Reaction engineering: Status and future challenges

Chemical Engineering Science 65, 3-11 DOI: 10.1016/j.ces.2009.09.018

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach. Chemical Engineering Science, 2010, 65, 2472-2480.	1.9	33
2	CFD simulation of solids suspension in stirred tanks: Review. Hemijska Industrija, 2010, 64, 365-374.	0.3	22
3	Miniaturization in Biotechnology: Speeding up the Development of Bioprocesses. Recent Patents on Biotechnology, 2011, 5, 160-173.	0.4	24
4	New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow. Chemical Engineering Journal, 2011, 176-177, 65-74.	6.6	31
5	Rational Design of Microporous and Mesoporous Solids for Catalysis: From the Molecule to the Reactor. ChemCatChem, 2011, 3, 1263-1272.	1.8	34
6	Carbon Nanotube Mass Production: Principles and Processes. ChemSusChem, 2011, 4, 864-889.	3.6	329
7	Effects of heat and mass transfer on the kinetics of CO oxidation over RuO2(110) catalyst. Catalysis Today, 2011, 165, 56-63.	2.2	18
8	CFD models of jet mixing and their validation by tracer experiments. Chemical Engineering and Processing: Process Intensification, 2011, 50, 300-304.	1.8	22
9	Scaling laws for gas–solid riser flow through two-fluid model simulation. Particuology, 2011, 9, 121-129.	2.0	7
10	Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction–Regeneration Cycles. Industrial & Engineering Chemistry Research, 2012, 51, 13073-13084.	1.8	7
11	Modeling for the catalytic coupling reaction of carbon monoxide to diethyl oxalate in fixed-bed reactors: Reactor model and its applications. Chemical Engineering Research and Design, 2012, 90, 1361-1371.	2.7	12
12	Direct synthesis of H 2 O 2 on model Pd surfaces. Chemical Engineering Journal, 2012, 207-208, 845-850.	6.6	13
13	Computer-aided scale-up of a packed-bed tubular reactor. Computers and Chemical Engineering, 2012, 39, 96-104.	2.0	4
14	BMBF-Projekt "Multi-Phaseâ€i,• Chemie-Ingenieur-Technik, 2013, 85, 989-991.	0.4	2
16	Kinetic study of biphasic aldol condensation of n-butyraldehyde using stirred cell. Chemical Engineering Science, 2013, 104, 619-629.	1.9	12
17	An overview of thermal biomass conversion technologies. , 2013, , 43-46.		3
18	Challenges in Reaction Engineering Practice of Heterogeneous Catalytic Systems. Advances in Chemical Engineering, 2014, , 1-40.	0.5	4
19	Scaleup of Batch Reactors Using Phenomenological-Based Models. Industrial & Engineering Chemistry Research, 2014, 53, 9439-9453.	1.8	12

