Phase change materials for building applications: A stat

Energy and Buildings 42, 1361-1368 DOI: 10.1016/j.enbuild.2010.03.026

Citation Report

#	Article	IF	CITATIONS
1	Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chemical Engineering Journal, 2010, 163, 154-159.	6.6	260
2	The path to the high performance thermal building insulation materials and solutions of tomorrow. Journal of Building Physics, 2010, 34, 99-123.	1.2	164
3	Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings, 2011, 43, 2549-2563.	3.1	864
4	Temperature effects on the effective thermal conductivity of phase change materials with two distinctive phases. International Communications in Heat and Mass Transfer, 2011, 38, 1344-1348.	2.9	37
5	Integrated life-cycle design of building enclosures. Building and Environment, 2011, 46, 1469-1479.	3.0	52
6	Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (Core/Sheath) composite non-woven mats. Macromolecular Research, 2011, 19, 370-378.	1.0	42
7	Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials. Journal of Applied Polymer Science, 2011, 121, 3596-3603.	1.3	37
8	Experimental tile with phase change materials (PCM) for building use. Energy and Buildings, 2011, 43, 1869-1874.	3.1	104
9	Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 2011, 47, 153-161.	2.6	49
10	A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews, 2011, 15, 379-391.	8.2	801
11	Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in Concrete floors and to save energy in Dutch houses. Solar Energy, 2011, 85, 1007-1020.	2.9	198
12	Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 2011, 95, 1598-1603.	3.0	241
13	Modeling and Design of Building-Integrated Thermoelectrics. , 2011, , .		0
14	Energy-saving effect of a factory ceiling incorporating microencapsulated Phase Change Materials. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2012, 226, 174-177.	1.4	0
15	Numerical Simulation of Phase Change Thermal Storage in Finned Double-Pipe Heat Exchanger. Applied Mechanics and Materials, 0, 232, 742-746.	0.2	22
16	Molecular dynamics simulations of phase transition of <i>n</i> -nonadecane under high pressure. Phase Transitions, 2012, 85, 400-408.	0.6	18
17	Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy and Buildings, 2012, 49, 235-245.	3.1	167
18	Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach. Energy and Buildings, 2012, 49, 16-27.	3.1	129

#	Article	IF	CITATIONS
19	Preparation and thermal properties of n-octadecane/molecular sieve composites as form-stable thermal energy storage materials for buildings. Energy and Buildings, 2012, 49, 423-428.	3.1	43
20	Applications of Phase Change Material in highly energy-efficient houses. Energy and Buildings, 2012, 50, 49-62.	3.1	121
21	Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer. Energy and Buildings, 2012, 50, 331-338.	3.1	81
22	Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Research Letters, 2012, 7, 611.	3.1	137
24	Characterization of the optical properties of a PCM glazing system. Energy Procedia, 2012, 30, 428-437.	1.8	60
25	Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials. Energy, 2012, 44, 805-812.	4.5	26
26	Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage. Materials Chemistry and Physics, 2012, 137, 558-564.	2.0	33
27	A numerical model to evaluate the thermal behaviour of PCM glazing system configurations. Energy and Buildings, 2012, 54, 141-153.	3.1	112
28	Accelerated climate ageing of building materials, components and structures in the laboratory. Journal of Materials Science, 2012, 47, 6475-6496.	1.7	104
29	Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 2012, 92, 593-605.	5.1	1,378
30	Incorporation of phase change materials in cementitious systems via fine lightweight aggregate. Construction and Building Materials, 2012, 35, 483-490.	3.2	146
31	Use of microencapsulated PCM in buildings and the effect of adding awnings. Energy and Buildings, 2012, 44, 88-93.	3.1	89
32	Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs. Energy and Buildings, 2012, 51, 73-83.	3.1	75
33	Form-stable phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 2012, 16, 1999-2040.	8.2	262
34	A review: Energy recovery in batch processes. Renewable and Sustainable Energy Reviews, 2012, 16, 2260-2277.	8.2	69
35	Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. Renewable and Sustainable Energy Reviews, 2012, 16, 3136-3145.	8.2	79
36	Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 2012, 96, 1-28.	3.0	430
37	Influence of the experimental conditions on the subcooling of Glauber's salt when used as PCM. Solar Energy Materials and Solar Cells, 2012, 102, 189-195.	3.0	50

#	Article	IF	CITATIONS
38	Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 2012, 540, 7-60.	1.2	543
39	Solar energy harvesting with the application of nanotechnology. Renewable and Sustainable Energy Reviews, 2013, 26, 837-852.	8.2	185
40	Development of phase change materials for building applications. Energy and Buildings, 2013, 64, 403-407.	3.1	77
41	Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. International Journal of Pavement Engineering, 2013, 14, 449-462.	2.2	67
42	Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 2013, 21, 659-673.	8.2	244
43	New kinds of energy-storing building composite PCMs for thermal energy storage. Energy Conversion and Management, 2013, 69, 148-156.	4.4	46
44	Possibilities for characterization of a PCM window system using large scale measurements. International Journal of Sustainable Built Environment, 2013, 2, 56-64.	3.2	45
45	Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries. Energy, 2013, 59, 301-313.	4.5	50
46	Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings. Energy and Buildings, 2013, 61, 210-214.	3.1	44
47	Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag. Energy and Buildings, 2013, 62, 360-367.	3.1	58
48	Utilization of waste glass powder for latent heat storage application in buildings. Energy and Buildings, 2013, 66, 405-414.	3.1	30
49	Preparation, characterization and thermal properties of dodecanol/cement as novel form-stable composite phase change material. Energy and Buildings, 2013, 66, 697-705.	3.1	62
50	Latent heat storage in PCM containing mortars—Study of microstructural modifications. Energy and Buildings, 2013, 66, 724-731.	3.1	51
51	Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials, 2013, 46, 55-62.	3.2	299
52	The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials. Energy Conversion and Management, 2013, 69, 116-121.	4.4	26
53	Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials. Solar Energy Materials and Solar Cells, 2013, 117, 400-407.	3.0	37
54	Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material. Energy and Buildings, 2013, 67, 210-216.	3.1	31
56	Self diffusion and heat capacity of n-alkanes based phase change materials: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2013, 64, 581-589.	2.5	46

#	Article	IF	CITATIONS
57	Review of the T -history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews, 2013, 26, 425-436.	8.2	155
58	Short-term storage systems of thermal energy for buildings: a review. Advances in Building Energy Research, 2013, 7, 66-119.	1.1	56
59	Improving thermal comfort conditions by means of PCM glazing systems. Energy and Buildings, 2013, 60, 442-452.	3.1	118
60	Free-cooling thermal energy storage using phase change materials in an evaporative cooling system. Applied Thermal Engineering, 2013, 59, 618-626.	3.0	22
61	Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renewable Energy, 2013, 50, 670-675.	4.3	239
62	A review of PCM technology for thermal energy storage in the built environment: Part I. International Journal of Low-Carbon Technologies, 2013, 8, 147-158.	1.2	53
63	A review of PCM technology for thermal energy storage in the built environment: Part II. International Journal of Low-Carbon Technologies, 2013, 8, 159-164.	1.2	23
64	Heat storage properties of the cement mortar incorporated with composite phase change material. Applied Energy, 2013, 103, 393-399.	5.1	125
65	Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM. Energy and Buildings, 2013, 67, 322-333.	3.1	47
66	A conceptual model that simulates the influence of thermal inertia in building structures. Energy and Buildings, 2013, 60, 146-151.	3.1	56
67	Four E analysis and multi-objective optimization of an ice storage system incorporating PCM as the partial cold storage for air-conditioning applications. Applied Thermal Engineering, 2013, 58, 30-41.	3.0	84
68	Melting with convection and radiation in a participating phase change material. Applied Energy, 2013, 109, 454-461.	5.1	33
69	Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings, 2013, 59, 82-103.	3.1	785
70	Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy and Buildings, 2013, 62, 469-474.	3.1	99
71	Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renewable and Sustainable Energy Reviews, 2013, 21, 331-346.	8.2	245
72	Curbing global warming with phase change materials for energy storage. Renewable and Sustainable Energy Reviews, 2013, 18, 23-30.	8.2	149
73	Phase Change Material (Pcm)-Based Solar Air Heating System For Residential Space Heating In Winter. International Journal of Green Energy, 2013, 10, 402-426.	2.1	44
74	Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Research Letters, 2013, 8, 448.	3.1	291

#	Article	IF	CITATIONS
75	Synthesis and Characterization of Solid-State Phase Change Material Microcapsules for Thermal Management Applications. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	14
76	Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications. Energies, 2013, 6, 3922-3936.	1.6	29
77	Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes. Energies, 2013, 6, 5219-5230.	1.6	53
78	The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete. Materials, 2013, 6, 3530-3546.	1.3	54
79	A NUMERICAL SOLUTION THAT DETERMINES THE TEMPERATURE FIELD INSIDE PHASE CHANGE MATERIALS: APPLICATION IN BUILDINGS. Journal of Civil Engineering and Management, 2013, 19, 518-528.	1.9	6
80	Temperature moderation in a multistorey building by melting of a phase-change material. Archives of Thermodynamics, 2013, 34, 85-101.	1.0	0
81	Thermal and Electrical Performance of a PV Module Integrated With Microencapsulated Phase Change Material. , 2013, , .		2
82	Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability, 2014, 6, 6815-6829.	1.6	63
83	Applications of organic phase change materials for thermal comfort in buildings. Reviews in Chemical Engineering, 2014, 30, .	2.3	17
84	Harnessing Solar Heat. Lecture Notes in Energy, 2014, , .	0.2	19
85	A Cooling Vest for Construction Workers. Advanced Materials Research, 0, 1061-1062, 728-732.	0.3	1
86	Thermal Energy Storage Technologies. , 2014, , 57-64.		7
87	Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs. International Journal of Energy Research, 2014, 38, 1478-1491.	2.2	58
88	Preparation and Thermodynamic Properties of Camphene/Stearic Acid Composites as Phase-Change Materials in Buildings. International Journal of Thermophysics, 2014, 35, 1526-1537.	1.0	5
89	Phase Change Material Particles and Their Application in Heat Transfer Fluids. Green Energy and Technology, 2014, , 457-488.	0.4	0
90	Energy consumption analysis of a residential building with phase change materials under various cooling and heating conditions. Indoor and Built Environment, 2014, 23, 730-741.	1.5	19
91	Functionalization of mortars for controlling the indoor ambient of buildings. Energy and Buildings, 2014, 70, 224-236.	3.1	43
92	Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions. Applied Energy, 2014, 115, 483-490.	5.1	87

