2018, 6, 40-60.	6.3	142
272	Investigating the urban heat island effect of transit oriented development in Brisbane. Journal of Transport Geography, 2018, 66, 116-124.	5.0	56
273	Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 2018, 90, 757-773.	16.4	415
274	A comprehensive study on green roof performance for retrofitting existing buildings. Building and Environment, 2018, 136, 227-239.	6.9	136
275	Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosystems, 2018, 21, 429-446.	2.4	48
276	Identifying and assessing the critical criteria affecting decision-making for green roof type selection. Sustainable Cities and Society, 2018, 39, 772-783.	10.4	63

#	Article	IF	CITATIONS
277	Thermal inertia assessment of an experimental extensive green roof in summer conditions. Building and Environment, 2018, 131, 264-276.	6.9	48
278	Action for increasing energy-saving behaviour in student residences at Rhodes University, South Africa. International Journal of Sustainability in Higher Education, 2018, 19, 773-789.	3.1	21
279	Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Climate, 2018, 23, 260-286.	5.7	52
280	Ecological and economic impacts of green roofs and permeable pavements at the city level: the case of Corvallis, Oregon. Journal of Environmental Planning and Management, 2018, 61, 430-450.	4.5	20
281	Enhancing the environmental performance of industrial settlements: An economic evaluation of extensive green roof competitiveness. Building and Environment, 2018, 127, 58-68.	6.9	45
282	Uncovering the culprits of air pollution: Evidence from China's economic sectors and regional heterogeneities. Journal of Cleaner Production, 2018, 171, 1481-1493.	9.3	58
283	Energy and Carbon-Emission Analysis of Integrated Green-Roof Photovoltaic Systems: Probabilistic Approach. Journal of Infrastructure Systems, 2018, 24, .	1.8	17
284	Air-conditioning condensate recovery and applicationsâ€"Current developments and challenges ahead. Sustainable Cities and Society, 2018, 37, 263-274.	10.4	56
285	Mechanical Behavior of Nine Tree-Pool Joints Between Large Trees and Buildings. KSCE Journal of Civil Engineering, 2018, 22, 2923-2933.	1.9	1
286	The Laboratory Definition of the Thermal Resistance of Growing Media for Green Roofs: New Experimental Setups. Buildings, 2018, 8, 139.	3.1	1
287	Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. Journal of Materials Chemistry A, 2018, 6, 20769-20777.	10.3	49
288	Low/Zero-Carbon Buildings for a Sustainable Future. , 2018, , .		1
289	Economic and environmental sustainability and public perceptions of rooftop farm versus extensive garden. Building and Environment, 2018, 146, 206-215.	6.9	37
290	Green roofs and facades: A comprehensive review. Renewable and Sustainable Energy Reviews, 2018, 82, 915-939.	16.4	349
291	CO2 Payoff of Extensive Green Roofs with Different Vegetation Species. Sustainability, 2018, 10, 2256.	3.2	46
292	A critical review of heat and mass transfer in vegetative roof models used in building energy and urban environment simulation tools. Applied Energy, 2018, 232, 752-764.	10.1	36
293	Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. Water (Switzerland), 2018, 10, 262.	2.7	21
294	Attenuating heat stress through green roof and green wall retrofit. Building and Environment, 2018, 140, 11-22.	6.9	61

#	Article	IF	CITATIONS
295	Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy and Buildings, 2018, 173, 150-162.	6.7	87
296	Literature review on renovation of multifamily buildings in temperate climate conditions. Energy and Buildings, 2018, 172, 414-431.	6.7	39
297	Measuring thermal conductivity of green-walls components in controlled conditions. Journal of Building Engineering, 2018, 19, 258-265.	3.4	22
298	Criteria weighting for green technology selection as part of retrofit decision making process for existing non-domestic buildings. Sustainable Cities and Society, 2018, 41, 625-638.	10.4	23
299	Experimental assessment of the thermal behavior of a living wall system in semi-arid environments of central Mexico. Energy and Buildings, 2018, 174, 31-43.	6.7	17
300	Debris Motion Initiation. , 2018, , 19-38.		0
301	The effects of green building on construction waste minimization: Triangulating  big data' with  thick data'. Waste Management, 2018, 79, 142-152.	7.4	49
302	Indoor Air Quality and Thermal Conditions in a Primary School with a Green Roof System. Atmosphere, 2018, 9, 75.	2.3	16
303	Performance of Blue-Green Roofs in Cold Climates: A Scoping Review. Buildings, 2018, 8, 55.	3.1	33
304	Barriers to Adoption of Sustainable Technologies for Energy-Efficient Building Upgradeâ€"Semi-Structured Interviews. Buildings, 2018, 8, 57.	3.1	49
305	Green retrofit of aged residential buildings in Hong Kong: A preliminary study. Building and Environment, 2018, 143, 89-98.	6.9	68
306	Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments. Sustainability, 2018, 10, 309.	3.2	35
307	Plant Communities Suitable for Green Roofs in Arid Regions. Sustainability, 2018, 10, 1755.	3.2	9
308	The Role of Green Roofs on Microclimate Mitigation Effect to Local Climates in Summer. International Journal of Environmental Research, 2018, 12, 671-679.	2.3	16
309	Construction and design requirements of green buildings' roofs in Saudi Arabia depending on thermal conductivity principle. Construction and Building Materials, 2018, 186, 1119-1131.	7.2	28
310	A bibliometric review of green building research 2000–2016. Architectural Science Review, 2019, 62, 74-88.	2.2	196
311	Analysis and comparison of two vegetative roof heat and mass transfer models in three different climates. Energy and Buildings, 2019, 202, 109367.	6.7	7
312	Problems and benefits of using green roofs in Poland. IOP Conference Series: Earth and Environmental Science, 2019, 214, 012076.	0.3	6

