CITATION REPORT List of articles citing

A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode

DOI: 10.1016/j.bios.2009.10.038 Biosensors and Bioelectronics, 2010, 25, 1402-7.

Source: https://exaly.com/paper-pdf/48364088/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
578	A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. <i>Analytica Chimica Acta</i> , 2010 , 674, 20-6	6.6	136
577	Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 602-7	11.8	110
576	Copper Oxide Nanoparticle Modified Sol © el-Derived Carbon Ceramic by Microwave Irradiation, and Its Application for Determination of Adenine at Very Low Potential. <i>Electroanalysis</i> , 2010 , 23, n/a-n	ı/aʾ	1
575	Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 542-8	11.8	562
574	Functional hybrid materials based on carbon nanotubes and metal oxides. 2010 , 20, 6383		179
573	The calibration of carbon nanotube based bionanosensors. 2010 , 107, 124322		62
572	A comprehensive review of glucose biosensors based on nanostructured metal-oxides. 2010 , 10, 4855-	86	580
571	Nanosensors and nanomaterials for monitoring glucose in diabetes. 2010 , 16, 584-93		234
570	Preparation and characterization of NiOAg nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. 2010 , 20, 9918		164
569	Self-assembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose. 2011 , 21, 13926		83
568	Boron-Nitride Nanotubes as Zeptogram-Scale Bionanosensors: Theoretical Investigations. 2011 , 10, 65	9-667	49
567	Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode. <i>Talanta</i> , 2011 , 85, 1260-4	6.2	100
566	A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. <i>Talanta</i> , 2011 , 86, 157-63	6.2	122
565	Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers. <i>Talanta</i> , 2011 , 86, 214-20	6.2	64
564	Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. 2011 , 56, 7510-7516		126
563	Sensitive and selective nonenzymatic glucose detection using functional NiOPt hybrid nanofibers. 2011 , 58, 209-214		72
562	Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. <i>Biosensors and Bioelectronics</i> , 2011 , 27, 125-31	11.8	167

561	A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 393-8	11.8	122
560	Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor. <i>Biosensors and Bioelectronics</i> , 2011 , 29, 200-3	11.8	13
559	Emerging Applications of Carbon Nanotubes 2011, 23, 646-657		584
558	Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. <i>Mikrochimica Acta</i> , 2011 , 172, 439-446	5.8	15
557	Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@SiO2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. <i>Analytica Chimica Acta</i> , 2011 , 698, 61-8	6.6	56
556	Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3542-8	11.8	127
555	A coral-like macroporous goldplatinum hybrid 3D electrode for enzyme-free glucose detection. 2011 , 155, 134-139		40
554	Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. 2011 , 31, 439-45		29
553	A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2102-6	11.8	78
552	Discharge performance of a primary alkaline CuO cathode material prepared via a novel non-aqueous precipitation method. 2011 , 56, 4996-5002		8
551	Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes. 2011 , 56, 5855-5859		36
550	Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose. 2011 , 13, 363-3	365	42
549	The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. 2011 , 157, 662-668		99
548	Development of flexible Cu-MWCT composite thin film for functional applications. 2012,		
547	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. 2012 , 4, 3123-7		213
546	CuO Microspheres Modified Glassy Carbon Electrodes as Sensor Materials and Fuel Cell Catalysts. Journal of the Electrochemical Society, 2012 , 159, F73-F80	3.9	26
545	One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes. 2012 , 2, 339-344		146
544	Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation. 2012 , 37, 18870-18881		41

543	Development of copper based drugs, radiopharmaceuticals and medical materials. 2012, 25, 1089-112	115
542	Smart wearable systems: current status and future challenges. 2012 , 56, 137-56	534
541	A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode. 2012 , 9, 1007-1014	22
540	PtAu nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. 2012 , 171-172, 954-961	37
539	Functionalization of silver nanowire surfaces with copper oxide for surface-enhanced Raman spectroscopic bio-sensing. 2012 , 22, 15495	33
538	Zeptogram sensing from gigahertz vibration: Graphene based nanosensor. 2012 , 44, 1528-1534	48
537	Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. <i>Talanta</i> , 2012 , 99, 283-7	72
536	High-sensitivity non-enzymatic glucose biosensor based on Cu(OH)2 nanoflower electrode covered with boron-doped nanocrystalline diamond layer. 2012 , 520, 7219-7223	27
535	A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. 2012 , 12, 5996-6022	368
534	A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. 2012 , 2, 813	77
533	Preparation, characterization and application of novel conductive NiOIIdO nanofibers with dislocation feature. 2012 , 22, 980-986	43
532	A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. 2012 , 7, 529-546	32
531	A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. <i>Analytica Chimica Acta</i> , 2012 , 709, 47-53	436
530	The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. 2012 , 258, 2219-2225	15
529	A flexible angle sensor made from MWNT/CuO/Cu2O nanocomposite films deposited by an electrophoretic co-deposition process. 2012 , 533, 62-66	7
528	Effects of carbon structure orientation on the performance of glucose sensors fabricated from electrospun carbon fibers. 2012 , 358, 544-549	11
527	Mixed Nillu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. 2012 , 4, 4003	39
526	Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. 2012 , 12, 4860-9	69

525	Electrochemical analysis based on nanoporous structures. 2012 , 137, 3891-903	91
524	Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode. 2012 , 88, 156-63	177
523	Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors. 2012 , 4, 7525-31	50
522	Synthetic Architecture of Multiple CoreBhell and YolkBhell Structures of (Cu2[email[protected])nCu2O (n = 1월) with Centricity and Eccentricity. 2012 , 24, 1917-1929	78
521	Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. 2012 , 48, 1686-8	58
520	One-pot green hydrothermal synthesis of CuOllu2Ollu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. 2012 , 2, 2227	48
519	Electrochemical sensors and biosensors. 2012 , 84, 685-707	622
518	A Simple Route of Modifying Copper Electrodes for the Determination of Methanol and Ethylene Glycol. <i>Electroanalysis</i> , 2012 , 24, 1639-1645	11
517	Copper oxide-modified glassy carbon electrode prepared through copper hexacyanoferrate \$\mathbb{G}\$5-PAMAM dendrimer templates as electrocatalyst for carbohydrate and alcohol oxidation. 2012 , 16, 1527-1535	6
516	Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. 2012 , 370, 144-54	176
515	Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. 2012 , 20, 75-78	51
514	Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. <i>Biosensors and Bioelectronics</i> , 2012 , 31, 426-32	241
513	Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. 2012 , 168, 1-7	75
512	Nonenzimatic amperometric glucose biosensors. 2012 , 2, 153-170	
511	A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. <i>Mikrochimica Acta</i> , 2012 , 176, 137-142	46
510	A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. <i>Mikrochimica Acta</i> , 2012 , 176, 411-417	81
509	Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. 2013 , 87, 1067-73	48
508	Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. 2013 , 13, 7926-38	87

507	Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. 2013 , 15, 10904-13		115
506	In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric non-enzymatic sensing of glucose. 2013 , 178, 125-131		22
505	Nonenzymatic glucose sensor based on three different CuO nanomaterials. 2013 , 5, 3050		49
504	The microstructure and electrochemical properties of boron-doped nanocrystalline diamond film electrodes and their application in non-enzymatic glucose detection. 2013 , 43, 911-917		11
503	Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. 2013 , 17, 1333-1338		25
502	Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles. 2013 , 97, 349-356		19
501	Easy Fabrication of a Sensitive Non-Enzymatic Glucose Sensor Based on Electrospinning CuO-ZnO Nanocomposites. 2013 , 147, 47-58		17
500	A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors. <i>RSC Advances</i> , 2013 , 3, 13712	3.7	33
499	Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance. <i>RSC Advances</i> , 2013 , 3, 15719	3.7	55
498	Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. <i>Mikrochimica Acta</i> , 2013 , 180, 1127-1134	5.8	41
497	Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. <i>Mikrochimica Acta</i> , 2013 , 180, 477-483	5.8	72
496	Fabrication of CuO nanosheets modified Cu electrode and its excellent electrocatalytic performance towards glucose. 2013 , 283, 947-953		53
495	Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. 2013 , 85, 10448-54		145
494	Optimization of site specific adsorption of oleylamine capped CuO nanoparticles on MWCNTs for electrochemical determination of guanosine. 2013 , 188, 603-612		35
493	Non-Enzymatic Glucose Sensor Based on Cu Electrode Modified with CuO Nanoflowers. <i>Journal of the Electrochemical Society</i> , 2013 , 160, B43-B46	3.9	31
492	Studies on the electrocatalytic oxidation of dopamine at phosphotungstic acidInO spun fiber-modified electrode. 2013 , 185, 651-657		18
491	Nickel/cobalt alloys modified electrodes: Synthesis, characterization and optimization of the electrocatalytical response. 2013 , 186, 528-535		24
490	Dopant-stimulated CuO nanofibers for electro-oxidation and determination of glucose. 2013 , 29, 861-8	367	5

