A review of bottom-up building stock models for energy sector

Building and Environment 45, 1683-1697 DOI: 10.1016/j.buildenv.2010.01.021

Citation Report

#	Article	IF	Citations
1	Agent-based modeling of interaction between commercial building stocks and power grid. , 2010, , .		6
2	Real Estate market, energy rating and cost. Reflections about an Italian case study. Procedia Engineering, 2011, 21, 303-310.	1.2	26
3	A Statistical Approach to the Prediction of the Energy Performance of Hotel Stock. International Journal of Ventilation, 2011, 10, 163-172.	0.2	7
4	Agent-Based Electricity Market Simulation With Demand Response From Commercial Buildings. IEEE Transactions on Smart Grid, 2011, 2, 580-588.	6.2	142
5	Modelling UK domestic energy and carbon emissions: an agent-based approach. Energy and Buildings, 2011, 43, 2602-2612.	3.1	51
6	A typological classification of the Greek residential building stock. Energy and Buildings, 2011, 43, 2779-2787.	3.1	118
7	Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector. Energy, 2011, 36, 5610-5620.	4.5	130
8	Modelling domestic energy consumption at district scale: A tool to support national and local energy policies. Environmental Modelling and Software, 2011, 26, 1186-1198.	1.9	121
9	RESIDENTIAL AREAS WITH APARTMENT HOUSES: ANALYSIS OF THE CONDITION OF BUILDINGS, PLANNING ISSUES, RETROFIT STRATEGIES AND SCENARIOS / DAUGIABUÄŒIÅ ² NAMÅ ² GYVENAMUOSIUOSE RAJONUOSE B PLANAVIMO PROBLEMÅ ² IR ATNAUJINIMO STRATEGIJÅ ² BEI SCENARIJÅ ² ANALIZÄ–. International Journal of Strate Property Management 2011, 15, 139-151	ŪKLÄ−S, egic	30
10	THE ANALYSIS OF THE STATE OF MULTI-APARTMENT RESIDENTIAL HOUSES / DAUGIABUÄŒIÅ ² GYVENAMÅ ² JÅ ² N ANALIZÄ–. Science: Future of Lithuania, 2011, 3, 17-20.	IAMŲ BÅ⁵ 0.0	KLÄ–S
11	Application Mode of Low-Carbon Economy for "Green Residence― Advanced Materials Research, 0, 524-527, 2486-2489.	0.3	0
12	Modelling frameworks for delivering low-carbon cities: advocating a normalized practice. Building Research and Information, 2012, 40, 504-517.	2.0	6
13	Modelling building stock energy use and carbon emission scenarios. Smart and Sustainable Built Environment, 2012, 1, 118-138.	2.2	15
14	A probabilistic energy model for non-domestic building sectors applied to analysis of school buildings in greater London. Energy and Buildings, 2012, 54, 1-11.	3.1	95
15	Indicator based sustainability assessment tool for affordable housing construction technologies. Ecological Indicators, 2012, 18, 353-364.	2.6	73
16	Developing archetypes for domestic dwellings—An Irish case study. Energy and Buildings, 2012, 50, 150-157.	3.1	97
17	Costs and potentials of reducing CO2 emissions in the UK domestic stock from a systems perspective. Energy and Buildings, 2012, 51, 203-211.	3.1	40
18	A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK. Energy Policy, 2012, 47, 102-110.	4.2	45

TATION REDO

#	Article	IF	CITATIONS
19	Toward Low Energy Cities. Journal of Industrial Ecology, 2012, 16, 829-838.	2.8	35
20	A local-community-level, physically-based model of end-use energy consumption by Australian housing stock. Energy Policy, 2012, 49, 586-596.	4.2	45
21	Handling uncertainty in housing stock models. Building and Environment, 2012, 48, 35-47.	3.0	123
22	Heritage buildings and energy performance: Mapping with GIS tools. Energy and Buildings, 2012, 48, 137-145.	3.1	90
23	Exploring the potential for energy conservation in French households through hybrid modeling. Energy Economics, 2012, 34, 426-445.	5.6	48
24	Lifestyle factors in U.S. residential electricity consumption. Energy Policy, 2012, 42, 354-364.	4.2	203
25	A feasibility evaluation tool for sustainable cities – A case study for Greece. Energy Policy, 2012, 44, 207-216.	4.2	27
26	Energy behaviours as promoters of energy efficiency: A 21st century review. Renewable and Sustainable Energy Reviews, 2012, 16, 4095-4104.	8.2	223
27	A visual energy performance assessment and decision support tool for dwellings. Visualization in Engineering, 2013, 1, .	8.8	23
28	Decision making under uncertainty in the retrofit analysis of the UK housing stock: Implications for the Green Deal. Energy and Buildings, 2013, 64, 292-308.	3.1	73
29	The reality of English living rooms – A comparison of internal temperatures against common model assumptions. Energy and Buildings, 2013, 66, 688-696.	3.1	50
30	Planning Support Systems for Sustainable Urban Development. Lecture Notes in Geoinformation and Cartography, 2013, , .	0.5	38
32	Computational tools for selecting energy conservation measures for retrofitting existing office buildings. Canadian Journal of Civil Engineering, 2013, 40, 445-459.	0.7	1
33	A hierarchical Bayesian framework for calibrating micro-level models with macro-level data. Journal of Building Performance Simulation, 2013, 6, 293-318.	1.0	60
34	Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption. Energy Policy, 2013, 62, 742-751.	4.2	82
35	To modernize or not: Ecological–economical assessment of multi-dwelling houses modernization. Archives of Civil and Mechanical Engineering, 2013, 13, 88-98.	1.9	62
36	Analysis of thermal energy demand and saving in industrial buildings: A case study in Slovakia. Building and Environment, 2013, 67, 138-146.	3.0	64
37	Energy efficiency in the German residential sector: A bottom-up building-stock-model-based analysis in the context of energy-political targets. Building and Environment, 2013, 62, 77-88.	3.0	84

#	Article	IF	CITATIONS
38	Modelling the lifetime of colour photographs in archival collections. Studies in Conservation, 2013, 58, 107-116.	0.6	11
39	A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 2013, 20, 45-56.	8.2	85
40	Development and implementation of a simplified residential energy asset rating model. Energy and Buildings, 2013, 65, 159-166.	3.1	15
41	Extent of inertia caused by the existing building stock against an energy transition in the Netherlands. Energy and Buildings, 2013, 56, 134-145.	3.1	17
42	Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities, 2013, 35, 270-283.	2.7	83
43	Heating patterns in English homes: Comparing results from a national survey against common model assumptions. Building and Environment, 2013, 70, 298-305.	3.0	67
44	Energy usage and technical potential for energy saving measures in the Swedish residential building stock. Energy Policy, 2013, 55, 404-414.	4.2	129
45	A modelling strategy for energy, carbon, and cost assessments of building stocks. Energy and Buildings, 2013, 56, 100-108.	3.1	112
46	Turning lights into flights: Estimating direct and indirect rebound effects for UK households. Energy Policy, 2013, 55, 234-250.	4.2	193
47	Sensitivity analysis in building performance simulation for summer comfort assessment of apartments from the real estate market. Energy and Buildings, 2013, 65, 55-65.	3.1	33
48	One size does not fit all: Averaged data on household electricity is inadequate for residential energy policy and decisions. Energy and Buildings, 2013, 64, 132-144.	3.1	40
49	Urban Form and Residential Energy Use. Journal of Planning Literature, 2013, 28, 327-351.	2.2	108
50	Motivations for energy efficiency refurbishment in ownerâ€occupied housing. Structural Survey, 2013, 31, 101-120.	1.0	53
51	The Vernacular Architecture of Household Energy Models. Perspectives on Science, 2013, 21, 250-266.	0.3	8
52	Hybrid residential end-use energy and greenhouse gas emissions model – development and verification for Canada. Journal of Building Performance Simulation, 2013, 6, 1-23.	1.0	39
53	A review of remote sensing for urban energy system management and planning. , 2013, , .		1
54	Planning a Regional Energy System in Association with the Creation of Energy Performance Certificates (EPCs), Statistical Analysis and Energy Efficiency Measures: An Italian Case Study. Buildings, 2013, 3, 545-569.	1.4	8
55	Modelling the Contribution of Domestic Heat Pumps to Delivering UK Energy Policy Objectives. Applied Sciences (Switzerland), 2013, 3, 338-354.	1.3	3

#	Article	IF	CITATIONS
56	Developing building benchmarking for Brunei Darussalam. Energy and Buildings, 2014, 85, 79-85.	3.1	19
57	Index decomposition analysis of residential energy consumption in China: 2002–2010. Applied Energy, 2014, 121, 10-19.	5.1	122
58	Constructing electricity load profile and formulating load pattern for urban apartment in Korea. Energy and Buildings, 2014, 78, 222-230.	3.1	27
59	Improving the capabilities of the Town Energy Balance model with up-to-date building energy simulation algorithms: an application to a set of representative buildings in Paris. Energy and Buildings, 2014, 76, 1-14.	3.1	45
60	Activities related with electricity consumption in the Spanish residential sector: Variations between days of the week, Autonomous Communities and size of towns. Energy and Buildings, 2014, 79, 84-97.	3.1	31
61	Statistical modelling of district-level residential electricity use in NSW, Australia. Sustainability Science, 2014, 9, 77-88.	2.5	19
62	Techno-economic evaluation of energy efficiency measures in high rise residential buildings in Malaysia. Clean Technologies and Environmental Policy, 2014, 16, 23-35.	2.1	6
64	Towards greening the U.S. residential building stock: A system dynamics approach. Building and Environment, 2014, 78, 68-80.	3.0	121
65	Application-oriented modelling of domestic energy demand. International Journal of Electrical Power and Energy Systems, 2014, 61, 656-664.	3.3	27
66	Modelling decisions on energy-efficient renovations: A review. Renewable and Sustainable Energy Reviews, 2014, 39, 196-208.	8.2	86
67	Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 2014, 81, 270-282.	3.0	181
68	Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale. Urban Climate, 2014, 9, 35-53.	2.4	91
69	Possible effects of future domestic heat pump installations on the UK energy supply. Energy and Buildings, 2014, 84, 94-110.	3.1	18
70	Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings, 2014, 75, 358-367.	3.1	185
71	Mapping demand for residential building thermal energy services using airborne LiDAR. Applied Energy, 2014, 127, 125-134.	5.1	31
72	Calculation method and tool for assessing energy consumption in the building stock. Building and Environment, 2014, 75, 153-160.	3.0	78
73	Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Applied Energy, 2014, 113, 1077-1088.	5.1	147
74	A novel dynamic modeling approach for predicting building energy performance. Applied Energy, 2014, 114, 91-103.	5.1	46