#	Article	IF	CITATIONS
313	Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018). Sustainability, 2019, 11, 3716.	3.2	87
314	Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 2019, 162, 106273.	6.9	106
315	The impact of greenery systems on building energy: Systematic review. Journal of Building Engineering, 2019, 26, 100887.	3.4	26
316	Evaluation of cost-effective building retrofit strategies through soft-linking a metamodel-based Bayesian method and a life cycle cost assessment method. Applied Energy, 2019, 253, 113573.	10.1	22
317	Parametric simulation study for green roof retrofit over high performance solar house prototype "EFdeN Signature― E3S Web of Conferences, 2019, 111, 04012.	0.5	0
318	Devices for promising applications. , 2019, , 247-314.		0
321	Smart utilization of solar energy with Optic-Variable Wall (OVW) for thermal comfort. Energy and Buildings, 2019, 202, 109376.	6.7	5
322	Influence of environmental factors on retention of extensive green roofs with different substrate composition. E3S Web of Conferences, 2019, 86, 00026.	0.5	3
323	A Review on Building Energy Savings Strategies and Systems (BE3S)., 2019,,.		4
324	Developing sustainable design guidelines for roof design in a hot arid climate. Architectural Science Review, 2019, 62, 507-519.	2.2	12
325	Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water (Switzerland), 2019, 11, 2016.	2.7	20
326	Factors Influencing Residents' Intention toward Green Retrofitting of Existing Residential Buildings. Sustainability, 2019, 11, 4246.	3.2	28
327	An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. Journal of Environmental Management, 2019, 232, 654-659.	7.8	16
328	Hydrological Performance Assessment for Green Roof with Various Substrate Depths and Compositions. KSCE Journal of Civil Engineering, 2019, 23, 1860-1871.	1.9	12
329	Modeling, Monitoring, and Validating Green Roof and Green Facade Solutions with Semantic City Models Using Low Cost Sensors and Open Software Infrastructures. Urban Science, 2019, 3, 39.	2.3	2
330	Long term experimental analysis of thermal performance of extensive green roofs with different substrates in Mediterranean climate. Energy and Buildings, 2019, 197, 18-33.	6.7	27
331	Green Roof Design: State of the Art on Technology and Materials. Sustainability, 2019, 11, 3020.	3.2	130
332	Green roof retrofitting of a lightweight security booth under subtropical conditions. Urban Forestry and Urban Greening, 2019, 43, 126361.	5.3	1

#	Article	IF	CITATIONS
333	Thermal behaviour of a green roof containing insulation cork board. An experimental characterization using a bioclimatic chamber. Building and Environment, 2019, 160, 106179.	6.9	24
334	Case-based reasoning approach for supporting building green retrofit decisions. Building and Environment, 2019, 160, 106210.	6.9	41
335	Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO2 Emissions. Sustainability, 2019, 11, 2055.	3.2	22
336	Changes in Temperature and Moisture Content of an Extensive-Type Green Roof. Sustainability, 2019, 11, 2498.	3.2	17
337	Evaluating the effects of green building on construction waste management: A comparative study of three green building rating systems. Building and Environment, 2019, 155, 247-256.	6.9	91
338	Numerical simulation and experiments with green roofs for increasing indoor thermal comfort. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2019, 42, 346-356.	1.1	6
339	Value of Sedum species as companion plants for nectar-producing plants depends on leaf characteristics of the Sedum. Urban Forestry and Urban Greening, 2019, 39, 35-44.	5 . 3	9
340	Drainage and water storage capacity of insulation cork board applied as a layer on green roofs. Construction and Building Materials, 2019, 209, 52-65.	7.2	26
341	Introducing nature-based solutions into urban policy – facts and gaps. Case study of PoznaÅ,,. Land Use Policy, 2019, 85, 161-175.	5 . 6	55
342	Hydrological performance of extensive green roofs in response to different rain events in a subtropical monsoon climate. Landscape and Ecological Engineering, 2019, 15, 297-313.	1.5	20
343	Biodiversity impact assessment of building's roofs based on Life Cycle Assessment methods. Building and Environment, 2019, 158, 133-144.	6.9	17
344	Green envelope as an architectural strategy for energy efficiency in a library building. MATEC Web of Conferences, 2019, 266, 01004.	0.2	3
345	Is plant survival on green roofs related to their drought response, water use or climate of origin?. Science of the Total Environment, 2019, 667, 25-32.	8.0	39
346	Analysis of the environmental thermal comfort conditions in public squares in the semiarid region of northeastern Brazil. Building and Environment, 2019, 152, 145-159.	6.9	23
347	Green roof perceptions: Newcastle, UK CBD owners/occupiers. Journal of Corporate Real Estate, 2019, 21, 130-147.	1.9	7
348	Constraints of green roof system implementation in Malaysia. AIP Conference Proceedings, 2019, , .	0.4	4
349	Image Processing for Sustainable Remodeling: Introduction to Real-time Quality Inspection System of External Wall Insulation Works. Sustainability, 2019, 11, 1081.	3.2	9
350	Bioclimatic Approach: Thermal Environment. Design Science and Innovation, 2019, , 243-278.	0.3	1

#	Article	IF	CITATIONS
351	Mitigating the Local Climatic Change and Fighting Urban Vulnerability., 2019, , 223-307.		1
352	What are the root causes hindering the implementation of green roofs in urban China?. Science of the Total Environment, 2019, 654, 742-750.	8.0	53
353	Refurbishment of office buildings in New Zealand: identifying priorities for reducing environmental impacts. International Journal of Life Cycle Assessment, 2019, 24, 1480-1495.	4.7	13
354	Consolidating the current knowledge on urban agriculture in productive urban food systems: Learnings, gaps and outlook. Journal of Cleaner Production, 2019, 209, 1637-1655.	9.3	93
355	The Role of Green Roofs and Living Walls as WSUD Approaches in a Dry Climate. , 2019, , 409-430.		3
356	Is Cheonggyecheon sustainable? A systematic literature review of a stream restoration in Seoul, South Korea. Sustainable Cities and Society, 2019, 45, 59-69.	10.4	13
357	Ecological network analysis of growing tomatoes in an urban rooftop greenhouse. Science of the Total Environment, 2019, 651, 1495-1504.	8.0	42
358	Assessing the hydrological behaviour of large-scale potential green roofs retrofitting scenarios in Beijing. Urban Forestry and Urban Greening, 2019, 40, 105-113.	5.3	24
359	Integrating cost-benefits analysis and life cycle assessment of green roofs: a case study in Florida. Human and Ecological Risk Assessment (HERA), 2020, 26, 443-458.	3.4	19
360	Exploring the environmental influence on BIM adoption for refurbishment project using structural equation modelling. Architectural Engineering and Design Management, 2020, 16, 41-57.	1.7	13
361	An exploration of green roofs for indoor and exterior temperature regulation in the South African interior. Environment, Development and Sustainability, 2020, 22, 5025-5044.	5.0	4
362	Thermal and hydrological performance of extensive green roofs in Amazon climate, Brazil. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2020, 173, 125-134.	0.7	2
363	Theoretical Study of "Green Roof―Energy Efficiency. Advances in Intelligent Systems and Computing, 2020, , 186-198.	0.6	2
365	Life cycle assessment of seismic retrofit alternatives for reinforced concrete frame buildings. Journal of Building Engineering, 2020, 28, 101064.	3.4	17
366	Is there an economic case for energy-efficient dwellings in the UK private rental market?. Journal of Cleaner Production, 2020, 245, 118642.	9.3	21
367	Effects of plant density and cutting-type on rooting and growth of an extensive green roof of Sedum sediforme (Jacq.) Pau in a Mediterranean environment. Scientia Horticulturae, 2020, 262, 109091.	3.6	6
368	A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment, 2020, 711, 134731.	8.0	168
369	Green roof heat and mass transfer mathematical models: A review. Building and Environment, 2020, 170, 106634.	6.9	18