489	Collapsing nanoparticle-laden nanotubes. 2013 , 9, 8881		3
488	Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor. 2013 , 138, 559-68		37
487	Fabrication of Nanoflowers and other Exotic Patterns. 2013 , 201, 159-180		1
486	Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: Optimization of the loading level and order of deposition. 2013 , 92, 460-467		40
485	Electrochemical biosensors for glucose based on metal nanoparticles. 2013, 42, 216-227		115
484	Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. 2013 , 5, 2089-99		139
483	Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. 2013 , 223, 125-128		48
482	Nanomaterials for electrochemical non-enzymatic glucose biosensors. <i>RSC Advances</i> , 2013 , 3, 3487	3.7	261
481	A novel amperometric glucose sensor based on PtIr nanoparticles uniformly dispersed on carbon nanotubes. 2013 , 91, 353-360		30
480	Nonenzymatic biosensor based on Cu(x)O nanoparticles deposited on polypyrrole nanowires for improving detection range. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 141-7	11.8	113
479	Non-enzymatic hydrogen peroxide photoelectrochemical sensor based on WO3 decorated coreBhell TiC/C nanofibers electrode. 2013 , 108, 491-496		42
478	Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. 2013 , 178, 586-592		50
477	Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode. 2013 , 34, 1208-1215		28
476	Utilization of silane functionalized carbon nanotubes-silica hybrids as novel reinforcing fillers for solution styrene butadiene rubber. 2013 , 34, 690-696		29
475	Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. 2013 , 63, 367-375		72
474	A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 280-6	11.8	115
473	CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. <i>Mikrochimica Acta</i> , 2013 , 180, 371-378	5.8	44
472	Non-enzymatic electrochemical sensing of glucose. <i>Mikrochimica Acta</i> , 2013 , 180, 161-186	5.8	352

471	A novel non-enzymatic glucose sensor based on NiO hollow spheres. 2013 , 102, 104-107		118
470	A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 86-91	11.8	76
469	High performance non-enzymatic glucose biosensor based on copper nanowirestarbon nanotubes hybrid for intracellular glucose study. 2013 , 182, 618-624		79
468	Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. <i>Biosensors and Bioelectronics</i> , 2013 , 45, 206-12	11.8	597
467	Improved EIS performance of an electrochemical cytosensor using three-dimensional architecture Au@BSA as sensing layer. 2013 , 85, 5200-6		84
466	WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing. 2013 , 49, 7091-3		18
465	Perovskite LaTiOFAg0.2 nanomaterials for nonenzymatic glucose sensor with high performance. <i>Biosensors and Bioelectronics</i> , 2013 , 48, 56-60	11.8	39
464	A novel nonenzymatic hydrogen peroxide sensor based on AgMnO2MWCNTs nanocomposites. 2013 , 90, 35-43		169
463	Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. 2013 , 5, 4429-37		99
462	Advances in point-of-care technologies with biosensors based on carbon nanotubes. 2013 , 45, 24-36		87
461	Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 248-57	11.8	57
460	In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. 2013 , 105, 433-438		35
459	Preparation of 1D CuO Nanorods by Means of a Metal Ion Containing Ionic Liquid and Their Supercapacitance. 2013 , 2013, 2315-2323		19
458	In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. 2013 , 176, 952-959		102
457	Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. <i>Analytica Chimica Acta</i> , 2013 , 780, 20-7	6.6	62
456	Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. 2013 , 182, 408-415		52
455	Microfluidic Glucose Sensors. 2013 , 47-67		
454	Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. 2013 , 8, e69534		216

453	. 2014,		5
452	SINGLE WALLED-BORON NITRIDE NANOTUBES BASED NANORESONATOR FOR SENSING OF ACETONE MOLECULES. 2014 , 09, 1450086		O
451	A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays. <i>RSC Advances</i> , 2014 , 4, 48310-48316	3.7	30
45 ⁰	Mineralization and optical characterization of copper oxide nanoparticles using a high aspect ratio bio-template. 2014 , 116, 154308		1
449	A Novel Non-Enzymatic Glucose Sensor Based on Cobalt Nanoparticles Implantation-Modified Indium Tin Oxide Electrode. <i>Electroanalysis</i> , 2014 , 26, 2693-2700	3	40
448	Hierarchical Cu4V2.15O9.38 superstructures assembled by single-crystalline rods: their synthesis, characteristics and electrochemical properties. <i>RSC Advances</i> , 2014 ,	3.7	1
447	Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach. 2014 , 8, 149-56		6
446	Nickel Hydroxide Nanoflowers for a Nonenzymatic Electrochemical Glucose Sensor. <i>Journal of the Electrochemical Society</i> , 2014 , 161, B216-B219	3.9	33
445	Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation. 2014 , 40, 1035-1042		14
444	Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. 2014 , 10, 631-45		302
443	Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films. 2014 , 199, 175-182		105
442	Nickel oxide hollow microsphere for non-enzyme glucose detection. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 251-7	11.8	182
441	A highly sensitive nonenzymatic glucose sensor based on nickel oxidellarbon nanotube hybrid nanobelts. 2014 , 18, 899-908		22
440	Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. 2014 , 130, 253-260		82
439	Fabrication of flexible conducting thin films of copper-MWCNT from multi-component aqueous suspension by electrodeposition. 2014 , 18, 487-496		3
438	Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. <i>Biosensors and Bioelectronics</i> , 2014 , 59, 243-50	11.8	79
437	Electrochemical nanosensors for blood glucose analysis. 2014 , 28-53		О
436	A highly efficient organophosphorus pesticides sensor based on CuO nanowiresBWCNTs hybrid nanocomposite. 2014 , 199, 410-417		86

435	A review of recent advances in nonenzymatic glucose sensors. 2014 , 41, 100-18		380
434	Novel Biomaterials for Human Health: Hemocompatible Polymeric Micro-and Nanoparticles and Their Application in Biosensor. 2014 , 181-202		1
433	CuO nanowires based sensitive and selective non-enzymatic glucose detection. 2014 , 191, 86-93		190
432	CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. 2014 , 60, 208-337		852
431	Enzyme-free selective determination of H2O2 and glucose using functionalized CuNP-modified graphite electrode in room temperature ionic liquid medium. <i>RSC Advances</i> , 2014 , 4, 47497-47504	3.7	19
430	Electrolyte-controllable synthesis of CuxO with novel morphology and their application in glucose sensors. <i>RSC Advances</i> , 2014 , 4, 52067-52073	3.7	10
429	Electrochemical synthesis of mixed-valence manganese/copper hybrid composite using graphene oxide and multi-walled carbon nanotubes for nonenzymatic glucose sensor. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 735, 36-42	4.1	17
428	Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity. <i>RSC Advances</i> , 2014 , 4, 28842-28847	3.7	35
427	Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor. 2014 , 6, 1550		60
426	One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. <i>RSC Advances</i> , 2014 , 4, 1449-1455	3.7	52
425	High surface area mesoporous CuO: a high-performance electrocatalyst for non-enzymatic glucose biosensing. <i>RSC Advances</i> , 2014 , 4, 33327-33331	3.7	37
424	NonEnzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2. 2014 , 144, 282-287		38
423	Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. <i>RSC Advances</i> , 2014 , 4, 20459	3.7	74
422	Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. 2014 , 204, 159-166		87
421	A New Method of Preparing Copper Oxide from Dinitrourea Copper Salt. 2014 , 640, 2132-2138		2
420	Templating synthesis of hollow CuO polyhedron and its application for nonenzymatic glucose detection. 2014 , 2, 7306-7312		78
419	Cost-effective CuO nanotube electrodes for energy storage and non-enzymatic glucose detection. <i>RSC Advances</i> , 2014 , 4, 46814-46822	3.7	29
418	Copper coralloid granule/polyaniline/reduced graphene oxide nanocomposites for nonenzymatic glucose detection. 2014 , 6, 4643		41