ARTICLE IF CITATIONS # Mid-term forecasting of urban electricity load to isolate air-conditioning impact. Energy and 75 3.1 25 Buildings, 2014, 80, 72-80. Residential energy consumption trends, main drivers and policies in Lithuania. Renewable and 8.2 Sustainable Energy Reviews, 2014, 35, 285-293. Modeling and visualization of residential sector energy consumption and greenhouse gas emissions. 77 4.6 61 Journal of Cleaner Production, 2014, 81, 70-80. Estimating fuel poverty at household level: An integrated approach. Energy and Buildings, 2014, 80, 3.1 469-479. A Method to Assess the Potential for and Consequences of Energy Retrofits in Swedish Historic 79 0.8 34 Buildings. Historic Environment: Policy and Practice, 2014, 5, 150-166. A New Method for Modeling Energy Performance in Buildings. Energy Procedia, 2015, 75, 1825-1831. 1.8 81 Dynamic Simulation Methodologies for Urban Energy Demand. Energy Procedia, 2015, 78, 3360-3365. 1.8 14 Global sensitivity analysis of England's housing energy model. Journal of Building Performance 1.0 Simulation, 2015, 8, 283-294. Energy saving potential of information and communication technology. International Journal of 83 0.1 5 Decision Support Systems, 2015, 1, 152. Dynamic modelling for sustainable dwellings. Proceedings of the Institution of Civil Engineers: 84 0.4 Engineering Sustainability, 2015, 168, 182-190. Climate Change Mitigation through Energy Benchmarking in the GCC Green Buildings Codes. Buildings, 9 85 1.4 2015, 5, 700-714. The Demand Side in Economic Models of Energy Markets: The Challenge of Representing Consumer 1.2 86 Behavior. Frontiers in Energy Research, 2015, 3, . Load match optimisation of a residential building case study: A cross-entropy based electricity storage 87 5.1 50 sizing algorithm. Applied Energy, 2015, 154, 380-391. Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows. Building and Environment, 2015, 91, 246-262. EMF Signature for Appliance Classification. IEEE Sensors Journal, 2015, 15, 3573-3581. 89 2.4 15 The shape of warmth: temperature profiles in living rooms. Building Research and Information, 2015, 43, 185-196. Representing the dwelling stock as 3D generic tiles estimated from average residential density. 91 3.3 15 Computers, Environment and Urban Systems, 2015, 54, 280-300. Estimating the building based energy consumption as an anthropogenic contribution to urban heat 5.1 69 islands. Sustainable Cities and Society, 2015, 19, 373-384.

#	Article	IF	CITATIONS
93	Characterisation of representative building typologies for social housing projects in Brazil and its energy performance. Energy Policy, 2015, 87, 524-541.	4.2	60
94	Events identification based load modeling for residential microgrid. , 2015, , .		7
95	Literature review of green retrofit design for commercial buildings with BIM implication. Smart and Sustainable Built Environment, 2015, 4, 188-214.	2.2	33
96	Evaluation of Household Electricity Savings. Analysis of Household Electricity Demand Profile and User Activities. Energy Procedia, 2015, 72, 285-292.	1.8	26
97	Estimating Demand Response Potential in Building Clusters. Energy Procedia, 2015, 78, 3391-3396.	1.8	20
98	Residential precinct demand forecasting using optimised solar generation and battery storage. , 2015, , .		4
99	Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes. Applied Energy, 2015, 159, 589-600.	5.1	201
100	Stochastic model for lighting's electricity consumption in the residential sector. Impact of energy saving actions. Energy and Buildings, 2015, 89, 245-259.	3.1	44
101	A structural equation model of energy consumption in the United States: Untangling the complexity of per-capita residential energy use. Energy Research and Social Science, 2015, 6, 109-120.	3.0	43
102	Home -ing in on domestic energy research: "House,―"home,―and the importance of ontology. Energy Research and Social Science, 2015, 6, 100-108.	3.0	92
103	Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, 2015, 142, 247-265.	5.1	227
104	Quantification of the energy efficiency gap in the Swedish residential sector. Energy Efficiency, 2015, 8, 975-993.	1.3	12
105	Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach. Applied Energy, 2015, 144, 261-275.	5.1	137
106	Residential energy consumption and conservation. Energy and Buildings, 2015, 102, 58-66.	3.1	32
107	Energy retrofit analysis toolkits for commercial buildings: A review. Energy, 2015, 89, 1087-1100.	4.5	94
108	Demand response capacity estimation in various supply areas. Energy, 2015, 92, 476-486.	4.5	18
109	Household energy consumption and carbon emissions for sustainable cities – A critical review of modelling approaches. International Journal of Sustainable Built Environment, 2015, 4, 231-247.	3.2	46
110	How are UK homes heated? A city-wide, socio-technical survey and implications for energy modelling. Energy and Buildings, 2015, 86, 817-832.	3.1	66

#	ARTICLE	IF	CITATIONS
111	Identifying key variables and interactions in statistical models ofÂbuilding energy consumption using regularization. Energy, 2015, 83, 144-155.	4.5	71
112	Global sensitivity analysis of an energy–economy model of the residential building sector. Environmental Modelling and Software, 2015, 70, 45-54.	1.9	36
113	Home energy management system based on daily demand prediction and ZigBee network. , 2015, , .		6
114	Towards more effective behavioural energy policy: An integrative modelling approach to residential energy consumption in Europe. Energy Research and Social Science, 2015, 7, 84-98.	3.0	41
115	A GIS domestic building framework to estimate energy end-use demand in UK sub-city areas. Energy and Buildings, 2015, 96, 236-250.	3.1	29
116	A parametric method to assess the energy performance of the social housing stock and simulate suitable retrofit scenarios: An Italian case study. Energy and Buildings, 2015, 96, 261-271.	3.1	19
117	Situations and challenges of household energy consumption in Chinese small towns. Energy and Buildings, 2015, 107, 155-162.	3.1	16
118	Multivariate statistical monitoring of buildings. Case study: Energy monitoring of a social housing building. Energy and Buildings, 2015, 103, 338-351.	3.1	11
119	Statistical analysis of driving factors of residential energy demand in the greater Sydney region, Australia. Energy and Buildings, 2015, 105, 9-25.	3.1	64
120	Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source. Energy, 2015, 90, 759-767.	4.5	45
121	Residential heating energy consumption modeling through a bottom-up approach for China's Hot Summer–Cold Winter climatic region. Energy and Buildings, 2015, 109, 65-74.	3.1	73
122	The indirect role of households in shaping US residential energy demand patterns. Energy Policy, 2015, 86, 585-594.	4.2	28
123	Building and fuel poverty, an index to measure fuel poverty: An Italian case study. Energy, 2015, 89, 244-258.	4.5	99
124	A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 2015, 107, 456-478.	3.1	150
125	A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, 2015, 52, 1391-1404.	8.2	371
126	Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support. Energy and Buildings, 2015, 107, 204-212.	3.1	119
127	The concept of an integrated performance monitoring system for promotion of energy awareness in buildings. Energy and Buildings, 2015, 98, 82-91.	3.1	16
128	Integrating household behavior and heterogeneity into the TIMES-Households model. Applied Energy, 2015, 139, 56-67.	5.1	54

#	Article	IF	Citations
129	A model for the complexity of household energy consumption. Energy and Buildings, 2015, 87, 313-323.	3.1	25
130	Building age as an indicator for energy consumption. Energy and Buildings, 2015, 87, 74-86.	3.1	191
131	Household electricity consumption and CO 2 emissions in the Netherlands: A model-based analysis. Energy and Buildings, 2015, 86, 403-414.	3.1	34
132	Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study. Renewable and Sustainable Energy Reviews, 2015, 42, 1245-1259.	8.2	47
133	A Bottom-Up Building Stock Model for Tracking Regional Energy Targets—A Case Study of KoÄevje. Sustainability, 2016, 8, 1063.	1.6	5
134	Modelling programs for load management using energy storing capacity of buildings. , 2016, , .		1
135	Understanding the spectrum of domestic energy consumption: Empirical evidence from France. Energy Policy, 2016, 92, 220-233.	4.2	77
136	Differences in Residential Energy Use between US City and Suburban Households. Regional Studies, 2016, 50, 1919-1930.	2.5	8
137	Domestic electricity load modelling by multiple Gaussian functions. Energy and Buildings, 2016, 126, 455-462.	3.1	26
138	Modeling methodology of the heating energy consumption and the potential reductions due to thermal improvements of staggered block buildings. Energy and Buildings, 2016, 125, 244-253.	3.1	27
139	Energy Policies for Sustainable Development Strategies. Frontiers in African Business Research, 2016, ,	0.0	11
140	Data analytics for simplifying thermal efficiency planning in cities. Journal of the Royal Society Interface, 2016, 13, 20150971.	1.5	24
141	Performance evaluation of operational energy use in refurbishment, reuse, and conservation of heritage buildings for optimum sustainability. Frontiers of Architectural Research, 2016, 5, 371-382.	1.3	20
142	Modeling transition paths towards decentralized regional energy autonomy: the role of legislation, technology adoption, and resource availability. Raumforschung Und Raumordnung Spatial Research and Planning, 2016, 74, .	1.5	6
143	A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy, 2016, 184, 40-54.	5.1	51
144	Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 2016, 132, 26-38.	3.1	128
145	Residential energy demand in the United States: Analysis using static and dynamic approaches. Energy Policy, 2016, 98, 637-649.	4.2	51
146	A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model. Energy and Buildings, 2016, 120, 78-84.	3.1	94