#	Article	IF	CITATIONS
370	Multi-criteria assessment approach for a residential building retrofit in Norway. Energy and Buildings, 2020, 215, 109668.	6.7	44
371	Thermal resistance of growing media for green roofs: To what extent does the absence of specific reference values potentially affect the global thermal resistance of the green roof? An experimental example. Journal of Building Engineering, 2020, 28, 101076.	3.4	13
372	Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. Journal of Cleaner Production, 2020, 250, 119443.	9.3	26
373	An integrated sustainable and profitable approach of energy efficiency in heritage buildings. Journal of Cleaner Production, 2020, 251, 119516.	9.3	25
374	A system dynamics analysis of the alternative roofing market and its potential impacts on urban environmental problems: A case study in Orlando, Florida. Resources, Conservation and Recycling, 2020, 153, 104556.	10.8	7
375	Environmental performances and energy efficiencies of various urban green infrastructures: A life-cycle assessment. Journal of Cleaner Production, 2020, 248, 119244.	9.3	32
376	A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management. Energies, 2020, 13, 4621.	3.1	9
377	Assessment of recycled or locally available materials as green roof substrates. Ecological Engineering, 2020, 156, 105966.	3.6	31
378	Microclimate and urban morphology effects on building energy demand in different European cities. Energy and Buildings, 2020, 224, 110129.	6.7	47
379	Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 2020, 5, 794-802.	39.5	180
380	Analysis of Challenges and Opportunities for Low-Impact Development Techniques in Urbanizing Catchments of the Coastal City of Chennai, India: Case Study. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	3
381	Passive components for reducing environmental impacts of buildings:analysis of an experimental green roof., 2020,,.		9
382	Smart Solutions for Sustainable Citiesâ€"The Re-Coding Experience for Harnessing the Potential of Urban Rooftops. Applied Sciences (Switzerland), 2020, 10, 7112.	2.5	17
383	The effects of growth form on the impact of companion planting of nectar-producing plant species with Sedum album for extensive green roofs. Urban Forestry and Urban Greening, 2020, 56, 126875.	5.3	5
384	Greening the Browns: A Bio-Based Land Use Framework for Analysing the Potential of Urban Brownfields in an Urban Circular Economy. Sustainability, 2020, 12, 6278.	3.2	14
385	Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 2020, 12, 10000.	3.2	28
386	A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment. Sustainability, 2020, 12, 8529.	3.2	13
387	The willingness and perception of people regarding green roofs installation. Environmental Science and Pollution Research, 2020, 27, 25703-25714.	5.3	19

#	Article	IF	CITATIONS
388	Effects of capillary wicking irrigation on soil moisture, plant growth and surface temperature of green roof with rain storage. Water Science and Technology: Water Supply, 2020, 20, 1617-1628.	2.1	1
389	Sustainable Banking; Evaluation of the European Business Models. Sustainability, 2020, 12, 2314.	3.2	37
390	Energy-saving potential of 3D printed concrete building with integrated living wall. Energy and Buildings, 2020, 222, 110110.	6.7	70
391	Comparison of thermal performance between green roofs and conventional roofs. Case Studies in Thermal Engineering, 2020, 21, 100697.	5.7	24
392	Passive cooling with a hybrid green roof for extreme climates. Energy and Buildings, 2020, 224, 110243.	6.7	19
393	Comparison between cork-based and conventional green roof solutions. Building and Environment, 2020, 175, 106812.	6.9	13
394	Decision Support Systems in Construction: A Bibliometric Analysis. Buildings, 2020, 10, 108.	3.1	17
395	Accurate Suitability Evaluation of Large-Scale Roof Greening Based on RS and GIS Methods. Sustainability, 2020, 12, 4375.	3.2	10
396	Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. International Journal of Mechanical Sciences, 2020, 186, 105889.	6.7	56
397	Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 2020, 256, 120749.	9.3	88
398	Techno-economic inquiry into implementation barriers in Green Roof adoption as an energy retrofit measure in temperate climates: UK Study IOP Conference Series: Earth and Environmental Science, 2020, 410, 012014.	0.3	2
399	Photovoltaic-green roofs: A review of benefits, limitations, and trends. Solar Energy, 2020, 202, 485-497.	6.1	88
400	The Impact of Living Wall on Building Passive Cooling: A Systematic Review and Initial Test. IOP Conference Series: Earth and Environmental Science, 2020, 448, 012120.	0.3	5
401	A comparative thermal properties evaluation for residential window retrofit solutions for U.S. markets. Advances in Building Energy Research, 2021, 15, 87-116.	2.3	3
402	Investigation of single-storey residential green roof contribution to buildings energy demand reduction in different climate zones of Iran. International Journal of Green Energy, 2021, 18, 100-110.	3.8	11
403	Towards a performance-based approach for multifunctional green roofs: An interdisciplinary review. Building and Environment, 2021, 188, 107489.	6.9	38
404	Trends and gaps in global research of greenery systems through a bibliometric analysis. Sustainable Cities and Society, 2021, 65, 102608.	10.4	22
405	The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Science of the Total Environment, 2021, 756, 143876.	8.0	62