417	One-pot hydrothermal synthesis of CuO with tunable morphologies on Ni foam as a hybrid electrode for sensing glucose. <i>RSC Advances</i> , 2014 , 4, 23319	3.7	23
416	The nanoporous PdCr alloy as a nonenzymatic electrochemical sensor for hydrogen peroxide and glucose. 2014 , 2, 5195-5201		20
415	Graphene spheres loaded urchin-like CuxO (x=1 or 2) for use as a high performance photocatalyst. 2014 , 40, 5055-5059		17
414	One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection. <i>Biosensors and Bioelectronics</i> , 2014 , 56, 223-30	11.8	85
413	Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 717-718, 90-95	4.1	68
412	3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. <i>Biosensors and Bioelectronics</i> , 2014 , 59, 384-8	11.8	148
411	Anion sensing and interfering behaviors of electrolytelhsulator emiconductor sensors with nitrogen plasma-treated samarium oxide. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 04DL04	1.4	2
410	Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor. 2015 , 10 Spec Iss, 165-78		11
409	On the synthesis of nickel oxide nanoparticles by solgel technique and its electrocatalytic oxidation of glucose. 2015 , 293, 101-108		61
408	Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. 2015 , 3, 5777-5785		54
407	Three-dimensional roselike ENi(OH) (Dassembled from nanosheet building blocks for non-enzymatic glucose detection. <i>Analytica Chimica Acta</i> , 2015 , 880, 42-51	6.6	56
406	Novel one-pot hydrothermal fabrication of cuprous oxide-attapulgite/graphene for non-enzyme glucose sensing. 2015 , 7, 2747-2753		9
405	Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection. 2015 , 26, 245702		11
404	A non-enzymatic thermally reduced Cu nanoparticle based graphene-resorcinol benzaldehyde glucose sensor. 2015 , 19, 91-96		5
403	Electrochemical Sensor Based on Nanoparticles of Cobalt Oxides for Determination of Glucose. 2015 , 2, 4212-4216		11
402	Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. <i>RSC Advances</i> , 2015 , 5, 18773-18781	3.7	59
401	Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level. 2015 , 160, 263-270		13
400	Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature. 2015 , 636, 36-41		43

399	An outstandingly sensitive enzyme-free glucose sensor prepared by co-deposition of nano-sized cupric oxide and multi-walled carbon nanotubes on glassy carbon electrode. 2015 , 97, 81-91		18
398	A bio-electrochemical sensing platform for glucose based on irreversible, non-covalent pipi functionalization of graphene produced via a novel, green synthesis method. 2015 , 210, 558-565		37
397	Determination of Dopamine in the Presence of Uric Acid and Folic Acid by Carbon Paste Electrode Modified with CuO Nanoparticles/Hemoglobin and Multi-Walled Carbon Nanotube. <i>Journal of the Electrochemical Society</i> , 2015 , 162, B69-B74	3.9	20
396	An Antibacterial Nonenzymatic Glucose Sensor Composed of Carbon Nanotubes Decorated with Silver Nanoparticles. <i>Electroanalysis</i> , 2015 , 27, 1138-1143	3	14
395	The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor. 2015 , 194, 94-100		54
394	Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing. <i>RSC Advances</i> , 2015 , 5, 15861-15869	3.7	89
393	A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. 2015 , 211, 385-391		102
392	CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. 2015 , 156, 244-251		100
391	ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. 2015 , 473, 53-62		91
390	Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. 2015 , 176, 1272-1279		56
389	Needle-like polypyrroleNiO composite for non-enzymatic detection of glucose. 2015 , 207, 35-41		44
388	Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. 2015 , 221, 606-613		69
387	Spontaneous formation of CuO nanosheets on Cu foil for H2O2 detection. 2015 , 354, 85-89		22
386	CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. 2015 , 5, 10838		31
385	Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. 2015 , 5, 10617		36
384	A new sensing platform based on electrospun copper oxide/ionic liquid nanocomposite for selective determination of risperidone. <i>RSC Advances</i> , 2015 , 5, 40578-40587	3.7	9
383	Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. 2015 , 34, 373-381		44
382	Urchin-like Pd@CuOPd yolkEhell nanostructures: synthesis, characterization and electrocatalysis. 2015 , 3, 13653-13661		44

(2015-2015)

381	Sulfur-doped graphene-supported Ag nanoparticles for nonenzymatic hydrogen peroxide detection. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	16
380	Developing a nanostructure electrochemical sensor for simultaneous determination of cysteine and tryptophan. 2015 , 7, 3920-3928		10
379	Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. <i>RSC Advances</i> , 2015 , 5, 41457-41467	3.7	41
378	Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. 2015 , 168, 148-156		58
377	A highly sensitive electrochemical DNA biosensor for rapid detection of CYFRA21-1, a marker of non-small cell lung cancer. 2015 , 7, 9466-9473		27
376	Light-Addressable Potentiometric Sensor with Nitrogen-Incorporated Ceramic Sm2O3 Membrane for Chloride Ions Detection. 2015 , 98, 443-447		15
375	Electrodeposition of copper nanoparticles using pectin scaffold at graphene nanosheets for electrochemical sensing of glucose and hydrogen peroxide. 2015 , 176, 804-810		84
374	Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose. 2015 , 44, 3724-3732		29
373	Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor. <i>RSC Advances</i> , 2015 , 5, 106661-106667	3.7	46
372	Improved D-glucose electro-oxidation at a binary catalyst of nickel and cobalt oxide modified glassy carbon electrode. 2015 , 51, 881-885		3
371	Electrocatalytic oxidation of carbohydrates and dopamine in alkaline and neutral medium using CuO nanoplatelets. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 739, 1-9	4.1	16
370	Electrochemical investigation and stripping voltammetric determination of captopril at CuO nanoparticles/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. 2015 , 7, 1026-1035		24
369	Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. 2014 , 4, 7382		117
368	A Non-Enzymatic Glucose Sensor based on Copper Oxide Nanowires-Single Wall Carbon Nanotubes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, B47-B51	3.9	21
367	D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. 2015 , 175, 485-93		24
366	Novel Fe@Fe-O@Ag nanocomposite for efficient non-enzymatic sensing of hydrogen peroxide. 2015 , 153, 62-67		15
365	Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. <i>Mikrochimica Acta</i> , 2015 , 182, 157-165	5.8	22
364	Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. 2015 , 3, 556-561		53

363	Managing diabetes with nanomedicine: challenges and opportunities. 2015 , 14, 45-57		359
362	Facile preparation of a highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with electrodeposited metals. <i>RSC Advances</i> , 2015 , 5, 2806-2812	3.7	7
361	Synthesis and characterization of nickel oxide hollow spheresteduced graphene oxidefiafion composite and its biosensing for glucose. 2015 , 208, 90-98		55
360	A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures. <i>Biosensors and Bioelectronics</i> , 2015 , 63, 339-346	11.8	146
359	A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol. 2015 , 45, 253-261		25
358	Boron Nitride Nanotube-Based Mass Sensing of Zeptogram Scale. 2015 , 48, 17-21		5
357	[Mobile health: new perspectives for healthcare provision]. 2016 , 25, 159-170		2
356	Boron nitride nanotubes as bionanosensors. 2016 , 149-164		2
355	Carbon Nanotube Paper-Based Electroanalytical Devices. 2016 , 7,		12
354	A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. 2016 , 16,		20
353	Nanostructured Conducting Polymer/Copper Oxide as a Modifier for Fabrication of L-DOPA and Uric Acid Electrochemical Sensor. <i>Electroanalysis</i> , 2016 , 28, 2075-2080	3	24
352	Fast Synthesis of Hierarchical Co(OH)2 Nanosheet Hollow Spheres with Enhanced Glucose Sensing. 2016 , 2016, 3163-3168		22
351	Mass and rotary inertia sensing from vibrating cantilever nanobeams. 2016,		1
350	MORPHOLOGY EFFECT OF Nillg/CARBON NANOMATERIALS ON THEIR ELECTROCATALYTIC ACTIVITY FOR GLUCOSE OXIDATION. 2016 , 23, 1650059		4
349	Carnation-like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing. <i>Electroanalysis</i> , 2016 , 28, 2214-2221	3	18
348	Non-enzymatic glucose sensor based on electrodeposited copper on carbon paste electrode (Cu/CPE). 2016 ,		2
347	. 2016 ,		1
346	In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. 2016 , 232, 150-157		65