#	Article	IF	Citations
93	Solar cooling and heating plants: An energy and economic analysis of liquid sensible vs phase change material (PCM) heat storage. International Journal of Refrigeration, 2014, 39, 104-116.	1.8	60
94	Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Conversion and Management, 2014, 77, 586-596.	4.4	104
96	A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energy Conversion and Management, 2014, 77, 608-627.	4.4	59
97	Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW). Applied Energy, 2014, 119, 33-42.	5.1	96
98	Experimental and numerical study on effective thermal conductivity of novel form-stable basalt fiber composite concrete with PCMs for thermal storage. Applied Thermal Engineering, 2014, 66, 156-161.	3.0	36
99	Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 2014, 31, 870-906.	8.2	525
100	Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. Energy and Buildings, 2014, 79, 32-40.	3.1	126
101	Conceptual analysis and design of a partitioned multifunctional smart insulation. Applied Energy, 2014, 114, 310-319.	5.1	48
102	Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. International Journal of Thermal Sciences, 2014, 82, 100-110.	2.6	153
103	New phase-change material components for thermal management of the light weight envelope of buildings. Energy and Buildings, 2014, 68, 703-706.	3.1	47
104	Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage. Energy and Buildings, 2014, 69, 184-192.	3.1	92
105	Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2014, 120, 536-542.	3.0	183
106	Thermal performance of organic PCMs/micronized silica composite for latent heat thermal energy storage. Energy and Buildings, 2014, 70, 180-185.	3.1	38
107	Numerical evaluation of a phase change material–shutter using solar energy for winter nighttime indoor heating. Journal of Building Physics, 2014, 37, 367-394.	1.2	21
108	Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy and Buildings, 2014, 70, 411-421.	3.1	132
109	Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 2014, 72, 31-37.	3.1	121
110	Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material. Energy and Buildings, 2014, 68, 372-375.	3.1	33
111	Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving. International Journal of Heat and Mass Transfer, 2014, 71, 245-250.	2.5	76

#	Article	IF	CITATIONS
112	Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, 2014, 120, 549-554.	3.0	147
113	Passive Utilization of Solar Energy in a Building. , 2014, , 133-171.		2
114	Preparation and Properties of Capric-Lauric-Palmitic Acid Eutectic Mixtures/Expanded Graphite Composite as Phase Change Materials for Energy Storage. Advanced Materials Research, 0, 1028, 40-45.	0.3	5
115	Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Advances, 2014, 4, 36584-36590.	1.7	81
116	Low-cost Nanomaterials. Green Energy and Technology, 2014, , .	0.4	16
117	Polymeric-SiO 2 -PCMs for improving the thermal properties of gypsum applied in energy efficient buildings. Energy Conversion and Management, 2014, 87, 138-144.	4.4	47
118	Progress in Sustainable Energy Technologies Vol II. , 2014, , .		3
119	Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy and Buildings, 2014, 84, 526-536.	3.1	80
120	Brick masonry walls with PCM macrocapsules: An experimental approach. Applied Thermal Engineering, 2014, 67, 24-34.	3.0	163
121	Development of thermally adaptive Engineered Cementitious Composite for passive heat storage. Construction and Building Materials, 2014, 67, 366-372.	3.2	31
122	Estimation of the specific enthalpy–temperature functions for plastering mortars containing hybrid mixes of phase change materials. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	1.3	9
123	Fabrication and stability of form-stable diatomite/paraffin phase change material composites. Energy and Buildings, 2014, 76, 284-294.	3.1	161
124	Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Applied Thermal Engineering, 2014, 67, 460-468.	3.0	80
125	Effect of windows on temperature moderation by a phase-change material (PCM) in a structure in winter. Energy Conversion and Management, 2014, 87, 1324-1331.	4.4	15
126	Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material. Applied Energy, 2014, 121, 114-122.	5.1	95
127	Thermal performance of building element containing phase change material (PCM) integrated with ventilation system – An experimental study. Applied Thermal Engineering, 2014, 70, 665-674.	3.0	64
128	Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations. Energy, 2014, 72, 381-392.	4.5	60
129	Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Solar Energy, 2014, 105, 561-574.	2.9	132

#	Article	IF	CITATIONS
130	Thermal properties measurement and heat storage analysis of paraffin/graphite composite phase change material. Composites Part B: Engineering, 2014, 66, 518-525.	5.9	53
131	Energy saving potential of phase change materials in major Australian cities. Energy and Buildings, 2014, 78, 192-201.	3.1	165
132	Towards development of a prototype high-temperature latent heat storage unit as an element of a RES-based energy system (part 1). Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 489-494.	0.8	3
135	Energy-Efficient Building Envelopes: use of Phase Change Materials in Cement-Based Composites. IABSE Symposium Report, 2015, , .	0.0	1
136	Fire behavior of regular and latent heat storage gypsum boards. Fire and Materials, 2015, 39, 507-517.	0.9	8
138	Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior. Materials, 2015, 8, 7702-7713.	1.3	31
139	Evaluation of Different Mesoporous Silica Supports for Energy Storage in Shape-Stabilized Phase Change Materials with Dual Thermal Responses. Journal of Physical Chemistry C, 2015, 119, 15177-15184.	1.5	89
140	Latent Heat Thermal Storage (LHTS) for Energy Sustainability. Green Energy and Technology, 2015, , 245-263.	0.4	6
141	Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers. AIP Advances, 2015, 5, 057141.	0.6	3
142	An experimental and numerical investigation on the use of phase change materials in building elements: The case of a flat roof in Istanbul. Energy and Buildings, 2015, 102, 91-104.	3.1	50
143	Synthesis and characteristics of hygroscopic phase change material: Composite microencapsulated phase change material (MPCM) and diatomite. Energy and Buildings, 2015, 106, 175-182.	3.1	38
144	Solar domestic hot water systems using latent heat energy storage medium: A review. Renewable and Sustainable Energy Reviews, 2015, 49, 517-533.	8.2	142
145	Using COMSOL modeling to investigate the efficiency of PCMs at modifying temperature changes in cementitious materials – Case study. Construction and Building Materials, 2015, 101, 965-974.	3.2	43
146	PCM-based High-density Thermal Storage Systems for Residential and Small Commercial Retrofit Applications. Procedia Engineering, 2015, 121, 536-543.	1.2	4
147	Preparation and properties of gypsum based energy storage materials with capric acid–palmitic acid/expanded perlite composite PCM. Energy and Buildings, 2015, 92, 155-160.	3.1	75
148	Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings. Solar Energy Materials and Solar Cells, 2015, 137, 107-112.	3.0	153
149	Multiphysics design optimization model for structural walls incorporating phase-change materials. Engineering Optimization, 2015, 47, 308-327.	1.5	0
150	Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials. Applied Energy, 2015, 142, 192-205.	5.1	35

#	Article	IF	CITATIONS
151	Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. Energy Conversion and Management, 2015, 93, 215-227.	4.4	113
152	Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management, 2015, 95, 193-228.	4.4	597
153	Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings, 2015, 94, 150-176.	3.1	419
154	Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy and Buildings, 2015, 94, 21-32.	3.1	131
155	Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 2015, 77, 307-316.	3.2	122
156	Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. Journal of Materials Chemistry A, 2015, 3, 8526-8536.	5.2	300
157	Compact PCM-based thermal stores for shifting peak cooling loads. Building Simulation, 2015, 8, 673-688.	3.0	21
158	Experimental Thermal Performance Analysis of Building Components Containing Phase Change Material (PCM). Procedia Engineering, 2015, 108, 428-435.	1.2	8
159	Energy Sustainability Through Green Energy. Green Energy and Technology, 2015, , .	0.4	17
160	Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g-alkyl alcohol comb-like polymers. Solar Energy Materials and Solar Cells, 2015, 143, 21-28.	3.0	44
162	Phase change materials and thermal energy storage for buildings. Energy and Buildings, 2015, 103, 414-419.	3.1	486
163	Application of phase change materials to improve the thermal performance of cementitious material. Energy and Buildings, 2015, 103, 83-95.	3.1	60
164	Properties evaluation and applications of thermal energystorage materials in buildings. Renewable and Sustainable Energy Reviews, 2015, 48, 500-522.	8.2	50
165	Modeling peak load reduction and energy consumption enabled by an integrated thermal energy and water storage system for residential air conditioning systems in Austin, Texas. Energy and Buildings, 2015, 97, 21-32.	3.1	23
166	Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chemical Engineering Journal, 2015, 277, 56-63.	6.6	148
167	Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete. Energy and Buildings, 2015, 96, 162-174.	3.1	111
168	Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology, 2015, 59, 1299-1309.	1.3	52
169	Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Applied Thermal Engineering, 2015, 84, 246-256.	3.0	73

#	Article	IF	CITATIONS
170	Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 2015, 48, 373-391.	8.2	677
171	Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems. Construction and Building Materials, 2015, 89, 48-59.	3.2	92
172	Experimental investigation on thermophysical properties of capric acid–lauric acid phase change slurries for thermal storage system. Energy, 2015, 90, 359-368.	4.5	19
173	Influence of experimental conditions on measured thermal properties used to model phase change materials. Building Simulation, 2015, 8, 637-650.	3.0	22
174	A new validated TRNSYS module for simulating latent heat storage walls. Energy and Buildings, 2015, 109, 274-290.	3.1	49
175	Review on phase change material based free cooling of buildings—The way toward sustainability. Journal of Energy Storage, 2015, 4, 74-88.	3.9	78
176	A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Applied Energy, 2015, 157, 85-94.	5.1	249
177	Large-Scale Experimental Study of a Phase Change Material: Shape Identification for the Solid–Liquid Interface. International Journal of Thermophysics, 2015, 36, 2897-2915.	1.0	9
178	Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite. Thermochimica Acta, 2015, 617, 111-119.	1.2	36
179	A state-of-the-art review on hybrid heat pipe latent heat storage systems. Energy Conversion and Management, 2015, 105, 1178-1204.	4.4	84
180	Phase change material wall optimization for heating using metamodeling. Energy and Buildings, 2015, 106, 216-224.	3.1	34
181	A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation. Renewable Energy, 2015, 76, 45-52.	4.3	80
182	Modeling and simulation of a phase change material system for improving summer comfort in domestic residence. Applied Energy, 2015, 140, 288-296.	5.1	62
183	Preparation and properties of a novel form-stable phase change material based on a gelator. Journal of Materials Chemistry A, 2015, 3, 2589-2600.	5.2	60
184	Combining thermal energy storage with buildings – a review. Renewable and Sustainable Energy Reviews, 2015, 42, 1305-1325.	8.2	274
185	Spectral and angular solar properties of a PCM-filled double glazing unit. Energy and Buildings, 2015, 87, 302-312.	3.1	100
186	Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Applied Energy, 2015, 139, 43-55.	5.1	150
187	Preparation and characteristics of composite phase change material (CPCM) with SiO 2 and diatomite as endothermal-hydroscopic material. Energy and Buildings, 2015, 86, 1-6.	3.1	26

#	Article	IF	CITATIONS
188	A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 2015, 41, 695-714.	8.2	257
189	Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete. Materials, 2016, 9, 59.	1.3	41
190	Phase Change Materials. , 2016, , 249-272.		18
192	Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility. Advances in Materials Science and Engineering, 2016, 2016, 1-6.	1.0	22
193	Nano-based thermal insulation for energy-efficient buildings. , 2016, , 129-181.		19
194	Effectiveness of Using Phase Change Materials on Reducing Summer Overheating Issues in UK Residential Buildings with Identification of Influential Factors. Energies, 2016, 9, 605.	1.6	33
195	Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis. Applied Energy, 2016, 179, 64-84.	5.1	89
196	NUMERICAL INVESTIGATION ON HEAT TRANSFER ENHANCEMENT WITH INCLINATION ANGLE OF PCM SET. , 2016, , .		0
197	Nanotechnologies for sustainable construction. , 2016, , 55-78.		21
198	Nanodevices and Novel Materials for Energy-Efficient constructions. Energy Procedia, 2016, 101, 113-120.	1.8	0
199	Solar Greenhouse With Thermal Energy Storage: a Review. Current Sustainable/Renewable Energy Reports, 2016, 3, 58-66.	1.2	27
200	PCM-enhanced Lime Plasters for Vernacular and Contemporary Architecture. Energy Procedia, 2016, 97, 539-545.	1.8	22
201	Incorporating Phase Change Materials to Mitigate Extreme Temperatures in Asphalt Concrete Pavements. , 2016, , .		0
202	Impact of the enthalpy function on the simulation of a building with phase change material wall. Energy and Buildings, 2016, 126, 220-229.	3.1	22
203	Evaluation of the application of Phase Change Materials (PCM) on the envelope of a typical dwelling in the Mediterranean region. Renewable Energy, 2016, 97, 24-32.	4.3	113
204	Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Building and Environment, 2016, 104, 172-177.	3.0	61
205	Air–PCM heat exchanger for peak load management: Experimental and simulation. Solar Energy, 2016, 132, 453-466.	2.9	76
206	Diurnal performance analysis of phase change material walls. Applied Thermal Engineering, 2016, 102, 1-8.	3.0	36