#	Article	IF	CITATIONS
147	TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 2016, 132, 4-12.	3.1	212
148	A methodology for predicting the energy performance and indoor thermal comfort of residential stocks on the neighbourhood and city scales. A case study in Spain. Journal of Cleaner Production, 2016, 139, 646-665.	4.6	30
149	Construction of regional building typologies with a material catalog. Management of Environmental Quality, 2016, 27, 663-680.	2.2	3
150	Refurbishment trends of the residential building stock: Analysis of a regional pilot case in Italy. Energy and Buildings, 2016, 132, 91-106.	3.1	63
151	Reaching the climate protection targets for the heat supply of the German residential building stock: How and how fast?. Energy and Buildings, 2016, 132, 53-73.	3.1	11
152	Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review. Renewable and Sustainable Energy Reviews, 2016, 64, 761-776.	8.2	71
153	Comparison of prediction models for determining energy demand in the residential sector of a country. Energy and Buildings, 2016, 128, 38-55.	3.1	28
154	Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy, 2016, 117, 237-250.	4.5	190
155	The need for national deep decarbonization pathways for effective climate policy. Climate Policy, 2016, 16, S7-S26.	2.6	105
156	A Non-stationary Analysis Using Ensemble Empirical Mode Decomposition to Detect Anomalies in Building Energy Consumption. Procedia Engineering, 2016, 145, 1059-1065.	1.2	5
157	Evaluation on energy performance in a low-energy building using new energy conservation index based on monitoring measurement system with sensor network. Energy and Buildings, 2016, 123, 79-91.	3.1	14
158	Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings. Applied Energy, 2016, 164, 115-132.	5.1	69
159	Model-based assessment of demand-response measures—A comprehensive literature review. Renewable and Sustainable Energy Reviews, 2016, 57, 1637-1656.	8.2	80
160	Urban building energy modeling – A review of a nascent field. Building and Environment, 2016, 97, 196-202.	3.0	600
161	On the usefulness of a cost-performance indicator curve at the strategic level for consideration of energy efficiency measures for building portfolios. Energy and Buildings, 2016, 119, 267-282.	3.1	11
162	Analysis of Georeferenced Building Data for the Identification and Evaluation of Thermal Microgrids. Proceedings of the IEEE, 2016, 104, 713-725.	16.4	5
163	Energy performance certificates and 3-dimensional city models as a means to reach national targets – A case study of the city of Kiruna. Energy Conversion and Management, 2016, 116, 42-57.	4.4	40
164	City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy and Buildings, 2016, 113, 202-226.	3.1	199

#	Article	IF	CITATIONS
165	Energy performance simulation for planning a low carbon neighborhood urban district: A case study in the city of Macau. Habitat International, 2016, 53, 206-214.	2.3	51
166	Optimizing the distribution of Italian building energy retrofit incentives with Linear Programming. Energy and Buildings, 2016, 112, 21-27.	3.1	39
167	Household Energy Consumption and Housing Choice in the U.S. Residential Sector. Housing Policy Debate, 2016, 26, 231-250.	1.6	9
168	Selection of the best ARMAX model for forecasting energy demand: case study of the residential and commercial sectors in Iran. Energy Efficiency, 2016, 9, 339-352.	1.3	12
169	Application of clustering for the development of retrofit strategies for large building stocks. Advanced Engineering Informatics, 2017, 31, 32-47.	4.0	40
170	A neural approach for estimation of per capita electricity consumption due to age and income. Neural Computing and Applications, 2017, 28, 1747-1761.	3.2	4
171	Rising residential energy consumption and GHG emissions in Malaysia: A case study of public low-cost housing projects in Kuala Lumpur. Indoor and Built Environment, 2017, 26, 375-391.	1.5	3
172	Assessing Space Heating Demandon a Regional Level: Evaluation of a Bottomâ€Up Model in the Scope of a Case Study. Journal of Industrial Ecology, 2017, 21, 332-343.	2.8	6
173	Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, Part 1: Black-box model. Energy and Buildings, 2017, 157, 126-138.	3.1	19
174	Dwelling stock dynamics for addressing housing deficit. Resources, Conservation and Recycling, 2017, 123, 187-199.	5.3	18
175	Urban residential energy consumption modeling in the Integrated Urban Metabolism Analysis Tool (IUMAT). Building and Environment, 2017, 114, 429-444.	3.0	19
176	The influence of data quality on urban heating demand modeling using 3D city models. Computers, Environment and Urban Systems, 2017, 64, 68-80.	3.3	79
177	Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector. Energy, 2017, 121, 126-134.	4.5	15
178	Evaluation of measures to improve residential energy policies considering occupant characteristics. Energy Strategy Reviews, 2017, 15, 33-43.	3.3	3
179	Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study. Applied Energy, 2017, 193, 243-262.	5.1	73
180	Reductive bottom-up urban energy computing supported by multivariate cluster analysis. Energy and Buildings, 2017, 144, 372-386.	3.1	46
181	Life Cycle Assessment of building stocks from urban to transnational scales: A review. Renewable and Sustainable Energy Reviews, 2017, 74, 316-332.	8.2	125
182	A customized modelling approach for multi-functional buildings – Application to an Italian Reference Hotel. Applied Energy, 2017, 190, 1302-1315.	5.1	15

#	Article	IF	CITATIONS
183	Energy efficiency to reduce residential electricity and natural gas use under climate change. Nature Communications, 2017, 8, 14916.	5.8	122
184	Probabilistic behavioral modeling in building performance simulation: A Monte Carlo approach. Energy and Buildings, 2017, 148, 128-141.	3.1	49
185	Global sensitivity analysis as a support for the generation of simplified building stock energy models. Energy and Buildings, 2017, 149, 368-383.	3.1	36
186	Estimating the Potential for Thermal Load Management in Buildings at a Large Scale: Overcoming Challenges Towards a Replicable Methodology. Energy Procedia, 2017, 111, 740-749.	1.8	6
187	Life cycle building impact of a Middle Eastern residential neighborhood. Energy, 2017, 134, 336-348.	4.5	20
188	A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector. Journal of Cleaner Production, 2017, 159, 301-316.	4.6	116
189	Smart Energy Control Systems for Sustainable Buildings. Smart Innovation, Systems and Technologies, 2017, , .	0.5	5
190	The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making. Energy Policy, 2017, 105, 467-483.	4.2	11
191	Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology. Energy Policy, 2017, 105, 148-160.	4.2	94
192	Material metabolism and lifecycle impact assessment towards sustainable resource management: A case study of the highway infrastructural system in Shandong Peninsula, China. Journal of Cleaner Production, 2017, 153, 195-208.	4.6	18
193	The Second Law and the Energy Use Mapping for Sustainability Planning. Energy Procedia, 2017, 111, 730-739.	1.8	2
194	A methodology for estimating office building energy use baselines by means of land use legislation and reference buildings. Energy and Buildings, 2017, 143, 100-113.	3.1	25
195	Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector. Energy and Environment, 2017, 28, 70-87.	2.7	4
196	Quantifying and mapping embodied environmental requirements of urban building stocks. Building and Environment, 2017, 114, 187-202.	3.0	150
197	Modeling household energy expenditure in the United States. Renewable and Sustainable Energy Reviews, 2017, 69, 822-832.	8.2	60
198	Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach. Energy, 2017, 120, 937-946.	4.5	25
199	Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Applied Energy, 2017, 208, 402-427.	5.1	176
200	Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation. Energy and Buildings, 2017, 147, 47-66.	3.1	155

#	Article	IF	CITATIONS
201	Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City. Energy and Buildings, 2017, 154, 321-334.	3.1	87
202	Estimation of building energy performance for local energy policy at urban scale. Energy Procedia, 2017, 122, 98-103.	1.8	15
203	Facade geometry generation from low-resolution aerial photographs for building energy modeling. Building and Environment, 2017, 123, 601-624.	3.0	18
204	Urban energy planning procedure for sustainable development in the built environment: A review of available spatial approaches. Journal of Cleaner Production, 2017, 165, 811-827.	4.6	92
205	Modeling and mapping domestic energy behavior: Insights from a consumer survey in France. Energy Research and Social Science, 2017, 32, 180-192.	3.0	20
206	Decent housing in the developing world: Reducing life-cycle energy requirements. Energy and Buildings, 2017, 152, 629-642.	3.1	25
207	Monte Carlo housing stock model to predict the energy performance indicators. Energy and Buildings, 2017, 152, 503-515.	3.1	16
208	Novel validated method for GIS based automated dynamic urban building energy simulations. Energy, 2017, 139, 142-154.	4.5	65
209	Greenhouse Gas Abatement Cost Curves of the Residential Heating Market: A Microeconomic Approach. Environmental and Resource Economics, 2017, 68, 915-947.	1.5	3
211	Modeling urban building energy use: A review of modeling approaches and procedures. Energy, 2017, 141, 2445-2457.	4.5	185
212	Big data GIS analysis for novel approaches in building stock modelling. Applied Energy, 2017, 208, 277-290.	5.1	74
213	A review and critique of UK housing stock energy models, modelling approaches and data sources. Energy and Buildings, 2017, 151, 66-80.	3.1	42
214	From the Building Level Energy Performance Assessment to the National Level: How are Uncertainties Handled in Building Stock Models. Procedia Engineering, 2017, 180, 1443-1452.	1.2	14
215	Harnessing buildings' operational diversity in a computational framework for high-resolution urban energy modeling. Building Simulation, 2017, 10, 1005-1021.	3.0	14
216	Review on stochastic modeling methods for building stock energy prediction. Building Simulation, 2017, 10, 607-624.	3.0	80
217	Advanced Technologies for Sustainable Systems. Lecture Notes in Networks and Systems, 2017, , .	0.5	3
218	Influencing factors in energy use of housing blocks: a new methodology, based on clustering and energy simulations, for decision making in energy refurbishment projects. Energy Efficiency, 2017, 10, 359-382.	1.3	10
219	Building Automation and Control Systems and performance optimization: A framework for analysis. Renewable and Sustainable Energy Reviews, 2017, 75, 313-330.	8.2	118

#	Article	IF	CITATIONS
220	Carbon mapping for residential low carbon retrofitting. Lecture Notes in Networks and Systems, 2017, , 79-91.	0.5	4
221	Energy Planning in a Big Data Era: A Theme Study of the Residential Sector. Springer Geography, 2017, , 219-230.	0.3	3
222	Validation of a Bayesian-based method for defining residential archetypes in urban building energy models. Energy and Buildings, 2017, 134, 11-24.	3.1	166
223	GISâ€based Analysis of Vienna's Material Stock in Buildings. Journal of Industrial Ecology, 2017, 21, 368-380.	2.8	141
224	Techno-economic feasibility evaluation of air to water heat pump retrofit in the Canadian housing stock. Applied Thermal Engineering, 2017, 111, 936-949.	3.0	53
225	Seeing Cities Through Big Data. Springer Geography, 2017, , .	0.3	40
226	Energy Performance Analysis of Residential Buildings. , 2017, , .		0
227	A Generalizable Method for Estimating Household Energy by Neighborhoods in US Urban Regions. Energy Procedia, 2017, 143, 859-864.	1.8	4
229	Diffusion of Electricity Consumption Practices in Mexico. Social Sciences, 2017, 6, 144.	0.7	5
230	Review of Methods for Buildings Energy Performance Modelling. IOP Conference Series: Materials Science and Engineering, 2017, 245, 042049.	0.3	7
231	A New Methodology for Assessing the Energy Consumption of Building Stocks. Energies, 2017, 10, 1102.	1.6	21
232	Machine learning method for day classification to understand thermostatically controlled load demand. , 2017, , .		2
233	Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energy and Buildings, 2018, 166, 372-390.	3.1	145
234	China's energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method. Journal of Cleaner Production, 2018, 185, 665-679.	4.6	209
235	Simulation-Based Analysis of Energy and Carbon Emissions in the Housing Sector. Green Energy and Technology, 2018, , .	0.4	3
236	Evaluating homeowners' retrofit choices – Croatian case study. Energy and Buildings, 2018, 171, 40-49.	3.1	8
237	Use of cadastral data to assess urban scale building energy loss. Application to a deprived quarter in Madrid. Energy and Buildings, 2018, 171, 50-63.	3.1	25
238	A stochastic multi-energy simulation model for UK residential buildings. Energy and Buildings, 2018, 168, 470-489.	3.1	7