345	CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. 2016 , 42, 11285-11293	53
344	A ternary nanooxide NiO-TiO2-ZrO2/SO42Ias efficient solid superacid catalysts for electro-oxidation of glucose. 2016 , 194, 367-376	13
343	Advances in non-enzymatic glucose sensors based on metal oxides. 2016 , 4, 7333-7349	252
342	High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. 2016 , 71, 33-37	27
341	Modern Approach to the Synthesis of Ni(OH)2 Decorated Sulfur Doped Carbon Nanoparticles for the Nonenzymatic Glucose Sensor. 2016 , 8, 22545-53	86
340	Bimetal-organic-frameworks-derived yolk-shell-structured porous CoP/ZnO@PC/CNTs hybrids for highly sensitive non-enzymatic detection of superoxide anion released from living cells. 2016 , 52, 12442-1244	.5 ²⁰
339	Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode. 2016 , 509, 252-258	20
338	Investigation of electrocatalytic and analytical ability of Pt nanoparticles supported on active carbon modified electrode to analytical determination of glucose. 2016 , 52, 233-238	
337	Electrical Chips for Biological Point-of-Care Detection. 2016 , 18, 329-55	15
336	Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube. <i>Mikrochimica Acta</i> , 2016 , 183, 3285-3292	19
335	Optical and surface band bending mediated fluorescence sensing properties of MoS2 quantum dots. <i>RSC Advances</i> , 2016 , 6, 101770-101777	17
334	Facile synthesis of Ni(OH)2 nanoplates on nitrogen-doped carbon foam for nonenzymatic glucose sensors. 2016 , 8, 8227-8233	10
333	Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application. 2016 , 68, 465-473	37
332	Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. 2016 , 236, 326-333	75
331	Enhanced Non-enzymatic amperometric sensing of glucose using Co(OH)2 nanorods deposited on a three dimensional graphene network as an electrode material. <i>Mikrochimica Acta</i> , 2016 , 183, 2473-2479 ^{5.8}	26
330	Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. <i>Analytica Chimica Acta</i> , 2016 , 934, 44-51	29
329	NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation. Analytica Chimica Acta, 2016 , 905, 72-8	59
328	Ordered self-assembly of screen-printed flower-like CuO and CuO/MWCNTs modified graphite electrodes and applications in non-enzymatic glucose sensor. <i>Journal of Electroanalytical Chemistry</i> , 4.1 2016 , 763, 37-44	26

327	Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. 2016 , 498, 37-46		129
326	Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors. 2016 , 8, 3258-67		258
325	Copper Hydroxide Nanorods Decorated Porous Graphene Foam Electrodes for Non-enzymatic Glucose Sensing. 2016 , 191, 954-961		59
324	Comparative study of CuO crystals on the cellulose substrate by the microwave-assisted hydrothermal method and hydrothermal method. 2016 , 90, 129-136		18
323	Glucose sensing and low-threshold field emission from MnCo2O4 nanosheets. <i>RSC Advances</i> , 2016 , 6, 29734-29740	7	23
322	Facile Synthesis of Pt-CuO Nanocomposite Films for Non-Enzymatic Glucose Sensor Application. <i>Journal of the Electrochemical Society,</i> 2016 , 163, B180-B184	9	11
321	Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). <i>Dalton Transactions</i> , 2016 , 45, 5833-40	.3	46
320	Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. <i>RSC Advances</i> , 2016 , 6, 12829-12836	7	10
319	Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure. 2016 , 63, 150-4		26
318	Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes. 2016 , 231, 218-229		57
317	Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. 2016 , 227, 583-590		117
316	An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite. 2016 , 364, 703-709		31
315	Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. 2016 , 4, 1247-1253		52
314	Electrochemical sensor for amino acids and glucose based on glassy carbon electrodes modified with multi-walled carbon nanotubes and copper microparticles dispersed in polyethylenimine. 4. Journal of Electroanalytical Chemistry, 2016, 765, 16-21	.1	25
313	Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection. 2016 , 141, 256-60		65
312	Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. <i>Biosensors and Bioelectronics</i> , 2016 , 78, 308-314	1.8	92
311	A highly sensitive enzyme-free glucose sensor based on Co 3 O 4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. 2016 , 223, 76-82		128
310	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. 2017 , 244, 482-491		60

309	CuO nanoparticles decorated nano-dendrite-structured CuBi 2 O 4 for highly sensitive and selective electrochemical detection of glucose. 2017 , 229, 129-140		21	
308	Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. 2017 , 229, 102-111		30	
307	Fast Synthesis of PbS Nanoparticles for Fabrication of Glucose Sensor with Enhanced Sensitivity. 2017 , 46, 3674-3680		3	
306	Chitosan Microgels Embedded with Catalase Nanozyme-Loaded Mesocellular Silica Foam for Glucose-Responsive Drug Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 572-578	5.5	45	
305	Analysis of kojic acid in food samples uses an amplified electrochemical sensor employing V 2 O 5 nanoparticle and room temperature ionic liquid. 2017 , 231, 597-601		11	
304	A Miniaturized Electrochemical System Based on Nickel Oxide Species for Glucose Sensing Applications. 2017 , 7, 58-63		4	
303	Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 789, 50-57	4.1	35	
302	In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. <i>Mikrochimica Acta</i> , 2017 , 184, 2375-2385	5.8	38	
301	Multi-dimensional Ag/NiO/reduced graphene oxide nanostructures for a highly sensitive non-enzymatic glucose sensor. 2017 , 712, 742-751		48	
300	Preparation of Ni(OH)2 nanoplatelet/electrospun carbon nanofiber hybrids for highly sensitive nonenzymatic glucose sensors. <i>RSC Advances</i> , 2017 , 7, 19345-19352	3.7	20	
299	Analysis of Levodopa in the Presence of Vitamin B6 Using Carbon Paste Electrode Modified with 1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO Nanoparticles. <i>Electroanalysis</i> , 2017 , 29, 1854-1859	3	19	
298	Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films. 2017 , 28, 245502		19	
297	Surfactant free template assisted electrodeposited n-type nano-cubic Cu2O thin films for nonenzymatic glucose sensing. 2017 , 214, 1700135		5	
296	One-step synthesis of porous copper oxide for electrochemical sensing of acetylsalicylic acid in the real sample. 2017 , 501, 350-356		9	
295	An Electrochemical Platform Based on MWCNTPt Nanocrystals@CuO Hybrid Nanomaterials for Determination of Glucose. <i>Journal of the Electrochemical Society</i> , 2017 , 164, B366-B371	3.9	2	
294	Nonenzymatic glucose sensor based on icosahedron AuPd@CuO core shell nanoparticles and MWCNT. 2017 , 251, 1096-1103		35	
293	Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. <i>Biosensors and Bioelectronics</i> , 2017 , 98, 76-82	11.8	105	
292	Nonenzymatic glucose sensor based on Ag&Pt hollow nanoparticles supported on TiO nanotubes. 2017 , 80, 174-179		26	

291	Probing the shape-specific electrochemical properties of cobalt oxide nanostructures for their application as selective and sensitive non-enzymatic glucose sensors. 2017 , 5, 6497-6505	32
290	Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. 2017 , 52, 10455-10469	34
289	Novel fluorescent organic nanoparticles as a label-free biosensor for dopamine in serum. 2017 , 5, 2750-2756	21
288	NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. 2017 , 518, 143-153	34
287	CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing. <i>Journal of Nanoparticle Research</i> , 2017 , 19, 1	13
286	Fabrication of Novel CuO Films with Nanoparticles-Aggregated Sphere-Like Clusters on ITO and Their Nonenzymatic Glucose Sensing Applications. 2017 , 12, 1750015	1
285	Selective sensing of ethylene and glucose using carbon-nanotube-based sensors: an ab initio investigation. 2017 , 9, 1687-1698	23
284	Non-enzymatic glucose sensing properties of MoO3 nanorods: experimental and density functional theory investigations. 2017 , 50, 475401	12
283	A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode. 2017 , 248, 425-431	22
282	ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. <i>Journal of</i> 4.1 <i>Electroanalytical Chemistry</i> , 2017 , 799, 512-518	24
281	An electrochemical sensing platform for trace recognition and detection of an anti-prostate cancer drug flutamide in biological samples. <i>RSC Advances</i> , 2017 , 7, 37898-37907	43
2 80	The synthesis of dandelion-like CuO nanoflowers and photocatalytic degradation of RhB. 2017 , 295, 1797-1803	4
279	Two-dimensional metal chalcogenides analogous NiSe nanosheets and its efficient electrocatalytic performance towards glucose sensing. 2017 , 507, 378-385	45
278	A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. 2017 , 253, 1087-1095	63
277	Significantly Improved Electrocatalytic Activity of Copper-Based Structures that Evolve from a Metal-Organic Framework Induced by Cathodization Treatment. <i>ChemElectroChem</i> , 2017 , 4, 246-251	3
276	Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles. 2017 , 183, 1-6	8
275	A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 352-360	61
274	CNT Applications in Drug and Biomolecule Delivery. 2018 , 61-64	9