#	Article	IF	CITATIONS
207	Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings, 2016, 129, 396-431.	3.1	559
208	Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context – Numerical modeling and validation. Applied Thermal Engineering, 2016, 102, 873-881.	3.0	48
209	High temperature phase change materials for the overheating protection of facade integrated solar thermal collectors. Energy and Buildings, 2016, 124, 1-6.	3.1	28
210	Some aspects of energy efficient building envelope in high latitude countries. Solar Energy, 2016, 133, 194-206.	2.9	13
211	A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 2016, 60, 1470-1497.	8.2	706
212	Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Solar Energy, 2016, 133, 226-248.	2.9	31
213	Numerical investigation of transient thermal behavior of a wall incorporating a phase change material via a hybrid scheme. International Communications in Heat and Mass Transfer, 2016, 78, 200-206.	2.9	13
214	Thermogravimetric study of a Phase Change Slurry: Effect of variable conditions. Applied Thermal Engineering, 2016, 107, 329-338.	3.0	2
215	Experimental Research of a Partition Composed of Two Layers of Different Types of PCM. Energy Procedia, 2016, 91, 259-268.	1.8	4
216	Assessing the Implementation Potential of PCMs: The Situation for Residential Buildings in the Netherlands. Energy Procedia, 2016, 96, 17-32.	1.8	14
217	Multiscale modelling for the thermal creep analysis of PCM concrete. Energy and Buildings, 2016, 131, 99-112.	3.1	9
218	Analysis and design of a drain water heat recovery storage unit based on PCM plates. Applied Energy, 2016, 179, 1006-1019.	5.1	31
219	Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials. Journal of Sustainable Cement-Based Materials, 2016, 5, 349-369.	1.7	18
220	Preparation of organic based ternary eutectic fatty acid mixture as phase change material (PCM), optimizing their thermal properties by enriched solar treated exfoliated graphite for energy storage. Materials Today: Proceedings, 2016, 3, 1592-1598.	0.9	14
222	Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar. Energy and Buildings, 2016, 133, 547-558.	3.1	62
224	Preparation and properties of a formâ€stable phaseâ€change hydrogel for thermal energy storage. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
225	Effects of various types of graphite on the thermal conductivity and energy storage properties of ternary eutectic fatty acid-based composite as phase change material. Renewables: Wind, Water, and Solar, 2016, 3, .	2.5	16
226	Latent energy storage study in simple and honeycomb structures filled with a phase change material. , 2016, , .		4

#	Article	IF	CITATIONS
227	Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Materials and Structures/Materiaux Et Constructions, 2016, 49, 225-239.	1.3	47
228	Improved performance in tube-encapsulated phase change thermal energy stores for HVAC applications. Building and Environment, 2016, 98, 133-144.	3.0	10
229	Thermal energy storage based solar drying systems: A review. Innovative Food Science and Emerging Technologies, 2016, 34, 86-99.	2.7	142
230	Experimental evaluation of the heat transfer through small PCM-based thermal energy storage units for building applications. Energy and Buildings, 2016, 116, 18-34.	3.1	49
231	Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 2016, 149, 19-28.	3.0	154
232	Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review. Renewable and Sustainable Energy Reviews, 2016, 58, 619-645.	8.2	86
234	Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renewable and Sustainable Energy Reviews, 2016, 53, 1059-1075.	8.2	411
235	Polymers with Nano-Encapsulated Functional Polymers. , 2016, , 155-169.		9
236	Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid. Applied Energy, 2016, 168, 457-464.	5.1	66
237	Thermal analysis of phase change material board (PCMB) under weather conditions in the summer. Applied Thermal Engineering, 2016, 99, 690-702.	3.0	24
238	Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1357-1366.	2.0	67
239	Phase change material's (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Building and Environment, 2016, 99, 221-238.	3.0	135
240	Physical–chemical properties evolution and thermal properties reliability of a paraffin wax under solar radiation exposure in a real-scale PCM window system. Energy and Buildings, 2016, 119, 41-50.	3.1	29
241	Latent heat storage in building elements: A systematic review on properties and contextual performance factors. Renewable and Sustainable Energy Reviews, 2016, 60, 852-866.	8.2	70
242	Simulating the Inter-Building Effect on energy consumption from embedding phase change materials in building envelopes. Sustainable Cities and Society, 2016, 27, 287-295.	5.1	50
243	Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy and Buildings, 2016, 112, 159-172.	3.1	143
244	Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy, 2016, 96, 103-117.	4.5	138
245	CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Applied Energy, 2016, 164, 711-722.	5.1	124

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
246	Advanced energy storage materials for building applications and their thermal performance characterization: A review. Renewable and Sustainable Energy Reviews, 2016, 57, 916-928.	8.2	152
247	Design and Application of Concrete Tiles Enhanced with Microencapsulated Phase-Change Material. Journal of Architectural Engineering, 2016, 22, .	0.8	23
248	The potential of lightweight low-energy houses with hybrid adaptable thermal storage: Comparing the performance of promising concepts. Energy and Buildings, 2016, 110, 79-93.	3.1	37
249	A review of heat recovery technology for passive ventilation applications. Renewable and Sustainable Energy Reviews, 2016, 54, 1481-1493.	8.2	100
250	Passive thermal control in residential buildings using phase change materials. Renewable and Sustainable Energy Reviews, 2016, 55, 371-398.	8.2	238
251	Experimental characterisation of sub-cooling in hydrated salt phase change materials. Applied Thermal Engineering, 2016, 93, 935-938.	3.0	32
252	Thermal performance of a typical residential Cyprus building with phase change materials. Building Services Engineering Research and Technology, 2016, 37, 85-102.	0.9	17
253	Literature review on the use of phase change materials in glazing and shading solutions. Renewable and Sustainable Energy Reviews, 2016, 53, 515-535.	8.2	128
254	Solar energy materials for glazing technologies. Solar Energy Materials and Solar Cells, 2016, 144, 559-578.	3.0	99
255	Impact of wall discretization on the modeling of heating/cooling energy consumption of residential buildings. Energy Efficiency, 2016, 9, 95-108.	1.3	12
256	Computational assessment of a full-scale Mediterranean building incorporating wallboards with phase change materials. Indoor and Built Environment, 2017, 26, 1429-1443.	1.5	7
257	Thermally Stable Phase Change Material with High Latent Heat and Low Cost based on an Adipic Acid/Boric Acid Binary Eutectic System. Energy Technology, 2017, 5, 1322-1327.	1.8	10
258	Numerical Investigation and Nondimensional Analysis of the Dynamic Performance of a Thermal Energy Storage System Containing Phase Change Materials and Liquid Water. Journal of Solar Energy Engineering, Transactions of the ASME, 2017, 139, .	1.1	15
259	Simulation-based analysis of the use of PCM-wallboards to reduce cooling energy demand and peak-loads in low-rise residential heavyweight buildings in Kuwait. Building Simulation, 2017, 10, 481-495.	3.0	41
260	Definition of a new set of parameters for the dynamic thermal characterization of PCM layers in the presence of one or more liquid-solid interfaces. Energy and Buildings, 2017, 141, 379-396.	3.1	33
261	Fabrication and characterization of novel shape-stabilized stearic acid composite phase change materials with tannic-acid-templated mesoporous silica nanoparticles for thermal energy storage. RSC Advances, 2017, 7, 15625-15631.	1.7	46
262	Infrared Regulating Smart Window Based on Organic Materials. Advanced Energy Materials, 2017, 7, 1602209.	10.2	286
263	Phase Change Materials for Application in Energy-Efficient Buildings. , 2017, , 57-118.		32

#	ARTICLE	IF	Citations
264	Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 2017, 81, 11-24.	4.6	40
265	A novel binary mixture of caprylic acid/nonanoic acid as latent heat storage for air conditioning and cooling. Energy and Buildings, 2017, 145, 259-266.	3.1	11
266	A numerical and experimental study of a cellular passive solar façade system for building thermal control. Solar Energy, 2017, 149, 102-113.	2.9	23
267	Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications. Energy, 2017, 132, 31-40.	4.5	39
268	A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renewable and Sustainable Energy Reviews, 2017, 77, 845-860.	8.2	151
269	A thermally stable phase change material with high latent heat based on an oxalic acid dihydrate/boric acid binary eutectic system. Solar Energy Materials and Solar Cells, 2017, 168, 38-44.	3.0	16
270	Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review. Renewable and Sustainable Energy Reviews, 2017, 78, 194-209.	8.2	92
271	Polystyrene microcapsules with palmitic-capric acid eutectic mixture as building thermal energy storage materials. Energy and Buildings, 2017, 150, 376-382.	3.1	69
272	Passive cooling potential in buildings under various climatic conditions in India. Renewable and Sustainable Energy Reviews, 2017, 78, 1236-1252.	8.2	61
273	New approach for delaying the internal temperature rise of fire resistant mortar made with coated aggregate. Construction and Building Materials, 2017, 149, 76-90.	3.2	3
274	Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, 2017, 202, 420-434.	5.1	226
275	Breathing walls: The design of porous materials for heat exchange and decentralized ventilation. Energy and Buildings, 2017, 149, 246-259.	3.1	47
276	Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renewable and Sustainable Energy Reviews, 2017, 79, 1212-1228.	8.2	161
277	Mechanical and thermal evaluation of different types of PCM–concrete composite panels. Journal of Structural Integrity and Maintenance, 2017, 2, 100-108.	0.7	11
278	Heat transfer characteristics of building walls using phase change material. IOP Conference Series: Earth and Environmental Science, 2017, 60, 012028.	0.2	11
279	Modeling and investigation of high temperature phase change materials (PCM) in different storage tank configurations. Journal of Cleaner Production, 2017, 161, 831-839.	4.6	47
280	Thermal and electrical performance of a PV module integrated with double layers of water-saturated MEPCM. Applied Thermal Engineering, 2017, 123, 1120-1133.	3.0	14
281	Effect of Supercooling on the Solidification Process of the Phase Change Material. Energy Procedia, 2017, 105, 4321-4327.	1.8	23