#	Article	IF	CITATIONS
406	Potential application of extensive green roofs in bus stops - Malaysia. AIP Conference Proceedings, 2021, , .	0.4	1
407	Nature-Based-Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-Benefits, and Trade-offs in a Geographical Multi-Scale Perspective. , 2021, , 1-52.		O
408	Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure. Sustainability, 2021, 13, 753.	3.2	42
410	A Preliminary Study on Green Building 3D Modelling Energy-saving Design Combined with Traditional Ecological Concepts. E3S Web of Conferences, 2021, 237, 03021.	0.5	2
412	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective., 2021,, 1-52.		0
413	Green infrastructure for air quality improvement in street canyons. Environment International, 2021, 146, 106288.	10.0	118
414	Developing Urban Green Spaces and Effective Use of Rooftop Spaces for Cooling and Urban Biodiversity., 2021,, 217-240.		0
415	Comparative study of the different materials combinations used for roof insulation in Iraq. Materials Today: Proceedings, 2021, 42, 2285-2289.	1.8	1
416	Nature-Based Solutions and Real-Time Control: Challenges and Opportunities. Water (Switzerland), 2021, 13, 651.	2.7	22
417	The Combination of Building Greenery and Photovoltaic Energy Production—A Discussion of Challenges and Opportunities in Design. Sustainability, 2021, 13, 1537.	3.2	13
418	Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. Sustainability, 2021, 13, 1972.	3.2	4
419	Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability, 2021, 13, 2245.	3.2	26
420	Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban Forestry and Urban Greening, 2021, 58, 126992.	5. 3	87
421	Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation. Sustainability, 2021, 13, 3078.	3.2	7
422	Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit. Sustainability, 2021, 13, 4604.	3.2	6
423	Effect of Urban Heat Island and Global Warming Countermeasures on Heat Release and Carbon Dioxide Emissions from a Detached House. Atmosphere, 2021, 12, 572.	2.3	7
424	Wind and greenery effects in attenuating heat stress: A case study. Journal of Cleaner Production, 2021, 291, 125919.	9.3	8
425	How do nature-based solutions contribute to urban landscape sustainability?. Environment, Development and Sustainability, 2022, 24, 576-591.	5.0	13

#	Article	IF	CITATIONS
426	"Greening―and comfort conditions in transport infrastructure systems: Understanding users' preferences. Building and Environment, 2021, 195, 107759.	6.9	11
427	Building-integrated agriculture: Are we shifting environmental impacts? AnÂenvironmental assessment and structural improvement of urban greenhouses. Resources, Conservation and Recycling, 2021, 169, 105526.	10.8	23
428	The thermal performance of a green roof on a highly insulated building in a sub-arctic climate. Energy and Buildings, 2021, 241, 110961.	6.7	25
429	Investigation of a passive design approach for a building facility: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-19.	2.3	4
430	Alternative storm-water management scenarios for developing countries in urban contexts. Journal of Environmental Engineering and Science, 0, , 1-10.	0.8	0
431	A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus. Energies, 2021, 14, 4583.	3.1	14
432	Outdoor thermal performance of green roofs across multiple time scales: A case study in subtropical China. Sustainable Cities and Society, 2021, 70, 102909.	10.4	19
433	Use of innovative technologies of wall covering devices with modular greening systems. Vestnik MGSU, 2021, , 912-925.	0.6	1
434	Latent Heat Flux (Evapotranspiration) in Summer Season on Rooftop Greening Soil with Bamboo Charcoal Sublayer at a Building in West Japan. Geofluids, 2021, 2021, 1-12.	0.7	0
435	Green roof ecosystem services in various urban development types: A case study in Graz, Austria. Urban Forestry and Urban Greening, 2021, 62, 127167.	5.3	14
436	Experimental analysis on roof construction. Materials Today: Proceedings, 2021, , .	1.8	1
437	Green Roof Aging Effect on Physical Properties and Hydrologic Performance. Journal of Sustainable Water in the Built Environment, 2021, 7, .	1.6	5
438	Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 2021, 201, 107988.	6.9	34
439	Green and cool roof choices integrated into rooftop solar energy modelling. Applied Energy, 2021, 296, 117082.	10.1	21
440	Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change. Sustainability, 2021, 13, 9053.	3.2	4
441	Retrofitting Southern African cities: A call for appropriate rooftop greenhouse designs as climate adaptation strategy. Journal of Cleaner Production, 2021, 312, 127663.	9.3	5
442	Canopy contribution to the energy balance of a building's roof. Energy and Buildings, 2021, 244, 111000.	6.7	6
443	The simulation of the impact of the spatial distribution of vegetation on the urban microclimate: A case study in Mostaganem. Urban Climate, 2021, 39, 100976.	5.7	5

#	Article	IF	CITATIONS
444	An explorative study on the potential of green roofs providing thermal comfort conditions for indoor spaces in Kumasi, Ghana. Open House International, 2022, 47, 389-407.	1.1	3
445	Experimental comparison of summer thermal performance of green roof (GR), double skin roof (DSR) and cool roof (CR) in lightweight rooms in subtropical climate. Journal of Building Physics, 2022, 45, 809-832.	2.4	5
446	Escalation effect of fossil-based CO2 emissions improves green energy innovation. Science of the Total Environment, 2021, 785, 147257.	8.0	20
447	A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances. Sustainability, 2021, 13, 10017.	3.2	5
448	Review on the cooling potential of green roofs in different climates. Science of the Total Environment, 2021, 791, 148407.	8.0	57
449	Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning, 2021, 214, 104167.	7.5	47
450	How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary. Science of the Total Environment, 2021, 789, 148045.	8.0	23
451	Effects of conventional, extensive and semi-intensive green roofs on building conductive heat fluxes and surface temperatures in winter in Paris. Building and Environment, 2021, 205, 108202.	6.9	14
452	A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Building and Environment, 2021, 205, 108190.	6.9	39
453	Post-evaluation on energy saving reconstruction for hotel buildings, a case study in Jiangsu, China. Energy and Buildings, 2021, 251, 111316.	6.7	17
454	A structural performance-based environmental impact assessment framework for natural hazard loads. Journal of Building Engineering, 2021, 43, 102908.	3.4	2
455	Role of microbial community and plant species in performance of plant microbial fuel cells. Renewable and Sustainable Energy Reviews, 2021, 152, 111697.	16.4	36
456	Are green roofs the path to clean air and low carbon cities?. Science of the Total Environment, 2021, 798, 149313.	8.0	13
457	Visualized literature review on sustainable building renovation. Journal of Building Engineering, 2021, 44, 102622.	3.4	22
458	Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustainable Cities and Society, 2021, 75, 103313.	10.4	30
459	Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water (Switzerland), 2021, 13, 94.	2.7	12
460	Simulation of humidity and temperature distribution in green roof with pozzolana as drainage layer: Influence of outdoor seasonal weather conditions and internal ceiling temperature. Science and Technology for the Built Environment, 2021, 27, 509-523.	1.7	12
461	Green Roof as a Sustainable and Energy Efficient Construction Tool. Building Pathology and Rehabilitation, 2021, , 13-27.	0.2	1