273	Synthesis and Chemical Modification of Graphene. 2018 , 107-119	
272	Graphene Applications in Sensors. 2018 , 125-132	
271	Graphene Applications in Batteries and Energy Devices. 2018 , 133-139	2
270	Medical and Pharmaceutical Applications of Graphene. 2018 , 149-150	1
269	Graphene Applications in Specialized Materials. 2018, 151-154	
268	Miscellaneous Applications of Graphene. 2018 , 155-155	
267	Basic Electrochromics of CPs. 2018 , 251-282	
266	Batteries and Energy Devices. 2018 , 575-600	
265	Brief, General Overview of Applications. 2018 , 43-44	
264	CNT Applications in Batteries and Energy Devices. 2018 , 49-52	1
264	CNT Applications in Batteries and Energy Devices. 2018, 49-52 Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. Journal of Electroanalytical Chemistry, 2018, 815, 68-75	48
	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life 4.1	_
263	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 815, 68-75 Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and	48
263	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 815, 68-75 Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. <i>Biosensors and Bioelectronics</i> , 2018 , 112, 136-142 A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film.	48
263 262 261	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. Journal of Electroanalytical Chemistry, 2018, 815, 68-75 Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. Biosensors and Bioelectronics, 2018, 112, 136-142 A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. 2018, 10, 1961-1967 Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent	48 23 20
263 262 261 260	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. Journal of Electroanalytical Chemistry, 2018, 815, 68-75 Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. Biosensors and Bioelectronics, 2018, 112, 136-142 A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. 2018, 10, 1961-1967 Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing. 2018, 266, 853-860 Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized	48 23 20 39
263 262 261 260 259	Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. Journal of Electroanalytical Chemistry, 2018, 815, 68-75 Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. Biosensors and Bioelectronics, 2018, 112, 136-142 A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. 2018, 10, 1961-1967 Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing. 2018, 266, 853-860 Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO@CuO core shell nanostructure. Biosensors and Bioelectronics, 2018, 111, 166-173	48 23 20 39 61

255	Graphene and its sensor-based applications: A review. 2018 , 270, 177-194		308
254	Copper-based Metal-organic Framework for Non-enzymatic Electrochemical Detection of Glucose. <i>Electroanalysis</i> , 2018 , 30, 474-478	3	49
253	Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. 2018 , 439, 11-17		47
252	Cu2+-doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor. <i>Electroanalysis</i> , 2018 , 30, 1446-1454	3	18
251	Carbon-based Nanomaterials Enhanced Selectivity and Sensitivity Toward PTS. 2018, 125-194		
250	Metal Oxide and Its Composite Nanomaterials for Electrochemical Monitoring of PTS: Design, Preparation, and Application. 2018 , 305-400		
249	Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. 2018 , 265, 435-442		60
248	Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified tyclodextrin as recognition element. <i>Mikrochimica Acta</i> , 2018 , 185, 230	5.8	25
247	Fully nozzle-jet printed non-enzymatic electrode for biosensing application. 2018 , 512, 480-488		29
246	Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. <i>Biosensors and Bioelectronics</i> , 2018 , 100, 56-70	11.8	241
245	In situ fabrication of cobalt nanoflowers on sulfonated and fluorinated poly (arylene ether ketone-benzimidazole) template film for the electrocatalytic oxidation of glucose. <i>Talanta</i> , 2018 , 178, 481-490	6.2	10
244	Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets. <i>New Journal of Chemistry</i> , 2018 , 42, 964-973	3.6	19
243	Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. <i>Mikrochimica Acta</i> , 2017 , 185, 49	5.8	114
242	Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application. 2018 , 29, 035605		3
241	Low-cost and facile synthesis of Ni(OH)/ZnO nanostructures for high-sensitivity glucose detection. 2018 , 29, 015502		5
240	A novel electrochemical sensor based on Cu@Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 389-395	11.8	63
239	Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@PEDOT-rGO nanocomposite. 2018 , 254, 1206-1215		49
238	Highly sensitive and selective electrochemical sensor based on porous Co3O4 nanoflowers for voltammetric determination of glucose. 2018 , 392, 052028		

237	A NiFe Alloy Reduced on Graphene Oxide for Electrochemical Nonenzymatic Glucose Sensing. 2018 , 18,		10
236	Application of Hierarchical CuO Bowl-like Array Film to Amperometric Detection of l-Ascorbic Acid. 2018 , 34, 1225-1230		1
235	Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient Nonenzymatic Glucose Sensor 2018 , 1, 1579-1586		16
234	Modified Electrodes for Selective Voltammetric Detection of Biomolecules. <i>Electroanalysis</i> , 2018 , 30, 2551-2574	3	13
233	NiINB nanoparticles in-situ synthesised on Ti mesh for electrocatalytic oxidation of glucose. 2018 , 13, 1373-1377		1
232	In Situ Formation of a 3D Amorphous Cobalt- Borate Nanoarray: An Efficient Non-Noble Metal Catalytic Electrode for Non-Enzyme Glucose Detection. 2018 , 3, 10580-10584		3
231	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. <i>Journal of the Electrochemical Society</i> , 2018 , 165, B543-B550	3.9	8
230	Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix. 2018 , 245, 160-166		27
229	Recent advances in electrochemical non-enzymatic glucose sensors - A review. <i>Analytica Chimica Acta</i> , 2018 , 1033, 1-34	6.6	367
228	2D metal oxide nanoflakes for sensing applications: Review and perspective. 2018 , 272, 369-392		82
227	Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. <i>Mikrochimica Acta</i> , 2018 , 185, 358	5.8	196
226	Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II). 2018 , 273, 1146-1155		29
225	High-temperature annealing enabled iridium oxide nanofibers for both non-enzymatic glucose and solid-state pH sensing. 2018 , 281, 117-126		25
224	Tyramine Functionalized Graphene: Metal-Free Electrochemical Non-Enzymatic Biosensing of Hydrogen Peroxide. <i>ChemElectroChem</i> , 2018 , 5, 3191-3197	4.3	18
223	A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. 2018 , 118, 649-660		36
222	A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B1116-B1125	3.9	17
221	In situ formation of metal-organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. 2019 , 7, 4990-4996		23
220	A simple route for electrochemical glucose sensing using background current subtraction of cyclic voltammetry technique. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 848, 113323	4.1	4

219	Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. 2019 , 59, 104696		22
218	Flower-like Ni(II)-based Metal-organic Framework-decorated Ag Nanoparticles: Fabrication, Characterization and Electrochemical Detection of Glucose. <i>Electroanalysis</i> , 2019 , 31, 2179-2186		13
217	Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing. 2019 , 30, 13984-13993		7
216	Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. 2019 , 298, 126860		65
215	Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose. 2019 , 25, 6061-6070		14
214	Nanoscale Ni(OH)x Films on Carbon Cloth Prepared by Atomic Layer Deposition and Electrochemical Activation for Glucose Sensing. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4427-4434	6	22
213	One-step rapid preparation of CuO nanosheets by high frequency induction heating and the application as excellent electrochemical sensor based on CuO/MWCNTs for the detection of glucose. <i>Materials Research Express</i> , 2019 , 6, 1050b3	7	6
212	Carbon nanoparticles synthesized by laser ablation of coconut shell charcoal in liquids for glucose sensing applications. <i>Materials Research Express</i> , 2019 , 6, 115610	7	5
211	Facile Fabrication of Metal Oxide Based Catalytic Electrodes by AC Plasma Deposition and Electrochemical Detection of Hydrogen Peroxide. 2019 , 9, 888		9
210	A Sensitive and Selective Non-Enzymatic Glucose Sensor based on AuNPs/CuO NWs-MoS2IModified Electrode. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B1179-B1185	9	18
209	Rapid Microwave-Assisted Synthesis of Copper Decorated Carbon Black Nanocomposite for Non-Enzyme Glucose Sensing in Human Blood. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B1238-B1	244	11
208	Exfoliated nanosheets of Co3O4 webbed with polyaniline nanofibers: A novel composite electrode material for enzymeless glucose sensing application. 2019 , 73, 106-117		24
207	Simple Sonochemical Synthesis of Cupric Oxide Sphere Decorated Reduced Graphene Oxide Composite for the Electrochemical Detection of Flutamide Drug in Biological Samples. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B68-B75	9	17
206	Electrospun Nanofibers for Sensors. 2019 , 571-601		15
205	Synthesis and characterization of hetero-metal oxide nano-hybrid composite on pectin scaffold. 2019 , 491, 195-205		6
204	Biodistribution and toxickinetic variances of chemical and green Copper oxide nanoparticles in vitro and in vivo. 2019 , 55, 154-169		13
203	Rational Construction of 3D-Networked Carbon Nanowalls/Diamond Supporting CuO Architecture for High-Performance Electrochemical Biosensors. 2019 , 15, e1901527		19
202	In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor. 2019 , 25, 4447-4457		15