#	Article	IF	CITATIONS
282	Energy assessment of a novel dynamic PCMs based solar shading: results from an experimental campaign. Energy and Buildings, 2017, 150, 608-624.	3.1	24
283	Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Advances, 2017, 7, 29554-29562.	1.7	29
285	Melting behaviors of PCM in porous metal foam characterized by fractal geometry. International Journal of Heat and Mass Transfer, 2017, 113, 1031-1042.	2.5	102
286	Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renewable Energy, 2017, 108, 401-409.	4.3	41
287	Application of phase change materials in gypsum boards to meet building energy conservation goals. Energy and Buildings, 2017, 138, 455-467.	3.1	112
288	Thermal characterization of polyurethane foams with phase change material. Ciência & Tecnologia Dos Materiais, 2017, 29, 1-7.	0.5	7
289	Environmental and spatial assessment for the ecodesign of a cladding system with embedded Phase Change Materials. Energy and Buildings, 2017, 156, 374-389.	3.1	23
290	Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material. Solar Energy, 2017, 158, 626-635.	2.9	71
291	Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM). Journal of Energy Storage, 2017, 13, 418-424.	3.9	62
292	Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy and Buildings, 2017, 154, 96-112.	3.1	222
293	Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites. Applied Energy, 2017, 205, 1548-1559.	5.1	30
294	Building Envelope Systems with Transparent Solid-Solid Phase Changing Material. , 2017, , .		1
295	Thermal Energy Storage Enhancement of Lightweight Cement Mortars with the Application of Phase Change Materials. Procedia Engineering, 2017, 180, 1170-1177.	1.2	37
296	Nanomaterials and Smart Nanodevices for Modular Dry Constructions: The Project "Easy House― Procedia Engineering, 2017, 180, 704-714.	1.2	8
297	Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. Journal of Materials Chemistry A, 2017, 5, 18379-18396.	5.2	182
298	Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(ureaâ^'urethane) Shells Containing Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2017, 9, 31763-31776.	4.0	95
299	Design and Preparation of the Phase Change Materials Paraffin/Porous Al ₂ O ₃ @Graphite Foams with Enhanced Heat Storage Capacity and Thermal Conductivity. ACS Sustainable Chemistry and Engineering, 2017, 5, 7594-7603.	3.2	96
300	Flammability assessment of phase change material wall lining and insulation materials with different weight fractions. Energy and Buildings, 2017, 153, 439-447.	3.1	21

# 301	ARTICLE Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility. Journal of Cleaner Production, 2017, 167, 55-67.	IF 4.6	Citations
302	Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nature Communications, 2017, 8, 1446.	5.8	210
303	Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam. IOP Conference Series: Materials Science and Engineering, 2017, 182, 012009.	0.3	2
304	Towards modern options of energy conservation in buildings. Renewable Energy, 2017, 101, 1194-1202.	4.3	56
305	A Review of PCM Energy Storage Technology Used in Buildings for the Global Warming Solution. Lecture Notes in Energy, 2017, , 611-644.	0.2	20
306	Thermal Conductivity of Biocomposite Materials. , 2017, , 129-153.		4
307	A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials and Solar Cells, 2017, 159, 26-51.	3.0	307
308	A series of electrospun fatty acid ester/polyacrylonitrile phase change composite nanofibers as novel form-stable phase change materials for storage and retrieval of thermal energy. Textile Reseach Journal, 2017, 87, 2314-2322.	1.1	9
309	Structural-functional integrated concrete with macro-encapsulated inorganic PCM. AIP Conference Proceedings, 2017, , .	0.3	7
310	Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. Energy Procedia, 2017, 135, 249-262.	1.8	14
311	The prediction of the economic effect of the energy-saving system implementation: corporate and regional aspects. SHS Web of Conferences, 2017, 35, 01083.	0.1	0
312	Thermal Properties of Cement-Based Composites for Geothermal Energy Applications. Materials, 2017, 10, 462.	1.3	27
313	Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel. Sustainability, 2017, 9, 1222.	1.6	20
314	Experimental Evaluation of Thermal Performance and Durability of Thermally-Enhanced Concretes. Applied Sciences (Switzerland), 2017, 7, 811.	1.3	10
315	Incorporation of Polymers into Calcined Clays as Improved Thermal Insulating Materials for Construction. Advances in Materials Science and Engineering, 2017, 2017, 1-6.	1.0	6
316	Acquisition System Verification for Energy Efficiency Analysis of Building Materials. Energies, 2017, 10, 1254.	1.6	1
317	Passive wall cooling panel with phase change material as a cooling agent. IOP Conference Series: Materials Science and Engineering, 2017, 271, 012022.	0.3	1
318	CaracterÃsticas térmicas de materiais de mudança de fase adequados para edificações brasileiras. Ambiente ConstruÃdo, 2017, 17, 125-145.	0.2	4

#	Article	IF	CITATIONS
319	Lightweight Concrete Containing Phase Change Materials (PCMs): A Numerical Investigation on the Thermal Behaviour of Cladding Panels. Buildings, 2017, 7, 35.	1.4	13
320	Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications. Journal of Energy Storage, 2018, 17, 1-10.	3.9	47
321	Numerical analysis of the freeze-thaw performance of cementitious composites that contain phase change material (PCM). Materials and Design, 2018, 145, 74-87.	3.3	42
323	Porous materials in building energy technologies—A review of the applications, modelling and experiments. Renewable and Sustainable Energy Reviews, 2018, 91, 229-247.	8.2	131
324	Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renewable Energy, 2018, 126, 1003-1031.	4.3	144
325	A numerical study of adaptive building enclosure systems using solid–solid phase change materials with variable transparency. Energy and Buildings, 2018, 167, 240-252.	3.1	34
326	Thermo-physical characteristics, mechanical performance and long-term stability of high temperature latent heat storages based on paraffin-polymer compounds. Thermochimica Acta, 2018, 663, 34-45.	1.2	13
327	Overheating protection of solar thermal façades with latent heat storages based on paraffin-polymer compounds. Energy and Buildings, 2018, 169, 254-259.	3.1	17
328	Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation. Journal of Cleaner Production, 2018, 189, 738-745.	4.6	97
329	Benefits of latent thermal energy storage in the retrofit of Canadian high-rise residential buildings. Building Simulation, 2018, 11, 709-723.	3.0	31
330	Preparation of acrylic PCM microcapsules with dual responsivity to temperature and magnetic field changes. European Polymer Journal, 2018, 101, 18-28.	2.6	32
331	Optical properties of liquid paraffin contained with Al2O3 nanoparticles. Optik, 2018, 159, 295-300.	1.4	5
332	Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network. Materials and Design, 2018, 143, 177-184.	3.3	83
333	Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy, 2018, 212, 1448-1461.	5.1	107
334	Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting. Nature Communications, 2018, 9, 664.	5.8	118
335	Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2018, 132, 907-917.	2.0	25
336	Microencapsulated n -alkane eutectics in polystyrene for solar thermal applications. Solar Energy, 2018, 160, 32-42.	2.9	57
337	Multiobjective optimization of a building envelope with the use of phase change materials (PCMs) in Mediterranean climates. International Journal of Energy Research, 2018, 42, 3030-3047.	2.2	30

#	Article	IF	CITATIONS
338	Prediction of the properties of eutectic fatty acid phase change materials. Thermochimica Acta, 2018, 660, 94-100.	1.2	52
339	Concrete as a thermal mass material for building applications - A review. Journal of Building Engineering, 2018, 19, 14-25.	1.6	95
340	Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 2018, 3, 5-20.	23.3	489
341	A new ventilated window with PCM heat exchanger—Performance analysis and design optimization. Energy and Buildings, 2018, 169, 185-194.	3.1	45
342	Impact of solar energy on the energy balance of attic rooms in high latitude countries. Applied Thermal Engineering, 2018, 136, 548-559.	3.0	13
343	Experimental investigation of free cooling using phase change material-filled air heat exchanger for energy efficiency in buildings. Advances in Building Energy Research, 2018, 12, 139-149.	1.1	21
344	Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2373-2380.	2.0	38
345	An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, 2018, 158, 1013-1022.	3.1	40
346	Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews, 2018, 82, 2300-2318.	8.2	242
347	Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: A review. International Journal of Energy Research, 2018, 42, 3068-3077.	2.2	43
348	Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews, 2018, 82, 2843-2868.	8.2	153
349	Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 3705-3749.	8.2	104
350	Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin. Journal of Central South University, 2018, 25, 2387-2398.	1.2	14
351	MODELING PHASE-CHANGE MATERIALS HEAT CAPACITY USING ARTIFICIAL NEURAL NETWORKS. Heat Transfer Research, 2018, 49, 617-631.	0.9	4
352	Melting Process Expedition of Phase Change Materials via Silicone Oil. , 2018, , .		0
353	Solid–Liquid Phase Equilibria, Molecular Interaction and Microstructural Studies on (N-(2-ethanol)-p-nitroaniline + N-(2-acetoxyethyl)-p-nitroaniline) Binary Mixtures. International Journal of Thermophysics, 2018, 39, 1.	1.0	17
354	Numerical Investigation of Energy Saving Characteristic in Building Roof Coupled with PCM Using Lattice Boltzmann Method with Economic Analysis. Applied Sciences (Switzerland), 2018, 8, 1739.	1.3	7
355	Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. Sustainability, 2018, 10, 2657.	1.6	7

#	Article	IF	CITATIONS
356	Development of calcium silicate-coated expanded clay based form-stable phase change materials for enhancing thermal and mechanical properties of cement-based composite. Solar Energy, 2018, 174, 24-34.	2.9	29
357	Use of calcium silicate-coated paraffin/expanded perlite materials to improve the thermal performance of cement mortar. Construction and Building Materials, 2018, 189, 218-226.	3.2	30
358	Solar-Assisted HVAC Systems with Integrated Phase Change Materials. , 2018, , .		3
359	Experimental investigation on thermal behavior and reduction of energy consumption in a real scale building by using phase change materials on its envelope. Sustainable Cities and Society, 2018, 41, 35-43.	5.1	53
360	Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review. Materials, 2018, 11, 654.	1.3	53
361	Nanoclay and polymer-based nanocomposites: Materials for energy efficiency. , 2018, , 75-103.		7
362	Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis. Energies, 2018, 11, 111.	1.6	39
363	Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements. Construction and Building Materials, 2018, 183, 502-512.	3.2	32
364	Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage. Materials, 2018, 11, 195.	1.3	18
365	Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials, 2018, 11, 295.	1.3	239
366	Numerical study on the effect of phase change materials on heat transfer in asphalt concrete. International Journal of Thermal Sciences, 2018, 133, 140-150.	2.6	46
367	Fluidâ€Integrated Glass–Glass Laminate for Sustainable Hydronic Cooling and Indoor Air Conditioning. Advanced Sustainable Systems, 2018, 2, 1800047.	2.7	9
368	Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustainable Cities and Society, 2018, 41, 455-468.	5.1	86
369	Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement. Construction and Building Materials, 2018, 177, 202-209.	3.2	56
370	Thermophysical, environmental, and compatibility properties of nitrate and nitrite containing molten salts for medium temperature CSP applications: A critical review. Journal of the European Ceramic Society, 2019, 39, 92-99.	2.8	27
371	Symmetrical Fatty Dialkyl Carbonates as Potential Green Phase Change Materials: Synthesis and Characterisation. Russian Journal of General Chemistry, 2019, 89, 1513-1518.	0.3	2
372	Reversible Heat Exchange in the Nozzle with Water–Ice Phase Transition in Filtration of Air. Journal of Engineering Thermophysics, 2019, 28, 103-113.	0.6	2
373	Experimental and modeling studies of binary organic eutectic systems to be used as stabilizers for nitrate esters-based energetic materials. Fluid Phase Equilibria, 2019, 498, 104-115.	1.4	24

