Development and validation of a liquid chromatography method for the analysis of \hat{I}^2 -agonists in animal feed an

Journal of Chromatography A 1217, 6061-6068 DOI: 10.1016/j.chroma.2010.07.034

Citation Report

#	Article	IF	CITATIONS
1	Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid–liquid microextraction and HPLC–UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 90-94.	2.3	93
2	A Portable Photoelectric Sensor Based on Colloidal Gold Immunochromatographic Strips for Rapid Determination of Clenbuterol in Pig Urine. Chinese Journal of Analytical Chemistry, 2012, 40, 852-856.	1.7	11
3	Immunoaffinity chromatography purification and ultra-high-performance liquid chromatography-tandem mass spectrometry determination of four β-agonists in beef. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 935-941.	2.3	5
4	Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry. Food Chemistry, 2012, 134, 2389-2397.	8.2	89
5	Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosensors and Bioelectronics, 2012, 34, 112-117.	10.1	89
6	A novel amperometric sensor based on screen-printed electrode modified with multi-walled carbon nanotubes and molecularly imprinted membrane for rapid determination of ractopamine in pig urine. Sensors and Actuators B: Chemical, 2012, 168, 103-110.	7.8	51
7	Application of molecularly imprinted polymers in food analysis: clean-up and chromatographic improvements. Open Chemistry, 2012, 10, 766-784.	1.9	28
8	Wide-scope analysis of veterinary drug and pesticide residues in animal feed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 6543-6553.	3.7	43
9	Development of a multi-residue method for fast screening and confirmation of 20 prohibited veterinary drugs in feedstuffs by liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 936, 10-17.	2.3	37
10	Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three βâ€agonists in porcine urine samples. Journal of Separation Science, 2013, 36, 1455-1462.	2.5	15
11	Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes. Sensors and Actuators B: Chemical, 2013, 177, 428-436.	7.8	48
12	An isocratic solvent-free mobile phase HPLC-PDA analysis of clenbuterol and ractopamine. International Journal of Chemical and Analytical Science, 2013, 4, 169-173.	0.5	5
13	Overcoming matrix effects in electrospray: Quantitation of β-agonists in complex matrices by isotope dilution liquid chromatography–mass spectrometry using singly 13C-labeled analogues. Journal of Chromatography A, 2013, 1288, 40-47.	3.7	48
14	Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine. Journal of Chromatography A, 2013, 1294, 10-16.	3.7	62
15	Rapid screening of clenbuterol hydrochloride in chicken samples by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 923-924, 136-140.	2.3	31
16	Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy. Talanta, 2013, 107, 176-182.	5.5	36
17	Dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with fieldâ€amplified sample injection in capillary electrophoresis for the determination of beta(2)â€agonists in bovine urine. Electrophoresis, 2013, 34, 854-861.	2.4	20
18	Determination of β ₂ -Agonists in Porcine Urine by Molecularly Imprinted Solid Phase Extraction Followed Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Detection. Analytical Letters, 2013, 46, 734-744.	1.8	3