# 239	ARTICLE A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy and Buildings, 2018, 165, 301-320.	IF 3.1	CITATIONS 212
240	Low carbon scenarios for higher thermal comfort in the residential building sector of South Eastern Europe. Energy Efficiency, 2018, 11, 845-875.	1.3	20
241	Performance-based validation of climatic zoning for building energy efficiency applications. Applied Energy, 2018, 212, 416-427.	5.1	35
242	Understanding the complexities of domestic energy reductions in cities: Integrating data sets generally available in the United Kingdom's local authorities. Cities, 2018, 74, 292-309.	2.7	11
243	A parametric method to assess the energy performance of historical urban settlements. Evaluation of the current energy performance and simulation of retrofit strategies for an Italian case study. Journal of Cultural Heritage, 2018, 30, 155-167.	1.5	17
244	A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector. Energy, 2018, 144, 1080-1091.	4.5	24
245	Embodied GHGs in a Fast Growing City: Looking at the Evolution of a Dwelling Stock using Structural Element Breakdown and Policy Scenarios. Journal of Industrial Ecology, 2018, 22, 1339-1351.	2.8	15
246	Residential Demand Forecasting With Solar-Battery Systems: A Survey-Less Approach. IEEE Transactions on Sustainable Energy, 2018, 9, 1499-1507.	5.9	17
247	New 3D model based urban energy simulation for climate protection concepts. Energy and Buildings, 2018, 163, 79-91.	3.1	26
248	Modelling aggregate hourly electricity consumption based on bottom-up building stock. Energy and Buildings, 2018, 170, 170-182.	3.1	31
249	Aggregation of residential buildings for thermal building simulations on an urban district scale. Sustainable Cities and Society, 2018, 39, 537-547.	5.1	20
250	Teardown Index: Impact of property values on carbon dioxide emissions of single family housing in Vancouver. Energy and Buildings, 2018, 170, 95-106.	3.1	10
251	Developing a landscape of urban building energy use with improved spatiotemporal representations in a cool-humid climate. Building and Environment, 2018, 136, 107-117.	3.0	27
252	CESAR: A bottom-up building stock modelling tool for Switzerland to address sustainable energy transformation strategies. Energy and Buildings, 2018, 169, 9-26.	3.1	82
253	A Hierarchical Hidden Markov Model Framework for Home Appliance Modeling. IEEE Transactions on Smart Grid, 2018, 9, 3079-3090.	6.2	94
254	Modeling the heating and cooling energy demand of urban buildings at city scale. Renewable and Sustainable Energy Reviews, 2018, 81, 2318-2327.	8.2	136
255	Estimating the energy-saving potential in national building stocks – A methodology review. Renewable and Sustainable Energy Reviews, 2018, 82, 1489-1496.	8.2	71
256	Targeting and modelling urban energy retrofits using a city-scale energy mapping approach. Journal of Cleaner Production, 2018, 174, 401-412.	4.6	29

#	Article	IF	CITATIONS
257	An urban building database (UBD) supporting a smart city information system. Energy and Buildings, 2018, 158, 244-260.	3.1	63
258	The energy and indoor environmental performance of Egyptian offices: Parameter analysis and future policy. Energy and Buildings, 2018, 158, 431-452.	3.1	13
259	An Approach to Identify Resource Patterns on a Neighborhood Level. Eco-efficiency in Industry and Science, 2018, , 317-323.	0.1	0
260	Fuzzy model of residential energy decision-making considering behavioral economic concepts. Applied Energy, 2018, 213, 611-625.	5.1	25
261	A two-step approach to forecasting city-wide building energy demand. Energy and Buildings, 2018, 160, 1-9.	3.1	29
262	Determining key variables influencing energy consumption in office buildings through cluster analysis of pre- and post-retrofit building data. Energy and Buildings, 2018, 159, 228-245.	3.1	84
263	Building Inventory and Refurbishment Scenario Database Development for Switzerland. Journal of Industrial Ecology, 2018, 22, 629-642.	2.8	15
264	Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Applied Energy, 2018, 231, 714-746.	5.1	112
265	Comparison of dynamic urban building energy models (UBEM): Sigmoid energy signature and physical modelling approach. Energy and Buildings, 2018, 179, 333-343.	3.1	37
266	Spatiotemporal modelling for integrated spatial and energy planning. Energy, Sustainability and Society, 2018, 8, .	1.7	33
267	Management of household electricity consumption under price-based demand response scheme. Journal of Cleaner Production, 2018, 204, 926-938.	4.6	47
268	Estimation of temperature setpoints and heat transfer coefficients among residential buildings in Denmark based on smart meter data. Building and Environment, 2018, 139, 125-133.	3.0	30
269	Estimating the impact of heat accounting on Italian residential energy consumption in different scenarios. Energy and Buildings, 2018, 168, 385-398.	3.1	28
270	Modeling the electrical energy consumption profile for residential buildings in Iran. Sustainable Cities and Society, 2018, 41, 481-489.	5.1	58
271	Analysis of Large-Scale Energy Efficiency Programs. , 2018, , 547-610.		1
272	Predicting Danish residential heating energy use from publicly available building characteristics. Energy and Buildings, 2018, 173, 28-37.	3.1	9
273	Useful energy balance for the UK: An uncertainty analysis. Applied Energy, 2018, 228, 176-188.	5.1	11
274	Does energy efficiency matter to real estate-consumers? Survey evidence on willingness to pay from a cost-optimal analysis in the context of a developing country. Energy for Sustainable Development, 2018, 45, 110-123.	2.0	19

#	Article	IF	CITATIONS
275	Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment. Renewable and Sustainable Energy Reviews, 2018, 95, 341-353.	8.2	162
276	Innovations for Community Services. Communications in Computer and Information Science, 2018, , .	0.4	1
278	Dynamic Geospatial Modeling of the Building Stock To Project Urban Energy Demand. Environmental Science & Technology, 2018, 52, 7604-7613.	4.6	12
279	Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock. Energies, 2018, 11, 78.	1.6	10
280	Determination of Cost-Effective Energy Efficiency Measures in Buildings with the Aid of Multiple Indices. Energies, 2018, 11, 191.	1.6	13
281	Analysis of Energy-Related Greenhouse Gas Emission in the Korea's Building Sector: Use National Energy Statistics. Energies, 2018, 11, 855.	1.6	12
282	Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks. ISPRS International Journal of Geo-Information, 2018, 7, 173.	1.4	14
283	Geometric classification method of rural residences at regional scale. Energy and Buildings, 2018, 172, 170-180.	3.1	9
284	A review on occupant behavior in urban building energy models. Energy and Buildings, 2018, 174, 276-292.	3.1	121
285	Impact of the Surrounding Built Environment on Energy Consumption in Mixed-Use Building. Sustainability, 2018, 10, 832.	1.6	18
286	First Approach to a Holistic Tool for Assessing RES Investment Feasibility. Sustainability, 2018, 10, 1153.	1.6	2
287	Energy and Carbon Emissions in Housing. Green Energy and Technology, 2018, , 13-49.	0.4	0
288	Estimating residential energy consumption in metropolitan areas: A microsimulation approach. Energy, 2018, 155, 162-173.	4.5	38
289	Discriminant effects of consumer electronics use-phase attributes on household energy prediction. Energy Policy, 2018, 118, 346-355.	4.2	8
290	Quota-based carbon tracing model for construction processes in China. Journal of Cleaner Production, 2018, 200, 657-666.	4.6	19
291	An open-source simulation platform to support the formulation of housing stock decarbonisation strategies. Energy and Buildings, 2018, 172, 459-477.	3.1	12
292	Short-term forecasting of individual household electricity loads with investigating impact of data resolution and forecast horizon. Renewable Energy and Environmental Sustainability, 2018, 3, 3.	0.7	12
293	Novel method to simulate large-scale thermal city models. Energy, 2018, 157, 633-646.	4.5	22

#	Article	IF	Citations
294	Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy and Buildings, 2018, 173, 443-460.	3.1	47
295	Estimating the heating energy consumption of the residential buildings in Hebron, Palestine. Journal of Cleaner Production, 2018, 196, 1292-1305.	4.6	21
296	Assessing the energy saving potential of an existing high-rise office building stock. Energy and Buildings, 2018, 173, 547-561.	3.1	29
297	Modeling energy intensity of residential space heating. Energy Efficiency, 2019, 12, 921-931.	1.3	9
298	Developing a model for energy retrofit in large building portfolios: Energy assessment, optimization and uncertainty. Energy and Buildings, 2019, 202, 109356.	3.1	42
299	An integrated data-driven framework for urban energy use modeling (UEUM). Applied Energy, 2019, 253, 113550.	5.1	50
300	Limits and uncertainty for energy efficiency in the UK housing stock. Energy Policy, 2019, 133, 110889.	4.2	20
301	Using bottom-up model to analyze cooling energy consumption in China's urban residential building. Energy and Buildings, 2019, 202, 109352.	3.1	42
302	Prioritizing deep renovation for housing portfolios. Energy and Buildings, 2019, 202, 109361.	3.1	22
303	Buildingmass and Energy Demand in Conventional Housing Typologies of the Mediterranean City. Sustainability, 2019, 11, 3540.	1.6	2
304	Data-Driven Load Forecasting of Air Conditioners for Demand Response Using Levenberg–Marquardt Algorithm-Based ANN. Big Data and Cognitive Computing, 2019, 3, 36.	2.9	24
305	Urban energy use modeling methods and tools: A review and an outlook. Building and Environment, 2019, 161, 106270.	3.0	85
306	Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU. Energies, 2019, 12, 2745.	1.6	18
307	A service-life cycle approach to maintenance and energy retrofit planning for building portfolios. Building and Environment, 2019, 160, 106212.	3.0	31
308	A hybrid modelling method for improving estimates of the average energy-saving potential of a building stock. Energy and Buildings, 2019, 199, 287-296.	3.1	26
309	An interactive multi-criteria spatial decision support system for energy retrofitting of building stocks using CommuntiyVIZ to support urban energy planning. Building and Environment, 2019, 163, 106233.	3.0	29
310	European projects on district energy-renovations and Italian best practices. E3S Web of Conferences, 2019, 111, 03004.	0.2	0
311	How building energy models take the local climate into account in an urban context – A review. Renewable and Sustainable Energy Reviews, 2019, 116, 109390.	8.2	64