#	Article	IF	CITATIONS
374	Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials, 2019, 225, 723-744.	3.2	249
375	Multivariable optimisation of a new PCMs integrated hybrid renewable system with active cooling and hybrid ventilations. Journal of Building Engineering, 2019, 26, 100845.	1.6	21
376	Use of phase change materials in concrete: current challenges. Renewable Energy and Environmental Sustainability, 2019, 4, 9.	0.7	30
377	The influence of building material, windows and insulators on energy saving in different climate zones in Iran. International Journal of Energy and Water Resources, 2019, 3, 283-289.	1.3	2
378	Numerical Study of Application of PCM for a Passive Thermal Energy Storage System for Space Cooling in Residential Buildings. IOP Conference Series: Materials Science and Engineering, 2019, 603, 042011.	0.3	2
379	Compounds with Epoxy Resins and Phase Change Materials for Storage in Solar Applications. Materials, 2019, 12, 3522.	1.3	4
380	Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building. Energies, 2019, 12, 3661.	1.6	34
381	Development of structural thermal energy storage concrete using paraffin intruded lightweight aggregate with nano-refined modified encapsulation paste layer. Construction and Building Materials, 2019, 228, 116768.	3.2	21
382	Temperatureâ€Responsive Polymer Wave Plates as Tunable Polarization Converters. Advanced Optical Materials, 2019, 7, 1901103.	3.6	9
383	Reversible process of heat exchange in layer with phase transition. AIP Conference Proceedings, 2019, ,	0.3	0
384	A Review of the Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. Journal of Electronic Materials, 2019, 48, 7623-7634.	1.0	55
385	Polypropylene/nanoclay Composite: A solution to refrigerated vehicles. Procedia Manufacturing, 2019, 35, 174-180.	1.9	4
386	Temperature Control in (Translucent) Phase Change Materials Applied in Facades: A Numerical Study. Energies, 2019, 12, 3286.	1.6	13
387	Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions. Cement and Concrete Composites, 2019, 104, 103391.	4.6	40
388	Effect of microencapsulated phase change materials on the flow behavior of cement composites. Construction and Building Materials, 2019, 202, 353-362.	3.2	33
389	Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage. Renewable Energy, 2019, 136, 657-663.	4.3	19
390	Reviewing Theoretical and Numerical Models for PCM-embedded Cementitious Composites. Buildings, 2019, 9, 3.	1.4	24
391	Emissions. , 2019, , 263-297.		0

#	Article	IF	CITATIONS
392	Experimental and numerical investigation of spatiotemporal characteristics of thermal energy storage system in a rectangular enclosure. Journal of Energy Storage, 2019, 21, 405-417.	3.9	29
393	Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material. Construction and Building Materials, 2019, 222, 254-262.	3.2	43
394	Synthesis and characterization of ditetradecyl succinate and dioctadecyl succinate as novel phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2019, 200, 110006.	3.0	8
395	Model predictive control for thermal energy storage assisted large central cooling systems. Energy, 2019, 179, 916-927.	4.5	19
396	Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review. Molecules, 2019, 24, 2055.	1.7	45
397	Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 2019, 198, 467-490.	3.1	157
398	Domestic Hot Water Storage Tank Utilizing Phase Change Materials (PCMs): Numerical Approach. Energies, 2019, 12, 2170.	1.6	24
399	Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material. Applied Sciences (Switzerland), 2019, 9, 1104.	1.3	12
400	Tetradecyl oxalate and octadecyl oxalate as novel phase change materials for thermal energy storage. Solar Energy, 2019, 185, 341-349.	2.9	5
401	Thermal and rheological characterization of bitumen modified with microencapsulated phase change materials. Construction and Building Materials, 2019, 215, 171-179.	3.2	47
402	Graphene oxide modified Strain Hardening Cementitious Composites with enhanced mechanical and thermal properties by incorporating ultra-fine phase change materials. Cement and Concrete Composites, 2019, 98, 83-94.	4.6	33
403	Thermal Performance of Electrochromic Smart Window with Nanocomposite Structure under Different Climates in Iran. Micro and Nanosystems, 2019, 11, 154-164.	0.3	21
404	Experimental and numerical characterization of an impure phase change material using a thermal lattice Boltzmann method. Applied Thermal Engineering, 2019, 154, 738-750.	3.0	20
405	Dynamic behaviour of bio-based and recycled materials for indoor environmental comfort. Construction and Building Materials, 2019, 211, 730-743.	3.2	27
406	Thermal and Structural Characterization of Geopolymer-Coated Polyurethane Foam—Phase Change Material Capsules/Geopolymer Concrete Composites. Materials, 2019, 12, 796.	1.3	17
407	Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects. Journal of Molecular Liquids, 2019, 292, 110592.	2.3	76
408	Optimization of a New Phase Change Material Integrated Photovoltaic/Thermal Panel with The Active Cooling Technique Using Taguchi Method. Energies, 2019, 12, 1022.	1.6	28
409	Analysis of phase change materials (PCM) for building wallboards based on the effect of environment.	1.6	52

ARTICLE IF CITATIONS A novel composite phase change material with paraffin wax in tailings porous ceramics. Applied 410 3.0 47 Thermal Engineering, 2019, 151, 115-123. Preparation, characterization, thermal energy storage properties and temperature control 411 performance of form-stabilized sepiolite based composite phase change materials. Energy and 3.1 Buildings, 2019, 188-189, 111-119. Nano-encapsulation of phase change materials: From design to thermal performance, simulations and 412 3.125 toxicological assessment. Energy and Buildings, 2019, 188-189, 1-11. Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. Scientific Reports, 2019, 9, 20342. Nano insulation materials exploiting the Knudsen effect. IOP Conference Series: Materials Science and 414 0.3 7 Engineering, 2019, 634, 012003. Building Envelope with Phase Change Materials., 0, , . Shape-stabilized phase change materials based on porous supports for thermal energy storage 416 6.6 459 applications. Chemical Engineering Journal, 2019, 356, 641-661. Optimization of phase change materials to improve energy performance within thermal comfort range in the South Korean climate. Energy and Buildings, 2019, 185, 12-25. 3.1 36 Energy performance and economic analysis of a TIM-PCM wall under different climates. Energy, 2019, 418 4.5 74 169, 1274-1291. Effects of various carbon additives on the thermal storage performance of form-stable PCM integrated cementitious composites. Applied Thermal Engineering, 2019, 148, 491-501. Experiment study on thermal performance of building integrated with double layers shape-stabilized 420 4.5 66 phase change material wallboard. Energy, 2019, 167, 1164-1180. Experimental investigation of latent heat thermal energy storage using PCMs with different melting 3.1 107 temperatures for building retrofit. Energy and Buildings, 2019, 185, 180-195. Preparation and effectiveness of composite phase change material for performance improvement of 422 4.6 48 Open Graded Friction Course. Journal of Cleaner Production, 2019, 214, 259-269. Development of graphitic domains in carbon foams for high efficient electro/photo-to-thermal energy 6.6 108 conversion phase change composites. Chemical Engineering Journal, 2019, 362, 469-481. Microencapsulated oleicâ€"capric acid/hexadecane mixture as phase change material for thermal energy 424 2.0 29 storage. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1551-1561. Life cycle and life cycle cost implications of integrated phase change materials in office buildings. 425 International Journal of Energy Research, 2019, 43, 150-166. Ethylene-Propylene Terpolymer-Modified Polyethylene-Based Phase Change Material with Enhanced 426 Mechanical and Thermal Properties for Building Application. Industrial & amp; Engineering Chemistry 1.8 14 Research, 2019, 58, 179-186. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 2019, 149, 192-212.

#	Article	IF	CITATIONS
428	Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector. Renewable Energy, 2019, 137, 10-19.	4.3	31
429	Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage. Thermochimica Acta, 2020, 685, 178191.	1.2	24
430	Progress in Digital and Physical Manufacturing. Lecture Notes in Mechanical Engineering, 2020, , .	0.3	7
431	Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 2020, 77, 1936-1953.	2.2	138
432	Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China. Applied Thermal Engineering, 2020, 165, 114547.	3.0	67
433	Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustainable Cities and Society, 2020, 53, 101884.	5.1	97
434	Optical and thermal performance of glazing units containing PCM in buildings: A review. Construction and Building Materials, 2020, 233, 117327.	3.2	142
435	Daytime radiative cooling: To what extent it enhances office cooling system performance in comparison to night cooling in semi-arid climate?. Journal of Building Engineering, 2020, 28, 101020.	1.6	8
436	Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions. Applied Energy, 2020, 260, 114338.	5.1	30
437	Development of polyurethane foam incorporating phase change material for thermal energy storage. Journal of Energy Storage, 2020, 28, 101177.	3.9	23
438	Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system. Solar Energy Materials and Solar Cells, 2020, 207, 110360.	3.0	121
439	High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105710.	3.8	99
440	A support approach for the modular design of Li-ion batteries: A test case with PCM. Journal of Energy Storage, 2020, 31, 101684.	3.9	24
441	Review on phase change materials for cold thermal energy storage applications. Renewable and Sustainable Energy Reviews, 2020, 134, 110340.	8.2	137
442	Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy and Environmental Science, 2020, 13, 4498-4535.	15.6	181
443	Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials. Journal of Energy Storage, 2020, 32, 101860.	3.9	16
444	Characterisation of wood hygromorphic panels for relative humidity passive control. Journal of Building Engineering, 2020, 32, 101829.	1.6	7
445	Evaluation of phase change materials used in building components for conservation of energy in buildings in hot dry climatic regions. Renewable Energy, 2020, 162, 1919-1930.	4.3	24

#	Article	IF	Citations
446	Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones. Renewable and Sustainable Energy Reviews, 2020, 131, 110031.	8.2	22
447	Future trends and main concepts of adaptive facade systems. Energy Science and Engineering, 2020, 8, 3255-3272.	1.9	37
448	Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material. Energies, 2020, 13, 6065.	1.6	5
449	Development of structural layers PVC incorporating phase change materials for thermal energy storage. Applied Thermal Engineering, 2020, 179, 115707.	3.0	11
450	Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review. Journal of Cleaner Production, 2020, 276, 123343.	4.6	172
451	Parametric analysis and design optimisation of PCM thermal energy storage system for space cooling of buildings. Energy and Buildings, 2020, 224, 110288.	3.1	51
452	Form-Stable Phase Change Materials Based on SEBS and Paraffin: Influence of Molecular Parameters of Styrene-b-(Ethylene-co-Butylene)-b-Styrene on Shape Stability and Retention Behavior. Materials, 2020, 13, 3285.	1.3	8
453	Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chemistry, 2020, 22, 5447-5462.	4.6	47
454	A review on thermal energy storage using phase change materials in passive building applications. Journal of Building Engineering, 2020, 32, 101563.	1.6	66
455	An experimental study of the efficacy of integrating a phase change material into a clay-straw wall in the DrA¢a-Tafilalet Region (Errachidia Province), Morocco. Journal of Building Engineering, 2020, 32, 101670.	1.6	8
456	Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy, 2020, 162, 171-181.	4.3	84
457	GPU-accelerated lattice Boltzmann simulation of heat transfer characteristics of porous brick roof filled with phase change materials. International Communications in Heat and Mass Transfer, 2020, 119, 104911.	2.9	14
458	Alta tecnologia e reúso de materiais descartados: desenvolvimento de um painel decorativo para a melhoria do desempenho térmico em edificações. Gestão & Tecnologia De Projetos, 2020, 15, 6-19.	0.1	1
459	Solar Thermal Energy Storage Using Paraffins as Phase Change Materials for Air Conditioning in the Built Environment. , 0, , .		3
460	Crossed analysis by T-history and optical light scattering method for the performance evaluation of Glauber's salt-based phase change materials. Journal of Dispersion Science and Technology, 2022, 43, 760-768.	1.3	6
461	A Review on the Utilization of Phase Change Materials forSpace Cooling Purposes. IOP Conference Series: Materials Science and Engineering, 2020, 870, 012139.	0.3	0
462	Experimental apparatus and methodology to test and quantify thermal performance of micro and macro-encapsulated phase change materials in building envelope applications. Journal of Energy Storage, 2020, 32, 101770.	3.9	12
463	Characterization and cooling effect of a novel cement-based composite phase change material. Solar Energy, 2020, 208, 573-582.	2.9	29