#	Article	IF	CITATIONS
464	The Valuation of Public and Private Benefits of Green Roof Retrofit in Different Climate Conditions. Green Energy and Technology, 2020, , 145-166.	0.6	5
465	Assessment of the Green Roofs Thermal Dynamic Behavior for Increasing the Building Energy Efficiencies. Smart Innovation, Systems and Technologies, 2017, , 37-59.	0.6	2
466	Nature-Based Solutions to Climate Change Adaptation in Urban Areasâ€"Linkages Between Science, Policy and Practice. Theory and Practice of Urban Sustainability Transitions, 2017, , 1-11.	1.9	34
467	Evaluating the impact of operating energy reduction measures on embodied energy. Energy and Buildings, 2020, 226, 110340.	6.7	29
468	Integrating Hazard-Induced Damage and Environmental Impacts in Building Life-Cycle Assessments. Life-cycle of Civil Engineering Systems, 2014, , 574-581.	0.1	4
469	Mitigating Urban Heat Island Through Green Roofs. Current World Environment Journal, 2015, 10, 918-927.	0.5	30
470	Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica. Acta Biologica Szegediensis, 2019, 62, 170-179.	0.3	12
471	Investigation of the Influence of Hydrogel Amendment on the Retention Capacities of Green Roofs. Ecological Chemistry and Engineering S, 2018, 25, 373-382.	1.5	5
472	Use of Carex hirta in electro-biotechnological systems on green roofs. Regulatory Mechanisms in Biosystems, 2019, 10, 39-44.	0.6	3
473	Architectural and urban design tools for reducing energy consumption in cities. Pollack Periodica, 2013, 8, 151-161.	0.4	5
474	DolomiNet: building a network of vertical farms in the heart of Italian Alps. Acta Horticulturae, 2020, , 497-510.	0.2	2
476	Energetic Performance of a Green Roof in the Tropical Environment of La Reunion Island (Indian) Tj ETQq1 10.7	84314 rgBT	/Overlock 1
477	Physical Characteristics of and Seed Germination in Commercial Green Roof Substrates. HortTechnology, 2015, 25, 221-227.	0.9	2
478	Acoustic Evaluation Of A New Modular System For Green Roofs And Green Walls. Architecture Civil Engineering Environment, 2017, 10, 99-108.	0.6	3
479	Global research trends in green roofs: benefits, main developments and future needs. Produccion Y Limpia, 2015, 10, 173-185.	0.2	2
480	Green roofs and cool materials as retrofitting strategies for urban heat island mitigation: Case study in Belgrade, Serbia. Thermal Science, 2018, 22, 2309-2324.	1.1	17
481	Impact of the Hydrogel Amendment and the Dry Period Duration on the Green Roof Retention Capacity. Ecological Chemistry and Engineering S, 2020, 27, 357-371.	1.5	2
482	Building envelop energy efficient retrofitting options for domestic buildings in the UK. , $2013, \ldots$		2

#	Article	IF	CITATIONS
483	Construction waste management performance in green building: contextualising LEED in China. Detritus, 2020, , 125-134.	0.9	8
484	The Impact of Green Roofs on the Parameters of the Environment in Urban Areas—Review. Atmosphere, 2019, 10, 792.	2.3	33
485	Water-Energy-Food Nexus of Concave Green-Roof in SNU., 0,,.		1
486	EFFECT OF GREEN ROOF AGE ON RUNOFF WATER QUALITY IN PORTLAND, OREGON. Journal of Green Building, 2018, 13, 42-54.	0.8	7
487	A MODEL OF A NEAR-ZERO ENERGY HOME (nzeh) USING PASSIVE DESIGN STRATEGIES AND PV TECHNOLOGY IN HOT CLIMATES. Journal of Green Building, 2016, 11, 38-70.	0.8	8
489	Efficient Residential Buildings in Hot and Humid Regions: The Case of Abu Dhabi, UAE. International Journal of Thermal and Environmental Engineering, 2018, 17, 29-40.	0.4	5
490	The Analysis of Green Roof during the Summer by Numerical Method. Journal of the Korean Solar Energy Society, 2016, 36, 51-62.	0.4	3
491	Procedure for the selection and evaluation of prefabricated housing buildings for the implementation of green roofs in the context of Urban Heat Island mitigation. The example of WrocÅ,aw, Poland. PLoS ONE, 2021, 16, e0258641.	2.5	3
492	Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment. Resources, 2021, 10, 109.	3.5	19
494	Developing urban green spaces for biodiversity: a review. Landscape Ecology and Management, 2012, 17, 31-41.	0.0	0
495	Literature Review of the Potential Energy Savings and Retention Water from Green Roofs in Comparison with Conventional Ones. Environmental and Climate Technologies, 2012, 9, 40-45.	0.2	2
496	Building Energy Savings with a Green Roof. Journal of Sustainable Energy Engineering, 2013, 1, 105-112.	0.3	0
497	Interactions Between the Atmosphere and the Earth's Surface., 2013,, 145-261.		0
498	Extensive Green Roof Ecological Benefits in Latvia. , 0, , .		0
499	Methods and Techniques for Integrated Mesoscale and Microscale Analysis of Urban Thermal Behavior: The Case of Bari (Italy). Lecture Notes in Computer Science, 2014, , 414-429.	1.3	0
500	Temporal change about media and quantification of the carbon dioxide fixation in the rooftop lawn. Journal of the Japanese Society of Revegetation Technology, 2014, 40, 20-24.	0.1	4
501	Field Evaluation of Indoor Microclimates of Green and Bare Roofed Urban Buildings at No-Ventilation Condition in a Sub-Saharan Climate. American Journal of Civil Engineering, 2014, 2, 143.	0.2	0
503	Analysis and Evaluation of Holistic Energy Saving for Modern Buildings. International Journal of Smart Home, 2015, 9, 219-230.	0.4	0