201	Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. 2019 , 550, 180-189		32	
200	High performance of electrocatalytic oxidation in direct glucose fuel cell using molybdate nanostructures synthesized by microwave-assisted method. 2019 , 178, 50-56		13	
199	Cu NPs@NiF electrode preparation by rapid one-step electrodeposition and its sensing performance for glucose. 2019 , 292, 203-209		24	
198	Biosynthesis of Ag@CuO coreBhell nanostructures for non-enzymatic glucose sensing using screen-printed electrode. 2019 , 30, 9725-9734		10	
197	A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. 2019 , 285, 430-435		24	
196	CNT flexible membranes for energy storage and conversion systems. 2019 , 9, 670-674		2	
195	Cuprous Oxide Films with Hollow Cubic Cage Structure for Nonenzymatic Glucose Detection. 2019 , 14, 1950045		1	
194	Advanced biosensors for glucose and insulin. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111201	11.8	79	
193	Literature Review. 2019 , 17-81			
192	Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. 2019 , 19,		52	
191	Printed Flexible Sensors. 2019,		1	
190	Facile Non-enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. <i>Electroanalysis</i> , 2019 , 31, 1296-1303	3	17	
189	How to fit a response current-concentration curve? A semi-empirical investigation of non-enzymatic glucose sensor based on PANI-modified nickel foam. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 840, 384-390	4.1	7	
188	Glassy carbon electrode modified by new Copper(I) oxide nanocomposite for glucose detection: An electroanalysis study. 2019 , 33, e4834		5	
187	3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 841, 1-9	4.1	11	
18 7	3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. <i>Journal of Electroanalytical Chemistry</i> , 2019 ,	4.1	11	
ŕ	3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 841, 1-9 A facile design of nucleocapsid-like Au@NiO@CuO nanocomposites with MWCNT for glucose			

183	Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. <i>Microchemical Journal</i> , 2019 , 147, 7-24	4.8	181
182	Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. 2019 , 9, 19228		23
181	An electrochemical sensor with a copper oxide/gold nanoparticle-modified electrode for the simultaneous detection of the potential diabetic biomarkers methylglyoxal and its detoxification enzyme glyoxalase. <i>New Journal of Chemistry</i> , 2019 , 43, 16572-16582	3.6	9
180	Non-enzymatic and non-invasive glucose detection using Au nanoparticle decorated CuO nanorods. 2019 , 283, 776-785		56
179	Structural, optical, and electronic properties of metal oxide nanostructures. 2019 , 59-102		4
178	Electrocatalytic oxidation of glucose on bronze for monitoring of saliva glucose using a smart toothbrush. 2019 , 285, 56-61		31
177	Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit. 2019 , 44, 3985-3992		83
176	Polypyrrole-CuO based composites, promotional effects of CuO contents on polypyrrole characteristics. 2019 , 30, 3882-3888		8
175	Nitrogen-doped Hollow Co3O4 Nanofibers for both Solid-state pH Sensing and Improved Non-enzymatic Glucose Sensing. <i>Electroanalysis</i> , 2019 , 31, 678-687	3	10
174	Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. 2019 , 299, 470-478		35
173	Electrocatalytic Oxidation of 4-Aminophenol Molecules at the Surface of an FeS /Carbon Nanotube Modified Glassy Carbon Electrode in Aqueous Medium. 2019 , 84, 175-182		34
172	Nanobiosensors for Biomedical Application. 2019 , 1-23		3
171	Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. 2019 , 773, 762-769		13
170	Generalized Modeling Framework of Metal Oxide-Based Non-Enzymatic Glucose Sensors: Concepts, Methods, and Challenges. 2020 , 67, 679-687		3
169	A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. 2020 , 500, 14403	0	70
168	Dynamic Photo-cross-linking of Native Silk Enables Macroscale Patterning at a Microscale Resolution. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 705-714	5.5	3
167	Glucose Electro-oxidation on Graphite Electrode Modified with Nickel/Chromium Nanoparticles. <i>Electroanalysis</i> , 2020 , 32, 281-290	3	1
166	Preparation of Asparagus-Shaped CuO Nanostructures and Their Electrocatalytic Activity for Glucose Oxidation. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 1744-175	1 ^{3.2}	

(2020-2020)

165	Novel Sensing Assembly Comprising Engineered Gold Dendrites and MWCNT-AuNPs Nanohybrid for Acetaminophen Detection in Human Urine. <i>Electroanalysis</i> , 2020 , 32, 561-570	3	19
164	Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. <i>Talanta</i> , 2020 , 210, 120696	6.2	28
163	Microflowers Comprised of Cu/CuxO/NC Nanosheets as Electrocatalysts and Horseradish Peroxidase Mimics. <i>ACS Applied Nano Materials</i> , 2020 , 3, 617-623	5.6	13
162	A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation. 2020 , 387, 121995		50
161	Metal oxides based electrochemical pH sensors: Current progress and future perspectives. 2020 , 109, 100635		119
160	Phytic acid doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for enzymeless amperometric sensing of glucose. <i>Mikrochimica Acta</i> , 2019 , 187, 49	5.8	8
159	Peptide-inspired green synthesis of hedgehog-like CuO nanoclusters on reduced graphene oxide for non-enzymatic hydrogen peroxide sensor. 2020 , 13, 2051047		О
158	Electrocatalytic performance of cobalt doped copper bismuth oxide for glucose sensing and photoelectrochemical applications. 2020 , 119, 108112		2
157	Imprinted zeolite modified carbon paste electrode as a selective potentiometric sensor for blood glucose. 2020 ,		2
156	Design and Construction of EnzymeNanozyme Integrated Catalyst as a Multifunctional Detection Platform. 2020 , 59, 20646-20655		4
155	Surfactant-free liquid-exfoliated copper hydroxide nanocuboids for non-enzymatic electrochemical glucose detection. 2020 , 8, 7733-7739		4
154	Rapid synthesis of cypress-like CuO nanomaterials and CuO/MWCNTs composites for ultra-high sensitivity electrochemical sensing of nitrite. <i>Microchemical Journal</i> , 2020 , 159, 105439	4.8	7
153	Metal oxide-based composite for non-enzymatic glucose sensors. 2020 , 31, 16111-16136		12
152	Studies on dielectric constant and AC conductivity of nano porous silicon layer for efficient glucose sensing. 2020 , 31, 18996-19002		2
151	Unique Nonenzymatic Glucose Sensor Using a Hollow-Shelled Triple Oxide Mn-Cu-Al Nanocomposite. 2020 , 5, 23502-23509		8
150	Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. 2020 , 8, 26119-26129		11
149	Novel "turn on-off" paper sensor based on nonionic conjugated polythiophene-coated CdTe QDs for efficient visual detection of cholinesterase activity. 2020 , 145, 4305-4313		11
148	Hierarchically porous CuO spindle-like nanosheets grown on a carbon cloth for sensitive non-enzymatic glucose sensoring. 2020 , 31, 375502		11

147	Fabrication of sensitive D-fructose sensor based on facile ternary mixed ZnO/CdO/SnO2 nanocomposites by electrochemical approach. <i>Surfaces and Interfaces</i> , 2020 , 19, 100540	4.1	10
146	Non-Enzymatic Detection of Glucose Using a Capacitive Nanobiosensor Based on PVA Capped CuO Synthesized via Co-Precipitation Route. 2020 , 20, 10415-10423		3
145	Applications of Nanomaterials in Human Health. 2020,		5
144	Electrochemical Preparation of Polyaniline- Supported Cu-CuO Core-Shell on 316L Stainless Steel Electrodes for Nonenzymatic Glucose Sensor. 2020 , 2020, 1-7		2
143	Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. <i>Analytica Chimica Acta</i> , 2020 , 1111, 49-59	6.6	34
142	A Nonenzymatic Glucose Sensor Platform Based on Specific Recognition and Conductive Polymer-Decorated CuCoO Carbon Nanofibers. 2020 , 13,		10
141	Nonenzymatic glucose sensor based on poly(3,4-ethylene dioxythiophene)/electroreduced graphene oxide modified gold electrode. 2020 , 268, 116488		15
140	Facile synthesis of CuO/Ni(OH)2 on carbon cloth for non-enzymatic glucose sensing. 2020 , 529, 147067		24
139	Advanced Nanoscale Build-Up Sensors for Daily Life Monitoring of Diabetics. 2020 , 7, 2000153		16
138	Achieving Nonenzymatic Blood Glucose Sensing by Uprooting Saturation. 2020 , 92, 10777-10782		3
137	Review R ecent Advances in Carbon Nanomaterials as Electrochemical Biosensors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037555	3.9	148
136	Tunable hierarchical surfaces of CuO derived from metal®rganic frameworks for non-enzymatic glucose sensing. 2020 , 7, 1512-1525		20
135	Flexible Free-Standing CuO/AgO (= 1, 2) Nanowires Integrated with Nanoporous Cu-Ag Network Composite for Glucose Sensing. 2020 , 10,		2
134	Application of nanosensors in the food industry. 2020 , 355-368		5
133	Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity. 2020 , 25, 163-168		4
132	CuO/Cu composite nanospheres on TiO nanotube array for amperometric sensing of glucose. Mikrochimica Acta, 2020, 187, 123	5.8	13
131	Electrocatalysis via Intrinsic Surface Quinones Mediating Electron Transfer to and from Carbon Electrodes. 2020 , 11, 1497-1501		5
130	Comparison of sensing and electronic properties of C2H2 on different transition metal oxide nanoparticles (Fe2O3, NiO, TiO2) modified BNNT (10, 0). 2020 , 521, 146463		30