#	Article	IF	CITATIONS
464	Thermal properties and related core/shell structure of n-tetracosane microencapsulated by calcium carbonate. Applied Thermal Engineering, 2020, 178, 115512.	3.0	16
465	Review on Nanostructure Supporting Material Strategies in Shape-stabilized Phase Change Materials. Journal of Energy Storage, 2020, 29, 101299.	3.9	65
466	Study on thermal properties of organic phase change materials for energy storage. Materials Today: Proceedings, 2020, 28, 2353-2357.	0.9	10
467	Thermo-economic analysis of a solar-driven multi-stage desalination unit equipped with a phase change material storage system to provide heating and fresh water for a residential complex. Journal of Energy Storage, 2020, 30, 101555.	3.9	18
468	Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review. Energies, 2020, 13, 3065.	1.6	27
469	Use of PEG/SiO2 phase change composite to control porous asphalt concrete temperature. Construction and Building Materials, 2020, 245, 118459.	3.2	28
470	Parametric characterization of a full-scale plate-based latent heat thermal energy storage system. Applied Thermal Engineering, 2020, 178, 115441.	3.0	12
471	An experimental investigation of the thermal effect due to discharging of phase change material in a room fitted with a windcatcher. Sustainable Cities and Society, 2020, 61, 102277.	5.1	19
472	Investigation of heat transfer of a building wall in the presence of phase change material (PCM). Energy and Built Environment, 2020, 1, 199-206.	2.9	96
473	The application of Crude Palm Oil (CPO) within lightweight concrete in passive air conditioning system. Journal of Physics: Conference Series, 2020, 1456, 012034.	0.3	1
474	Micro-/macro-level optimization of phase change material panel in building envelope. Energy, 2020, 195, 116932.	4.5	27
475	Qualitative and quantitative optimization of thermal insulation materials: Insights from the market and energy codes. Journal of Building Engineering, 2020, 30, 101275.	1.6	20
476	Thermo-optically responsive phase change materials for passive temperature regulation. Solar Energy, 2020, 197, 222-228.	2.9	17
477	Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. Journal of Thermal Analysis and Calorimetry, 2020, 141, 613-624.	2.0	72
478	Formâ€stable Na ₂ SO ₄ ·10H ₂ Oâ€Na ₂ HPO _{4·12H ₂ O eutectic/hydrophilic fumed silica composite phase change material with low supercooling and low thermal conductivity for indoor thermal comfort improvement. International Journal of Energy Research, 2020, 44, 3171-3182.})> 2.2	32
479	Synthesis of monolithic shape-stabilized phase change materials with high mechanical stability <i>via</i> a porogen-assisted <i>in situ</i> sol–gel process. RSC Advances, 2020, 10, 3072-3083.	1.7	21
480	Modeling of Energy Demand and Savings Associated with the Use of Epoxy-Phase Change Material Formulations. Materials, 2020, 13, 639.	1.3	3
481	Eutectic crystallized FePd nanoparticles for liquid metal magnet. Chemical Communications, 2020, 56, 6555-6558.	2.2	11

#	Article	IF	CITATIONS
483	Status of BIPV and BAPV System for Less Energy-Hungry Building in India—A Review. Applied Sciences (Switzerland), 2020, 10, 2337.	1.3	78
484	Polyethylene Glycol-600/expanded clay aggregate with Alccofine1203 in concrete. Materials Today: Proceedings, 2021, 43, 1081-1088.	0.9	8
485	Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material. Energy, 2021, 216, 119213.	4.5	22
486	Inorganic salt hydrate for thermal energy storage application: A review. Energy Storage, 2021, 3, e212.	2.3	51
487	Enhanced thermal storage capacity of paraffin/diatomite composite using oleophobic modification. Journal of Cleaner Production, 2021, 279, 123211.	4.6	28
488	Eco-efficient earth plasters: The effect of sand grading and additions on fresh and mechanical properties. Journal of Building Engineering, 2021, 33, 101591.	1.6	11
489	A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 2021, 33, 101913.	3.9	143
490	Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations. Energy, 2021, 215, 119102.	4.5	38
491	Optically smart thin materials for building cooling. , 2021, , 355-399.		0
492	Evaluating the thermal efficiency of microencapsulated phase change materials for thermal energy storage in cementitious composites. Cement and Concrete Composites, 2021, 116, 103891.	4.6	15
493	Thermal energy storage cement mortar with direct incorporation of organic and inorganic phase change materials. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	12
494	A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 2021, 285, 124807.	4.6	122
495	Uso de PCM para edificações em região de clima quente. PARC: Pesquisa Em Arquitetura E Construção, 0, 12, e021001.	0.3	1
496	Application of Phase Change Materials in Construction Materials for Thermal Energy Storage Systems in Buildings. Impact of Meat Consumption on Health and Environmental Sustainability, 2021, , 1-20.	0.4	0
497	Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 823-850.	1.4	14
498	On the Energy Performance of Micro-Encapsulated Phase Change Material Enhanced Spackling with Night Ventilation. Applied Sciences (Switzerland), 2021, 11, 1472.	1.3	2
499	Performance Assessment of Phase Change Materials Integrated with Building Envelope for Heating Application in Cold Locations. European Journal of Education and Pedagogy, 2021, 1, 7-14.	0.2	10
500	Improving thermal and mechanical properties of light weight aggregate concrete using inorganic phase changing material, expanded clay aggregate, alccofine1203 and manufacturing sand. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	8

#	Article	IF	CITATIONS
501	Isopropyl palmitate integrated with plasterboard for low temperature latent heat thermal energy storage. International Journal of Energy Research, 2021, 45, 10500-10512.	2.2	5
502	Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 6188-6200.	4.0	51
503	Experimental investigation for the development of superior structural integrated thermocrete via incorporation of novel non-encapsulated paraffin aggregate. Construction and Building Materials, 2021, 271, 121883.	3.2	11
504	Thermal Energy Storage by the Encapsulation of Phase Change Materials in Building Elements—A Review. Materials, 2021, 14, 1420.	1.3	32
505	A Review of Heat Recovery in Ventilation. Energies, 2021, 14, 1759.	1.6	31
506	Performance evaluation of phase change materials for thermal comfort in a hot climate region. Applied Thermal Engineering, 2021, 186, 116509.	3.0	22
507	Research and Exploration of Phase Change Materials on Solar Pavement and Asphalt Pavement: A review. Journal of Energy Storage, 2021, 35, 102246.	3.9	27
508	Parametric analysis of thermal behavior of the building with phase change materials for passive cooling. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 5627-5639.	1.2	5
509	Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy. Sustainability, 2021, 13, 4397.	1.6	9
510	Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 2021, 36, 102122.	1.6	110
511	Scientometric review of international research trends on thermal energy storage cement based composites via integration of phase change materials from 1993 to 2020. Construction and Building Materials, 2021, 278, 122344.	3.2	41
512	Concrete Incorporating Nanosilica Cured under Freezing Temperatures Using Conventional and Hybrid Protection Methods. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	4
513	Preparation and Characterization of Capric-Lauric Acid/Silicon Dioxide Nanocapsules as Phase Change Energy Storage Materials. Science of Advanced Materials, 2021, 13, 632-637.	0.1	2
514	A short review on the Industrial applications of phase change materials. IOP Conference Series: Materials Science and Engineering, 2021, 1116, 012006.	0.3	6
515	Analysis and optimization of triple tube phase change material based energy storage system. Journal of Energy Storage, 2021, 36, 102350.	3.9	11
516	LAPONITE® based hydrogel for cold thermal energy storage application. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
517	Phase Change Materials Technologies Review and Future Application in Lebanon: Part 1. Key Engineering Materials, 0, 886, 228-240.	0.4	0
518	Microencapsulated di-ammonium hydrogen phosphate (DAHP) with a polyurethane shell: characterization and its properties in wood. European Journal of Wood and Wood Products, 2021, 79, 1405-1417.	1.3	9

#	Article	IF	CITATIONS
519	Phase Change Materials Technologies Review and Future Application in Lebanon: Part II. Key Engineering Materials, 0, 886, 256-270.	0.4	0
520	Review on cold thermal energy storage applied to refrigeration systems using phase change materials. Thermal Science and Engineering Progress, 2021, 22, 100807.	1.3	60
521	A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Materials and Solar Cells, 2021, 223, 110955.	3.0	152
522	Experimental Validation of Composite Phase Change Material Optimized for Thermal Energy Storage. , 2021, , .		1
523	Flexible Manipulator with Low-Melting-Point Alloy Actuation and Variable Stiffness. Soft Robotics, 2022, 9, 577-590.	4.6	18
524	Random copolymer of poly(polyethylene glycol methyl ether)methacrylate as tunable transition temperature solid-solid phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 225, 111030.	3.0	19
525	Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy, 2021, 172, 680-696.	4.3	91
526	Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings. Buildings, 2021, 11, 303.	1.4	2
527	Multicomponent bio-based fatty acids system as phase change material for low temperature energy storage, 2021, 39, 102645.	3.9	17
528	Investigation of transient heat transfer in multi-scale PCM composites using a semi-analytical model. International Journal of Heat and Mass Transfer, 2021, 175, 121389.	2.5	12
529	The impact of wall and roof material on the summer thermal performance of building in a temperate climate. Energy, 2021, 228, 120482.	4.5	21
530	The influence of macro-encapsulated PCM panel's geometry on heat transfer in a ceiling application. Advances in Building Energy Research, 2022, 16, 445-465.	1.1	6
531	Phase Change Materials for Renewable Energy Storage Applications. , 0, , .		0
532	Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort. Sustainable Energy Technologies and Assessments, 2021, 46, 101277.	1.7	15
533	Experimental and Numerical Analyses of Thermal Storage Tile-Bricks for Efficient Thermal Management of Buildings. Buildings, 2021, 11, 357.	1.4	3
534	New shapeâ€stabilized phase change materials obtained by singleâ€screw extruder. Energy Storage, 2021, 3, e268.	2.3	6
535	Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar. Journal of Building Engineering, 2021, 40, 102328.	1.6	18
536	Comprehensive review of the application of phase change materials in residential heating applications. AEJ - Alexandria Engineering Journal, 2021, 60, 3829-3843.	3.4	29