#	Article	IF	CITATIONS
504	Potencial del techo verde, para ahorrar electricidad por aire acondicionado en la edificaci \tilde{A}^3 n Nova Scientia, 2015, 7, 577.	0.1	0
505	Investigation of Cooling Potential of an Eco Roof on Warm Days. International Journal of Engineering Research & Technology, 2016, V5, .	0.2	0
506	İstanbul'un Yağmur Suyu Taşkınlarına Karşı Yeşil Teras Çatıların Önleyici Rolü. Çukuro Mühendislik-Mimarlık Fakültesi Dergisi, 2016, 31, 1-6.	va Ünive 0.1	rsitesi
507	Optimal Design and Operation of Integrated Energy System Based on Supply-Demand Coupling Analysis. Communications in Computer and Information Science, 2017, , 566-575.	0.5	2
508	Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency. Rivista Di Studi Sulla Sostenibilita, 2017, , 79-96.	0.2	4
509	Plant Selection and Placement Criteria for Landscape Design. , 2017, , 249-260.		1
510	A Review on Indoor Smart Energy Managemet SYSTEM. International Journal of Engineering Technology and Sciences, 2017, 4, 122-137.	0.4	1
512	MULTI-LAYER LOW CONDUCTION ROOF. I-manager S Journal on Material Science, 2018, 6, 36.	0.2	1
513	Experimental Investigation of the Thermal Performance of Silica gel-Soil Roof. International Journal of Engineering Research & Technology, 2018, V7, .	0.2	0
514	Uso de sistemas vegetados e os impactos na promoção da saúde. Cadernos De Saude Publica, 2018, 34, e00003618.	1.0	1
515	Thermal Performance of Setcreacea purpurea and Portulaca grandifora as a Green Roof Material Applied in a Tropical Climate. Current Journal of Applied Science and Technology, 2019, 32, 1-8.	0.3	0
516	Uso inteligente de recursos naturais e sustentabilidade na construçã0 civil. Research, Society and Development, 2019, 8, e3482703.	0.1	10
517	ESTRATÉGIAS DE MARKETING VERDE EM REDES HOTELEIRAS. Revista Gestão & Sustentabilidade Ambiental, 2019, 8, 445.	0.1	0
518	Reviewing Ecosystem Services in Urban Climate Adaptation Plans. SpringerBriefs in Environmental Science, 2020, , 21-30.	0.3	5
519	The Green Roofs and Facades as a Tool of Climate Cooling in the Urban Environment. Springer Water, 2020, , 39-75.	0.3	1
520	Surface temperature analysis of conventional roof and different use forms of the green roof. Scientific Review Engineering and Environmental Sciences, 2021, 28, 632-640.	0.5	2
521	Retenção da água da chuva pelo telhado verde com pré-moldado cimentÃcio com EVA. PARC: Pesquisa Em Arquitetura E Construção, 0, 11, e020007.	0.3	0
522	Green Roofs for domestic wastewater treatment: Experimental and numerical analysis of nitrogen turnover. Journal of Hydrology, 2021, 603, 127132.	5.4	4

#	Article	IF	CITATIONS
523	Assessment of different combinations of substrate-filter membrane in green roofs. Journal of Building Engineering, 2022, 45, 103455.	3.4	2
524	Green Buildings: Building a Greener City, a Greener Future—An Indian Perspective. Advances in Geographical and Environmental Sciences, 2020, , 223-241.	0.6	0
525	Data Analysis and Visualization of Traffic in Chicago with Size and Landuse-Aware Vehicle to Buildings Assignment. Communications in Computer and Information Science, 2020, , 518-529.	0.5	0
526	ADAPTING URBAN HEAT ISLAND MITIGATION STRATEGY ON BANDUNG DOWNTOWN AREA. Dimensi: Journal of Architecture and Built Environment, 2020, 46, 129-140.	0.1	2
527	Analysis of the Realities, Evolution and Prospects of Urban Greening from an International Point of View. Amfiteatru Economic, 2020, 22, 137.	2.1	0
528	Experimental Investigation of Green Façade Components for Industrial and Storage Buildings. IOP Conference Series: Earth and Environmental Science, 0, 588, 052049.	0.3	0
529	ĐĐ½Đ°Đ»Ñ–Đ· ÑĐ¿Đ¾Đ½Ñ,Đ°Đ½Đ½Đ¾Ñ— Ñ"Đ»Đ¾Ñ€Đ¸ Đ¿Đ»Đ¾ÑĐºĐ¸Ñ Đ·ĐμĐ»ĐμĐ½Đ¸Ñ Đ´Đ°Ñ	Ñ –Ð ?2Ðμ€)ºÑÑ,ĐµĐ½Ñ
530	Dise $ ilde{A}\pm o$ de techos verdes y jardines verticales como sistemas urbanos de drenaje sostenible en edificaciones. Respuestas, 2021, 26, .	0.2	O
531	Changes in plant community composition and functional plant traits over a four-year period on an extensive green roof. Journal of Environmental Management, 2022, 304, 114154.	7.8	5
532	A preliminary Study on The Use of PET Bottle Waste as The Green Roof Drainage Layer for Thermal Insulator. IOP Conference Series: Earth and Environmental Science, 2021, 881, 012054.	0.3	2
533	Nature-Based Solutions in Poland against Climate Change. Energies, 2022, 15, 357.	3.1	3
534	Urban green roofs to manage rooftop microclimates: A case study from Sydney, Australia. Building and Environment, 2022, 209, 108673.	6.9	20
535	Physicochemical Properties and Plant Coverage of Wood-based Growing Media on Slopes. Journal of the Korean Wood Science and Technology, 2018, 46, 645-655.	3.0	1
536	Machine learning in building energy management: A critical review and future directions. Frontiers of Engineering Management, 2022, 9, 239-256.	6.1	5
537	Identifying city-scale potential and priority areas for retrofitting green roofs and assessing their runoff reduction effectiveness in urban functional zones. Journal of Cleaner Production, 2022, 332, 130064.	9.3	18
538	Vegetative and thermal performance of an extensive vegetated roof located in the urban heat island of a semiarid region. Building and Environment, 2022, 212, 108791.	6.9	17
539	Seasonal thermal performance evaluation of the composite planted roof in subtropical area. International Journal of Low-Carbon Technologies, 0, , .	2.6	0
540	Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	23