#	Article	IF	CITATIONS
312	Outdoor temperature sensitivity of electricity consumption for space heating and cooling: An application to the city of Milan, North of Italy. Energy and Buildings, 2019, 204, 109512.	3.1	6
313	A multi-layer approach for estimating the energy use intensity on an urban scale. Cities, 2019, 95, 102467.	2.7	8
314	An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis. Applied Sciences (Switzerland), 2019, 9, 3580.	1.3	28
315	Characterization of Representative Residential Buildings within a Neighborhood and Their Energy Efficiency Levels According to RTQ-R. Applied Sciences (Switzerland), 2019, 9, 3832.	1.3	2
316	Ten questions concerning modeling of distributed multi-energy systems. Building and Environment, 2019, 165, 106372.	3.0	56
317	Data-driven approach to prediction of residential energy consumption at urban scales in London. Energy, 2019, 187, 115973.	4.5	35
318	ENERGIS: Decision-Support Tool for the Implementation of Energy Policies at Urban and Regional Level. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012165.	0.2	1
319	Community energy by design: A simulation-based design workflow using measured data clustering to calibrate Urban Building Energy Models (UBEMs). Environment and Planning B: Urban Analytics and City Science, 2019, 46, 1517-1533.	1.0	4
320	Explorative life-cycle assessment of renovating existing urban housing-stocks. Building and Environment, 2019, 165, 106391.	3.0	19
321	Modeling city-scale building energy dynamics through inter-connected distributed adjacency blocks. Energy and Buildings, 2019, 202, 109391.	3.1	11
322	Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock. International Journal of Life Cycle Assessment, 2019, 24, 989-1008.	2.2	43
323	A new clustering and visualization method to evaluate urban heat energy planning scenarios. Cities, 2019, 88, 19-36.	2.7	34
324	Thermal comfort prediction in a building category: Artificial neural network generation from calibrated models for a social housing stock in southern Europe. Applied Thermal Engineering, 2019, 150, 492-505.	3.0	59
325	The share of cooling electricity in global warming: Estimation of the loop gain for the positive feedback. Energy, 2019, 179, 747-761.	4.5	14
326	Age matters: Ageing and household energy demand in the United States. Energy Research and Social Science, 2019, 55, 62-70.	3.0	74
327	Modelling Urban Housing Stocks for Building Energy Simulation using CityGML EnergyADE. ISPRS International Journal of Geo-Information, 2019, 8, 163.	1.4	22
328	A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 2019, 112, 733-746.	8.2	128
329	Amplification of future energy demand growth due to climate change. Nature Communications, 2019, 10, 2762.	5.8	266

#	Article	IF	CITATIONS
330	Urban energy modeling and calibration of a coastal Mediterranean city: The case of Beirut. Energy and Buildings, 2019, 199, 223-234.	3.1	22
331	Development of occupancy-integrated archetypes: Use of data mining clustering techniques to embed occupant behaviour profiles in archetypes. Energy and Buildings, 2019, 198, 84-99.	3.1	30
332	An area-based modelling approach for planning heating electrification. Energy Policy, 2019, 131, 262-280.	4.2	15
333	Data-driven strategic planning of building energy retrofitting: The case of Stockholm. Journal of Cleaner Production, 2019, 233, 546-560.	4.6	55
334	Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain. Energies, 2019, 12, 2238.	1.6	24
335	A review on energy consumption in the residential and commercial buildings located in tropical regions of Indian Ocean: A case of Madagascar island. Journal of Energy Storage, 2019, 24, 100748.	3.9	40
336	Characterisation of Australian apartment electricity demand and its implications for low-carbon cities. Energy, 2019, 180, 242-257.	4.5	29
337	Data-driven building archetypes for urban building energy modelling. Energy, 2019, 181, 360-377.	4.5	84
338	Disaggregation and characterization of residential electricity use: Analysis for Ghana. Sustainable Cities and Society, 2019, 48, 101586.	5.1	23
339	Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response. Applied Energy, 2019, 242, 181-204.	5.1	80
340	Empirical and modelled energy performance in Kuwaiti villas: Understanding the social and physical factors that influence energy use. Energy and Buildings, 2019, 188-189, 252-268.	3.1	8
341	Mapping the energy performance gap of dwelling stock at high-resolution scale: Implications for thermal comfort in Portuguese households. Energy and Buildings, 2019, 190, 246-261.	3.1	41
342	Modelling Influential Factors of Consumption in Buildings Connected to District Heating Systems. Energies, 2019, 12, 586.	1.6	6
343	Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 2019, 174, 407-419.	4.5	300
344	Low carbon heating and cooling of residential buildings in cities in the hot summer and cold winter zone - A bottom-up engineering stock modeling approach. Journal of Cleaner Production, 2019, 220, 271-288.	4.6	49
345	Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models. Energy, 2019, 174, 148-168.	4.5	42
346	Classification and energy analysis of bank building stock: A case study in Curitiba, Brazil. Journal of Building Engineering, 2019, 23, 259-269.	1.6	9
347	Categorization of South Tyrolean Built Heritage with Consideration of the Impact of Climate. Climate, 2019, 7, 139.	1.2	7

#	Article	IF	Citations
348	Energy Demand Assessment for water in the residential sector in Mexico. , 2019, , .		0
349	Cities and buildings efficiency improvement of energy-poor household. , 2019, , 211-238.		3
350	Exploratory Analysis of Energy Use Across Building Types and Geographic Regions in the United States. Frontiers in Built Environment, 2019, 5, .	1.2	6
351	The role of building in the reduction of fuel poverty. , 2019, , 63-103.		1
352	Integrated assessment of energy performance and seismic vulnerability of existing building stock at urban scale through BIM: an application to "Fiera del Levante― , 2019, , .		0
353	Energy Efficiency in Building Renovation. , 2019, , 675-810.		4
354	Development and analysis of strategies to facilitate the conversion of Canadian houses into net zero energy buildings. Energy Policy, 2019, 126, 118-130.	4.2	24
355	Analysis of space heating demand in the Swiss residential building stock: Element-based bottom-up model of archetype buildings. Energy and Buildings, 2019, 184, 300-322.	3.1	77
356	A review study about energy renovation of building facades with BIPV in urban environment. Sustainable Cities and Society, 2019, 44, 343-355.	5.1	101
357	Energy system transitions and macroeconomic assessment of the Indian building sector. Building Research and Information, 2019, 47, 38-55.	2.0	7
358	How household thermal routines shape UK home heating demand patterns. Energy Efficiency, 2019, 12, 5-17.	1.3	27
359	A prediction method for urban heat supply based on grey system theory. Sustainable Cities and Society, 2020, 52, 101819.	5.1	19
360	Multi-criteria assessment for the functional-energy upgrade of the UAE school sector: a bottom-up approach promoting refurbishment versus new construction. Architectural Engineering and Design Management, 2020, 16, 167-190.	1.2	1
361	Urban morphology indicator analyzes for urban energy modeling. Sustainable Cities and Society, 2020, 52, 101863.	5.1	27
362	Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 2020, 245, 118658.	4.6	98
364	Determinants of energy consumption and exposure to energy price risk: aÂUK study. Zeitschrift Für Immobilienökonomie, 2020, 6, 65-80.	2.7	26
365	Multi-domain urban-scale energy modelling tools: A review. Sustainable Cities and Society, 2020, 54, 101872.	5.1	61
366	Passive building characteristics, and summertime residential energy use: A spatial analysis of energy efficiency in Gainesville, FL. Building and Environment, 2020, 169, 106542.	3.0	15

#	Article	IF	Citations
367	Investigation on spatial distributions and occupant schedules of typical residential districts in South China's Pearl River Delta. Energy and Buildings, 2020, 209, 109710.	3.1	9
368	Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption. Applied Energy, 2020, 261, 114339.	5.1	44
369	A high-temporal resolution residential building occupancy model to generate high-temporal resolution heating load profiles of occupancy-integrated archetypes. Energy and Buildings, 2020, 206, 109577.	3.1	19
370	Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data. Energy, 2020, 193, 116694.	4.5	9
371	A data analysis of the Chilean housing stock and the development of modelling archetypes. Energy and Buildings, 2020, 206, 109568.	3.1	20
372	Bottom-up energy supply optimization of a national building stock. Energy and Buildings, 2020, 209, 109667.	3.1	24
373	Quantification of material stocks in existing buildings using secondary data—A case study for timber in a London Borough. Resources Conservation & Recycling X, 2020, 5, 100027.	4.2	9
374	The importance of thermal modelling and prototyping in shelter design. Building Research and Information, 2020, 48, 379-400.	2.0	5
375	A transferable energy model for determining the future energy demand and its uncertainty in a country's residential sector. Building Research and Information, 2020, 48, 587-612.	2.0	7
376	Improving energy savings from a residential retrofit policy: A new model to inform better retrofit decisions. Energy and Buildings, 2020, 209, 109656.	3.1	22
377	Modeling and analysis of the electricity consumption profile of the residential sector in Spain. Energy and Buildings, 2020, 207, 109629.	3.1	20
378	Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects. Sustainability, 2020, 12, 7465.	1.6	31
379	Open data and energy analytics - An analysis of essential information for energy system planning, design and operation. Energy, 2020, 213, 118803.	4.5	53
380	Developing a common approach for classifying building stock energy models. Renewable and Sustainable Energy Reviews, 2020, 133, 110276.	8.2	51
381	Future western U.S. building electricity consumption in response to climate and population drivers: A comparative study of the impact of model structure. Energy, 2020, 208, 118312.	4.5	8
382	MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways. Energy, 2020, 211, 118674.	4.5	16
383	Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development. Energy and Buildings, 2020, 224, 110246.	3.1	15
384	Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 2020, 62, 102408.	5.1	138