#	Article	IF	Citations
537	Multi-level modeling of thermal behavior of phase change material incorporated lightweight aggregate and concrete. Cement and Concrete Composites, 2021, 122, 104131.	4.6	7
538	Melting of phase change materials in horizontal annuli. Journal of Energy Storage, 2021, 42, 103096.	3.9	7
539	Improving Rutting and Fatigue Properties of Asphalt Mastic by Adding Cement–Polyethylene Glycol Composite. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
540	Multivariate analysis of effects of microencapsulated phase change materials on mechanical behaviors in light-weight aggregate concrete. Journal of Building Engineering, 2021, 42, 102783.	1.6	24
541	Effect of core-shell ratio on the thermal energy storage capacity of SiO2 encapsulated lauric acid. Journal of Energy Storage, 2021, 42, 103029.	3.9	22
542	A critical review of fenestration/window system design methods for high performance buildings. Energy and Buildings, 2021, 248, 111184.	3.1	21
543	Numerical study of the feasibility of coupling vacuum isolation panels with phase change material for enhanced energy-efficient buildings. Energy and Buildings, 2021, 251, 111369.	3.1	2
544	Thermal and mechanical performance of a novel 3D printed macro-encapsulation method for phase change materials. Journal of Building Engineering, 2021, 43, 103124.	1.6	7
545	A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 2021, 7, 2784-2820.	2.5	40
546	Natural convection onset during melting of phase change materials: Part I – Effects of the geometry, Stefan number, and degree of subcooling. International Journal of Thermal Sciences, 2021, 170, 107180.	2.6	4
547	Nonwoven Textile Waste Added with PCM for Building Applications. Applied Sciences (Switzerland), 2021, 11, 1262.	1.3	4
548	Review of Battery Thermal Management System for Electric Vehicles. Modeling and Simulation, 2021, 10, 236-246.	0.0	3
549	Laboratory Testing of Small-Scale Active Solar Façade Module. Environmental and Climate Technologies, 2021, 25, 455-466.	0.5	4
550	3D Numerical Modeling for Assessing the Energy Performance of Single-Zone Buildings with and Without Phase Change Materials. , 2020, , 419-438.		2
551	The Application of Phase Change Materials to Improve the Climate Resilience of a Low-Energy Prototype House. , 2014, , 135-150.		2
552	Nanotech Based Vacuum Insulation Panels for Building Applications. , 2016, , 167-214.		4
553	Moisture Robustness During Retrofitting of Timber Frame Walls with Vacuum Insulation Panels: Experimental and Theoretical Studies. Building Pathology and Rehabilitation, 2013, , 183-210.	0.1	3
554	Palm oil for seasonal thermal energy storage applications in buildings: The potential of multiple melting ranges in blends of bio-based fatty acids. Journal of Energy Storage, 2020, 29, 101431.	3.9	18

#	Article	IF	CITATIONS
555	Total enthalpy-based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials. International Journal of Heat and Mass Transfer, 2020, 155, 119870.	2.5	44
556	Energy-related conditions and envelope properties for sustainable buildings. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 697-707.	0.8	3
557	Preparation and Thermal Features of Composite Paraffin Room Temperature Phase Change Mortar. Journal of Testing and Evaluation, 2019, 47, 511-524.	0.4	1
558	NUMERICAL STUDY OF NANO-ENHANCED PCMS: ARE THEY WORTH IT?. , 2016, , .		10
559	Long-chain Diesters of Fattyy Alcohols as Novel Phase Change Materials for Thermal Energy Storage. Cumhuriyet Science Journal, 2020, 41, 269-280.	0.1	4
561	ISIL ENERJİ DEPOLAMA SİSTEMLERİ İćİN ORGANİK FAZ DEĞİŞTİREN MADDELERİN MEVCUT DI İNCELEME. Mļhendislik Bilimleri Ve Tasarım Dergisi, 0, , 161-174.	IRUMU Ão	æZERİNE B/
562	Performance analysis of a single underground thermal storage borehole using phase change material. , 2018, , .		2
563	Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies, 2019, 23, 74-89.	0.5	17
564	Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies. Environmental and Climate Technologies, 2019, 23, 170-181.	0.5	5
565	Design of Eutectic Hydrated Salt Composite Phase Change Material with Cement for Thermal Energy Regulation of Buildings. Materials, 2021, 14, 139.	1.3	6
566	An exploration on the performance of using phase change humidity control material wallboards in office buildings. Energy, 2022, 239, 122433.	4.5	10
567	Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Applied Sciences (Switzerland), 2021, 11, 9305.	1.3	20
568	Cellulose nanocrystals supported— <scp>PolyHIPE</scp> foams for lowâ€ŧemperature latent heat storage applications. Journal of Applied Polymer Science, 2022, 139, 51785.	1.3	8
569	Simulation of melting and solidification of graphene nanoparticles-PCM inside a dual tube heat exchanger with extended surface. Journal of Energy Storage, 2021, 44, 103265.	3.9	30
572	Passive and Hybrid Solar Design of Buildings. Lecture Notes in Energy, 2014, , 213-244.	0.2	0
573	Experimental Research on Thermal Performance of Lightweight Envelope Integrated with Phase Change Material. Lecture Notes in Electrical Engineering, 2014, , 275-280.	0.3	0
574	Optimized Analysis of Lightweight Wall Outfitted with PCM in Hot Summer Zone. Lecture Notes in Electrical Engineering, 2014, , 233-240.	0.3	0
577	Preparation and Characterization of Stearic Acid/SiO2 Nano-encapsulated Phase Change Materials via Sol-gel Method. , 2016, , 99-106.		4

#	Article	IF	Citations
578	Mathematical Modeling and Analysis of Free Cooling using PCM Filled Air Heat Exchanger for Energy Efficiency in Building. SSRG International Journal of Engineering Trends and Technology, 2016, 34, 106-113.	0.3	0
579	YENİ TASARI ÜÇLÜ CAMLI FAZ DEĞİŞİM MADDELİ DUVARIN ENERJİ VE ÇEVRE DEĞERLENDİRM Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	iesä°. Ã- 0.2	mer Halisden
580	Potential impact of phase change materials on energy reduction in army buildings. , 2018, , .		0
581	Preparation of Form-Stable Composite Phase Change Materials. Marmara Fen Bilimleri Dergisi, 0, , .	0.2	0
583	Experimental Study on PCM (Phase Change Material) Cool Roof System for Reducing Building Energy Demand and Urban Heat Island. KIEAE Journal, 2019, 19, 45-52.	0.1	1
584	Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures. Lecture Notes in Civil Engineering, 2020, , 337-345.	0.3	1
585	Moving Forward to 3D/4D Printed Building Facades. Lecture Notes in Mechanical Engineering, 2020, , 277-282.	0.3	3
586	ENERJİ VERİMLİ BİNALAR İÇİN SÜRDÜRÜLEBİLİR VE ÇEVRE DOSTU PENCERE VE CAM TEKN(VE UYGULAMALAR. UludaÄŸ University Journal of the Faculty of Engineering, 0, , 503-522.	DLOJİLEI	Rİ: SON GE
587	Nano Wonders in Concrete Technology: Mini Review. , 2020, 1, 25-28.		0
588	The Role of Phase Change Materials for Lifetime Heating of Buildings in Cold Climatic Conditions. Jurnal Alam Bina, 2020, 7, 81-96.	0.2	1
589	Theoretical study on melting of phase change material by natural convection. Case Studies in Thermal Engineering, 2021, 28, 101620.	2.8	10
590	Analysis of different operating strategies of thermal energy storage with radiant cooling system. International Journal of Energy Research, 2021, 45, 6174-6197.	2.2	3
591	Phase change material (PCM) with shaped stabilized method for thermal energy storage: A review. AIP Conference Proceedings, 2020, , .	0.3	2
592	Thermoplastic moulding of wood-polymer composites (WPC): a review and research proposal on thermo-physical and geometric design options using hot-pressing. European Journal of Wood and Wood Products, 2022, 80, 7-21.	1.3	5
593	Prospects and characteristics of thermal and electrochemical energy storage systems. Journal of Energy Storage, 2021, 44, 103443.	3.9	22
594	TERMAL ENERJİ DEPOLAMA SİSTEMLERİ İćİN FAZ DEĞİŞTİREN MALZEMELERİN TROMBE DUVAR ÜZERİNE BİR İNCELEME. Konya Journal of Engineering Sciences, 2020, 8, 529-551.	LARDA KU	ILLANIMI
595	A review of novel methods and current developments of phase change materials in the building walls for cooling applications. Sustainable Energy Technologies and Assessments, 2022, 49, 101709.	1.7	5
596	Thermo-physical properties of paraffin/TiO2 and sorbitol/TiO2 nanocomposites for enhanced phase change materials: a study on the stability issue. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	6

#	Article	IF	CITATIONS
597	Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials, 2021, 14, 7270.	1.3	13
598	A phase change material for building applications - A critical review. Materials Today: Proceedings, 2021, , .	0.9	2
599	Composites based on neat and modified asphaltenes and paraffin: Structure, rheology and heat conductivity. Journal of Energy Storage, 2021, 47, 103595.	3.9	4
600	Thermal Analysis of the Solar Collector Cum Storage System Using a Hybrid-Nanofluids. Journal of Nanofluids, 2021, 10, 616-626.	1.4	49
601	Modeling for solidification of paraffin equipped with nanoparticles utilizing fins. Journal of Energy Storage, 2022, 45, 103763.	3.9	56
602	Thermal performance of a novel building wall incorporating a dynamic phase change material layer for efficient utilization of passive solar energy. Construction and Building Materials, 2022, 317, 126017.	3.2	14
603	Phase-Change Materials in Concrete: Opportunities and Challenges for Sustainable Construction and Building Materials. Materials, 2022, 15, 335.	1.3	25
604	Optimization of insulation layer location and distribution considering maximum time lag and damping factor. Case Studies in Thermal Engineering, 2022, 30, 101766.	2.8	0
605	Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings. Materials Today Energy, 2022, 24, 100925.	2.5	14
606	Design of a Thermoelectric Generator-Assisted Energy Harvesting Block Considering Melting Temperature of Phase Change Materials. SSRN Electronic Journal, 0, , .	0.4	0
607	A comprehensive review of nanoâ€phase change materials with a focus on the effects of influential factors. Environmental Progress and Sustainable Energy, 2022, 41, e13808.	1.3	4
608	Environmentally Tuning Asphalt Pavements Using Microencapsulated Phase Change Materials. Transportation Research Record, 2022, 2676, 158-175.	1.0	7
609	Triazine derivatives as organic phase change materials with inherently low flammability. Journal of Materials Chemistry A, 2022, 10, 3633-3641.	5.2	27
610	Embedding intelligence to control adaptive building envelopes. , 2022, , 155-179.		3
611	Al-10Âwt.%Zn/Al2O3@ZnO Microcapsules for High-Temperature Thermal Storage: Preparation and Thermal Properties. Journal of Materials Engineering and Performance, 0, , 1.	1.2	0
612	Phase change materials. , 2022, , 503-535.		3
613	Phase Change Material Evolution in Thermal Energy Storage Systems for the Building Sector, with a Focus on Ground-Coupled Heat Pumps. Polymers, 2022, 14, 620.	2.0	9
614	Undercooling, Thermal Stability, and Application in Exothermic Catalytic Reaction of SiO2 Encapsulated SnZnCu Microspheres. Catalysts, 2022, 12, 205.	1.6	0