#	Article	IF	CITATIONS
541	Influence of water storage and plant crop factor on green roof retention and plant drought stress., 2022, 1, e0000009.		3
542	Simulation for the thermal performance of super-hydrophilic fabric evaporative cooling roof based on experimental results. Journal of Building Engineering, 2022, 52, 104377.	3.4	1
543	Decision Criteria for Retrofitting Existing Campus with Green Roof. Community, Environment and Disaster Risk Management, 2022, 26, 29-35.	0.2	0
544	Valuing the public benefits of green roofs. Landscape and Urban Planning, 2022, 224, 104426.	7.5	11
546	The Sustainable Prescription: Benefits of Green Roof Implementation for Urban Hospitals. Frontiers in Sustainable Cities, 2022, 4, .	2.4	3
547	Investigation of the Thermal Performance of Green Roof on a Mild Warm Climate. , 2016, , .		4
548	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective., 2022,, 2117-2167.		0
549	Rooftop Greenhouse: (2) Analysis of Thermal Energy Loads of a Building-Integrated Rooftop Greenhouse (BiRTG) for Urban Agriculture. Agriculture (Switzerland), 2022, 12, 787.	3.1	6
550	Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate. PLoS ONE, 2022, 17, e0269446.	2.5	9
552	Performance of green roof installed on highly insulated roof deck and the plants' effect: An experimental study. Building and Environment, 2022, 221, 109337.	6.9	13
553	Stormwater retention performance of green roofs with various configurations in different climatic zones. Journal of Environmental Management, 2022, 319, 115447.	7.8	21
554	Occupant plugload management for demand response in commercial buildings: Field experimentation and statistical characterization. Sustainable Cities and Society, 2022, 84, 103984.	10.4	0
555	Forecasting of safe-green buildings using decision tree algorithm: data mining approach. Environment, Development and Sustainability, 2023, 25, 10323-10350.	5.0	3
556	Evaluating the Cooling Performance of Green Roofs Under Extreme Heat Conditions. Frontiers in Environmental Science, $0,10,10$	3.3	5
557	uDALES 1.0: a large-eddy simulation model for urban environments. Geoscientific Model Development, 2022, 15, 5309-5335.	3.6	7
559	Green Roof Design of Residential Area Based on Sponge City Theory. Wireless Communications and Mobile Computing, 2022, 2022, 1-8.	1.2	2
560	Sky Gardens, Public Spaces and Urban Sustainability in Dense Cities: Shenzhen, Hong Kong and Singapore. Sustainability, 2022, 14, 9824.	3.2	3
561	Multilayer blue-green roofs as nature-based solutions for water and thermal insulation management. Hydrology Research, 2022, 53, 1129-1149.	2.7	14

#	Article	IF	Citations
562	Health care with a view. Lancet Planetary Health, The, 2022, 6, e643.	11.4	О
563	Cleaner construction of durable green rooftop in residential buildings with municipal water supply. Cleaner Materials, 2022, 5, 100125.	5.1	1
564	Multiyear Study on Phosphorus Discharge from Extensive Sedum Green Roofs with Substrate Amendments. Journal of Sustainable Water in the Built Environment, 2022, 8, .	1.6	1
565	Dynamic simulation and parametric analysis of green roofing in buildings. I-manager's Journal on Mechanical Engineering, 2022, 12, 39.	0.4	0
566	Research and development of green roofs and green walls in Mexico: A review. Science of the Total Environment, 2023, 856, 158978.	8.0	8
567	Cost-effectiveness analysis of extensive green roofs for urban stormwater control in response to future climate change scenarios. Science of the Total Environment, 2023, 856, 159127.	8.0	5
568	A Review on the Research and Development of Solar-Assisted Heat Pump for Buildings in China. Buildings, 2022, 12, 1435.	3.1	8
569	Optimizing the shade coverage of trees on a block of residential buildings using GIS and ACO (case) Tj ETQq1 1 0	.784314 r	gBT /Overlo
570	ZERO-ACREAGE FARMING DRIVING SUSTAINABLE URBAN DEVELOPMENT: A SPATIAL AND TECHNOLOGICAL COMPARISON OF URBAN AGRICULTURE FARMS. Journal of Green Building, 2022, 17, 161-186.	0.8	1
571	Life Cycle Cost Analysis of rooftop gardens using openLCA. IOP Conference Series: Earth and Environmental Science, 2022, 1086, 012006.	0.3	1
572	Analytic Hierarchy Processes (AHP) evaluation of green roof- and green wall- based UHI mitigation strategies via ENVI-met simulations. Urban Climate, 2022, 46, 101293.	5.7	25
573	Complementary influence of green-roof and roof-slab thermal conductivity on winter indoor warming assessed by finite element analysis. Energy Reports, 2022, 8, 14852-14864.	5.1	2
574	Contribution of green roofs to urban arthropod biodiversity in a Mediterranean climate: A case study in Valà ncia, Spain. Building and Environment, 2023, 228, 109865.	6.9	3
575	Input-Output Benefit Analysis of Green Building Incremental Cost Based on DEA-Entropy Weight Method. Buildings, 2022, 12, 2239.	3.1	3
576	Water Oriented Cityâ€"A â€~5 Scales' System of Blue and Green Infrastructure in Sponge Cities Supporting the Retention of the Urban Fabric. Water (Switzerland), 2022, 14, 4070.	2.7	2
577	Determination of the methodology for the selection of alternative plant species for sustainable green roof design. Glasnik Åumarskog Fakulteta: Univerzitet U Beogradu, 2022, , 143-156.	0.1	0
578	Passive buildings: a state-of-the-art review. Journal of Infrastructure Preservation and Resilience, 2023, 4, .	3.2	0
579	Characteristics of Smart Farms for Architectural Planning and Design. Buildings, 2023, 13, 93.	3.1	3

#	Article	IF	CITATIONS
580	Domestic overheating risks and mitigation strategies: The state-of-the-art and directions for future research. Indoor and Built Environment, 2023, 32, 1057-1077.	2.8	4
581	A rainwater harvesting system in buildings with green roofs and a rooftop greenhouse in Pyongyang. International Journal of Environmental Science and Technology, 0, , .	3.5	0
582	A holistic plan of flat roof to green-roof conversion: Towards a sustainable built environment. Ecological Engineering, 2023, 190, 106925.	3.6	10
583	The adoption of pressure independent control valves (PICVs) for the simultaneous optimization of energy consumption and comfort in buildings. Energy and Buildings, 2023, 287, 112969.	6.7	2
584	Assessing financial subsidies for green roofs: A micro-scale analysis of Lisbon (Portugal). Cities, 2023, 137, 104295.	5.6	2
585	Optimization of radiator area of CHP-based district heating system based on energy cascade utilization. AEJ - Alexandria Engineering Journal, 2023, 68, 619-631.	6.4	1
586	Enabling nature-based solutions: Innovating urban climate resilience. Journal of Environmental Management, 2023, 332, 117433.	7.8	2
587	Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building. Sustainability, 2023, 15, 3464.	3.2	7
588	Redefining green roof systems withÂclimbers: simulation ofÂaÂconceptual model forÂthermal-radiative performanceÂand plant vitality. International Journal of Building Pathology and Adaptation, 2023, ahead-of-print, .	1.3	0
589	Simulation-based study on the role of green roof settings on energy demand reduction in seven Australian climate zones. Energy and Buildings, 2023, 286, 112938.	6.7	7
590	An open-source automatic survey of green roofs in London using segmentation of aerial imagery. Earth System Science Data, 2023, 15, 1521-1541.	9.9	0
591	A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort. Energy and Buildings, 2023, 291, 113111.	6.7	19
592	Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renewable and Sustainable Energy Reviews, 2023, 180, 113306.	16.4	22
593	Computer Vision-based Method to Energy Saving Retrofit: A Study of Improving Energy Efficiency in Existing Construction., 2023,,.		0
594	Management strategies for maximizing the ecohydrological benefits of multilayer blue-green roofs in mediterranean urban areas. Journal of Environmental Management, 2023, 343, 118248.	7.8	2
595	A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios. Renewable and Sustainable Energy Reviews, 2023, 182, 113376.	16.4	5
596	Natural passive system for reducing winter night-time energy loss in buildings. Sustainable and Resilient Infrastructure, 2024, 9, 1-15.	2.8	1
597	Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods. Renewable and Sustainable Energy Reviews, 2023, 182, 113412.	16.4	8