#	Article	IF	CITATIONS
385	Experimental Investigation and Energy Performance Simulation of Mongolian Ger with ETS Heater and Solar PV in Ulaanbaatar City. Energies, 2020, 13, 5840.	1.6	5
386	A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation. Applied Energy, 2020, 280, 115953.	5.1	33
387	Data-centric innovation in retrofit: A bibliometric review of dwelling retrofit across North Western Europe. Energy and Buildings, 2020, 229, 110474.	3.1	9
388	Energy demand science for a decarbonized society in the context of the residential sector. Renewable and Sustainable Energy Reviews, 2020, 132, 110051.	8.2	33
389	An exploratory investigation into the relationship between energy performance certificates and sales price: a polytomous universal model approach. Journal of Financial Management of Property and Construction, 2020, 25, 247-271.	0.9	15
390	Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data. Energies, 2020, 13, 3244.	1.6	9
391	A generalisable bottom-up methodology for deriving a residential stock model from large empirical databases. Energy and Buildings, 2020, 215, 109886.	3.1	20
392	Automatic energy demand assessment in low-carbon investments: a neural network approach for building portfolios. Journal of European Real Estate Research, 2020, 13, 357-385.	0.3	9
393	Housing, health and energy: a characterisation of risks and priorities across Delhi's diverse settlements. Cities and Health, 2021, 5, 298-319.	1.6	2
394	Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges. Energies, 2020, 13, 4244.	1.6	15
395	Analysis of Building Parameter Uncertainty in District Heating for Optimal Control of Network Flexibility. Energies, 2020, 13, 6220.	1.6	6
396	Literature Review on Energy Consumption in Road Construction Projects. Journal of Physics: Conference Series, 2020, 1625, 012034.	0.3	1
397	Buildings' energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production. Renewable and Sustainable Energy Reviews, 2020, 134, 110299.	8.2	28
398	A novel residential heating consumption characterisation approach at city level from available public data: Description and case study. Energy and Buildings, 2020, 221, 110082.	3.1	18
399	Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive. Renewable and Sustainable Energy Reviews, 2020, 127, 109886.	8.2	26
400	Urban building energy modeling: State of the art and future prospects. Renewable and Sustainable Energy Reviews, 2020, 128, 109902.	8.2	110
401	Urban morphology and building heating energy consumption: Evidence from Harbin, a severe cold region city. Energy and Buildings, 2020, 224, 110143.	3.1	61
402	A modelling framework for the diffusion of low carbon energy performance contracts. Energy Efficiency, 2020, 13, 767-788.	1.3	4

#	Article	IF	CITATIONS
403	Modeling the spatial relation between urban morphology, land surface temperature and urban energy demand. Sustainable Cities and Society, 2020, 60, 102246.	5.1	26
404	Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. Building and Environment, 2020, 183, 106964.	3.0	48
405	Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective. Energies, 2020, 13, 2274.	1.6	22
406	Context-specific urban occupancy modeling using location-based services data. Building and Environment, 2020, 175, 106803.	3.0	26
407	Urban Residential Building Energy Consumption by End-Use in Malawi. Buildings, 2020, 10, 31.	1.4	14
408	Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques. Energies, 2020, 13, 3117.	1.6	22
409	Clean construction and demolition waste material cycles through optimised pre-demolition waste audit documentation: A review on building material assessment tools. Waste Management and Research, 2020, 38, 923-941.	2.2	31
410	Developing Reference Building for Campus Type Buildings in Universitas Gadjah Mada. IOP Conference Series: Earth and Environmental Science, 2020, 520, 012013.	0.2	3
411	Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam. Journal of Building Performance Simulation, 2020, 13, 347-361.	1.0	31
412	Towards agent-based building stock modeling: Bottom-up modeling of long-term stock dynamics affecting the energy and climate impact of building stocks. Energy and Buildings, 2020, 211, 109763.	3.1	40
413	Residential building stock model for evaluating energy retrofit programs in Saudi Arabia. Energy, 2020, 195, 116980.	4.5	59
414	Built form, urban climate and building energy modelling: case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, 2020, 13, 209-225.	1.0	47
415	City-scale single family residential building energy consumption prediction using genetic algorithm-based Numerical Moment Matching technique. Building and Environment, 2020, 172, 106667.	3.0	27
416	Energy Efficiency and GHG Emissions Mapping of Buildings for Decision-Making Processes against Climate Change at the Local Level. Sustainability, 2020, 12, 2982.	1.6	15
417	Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling. Energy, 2020, 201, 117687.	4.5	38
418	Modeling and Forecasting End-Use Energy Consumption for Residential Buildings in Kuwait Using a Bottom-Up Approach. Energies, 2020, 13, 1981.	1.6	22
419	A Fuzzy-SOM Method for Fraud Detection in Power Distribution Networks with High Penetration of Roof-Top Grid-Connected PV. Energies, 2020, 13, 1287.	1.6	5
420	A review of operational energy consumption calculation method for urban buildings. Building Simulation, 2020, 13, 739-751.	3.0	40

#	Article	IF	CITATIONS
421	Bottom-up and top-down heat demand mapping methods for small municipalities, case Gllogoc. Energy, 2020, 199, 117429.	4.5	18
422	A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale. Renewable and Sustainable Energy Reviews, 2020, 126, 109834.	8.2	38
423	Generation of whole building renovation scenarios using variational autoencoders. Energy and Buildings, 2021, 230, 110520.	3.1	11
424	A probabilistic building characterization method for district energy simulations. Energy and Buildings, 2021, 230, 110566.	3.1	19
425	Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach. Renewable and Sustainable Energy Reviews, 2021, 137, 110461.	8.2	27
426	Towards developing a systematic knowledge trend for building energy consumption prediction. Journal of Building Engineering, 2021, 35, 101967.	1.6	26
427	A monitoring data based bottom-up modeling method and its application for energy consumption prediction of campus building. Journal of Building Engineering, 2021, 35, 101962.	1.6	11
428	Building stock energy modeling: Feasibility study on selection of important input parameters using stepwise regression. Energy Science and Engineering, 2021, 9, 284-296.	1.9	4
429	Lighting Energy Need and Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2021, , 807-819.	0.0	0
430	Energy Modelling: Methods and Applications. Encyclopedia of the UN Sustainable Development Goals, 2021, , 459-470.	0.0	1
431	The Application of Urban Building Energy Modeling in Urban Planning. Future City, 2021, , 45-63.	0.2	1
432	System Dynamics Analysis of Energy Policies on the building's Performance. Advances in Sustainability Science and Technology, 2021, , 151-179.	0.4	0
433	A Monte Carlo building stock model of space cooling demand in the Swiss service sector under climate change. Energy and Buildings, 2021, 233, 110662.	3.1	17
434	A Top-Down Digital Mapping of Spatial-Temporal Energy Use for Municipality-Owned Buildings: A Case Study in BorlÃ ¤ ge, Sweden. Buildings, 2021, 11, 72.	1.4	6
435	Development of a metamodelling framework for building energy models with application to fifth-generation district heating and cooling networks. Journal of Building Performance Simulation, 2021, 14, 203-225.	1.0	3
436	An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings. Energies, 2021, 14, 1078.	1.6	29
437	Sustainable site selection using system dynamics; case study LEED-certified project. Architectural Engineering and Design Management, 2022, 18, 368-386.	1.2	8
438	Analysis of the Determining Factors for the Renovation of the Walloon Residential Building Stock. Sustainability, 2021, 13, 2221.	1.6	5

#	Article	IF	CITATIONS
439	Knowledge and energy retrofitting of neighborhoods and districts. A comprehensive approach coupling geographical information systems, building simulations and optimization engines. Energy Conversion and Management, 2021, 230, 113786.	4.4	25
440	Impact of the rise of solo living and an ageing population on residential energy consumption in South Korea. Energy and Environment, 2022, 33, 399-416.	2.7	6
441	Modelling heating and cooling energy demand for building stock using a hybrid approach. Energy and Buildings, 2021, 235, 110740.	3.1	66
442	Solid wall insulation of the Victorian house stock in England: A whole life carbon perspective. Building and Environment, 2021, 191, 107595.	3.0	6
443	Application of surrogate modelling to improve the thermal performance of single-family homes through archetype development. Energy and Buildings, 2021, 237, 110812.	3.1	10
444	Estimating the influence of building and urban form on the thermal loads of urban dwellings in the Mediterranean climate using machine learning. Energy Sources, Part B: Economics, Planning and Policy, 2021, 16, 687-706.	1.8	3
445	Methodology for Residential Building Stock Refurbishment Planning—Development of Local Building Typologies. Sustainability, 2021, 13, 4262.	1.6	7
446	Grouping techniques for building stock analysis: A comparative case study. Energy and Buildings, 2021, 236, 110754.	3.1	5
447	Techno-economic investigation of the potential for energy efficiency measures of multi-story apartment buildings at cluster level using different district heating tariffs. Energy and Buildings, 2021, 236, 110758.	3.1	4
448	Characterizing the impacts of highway pavement in a newly planned greater bay area economic belt in China. International Journal of Life Cycle Assessment, 2021, 26, 1285-1297.	2.2	1
449	Sensitivity analysis of household factors and energy consumption in residential houses: A multi-dimensional hybrid approach using energy monitoring and modeling. Energy and Buildings, 2021, 239, 110864.	3.1	12
450	A High Resolution Spatiotemporal Urban Heat Load Model for GB. Energies, 2021, 14, 4078.	1.6	2
451	Energy Efficiency Strategies in the Social Housing Sector: Dynamic Considerations and Policies. Journal of Management in Engineering - ASCE, 2021, 37, .	2.6	11
452	A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries. Renewable and Sustainable Energy Reviews, 2021, 144, 111000.	8.2	25
453	Designing an Energy-Resilient Neighbourhood Using an Urban Building Energy Model. Energies, 2021, 14, 4445.	1.6	16
454	Understanding energy demand behaviors through spatio-temporal smart meter data analysis. Energy, 2021, 226, 120493.	4.5	30
455	Addressing the potential for improvement of urban building stock: A protocol applied to a Mediterranean Spanish case. Sustainable Cities and Society, 2021, 71, 102967.	5.1	14
456	An exploratory study on the impact of physical and geospatial characteristics of the urban built environment on the buildings annual electricity usage. Journal of Building Engineering, 2021, 40, 102359.	1.6	3