ARTICLE IF CITATIONS # Synthesis of TiO2 shell microcapsule-based phase change film with thermal energy storage and 615 1.9 8 buffering capabilities. Materials Today Sustainability, 2022, 18, 100119. A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of 1.6 Large-Scale Solar PV System. Sustainability, 2022, 14, 1963. Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable 617 1.6 1 Insulation Layer. Energies, 2022, 15, 1158. Experimental Study of Beeswax / Rice Husk Ash Phase Changes Material as Energy Storage in Concrete. 0.2 European Journal of Education and Pedagogy, 2021, 6, 99-102. Selection and Performance evaluation of Phase Change Materials for Solar Cooling Applications. 619 0.4 0 SSRN Electronic Journal, O, , . 620 Thermal insulation of buildings through classical materials and nanomaterials., 2022, , 277-303. Experimental Study on Thermal Performance of Phase Change Heat Storage Device with Rectangular 621 0.4 0 Shell Structure. SSRN Electronic Journal, 0, , . Thermal energy storage and mechanical performance of composites of rigid polyurethane foam and 1.2 phase change material prepared by one-shot synthesis method. Journal of Polymer Research, 2022, 29, 1. Modification of Graphene Aerogel Embedded Form-Stable Phase Change Materials for High Energy 623 1.0 17 Harvesting Efficiency. Macromolecular Research, 2022, 30, 198-204. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials. Renewable and Sustainable Energy Reviews, 2022, 159, 8.2 112134. A composite of cross-linked polyurethane as solid–solid phase change material and plaster for 626 3.18 building application. Energy and Buildings, 2022, 262, 111945. Development of a shape-stabilized phase change material utilizing natural and industrial byproducts for thermal energy storage in buildings. Journal of Energy Storage, 2022, 50, 104205. Synthesis and application of paraffin/silica phase change nanocapsules: Experimental and numerical 628 3.9 13 approach. Journal of Energy Storage, 2022, 51, 104407. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings, 2021, 11, 1514. 1.2 Evaluation of Energy Performance and Thermal Comfort Considering the Heat Storage Capacity and 630 1.3 5 Thermal Conductivity of Biocomposite Phase Change Materials. Processes, 2021, 9, 2191. Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials. Materials, 2022, 15, 20. Research Progress on the Phase Change Materials for Cold Thermal Energy Storage. Energies, 2021, 14, 632 1.6 11 8233. Determination of the inner forms of hollow blocks containing phase-changing material for different climate regions. Energy Storage and Saving, 2022, 1, 102-116.

#	Article	IF	CITATIONS
634	Thermal performance of phase change material embedded in building Wall- a numerical analysis. Materials Today: Proceedings, 2022, 66, 712-716.	0.9	1
635	Bio-Based Phase Change Materials for Wooden Building Applications. Forests, 2022, 13, 603.	0.9	3
636	Design of a thermoelectric generator-assisted energy harvesting block considering melting temperature of phase change materials. Renewable Energy, 2022, 193, 89-112.	4.3	10
637	Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings. Applied Thermal Engineering, 2022, 212, 118620.	3.0	19
640	Investigation of the efficiency of air heated solar collectors with different geometries by experimental method. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236, 1389-1402.	0.8	1
641	Phase change material incorporation techniques in building envelopes for enhancing the building thermal Comfort-A review. Energy and Buildings, 2022, 268, 112225.	3.1	40
642	Uso de materiais de mudança de fase em sistemas construtivos: revisão integrativa de literatura. Ambiente ConstruÃdo, 2022, 22, 67-111.	0.2	0
643	Concrete porosity and transport processes. , 2022, , 37-68.		1
644	Advances in solar greenhouse systems for cultivation of agricultural products. , 2022, , 77-111.		0
645	Dynamic Characteristics of Phase Change Material in a Square Cavity under Various Heating Modes. Mathematical Problems in Engineering, 2022, 2022, 1-12.	0.6	0
646	A Review of Battery Thermal Management Methods for Electric Vehicles. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	1
647	Phase-change materials for thermal management of electronic devices. Applied Thermal Engineering, 2022, 214, 118839.	3.0	45
648	Properties of eco-friendly foam concrete containing PCM impregnated rice husk ash for thermal management of buildings. Journal of Building Engineering, 2022, 58, 104961.	1.6	8
649	Biobased phase change materials from a perspective of recycling, resources conservation and green buildings. Energy and Buildings, 2022, 270, 112280.	3.1	10
650	Characterization of earthen plasters Influence of formulation and experimental methods. , 2020, 7, 151-168.		1
651	Modified Kaolinite Supported n-Octadecane Based Composite Phase Change Materials. , 2022, , .		0
652	Review on applications of microencapsulated phase change material in buildings for thermal storage system. Journal of Polymer Research, 2022, 29, .	1.2	6
653	Multiphysics study on cement-based composites incorporating green biobased shape-stabilized phase change materials for thermal energy storage. Journal of Cleaner Production, 2022, 372, 133826.	4.6	11

ARTICLE IF CITATIONS Experimental analysis on passive thermal management system for electronic gadgets using inorganic 654 0.9 1 phase changing material (PCM). Materials Today: Proceedings, 2022, 69, 1029-1033. A review on electro-mechanical properties of solar photovoltaic panels with graphene material. Materials Today: Proceedings, 2022, 69, 1187-1192. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renewable and 657 8.2 70 Sustainable Energy Reviews, 2022, 168, 112783. Phase change materials sheets for energy-efficient heat curing process: A potential idea and performance evaluation. Construction and Building Materials, 2022, 353, 129102. Performance of latent heat storage (LHS) systems using pure paraffin wax as working substance. Case 659 2.8 4 Studies in Thermal Engineering, 2022, 39, 102399. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: Fundamentals, recent advances, and future directions. Progress in Energy and Combustion 15.8 Science, 2022, 93, 101037. Absorption-polymerization method for synthesizing phase change composites with high enthalpy and 661 thermal conductivity for efficient thermal energy storage. Solar Energy Materials and Solar Cells, 3.0 6 2022, 248, 112027. Sustainable Cooling in a Warming World: Technologies, Cultures, and Circularity. Annual Review of 5.6 Environment and Resources, 2022, 47, 449-478. Construction and application of biochar-based composite phase change materials. Chemical 663 29 6.6 Engineering Journal, 2023, 453, 139441. Thermal performance of cool roofs incorporated with phase change materials: A review. Materials 664 Today: Proceedings, 2022, , . Impact of Phase Change Materials on the Durability Properties of Cementitious Compositesâ€"A Review. 665 2 0.3 Lecture Notes in Civil Engineering, 2023, , 71-82. Materiais de mudan§a de fase como sistema de resfriamento passivo em habita§Âµes de interesse social 0.3 666 pré-fabricadas leves. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022027. MATERIAIS DE MUDANÇA DE FASE IMPLANTADOS EM VEDAÇÕES COMO SISTEMA PASSIVO PARA 667 0 HABITAÇÕES., 0, , . Reliability Analysis and Economic Evaluation of Thermal Reflective Insulators. Energies, 2022, 15, 7238. 1.6 Thermal Behavior of Phase Change Materials in Concrete Pavements: A Long-term Thermal Impact 669 Analysis of Two Organic Mixtures. International Journal of Pavement Research and Technology, 2024, 1.3 0 17, 366-378. Lightweight aggregates as carriers for phase change materials. Construction and Building Materials, 670 2022, 360, 129390. Description of phase change materials (PCMs) used in buildings under various climates: A review. 671 3.9 36 Journal of Energy Storage, 2022, 56, 105760. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power. Applied Thermal Engineering, 2023, 219, 119546.

ARTICLE IF CITATIONS # Operational optimisation of an air-source heat pump system with thermal energy storage for domestic 673 4.4 15 applications. Energy Conversion and Management, 2022, 273, 116426. n-Eicosane-Impregnated nonwoven phase change mats of electrospun Poly(ethylene oxide)/Poly(methyl) Tj ETQq1 1 0.784314 rgBT 674 Diffuse transmission dominant smart and advanced windows for less energy-hungry building: A 675 1.6 8 review. Journal of Building Engineering, 2023, 64, 105604. Impact of Phase Change Materials on Cooling Demand of an Educational Facility in Cairo, Egypt. Sustainability, 2022, 14, 15956. Selection of Phase-Change Material for Building Envelope by Qualitative Decision-Support Analysis. 677 0.2 0 Springer Proceedings in Energy, 2023, , 189-207. Investigation of the Heat Storage Capacity and Storage Dynamics of a Novel Polymeric Macro-Encapsulated Core-Shell Particle Using a Paraffinic Core. Energies, 2023, 16, 957. 678 1.6 Microencapsulation of bio-based phase change materials with silica coated inorganic shell for 679 1.6 4 thermal energy storage. Journal of Building Engineering, 2023, 67, 105981. Application of bio-based phase change materials for effective heat management. Journal of Energy 680 3.9 Storage, 2023, 61, 106859. Effect of Propylene Glycol on Supercooling NaCl-H<sub>2</sub>O Solution as PCM to 681 0.2 0 Reduce Energy Consumption in Hybrid Reefer Container. Applied Mechanics and Materials, 0, 913, 59-65. Encapsulating an inorganic phase change material within emulsion-templated polymers: Thermal 1.8 energy storage and release. Polymer, 2023, 276, 125947. Challenges of the application of PCMs to achieve zero energy buildings under hot weather 683 29 3.9 conditions: A review. Journal of Energy Storage, 2023, 64, 107156. PCM-Impregnated Textile-Reinforced Cementitious Composite for Thermal Energy Storage. Textiles, 684 1.8 2023, 3, 98-114. High thermal inertia mortars: New method to incorporate phase change materials (PCMs) while 685 enhancing strength and thermal design models. Construction and Building Materials, 2023, 370, 3.2 4 130621. PCM-based ceiling panels for passive cooling in buildings: A CFD modelling. Energy and Buildings, 2023, 3.1 285, 112898. Application of phase change materials in improving the performance of refrigeration systems. 687 2 1.7 Sustainable Energy Technologies and Assessments, 2023, 56, 103097. Thermal energy storage for enhanced building energy flexibility., 2023, , 89-119. Review of research progress on corrosion and anti-corrosion of phase change materials in thermal 689 3.9 11 energy storage systems. Journal of Energy Storage, 2023, 63, 107005. 690 Phase change materials (PCMs) in buildings., 2023, , 507-567.

IF ARTICLE CITATIONS Phase change materials (PCMs) applications in solar energy systems. , 2023, , 129-153. 691 0 Sustainable Thermal Energy Batteries from Fully Bioâ€Based Transparent Wood. Small, 2023, 19, . 5.2 Determination of Thermal Properties of Eutectic Phase change materials (EPCM) using the T-history 693 0 method., 2023, , . Shielding Encapsulation to Enhance Fire Endurance of Phase Change Materials in Energy-Efficient 694 Concrete. Fire Technology, 2023, 59, 1697-1723. Performance and evaluation models for different structural types of asphalt mixture using 695 3.2 2 shape-stabilized phase change material. Construction and Building Materials, 2023, 383, 131411. Experimental and numerical investigation of the thermal inertia of sugar-beet-pulp/starch based bricks enhanced with phase change materials. Construction and Building Materials, 2023, 383, 131367. 3.2 Preparation, characterization, and thermal properties of microencapsulated palmitic acid with ethyl cellulose shell as phase change material impregnated wood. Journal of Energy Storage, 2023, 66, 697 7 3.9 107382. Maintaining Comfort Air Conditioning System Inside a Four Wheeler Using Phase Change Material. 0.3 Lecture Notes in Mechanical Engineering, 2023, , 305-319. Nano-Modified Concrete Incorporating Phase Change Material Under Cold Temperature. Lecture Notes 751 0.3 0 in Civil Engineering, 2024, , 825-838. Unveiling the Promise of Phase Change Materials in Geopolymer Composites. Advances in Chemical and 759 0.2 Materials Engineering Book Series, 2024, , 11-39.