Fe content and calcination temperature effects on CuO nanoparticles. 2020, 241, 1

128	Porous CuxO/Ag2O (x = 1, 2) nanowires anodized on nanoporous Cu-Ag bimetal network as a self-supported flexible electrode for glucose sensing. 2020 , 515, 146062	21
127	MulticoreBhell AgtuO networked with CuO nanorods for enhanced non-enzymatic glucose detection. 2020 , 598, 124816	13
126	A multimodal approach for simultaneous mass and rotary inertia sensing from vibrating cantilevers. 2021 , 125, 114366	1
125	The effect of CuO on a PtBased catalyst for oxidation in a low-temperature fuel cell. 2021, 46, 5999-6013	8
124	Ni-MOF/PANI-Derived CN-Doped NiO Nanocomposites for High Sensitive Nonenzymic Electrochemical Detection. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2021 , 3.2 31, 865-874	6
123	Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. 2021 , 207, 111276	21
122	Copper film electrode for sensitive detection of nitrophenols. 2021 , 330, 129338	4
121	Metal Oxides and Sulfide-Based Biosensors for Monitoring and Health Control. 2021, 169-208	1
120	A reliable electrochemical approach for detection of testosterone with CuO-doped CeO2 nanocomposites-coated glassy carbon electrode. 2021 , 32, 5259-5273	4
119	Nanostructured architected electrode materials: Design and fabrication of electrodes for electrochemical sensing of glucose. 2021 , 219-242	1
118	Molecularly Imprinted Electrochemical Sensors and Their Applications. 2021 , 203-221	
117	CE/microchip electrophoresis of carbohydrates and glycoconjugates with electrochemical detection. 2021 , 563-594	
116	Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor. 2021 , 12, 33-37	
115	High-performance non-enzymatic glucose sensors based on porous Co3O4 synthesized by coprecipitation method with the different precipitants. 2021 , 27, 1803-1812	3
114	Electrospun amino-containing organosilica gel nanofibers for the ultrasensitive determination of Cu(II). <i>Journal of Electroanalytical Chemistry</i> , 2021 , 882, 114976	2
113	Metal oxide based non-enzymatic electrochemical sensors for glucose detection. 2021 , 370, 137744	51
112	Unique Nitrogen-Doped Carbon Polyhedron Embedded with Co Derived Core-Shell Nanoparticles for the Electro-Catalysis towards Hydrogen Peroxide Redox Reaction and Nonenzymatic Detection. 3.9 Journal of the Electrochemical Society, 2021 , 168, 037501	2

111	Flexible Nonenzymatic Glucose Sensing with One-Step Laser-Fabricated Cu2O/Cu Porous Structure. 2021 , 23, 2100192		2
110	Optical sensors for continuous glucose monitoring. 2021 , 3, 022004		17
109	Nitrogen-doped carbon dodecahedron embedded with cobalt nanoparticles for the direct electro-oxidation of glucose and efficient nonenzymatic glucose sensing. <i>Talanta</i> , 2021 , 225, 121954	6.2	10
108	Recent advances in graphene based electrochemical glucose sensor. 2021 , 26, 100750		6
107	A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. 2021 , 25, 101228		10
106	Nonenzymatic Saliva-Range Glucose Sensing Using Electrodeposited Cuprous Oxide Nanocubes on a Graphene Strip. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4790-4799	5.6	6
105	Review Recent Trends in Supramolecular Recognition of Dopamine, Tyrosine, and Tryptophan, Using Electrochemical Sensors. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 067517	3.9	2
104	Fabrication of hierarchical porous metallic glasses decorated with Cu nanoparticles as integrated electrodes for high-performance non-enzymatic glucose sensing. 2021 , 199, 113884		2
103	A Conformable, Gas-Permeable, and Transparent Skin-Like Micromesh Architecture for Glucose Monitoring. 2021 , 10, e2100046		2
102	Nano-CuO causes cell damage through activation of dose-dependent autophagy and mitochondrial lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells. 2022 , 32, 37-48		2
101	Facile copper-based nanofibrous matrix for glucose sensing: Eenzymatic vs. non-enzymatic. 2021 , 140, 107751		8
100	A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 895, 115518	4.1	1
99	RGO@Cu2O@Cu Ternary Nanocomposite for High-Performance Non-Enzymatic Glucose Detection. Journal of the Electrochemical Society, 2021 , 168, 087503	3.9	2
98	Facile synthesis of Cu/Co-ZIF nanoarrays for non-enzymatic glucose detection. 2021 , 32,		O
97	A Highly Sensitive Electrochemical Glucose Sensor Based on Room Temperature Exfoliated Graphite-Derived Film Decorated with Dendritic Copper. 2021 , 14,		1
96	Recent advances in the development of nanomedicines for the treatment of ischemic stroke. 2021 , 6, 2854-2869		13
95	Facile one-step synthesis of Ni@CeO2 nanoparticles towards high performance voltammetric sensing of antipsychotic drug trifluoperazine. 2021 , 882, 160682		5
94	Facile synthesis of 2D/3D hierarchical NiCu bimetallic MOF for non-enzymatic glucose sensor. <i>Microchemical Journal</i> , 2021 , 170, 106652	4.8	4

93	Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes. <i>Biosensors and Bioelectronics</i> , 2021 , 194, 113610	11.8	4	
92	Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. 2021 , 348, 130688		4	
91	Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection <i>RSC Advances</i> , 2021 , 11, 25084-25095	3.7	7	
90	Synthesis of Cu(OH)F microspheres using atmospheric dielectric barrier discharge microplasma: a high-performance non-enzymatic electrochemical sensor. <i>New Journal of Chemistry</i> ,	3.6	O	
89	Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility. 2019 , 115-176		5	
88	Carbon Nanotubes and Their Composites: From Synthesis to Applications. 2021 , 37-67		3	
87	CNT Applications in Microelectronics, Nanoelectronics, And Nanobioelectronics (2018, 65-72		1	
86	CNT Applications in Displays and Transparent, Conductive Films/Substrates. 2018, 73-75		1	
85	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. 2018, 141-146		3	
84	Characterization Methods. 2018 , 403-488		2	
83	Microwave- and Conductivity-Based Technologies. 2018, 655-669		1	
82	CNT Applications in Sensors and Actuators. 2018 , 53-60		2	
81	Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. 2020 , 100, 109663		65	
80	Efficient humidity sensor based on an etched no-core fiber coated with copper oxide nanoparticles. 2018 , 12, 1		13	
79	Ultrasensitive Non-Enzymatic Glucose Sensors Based on Hybrid Reduced Graphene Oxide and Carbonized Silk Fabric Electrodes Decorated with Cu Nanoflowers. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 127501	3.9	4	
78	Metal-based Nanoparticles as Conductive Mediators in Electrochemical Sensors: A Mini Review. <i>Current Analytical Chemistry</i> , 2019 , 15, 136-142	1.7	9	
77	Oxidative Stress Induced by CuO Nanoparticles (CuO NPs) to Human Hepatocarcinoma (HepG2) Cells. <i>Journal of Cancer Therapy</i> , 2015 , 06, 889-895	0.2	17	
76	Detection of Breast Cancer 1 (BRCA1) Gene Using an Electrochemical DNA Biosensor Based on Immobilized ZnO Nanowires. <i>Open Journal of Applied Biosensor</i> , 2014 , 03, 9-17		28	