ARTICLE IF CITATIONS # Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative 457 3.1 97 and quantitative analysis. Energy and Buildings, 2021, 246, 111073. Bayesian Inference of Dwellings Energy Signature at National Scale: Case of the French Residential 1.6 Stock. Energies, 2021, 14, 5651. Using urban building energy modelling (UBEM) to support the new European Union's Green Deal: Case 459 3.1 54 study of Dublin Ireland. Energy and Buildings, 2021, 247, 111115. Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review. 460 Energies, 2021, 14, 6106. Developing a Data-driven school building stock energy and indoor environmental quality modelling 461 3.1 16 method. Energy and Buildings, 2021, 249, 111249. Real-reference buildings for urban energy modelling: A multistage validation and diversification approach. Building and Environment, 2021, 203, 108058. 3.0 Developing an evidence-based energy-policy framework to assess robust energy-performance 463 evaluation and certification schemes in the South-eastern Mediterranean countries. Energy for 2.0 12 Sustainable Development, 2021, 64, 65-102. An agent-based modeling approach combined with deep learning method in simulating household 464 1.6 energy consumption. Journal of Building Engineering, 2021, 43, 103210. Identifying optimal renovation schedules for building portfolios: Application in a social housing 465 3.1 14 context under multi-year funding constraints. Energy and Buildings, 2021, 250, 111290. Modelling building energy use at urban scale: A review on their account for the urban environment. 466 Building and Environment, 2021, 205, 108235. Identifying critical building-oriented features in city-block-level building energy consumption: A 467 5.122 data-driven machine learning approach. Applied Energy, 2021, 301, 117453. Building energy performance analysis at urban scale: A supporting tool for energy strategies and urban building energy rating identification. Sustainable Cities and Society, 2021, 74, 103220. 468 5.1 The role of highly energy-efficient dwellings in enabling 100% renewable electricity. Energy Policy, 469 4.2 4 2021, 158, 112565. CIS-based assessment for the potential of implementation of food-energy-water systems on building rooftops at the urban level. Science of the Total Environment, 2022, 803, 149963 Digital Mapping of Spatial Energy Use for Buildings in City. Sustainable Development Goals Series, 2021, 471 0.2 0 , 399-409. Building Stock Energy Models and ICT Solutions for Urban Energy Systems. Advances in Civil and Industrial Engineering Book Series, 2021, , 490-514. Energy Modelling and Analytics in the Built Environmentâ€"A Review of Their Role for Energy 473 1.6 35 Transitions in the Construction Sector. Energies, 2021, 14, 679. Area Based Targeting: Providing Evidence to Support Public-Private Partnership in Energy Efficiency 474 0.4 Projects. Green Energy and Technology, 2015, 129-156.

#	Article	IF	CITATIONS
475	Modeling Human Behavior for Energy-Usage Prediction. Communications in Computer and Information Science, 2011, , 298-302.	0.4	5
476	A Comprehensive Review of Existing Urban Energy Models in the Built Environment. Lecture Notes in Geoinformation and Cartography, 2013, , 249-265.	0.5	4
477	Carbon Emission Modelling for Construction Logistics Process Through Activity-Based Method. , 2018, , 413-424.		1
478	Linking Neighborhoods into Sustainable Energy Systems. Energy, Environment, and Sustainability, 2019, , 93-110.	0.6	1
479	Heat demand in the Swedish residential building stock - pathways on demand reduction potential based on socio-technical analysis. Energy Policy, 2020, 144, 111679.	4.2	18
480	Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures. Energy Policy, 2020, 146, 111791.	4.2	37
481	Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment. Energy Policy, 2020, 146, 111814.	4.2	21
482	Adoption Dynamics of Carbon Abatement Strategies in the Colombian Office Building Sector. , 2020, , .		2
483	Microfluidic devices for synthesizing nanomaterials—a review. Nano Express, 2020, 1, 032004.	1.2	45
484	Evaluation of Dynamic Insulation Systems for Residential Buildings in Barcelona, Spain. ASME Journal of Engineering for Sustainable Buildings and Cities, 2020, 1, .	0.6	4
485	Conceptual Framework of Modelling for Malaysian Household Electrical Energy Consumption using Artificial Neural Network based on Techno-Socio Economic Approach. International Journal of Electrical and Computer Engineering, 2018, 8, 1844.	0.5	3
486	Population Estimation Using a 3D City Model: A Multi-Scale Country-Wide Study in the Netherlands. PLoS ONE, 2016, 11, e0156808.	1.1	51
489	Urban energy consumptions: its determinants and future research. , 2014, , .		3
490	Apports et limites de la thermographie aérienne comme outil de diagnostic de la performance énergétique d'un parc résidentiel. Revue Internationale De Géomatique, 2017, 27, 37-63.	0.2	1
491	Geographically Parameterized Residential Sector Energy and Service Profile. Frontiers in Energy Research, 2019, 7, .	1.2	5
492	Perspectives on Subnational Carbon and Climate Footprints: A Case Study of Southampton, UK. , 0, , .		1
493	The difference between theoretical and measured energy consumption in residential heating: Chilean case. , 0, , 149-157.		1
494	Assessing the electric demand-side management potential of Helsinki's public service building stock in ancillary markets. Sustainable Cities and Society, 2022, 76, 103460.	5.1	4

ARTICLE IF CITATIONS # Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for 495 9 1.6 Building Energy Renovation at District Scale. Sustainability, 2021, 13, 11554. Estimation, analysis and mapping of electricity consumption of a regional building stock in a temperate climate in Europe. Energy and Buildings, 2021, 253, 111535. 3.1 A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy Design 497 0 0.4 in the UK. SSRN Electronic Journal, 0, , . Mid-Term Forecasting Model of Abu-Dhabi's Electricity Consumption Applied to Demand-Side Management Impact Assessment., 2013,,. Classifying Energy-Related Events Using Electromagnetic Field Signatures. Lecture Notes in Computer 500 1.0 0 Science, 2013, , 105-111. A Review of Carbon Accounting Models for Urban Building Sector. Lecture Notes in Electrical 0.3 Engineering, 2014, , 617-624. New research methods in identifying motivations for energy efficiency refurbishment of 502 0.0 0 owner-occupied homes. WIT Transactions on Ecology and the Environment, 2013, , . Sensitivity analysis of demand-side management impact on Abu-Dhabi's electricity consumption. 0.4 International Journal of Smart Grid and Clean Energy, 2014, , . A framework to evaluate the energy efficiency potential of Kuwaiti homes. WIT Transactions on 504 0.0 0 Ecology and the Environment, 2014, , . An Archetype Based Building Stock Aggregation Methodology Using a Remote Survey Technique. Smart Innovation, Systems and Technologies, 2017, , 89-115. 'Urban island' as an energy assessment tool: The case of Mouzaia, Algeria. Journal of Applied 507 0.4 1 Engineering Science, 2017, 15, 128-139. An Integrated Demand and Carbon Impact Forecasting Approach for Residential Precincts. Lecture 508 0.5 Notes in Geoinformation and Cartography, 2017, , 295-315. Energy Building Stock Simulation and Planning for Small Municipalities - A Web-based Urban Energy 510 0 System Model for Potential Analysis and Citizen Participation. , 2018, , . Me or My House? Investigating the Relative Importance of Household and Dwelling Characteristics for 0.4 Household Energy Consumption. SSRN Electronic Journal, 0, , . The Sociotechnical Systems of Energy and Carbon Emissions in Housing. Green Energy and Technology, 512 0.4 0 2018, , 51-75. Building-Level Change Detection from Large-Scale Historical Vector Data by Using Direct and a 1.0 Three-Tier Post-classification Comparison. Lecture Notes in Computer Science, 2018, , 300-316. La thermographie aérienne comme outil de diagnostic de la performance énergétique du parc 514 0 résidentiel de l'agglomération de Compiègne, des déperditions de chaleur. , 2019, , 71-84. Energy Demand Analysis and Prediction., 2020, , 17-33.

#	Article	IF	CITATIONS
516	Community Morphology and Energy Consumption. , 2020, , 189-272.		0
517	Energy Modelling: Methods and Applications. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-12.	0.0	0
518	Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods. Renewable and Sustainable Energy Reviews, 2022, 153, 111743.	8.2	5
519	Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach. Energy Policy, 2022, 160, 112646.	4.2	7
520	The pitfalls of shared metering: Does the self-interest in district heating systems cause tragedy of the commons. Energy Research and Social Science, 2022, 83, 102335.	3.0	2
521	Modelling platform for schools (MPS): The development of an automated One-By-One framework for the generation of dynamic thermal simulation models of schools. Energy and Buildings, 2022, 254, 111566.	3.1	8
522	Lighting Energy Need and Sustainability. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-13.	0.0	0
523	Teardown Index. Impact of Meat Consumption on Health and Environmental Sustainability, 2020, , 64-101.	0.4	0
525	The ability of Building Stock Energy Models (BSEMs) to facilitate the sector's climate change target in the face of socioeconomic uncertainties: A review. Energy and Buildings, 2022, 254, 111634.	3.1	6
526	A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China. Energies, 2020, 13, 4781.	1.6	8
527	Forecasting Chilled Water Consumption under Climate Change: Regression Analysis of University Campus Buildings. , 2020, , .		2
528	Characterization of Energy Demand and Energy Services Using Model-Based and Data-Driven Approaches. , 2021, , 229-248.		1
529	Modelling the deployment of energy efficiency measures for the residential sector. The case of Italy. Sustainable Energy Technologies and Assessments, 2022, 49, 101777.	1.7	11
530	Risk identification of residential energy demand: the case studies of Australia, Chile, the United Kingdom and the United States. Advances in Building Energy Research, 0, , 1-28.	1.1	0
531	Information modelling for urban building energy simulation—A taxonomic review. Building and Environment, 2022, 208, 108552.	3.0	33
532	Research on building energy consumption modeling and spatial analysis method in China. , 2021, , .		1
533	Occupant-centric urban building energy modeling: Approaches, inputs, and data sources - A review. Energy and Buildings, 2022, 257, 111809.	3.1	30
534	Modeling investment policies effect on environmental indicators in Egyptian construction sector using system dynamics. Cleaner Engineering and Technology, 2022, 6, 100368.	2.1	3