#	Article	IF	CITATIONS
19	Simultaneous Identification and Quantification of 20 Î ² -Receptor Agonists in Feed Using Gas Chromatography-Tandem Mass Spectrometry. PLoS ONE, 2013, 8, e76400.	2.5	21
20	Development, validation and application to real samples of a multiresidue LCâ€MS/MS method for determination of β ₂ â€agonists and anabolic steroids in bovine hair. Journal of Mass Spectrometry, 2014, 49, 936-946.	1.6	14
21	Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects. Journal of Hazardous Materials, 2014, 277, 169-179.	12.4	30
22	Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 456-461.	3.9	66
23	High-Throughput Screening and Confirmation of 22 Banned Veterinary Drugs in Feedstuffs Using LC-MS/MS and High-Resolution Orbitrap Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 516-527.	5.2	30
24	New sulfonate composite functionalized with multiwalled carbon nanotubes with cryogel solid-phase extraction sorbent for the determination of β-agonists in animal feeds. Journal of Separation Science, 2015, 38, 1951-1958.	2.5	9
25	Development and Application of a Method for Rapid and Simultaneous Determination of Three β-agonists (Clenbuterol, Ractopamine, and Zilpaterol) using Liquid Chromatography-tandem Mass Spectrometry. Korean Journal for Food Science of Animal Resources, 2015, 35, 121-129.	1.5	11
26	Effect of alkanethiol molecular structure on sensitivity of surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2015, 210, 768-775.	7.8	5
27	Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Analytica Chimica Acta, 2015, 884, 44-51.	5.4	26
28	A method for multiple identification of four β2-Agonists in goat muscle and beef muscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Science and Biotechnology, 2015, 24, 1629-1635.	2.6	7
29	A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters. Analytica Chimica Acta, 2015, 871, 43-50.	5.4	37
30	Highly selective and sensitive detection of β-agonists using a surface plasmon resonance sensor based on an alkanethiol monolayer functionalized on a Au surface. Biosensors and Bioelectronics, 2015, 67, 356-363.	10.1	27
31	Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Mikrochimica Acta, 2015, 182, 855-862.	5.0	26
32	Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food Chemistry, 2015, 184, 72-79.	8.2	43
33	Development and Validation of Analytical Method for Clenbuterol Chiral Determination in Animal Feed by Direct Liquid Chromatography. Food Analytical Methods, 2015, 8, 2647-2659.	2.6	9
34	Hydrophilic Interaction Liquid Chromatography (HILIC) and Perfluorinated Stationary Phases. , 2015, , 149-184.		0
35	Detection of residues in urine and tissues of sheep treated with trace levels of dietary ractopamine HCl1,2. Journal of Animal Science, 2016, 94, 5423-5433.	0.5	10
36	Study on the interactions of mapenterol with serum albumins using multiâ€spectroscopy and molecular docking. Luminescence, 2016, 31, 372-379.	2.9	11

CITATION REPORT

#	Article	IF	CITATIONS
37	Hormones and &;#x003B2;&;#x02010;Agonists. , 2016, , 141-244.		1
38	Development of a readily applied method to quantify ractopamine residue in meat and bone meal by QuEChERS-LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016, 192-200.	2.3	32
39	Determination of β-agonists in Porcine Meats by Ion-Pair Extraction and High Performance Liquid Chromatography. Analytical Letters, 2016, 49, 208-216.	1.8	6
40	Sensitive and specific detection of a new β-agonist brombuterol in tissue and feed samples by a competitive polyclonal antibody based ELISA. Analytical Methods, 2016, 8, 3578-3586.	2.7	15
41	Analysis of beta-agonist residues in bovine hair: Development of a UPLC–MS/MS method and stability study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1036-1037, 76-83.	2.3	18
42	Novel method for the rapid and specific extraction of multiple β 2 â€agonist residues in food by tailorâ€made Monolithâ€MIPs extraction disks and detection by gas chromatography with mass spectrometry. Journal of Separation Science, 2016, 39, 3578-3585.	2.5	19
43	Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon. Analytica Chimica Acta, 2016, 945, 85-94.	5.4	26
44	Targeted analysis and determination of βâ€agonists, hormones, glucocorticoid and psychiatric drugs in feed by liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Separation Science, 2016, 39, 2584-2594.	2.5	12
45	Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC. Food Chemistry, 2016, 201, 72-79.	8.2	49
46	Analysis of β ₂ -agonists in cattle hair samples using a rapid UHPLC–ESI–MS/MS method. Natural Product Research, 2017, 31, 482-486.	1.8	1
47	Detection of β-agonists in pork tissue with novel electrospun nanofibers-based solid-phase extraction followed ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 2017, 227, 315-321.	8.2	32
48	Single-Step Multiresidue Determination of β-Lactam Antibiotics and β-Agonists in Porcine Muscle by Liquid Chromatography-Tandem Mass Spectrometry. Food Analytical Methods, 2017, 10, 2185-2193.	2.6	8
49	Confirmation of β-agonist residues in bovine retina and liver using HPLC-MS/MS and evaluation of matrix-dependent problems. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 598-607.	2.3	5
50	Sensitive Determination of Toxic Clenbuterol in Pig Meat and Pig Liver Based on a Carbon Nanopolymer Composite. Food Analytical Methods, 2017, 10, 2252-2261.	2.6	24
51	Detection and pharmacokinetics of salmeterol in thoroughbred horses following inhaled administration. Journal of Veterinary Pharmacology and Therapeutics, 2017, 40, 486-492.	1.3	0
52	Magnetic graphene dispersive solid phase extraction-ultra performance liquid chromatography tandem mass spectrometry for determination of β-agonists in urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1067, 18-24.	2.3	10
53	Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Mikrochimica Acta, 2017, 184, 3415-3423.	5.0	28
54	Comparison between liquid chromatography and supercritical fluid chromatography coupled to mass spectrometry for beta-agonists screening in feeding stuff. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 130-137.	2.3	11