#	Article	IF	CITATIONS
598	Irrigation proposals for improving the energy performance of green roofs in Mediterranean climate. Journal of Building Engineering, 2023, 75, 107064.	3.4	1
599	Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade. Applied Sciences (Switzerland), 2023, 13, 7348.	2.5	0
600	Challenges and Potentials of Green Roof Retrofit: A Case Study. Urban Book Series, 2023, , 843-852.	0.6	0
601	Influence of green roof plant density and redirecting rainfall via runoff zones on rainfall retention and plant drought stress. Science of the Total Environment, 2023, 889, 164043.	8.0	0
602	Estimating leaf area index and coverage of dominant vegetation on an extensive green roof in Syracuse, NY. Nature-based Solutions, 2023, 3, 100068.	3.8	4
603	Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city. Nature-based Solutions, 2023, 3, 100069.	3.8	2
604	Study on the feasibility of partial replacement of cement with IOT in extruded concrete roof tiles production. Construction and Building Materials, 2023, 393, 132129.	7.2	0
605	Building a Sustainable Future: How Eco-Friendly Homes Are Driving Local Economic Development in Lisbon Metropolitan Area. Energies, 2023, 16, 4855.	3.1	1
606	Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales. Sustainability, 2023, 15, 9984.	3.2	0
607	Influence of blue-green roofs on surface and indoor temperatures over a building scale. Nature-based Solutions, 2023, 4, 100076.	3.8	2
608	Integrating Solar Energy and Nature-Based Solutions for Climate-Neutral Urban Environments. Solar, 2023, 3, 382-415.	1.8	6
609	Environmentally Sustainable Green Roof Design for Energy Demand Reduction. Buildings, 2023, 13, 1846.	3.1	5
610	Optimum thermal performance of green walls systems and design requirements against heat transfer of conventional external walls of low-rise concrete buildings in hot regions. Journal of Building Engineering, 2023, 78, 107654.	3.4	О
611	Natural ventilation as a passive cooling strategy for multi-story buildings: analytic vertical skycourt formations. City, Territory and Architecture, 2023, 10, .	1.3	2
612	A Comprehensive Review of the Empirical and Nonempirical Literature on Green Roofs. Journal of Architectural Engineering, 2023, 29, .	1.6	0
613	Assessment of criteria affecting decision making for retrofitting an existing building with a green roof. AIP Conference Proceedings, 2023, , .	0.4	0
614	Evaluating the effects of green roofs and green fa \tilde{A} sade as an urban heat island adaptation strategy. E3S Web of Conferences, 2023, 436, 01018.	0.5	0
615	Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies. Sustainability, 2023, 15, 15976.	3.2	0

#	Article	IF	CITATIONS
616	Sustainable, green, or smart? Pathways for energy-efficient healthcare buildings. Sustainable Cities and Society, 2024, 100, 105013.	10.4	3
617	Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis. Water (Switzerland), 2023, 15, 4122.	2.7	1
618	The effects of multilayer blue-green roof on the runoff water quality. Heliyon, 2023, 9, e21966.	3.2	1
619	Sustainable Buildings: A Comprehensive Review and Classification of Challenges and Issues, Benefits, and Future Directions., 2024, , 1-28.		0
620	Experimental Evaluation of a Retrofitted Extensive Green Roof Module on a Sloping GI Sheet Roof in a Humid Subtropical Climate. Journal of Architectural Engineering, 2024, 30, .	1.6	0
621	Transformation of Urban Spaces: The Impact of Green Roofs in KoÅjice, Slovakia. Sustainability, 2024, 16, 22.	3.2	1
622	Perception of Green Roof Users with Their Mental Well-Being. IOP Conference Series: Earth and Environmental Science, 2023, 1274, 012036.	0.3	0
623	Vicissitudes and prospects of green roof research: a two-decade systematic bibliometric review. Frontiers in Ecology and Evolution, 0, 11 , .	2.2	0
624	The Application of Nature-Based Solutions for Urban Heat Island Mitigation in Asia: Progress, Challenges, and Recommendations. Current Environmental Health Reports, 2024, 11, 4-17.	6.7	1
625	Hygrothermal Performance of simple intensive Green Roofs with Different Irrigation Schemes. Journal of Physics: Conference Series, 2023, 2654, 012119.	0.4	1
626	Integral Study of a Light Green Roof with Draining Organic Material in Gustavo A. Madero, Mexico City., 2024,, 1-16.		0
627	The effects of cool materials, fa $ ilde{A}$ Sade orientation, and morphological parameters on energy consumption at the residential neighborhood scale. Building Simulation, 2024, 17, 525-542.	5.6	0
628	Performance assessment of residential building renovation: aÂscientometric analysis and qualitative review of literature. Smart and Sustainable Built Environment, 0, , .	4.0	0
629	Eco-Friendly Technology Derivation and Planning for Rooftop Greenhouse Smart Farm. Buildings, 2024, 14, 398.	3.1	0
630	Life Cycle Assessment of green roofs: A comprehensive review of methodological approaches and climate change impacts. Sustainable Production and Consumption, 2024, 45, 598-611.	11.0	0
631	Green roofs save energy in cities and fight regional climate change. , 2024, 1, 238-249.		0
632	Sustainable green remodeling strategies for public nursery school in South Korea: A simplified model. Results in Engineering, 2024, 21, 101939.	5.1	0
633	Solar Wall Technology and Its Impact on Building Performance. Energies, 2024, 17, 1075.	3.1	O

#	Article	IF	CITATIONS
634	Inclusive and Resilient Green Roofs in Landscape Design: Analysis of Environmental, Community, and Energy Benefits. Advances in Science, Technology and Innovation, 2024, , 45-60.	0.4	0
635	Evaluating the Role of Green Infrastructure in Microclimate and Building Energy Efficiency. Buildings, 2024, 14, 825.	3.1	0
636	Intelligent green retrofitting of existing buildings based on case-based reasoning and random forest. Automation in Construction, 2024, 162, 105377.	9.8	0