75	Effective ROS generation and morphological effect of copper oxide nanoparticles as catalysts. <i>Journal of Nanoparticle Research</i> , 2021 , 23, 1	2.3	O
74	Nanoparticle-Modified Electrodes for Sensing. 2014 , 47-87		
73	Bibliography. 327-351		
72	Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites. <i>Applied Chemistry for Engineering</i> , 2016 , 27, 145-152		1
71	Nonenzymatic detection of glucose using BaCuO2 thin layer. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 01AH02	1.4	
70	Research of Using a New Type of Cu/Cu2O/TiO2 Electrode Detecting Saccharides Content. <i>Material Sciences</i> , 2017 , 07, 423-430	0.1	
69	Basic Electrochemistry of CPs. 2018 , 283-309		
68	Miscellaneous CNT Applications. 2018 , 89-90		
67	CNT Applications in Specialized Materials. 2018 , 45-48		
66	Structural Aspects and Morphology of CPs. 2018 , 389-402		
65	Electronic Structure and Conduction Models of Graphene. 2018 , 101-106		
64	Electrochromics. 2018 , 601-624		
63	Classes of CPs: Part 1. 2018 , 489-507		
62	Electro-Optic and Optical Devices. 2018 , 671-684		1
61	Conduction Models and Electronic Structure of CNTs. 2018, 11-16		
60	Miscellaneous Applications. 2018 , 695-715		
59	CNT Applications in the Environment and in Materials Used in Separation Science. 2018, 81-87		
58	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. 2018 , 147-148		

57	Classes of CPs: Part 2. 2018 , 509-545			
56	Introducing Conducting Polymers (CPs). 2018 , 159-174			
55	Syntheses and Processing of CPs. 2018 , 311-388			
54	Physical, Mechanical, and Thermal Properties of CNTs. 2018 , 33-36			
53	CNT Applications in Electrical Conductors, Quantum Nanowires, Land Potential Superconductors. 2018 , 77-79			
52	Toxicology of CNTs. 2018 , 37-39			
51	Synthesis, Purification, and Chemical Modification of CNTs. 2018 , 17-31			
50	Introducing Graphene. 2018 , 93-99			
49	Sensors. 2018 , 549-574			
48	Conduction Models and Electronic Structure of CPs. 2018 , 175-249		1	
47	Brief, General Overview of Applications. 2018 , 123-124			
46	Electrochemomechanical, Chemomechanical, and Related Devices. 2018, 685-693			
45	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. 2018, 625-654			
44	Construction of a selective non-enzymatic electrochemical sensor based on hollow nickel nanospheres/carbon dotsThitosan and molecularly imprinted polymer film for the detection of glucose. <i>New Journal of Chemistry</i> ,	.6	2	
43	Application of Nanomaterials in Treatment of Endocrine Diseases. 2020 , 191-210			
42	High performance electrochemical method for simultaneous determination dopamine, serotonin, and tryptophan by ZrO-CuO co-doped CeO modified carbon paste electrode. <i>Talanta</i> , 2021 , 239, 122982 ⁶	.2 -	3	
41	Facile synthesis of bimetallic metallorganic frameworks on nickel foam for a high performance non-enzymatic glucose sensor. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 904, 115887	ļ.1	3	
40	Ferrocene Decorated N-doped Carbon Modified Electrode with Enhanced Electrocatalytic Activity Towards Non-enzymatic Glucose Detection. <i>Electroanalysis</i> ,			

39	Selective Glucose Sensing Under Physiological pH with Flexible and Binder-Free Prussian Blue Coated Carbon Cloth Electrodes. <i>ChemElectroChem</i> ,	4.3	1
38	Effect of Fe/Cu catalysts supported on zeolite/active carbon hybrid on bio-oil quality derived from catalytic pyrolysis of granular bacteria biomass. <i>Fuel</i> , 2022 , 312, 122870	7.1	1
37	The enhancement of microbial fuel cell performance by anodic bacterial community adaptation and cathodic mixed nickel-copper oxides on a graphene electrocatalyst <i>Journal of Genetic Engineering and Biotechnology</i> , 2022 , 20, 12	3.1	2
36	Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection <i>Mikrochimica Acta</i> , 2022 , 189, 64	5.8	6
35	Evaluation of mixed transition metal (Co, Mn, and Cu) oxide electrocatalysts anchored on different carbon supports for robust oxygen reduction reaction in neutral media <i>RSC Advances</i> , 2022 , 12, 2207-2	22178	2
34	An efficient glucose sensor thermally calcined from copper-organic coordination cages <i>Talanta</i> , 2022 , 241, 123263	6.2	3
33	Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. <i>Journal of Analysis and Testing</i> , 1	3.2	0
32	Nickel -doped iron oxide nanoparticle-conjugated porphyrin interface (porphyrin/FeO@Ni) for the non-enzymatic detection of dopamine from lacrimal fluid <i>Dalton Transactions</i> , 2022 ,	4.3	3
31	Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection <i>ACS Biomaterials Science and Engineering</i> , 2022 ,	5.5	4
30	Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 1	3.2	O
29	A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir <i>Chemosphere</i> , 2022 , 13443	o ^{8.4}	0
28	Oxidation of Copper Electrodes on Flexible Polyimide Substrates for Non-Enzymatic Glucose Sensing. <i>Materials Research Express</i> ,	1.7	
27	Application of electrochemical sensors based on nanomaterials modifiers in the determination of antipsychotics <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 214, 112442	6	0
26	A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. <i>Microchemical Journal</i> , 2022 , 178, 107332	4.8	1
25	Cu B d Alloy Nanoparticles on Carbon Paper as a Self-Supporting Electrode for Glucose Sensing. <i>ACS Applied Nano Materials</i> , 2021 , 4, 14077-14085	5.6	1
24	ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor <i>Analytica Chimica Acta</i> , 2022 , 1209, 339839	6.6	O
23	Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis <i>Applied Biochemistry and Biotechnology</i> , 2022 , 1	3.2	1
22	Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. <i>Surfaces and Interfaces</i> , 2022 , 31, 101998	4.1	3

21	Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. <i>Critical Reviews in Analytical Chemistry</i> , 1-57	2	2
20	High-Performance Non-Enzymatic Glucose Sensor Based on Boron-Doped Copper Oxide Nanbundles. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 067506	9	
19	Cell-Type-Dependent Dissolution of CuO Nanoparticles and Efflux of Cu Ions following Cellular Internalization.		1
18	Glucose-sensitive structural color change of cholesteric liquid crystal formed by hydroxypropyl cellulose with phenylboronic acid moieties.		
17	A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach. 2022 , 340257		1
16	A miniature CuO nanoarray sensor for noninvasive detection of trace salivary glucose. 2022 , 656, 114857		1
15	Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples. 2023 , 253, 123926		0
14	Synthesis and application of a 0D/2D nanocomposite for the nanomolar level detection of an antiandrogen drug. 2022 , 46, 16068-16077		O
13	An extended gate field-effect transistor (EG-FET) type non-enzymatic glucose sensor with inkjet-printed copper oxide nanoparticles. 2022 , 4,		0
12	A Novel Carbon Paste Electrode-Modified Electrocatalytic COILeNPs for Sulfite Detection: A Sonochemical Synthesis.		0
11	Facile Fabrication of CuO Nanoparticles Embedded in N-Doped Carbon Nanostructure for Electrochemical Sensing of Dopamine. 2022 , 2022, 1-9		0
10	Highly sensitive non-enzymatic glucose sensor based on copper oxide nanorods. 2022 , 24,		Ο
9	Atomic-scale interfacial engineering enables high-performance electrochemical glucose detection. 2022 , 155503		0
8	Polypyrrole enwrapped binary metal oxides nanostructures for in-vitro Dopamine detection from lacrimal fluid. 2023 , 185, 108254		Ο
7	Synthesis and characterization of CuO nanostructures on ZnO nanotubes for non-enzymatic detection of glucose. 2023 , 295, 127207		0
6	Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite.		O
5	Blood glucose sensing by back gated transistor strips sensitized by CuO hollow spheres and rGO. 2022 , 12,		1
4	In-situ synthesis of metasequoia-leaf-like Cu/Cu2O/Ni(OH)2 on a glassy carbon electrode for efficient non-enzymatic glucose sensing. 2023 , 187, 108331		O

Synthesis, Characterization, and Electrochemical Evaluation of Copper Sulfide Nanoparticles and Their Application for Non-Enzymatic Glucose Detection in Blood Samples. **2023**, 13, 481

Ο

An effective non-enzymatic glucose biosensor based on nanostructure CuxO/Cu electrodes synthesized in situ by copper anodization.

О

A review of electrochemical glucose sensing based on transition metal phosphides. **2023**, 133, 070702

О