CITATION REPORT

#	Article	IF	CITATIONS
55	Sensitive Assay of Clenbuterol Residues in Beef by Ultra-High Performance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS/MS) and Solid-Phase Extraction. Food Analytical Methods, 2018, 11, 2561-2568.	2.6	11
56	Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry. Journal of Food and Drug Analysis, 2018, 26, 725-730.	1.9	27
57	A Novel Indirect Competitive Enzyme-Linked Immunosorbent Assay Format for the Simultaneous Determination of Ractopamine and Phenylethanolamine A Residues in Swine Urine. Food Analytical Methods, 2019, 12, 1077-1085.	2.6	9
58	Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding. LWT - Food Science and Technology, 2020, 134, 110017.	5.2	32
59	Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 206-214.	2.7	5
60	The determination of βâ€agonist residues in bovine tissues using liquid chromatography–tandem mass spectrometry. Biomedical Chromatography, 2020, 34, e4926.	1.7	16
61	Surface Plasmon Resonance Signal Amplification Using Secondary Antibody Interaction for Illegal Compound Detection. Key Engineering Materials, 2020, 845, 103-108.	0.4	0
62	Response Surface Methodology for Spectrophotometric Determination of Two β-Adrenergic Agonists-Terbium Chemosensors in Urine and Pharmaceutical Dosage Forms. Journal of AOAC INTERNATIONAL, 2021, 104, 355-367.	1.5	0
63	Quantitative and ultrasensitive detection of brombuterol by a surface-enhanced Raman scattering (SERS)-based lateral flow immunochromatographic assay (FLIA) using Ag ^{MBA} @Au–Ab as an immunoprobe. Analyst, The, 2021, 146, 296-304.	3.5	8
64	An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta, 2021, 223, 121687.	5.5	10
65	Multi-functional porous organic polymers for highly-efficient solid-phase extraction of β-agonists and β-blockers in milk. RSC Advances, 2021, 11, 28925-28933.	3.6	4
66	Occurrence of pharmaceutical metabolites and transformation products in the aquatic environment of the Mediterranean area. Trends in Environmental Analytical Chemistry, 2021, 29, e00118.	10.3	21
67	Liquid crystal-based aptasensor to detect ractopamine hydrochloride at a femtomolar level. Microchemical Journal, 2021, 171, 106861.	4.5	5
69	Improvement of an Simultaneous Determination for Clenbuterol and Ractopamine in Livestock Products using LC-MS/MS. Korean Journal of Food Science and Technology, 2013, 45, 25-33.	0.3	2
70	Simplified and Small-Scale Technique for Quantifying Ractopamine in Beef under Organic Solvent-Free Conditions. Open Journal of Analytical Chemistry Research, 2013, 1, 46.	0.2	0
71	β-Agonist in the environmental waters: a review on threats and determination methods. Green Chemistry Letters and Reviews, 2022, 15, 233-252.	4.7	7
72	Development and Validation of an Analytical Method for β-Agonists in Livestock and Fishery Products Using LC-MS/MS. Korean Journal of Environmental Agriculture, 2022, 41, 135-151.	0.4	0
73	Determination of the Metabolites and Metabolic Pathways for Three β-Receptor Agonists in Rats Based on LC-MS/MS. Animals, 2022, 12, 1885.	2.3	0

#	Article	IF	CITATIONS
74	Development of A Multi-residue Immunosensor Based on an Anti-bovine Serum Albumin-clenbuterol-salbutamol Antibody for Detection of six β-agonists. International Journal of Electrochemical Science, 0, , ArticleID:220953.	1.3	0
75	Rapid and High-Throughput Determination of Sixteen β-agonists in Livestock Meat Using One-Step Solid-Phase Extraction Coupled with UHPLC-MS/MS. Foods, 2023, 12, 76.	4.3	4
77	Analysis of 14 βâ€agonists in pork using an automated wooden tipâ€based solidâ€phase microextraction device and ultraâ€highâ€performance liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 2024, 47, .	2.5	0