#	Article	IF	CITATIONS
535	Energy-saving potential prediction models for large-scale building: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2022, 156, 111992.	8.2	27
536	Supporting Local Authorities to Plan Energy Efficiency in Public Buildings: From Local Needs to Regional Planning. Energies, 2022, 15, 907.	1.6	8
537	Review of Urban Heat Island and Building Energy Modeling Approaches. ASME Journal of Engineering for Sustainable Buildings and Cities, 2022, 3, .	0.6	2
538	Estimating carbon emissions in urban functional zones using multi-source data: A case study in Beijing. Building and Environment, 2022, 212, 108804.	3.0	37
539	Incremental decision making for historic urban areas' energy retrofitting: EFFESUS DSS. Journal of Cultural Heritage, 2022, 54, 68-78.	1.5	7
540	Future mobility in India from a changing energy mix perspective. Economic Analysis and Policy, 2022, 73, 706-724.	3.2	4
541	On the accuracy of Urban Building Energy Modelling. Renewable and Sustainable Energy Reviews, 2022, 158, 111976.	8.2	30
542	A Deep-Learning-Based Meta-Modeling Workflow for Thermal Load Forecasting in Buildings: Method and a Case Study. Buildings, 2022, 12, 177.	1.4	6
543	A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing. Energy, 2022, 247, 123341.	4.5	6
544	Future-Proof Energy-Retrofit strategy for an existing Dutch neighbourhood. Energy and Buildings, 2022, 260, 111914.	3.1	16
545	Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock. Energies, 2021, 14, 8285.	1.6	5
546	Recent Advances in Smart Meter: Data Analysis, Privacy Preservation and Applications. Communications in Computer and Information Science, 2022, , 105-114.	0.4	1
547	The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale. Energies, 2022, 15, 1525.	1.6	7
548	Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level. Energies, 2022, 15, 1650.	1.6	7
549	Modelling Building Stock Energy Consumption at the Urban Level from an Empirical Study. Buildings, 2022, 12, 385.	1.4	8
550	Investigating Energy Use in a City District in Nordic Climate Using Energy Signature. Energies, 2022, 15, 1907.	1.6	4
551	Energy savings and retrofit assessment for city-scale residential building stock during extreme heatwave events using genetic algorithm-numerical moment matching. Clean Technologies and Environmental Policy, 2022, 24, 2081-2098.	2.1	3
552	Impact of financial subsidy schemes on climate goals in the residential building sector. Journal of Cleaner Production, 2022, 344, 131040.	4.6	7

#	Article	IF	CITATIONS
553	Hybrid approach to representative building archetypes development for urban models – A case study in Andorra. Building and Environment, 2022, 215, 108958.	3.0	5
554	Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives. Energy, 2022, 248, 123477.	4.5	4
555	Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use. Renewable and Sustainable Energy Reviews, 2022, 161, 112388.	8.2	6
556	Open-Source Tool for Transforming CityGML Levels of Detail. Energies, 2021, 14, 8250.	1.6	6
558	Advancing urban building energy modelling through new model components and applications: A review. Energy and Buildings, 2022, 266, 112099.	3.1	18
560	Predicting Energy Savings of the UK Housing Stock under a Step-by-Step Energy Retrofit Scenario towards Net-Zero. Energies, 2022, 15, 3082.	1.6	10
561	The influence of weather on heat demand profiles in UK social housing tower blocks. Building and Environment, 2022, 219, 109101.	3.0	6
562	Developing a Building Stock Model to Enable Clustered Renovation—The City of Leuven as Case Study. Sustainability, 2022, 14, 5769.	1.6	3
563	Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors. Energies, 2022, 15, 3668.	1.6	1
564	Bottom-up modelling of electricity end-use consumption of the residential sector in Brazil. Ambiente ConstruÃdo, 2022, 22, 113-131.	0.2	0
565	Occupant-Driven End Use Load Models for Demand Response and Flexibility Service Participation of Residential Grid-Interactive Buildings. SSRN Electronic Journal, 0, , .	0.4	1
566	Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe. Sustainability, 2022, 14, 6521.	1.6	0
567	Data-Driven Building Occupancy Prediction: An Educational Building Case Study. , 2022, , .		0
568	A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets. Nature Communications, 2022, 13, .	5.8	48
569	Platform for transverse evaluation of control strategies for multi-energy smart grids. Smart Energy, 2022, 7, 100079.	2.6	6
570	Performance-based climatic zoning method for building energy efficiency applications using cluster analysis. Energy, 2022, 255, 124477.	4.5	11
571	Building a top-down method based on machine learning for evaluating energy intensity at a fine scale. Energy, 2022, 255, 124505.	4.5	3
572	Challenges and opportunities for carbon neutrality in China's building sector—Modelling and data. Building Simulation, 2022, 15, 1899-1921.	3.0	79

#	Article	IF	CITATIONS
573	Building energy model validation and estimation using heating and cooling degree days (HDD–CDD) based on accurate base temperature. Energy Science and Engineering, 0, , .	1.9	6
574	Scientometric analysis of post-occupancy evaluation research: Development, frontiers and main themes. Energy and Buildings, 2022, 271, 112307.	3.1	6
576	Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement. Energies, 2022, 15, 5029.	1.6	1
577	Accurate Household Occupant Behavior Modeling Based on Data Mining Techniques. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28, .	3.6	6
578	Development of a bottom-up white-box building stock energy model for single-family dwellings. Journal of Building Performance Simulation, 2022, 15, 735-756.	1.0	0
579	Energy-Efficient Retrofitting under Incomplete Information: A Data-Driven Approach and Empirical Study of Sweden. Buildings, 2022, 12, 1244.	1.4	3
580	The potential for sustainable drainage systems (SuDS) in a regional urbanization project. Frontiers in Sustainable Cities, 0, 4, .	1.2	1
581	A critical review of the performance evaluation and optimization of grid interactions between zero-energy buildings and power grids. Sustainable Cities and Society, 2022, 86, 104123.	5.1	15
582	Stochastic simulation of occupant-driven energy use in a bottom-up residential building stock model. Applied Energy, 2022, 325, 119890.	5.1	12
583	A Preliminary Model for Promoting Energy Communities in Urban Planning. Lecture Notes in Networks and Systems, 2022, , 2833-2840.	0.5	1
584	Estimation of Anthropogenic Heat from Buildings Based on Various Data Sources in Singapore. SSRN Electronic Journal, 0, , .	0.4	0
585	An Empirical Bayesian Approach for Calibrating Long-Term District-Scale Building Energy Consumption for Heating. SSRN Electronic Journal, 0, , .	0.4	0
586	Embodied Carbon Emissions of the Residential Building Stock in the United States and the Effectiveness of Mitigation Strategies. Climate, 2022, 10, 135.	1.2	5
587	Surrogate optimization of energy retrofits in domestic building stocks using household carbon valuations. Journal of Building Performance Simulation, 2023, 16, 16-37.	1.0	3
588	Smart-E : A Tool for Energy Demand Simulation And Optimization At the City Scale. , 2015, , .		4
589	A Methodology Based on GIS-BIM Integration to Evaluate Energy Efficiency at Urban Scale. Communications in Computer and Information Science, 2022, , 166-177.	0.4	0
590	Integrated Energy Planning at City Level. Green Energy and Technology, 2022, , 33-60.	0.4	0
591	What matters most to the material intensity coefficient of buildings? Random forestâ€based evidence from China. Journal of Industrial Ecology, 2022, 26, 1809-1823.	2.8	5

#	Article	IF	Citations
592	Comprehensive analysis on the energy resilience performance of urban residential sector in hot-humid area of China under climate change Sustainable Cities and Society, 2023, 88, 104233.	5.1	13
593	The development trends of existing building energy conservation and emission reduction—A comprehensive review. Energy Reports, 2022, 8, 13170-13188.	2.5	16
594	Total CO2 emissions associated with buildings in 266 Chinese cities: characteristics and influencing factors. Resources, Conservation and Recycling, 2023, 188, 106692.	5.3	8
595	Enrichment of Single-Zone Epb-Data Into Multi-Zone Models using Bim-Based Parametric Typologies. , 2015, , .		5
596	Sensitivity And Uncertainty Analysis of Models for Determining Energy Consumption in the Residential Sector. , 2015, , .		1
597	Bayesian Calibration of Residential Building Clusters using a Single Geometric Building Representation. , 2017, , .		2
598	Dynamic modelling of indoor environmental conditions for future energy retrofit scenarios across the UK school building stock. Journal of Building Engineering, 2023, 63, 105536.	1.6	3
599	A shoeboxing algorithm for urban building energy modeling: Validation for stand-alone buildings. Sustainable Cities and Society, 2023, 89, 104305.	5.1	7
600	Decarbonization path of Chinaâ \in Ms public building sector from bottom to top. , 2022, 1, .		4
601	A Decision Support Methodology to Foster Renewable Energy Communities in the Municipal Urban Plan. Sustainability, 2022, 14, 16268.	1.6	4
602	Planning Strategy for Urban Building Energy Conservation Supported by Agent-Based Modeling. Buildings, 2022, 12, 2171.	1.4	3
603	Combining BIM & GIS Information to Simulate Circularity of Building Stocks in a City—A Case Study of Taipei City. IOP Conference Series: Earth and Environmental Science, 2022, 1122, 012025.	0.2	0
604	Scenario-based analysis of future life cycle energy trajectories in residential buildings-A case study of inner Melbourne. Building and Environment, 2023, 230, 109955.	3.0	4
605	Estimation of anthropogenic heat from buildings based on various data sources in Singapore. Urban Climate, 2023, 49, 101434.	2.4	3
606	Methods and Tools. , 2022, , 157-209.		0
607	State-of-the-Art II: Bibliometric Review of the Last 30 Years Energy Policy in Europe. , 2022, , 93-156.		0
608	Exploring driving force factors of building energy use and GHC emission using a spatio-temporal regression method. Energy, 2023, 269, 126747.	4.5	3
609	Climate action at the neighbourhood scale: Comparing municipal future scenarios. Buildings and Cities, 2023, 4, 83-102.	1.1	2

#	Article	IF	CITATIONS
610	Carbon emissions from buildings based on a life cycle analysis: carbon reduction measures and effects of green building standards in China. , 2023, 1, .		1
611	A procedure set to construct the optimal energy saving retrofit strategy for old residential buildings in China. Journal of Renewable and Sustainable Energy, 2023, 15, .	0.8	4
612	A review of approaches and applications in building stock energy and indoor environment modelling. Building Services Engineering Research and Technology, 2023, 44, 333-354.	0.9	10
613	Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China. Buildings, 2023, 13, 768.	1.4	3
614	A review of residential building archetypes and their applications to study building energy consumption. Architectural Science Review, 2023, 66, 187-200.	1.1	1
615	Data-driven urban building energy models for the platform of Toronto. Energy Efficiency, 2023, 16, .	1.3	1
620	Methodology for integrated building energy modeling and impact assessment of urban energy system scenarios. , 2022, , .		0
648	Simulation of EU building stock energy performance through artificial neural networks. , 2023, , .		0
668	Data-Driven Decision-Making Framework for Cost-Efficient Energy Retrofit of Italian Residential Building Stock. Lecture Notes in Networks and Systems, 2024, , 521-541.	0.5	0