#	Article	IF	CITATIONS
20	Fluidic effects on kinetic parameter estimation in lab-scale catalysis testing – A critical evaluation based on computational fluid dynamics. Chemical Engineering Science, 2014, 111, 220-230.	1.9	22
21	A Computational Method to Optimize the Distribution of a Catalytically Active Material Inside a Nano-scale Pore. Energy Procedia, 2015, 75, 2038-2043.	1.8	0
22	Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process. Heat and Mass Transfer, 2015, 51, 67-84.	1.2	14
23	Applications of tomography in bubble column and trickle bed reactors. , 2015, , 477-507.		0
24	Scale-up and multiphase reaction engineering. Current Opinion in Chemical Engineering, 2015, 9, 49-58.	3.8	23
25	Solution styrene polymerization in a millireactor. Chemical Engineering and Processing: Process Intensification, 2015, 98, 1-12.	1.8	3
26	Use of modeling in scale-up of steam reforming technology. Catalysis Today, 2016, 272, 14-18.	2.2	8
27	Novel multi-tubular fixed-bed reactors' shell structural analysis based on numerical simulation method. Journal of Engineering Thermophysics, 2016, 25, 464-473.	0.6	0
28	Efficient production of uniform nanometerâ€sized polymer vesicles in stirredâ€ŧank reactors. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
29	Computational optimization of catalyst distributions at the nano-scale. Applied Energy, 2017, 185, 2224-2231.	5.1	2
30	Unified modeling of bubbly flows in pipes, bubble columns, and airlift columns. Chemical Engineering Science, 2017, 157, 147-158.	1.9	69
31	Simultaneous local determination of mass transfer and residence time distributions in organic multiphase systems. Chemical Engineering Journal, 2017, 321, 635-641.	6.6	0
32	Atomic force phase imaging for dynamic detection of adsorbed hydrogen on a catalytic palladium surface under liquid. Ultramicroscopy, 2017, 181, 42-49.	0.8	0
33	An equation-oriented approach to modeling heterogeneous catalytic reactors. Chemical Engineering Journal, 2017, 329, 15-24.	6.6	7
34	Operando determination of the liquid-solid mass transfer coefficient during 1-octene hydrogenation. Chemical Engineering Science, 2017, 171, 614-624.	1.9	13
35	Polymersomes for biotechnological applications: Largeâ€scale production of nanoâ€scale vesicles. Engineering in Life Sciences, 2017, 17, 58-70.	2.0	31
36	Application of multiphase reaction engineering and process intensification to the challenges of sustainable future energy and chemicals. Chemical Engineering Science, 2017, 157, 15-25.	1.9	41
37	Incorporating Sustainability into Engineering and Chemical Education Using E-Learning. Education Sciences, 2018, 8, 39.	1.4	20

CITATION REPORT

	CITATION REPORT		
Article		IF	Citations
Evaluation of various turbulence models for numerical simulation of a multiphase syster rotating packed bed. Computers and Fluids, 2019, 194, 104296.	em in a	1.3	27
Compartmental Modelling in chemical engineering: A critical review. Chemical Enginee 2019, 210, 115196.	ring Science,	1.9	47
Electrochemical Conversion of CO ₂ to CO into a Microchannel Reactor S Case of Aqueous Electrolyte. Industrial & Engineering Chemistry Research, 2020,	ystem in the 59, 5664-5674.	1.8	16
Process Intensification in Pneumatically Agitated Slurry Reactors. Engineering, 2021, 7	7, 304-325.	3.2	26
Integration of microfluidic systems with external fields for multiphase process intensif Chemical Engineering Science, 2021, 234, 116450.	ication.	1.9	14
Small-Scale Phenomena in Reactive Bubbly Flows: Experiments, Numerical Modeling, a Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 625-643.	nd Applications.	3.3	9
Modelâ \in Assisted Optimization of RAFT Polymerization in Microâ \in Scale Reactorsâ \in "A Approach. Macromolecular Reaction Engineering, 2021, 15, 2000058.	Fast Screening	0.9	10
EstimaciÃ ³ n y modelizaciÃ ³ n de arrastres de orgánico en acuoso (O/A) en pruebas de planta de extracciÃ ³ n por solventes (SX) de cobre. Revista De Metalurgia, 2013, 49, 92	laboratorio de 2-99.	0.1	2
Future Development of Chemical Reaction Engineering. Hans Journal of Chemical Engi Technology, 2011, 01, 1-3.	neering and	0.0	0
SÃNTESE DO 2-(1H-INDOL-3-IL)-2-OXO-N-FENIL ACETAMIDA EM MICRORREATOR: VER DO TEMPO DE RESIDÊNCIA. , 0, , .	IFICAÇÃO DA INFLUÊNCI	IA	0

49	Process Intensification of Immobilized Enzyme Reactors. RSC Green Chemistry, 2018, , 249-267.	0.0	1
50	Process Intensification in Chemical Reaction Engineering. Processes, 2022, 10, 99.	1.3	18
52	Applications of tomography in bubble column and fixed bed reactors. , 2022, , 729-771.		0

53	Continuum multiscale modeling of absorption processes in micro- and nanocatalysts. Archive of Applied Mechanics, 2022, 92, 2207-2223.	1.2	1	
54	Role of Process Intensification in Enzymatic Transformation of Biomass into High-Value Chemicals. ,		0	

54 2022, , 439-453.

#

38

41

43

45

47